WO2020134916A1 - 一种开关电源控制模式切换电路及开关电源芯片 - Google Patents

一种开关电源控制模式切换电路及开关电源芯片 Download PDF

Info

Publication number
WO2020134916A1
WO2020134916A1 PCT/CN2019/122895 CN2019122895W WO2020134916A1 WO 2020134916 A1 WO2020134916 A1 WO 2020134916A1 CN 2019122895 W CN2019122895 W CN 2019122895W WO 2020134916 A1 WO2020134916 A1 WO 2020134916A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
switching power
mode switching
switch tube
voltage
Prior art date
Application number
PCT/CN2019/122895
Other languages
English (en)
French (fr)
Inventor
董渊
王云松
程剑涛
Original Assignee
上海艾为电子技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海艾为电子技术股份有限公司 filed Critical 上海艾为电子技术股份有限公司
Publication of WO2020134916A1 publication Critical patent/WO2020134916A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1566Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to the technical field of integrated circuits, in particular to a high-precision switching power supply control mode switching circuit and a switching power supply chip.
  • the BOOST (boost) type switching power supply chip has extremely important uses. Its feature is that it can control the turn-on and turn-off of the power tube to make the output voltage higher than the input voltage. Its topology is shown in Figure 1.
  • the power tube drive signal DRVP is a square wave signal with a duty cycle of D, which is used to control the power tube on and off; when the power tube drive signal DRVP is high, the P type
  • the power switch MP01 is turned off, the N-type power switch MN01 is turned on, the SW terminal is pulled to ground potential, and the input power VIN generates a current to ground on the inductor L1 so that the inductor L1 stores energy.
  • VOUT VIN/(1-D);
  • D is the duty ratio of the power tube driving signal DRVP.
  • the modulation methods in the BOOST circuit include PWM (Pulse Width Modulation, Pulse Width Modulation) and PFM (Pulse Frequency Modulation, Pulse Frequency Modulation).
  • the output load current is usually small, that is, the circuit is lightly loaded.
  • the control mode is converted from PWM to PFM.
  • the load current becomes larger, that is, when it is heavily loaded, it switches back to PWM mode. Therefore, in such circuits and applications, it is necessary to design corresponding mode detection and conversion circuits.
  • FIG. 2 is a schematic structural diagram of a PWM-PFM mode switching module in the prior art; the mode switching module includes: an inductor current for detecting the current flowing through the inductor L1 in FIG. 1, that is, the load current The detection module DECT, the driving signal generating module Driver for generating the driving signal, and the PWM module and the PFM module; wherein, the PWM module generates a square wave signal with a duty ratio of D through the reference voltage V REF and the feedback signal V FB .
  • the present invention provides a switching power supply control mode switching circuit and a switching power supply chip to solve the problem in the prior art between the PFM control method at light load and the PWM control method at heavy load in the switching power supply mode switching circuit When switching, there is a problem that the switching threshold point is unstable.
  • the present invention provides the following technical solutions:
  • Mode switching threshold generation module negative feedback loop control module and drive signal generation module
  • the mode switching threshold generating module is used to generate a mode switching threshold voltage and input into the negative feedback loop control module;
  • the negative feedback loop control module is used to receive the mode switching threshold voltage and generate a modulated square wave signal
  • the first current source and the first resistor are connected in series between the external power supply voltage and ground, one end of the first current source is connected to the external power supply voltage, and one end of the first resistor is grounded;
  • the common terminal of the first current source and the first resistor is connected to the non-inverting input terminal of the first operational amplifier
  • the equivalent variable current source includes: a second resistor, a first switch tube, a second switch tube, a third switch tube, a fourth switch tube, and a fifth switch tube;
  • the control terminal of the first switch tube is connected to the input terminal voltage of the switching power supply
  • the control end of the second switch is connected to the first end of the second switch and the control end of the third switch;
  • the second end of the second switch tube and the second end of the third switch tube are connected and grounded;
  • the second end of the fourth switch tube and the second end of the fifth switch tube are both connected to the external power supply voltage
  • the non-inverting input of the second operational amplifier is connected to the input voltage of the switching power supply
  • the inverting input terminal of the second operational amplifier is connected to the second terminal of the first switch tube;
  • the output terminal of the second operational amplifier is connected to the control terminal of the first switch tube.
  • the fourth switch tube and the fifth switch tube are PMOS tubes.
  • control terminal is a gate
  • first terminal is a drain
  • second terminal is a source
  • the negative feedback loop control module includes:
  • the normal phase input terminal of the error amplifier is connected to a reference voltage
  • the inverting input terminal of the error amplifier is connected to the sampling voltage of the output terminal of the switching power supply;
  • the current collection and voltage conversion module is used to collect the load current of the switching power supply and convert the load current into a voltage; the output terminal of the current collection and voltage conversion module and the normal phase input terminal of the comparator Connected
  • the output terminal of the comparator is connected to the driving signal generation module as the output terminal of the negative feedback loop control module.
  • the driving logic generation module is connected to the output terminal of the negative feedback loop control module, and is used to receive the modulated square wave signal and perform logical operation on the modulated square wave signal;
  • the modulated square wave signal is a pulse width modulated PWM square wave signal.
  • the voltage at the output terminal of the first operational amplifier is equal to the voltage at the non-inverting input terminal
  • the voltage output by the current acquisition and voltage conversion module is less than the voltage at the non-inverting input terminal within one cycle, based on The driving signal converted from the modulated square wave signal output by the comparator causes the power driving tube in the switching power supply to turn on in a skip cycle.
  • the invention also provides a switching power supply chip, including:
  • the power driving tube includes a PMOS tube.
  • the switching power supply is a BOOST circuit, a BUCK circuit, or a combined BOOST-BUCK circuit.
  • the switching power supply control mode switching circuit is used to generate a driving signal for controlling the power driving tube in the switching power supply; including a mode switching threshold generation module, a negative feedback loop control module and a driver A signal generating module;
  • the mode switching threshold generating module includes: a first current source, a first resistor, an equivalent variable current source and a first operational amplifier; wherein, the equivalent variable current source and the first resistor In parallel, and the current of the equivalent variable current source has a positive correlation with the input voltage of the switching power supply.
  • the equivalent variable current source is connected in parallel with the first resistor, it can be shunted from the first resistor, and its current value is positively related to the input voltage of the switching power supply, so that it can be subtracted from the current of the first current source, that is, using
  • a dynamic sampling mode switching circuit based on input voltage sampling can detect the input voltage in real time, and the switching current of the switching mode of the switching power supply control mode switching circuit decreases with the input voltage of the switching power supply, thereby achieving stable control mode switching The purpose of the threshold.
  • Figure 1 is a schematic diagram of the BOOST topology in the prior art
  • FIG. 3 is a schematic diagram of the structure of the PWM-PFM mode switching circuit in the prior art
  • FIG. 4 is a block diagram of a switching power supply control mode switching circuit provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of another switching power supply control mode switching circuit provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of yet another switching power supply control mode switching circuit provided by an embodiment of the present invention.
  • FIG. 3 is a specific implementation of the module structure diagram of FIG. 2.
  • the PWM-PFM mode switching circuit includes: current source IB, constant Resistor RB, operational amplifier OP, error amplifier EA, high-speed comparator HS_COMP, inductor current acquisition and voltage conversion module V_SAMPLE, drive logic generation module LOGIC_GEN and drive signal generation module Driver.
  • the fixed current IB generates the PWM-PFM switching threshold voltage V CLP_L on the constant resistance RB.
  • the load current is relatively large, referring to Figure 1, the value of the output voltage VOUT is reduced.
  • the sampling voltage V FB of the output terminal VOUT is also reduced. Therefore, in each cycle, V FB ⁇ V REF , after The error amplifier EA amplifies the difference between the two, that is, the generated V C is at a high level, so V C >V CLP_L , at this time, each cycle will have V SLOPE ⁇ V C , thereby generating a PWM pulse signal.
  • V_SAMPLE is also a fixed value in the design, and D is the duty cycle when the BOOST circuit operates stably.
  • the switching current threshold I O_TH (that is, the switching current threshold for PWM to PFM) of the control mode switching from PFM to PWM is proportional to the duty cycle (1-D), that is, the greater the input voltage V IN , The greater the switching threshold current of the control mode, it can be obtained by derivation,
  • the present invention provides a switching power supply control mode switching circuit for generating a driving signal for controlling the power driving tube in the switching power supply;
  • the switching power supply control mode switching circuit includes:
  • Mode switching threshold generation module negative feedback loop control module and drive signal generation module
  • the mode switching threshold generation module is connected to the negative feedback loop control module, and the negative feedback loop control module is connected to the drive signal generation module;
  • the mode switching threshold generating module is used to generate a mode switching threshold voltage and input into the negative feedback loop control module;
  • the negative feedback loop control module is used to receive the mode switching threshold voltage and generate a modulated square wave signal
  • the driving signal generating module is used to receive the modulated square wave signal and convert it into the driving signal to control the turning on or off of the power driving tube in the switching power supply;
  • the mode switching threshold generation module includes:
  • the equivalent variable current source is connected in parallel with the first resistor, and the current of the equivalent variable current source has a positive correlation with the input voltage of the switching power supply.
