WO2020134986A1 - 一种对转电机及破壁机 - Google Patents

一种对转电机及破壁机 Download PDF

Info

Publication number
WO2020134986A1
WO2020134986A1 PCT/CN2019/123812 CN2019123812W WO2020134986A1 WO 2020134986 A1 WO2020134986 A1 WO 2020134986A1 CN 2019123812 W CN2019123812 W CN 2019123812W WO 2020134986 A1 WO2020134986 A1 WO 2020134986A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
rotor
phase
counter
stator
Prior art date
Application number
PCT/CN2019/123812
Other languages
English (en)
French (fr)
Inventor
刘毅
赵建兴
王飞
Original Assignee
广东美的白色家电技术创新中心有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的白色家电技术创新中心有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Priority to CA3121950A priority Critical patent/CA3121950A1/en
Priority to US17/417,074 priority patent/US11923734B2/en
Priority to JP2021534147A priority patent/JP7115795B2/ja
Priority to KR1020217019645A priority patent/KR102591544B1/ko
Priority to EP19903999.1A priority patent/EP3883101A4/en
Publication of WO2020134986A1 publication Critical patent/WO2020134986A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J43/00Implements for preparing or holding food, not provided for in other groups of this subclass
    • A47J43/04Machines for domestic use not covered elsewhere, e.g. for grinding, mixing, stirring, kneading, emulsifying, whipping or beating foodstuffs, e.g. power-driven
    • A47J43/07Parts or details, e.g. mixing tools, whipping tools
    • A47J43/08Driving mechanisms
    • A47J43/085Driving mechanisms for machines with tools driven from the lower side
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/047V/F converter, wherein the voltage is controlled proportionally with the frequency