  • the switching power supply control mode switching circuit is used to generate a driving signal for controlling the power driving tube in the switching power supply; including a mode switching threshold generating module, a negative feedback loop control module and a driving signal generating module; the mode
  • the switching threshold generating module includes: a first current source, a first resistor, an equivalent variable current source and a first operational amplifier; wherein, the equivalent variable current source is connected in parallel with the first resistor, and the equivalent The current of the variable current source has a positive correlation with the input voltage of the switching power supply.
  • FIG. 4 is a schematic structural diagram of a switching power supply control mode switching circuit provided by an embodiment of the present invention
  • the switching power supply control mode switching circuit includes: a mode switching threshold generation module 1, a negative feedback loop control module 2 and Drive signal generation module 3; mode switching threshold generation module 1 is connected to the negative feedback loop control module 2, and the negative feedback loop control module 2 is connected to the drive signal generation module 3; the mode switching threshold generation module is used to generate the mode switching threshold Voltage, and input into the negative feedback loop control module; the negative feedback loop control module is used to receive the mode switching threshold voltage and generate a modulated square wave signal, for example, the negative feedback loop control module is used to receive The mode switches the threshold voltage and generates a pulse width modulated PWM square wave signal; the drive signal generation module is used to receive the modulated square wave signal and convert it to the drive signal to control the power in the switching power supply
  • the driving tube is turned on or off. For example, after the driving signal generating module receives the PWM square wave signal, it is converted into a driving signal to control the
  • the mode switching threshold generation module includes: a first current source I B , a first resistor RB, an equivalent variable current source 10 (that is, kI VIN in the figure) and a first operational amplifier OP;
  • the first current source I B and the first resistor RB are connected in series between the external power supply voltage VDD and ground, one end of the first current source I B is connected to the external power supply voltage VDD, and one end of the first resistor RB Ground
  • the common terminal of the first current source I B and the first resistor RB is connected to the non-inverting input terminal of the first operational amplifier OP;
  • the equivalent variable current source 10 is connected in parallel with the first resistor RB, and the current of the equivalent variable current source 10 has a positive correlation with the input voltage VIN of the switching power supply.
  • the positive correlation in this embodiment is that the current of the equivalent variable current source becomes larger as VIN becomes larger, or becomes smaller as VIN becomes smaller, and does not specifically refer to a linear relationship. Or an exponential relationship, or other functional relationship, as long as the current of the equivalent variable current source can be increased as VIN becomes larger, or becomes smaller as VIN becomes smaller.
  • the specific structures of the negative feedback loop control module 2 and the drive signal generation module 3 are not limited in this embodiment.
  • the negative feedback loop control module 2 and the drive The specific structure of the signal generating module 3 is shown in FIG. 5 and is the same as the structure in FIG. 3.
  • the same reference numerals are used for explanation. In the following embodiments, the same structure is described by the same reference numerals. This example will not be described in detail.
  • the negative feedback loop control module 2 includes: an error amplifier EA, a comparator HS_COMP, and a current acquisition and voltage conversion module V_SAMPLE; the positive phase input terminal of the error amplifier EA is connected to a reference voltage V REF ; The inverting input terminal of the error amplifier EA is connected to the sampling voltage V FB at the output terminal of the switching power supply; the output terminal of the error amplifier EA is connected to the inverting input terminal of the comparator HS_COMP and is switched to the mode The output terminal of the threshold generation module 1 is connected; the current acquisition and voltage conversion module V_SAMPLE is used to collect the load current i L of the switching power supply (see FIG.
  • the output terminal of the current acquisition and voltage conversion module V_SAMPLE is connected to the non-inverting input terminal of the comparator HS_COMP; the output terminal of the comparator HS_COMP serves as the output terminal of the negative feedback loop control module 2
  • the driving signal generating module 3 is connected.
  • the drive signal generation module 3 includes: a connected drive logic generation module and a drive signal conversion module; the drive logic generation module LOGIC_GEN is connected to the output of the negative feedback loop control module 2 for receiving the negative feedback loop control module 2 Generate a modulated square wave signal, and perform a logical operation on the modulated square wave signal, for example, receive a PWM square wave signal generated by the negative feedback loop control module 2 and perform a logical operation on the PWM square wave signal; the drive signal conversion The module DRIVER converts the modulated square wave signal after the logical operation, for example, the PWM square wave signal after the logical operation into a driving signal DRVP, and outputs it.
  • the specific structure and type of the equivalent variable current source are not limited in this embodiment.
  • the current value of the equivalent variable current source 10 can be positively correlated with the input voltage VIN of the switching power supply The relationship can change. That is, the equivalent variable current source 10 generates a dynamic current kI VIN (k>0) that is positively correlated, and subtracts from the first current source I B , thereby generating a VC clamp that is negatively correlated with V IN Voltage V CLP_L .
  • V CLP_L (I B -kI VIN ) ⁇ R B (6)
  • I O_TH2 is the switching current threshold value when the PWM control mode and the PFM control mode are switched in the present invention, which can be obtained by comparing the above formula (8) with the formula (5),
  • the change rate of the switching current threshold value affected by the input voltage VIN when the PFM and the PWM are switched in the control method of the present invention is smaller than the change rate of the existing switching current threshold value affected by the input voltage VIN. That is, in this application, by connecting an equivalent variable current source with variable VIN in parallel to the first resistor RB, the change of the switching threshold point of the PFM and PWM mode switching with the input voltage VIN of the switching power supply can be reduced, Therefore, the switching threshold point can be stabilized to a certain extent.
  • the equivalent variable current source includes: a second resistor R0, a first switching tube MN1, a second switching tube MN2, and a third switching tube MN3, the fourth switching tube MP1 and the fifth switching tube MP2; the control terminal of the first switching tube MN1 is connected to the input terminal voltage VIN of the switching power supply; the first end of the first switching tube MN1 and the first end of the fourth switching tube MP1 Connected; the second end of the first switch MN1 is connected to one end of the second resistor R0; the other end of the second resistor R0 is grounded; the control end of the second switch MN2 is connected to the first end of the second switch MN2 and the third The control end of the switch MN3 is connected; the second end of the second switch MN2 and the second end of the third switch MN3 are connected and grounded; the first end of the third switch MN3 serves as one end of the equivalent variable current source Connected to the common end of the
  • first switch tube, the second switch tube, the third switch tube, the fourth switch tube, and the fifth switch tube are not limited in this embodiment.
  • the first switch tube, the second switch tube, and the third switch tube are NMOS tubes; the fourth switch tube and the fifth switch tube are PMOS tubes.
  • the control terminal of the switch tube in this embodiment is a gate, The first end of the switch is the drain, and the second end of the switch is the source.
  • kI VIN (V IN -V GSN1 )/R0; because V GSN1 may also vary with the input voltage V IN , therefore, the current of the equivalent variable current source varies with the input voltage V IN The positive correlation of the change may be less obvious, and the intensity of reducing the rate of change of the switching current threshold with the input voltage VIN of the switching threshold point of PFM and PWM is limited.
  • the equivalent variable current source further includes: a second operational amplifier OP2; a non-inverting input termination of the second operational amplifier OP2 The input voltage of the switching power supply; the inverting input terminal of the second operational amplifier OP2 is connected to the second terminal of the first switching tube; the output terminal of the second operational amplifier OP2 is connected to the The control terminal is connected.
  • V CLP_L (I B -V IN /R 0 ) ⁇ R B (10)
  • the equivalent variable current source is connected in parallel with the first resistor, it can be shunted from the first resistor, and its current value is positively related to the input voltage of the switching power supply, so that it can be subtracted from the current of the first current source, that is, using A dynamic sampling mode switching circuit based on input voltage sampling is used.
  • the BOOST boost circuit as an example, it can detect the input voltage VIN in real time and make the switching current of the switching power supply control mode switching circuit change rate with the input voltage of the switching power supply. Compared with the prior art, it is reduced to achieve the purpose of stable control mode switching threshold.
  • the present invention also provides a switching power supply chip, including: a switching power supply and the switching power supply mode switching circuit described in the above embodiment, the switching power supply includes at least a power driving tube, and the switching power supply mode is switched The circuit outputs a driving signal for driving the power driving tube.
  • the specific structure of the switching power supply is not limited in this embodiment.
  • the switching power supply may be a BOOST boost circuit as shown in FIG. 1, or a conventional BUCK circuit in the art, or a BOOST combining a BOOST boost circuit and a BUCK circuit.
  • -A circuit combined with BUCK which is not limited in this embodiment, as long as PWM and PFM mode switching switching power supply circuits are both applicable, which will not be described in detail in this embodiment.
  • the power driving tube may be a PMOS tube.
  • the switching power supply control mode switching circuit provided by the embodiment of the present invention has the characteristics of strong anti-interference ability, stable threshold switching point, and small change with input voltage, the control mode switching circuit of the present invention can be widely used in power management chips, thereby making The switching power supply can maintain stability when switching modes.