Definitions

  • the invention relates to the field of motors, in particular to a counter-rotating motor and a wall breaking machine.
  • the motors used in most wall breakers on the market generally have only one output shaft, and a stirring blade is installed on the output shaft. With the increase of the rotation speed of the stirring blade, the noise of the wall breaker is also increased.
  • the inventor of the present application has found in the long-term research and development that the use of a counter-rotating motor makes the blades installed on the two output shafts relatively rotate, which can achieve a better mixing effect while generating less noise.
  • the current traditional counter-rotating motor drives the two rotating shafts to rotate in opposite directions through the brush slip ring, but the noise and wear of the brush are relatively large, which affects the life of the motor;
  • the dual-rotor permanent magnet motor is controlled by two sets of inverters. The stator and rotor are rotated in the opposite direction. Although the brush is omitted, the inverter cost is high, the control is complicated, and the space is large.
  • the invention provides a counter-rotating motor and a wall-breaking machine to solve the technical problems of the conventional motor, which is noisy and has complicated control.
  • a technical solution adopted by the present invention is to provide a counter-rotating motor, which includes:
  • a stator the stator is provided with an outer winding and an inner winding, wherein the phase sequence of the outer winding and the inner winding is opposite;
  • An inverter is connected in parallel with the outer winding and the inner winding to provide excitation current to the outer winding and the inner winding synchronously;
  • An inner rotor arranged in the inner winding, for rotating in the first direction under the action of the inner winding;
  • the outer rotor is provided outside the outer winding and is used to rotate in a second direction opposite to the first direction under the action of the outer winding.
  • the outer winding and the inner winding respectively include a three-phase winding, and the phase sequence of the three-phase winding in the outer winding is opposite to the phase sequence of the three-phase winding in the inner winding.
  • the outer winding and the inner winding respectively include multiple groups of the three-phase windings, the phase sequence of the three-phase windings in each group of the outer windings is the same, and the The phase sequence of the three-phase winding is the same.
  • the three-phase winding includes A-phase winding, B-phase winding and C-phase winding, the A-phase winding, B-phase winding and C-phase winding in the inner winding are sequentially arranged in a counterclockwise direction, and the The A-phase winding, B-phase winding and C-phase winding are sequentially arranged in a clockwise direction.
  • the inverter includes a first current output terminal, a second current output terminal and a third current output terminal, wherein the A-phase windings of the outer winding and the inner winding are connected in parallel to the first current output terminal, The B-phase winding of the outer winding and the inner winding are connected in parallel to the second current output terminal, and the C-phase winding of the outer winding and the inner winding are connected in parallel to the third current output terminal.
  • one of the inner rotor and the outer rotor is a first squirrel-cage rotor, and the other is a second squirrel-cage rotor, permanent magnet rotor, or reluctance rotor.
  • the inverter performs closed-loop vector control on the second squirrel-cage rotor, permanent magnet rotor or reluctance rotor, and the first squirrel-cage rotor automatically operates in the V/F open-loop control mode.
  • the stator includes an inner stator and an outer stator sleeved around the inner stator, the inner winding is disposed on the inner stator, and the outer winding is disposed on the outer stator;
  • the counter-rotating motor may include a magnetic barrier, which is disposed between the outer stator and the inner stator, and is used to magnetically isolate the outer winding and the inner winding.
  • another technical solution adopted by the present invention is to provide a wall breaking machine, including the above-mentioned counter-rotating motor.
  • the wall breaking machine further includes a first blade and a second blade, the first blade is connected to the inner rotor, and the second blade is connected to the outer rotor, so that the first blade is connected to the The second blade can rotate relatively.
  • the invention provides two sets of internal and external matching windings and rotors for the counter-rotating motor, and the external winding and the internal winding are synchronously controlled by a set of inverters, which can save brushes, reduce noise, and improve the life of the motor. It has lower cost and simpler control.
  • FIG. 1 is a schematic structural view of an embodiment of a counter-rotating motor of the present invention
  • FIG. 2 is a schematic structural view of an embodiment of a counter-rotating motor of the present invention.
  • FIG. 3 is a schematic structural view of another embodiment of a counter-rotating motor of the present invention.
  • FIG. 4 is a schematic structural view of an embodiment of the wall breaking machine of the present invention.
  • an embodiment of a contra-rotating electric machine 10 of the present invention includes a stator 100, an inverter 200, an inner rotor 300, and an outer rotor 400.
  • the stator 100 is provided with an outer winding 110 and an inner winding 120, wherein the outer winding 110 and The phase sequence of the inner winding 120 is reversed;
  • the inverter 200 is connected in parallel with the outer winding 110 and the inner winding 120 to provide excitation current to the outer winding 110 and the inner winding 120 synchronously;
  • the inner rotor 300 is disposed in the inner winding 120 for The inner winding 120 rotates in a first direction;
  • the outer rotor 400 is disposed outside the outer winding 110 and is used to rotate in a second direction opposite to the first direction under the action of the outer winding 110.
  • two sets of matching windings and rotors are provided for the rotating electrical machine, and the outer winding and the inner winding are synchronously controlled by a set of inverters, which can eliminate brushes, reduce noise, and improve the life of the motor. Inverters have lower cost and simpler control.
  • one of the inner rotor 300 and the outer rotor 400 is a first squirrel-cage rotor, and the other is a second squirrel-cage rotor, a permanent magnet rotor, or a reluctance rotor.
  • the inverter 200 performs closed-loop vector control on the second squirrel-cage rotor, permanent magnet rotor, or reluctance rotor, while the first squirrel-cage rotor automatically operates in the V/F open-loop control mode.
  • the closed-loop vector control separately controls the speed and torque of the motor, and can generate output voltages matching different loads according to the received feedback signal.
  • V/F open-loop control means that the ratio of the output voltage V to the operating frequency F is a fixed value, and it cannot receive feedback signals, so its output voltage is not affected by the load.
  • the outer rotor 400 is a first squirrel-cage rotor
  • the inner rotor 300 is a permanent magnet rotor
  • the permanent magnet 310 is embedded or attached to the surface of the permanent magnet rotor
  • the inverter 200 pairs the permanent magnet rotor Closed-loop vector control is performed so that the first squirrel-cage rotor automatically runs in the V/F open-loop control mode.
  • the inner rotor 300 may be a first squirrel-cage rotor
  • the outer rotor 400 may be a second squirrel-cage rotor.
  • the inverter 200 implements closed-loop vector control of the second squirrel-cage rotor. V/F open loop control of the first squirrel-cage rotor.
  • a set of inverters has the disadvantages of controlling separately, so that the two rotors of the inner rotor 300 and the outer rotor 400 are controlled by one set of inverters.
  • the outer winding 110 and the inner winding 120 respectively include three-phase windings.
  • the phase sequence of the three-phase winding in the outer winding 110 is opposite to that of the three-phase winding in the inner winding 120, so that the inner rotor 300 corresponding to the inner winding 120, and The outer rotor 400 corresponding to the outer winding 110 can rotate in the opposite direction.
  • the outer winding 110 and the inner winding 120 respectively include multiple sets of three-phase windings, the phase sequence of the three-phase windings in each group of the outer winding 110 is the same, and the phases of the three-phase windings in each group of the inner winding 120 The sequence is the same, so that the inner rotor 300 corresponding to the inner winding 120 or the outer rotor 400 corresponding to the outer winding 110 can continue to rotate in the same direction.
  • the three-phase winding includes an A-phase winding, a B-phase winding, and a C-phase winding.
  • the A-phase winding 121, the B-phase winding 122, and the C-phase winding 123 in the inner winding 120 are sequentially arranged in a counterclockwise direction
  • the outer winding 110, the A-phase winding 111, the B-phase winding 112, and the C-phase winding 113 are sequentially arranged in the clockwise direction.
  • the A-phase winding 121, the B-phase winding 122, and the C-phase winding 123 in the inner winding 120 may also be sequentially arranged in a clockwise direction, while the A-phase winding 111, the B-phase winding 112, and the The C-phase winding 113 is sequentially arranged in the counterclockwise direction, and is not limited herein.
  • the inverter 200 includes a first current output 210, a second current output 220, and a third current output 230, wherein the A-phase windings of the outer winding 110 and the inner winding 120 are connected in parallel to the first current output 210, the outer winding 110
  • the B-phase winding of the inner winding 120 is connected to the second current output terminal 220 in parallel
  • the C-phase winding of the outer winding 110 and the inner winding 120 is connected to the third current output terminal 230 in parallel, so that the inverter 200 can
  • the three-phase winding is precisely controlled, and at the same time, the three-phase winding of the external winding 110 is automatically controlled.
  • the stator 100 includes an inner stator 130 and an outer stator 140 sleeved around the inner stator 130, an inner winding 120 is disposed on the inner stator 130, an outer winding 110 is disposed on the outer stator 140, and the counter-rotating electric machine 10
  • a magnetic barrier 500 is also included.
  • the magnetic barrier 500 is disposed between the outer stator 140 and the inner stator 130 for magnetically isolating the outer winding 110 and the inner winding 120.
  • the embodiment of the present invention can magnetically isolate the outer winding and the inner winding by setting a magnetic barrier to avoid mutual interference of the magnetic field between the outer winding and the inner winding, thereby affecting the normal operation of the counter-rotating motor.
  • a power source (not shown in the figure) simultaneously supplies power to the outer winding 110 and the inner winding 120 through the inverter 200, and the inner winding 120 generates a first magnetic field under the action of an excitation current to drive the permanent magnet rotor to rotate in the first direction
  • the first direction may be clockwise, the voltage and frequency of the inner winding 120 gradually increase, and the rotation speed of the permanent magnet rotor gradually increases accordingly.
  • the inverter 200 controls the output of the inner winding 120 precisely Voltage, output current, and output frequency to accurately control the speed or torque of the permanent magnet rotor, thereby achieving closed-loop vector control of the inner winding 120; at the same time, the inner winding 120 is parallel to the outer winding 110 of the inverter 200 and also receives excitation The current generates a second magnetic field.
  • the first squirrel-cage rotor is driven by the outer winding 110 to rotate in a second direction opposite to the first direction, for example, this embodiment
  • the second direction may be counterclockwise, the voltage and frequency of the outer winding 110 gradually increase, and the rotation speed of the first squirrel cage rotor gradually increases accordingly; because the inverter 200 realizes the closed-loop vector control of the inner winding 120 At this time, the ratio of the output voltage to the output frequency is a fixed value, so the first squirrel cage rotor can automatically run in the V/F open-loop control mode.
  • the first squirrel-cage rotor When the load of the first squirrel-cage rotor is large, the first squirrel-cage rotor, under its own control, its operating speed will be lower than the synchronous speed of the magnetic field, resulting in a slip, thereby generating an asynchronous electromagnetic torque matching the load and avoiding out of step risk.
  • the counter-rotating electric machine 10 includes an integral stator 100, the inner winding 120 is disposed on the inner ring of the stator 100, and the outer winding 110 is disposed on the outer ring of the stator 100.
  • the precise control of the outer winding 110 avoids interference between the inner winding 120 and the outer winding 110.
  • the control method of this embodiment is more complicated than the above embodiment of a counter-rotating motor with a magnetic barrier, but its structure is simpler.
  • the embodiment of the wall breaking machine of the present invention includes a counter-rotating motor 10, a first blade 610, and a second blade 620, wherein the structure of the counter-rotating motor 10 refers to the above embodiment of the counter-rotating motor 10, which will not be repeated here.
  • the first blade 610 is connected to the inner rotor 300
  • the second blade 620 is connected to the outer rotor 400 so that the first blade 610 and the second blade 620 can relatively rotate.
  • the wall breaking machine further includes a base 700, a first output shaft 710, a second output shaft 720, and a cup 800.
  • the cup 800 is disposed on the base 700 to form a receiving cavity 810, and the counter-rotating motor 10 is disposed on In the base 700, the first output shaft 710 and the second output shaft 720 are disposed through the base 700, and the second output shaft 720 is sleeved on the first output shaft 710.
  • the first output shaft 710 is respectively connected to the inner rotor 300 and the first blade 610 is fixedly connected
  • the second output shaft 720 is fixedly connected to the outer rotor 400 and the second blade 620, respectively, so that the first blade 610 and the second blade 620 can rotate with the inner rotor 300 and the outer rotor 400, respectively, and their relative speeds It can reach twice the rotation speed of a single blade, so that the food contained in the accommodating cavity 810 can be processed better.
  • multiple blades may be provided on the first output shaft 710 and the second output shaft 720 respectively, which is not limited herein.
  • the brush can be omitted, the noise can be reduced, and the motor can be improved.
  • Longevity because two inverters are not needed, its cost is lower, and the control is simpler; by setting the blades connected to the inner and outer rotors respectively, the relative speed of the two blades can reach twice the speed of a single blade, without increasing Noise while improving processing efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Food Science & Technology (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Control Of Ac Motors In General (AREA)
  • Food-Manufacturing Devices (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本发明公开了一种对转电机及破壁机,该对转电机包括定子、逆变器、内转子和外转子,定子上设有外绕组和内绕组,其中外绕组和内绕组的相序相反;逆变器与外绕组和内绕组并联连接,以同步向外绕组和内绕组提供激励电流;内转子设置于内绕组内,用于在内绕组的作用下沿第一方向旋转;外转子设置于外绕组外,用于在外绕组的作用下沿与第一方向相反的第二方向旋转。本发明对转电机设置内外两组配套的绕组和转子,并通过一套逆变器同步控制外绕组和内绕组,能够省去电刷,降低噪音,提高电机寿命,同时由于无需两套逆变器,其成本更低,并且控制更加简单。