Abstract

一种开关电源控制模式切换电路及开关电源芯片,开关电源控制模式切换电路,用于产生驱动信号;包括模式切换阈值产生模块(1)、负反馈环路控制模块(2)和驱动信号产生模块(3);模式切换阈值产生模块(1)包括:第一电流源、第一电阻、等效可变电流源和第一运算放大器;其中,等效可变电流源与第一电阻并联,且等效可变电流源的电流与开关电源的输入电压呈正相关关系。由于等效可变电流源能够从第一电阻上分流,且其电流值与开关电源的输入电压呈正相关关系,通过实时检测输入电压大小,并且使得开关电源控制模式切换电路的切换电流随着开关电源的输入电压的变化率减小,从而达到稳定控制模式切换阈值的目的。

Description

一种开关电源控制模式切换电路及开关电源芯片
本申请要求于2018年12月24日提交中国专利局、申请号为201811580591.9、发明名称为“一种开关电源控制模式切换电路及开关电源芯片”的国内申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及集成电路技术领域,尤其涉及一种高精度的开关电源控制模式切换电路及开关电源芯片。
背景技术
在开关电源芯片中,BOOST(升压)类型的开关电源芯片有着极为重要的用途,它的特点是可以控制功率管的导通与关断,使输出电压高于输入电压。其拓扑结构如图1所示,功率管驱动信号DRVP为占空比为D的方波信号,用于控制功率管的导通和关断;当功率管驱动信号DRVP为高电平时,P型功率开关管MP01关闭,N型功率开关管MN01导通,SW端被拉至地电位,输入电源VIN在电感L1上产生对地的电流使得电感L1存储能量,此时通过C1向输出端VOUT供电;当功率管驱动信号DRVP为低电平时,P型功率开关管MP1导通,N型功率开关管MN01关断,因为电感L1上的电流不能突变,所以SW端电位被抬高,VSW>VOUT,通过P型功率开关管MP01向C1和VOUT供电。由能量守恒定律,当电路稳定工作时可得:
VOUT=VIN/(1-D);
其中,D为功率管驱动信号DRVP的占空比。
而在BOOST电路中调制方式包括PWM(Pulse Width Modulation,脉冲宽度调制)和PFM(Pulse frequency modulation,脉冲频率调制)。
当输出负载电流比较小时,如果仍然采用PWM方式调制,会导致系统功耗较大,效率降低,因此,在现有设计中,通常会在输出负载电流较小时,也即轻载时将电路的控制方式由PWM转换为PFM,当负载电流变大时,也即重载时又切换回PWM模式。因此,在这种电路和应用中,就需要设计 相应的模式检测和转换电路。
如图2所示,图2为现有技术中PWM-PFM模式切换模块结构示意图;该模式切换模块,包括:用于检测流经图1中的电感L1的电流,也即负载电流的电感电流检测模块DECT、用于产生驱动信号的驱动信号产生模块Driver,以及PWM模块和PFM模块;其中,PWM模块通过基准参考电压V REF和反馈信号V FB产生占空比为D的方波信号,方波信号经过驱动信号产生模块Driver转换为功率管驱动信号DRVP;而根据电感电流检测模块DECT检测得到的负载电流i L的大小,可以判断采用哪种调制方式对驱动信号(也即脉冲信号)DRVP进行切换调制。
但是现有技术中的开关电源模式切换电路中在轻载时的PFM控制方式与重载时的PWM控制方式之间切换时,存在切换阈值点不稳定的问题。
发明内容
有鉴于此,本发明提供一种开关电源控制模式切换电路及开关电源芯片,以解决现有技术中开关电源模式切换电路中在轻载时的PFM控制方式与重载时的PWM控制方式之间切换时,存在切换阈值点不稳定的问题。
为实现上述目的,本发明提供如下技术方案:
一种开关电源控制模式切换电路,用于产生控制所述开关电源中的功率驱动管的驱动信号;
所述开关电源控制模式切换电路包括:
模式切换阈值产生模块、负反馈环路控制模块和驱动信号产生模块;
所述模式切换阈值产生模块与所述负反馈环路控制模块相连,所述负反馈环路控制模块与所述驱动信号产生模块相连;
所述模式切换阈值产生模块用于产生模式切换阈值电压,并输入至所述负反馈环路控制模块中;
所述负反馈环路控制模块用于接收所述模式切换阈值电压,并产生调制方波信号;
所述驱动信号产生模块用于接收所述调制方波信号,并转换为所述驱动信号,以控制所述开关电源中的功率驱动管的导通或关断;
其中,所述模式切换阈值产生模块包括:
第一电流源、第一电阻、等效可变电流源和第一运算放大器;
所述第一电流源与所述第一电阻串联在外部电源电压和地之间,所述第一电流源的一端接外部电源电压,所述第一电阻的一端接地;
所述第一电流源和所述第一电阻的公共端与所述第一运算放大器的正相输入端相连;
所述第一运算放大器的反相输入端与所述第一运算放大器的输出端相连,所述第一运算放大器的输出端作为所述模式切换阈值产生模块的输出端,与所述负反馈环路控制模块相连;
所述等效可变电流源与所述第一电阻并联,且所述等效可变电流源的电流与所述开关电源的输入电压呈正相关关系。
优选地,所述等效可变电流源包括:第二电阻、第一开关管、第二开关管、第三开关管、第四开关管和第五开关管;
所述第一开关管的控制端接所述开关电源的输入端电压;
所述第一开关管的第一端与所述第四开关管的第一端相连;
所述第一开关管的第二端与所述第二电阻的一端相连;
所述第二电阻的另一端接地;
所述第二开关管的控制端与所述第二开关管的第一端以及所述第三开关管的控制端相连;
所述第二开关管的第二端、所述第三开关管的第二端相连,并接地;
所述第三开关管的第一端作为所述等效可变电流源的一端与所述第一电阻和所述第一电流源的公共端相连;
所述第四开关管的控制端与所述第四开关管的第一端以及所述第五开关管的控制端相连;
所述第四开关管的第二端与所述第五开关管的第二端均接所述外部电源电压;
所述第五开关管的第一端与所述第二开关管的第一端相连。
优选地,所述等效可变电流源还包括:第二运算放大器;
所述第二运算放大器的正相输入端接所述开关电源的输入电压;
所述第二运算放大器的反相输入端与所述第一开关管的第二端相连;
所述第二运算放大器的输出端与所述第一开关管的控制端相连。
优选地,所述第一开关管、所述第二开关管和所述第三开关管为NMOS管;
所述第四开关管和所述第五开关管为PMOS管。
优选地,所述控制端为栅极,所述第一端为漏极,所述第二端为源极。