Description

一种对转电机及破壁机
本申请要求于2018年12月24日提交的申请号为2018115842956,发明名称为“一种对转电机及破壁机”的中国专利申请的优选权,其通过引用方式全部并入本申请。
【技术领域】
本发明涉及电机领域,特别涉及一种对转电机及破壁机。
【背景技术】
目前市场上大多数破壁机采用的电机一般只有一个输出轴,输出轴上安装有搅拌刀片,随着搅拌刀片的转速的提高,破壁机运行的噪音也随之提高。
本申请的发明人在长期的研发中发现,采用对转电机,使得安装在两个输出轴的刀片相对旋转,能够实现更好的搅拌效果同时产生较小的噪音。目前的传统对转电机通过电刷滑环带动两个转动轴朝相反方向旋转,但是电刷的噪音和磨损都较大,影响电机寿命;双转子永磁电机通过两套逆变器分别控制两套定子和转子实现反方向旋转,虽然省去电刷,但是逆变器成本较高,控制复杂,且占用空间大。
【发明内容】
本发明提供一种对转电机及破壁机,以解决现有技术中对转电机噪音大,控制复杂的技术问题。
为解决上述技术问题,本发明采用的一个技术方案是提供一种对转电机,所述对转电机包括:
定子,所述定子上设有外绕组和内绕组,其中所述外绕组和所述内绕组的相序相反;
逆变器,与所述外绕组和所述内绕组并联连接,以同步向所述外绕组和所 述内绕组提供激励电流;
内转子,设置于所述内绕组内,用于在所述内绕组的作用下沿第一方向旋转;
外转子,设置于所述外绕组外,用于在所述外绕组的作用下沿与所述第一方向相反的第二方向旋转。
其中,所述外绕组和所述内绕组分别包括三相绕组,所述外绕组中的三相绕组的相序与所述内绕组中的三相绕组的相序相反。
其中,所述外绕组和所述内绕组分别包括多组所述三相绕组,所述外绕组的各组内的所述三相绕组的相序相同,所述内绕组的各组内的所述三相绕组的相序相同。
其中,所述三相绕组包括A相绕组、B相绕组和C相绕组,所述内绕组中的A相绕组、B相绕组和C相绕组沿逆时针方向顺序排列,所述外绕组中的A相绕组、B相绕组和C相绕组沿顺时针方向顺序排列。
其中,所述逆变器包括第一电流输出端、第二电流输出端和第三电流输出端,其中所述外绕组和所述内绕组的A相绕组并联至所述第一电流输出端,所述外绕组和所述内绕组的B相绕组并联至所述第二电流输出端,所述外绕组和所述内绕组的C相绕组并联至所述第三电流输出端。
其中,所述内转子和所述外转子中的一者为第一鼠笼式转子,另一者为第二鼠笼式转子、永磁转子或磁阻转子。
其中,所述逆变器对所述第二鼠笼式转子、永磁转子或磁阻转子进行闭环矢量控制,而所述第一鼠笼式转子自动运行于V/F开环控制方式下。
其中,所述定子包括内定子以及套设在所述内定子外围的外定子,所述内绕组设置于所述内定子上,所述外绕组设置于外定子上;
其中,所述对转电机可包括隔磁障,所述隔磁障设置于所述外定子与所述内定子之间,用于磁性隔离所述外绕组与所述内绕组。
为解决上述技术问题,本发明采用的另一个技术方案是提供一种破壁机, 包括上述的对转电机。
其中,所述破壁机还包括第一刀片和第二刀片,所述第一刀片与所述内转子连接,所述第二刀片与所述外转子连接,以使得所述第一刀片与所述第二刀片可相对旋转。
本发明对转电机设置内外两组配套的绕组和转子,并通过一套逆变器同步控制外绕组和内绕组,能够省去电刷,降低噪音,提高电机寿命,同时由于无需两套逆变器,其成本更低,并且控制更加简单。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:
图1是本发明对转电机一实施例的结构示意图;
图2是本发明对转电机一实施例的结构示意图;
图3是本发明对转电机另一实施例的结构示意图;
图4是本发明破壁机实施例的结构示意图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,均属于本发明保护的范围。
参见图1和图2,本发明对转电机10实施例包括定子100、逆变器200、内转子300和外转子400,定子100上设有外绕组110和内绕组120,其中外绕组110和内绕组120的相序相反;逆变器200与外绕组110和内绕组120并联连接, 以同步向外绕组110和内绕组120提供激励电流;内转子300设置于内绕组120内,用于在内绕组120的作用下沿第一方向旋转;外转子400设置于外绕组110外,用于在外绕组110的作用下沿与第一方向相反的第二方向旋转。
本发明实施例对转电机设置内外两组配套的绕组和转子,并通过一套逆变器同步控制外绕组和内绕组,能够省去电刷,降低噪音,提高电机寿命,同时由于无需两套逆变器,其成本更低,并且控制更加简单。
其中,内转子300和外转子400中的一者为第一鼠笼式转子,另一者为第二鼠笼式转子、永磁转子或磁阻转子。逆变器200对第二鼠笼式转子、永磁转子或磁阻转子进行闭环矢量控制,而第一鼠笼式转子自动运行于V/F开环控制方式下。具体的,闭环矢量控制是分别对电机的转速和扭矩进行控制,并能够根据接收到的反馈信号,生成与不同负载匹配的输出电压。V/F开环控制是指输出电压V与运行频率F之比为定值,且其不能接收反馈信号,因此其输出电压不受负载的影响。
例如,在本实施例中,外转子400为第一鼠笼式转子,内转子300为永磁转子,永磁转子内部嵌设或表面贴附有永磁体310,逆变器200对永磁转子进行闭环矢量控制,使得第一鼠笼式转子自动运行于V/F开环控制方式下。例如,在其他实施例中,内转子300可以为第一鼠笼式转子,外转子400可以为第二鼠笼式转子,逆变器200通过对第二鼠笼式转子进行闭环矢量控制从而实现对第一鼠笼式转子的V/F开环控制。
本发明实施例通过将内转子300和外转子400中的一者设为第一鼠笼转子,能够避免双永磁转子、双磁阻转子或永磁与磁阻配合的双转子电机必须通过两套逆变器分别进行控制的弊端,从而通过一套逆变器实现对内转子300和外转子400这两个转子的控制。
外绕组110和内绕组120分别包括三相绕组,外绕组110中的三相绕组的相序与内绕组120中的三相绕组的相序相反,使得与内绕组120对应的内转子300、与外绕组110对应的外转子400能够沿相反的方向旋转。
在本实施例中,外绕组110和内绕组120分别包括多组三相绕组,外绕组110的各组内的三相绕组的相序相同,内绕组120的各组内的三相绕组的相序相同,使得与内绕组120对应的内转子300或与外绕组110对应的外转子400能够持续朝同一方向旋转。
具体的,三相绕组包括A相绕组、B相绕组和C相绕组,在本实施例中,内绕组120中的A相绕组121、B相绕组122和C相绕组123沿逆时针方向顺序排列,外绕组110中的A相绕组111、B相绕组112和C相绕组113沿顺时针方向顺序排列。在其他实施例中,内绕组120中的A相绕组121、B相绕组122和C相绕组123也可以沿顺时针方向顺序排列,同时外绕组110中的A相绕组111、B相绕组112和C相绕组113沿逆时针方向顺序排列,在此不做限制。
逆变器200包括第一电流输出端210、第二电流输出端220和第三电流输出端230,其中外绕组110和内绕组120的A相绕组并联至第一电流输出端210,外绕组110和内绕组120的B相绕组并联至第二电流输出端220,外绕组110和内绕组120的C相绕组并联至第三电流输出端230,以使得逆变器200能够分别对内绕组120的三相绕组进行精确控制,同时自动实现对外绕组110的三相绕组的控制。
在本实施例中,定子100包括内定子130以及套设在内定子130外围的外定子140,内绕组120设置于内定子130上,外绕组110设置于外定子140上,其中对转电机10还包括隔磁障500,隔磁障500设置于外定子140与内定子130之间,用于磁性隔离外绕组110与内绕组120。本发明实施例通过设置隔磁障,能够磁性隔离外绕组与内绕组,避免外绕组与内绕组之间的磁场相互干扰,从而影响对转电机的正常运行。
具体的,电源(图中未示出)通过逆变器200给外绕组110和内绕组120同时供电,内绕组120在激励电流的作用下产生第一磁场,驱动永磁转子沿第一方向旋转,例如本实施例中第一方向可以为顺时针方向,内绕组120的电压和频率逐渐升高,永磁转子的旋转速度随之逐渐升高,逆变器200通过精确控 制内绕组120的输出电压、输出电流和输出频率,以精确控制永磁转子的速度或转矩,从而实现对内绕组120的闭环矢量控制;同时与内绕组120并联于逆变器200的外绕组110也接收到激励电流,产生第二磁场,由于外绕组110的相序与内绕组120的相序相反,使得第一鼠笼转子在外绕组110的驱动下沿与第一方向相反的第二方向旋转,例如本实施例中第二方向可以为逆时针方向,外绕组110的电压和频率逐渐升高,第一鼠笼转子的旋转速度随之逐渐升高;由于逆变器200实现对内绕组120的闭环矢量控制时,其输出电压与输出频率的比值为定值,因此第一鼠笼转子能够自动运行于V/F开环控制方式下。当第一鼠笼转子的负载较大时,第一鼠笼转子通过自身的控制,其运行转速会低于磁场同步转速,产生转差,从而生成和负载匹配的异步电磁转矩,避免失步风险。
参见图3,在另一具体实施例中,对转电机10包括一个整体的定子100,内绕组120设置于定子100的内圈,外绕组110设置于定子100的外圈,通过对内绕组120和外绕组110的精准控制避免内绕组120和外绕组110之间产生干扰。本实施例的控制方法相较于上述设有隔磁障的对转电机实施例虽然更加复杂,但是其结构更加简单。
参见图4,本发明破壁机实施例包括对转电机10、第一刀片610和第二刀片620,其中,对转电机10的结构参见上述对转电机10实施例,在此不再赘述,第一刀片610与内转子300连接,第二刀片620与外转子400连接,以使得第一刀片610与第二刀片620可相对旋转。
具体的,破壁机还包括底座700、第一输出轴710、第二输出轴720和杯体800,杯体800设置于底座700上,用于形成容置腔810,对转电机10设置于底座700内,第一输出轴710、第二输出轴720贯穿设置于底座700,且第二输出轴720套设于第一输出轴710,第一输出轴710分别与内转子300、第一刀片610固定连接,第二输出轴720分别与外转子400、第二刀片620固定连接,以使得第一刀片610、第二刀片620可分别随着内转子300、外转子400相对旋转,其 相对转速可以达到单个刀片转速的两倍,从而可以对容置于容置腔810内的食物进行更好的加工。在其他实施例中,第一输出轴710、第二输出轴720上可以分别设置多个刀片,在此不做限制。
本发明实施例通过在破壁机内的对转电机设置内外两组配套的绕组和转子,并通过一套逆变器同步控制外绕组和内绕组,能够省去电刷,降低噪音,提高电机寿命,同时由于无需两套逆变器,其成本更低,并且控制更加简单;通过设置分别与内外转子连接的刀片,使得两个刀片的相对转速达到单个刀片转速的两倍,能够在不增加噪音的同时提高加工效率。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (11)