优选地,所述负反馈环路控制模块包括:
误差放大器、比较器和电流采集及电压转换模块;
所述误差放大器的正相输入端接基准参考电压;
所述误差放大器的反相输入端接所述开关电源的输出端采样电压;
所述误差放大器的输出端与所述比较器的反相输入端相连,并与所述模式切换阈值产生模块的输出端相连;
所述电流采集及电压转换模块用于采集所述开关电源的负载电流,并将所述负载电流转换为电压;所述电流采集及电压转换模块的输出端与所述比较器的正相输入端相连;
所述比较器的输出端作为所述负反馈环路控制模块的输出端与所述驱动信号产生模块相连。
优选地,所述驱动信号产生模块包括:
相连的驱动逻辑产生模块和驱动信号转换模块;
所述驱动逻辑产生模块与所述负反馈环路控制模块输出端相连,用于接收所述调制方波信号,并对所述调制方波信号进行逻辑运算;
所述驱动信号转换模块将逻辑运算后的所述调制方波信号转换为驱动信号,并输出。
优选地,所述调制方波信号为脉冲宽度调制PWM方波信号。
优选地,当所述第一运算放大器的输出端电压和正相输入端电压相等时,若在一个周期内,所述电流采集及电压转换模块输出的电压小于所述正相输入端电压,基于所述比较器输出的调制方波信号转换得到的驱动信 号使得所述开关电源中的功率驱动管出现跳周期导通。
本发明还提供一种开关电源芯片,包括:
开关电源和上面任意一项所述的开关电源模式切换电路,所述开关电源至少包括功率驱动管,所述开关电源模式切换电路输出驱动信号,用于驱动所述功率驱动管。
优选地,所述功率驱动管包括PMOS管。
优选地,所述开关电源为BOOST电路、BUCK电路或BOOST-BUCK结合的电路。
经由上述的技术方案可知,本发明提供的开关电源控制模式切换电路,用于产生控制所述开关电源中的功率驱动管的驱动信号;包括模式切换阈值产生模块、负反馈环路控制模块和驱动信号产生模块;所述模式切换阈值产生模块包括:第一电流源、第一电阻、等效可变电流源和第一运算放大器;其中,所述等效可变电流源与所述第一电阻并联,且所述等效可变电流源的电流与所述开关电源的输入电压呈正相关关系。由于等效可变电流源与第一电阻并联,能够从第一电阻上分流,且其电流值与开关电源的输入电压呈正相关关系,从而能够与第一电流源的电流做减法,也即采用了基于输入电压采样的动态采样的模式切换电路,能够实时检测输入电压大小,并且使得开关电源控制模式切换电路的切换电流随着开关电源的输入电压的变化率减小,从而达到稳定控制模式切换阈值的目的。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为现有技术中的BOOST拓扑结构示意图;
图2为现有技术中PWM-PFM模式切换模块结构示意图;
图3为现有技术中PWM-PFM模式切换电路结构示意图;
图4为本发明实施例提供的一种开关电源控制模式切换电路框图;
图5为本发明实施例提供的一种开关电源控制模式切换电路示意图;
图6为本发明实施例提供的另一种开关电源控制模式切换电路示意图;
图7为本发明实施例提供的又一种开关电源控制模式切换电路示意图。
具体实施方式
正如背景技术部分所述,现有技术中开关电源模式切换电路中在轻载时的PFM控制方式与重载时的PWM控制方式之间切换时,存在切换阈值点不稳定的问题。
发明人发现,出现上述问题的原因如下:
现有技术中提供一种具体的PWM-PFM模式切换电路结构,请参见图3,图3为图2模块结构图的一种具体实施方式;PWM-PFM模式切换电路包括:电流源IB、恒定电阻RB、运算放大器OP、误差放大器EA、高速比较器HS_COMP、电感电流采集及电压转换模块V_SAMPLE、驱动逻辑产生模块LOGIC_GEN和驱动信号产生模块Driver。
图3中,VREF为基准参考电压,VFB为图1中输出端VOUT的采样电压,根据图1中的电路结构可以得知,V FB=R2/(R1+R2),误差放大器EA会放大VREF和VFB的差值并产生误差放大信号V C,V SLOPE为V_SAMPLE采集的电感电流i L后转化为电感电流i L的采样电压,高速比较器HS_COMP比较V C和V SLOPE的大小,并产生方波信号,该信号经过LOGIC_GEN和DRIVER模块产生功率管驱动信号DRVP。
固定电流IB在恒定电阻RB上产生PWM-PFM的切换阈值电压V CLP_L,当VC端电压过低时,会通过运算放大器OP箝位VC使得V C=V CLP_L。当负载电流比较大时,参见图1,输出电压VOUT的值有所降低,对应地,输出端VOUT的采样电压V FB也降低,因此,在每个周期内都有V FB<V REF,经过误差放大器EA放大两者的差值,也即产生的V C处于高位,因此V C>V CLP_L,此时每个周期都会有V SLOPE≥V C,从而产生PWM脉冲信号。
当输出负载电流逐渐降低时,输出端VOUT的能量释放较慢,所以有 V FB>V REF,则由于运算放大器OP的钳位作用,使V C=V CLP_L,此时若在一个周期内有V SLOPE<V CLP_L,则BOOST拓扑的主功率管MP01会出现跳周期导通,进入PFM调制方式。因此,由BOOST工作在CCM(电感电流连续)条件下的临界关系,可得PWM到PFM的切换电流阈值I O_TH为:
I B×R B=i p×R slp        (1)
Figure PCTCN2019122895-appb-000001
Figure PCTCN2019122895-appb-000002
上式中,i p为高速比较器HS_COMP翻转时的电感电流值,其由V CLP_L=I B*R B的大小决定,i 0为斜坡补偿电流,在设计中为固定值,R slp为电感电流采集及电压转换模块V_SAMPLE的等效采样电阻,其在设计中也为固定值,D为BOOST电路稳定工作时的占空比。
由上式可得,控制模式从PFM切换至PWM的切换电流阈值I O_TH(也即PWM切换至PFM的切换电流阈值)与占空比(1-D)成正比,即输入电压V IN越大,控制模式的切换阈值电流越大,通过求导可得,
Figure PCTCN2019122895-appb-000003
由公式(5)可以得知,I O_TH与VIN的导数为一个数值,而并非零,也即,在开关电源控制电路中,切换电流阈值I O_TH随着输入电压VIN变化而变化。也就是说在相同的输出负载电流下,不同的输入电压VIN导致输出纹波大不相同,因此造成了轻载时的PFM控制方式与重载时的PWM控制方式切换时,切换阈值点不稳定的问题,从而对一些中等负载的应用造成极大干扰。
基于此,本发明提供一种开关电源控制模式切换电路,用于产生控制 所述开关电源中的功率驱动管的驱动信号;
所述开关电源控制模式切换电路包括:
模式切换阈值产生模块、负反馈环路控制模块和驱动信号产生模块;
所述模式切换阈值产生模块与所述负反馈环路控制模块相连,所述负反馈环路控制模块与所述驱动信号产生模块相连;
所述模式切换阈值产生模块用于产生模式切换阈值电压,并输入至所述负反馈环路控制模块中;
所述负反馈环路控制模块用于接收所述模式切换阈值电压,并产生调制方波信号;
所述驱动信号产生模块用于接收所述调制方波信号,并转换为所述驱动信号,以控制所述开关电源中的功率驱动管的导通或关断;
其中,所述模式切换阈值产生模块包括:
第一电流源、第一电阻、等效可变电流源和第一运算放大器;
所述第一电流源与所述第一电阻串联在外部电源电压和地之间,所述第一电流源的一端接外部电源电压,所述第一电阻的一端接地;
所述第一电流源和所述第一电阻的公共端与所述第一运算放大器的正相输入端相连;
所述第一运算放大器的反相输入端与所述第一运算放大器的输出端相连,所述第一运算放大器的输出端作为所述模式切换阈值产生模块的输出端,与所述负反馈环路控制模块相连;
所述等效可变电流源与所述第一电阻并联,且所述等效可变电流源的电流与所述开关电源的输入电压呈正相关关系。
本发明提供的开关电源控制模式切换电路,用于产生控制所述开关电源中的功率驱动管的驱动信号;包括模式切换阈值产生模块、负反馈环路控制模块和驱动信号产生模块;所述模式切换阈值产生模块包括:第一电流源、第一电阻、等效可变电流源和第一运算放大器;其中,所述等效可 变电流源与所述第一电阻并联,且所述等效可变电流源的电流与所述开关电源的输入电压呈正相关关系。由于等效可变电流源与第一电阻并联,能够从第一电阻上分流,且其电流值与开关电源的输入电压呈正相关关系,从而能够与第一电流源的电流做减法,也即采用了基于输入电压采样的动态采样的模式切换电路,能够实时检测输入电压大小,并且使得开关电源控制模式切换电路的切换电流随着开关电源的输入电压的变化率减小,从而达到稳定控制模式切换阈值的目的。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参见图4,图4为本发明实施例提供的一种开关电源控制模式切换电路结构示意图;所述开关电源控制模式切换电路包括:模式切换阈值产生模块1、负反馈环路控制模块2和驱动信号产生模块3;模式切换阈值产生模块1与负反馈环路控制模块2相连,负反馈环路控制模块2与驱动信号产生模块3相连;所述模式切换阈值产生模块用于产生模式切换阈值电压,并输入至所述负反馈环路控制模块中;所述负反馈环路控制模块用于接收所述模式切换阈值电压,并产生调制方波信号,例如负反馈环路控制模块用于接收所述模式切换阈值电压,并产生脉冲宽度调制PWM方波信号;所述驱动信号产生模块用于接收所述调制方波信号,并转换为所述驱动信号,以控制所述开关电源中的功率驱动管的导通或关断,例如所述驱动信号产生模块接收PWM方波信号后,转换为驱动信号,以控制开关电源中的功率驱动管的导通或关断。
其中,所述模式切换阈值产生模块包括:第一电流源I B、第一电阻RB、等效可变电流源10(也即图中的kI VIN)和第一运算放大器OP;
所述第一电流源I B与所述第一电阻RB串联在外部电源电压VDD和 地之间,所述第一电流源I B的一端接外部电源电压VDD,所述第一电阻RB的一端接地;
所述第一电流源I B和所述第一电阻RB的公共端与所述第一运算放大器OP的正相输入端相连;
所述第一运算放大器OP的反相输入端与所述第一运算放大器OP的输出端相连,所述第一运算放大器OP的输出端作为所述模式切换阈值产生模块1的输出端,与所述负反馈环路控制模块2相连;
所述等效可变电流源10与所述第一电阻RB并联,且所述等效可变电流源10的电流与所述开关电源的输入电压VIN呈正相关关系。
需要说明的是,本实施例中所述正相关关系为,等效可变电流源的电流与随VIN的变大而变大,或者随VIN的变小而变小,并不特指线性关系或指数关系,或者其他函数关系,只要能够满足等效可变电流源的电流与随VIN的变大而变大,或者随VIN的变小而变小即可。
本实施例中不限定开关电源的具体结构,开关电源可以是如图1所示的BOOST升压电路,还可以是本领域中的常规的BUCK电路,或者BOOST升压电路与BUCK电路结合的BOOST-BUCK电路,本实施例中对此不作限定,只要是需要PWM和PFM模式切换开关电源电路均可以适用,本实施例中对此不作详细赘述。
需要说明的是,本实施例中对所述负反馈环路控制模块2和驱动信号产生模块3的具体结构也不作限定,在本发明的一个实施例中,负反馈环路控制模块2和驱动信号产生模块3的具体结构如图5中所示,与图3中的结构相同,本实施例中采用相同的标号进行说明,下面实施例中相同的结构均采用相同的标号进行说明,本实施例中对此不作详细赘述。
具体的,请参见图5,负反馈环路控制模块2包括:误差放大器EA、比较器HS_COMP和电流采集及电压转换模块V_SAMPLE;所述误差放大器EA的正相输入端接基准参考电压V REF;所述误差放大器EA的反相输入端接所述开关电源的输出端采样电压V FB;所述误差放大器EA的输出端与所述比较器HS_COMP的反相输入端相连,并与所述模式切换阈值产生模块1的输出端相连;所述电流采集及电压转换模块V_SAMPLE用于 采集所述开关电源的负载电流i L(参见图1中所示),并将所述负载电流i L转换为电压V SLOPE;所述电流采集及电压转换模块V_SAMPLE的输出端与所述比较器HS_COMP的正相输入端相连;所述比较器HS_COMP的输出端作为所述负反馈环路控制模块2的输出端与所述驱动信号产生模块3相连。
驱动信号产生模块3包括:相连的驱动逻辑产生模块和驱动信号转换模块;所述驱动逻辑产生模块LOGIC_GEN与所述负反馈环路控制模块2输出端相连,用于接收负反馈环路控制模块2产生的调制方波信号,并对所述调制方波信号进行逻辑运算,例如接收负反馈环路控制模块2产生的PWM方波信号,对该PWM方波信号进行逻辑运算;所述驱动信号转换模块DRIVER将所述逻辑运算后的调制方波信号,例如逻辑运算后的PWM方波信号转换为驱动信号DRVP,并输出。
另外,本实施例中也不限定所述等效可变电流源的具体结构和具体类型,可选的,只要等效可变电流源10的电流值能够随着开关电源的输入电压VIN呈正相关关系变化即可。也即,所述等效可变电流源10会产生一路呈正相关的动态电流kI VIN(k>0),与第一电流源I B做减法,从而产生与V IN成负相关的VC钳位电压V CLP_L
根据图4中的结构,可以得到如下公式:
V CLP_L=(I B-kI VIN)×R B   (6)
Figure PCTCN2019122895-appb-000004
Figure PCTCN2019122895-appb-000005
上面公式中,I O_TH2为本发明中的PWM控制模式与PFM控制模式切换时的切换电流阈值,由上式(8)与公式(5)比较可得,
Figure PCTCN2019122895-appb-000006
由公式(9)可得,本发明中控制方式在PFM与PWM切换时的切换电流阈值受输入电压VIN影响的变化率小于现有的切换电流阈值受输入电压VIN影响的变化率。也即,本申请中通过在第一电阻RB上并联关于VIN可变的等效可变电流源可以减弱PFM和PWM两种模式切换时的切换阈值点随开关电源的输入电压VIN的变化情况,从而在一定程度上能够稳定所述切换阈值点。
发明人经过研究发现,在本发明的一个实施例中,如图6所示,等效可变电流源包括:第二电阻R0、第一开关管MN1、第二开关管MN2、第三开关管MN3、第四开关管MP1和第五开关管MP2;第一开关管MN1的控制端接开关电源的输入端电压VIN;第一开关管MN1的第一端与第四开关管MP1的第一端相连;第一开关管MN1的第二端与第二电阻R0的一端相连;第二电阻R0的另一端接地;第二开关管MN2的控制端与第二开关管MN2的第一端以及第三开关管MN3的控制端相连;第二开关管MN2的第二端、第三开关管MN3的第二端相连,并接地;第三开关管MN3的第一端作为等效可变电流源的一端与第一电阻RB和第一电流源I B的公共端相连;第四开关管MP1的控制端与第四开关管MP1的第一端以及第五开关管MP2的控制端相连;第四开关管MP1的第二端与第五开关管MP2的第二端均接外部电源电压;第五开关管MP2的第一端与第二开关管MN2的第一端相连。
需要说明的是,本实施例中不限定第一开关管、第二开关管、第三开关管、第四开关管和第五开关管的类型,可选的,在本发明的一个实施例中,第一开关管、第二开关管、第三开关管为NMOS管;所述第四开关管和所述第五开关管为PMOS管。当第一开关管、第二开关管、第三开关管为NMOS管;所述第四开关管和所述第五开关管为PMOS管时,本实施例中开关管的控制端为栅极,开关管的第一端为漏极,开关管的第二端为源极。
在图6中的结构中,kI VIN=(V IN-V GSN1)/R0;由于V GSN1也可能随输入电压V IN变化,因此,等效可变电流源的电流,随输入电压V IN的变化的正相关关系可能较为不明显,对减小PFM与PWM的切换阈值点的切换电流阈值随输入电压VIN的变化率的力度有限。
为进一步改善上述问题,在本发明的另一个实施例中,请参见图7, 等效可变电流源还包括:第二运算放大器OP2;所述第二运算放大器OP2的正相输入端接所述开关电源的输入电压;所述第二运算放大器OP2的反相输入端与所述第一开关管的第二端相连;所述第二运算放大器OP2的输出端与所述第一开关管的控制端相连。通过第二运算放大器OP2的作用,能够将第二电阻R0的非接地端的电压钳位到VIN,因此,在图7中的结构中,kI VIN=V IN/R0;使得等效可变电流源的电流随VIN呈正相关关系;具体地,
V CLP_L=(I B-V IN/R 0)×R B       (10)
Figure PCTCN2019122895-appb-000007
由此,可以得知,在第一电阻RB的两端并联上等效可变电流后,能够使得切换电流阈值I O_TH2与输入电压VIN的导数相对于现有技术的导数减小,也即切换电流阈值I O_TH2随输入电压VIN的变化率降低,进而削弱了开关电源芯片中控制方式在PFM与PWM之间切换时的切换电流阈值随输入电压变化过大的问题,使得控制模式的切换点随输入电压的变化而变化的情况减弱,从而达到稳定切换阈值点的目的。
也即,本发明提供的开关电源控制模式切换电路,用于产生控制所述开关电源中的功率驱动管的驱动信号;包括模式切换阈值产生模块、负反馈环路控制模块和驱动信号产生模块;所述模式切换阈值产生模块包括:第一电流源、第一电阻、等效可变电流源和第一运算放大器;其中,所述等效可变电流源与所述第一电阻并联,且所述等效可变电流源的电流与所述开关电源的输入电压呈正相关关系。由于等效可变电流源与第一电阻并联,能够从第一电阻上分流,且其电流值与开关电源的输入电压呈正相关关系,从而能够与第一电流源的电流做减法,也即采用了基于输入电压采样的动态采样的模式切换电路,以BOOST升压电路为例,能够实时检测输入电压VIN大小,并且使得开关电源控制模式切换电路的切换电流随着开关电源的输入电压的变化率相对于现有技术中减小,从而达到稳定控制模 式切换阈值的目的。
基于相同的发明构思,本发明还提供一种开关电源芯片,包括:开关电源和上面实施例中所述的开关电源模式切换电路,所述开关电源至少包括功率驱动管,所述开关电源模式切换电路输出驱动信号,用于驱动所述功率驱动管。
本实施例中不限定开关电源的具体结构,开关电源可以是如图1所示的BOOST升压电路,还可以是本领域中的常规的BUCK电路,或者BOOST升压电路与BUCK电路结合的BOOST-BUCK结合的电路,本实施例中对此不作限定,只要是需要PWM和PFM模式切换开关电源电路均可以适用,本实施例中对此不作详细赘述。当所述开关电源结构如图1所示时,可选的,所述功率驱动管可以为PMOS管。
由于本发明实施例提供的开关电源控制模式切换电路具有抗干扰能力强、阈值切换点稳定、随输入电压变化小的特性,本发明的控制模式切换电路可广泛应用于电源管理芯片中,从而使得开关电源切换模式时,能够保持稳定。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括上述要素的物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使 用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (12)

  1. 一种开关电源控制模式切换电路,其特征在于,用于产生控制所述开关电源中的功率驱动管的驱动信号;
    所述开关电源控制模式切换电路包括:
    模式切换阈值产生模块、负反馈环路控制模块和驱动信号产生模块;
    所述模式切换阈值产生模块与所述负反馈环路控制模块相连,所述负反馈环路控制模块与所述驱动信号产生模块相连;
    所述模式切换阈值产生模块用于产生模式切换阈值电压,并输入至所述负反馈环路控制模块中;
    所述负反馈环路控制模块用于接收所述模式切换阈值电压,并产生调制方波信号;
    所述驱动信号产生模块用于接收所述调制方波信号,并转换为所述驱动信号,以控制所述开关电源中的功率驱动管的导通或关断;
    其中,所述模式切换阈值产生模块包括:
    第一电流源、第一电阻、等效可变电流源和第一运算放大器;
    所述第一电流源与所述第一电阻串联在外部电源电压和地之间,所述第一电流源的一端接外部电源电压,所述第一电阻的一端接地;
    所述第一电流源和所述第一电阻的公共端与所述第一运算放大器的正相输入端相连;
    所述第一运算放大器的反相输入端与所述第一运算放大器的输出端相连,所述第一运算放大器的输出端作为所述模式切换阈值产生模块的输出端,与所述负反馈环路控制模块相连;
    所述等效可变电流源与所述第一电阻并联,且所述等效可变电流源的电流与所述开关电源的输入电压呈正相关关系。
  2. 根据权利要求1所述的开关电源控制模式切换电路,其特征在于, 所述等效可变电流源包括:第二电阻、第一开关管、第二开关管、第三开关管、第四开关管和第五开关管;
    所述第一开关管的控制端接所述开关电源的输入端电压;
    所述第一开关管的第一端与所述第四开关管的第一端相连;
    所述第一开关管的第二端与所述第二电阻的一端相连;
    所述第二电阻的另一端接地;
    所述第二开关管的控制端与所述第二开关管的第一端以及所述第三开关管的控制端相连;
    所述第二开关管的第二端、所述第三开关管的第二端相连,并接地;
    所述第三开关管的第一端作为所述等效可变电流源的一端与所述第一电阻和所述第一电流源的公共端相连;
    所述第四开关管的控制端与所述第四开关管的第一端以及所述第五开关管的控制端相连;
    所述第四开关管的第二端与所述第五开关管的第二端均接所述外部电源电压;
    所述第五开关管的第一端与所述第二开关管的第一端相连。
  3. 根据权利要求2所述的开关电源控制模式切换电路,其特征在于,所述等效可变电流源还包括:第二运算放大器;
    所述第二运算放大器的正相输入端接所述开关电源的输入电压;
    所述第二运算放大器的反相输入端与所述第一开关管的第二端相连;
    所述第二运算放大器的输出端与所述第一开关管的控制端相连。
  4. 根据权利要求2或3所述的开关电源控制模式切换电路,其特征在于,所述第一开关管、所述第二开关管和所述第三开关管为NMOS管;
    所述第四开关管和所述第五开关管为PMOS管。
  5. 根据权利要求4所述的开关电源控制模式切换电路,其特征在于,所述控制端为栅极,所述第一端为漏极,所述第二端为源极。
  6. 根据权利要求1所述的开关电源控制模式切换电路,其特征在于,所述负反馈环路控制模块包括:
    误差放大器、比较器和电流采集及电压转换模块;
    所述误差放大器的正相输入端接基准参考电压;
    所述误差放大器的反相输入端接所述开关电源的输出端采样电压;
    所述误差放大器的输出端与所述比较器的反相输入端相连,并与所述模式切换阈值产生模块的输出端相连;
    所述电流采集及电压转换模块用于采集所述开关电源的负载电流,并将所述负载电流转换为电压;所述电流采集及电压转换模块的输出端与所述比较器的正相输入端相连;
    所述比较器的输出端作为所述负反馈环路控制模块的输出端与所述驱动信号产生模块相连。
  7. 根据权利要求1所述的开关电源控制模式切换电路,其特征在于,所述驱动信号产生模块包括:
    相连的驱动逻辑产生模块和驱动信号转换模块;
    所述驱动逻辑产生模块与所述负反馈环路控制模块输出端相连,用于接收所述调制方波信号,并对所述调制方波信号进行逻辑运算;
    所述驱动信号转换模块将逻辑运算后的所述调制方波信号转换为驱动信号,并输出。
  8. 根据权利要求1所述的开关电源控制模式切换电路,其特征在于,所述调制方波信号为脉冲宽度调制PWM方波信号。
  9. 根据权利要求6所述的开关电源控制模式切换电路,其特征在于,当所述第一运算放大器的输出端电压和正相输入端电压相等时,若在一个周期内,所述电流采集及电压转换模块输出的电压小于所述正相输入端电压,基于所述比较器输出的调制方波信号转换得到的驱动信号使得所述开关电源中的功率驱动管出现跳周期导通。
  10. 一种开关电源芯片,其特征在于,包括:
    开关电源和权利要求1-9任意一项所述的开关电源模式切换电路,所述开关电源至少包括功率驱动管,所述开关电源模式切换电路输出驱动信号,用于驱动所述功率驱动管。
  11. 根据权利要求10所述的开关电源芯片,其特征在于,所述功率驱动管包括PMOS管。
  12. 根据权利要求10所述的开关电源芯片,其特征在于,所述开关电源为BOOST电路、BUCK电路或BOOST-BUCK结合的电路。
PCT/CN2019/122895 2018-12-24 2019-12-04 一种开关电源控制模式切换电路及开关电源芯片 WO2020134916A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811580591.9A CN109494982B (zh) 2018-12-24 2018-12-24 一种开关电源控制模式切换电路及开关电源芯片
CN201811580591.9 2018-12-24

Publications (1)

Publication Number Publication Date
WO2020134916A1 true WO2020134916A1 (zh) 2020-07-02

Family

ID=65711572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122895 WO2020134916A1 (zh) 2018-12-24 2019-12-04 一种开关电源控制模式切换电路及开关电源芯片

Country Status (2)

Country Link
CN (1) CN109494982B (zh)
WO (1) WO2020134916A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114785127A (zh) * 2022-04-15 2022-07-22 西安电子科技大学重庆集成电路创新研究院 一种多模式平滑过渡的宽输入范围dc-dc转换器
CN117767754A (zh) * 2024-02-19 2024-03-26 成都芯正微电子科技有限公司 一种双极性Buck输出正负可调控电流电路
CN117767754B (zh) * 2024-02-19 2024-05-10 成都芯正微电子科技有限公司 一种双极性Buck输出正负可调控电流电路

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109494982B (zh) * 2018-12-24 2023-10-27 上海艾为电子技术股份有限公司 一种开关电源控制模式切换电路及开关电源芯片

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101499713A (zh) * 2008-01-31 2009-08-05 珠海全志科技有限公司 混合式开关电源转换器及自动切换控制电路
CN102545606A (zh) * 2010-12-17 2012-07-04 英飞凌科技奥地利有限公司 开关模式电源控制
CN102684474A (zh) * 2011-02-08 2012-09-19 英飞凌科技股份有限公司 Dc-dc变换器的模式控制电路
CN102810985A (zh) * 2011-05-25 2012-12-05 快捷半导体(苏州)有限公司 用于串联谐振转换器的混合控制技术
US20170018931A1 (en) * 2015-07-13 2017-01-19 Maxim Integrated Products, Inc. Switching circuits having multiple operating modes and associated methods
CN109494982A (zh) * 2018-12-24 2019-03-19 上海艾为电子技术股份有限公司 一种开关电源控制模式切换电路及开关电源芯片
CN209184490U (zh) * 2018-12-24 2019-07-30 上海艾为电子技术股份有限公司 一种开关电源控制模式切换电路及开关电源芯片

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10225406B4 (de) * 2002-06-07 2005-07-14 Infineon Technologies Ag Verfahren zur Ansteuerung eines Schalters in einem Schaltwandler und Ansteuerschaltung zur Ansteuerung eines Schalters
JP3648223B2 (ja) * 2002-10-31 2005-05-18 日本テキサス・インスツルメンツ株式会社 Dc−dcコンバータ及びdc−dcコンバータの駆動回路
CN100483908C (zh) * 2006-09-11 2009-04-29 天津英诺华微电子技术有限公司 脉冲频率调制型dc/dc升压转换器
US8427123B2 (en) * 2009-07-08 2013-04-23 Microchip Technology Incorporated System, method and apparatus to transition between pulse width modulation and pulse-frequency modulation in a switch mode power supply
US9083237B2 (en) * 2010-07-13 2015-07-14 O2Micro, Inc. Circuits and methods for controlling a DC/DC converter
CN102969894B (zh) * 2012-11-19 2015-04-08 西安三馀半导体有限公司 Dc-dc转换器模式自动转换电路
US9608520B2 (en) * 2014-05-30 2017-03-28 Skyworks Solutions, Inc. Mode control device, voltage converter, and control method used in the voltage converter
CN204103764U (zh) * 2014-10-15 2015-01-14 青岛歌尔声学科技有限公司 一种支持多模式切换的开关电源
US9853545B2 (en) * 2015-06-30 2017-12-26 Microsoft Technology Licensing, Llc Power regulator having current and voltage modes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101499713A (zh) * 2008-01-31 2009-08-05 珠海全志科技有限公司 混合式开关电源转换器及自动切换控制电路
CN102545606A (zh) * 2010-12-17 2012-07-04 英飞凌科技奥地利有限公司 开关模式电源控制
CN102684474A (zh) * 2011-02-08 2012-09-19 英飞凌科技股份有限公司 Dc-dc变换器的模式控制电路
CN102810985A (zh) * 2011-05-25 2012-12-05 快捷半导体(苏州)有限公司 用于串联谐振转换器的混合控制技术
US20170018931A1 (en) * 2015-07-13 2017-01-19 Maxim Integrated Products, Inc. Switching circuits having multiple operating modes and associated methods
CN109494982A (zh) * 2018-12-24 2019-03-19 上海艾为电子技术股份有限公司 一种开关电源控制模式切换电路及开关电源芯片
CN209184490U (zh) * 2018-12-24 2019-07-30 上海艾为电子技术股份有限公司 一种开关电源控制模式切换电路及开关电源芯片

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114785127A (zh) * 2022-04-15 2022-07-22 西安电子科技大学重庆集成电路创新研究院 一种多模式平滑过渡的宽输入范围dc-dc转换器
CN114785127B (zh) * 2022-04-15 2024-04-02 西安电子科技大学重庆集成电路创新研究院 一种多模式平滑过渡的宽输入范围dc-dc转换器
CN117767754A (zh) * 2024-02-19 2024-03-26 成都芯正微电子科技有限公司 一种双极性Buck输出正负可调控电流电路
CN117767754B (zh) * 2024-02-19 2024-05-10 成都芯正微电子科技有限公司 一种双极性Buck输出正负可调控电流电路

Also Published As

Publication number Publication date
CN109494982A (zh) 2019-03-19
CN109494982B (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
US10250135B2 (en) Fast response control circuit and control method thereof
US11303212B2 (en) Peak-buck peak-boost current-mode control for switched step-up step-down regulators
US10177665B2 (en) Systems and methods for high precision and/or low loss regulation of output currents of power conversion systems
TWI492511B (zh) 升降壓變換器及其控制器和控制方法
TWI397244B (zh) 具內部漣波補償之降壓型電源轉換器
US9236801B2 (en) Switch mode power supply, control circuit and associated control method
TWI496402B (zh) 電流式降壓轉換器及使用其之電子系統
EP2947762B1 (en) Duty cycle based current estimation in buck converter
CN111262435A (zh) 一种四开关升降压型变换器的控制电路及控制方法
US11621636B2 (en) Switching converter with low quiescent current and control circuit thereof
KR102175887B1 (ko) Pfc 제어회로, 액티브 pfc 회로 및 pfc 제어 방법
CN111435819A (zh) 降压型迟滞式开关变换器及其控制方法
US8289738B2 (en) Switching power supply
WO2020134916A1 (zh) 一种开关电源控制模式切换电路及开关电源芯片
CN112865530A (zh) 一种具有快速动态响应的Buck变换器
CN116735948A (zh) 一种过零检测电路和开关电源
US10848060B1 (en) Switching power converter with fast load transient response
CN209184490U (zh) 一种开关电源控制模式切换电路及开关电源芯片
US20200333390A1 (en) Fully differential current sensing
US11784577B2 (en) Low noise power conversion system and method
CN111900878A (zh) 增强瞬态特性的自适应迟滞控制变换器、控制方法及设备
CN109378970B (zh) 一种开关电源控制模式切换电路及开关电源芯片
CN111082657A (zh) 降压-升压变换器和控制方法
CN209184489U (zh) 一种开关电源控制模式切换电路及开关电源芯片
CN112865534B (zh) 一种自适应导通时间控制的Buck变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19906413

Country of ref document: EP

Kind code of ref document: A1