  1. 一种对转电机,其特征在于,所述对转电机包括:
    定子,所述定子上设有外绕组和内绕组,其中所述外绕组和所述内绕组的相序相反;
    逆变器,与所述外绕组和所述内绕组并联连接,以同步向所述外绕组和所述内绕组提供激励电流;
    内转子,设置于所述内绕组内,用于在所述内绕组的作用下沿第一方向旋转;
    外转子,设置于所述外绕组外,用于在所述外绕组的作用下沿与所述第一方向相反的第二方向旋转。
  2. 根据权利要求1所述的对转电机,其特征在于,所述外绕组和所述内绕组分别包括三相绕组,所述外绕组中的三相绕组的相序与所述内绕组中的三相绕组的相序相反。
  3. 根据权利要求2所述的对转电机,其特征在于,所述外绕组和所述内绕组分别包括多组所述三相绕组,所述外绕组的各组内的所述三相绕组的相序相同,所述内绕组的各组内的所述三相绕组的相序相同。
  4. 根据权利要求2所述的对转电机,其特征在于,所述三相绕组包括A相绕组、B相绕组和C相绕组,所述内绕组中的A相绕组、B相绕组和C相绕组沿逆时针方向顺序排列,所述外绕组中的A相绕组、B相绕组和C相绕组沿顺时针方向顺序排列。
  5. 根据权利要求4所述的对转电机,其特征在于,所述逆变器包括第一电流输出端、第二电流输出端和第三电流输出端,其中所述外绕组和所述内绕组的A相绕组并联至所述第一电流输出端,所述外绕组和所述内绕组的B相绕组并联至所述第二电流输出端,所述外绕组和所述内绕组的C相绕组并联至所述第三电流输出端。
  6. 根据权利要求1所述的对转电机,其特征在于,所述内转子和所述外转子中的一者为第一鼠笼式转子,另一者为第二鼠笼式转子、永磁转子或磁阻转子。
  7. 根据权利要求1所述的对转电机,其特征在于,所述逆变器对所述第二鼠笼式转子、永磁转子或磁阻转子进行闭环矢量控制,而所述第一鼠笼式转子自动运行于V/F开环控制方式下。
  8. 根据权利要求1所述的对转电机,其特征在于,所述定子包括内定子以及套设在所述内定子外围的外定子,所述内绕组设置于所述内定子上,所述外绕组设置于外定子上。
  9. 根据权利要求8所述的对转电机,其特征在于,所述对转电机还包括隔磁障,所述隔磁障设置于所述外定子与所述内定子之间,用于磁性隔离所述外绕组与所述内绕组。
  10. 一种破壁机,其特征在于,包括权利要求1至9任一项所述的对转电机。
  11. 根据权利要求10所述的破壁机,其特征在于,所述破壁机还包括第一刀片和第二刀片,所述第一刀片与所述内转子连接,所述第二刀片与所述外转子连接,以使得所述第一刀片与所述第二刀片可相对旋转。
PCT/CN2019/123812 2018-12-24 2019-12-06 一种对转电机及破壁机 WO2020134986A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3121950A CA3121950A1 (en) 2018-12-24 2019-12-06 Counter-rotating motor and high speed blender
US17/417,074 US11923734B2 (en) 2018-12-24 2019-12-06 Counter-rotating motor and high speed blender
JP2021534147A JP7115795B2 (ja) 2018-12-24 2019-12-06 二重反転モーター及び高速度ミキサー
KR1020217019645A KR102591544B1 (ko) 2018-12-24 2019-12-06 반전 모터 및 분쇄기
EP19903999.1A EP3883101A4 (en) 2018-12-24 2019-12-06 COUNTER-SPEED MOTOR AND HIGH SPEED MIXER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811584295.6A CN109546827B (zh) 2018-12-24 2018-12-24 一种对转电机及破壁机
CN201811584295.6 2018-12-24

Publications (1)

Publication Number Publication Date
WO2020134986A1 true WO2020134986A1 (zh) 2020-07-02

Family

ID=65857036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123812 WO2020134986A1 (zh) 2018-12-24 2019-12-06 一种对转电机及破壁机

Country Status (7)

Country Link
US (1) US11923734B2 (zh)
EP (1) EP3883101A4 (zh)
JP (1) JP7115795B2 (zh)
KR (1) KR102591544B1 (zh)
CN (1) CN109546827B (zh)
CA (1) CA3121950A1 (zh)
WO (1) WO2020134986A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109546827B (zh) 2018-12-24 2020-10-27 广东美的白色家电技术创新中心有限公司 一种对转电机及破壁机
CN112421830A (zh) * 2019-08-23 2021-02-26 广东美的生活电器制造有限公司 电机、食物处理机及送风装置
CN110492710B (zh) * 2019-09-20 2021-02-26 齐鲁工业大学 一种双转子发电机及其控制方法
CN112152410B (zh) * 2020-09-15 2021-07-20 合肥工业大学 一种永磁双转子游标电机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359953A (ja) * 2001-05-31 2002-12-13 Denso Corp 車両用同期機
CN2850122Y (zh) * 2005-09-20 2006-12-20 沈阳工业大学 一种内外双转子异向旋转的交流电机
CN106329859A (zh) * 2015-06-17 2017-01-11 香港理工大学 双转子对旋式永磁无刷风力发电机
CN107078570A (zh) * 2014-10-02 2017-08-18 丰田自动车株式会社 无磁体旋转电机
CN108400689A (zh) * 2018-05-17 2018-08-14 林峭 一种双绕组双转子电机及双刀料理机
CN109546827A (zh) * 2018-12-24 2019-03-29 广东美的白色家电技术创新中心有限公司 一种对转电机及破壁机

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3445699A (en) * 1965-08-31 1969-05-20 Reuland Electric Co Multirotor induction motor
KR0182718B1 (ko) 1996-06-12 1999-05-15 김광호 세탁기
JP3524376B2 (ja) 1998-03-31 2004-05-10 株式会社東芝 脱水兼用洗濯機
CN2778376Y (zh) * 2004-12-17 2006-05-10 鞍山科技大学 用于生产连铸保护渣的高速搅拌机
CN101090221B (zh) 2006-06-14 2011-01-19 中国汽车技术研究中心 无刷双转子电机
CN101710769B (zh) * 2009-12-16 2012-05-23 南京航空航天大学 内外双转子双凸极无刷直流电机
GB201006790D0 (en) * 2010-04-23 2010-06-09 Rolls Royce Plc Electrical machine
KR101140924B1 (ko) * 2010-06-23 2012-05-03 주식회사 아모텍 더블 스테이터-더블 로터형 모터 및 이를 이용한 세탁기의 직결형 구동 장치
KR101131743B1 (ko) * 2010-06-23 2012-04-05 주식회사 아모텍 드럼세탁기의 직결형 구동장치
KR101861276B1 (ko) * 2012-02-08 2018-05-25 엘지전자 주식회사 세탁기 및 세탁기 구동모터의 스테이터 제작방법
JP5472254B2 (ja) * 2011-10-21 2014-04-16 株式会社デンソー ダブルステータ型モータ
CN102832770A (zh) * 2012-08-03 2012-12-19 东南大学 一种复合式开关磁阻电机
CN102832771B (zh) * 2012-08-03 2015-02-18 东南大学 一种复合式磁通切换电机
CN104937157B (zh) 2013-01-21 2018-02-09 阿莫泰克有限公司 多马达驱动装置及利用其的洗衣机用马达驱动装置及其方法
CN103475160A (zh) 2013-09-01 2013-12-25 张睿强 一种同轴对旋电机
CN104009602B (zh) * 2014-05-09 2017-01-11 东南大学 磁齿轮功率分配器
JP7029243B2 (ja) 2016-07-29 2022-03-03 三星電子株式会社 モータ
KR102398884B1 (ko) * 2017-06-09 2022-05-18 현대자동차주식회사 권선형 동기 전동기를 이용한 충전 시스템
CN107302296A (zh) * 2017-08-18 2017-10-27 南京航空航天大学 双边错齿低推力波动永磁同步直线电机
CN208257636U (zh) * 2018-05-17 2018-12-18 林峭 一种双绕组双转子电机及双刀料理机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359953A (ja) * 2001-05-31 2002-12-13 Denso Corp 車両用同期機
CN2850122Y (zh) * 2005-09-20 2006-12-20 沈阳工业大学 一种内外双转子异向旋转的交流电机
CN107078570A (zh) * 2014-10-02 2017-08-18 丰田自动车株式会社 无磁体旋转电机
CN106329859A (zh) * 2015-06-17 2017-01-11 香港理工大学 双转子对旋式永磁无刷风力发电机
CN108400689A (zh) * 2018-05-17 2018-08-14 林峭 一种双绕组双转子电机及双刀料理机
CN109546827A (zh) * 2018-12-24 2019-03-29 广东美的白色家电技术创新中心有限公司 一种对转电机及破壁机

Also Published As

Publication number Publication date
CN109546827B (zh) 2020-10-27
US11923734B2 (en) 2024-03-05
KR102591544B1 (ko) 2023-10-19
CN109546827A (zh) 2019-03-29
JP7115795B2 (ja) 2022-08-09
EP3883101A1 (en) 2021-09-22
CA3121950A1 (en) 2020-07-02
JP2022514534A (ja) 2022-02-14
US20220060095A1 (en) 2022-02-24
KR20210094619A (ko) 2021-07-29
EP3883101A4 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
WO2020134986A1 (zh) 一种对转电机及破壁机
GB1435314A (en) Superconducting rotating electrical machines
CN108322002B (zh) 一种容错式双转子双极性永磁同步电机及方法
Bentouati et al. Permanent magnet brushless DC motors for consumer products
CN108847796B (zh) 三级式无刷同步电机磁阻式起动控制方法及系统
WO2003030335A1 (fr) Moteur avec structure a deux rotors
US7034500B2 (en) Electric drive assembly
CN111817463A (zh) 单定子双转子轴向磁通混合永磁对转电机
WO2014005554A1 (zh) 一种直接并网变速恒频发电机
CN110048571A (zh) 一种三相永磁同步电动机及其起动方法
US5160868A (en) Adjustable brush ac/dc servo motor
CN210608875U (zh) 一种径向磁场复合型磁通切换电机
US10923996B2 (en) DC motor-dynamo
Hieu et al. Design a High-Speed Segmental Stator Type 4/3 SRM for Blender Application
CN205753907U (zh) 具有双励磁绕组的混合励磁永磁电机
Khan Real time performance evaluation of modified PMDC motor, BLDC motor and dual commutator PMDC machine
CN219018656U (zh) 一种高效三相交流永磁同步电动机
US3339131A (en) Multi-speed, self-excited ac motor system
CN113691093B (zh) 一种外转子永磁感应电动机及工作方法
SU1677799A1 (ru) Электропривод соосных механизмов встречного вращени
KR200357615Y1 (ko) 디젤엔진을 구동원으로 하는 브러시레스 교류발전 시스템
PL242553B1 (pl) Generator elektryczny z wewnętrzną przetwornicą częstotliwości
Zheng et al. Design and Optimization of Novel Doubly-Fed Consequent-Pole Flux Reversal Machine
SU731542A1 (ru) Способ регулировани частоты вращени асинхронного двигател
You et al. Design of a single-phase DC-excited flux switching machine for home appliance with improved starting toque

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903999

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3121950

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021534147

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019903999

Country of ref document: EP

Effective date: 20210615

ENP Entry into the national phase

Ref document number: 20217019645

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE