WO2020134577A1 - 真三轴动静组合加载霍普金森压杆的温度控制系统及方法 - Google Patents
真三轴动静组合加载霍普金森压杆的温度控制系统及方法 Download PDFInfo
- Publication number
- WO2020134577A1 WO2020134577A1 PCT/CN2019/115478 CN2019115478W WO2020134577A1 WO 2020134577 A1 WO2020134577 A1 WO 2020134577A1 CN 2019115478 W CN2019115478 W CN 2019115478W WO 2020134577 A1 WO2020134577 A1 WO 2020134577A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature control
- square
- loading
- confining pressure
- temperature
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/30—Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
- G01N3/307—Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight generated by a compressed or tensile-stressed spring; generated by pneumatic or hydraulic means
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/20—Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
- G05D23/22—Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element being a thermocouple
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/003—Generation of the force
- G01N2203/0042—Pneumatic or hydraulic means
- G01N2203/0048—Hydraulic means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/025—Geometry of the test
- G01N2203/0256—Triaxial, i.e. the forces being applied along three normal axes of the specimen
Definitions
- the present invention relates to the field of dynamic mechanical testing, in particular to a temperature-pressure coupling control device and a testing method based on a true three-axis dynamic and static combined loading Hopkinson rod.
- the utility model patent with the patent number 201620574575.9 introduces a kind of pre-determined true triaxial static stress (three principal directions of stress satisfying: Then, the device for unidirectional impact loading of the sample realizes the impact loading of the rock sample under the state of steady triaxial true static load. However, the device still cannot consider the effect of the temperature field on the rock specimen in real time during testing, especially the real-time coupled condition of temperature and pressure. Therefore, at present, there is no combination of a temperature control system and a dynamic and static loading system, especially a true three-axis dynamic and static loading system, to consider the real three-axis dynamic and static combined loading of Hopkinson rod equipment.
- the present invention provides a true three-axis dynamic and static combined loading Hopkinson pressure bar temperature control system, which includes a central cubic box, with the central cubic box as the center of symmetry, respectively symmetric Arrange X+ direction, X- direction, Y+ direction, Y- direction, Z+ direction and Z- direction confining pressure loading system, electromagnetic pulse excitation cavity, square rod, boss and self-lubricating square rod fixed support frame to form a three-axis six-direction
- the Hopkinson rod system, the confining pressure loading system includes a confining pressure loading hydraulic cylinder, a confining pressure loading actuator and a confining pressure loading frame; wherein the square rod is fixed by a self-lubricating square rod fixing support frame, and the central cubic box is provided with a square opening , The square rod and the central cube box are centered and connected at the square opening; the confining pressure hydraulic cylinder and confining pressure actuator are combined in series with the confining pressure loading frame, and the
- the temperature control system further includes a temperature control device, the temperature control device includes a temperature control box, the temperature control box has a built-in heating hole, a heating rod with a lead is placed in the heating hole, the furnace chamber of the temperature control box
- the volume is between 1.5 times and 2.5 times of the test sample.
- the six sides of the temperature control box are reserved with square holes. The size of the holes above the six faces is the same as the size of the Hopkinson rod square bar.
- the temperature control box is designed as Symmetrical four parts.
- the boss is 3% to 7% of the length of the rod from the end of the square rod.
- the length of the boss is 1.5% to 4% of the length of the square rod.
- the diameter of the boss is 1.5 to 2.5 times the side length of the square rod cross section.
- a true three-axis dynamic and static combined loading Hopkinson pressure bar temperature control system for temperature control method includes the following steps:
- Step 1 Assemble the temperature control box, first connect the first and second parts of the temperature control box, and then install the third part, then the first, second two parts, and the third part Connect it, and then install the fourth part of the temperature control box, fixed connection, to form a complete temperature control device;
- Step 2 Install the cushion block, assemble the cushion block set in the central cube box, and place it in the center of the bottom surface of the central cube box;
- Step 3 After the step 2 is installed, the temperature control box of the step 1 is placed on the block of the step 2 The center position of the upper surface, so that the test sample is located in the middle of the temperature control box, and thus, the installation steps of the true three-axis Hopkinson pressure bar temperature control system are completed;
- Step 4 After the above step 3 is completed, the test sample is heated, the thermocouple is controlled by the temperature control software system, the heating rate and the temperature range are set, and then the real-time temperature is fed back to the display software system through the intelligent temperature control sensor , To ensure heating to a predetermined temperature, and then keep the sample at a constant temperature;
- Step 5 After the above step 4 is completed, a static prestress is applied to the test sample, and after the static prestress is applied, an impact load is applied to the sample to achieve in-situ control of the cube sample temperature and pressure coupled load A true triaxial dynamic and static combined loading test study.
- the temperature range is from room temperature to 1000 ° C
- the temperature range is 20 ° C-300 ° C
- the present invention can make the test sample heated in situ and maintain a constant temperature, to carry out experimental research on dynamic impact loading test based on true triaxial Hopkinson pressure bar under different temperature fields.
- the present invention enables scientific researchers to carry out research on the dynamic damage evolution and destruction laws of materials such as rock and concrete under different temperature fields and stress fields successively or simultaneously.
- the present invention fills the gap in the dynamic impact loading of rock, concrete and other materials, especially in the true triaxial dynamic and static combined loading, where the temperature-pressure coupling test cannot be carried out.
- FIG. 1 is a schematic diagram of a cubic sample
- FIG. 2 is a three-dimensional schematic diagram of a three-axis six-way synchronous coordinated control electromagnetic loading Hopkinson rod system
- FIG. 3 is a three-dimensional schematic diagram of a square rod and boss structure
- FIG. 4 is a three-dimensional schematic diagram of the connection between the boss structure and the confining pressure loading system
- FIG. 5 is a two-dimensional front view of the connection between the boss structure and the confining pressure loading system
- FIG. 6 is a plan view of an X-direction uniaxial bidirectional hydraulic loading system
- FIG. 7 is a three-dimensional schematic diagram of the temperature control box section;
- FIG. 8 is a three-dimensional schematic diagram of a temperature control box;
- FIG. 9 is a three-dimensional diagram of a temperature-pressure coupling structure
- FIG. 10 is a three-dimensional view of a cross section of a temperature-pressure coupling structure.
- Electromagnetic pulse excitation cavity 7_X + to confining pressure loading frame, 8_X + to the boss, 9 _X + to the connecting rod support rod, 10 X + to the square rod, 11 _X + to the self-lubricating square rod fixed support frame, 12 _X + Alignment guide rail to square rod, 13 _X_Load fixed end baffle to confining pressure, 14 _X_direction to electromagnetic pulse excitation cavity, 15_X_Alignment guide rail to square rod, 16 _X_Direction link support rod, 17 _X_ to confining pressure loading frame, 18 _X_ to self-lubricating square rod fixed support frame, 19 _X_ to electromagnetic pulse excitation cavity support frame, 20_X_ to boss, 21_X_ to square rod, 22_X_ to support platform, 23 _Y + Load end baffle to confining pressure, 24_Y + Load hydraulic cylinder to confining pressure, 25_Y + Support platform, 26 _Y + Align
- the present invention provides a temperature control system based on a true three-axis dynamic and static combined loading Hopkinson pressure rod to achieve the test effect that can simultaneously meet the in-situ heating function during the loading process.
- FIG. 1 is a cubic sample 64, each edge of the cubic sample 64 is provided with a chamfer of 0.5 mm-2 mm, is to leave room for deformation of the sample and to avoid the test sample squeezing deformation resulting in square The rods collided and were damaged.
- FIG. 2 is a three-dimensional diagram of a three-axis six-way synchronous coordinated control electromagnetic loading Hopkinson rod system.
- the test device is placed on a horizontal cross-support platform, which includes X + -direction support platform 1, X_-direction support platform 22, Y + -direction support platform 25, ⁇ _direction support platform 39, and center support platform 65.
- the upper surface (along the Z + direction) of the central cubic box 63 is completely open, and square openings are provided in the middle of the central cubic box along the X + direction, X_ direction, Y + direction, Y_ direction, and _ direction, and The size of the square opening is the same as the size of the square rod; the central cubic box 63 is placed in the center of the upper surface of the central support platform 65, and forms an orthogonal coordinate system with the horizontal cross support platform for the accuracy of the three-axis six-direction Hopkinson rod system Positioning and centering.
- the X + -direction square rod 10 is fixed by the X + -direction self-lubricating square rod fixing support frame 11, and the positioning guide rail 12 and the central cube square box 63 are aligned along the X + -direction square rod to achieve the centering connection at the X + -direction square opening;
- X + connecting rod support rod 9 connects the X + confining pressure loading end baffle 3 to the central cube square box 63 to provide a fixed frame and counter for X + static confining pressure application Force support system.
- the X-direction square rod 21 is fixed by the _direction self-lubricating square rod fixing support frame 18, and is centered along the X_direction square rod
- the positioning rail 15 and the central cube square box 63 are centered and connected in the X _ square opening; the X _ electromagnetic pulse excitation cavity 14 and the _ electromagnetic electromagnetic pulse excitation cavity support frame 19 are placed inside the X _ surrounding pressure loading frame 17, And placed on the incident end of the square rod 21 in the X direction, and fit freely and tightly with the incident end of the square rod 21 in the X direction, the X _ confining pressure loading frame 17 is connected to the X _ boss 20 for _Apply X to the cube sample 64 to the incident end of the square rod 21 _To static confining pressure and dynamic stress pulse load; X _To the connecting rod support rod 16 to load X _ To confining pressure to load the fixed end baffle 13 and the center cube side
- the box 63 is connected to provide a fixed frame and reaction
- the Y + -directional square rod 34 is fixed by the Y + -directional self-lubricating square rod fixing support frame 33, and the positioning guide 26 along the Y + -directional square rod is centered and the center cube square box 63 is centered at the Y + -directional square opening;
- Y + the confining pressure loading frame 31 is connected in series with the Y + -direction boss 32 for applying the Y + -direction static confining pressure and dynamic stress pulse load to the cube sample 64 along the incident end of the Y + -direction square rod 34
- Y _ to the square rod 43 is fixed by the Y _ to the self-lubricating square rod fixing support frame 44, and the positioning guide 38 along the Y _ to the square rod is aligned with the central cube box 63 to achieve the centering connection at the square opening;
- Y The _direction electromagnetic pulse excitation cavity 40 and the Y_direction electromagnetic pulse excitation cavity support frame 41 are placed inside the Y_direction confining pressure loading frame 37, and placed at the incident end of the Y direction square rod 43, and The incident end is free and tightly attached, and the Y_direction confining pressure loading frame 37 is connected to the Y_direction boss 42 for applying the Y_direction static confining pressure to the cube sample 4 along the incident end of the Y_direction square rod 43 And dynamic stress pulse load;
- Y _ link connecting rod 36 connects the Y end confining pressure loading fixed end baffle 35 and the central cube square box 63 to provide a fixed frame and reaction force supporting system for Y
- the Z + -directional square rod 53 is fixed by the Z + -directional self-lubricating square rod fixing support frame 52, and the positioning guide rail 54 and the central cube box 63 are centered along the Z + -directional square rod to achieve the centering connection at the Z + -directional square opening;
- Z +To electromagnetic pulse excitation cavity 49 and Z +To electromagnetic pulse excitation cavity support frame 48 placed Z within the confining pressure loading block 47 +, and placed in the Z + entrance end to a square rod 53, and the Z + rod incident end 53 is free to square and tight fit
- Z + to confining pressure loading frame 47 is connected in series with the Z + -direction boss 51 for applying Z + to the cubic sample 64 along the incident end of the Z + -direction square rod 53 Static confining pressure and dynamic stress pulse load;
- Z + vertical fixation and support frame 50 is connected with the central cube
- the Z _ direction square rod 60 is fixed by the Z _ direction self-lubricating square rod fixing support frame 55, and the positioning guide rail 59 and the central cube box 63 are centered along the Z _ direction square rod to achieve the center connection at the Z _ square opening;
- Z _ Electromagnetic pulse excitation cavity 57 and Z _ Electromagnetic pulse excitation cavity support 62 is placed inside the Z _ confining pressure loading frame 58 and placed at the incident end of the _ direction square rod 60, and The incident end is free and tightly fitted, and the Z _ confining pressure loading frame 58 is connected to the Z _ boss 61 for applying Z _ static confining pressure to the cubic sample 64 along the incident end of the Z _ square rod 60 And dynamic stress pulse load;
- Z vertical fixation and support frame 56 is connected with the central cube box 63 to provide a fixed frame and reaction force support system for Z_ to apply static confining pressure.
- the boss 8 is disposed at the incident end of the square rod 10, and the distance from the end is about 3% to 7% of the rod length, and the length of the boss may be 1.5% of the length of the square rod To 4%, the diameter of the boss can be 1.5 to 2.5 times the side length of the square rod cross section.
- FIG. 6 is a plan view of the X-direction true three-axis dynamic and static combined loading Hopkinson rod.
- the working principle of the three-axis six-direction Hopkinson pressure bar dynamic and static load synchronous servo control system is (taking the X-direction single-axis bidirectional hydraulic loading system as an example):
- the X + -directed Hopkinson rod system is excited by the X + -directed confining pressure end baffle 3, X + -directed confined pressure hydraulic cylinder 2, X + -directed confined pressure actuator 4, X + -directed electromagnetic pulse excitation Cavity 6, X + direction connecting rod support rod 9, X + direction square rod 10, X + direction self-lubricating square rod fixing support frame 11, X + direction electromagnetic pulse excitation cavity support frame 5 and X + direction square rod centering positioning
- the guide rail 12 is formed; wherein the X + -direction square rod 10 is fixed by the X + -direction self-lubricating square rod fixing support frame 11, and the guide rail 12 and the center cube box 63 are centered along the X + -direction square rod to achieve the X + -direction square opening Centering connection; X + confining pressure hydraulic cylinder 2 and X + confining pressure loading actuator 4 and X + confining pressure loading frame 7 in series combination, X + confining pressure loading frame 7
- the X-direction square rod 21 is fixed by a _direction self-lubricating square rod fixing support frame 18, and the positioning guide 15 along the X_direction square rod centering and the central cube box 63 are centered at the X_direction square opening;
- X_direction Electricity The magnetic pulse excitation cavity 14 and the _direction electromagnetic pulse excitation cavity support frame 19 are placed inside the X_direction confining pressure loading frame 17 and placed at the incident end of the X_direction square rod 21 and are incident to the X_direction square rod 21 The end is free and tightly attached, the X _ confining pressure loading frame 17 is connected to the _ direction boss 20, and is used to apply the X i contant confining pressure and dynamic stress pulse to the test specimen along the incident end of the square rod 21 in the X direction Load;
- X _ link connecting rod 16 connects X _ to confining pressure to fix the fixed end baffle 13 and the central cube box 63 to provide a fixed
- the high-pressure pipe is opened, through the inlet port to the X + 2 oil-filled hydraulic cylinder to load the confining pressure, the above manner to promote X + confining pressure to the actuator 4 is loaded forwardly Movement, and contact with X + confining pressure loading frame 7; continue to apply oil pressure to push X + confining pressure loading actuator 4 to move forward, transmitting axial pressure through boss 8 to X + direction square rod 10, In turn, it acts on the cubic sample 64, subjecting it to precise static prestress (confining pressure) in the X direction.
- static prestress confining pressure
- the static prestress in the three directions of X, Y, and Z can be synchronously controlled and loaded, and the static prestress in the three directions of X, Y, and Z can be flexible according to the needs of experimental testing To set the respective load amplitude.
- FIG. 7 is a three-dimensional schematic diagram of the cross section of the temperature control box
- FIG. 8 is a three-dimensional schematic diagram of the temperature control box.
- the temperature control box 66 has a built-in heating hole 72, and a heating rod 73 with a lead 74 is placed in the heating hole 72.
- the temperature control device under the true three-axis dynamic and static combined loading is a prominent advantage of the three-axis six-way synchronous coordinated control of the electromagnetic loading Hopkinson pressure bar system.
- the temperature control device is built in a small heating system composed of multiple thermocouples and intelligent temperature control sensors in the heating box.
- the furnace volume of the heating box is about twice that of the test sample. Its purpose is to keep the temperature in the furnace uniform To avoid non-uniform heating of the test sample.
- thermocouple is controlled by the control software system, and the heating rate and temperature range are set (the temperature range is from normal temperature to 1000°c, preferably 20°C-300°C), and then the real-time temperature is fed back to the display software system through the intelligent temperature control sensor To ensure that it is heated to a predetermined temperature.
- a three-axis six-way synchronous coordinated control electromagnetic loading system can be used to apply dynamic impact loads to the test sample, and relevant dynamic tests can be carried out to achieve in-situ control of the true three-axis under the coupled temperature and pressure loading of the cube sample Dynamic and static combined loading test research.
- FIG. 9 is a three-dimensional view of the temperature-pressure coupling structure
- FIG. 10 is a three-dimensional view of the temperature-pressure coupling structure.
- Step 1 Assemble the temperature control box 66, first connect the first and second parts 67, 68 of the temperature control box 66, and then install the third part 69, and then the first and second parts 67, 68 and the third part 6 9 are connected, and then the fourth part 70 of the temperature control box is installed and fixedly connected to form a complete temperature control device;
- Step 2 Install the cushion block 75, and place the removable cushion block 75 in the center of the bottom surface of the center cube box 63
- Step 3 After the step 2 is installed, the temperature control box 66 of the step 1 is placed at the center of the upper surface of the block 75 of the step 2, so that the test sample 64 is located at the front of the temperature control box 66 In the middle position, the installation steps of the true three-axis Hopkinson pressure bar temperature control system are completed.
- Step 4 After the above step 3 is completed, the test sample 64 is heated, the thermocouple is controlled by the temperature control software system, and the heating rate and temperature range are set (the temperature range is from normal temperature to 1000°C, preferably 20 °C-300°C), and then feedback the real-time temperature to the display software system through the intelligent temperature control sensor to ensure that it is heated to the predetermined temperature, and then keep the sample 64 at a constant temperature.
- the temperature range is from normal temperature to 1000°C, preferably 20 °C-300°C
- Step 5 After the above step 4 is completed, a static prestress (confining pressure) is applied to the test specimen 64, (the static prestress (confining pressure) is applied in the manner described in FIG. 6); After the application is completed, the three-axis six-way synchronous coordinated control electromagnetic loading system can be used to apply dynamic impact load to the test sample, and the impact load can be applied to the sample to achieve in-situ control of the true temperature and pressure of the cube sample under coupled loading. Triaxial dynamic and static combined loading test research.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
一种真三轴动静组合加载霍普金森压杆的温度控制系统及方法,包括温度控制箱(66),温度控制箱(66)内置有加热孔(72),带引线(74)的加热棒(73)放置在加热孔(72)中,温度控制箱(66)的炉膛体积为测试试样(64)的1.5倍至2.5倍之间,温度控制箱(66)的六个面预留方孔,六个面上方孔的尺寸与霍普金森杆的方形杆(10,21,34,43,53,60)的尺寸一致,温度控制箱(66)设计为对称的四部分(67,68,69,70)。方法包括以下步骤:1:组装温度控制箱(66);2:安装垫块(75);3:将温度控制箱(66)放置于垫块(75)上表面中心位置;4:对测试试样(64)进行加热处理;5:对测试试样(64)施加静态预应力、冲击荷载。该温度控制系统及方法的设计可以使测试试样(64)原位加热并保持恒定温度,便于开展不同温度场下的基于真三轴霍普金森压杆动态冲击加载测试实验研究。
Description
真三轴动静组合加载霍普金森压杆的温度控制系统及方法
技术领域
[0001] 本发明涉及动态力学测试领域, 尤其涉及基于真三轴动静组合加载霍普金森杆 的温压耦合控制装置及测试方法。
背景技术
[0002] 在深部矿产资源开采以及岩土工程 (如隧道、 地下掩体和深部核废料储存硐室 等) 开挖过程中, 岩石等材料不仅要承受高地应力和爆破开挖等产生的工程扰 动, 还受到高温的作用。 根据量测, 越往地下深处, 地温越高, 深部岩体的高 地温也会对岩体的力学特性产生显著的影响, 特别高地应力和高地温下深部岩 体的力学性质与普通环境条件下具有巨大差别。 国内外现有开展岩石等材料在 高地应力和高温作用下的动态力学特性研究, 大多是基于传统的一维动静组合 加载霍普金森压杆实验装置 (如专利号为 200510032031.6的装置) , 该装置虽然 能够开展等围压(三个主方向的应力满足: a# a2= %)条件下的岩石动静组合加 载试验研究, 但是温度场对岩石试样的影响则无法实时考虑。 其通常做法是先 将岩石试样在高温炉中加热至一定温度, 随后将其自然冷却, 然后再对冷却后 的岩石试样开展相关动态冲击加载试验研究, 这显然与深部实际岩体的实际工 况不符合。 专利号为 201620574575.9的实用新型专利介绍了一种可以在岩石类试 样施加预定真三轴静态应力(三个主方向的应力满足:
, 再对试样 进行单向冲击加载的装置, 实现了在稳定静载真三轴应力状态下岩石试样的冲 击加载。 但是, 该装置测试时仍然无法实时考虑温度场对岩石试样的影响, 尤 其是无法考虑实时温度和压力耦合加载的情况。 因此, 目前国内外尚没有将温 度控制系统和动静组合加载系统, 特别是真三轴动静组合加载系统, 联合在一 起考虑实时温度和压力耦合加载的真三轴动静组合加载霍普金森杆设备。
发明概述
技术问题
问题的解决方案
技术解决方案
[0003] 为了解决现有技术问题, 本发明提供了一种真三轴动静组合加载霍普金森压杆 的温度控制系统, 其包括中心立方体方箱, 以中心立方体方箱为对称中心, 分 别对称布置 X+向、 X-向、 Y+向、 Y-向、 Z+向和 Z-向围压加载系统、 电磁脉冲激 发腔、 方形杆、 凸台以及自润滑方形杆固定支撑架, 构成三轴六向霍普金森杆 系统, 围压加载系统包括围压加载液压油缸、 围压加载作动器与围压加载框; 其中方形杆由自润滑方形杆固定支撑架固定, 中心立方体方箱设有方形开口, 方形杆与中心立方体方箱于方形开口实现对中连接; 围压加载液压油缸和围压 加载作动器与围压加载框串联组合, 电磁脉冲激发腔放置在围压加载框内, 并 放置于方形杆的入射端, 且与方形杆的入射端自由且紧密的贴合, 围压加载框 与凸台串联连接; 凸台置于方形杆入射端;
[0004] 所述温度控制系统还包括温度控制装置, 所述温度控制装置包括温度控制箱, 所述温度控制箱内置有加热孔, 带引线的加热棒放置在加热孔中, 温度控制箱 的炉膛体积为测试试样的 1.5倍至 2.5倍之间, 温度控制箱的六个面预留方孔, 六 个面上方孔的尺寸与霍普金森杆的方形杆的尺寸一致, 温度控制箱设计为对称 的四部分。
[0005] 作为本发明的进一步改进, 凸台距离方形杆端部为杆长的 3%至 7%处。
[0006] 作为本发明的进一步改进, 凸台的长度为方形杆长度的 1.5%至 4%。
[0007] 作为本发明的进一步改进, 凸台的直径为方形杆横截面边长的 1.5至 2.5倍。
[0008] 根据上述任意一项的一种真三轴动静组合加载霍普金森压杆的温度控制系统进 行温度控制的方法, 包括如下步骤:
[0009] 步骤 1 : 组装温度控制箱, 先将温度控制箱的第一、 第二两部分、 连接起来, 然后将第三部分装入, 随后将第一、 第二两部分、 和第三部分连接起来, 再将 温度控制箱第四部分安装上去, 固定连接, 形成完整的温度控制装置;
[0010] 步骤 2: 安装垫块, 将设置在中心立方体方箱内的垫块进行组装, 将其放置在 中心立方体方箱底面正中央;
[0011] 步骤 3: 待所述步骤 2安装后, 将步骤 1所述温度控制箱放置于所述步骤 2的垫块
上表面中心位置, 使测试试样位于温度控制箱的正中间位置, 至此, 完成真三 轴霍普金森压杆温度控制系统的安装步骤;
[0012] 步骤 4: 待上述步骤 3完成后, 对测试试样进行加热处理, 通过温度控制软件系 统控制热电偶, 设置升温速率和温度范围, 然后通过智能温度控制传感器反馈 实时温度到显示软件系统, 确保加热至预定温度, 随后使试样保持恒温状态;
[0013] 步骤 5: 待上述步骤 4完成后, 对测试试样施加静态预应力, 静态预应力施加完 成后, 对试样施加冲击荷载, 实现原位控制立方体试样温度和压力耦合加载下 的真三轴动静组合加载试验研究。
[0014] 作为本发明的进一步改进, 所述温度范围为常温至 1000°C
[0015] 作为本发明的进一步改进, 所述温度范围为 20°C-300°C
发明的有益效果
有益效果
[0016] 本发明的有益效果是:
[0017] 本发明可以使测试试样原位加热并保持恒定温度, 开展不同温度场下的基于真 三轴霍普金森压杆动态冲击加载测试实验研究。
[0018] 本发明使得科研人员可以开展不同温度场和应力场先后作用或同时作用下岩石 、 混凝土等材料的动态损害演化和破坏规律研究。
[0019] 本发明填补了岩石、 混凝土等材料动态冲击加载尤其是真三轴动静组合加载中 无法开展温压耦合测试的空白。
对附图的简要说明
附图说明
[0020] 附图 1是立方体试样示意图;
[0021] 附图 2是三轴六向同步协调控制电磁加载霍普金森杆系统三维示意图;
[0022] 附图 3是方形杆与凸台构造三维示意图;
[0023] 附图 4是凸台构造与围压加载系统连接三维示意图;
[0024] 附图 5是凸台构造与围压加载系统连接二维主视图
[0025] 附图 6是 X向单轴双向液压加载系统俯视图;
[0026] 附图 7是温度控制箱剖面三维示意图;
[0027] 附图 8是温度控制箱三维示意图;
[0028] 附图 9是温压耦合结构三维图;
[0029] 附图 10是温压耦合结构剖面三维图。
[0030] 图中标号对应部件名称如下:
[0031] 1_X+向支撑平台, 2 _X+向围压加载液压油缸, 3 _X+向围压加载端挡板, 4_X + 向围压加载作动器, 5 _X+向电磁脉冲激发腔支撑架, 6_X +
向电磁脉冲激发腔, 7_X+向围压加载框, 8_X+向凸台, 9 _X+向连杆支撑杆, 10 X +向方形杆, 11 _X +向自润滑方形杆固定支撑架, 12 _X +向方形杆对中定位导 轨, 13 _X_向围压加载固定端挡板, 14 _X_向电磁脉冲激发腔, 15_X_向方形杆对 中定位导轨, 16 _X_向连杆支撑杆, 17 _X_向围压加载框, 18 _X_向自润滑方形杆 固定支撑架, 19 _X_向电磁脉冲激发腔支撑架, 20_X_向凸台, 21_X_ 向方形杆, 22_X_向支撑平台, 23 _Y+向围压加载端挡板, 24_Y+向围压加载液 压油缸, 25_Y+向支撑平台, 26 _Y+向方形杆对中定位导轨, 27_Y+向围压加载 作动器, 28 _Y+向电磁脉冲激发腔支撑架, 29 _Y+向电磁脉冲激发腔, 30_Y+向 连杆支撑杆, 31 _Y+向围压加载框, 32_Y+向凸台, 33 _Y+向自润滑方形杆固定 支撑架, 34_Y+向方形杆, 35 _Y_向围压加载固定端挡板, 36 Y
向连杆支撑杆, 37 _Y_向围压加载框, 38 _Y_向方形杆对中定位导轨, 39_Y_向支 撑平台, 40 _Y_向电磁脉冲激发腔, 41 _Y_向电磁脉冲激发腔支撑架, 42_Y_向凸 台, 43_Y_向方形杆, 44 _Y_向自润滑方形杆固定支撑架, 45 _Z+向围压加载液压 油缸, 46 _Z+向围压加载作动器, 47 _Z+向围压加载框, 48 _Z+向电磁脉冲激发腔 支撑架, 49 _Z+向电磁脉冲激发腔, 50 _Z+向竖向固定与支撑框架, 51_Z+向凸台 , 52 _Z+向自润滑方形杆固定支撑架, 53_Z+向方形杆, 54 _Z+向方形杆对中定位 导轨, 55 _Z_向自润滑方形杆固定支撑架, 56 _Z_向竖向固定与支撑框架, 57_Z_ 向电磁脉冲激发腔, 58 _Z_向围压加载框, 59 _Z_向方形杆对中定位导轨, 60 Z 向方形杆, 61_Z_向凸台, 62 _Z_向电磁脉冲激发腔支撑架, 63 _中心立方体方箱 , 64 _立方体试样, 65 _中心支撑平台, 66 _温度控制箱, 67 _温度控制箱第一部分 , 68 _温度控制箱第二部分, 69 _温度控制箱第三部分, 70 _温度控制箱第四部分 , 71 _螺栓连接孔, 72_加热孔, 73_加热棒, 74 _引线, 75 _垫块。
发明实施例
本发明的实施方式
[0032] 下面结合附图对本发明做进一步说明。
[0033] 本发明提供一种基于真三轴动静组合加载霍普金森压杆的温度控制系统, 达到 能够在加载过程中同时满足原位加热功能的试验效果。
[0034] 图 1为立方体试样 64, 立方体试样 64的各向边缘设有 0.5 mm-2 mm的倒角, 是 为了给试样留下变形的空间以及避免测试试样挤压变形导致方形杆互相碰撞受 损。
[0035] 图 2为三轴六向同步协调控制电磁加载霍普金森杆系统三维图。 试验装置置于 水平十字支撑平台上, 该平台包括 X+向支撑平台 1、 X_向支撑平台 22、 Y+向支 撑平台 25和¥_向支撑平台 39以及中心支撑平台 65。 中心立方体方箱 63上表面 ( 沿 Z+向) 完全开口, 沿 X+向、 X_向、 Y+向、 Y_向、 和 _向分别于中心立方体 方箱正中间位置设置方形开口, 且方形开口尺寸与方形杆尺寸相同; 中心立方 体方箱 63置于中心支撑平台 65的上表面正中心, 且与水平十字支撑平台构成正 交坐标系用于三轴六向霍普金森杆系统的精准定位和对中。
[0036] 以中心立方体方箱 63为对称中心, 分别对称布置 X+向、 X_向、 Y+向、 Y_ 向、 Z+向和 z_向围压加载系统、 电磁脉冲激发腔、 方形杆以及自润滑方形杆固 定支撑架, 构成三轴六向霍普金森杆系统。 其中 X +向方形杆 10由 X +向自润滑方 形杆固定支撑架 11固定, 并沿 X +向方形杆对中定位导轨 12与中心立方体方箱 63 于 X +向方形开口实现对中连接; X +向围压加载液压油缸 2和 X +向围压加载作动 器 4与 X +向围压加载框 7串联组合, X +向电磁脉冲激发腔 6与 X +向电磁脉冲激发 腔支撑架 5放置在 X +向围压加载框 7内, 并放置于 X +
向方形杆 10的入射端, 且与 X+向方形杆 10的入射端自由且紧密的贴合, X+向围 压加载框 7与 X+向凸台 8串联连接, 用于沿 X +
向方形杆 10的入射端对立方体试样 64施加 X +
向静态围压和动态应力脉冲荷载; X +向连杆支撑杆 9将 X +向围压加载端挡板 3与 中心立方体方箱 63连接起来为 X+向静态围压施加提供固定框架与反力支撑系统 。 X 向方形杆 21由 _向自润滑方形杆固定支撑架 18固定, 并沿 X_向方形杆对中
定位导轨 15与中心立方体方箱 63于 X _向方形开口实现对中连接; X _向电磁脉冲 激发腔 14与 _向电磁脉冲激发腔支撑架 19置于 X _向围压加载框 17内部, 并放置 于 X 向方形杆 21的入射端, 且与 X 向方形杆 21的入射端自由且紧密的贴合, X _ 向围压加载框 17与 X _向凸台 20连接, 用于沿 X _向方形杆 21的入射端对立方体试 样 64施加 X _向静态围压和动态应力脉冲荷载; X _向连杆支撑杆 16将 X _向围压加 载固定端挡板 13与中心立方体方箱 63连接起来为 X _向静态围压施加提供固定框 架与反力支撑系统。 Y +向方形杆 34由 Y +向自润滑方形杆固定支撑架 33固定, 并 沿 Y +向方形杆对中定位导轨 26与中心立方体方箱 63于 Y +向方形开口实现对中连 接; Y +向围压加载液压油缸 24和 Y +向围压加载作动器 27与 Y +向围压加载框 31串 联组合, Y +向电磁脉冲激发腔 29与 Y +向电磁脉冲激发腔支撑架 28放置在 Y +向围 压加载框 31内, 并放置于 Y +向方形杆 34的入射端, 且与 Y +向方形杆 34的入射端 自由且紧密的贴合, Y +向围压加载框 31与 Y +向凸台 32串联连接, 用于沿 Y +向方 形杆 34的入射端对立方体试样 64施加 Y +向静态围压和动态应力脉冲荷载; Y +向 连杆支撑杆 30将 Y +向围压加载端挡板 23与中心立方体方箱 63连接起来为 Y +向静 态围压施加提供固定框架与反力支撑系统。 Y _向方形杆 43由 Y _向自润滑方形杆 固定支撑架 44固定, 并沿 Y _向方形杆对中定位导轨 38与中心立方体方箱 63于¥ _ 向方形开口实现对中连接; Y _向电磁脉冲激发腔 40与 Y _向电磁脉冲激发腔支撑 架 41置于 Y _向围压加载框 37内部, 并放置于 Y 向方形杆 43的入射端, 且与 Y 向 方形杆 43的入射端自由且紧密的贴合, Y _向围压加载框 37与丫_向凸台 42连接, 用于沿 Y _向方形杆 43的入射端对立方体试样 4施加 Y _向静态围压和动态应力脉冲 荷载; Y _向连杆支撑杆 36将 Y 向围压加载固定端挡板 35与中心立方体方箱 63连 接起来为 Y _向静态围压施加提供固定框架与反力支撑系统。 Z +向方形杆 53由 Z + 向自润滑方形杆固定支撑架 52固定, 并沿 Z +向方形杆对中定位导轨 54与中心立 方体方箱 63于 Z +向方形开口实现对中连接; Z +向围压加载液压油缸 45和 Z +向围 压加载作动器 46与 Z +向围压加载框 47串联组合, Z +向电磁脉冲激发腔 49与 Z +向 电磁脉冲激发腔支撑架 48放置在 Z +向围压加载框 47内, 并放置于 Z +向方形杆 53 的入射端, 且与 Z +向方形杆 53的入射端自由且紧密的贴合, Z +向围压加载框 47 与 Z +向凸台 51串联连接, 用于沿 Z +向方形杆 53的入射端对立方体试样 64施加 Z +
向静态围压和动态应力脉冲荷载; Z +向竖向固定与支撑框架 50与中心立方体方 箱 63连接起来为 Z +向静态围压施加提供固定框架与反力支撑系统。 Z _ 向方形杆 60由 Z _向自润滑方形杆固定支撑架 55固定, 并沿 Z _向方形杆对中定位 导轨 59与中心立方体方箱 63于 Z _向方形开口实现对中连接; Z _向电磁脉冲激发 腔 57与 Z _向电磁脉冲激发腔支撑架 62置于 Z _向围压加载框 58内部, 并放置于 _ 向方形杆 60的入射端, 且与 Z 向方形杆 60的入射端自由且紧密的贴合, Z _向围 压加载框 58与 Z _向凸台 61连接, 用于沿 Z _向方形杆 60的入射端对立方体试样 64 施加 Z _向静态围压和动态应力脉冲荷载; Z 向竖向固定与支撑框架 56与中心立 方体方箱 63连接起来为 Z _向静态围压施加提供固定框架与反力支撑系统。
[0037] 如图 3至图 5所示, 凸台 8安置于方形杆 10入射端, 距离端部约为杆长的 3%至 7% 处, 凸台的长度可为方形杆长度的 1.5%至 4%, 凸台的直径可为方形杆横截面边 长的 1.5至 2.5倍。
[0038] 图 6是 X向真三轴动静组合加载霍普金森杆俯视图。 三轴六向霍普金森压杆的动 静载荷同步伺服控制系统的工作原理为 (取 X向单轴双向液压加载系统为例) :
[0039] X +向霍普金森杆系由 X +向围压加载端挡板 3、 X +向围压加载液压油缸 2、 X +向 围压加载作动器 4、 X +向电磁脉冲激发腔 6、 X +向连杆支撑杆 9、 X +向方形杆 10 、 X +向自润滑方形杆固定支撑架 11、 X +向电磁脉冲激发腔支撑架 5和 X +向方形 杆对中定位导轨 12构成; 其中 X +向方形杆 10由 X +向自润滑方形杆固定支撑架 11 固定, 并沿 X +向方形杆对中定位导轨 12与中心立方体方箱 63于 X +向方形开口实 现对中连接; X +向围压加载液压油缸 2和 X +向围压加载作动器 4与 X +向围压加载 框 7串联组合, X +向围压加载框 7与 X +向凸台 8串联连接, 用于沿 X +向方形杆 10 的入射端对测试试样施加 X +静态围压, X +向电磁脉冲激发腔 6与 X +向电磁脉冲 激发腔支撑架 5放置在 X +向围压加载框 7内, 并放置于 X +向方形杆 10的入射端, 且与 X +向方形杆 10的入射端自由且紧密的贴合, 用于沿 X +向方形杆 10的入射端 对测试试样施加 X +向动态应力脉冲荷载; X +向连杆支撑杆 9将 X +向围压加载端 挡板 3与中心立方体方箱 63连接起来为 X +向静态围压施加提供固定框架与反力支 撑系统。 X 向方形杆 21由 _向自润滑方形杆固定支撑架 18固定, 并沿 X _向方形 杆对中定位导轨 15与中心立方体方箱 63于 X _向方形开口实现对中连接; X _向电
磁脉冲激发腔 14与 _向电磁脉冲激发腔支撑架 19置于 X _向围压加载框 17内部, 并放置于 X _向方形杆 21的入射端, 且与 X _向方形杆 21的入射端自由且紧密的贴 合, X _向围压加载框 17与 _向凸台 20连接, 用于沿 X 向方形杆 21的入射端对测 试试样施加 X i争态围压和动态应力脉冲荷载; X _向连杆支撑杆 16将 X _向围压加 载固定端挡板 13与中心立方体方箱 63连接起来为 X _向静态围压施加提供固定框 架与反力支撑系统。
[0040] 按以上方式安装好装置和立方体试样 64后, 打开高压油管, 通过进油口给 X + 向围压加载液压油缸 2充油, 推动 X +向围压加载作动器 4向前运动, 并与 X +向围 压加载框 7接触; 继续施加油压推动 X +向围压加载作动器 4向前移动, 将轴向压 力通过凸台 8传递至 X +方向方形杆 10, 进而作用到立方体试样 64上, 使其受到 X 方向精准静态预应力 (围压) 。 同理, Y、 Z方向静态围压加载原理与 X方向相 同。 需要说明的是: 通过静态围压加载伺服控制器系统, 可实现 X、 Y、 Z三个 方向静态预应力同步控制加载, 并且 X、 Y、 Z三个方向静态预应力可根据实验 测试需要灵活的设定各自的荷载幅值。
[0041] 图 7为温度控制箱剖面三维示意图, 图 8是温度控制箱三维示意图。
[0042] 温度控制箱 66内置有加热孔 72, 带引线 74的加热棒 73放置在加热孔 72中。 真三 轴动静组合加载下的温度控制装置是三轴六向同步协调控制电磁加载霍普金森 压杆系统的一个突出优点。 温度控制装置是在加热箱中内置多个由热电偶和智 能温度控制传感器等组成的小型加热系统, 加热箱的炉膛体积约为测试试样的 两倍, 其目的主要是使炉膛内温度保持均匀, 从而避免测试试样产生非均匀加 热现象。 试验时, 通过控制软件系统控制热电偶, 设置升温速率和温度范围等 (温度范围为常温至 1000°c, 优选 20°C-300°C) 然后通过智能温度控制传感器 反馈实时温度到显示软件系统, 确保加热至预定温度。 加热至预定温度后, 可 利用三轴六向同步协调控制电磁加载系统对测试试样施加动态冲击荷载, 开展 相关动力学试验, 实现原位控制立方体试样温度和压力耦合加载下的真三轴动 静组合加载试验研究。
[0043] 图 9为温压耦合结构三维图; 图 10为温压耦合结构剖面三维图。
[0044] 真三轴霍普金森压杆温度控制系统及方法, 步骤如下:
[0045] 步骤 1 : 组装温度控制箱 66 , 先将温度控制箱 66的第一、 第二两部分 67、 68连 接起来, 然后将第三部分 69装入, 随后将第一、 第二两部分 67、 68和第三部分 6 9连接起来, 再将温度控制箱第四部分 70安装上去, 固定连接, 形成完整的温度 控制装置;
[0046] 步骤 2: 安装垫块 75, 将可拆卸的垫块 75放置在中心立方体方箱 63底面正中央
[0047] 步骤 3: 待所述步骤 2安装后, 将步骤 1所述温度控制箱 66放置于所述步骤 2的垫 块 75上表面中心位置, 使测试试样 64位于温度控制箱 66的正中间位置, 至此, 完成真三轴霍普金森压杆温度控制系统的安装步骤。
[0048] 步骤 4: 待上述步骤 3完成后, 对测试试样 64进行加热处理, 通过温度控制软件 系统控制热电偶, 设置升温速率和温度范围等 (温度范围为常温至 1000°C, 优选 20°C-300°C) , 然后通过智能温度控制传感器反馈实时温度到显示软件系统, 确 保加热至预定温度, 随后使试样 64保持恒温状态。
[0049] 步骤 5: 待上述步骤 4完成后, 对测试试样 64施加静态预应力 (围压) , (静态 预应力 (围压) 按照图 6所描述的方式施加) ; 静态预应力 (围压) 施加完成后 , 可利用三轴六向同步协调控制电磁加载系统对测试试样施加动态冲击荷载, 开始对试样施加冲击荷载, 实现原位控制立方体试样温度和压力耦合加载下的 真三轴动静组合加载试验研究。
[0050] 以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能认 定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通技术 人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或替换, 都应当视为属于本发明的保护范围。
Claims
[权利要求 1] 一种真三轴动静组合加载霍普金森压杆的温度控制系统, 其特征在于
其包括中心立方体方箱, 以中心立方体方箱 (63) 为对称中心, 分别 对称布置 X +向、 X _向、 Y +向、 Y _向、 Z +向和 Z _向围压加载系统、 电磁脉冲激发腔、 方形杆、 凸台以及自润滑方形杆固定支撑架, 构成 三轴六向霍普金森杆系统, 围压加载系统包括围压加载液压油缸、 围 压加载作动器与围压加载框; 其中方形杆由自润滑方形杆固定支撑架 固定, 中心立方体方箱 (63) 设有方形开口, 方形杆与中心立方体方 箱 (63) 于方形开口实现对中连接; 围压加载液压油缸和围压加载作 动器与围压加载框串联组合, 电磁脉冲激发腔放置在围压加载框内, 并放置于方形杆的入射端, 且与方形杆的入射端自由且紧密的贴合, 围压加载框与凸台串联连接; 凸台置于方形杆入射端;
所述温度控制系统还包括温度控制装置, 所述温度控制装置包括温度 控制箱 (66) , 所述温度控制箱 (66) 内置有加热孔 (72) , 带引线 (74) 的加热棒 (73) 放置在加热孔 (72) 中, 温度控制箱 (66) 的 炉膛体积为测试试样的 1.5倍至 2.5倍之间, 温度控制箱的六个面预留 方孔, 六个面上方孔的尺寸与霍普金森杆的方形杆的尺寸一致, 温度 控制箱设计为对称的四部分。
[权利要求 2] 根据权利要求 1所述的一种真三轴动静组合加载霍普金森压杆的温度 控制系统, 其特征在于: 凸台距离方形杆端部为杆长的 3%至 7%处。
[权利要求 3] 根据权利要求 1所述的一种真三轴动静组合加载霍普金森压杆的温度 控制系统, 其特征在于: 凸台的长度为方形杆长度的 1.5%至 4%。
[权利要求 4] 根据权利要求 1所述的一种真三轴动静组合加载霍普金森压杆的温度 控制系统, 其特征在于: 凸台的直径为方形杆横截面边长的 1.5至 2.5 倍。
[权利要求 5] 根据权利要求 1至 4任意一项的一种真三轴动静组合加载霍普金森压杆 的温度控制系统进行温度控制的方法, 其特征在于, 包括如下步骤:
步骤 1 : 组装温度控制箱 (66) , 先将温度控制箱 (66) 的第一、 第 二两部分 (67) 、 (68) 连接起来, 然后将第三部分 (69) 装入, 随 后将第一、 第二两部分 (67) 、 (68) 和第三部分 (69) 连接起来, 再将温度控制箱第四部分 (70) 安装上去, 固定连接, 形成完整的温 度控制装置;
步骤 2: 安装垫块 (75) , 将设置在中心立方体方箱 (63) 内的垫块 (75) 进行组装, 将其放置在中心立方体方箱 (63) 底面正中央; 步骤 3: 待所述步骤 2安装后, 将步骤 1所述温度控制箱 (66) 放置于 所述步骤 2的垫块 (75) 上表面中心位置, 使测试试样 (64) 位于温 度控制箱 (66) 的正中间位置, 至此, 完成真三轴霍普金森压杆温度 控制系统的安装步骤;
步骤 4: 待上述步骤 3完成后, 对测试试样 (64) 进行加热处理, 通过 温度控制软件系统控制热电偶, 设置升温速率和温度范围, 然后通过 智能温度控制传感器反馈实时温度到显示软件系统, 确保加热至预定 温度, 随后使试样 (64) 保持恒温状态;
步骤 5: 待上述步骤 4完成后, 对测试试样 (64) 施加静态预应力, 静 态预应力施加完成后, 对试样施加冲击荷载, 实现原位控制立方体试 样温度和压力耦合加载下的真三轴动静组合加载试验研究。
[权利要求 6] 根据权利要求 5所述的一种真三轴动静组合加载霍普金森压杆的温度 控制方法, 其特征在于: 所述温度范围为常温至 1000°C。
[权利要求 7] 根据权利要求 6所述的一种真三轴动静组合加载霍普金森压杆的温度 控制方法, 其特征在于: 所述温度范围为 20°C-300°C。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/359,260 US11703433B2 (en) | 2018-12-26 | 2021-06-25 | Dynamic true triaxial electromagnetic Hopkinson bar system and testing method |
US17/359,126 US11988645B2 (en) | 2018-12-26 | 2021-06-25 | Dynamic true triaxial electromagnetic Hopkinson bar system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811601112.7A CN109406311A (zh) | 2018-12-26 | 2018-12-26 | 真三轴动静组合加载霍普金森压杆的温度控制系统及方法 |
CN201811601112.7 | 2018-12-26 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/115480 Continuation WO2020134579A1 (zh) | 2018-12-26 | 2019-11-05 | 三轴六向霍普金森压杆的动静载荷同步伺服控制系统 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/115483 Continuation WO2020134580A1 (zh) | 2018-12-26 | 2019-11-05 | 真三轴霍普金森杆固体动态损伤与超声波传播测试方法 |
PCT/CN2019/115480 Continuation WO2020134579A1 (zh) | 2018-12-26 | 2019-11-05 | 三轴六向霍普金森压杆的动静载荷同步伺服控制系统 |
US17/359,126 Continuation US11988645B2 (en) | 2018-12-26 | 2021-06-25 | Dynamic true triaxial electromagnetic Hopkinson bar system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020134577A1 true WO2020134577A1 (zh) | 2020-07-02 |
Family
ID=65461359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/115478 WO2020134577A1 (zh) | 2018-12-26 | 2019-11-05 | 真三轴动静组合加载霍普金森压杆的温度控制系统及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109406311A (zh) |
WO (1) | WO2020134577A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113295517A (zh) * | 2021-07-28 | 2021-08-24 | 中国科学院地质与地球物理研究所 | 用于水合物动力学试验的霍普金森杆装置 |
CN113484159A (zh) * | 2021-06-21 | 2021-10-08 | 北京理工大学 | 一种分离式霍普金森压杆用低温环境箱 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11988645B2 (en) | 2018-12-26 | 2024-05-21 | Shenzhen University | Dynamic true triaxial electromagnetic Hopkinson bar system |
US11703433B2 (en) | 2018-12-26 | 2023-07-18 | Shenzhen University | Dynamic true triaxial electromagnetic Hopkinson bar system and testing method |
CN109406311A (zh) * | 2018-12-26 | 2019-03-01 | 深圳大学 | 真三轴动静组合加载霍普金森压杆的温度控制系统及方法 |
CN109668775B (zh) * | 2018-12-26 | 2021-03-23 | 深圳大学 | 真三轴霍普金森压杆的定位对中系统及方法 |
CN109870346B (zh) * | 2019-03-07 | 2021-04-02 | 西北工业大学 | 基于双轴分离式霍普金森拉压杆多脉宽加载设备控制系统 |
CN111175162B (zh) * | 2019-03-22 | 2024-02-23 | 湘潭大学 | 一种岩石试样块单侧围压施加装置及围压施加方法 |
CN109991391B (zh) * | 2019-04-09 | 2020-07-10 | 重庆大学 | 含断层煤系岩层煤与瓦斯突出模拟试验方法 |
CN110987667B (zh) * | 2019-12-09 | 2021-04-02 | 中南大学 | 一种适用于分离式霍普金森杆的岩石高温剪切试验装置及方法 |
CN111537251B (zh) * | 2020-04-26 | 2021-12-24 | 浙江理工大学 | 不均匀辐射热环境试验台及其使用方法 |
CN113008658B (zh) * | 2021-02-02 | 2024-05-03 | 广州城建职业学院 | 一种基于双轴shpb实验的二波分解自平衡支撑装置 |
CN113432992B (zh) | 2021-06-08 | 2022-11-01 | 太原理工大学 | 水-气-温多场耦合霍普金森压杆试验加载系统及方法 |
CN113702200A (zh) * | 2021-07-15 | 2021-11-26 | 深圳大学 | 一种温压耦合双向电磁加载动态压剪实验装置及测试方法 |
CN113702195A (zh) * | 2021-07-15 | 2021-11-26 | 深圳大学 | 一种动静组合双向电磁加载压剪实验装置及测试方法 |
CN114965074B (zh) * | 2022-04-26 | 2023-07-18 | 安徽理工大学 | 一种nmr原位超高动静协同加载试验装置及应用方法 |
CN115389322A (zh) * | 2022-08-25 | 2022-11-25 | 东北大学 | 一种真三轴试验仪双向同步加载方法 |
CN116773328B (zh) * | 2023-06-25 | 2024-07-12 | 中国地质大学(北京) | 一种真三轴霍普金森压杆试验装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202101910U (zh) * | 2011-06-10 | 2012-01-04 | 中国矿业大学 | 三轴冲击动静载组合试验机 |
CN104535409A (zh) * | 2015-01-08 | 2015-04-22 | 中国矿业大学 | 一种真三轴多场多相耦合动力学试验系统及方法 |
CN204405454U (zh) * | 2015-02-03 | 2015-06-17 | 山东科技大学 | 冲击地压真三轴模拟试验装置 |
GB2534679A (en) * | 2014-12-22 | 2016-08-03 | Rolls Royce Plc | An output member |
CN205719826U (zh) * | 2016-06-13 | 2016-11-23 | 中国科学技术大学 | 一种基于真三轴静载的岩石霍普金森冲击加载实验装置 |
CN108152155A (zh) * | 2017-11-27 | 2018-06-12 | 中国石油天然气股份有限公司 | 一种页岩冲击致裂模拟系统及其使用方法 |
CN109406311A (zh) * | 2018-12-26 | 2019-03-01 | 深圳大学 | 真三轴动静组合加载霍普金森压杆的温度控制系统及方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104535419B (zh) * | 2014-12-25 | 2017-02-22 | 西北工业大学 | 用于保证分离式双轴霍普金森压杆实验的入射波等效加载方法 |
CN104677760B (zh) * | 2015-01-30 | 2017-02-22 | 西北工业大学 | 双轴霍普金森压杆和拉杆实验入射波等效加载的实现方法 |
CN105571961B (zh) * | 2015-12-18 | 2018-05-15 | 西北工业大学 | 电磁感应式霍普金森拉压杆加载装置及实验方法 |
CN108344649B (zh) * | 2018-02-07 | 2020-11-20 | 西北工业大学 | 一种动态双轴双向拉伸加载装置及实验方法 |
CN108548942B (zh) * | 2018-05-09 | 2021-01-05 | 西北工业大学 | 具有真三轴动态加载及测试功能的Hopkinson压杆系统及方法 |
-
2018
- 2018-12-26 CN CN201811601112.7A patent/CN109406311A/zh active Pending
-
2019
- 2019-11-05 WO PCT/CN2019/115478 patent/WO2020134577A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202101910U (zh) * | 2011-06-10 | 2012-01-04 | 中国矿业大学 | 三轴冲击动静载组合试验机 |
GB2534679A (en) * | 2014-12-22 | 2016-08-03 | Rolls Royce Plc | An output member |
CN104535409A (zh) * | 2015-01-08 | 2015-04-22 | 中国矿业大学 | 一种真三轴多场多相耦合动力学试验系统及方法 |
CN204405454U (zh) * | 2015-02-03 | 2015-06-17 | 山东科技大学 | 冲击地压真三轴模拟试验装置 |
CN205719826U (zh) * | 2016-06-13 | 2016-11-23 | 中国科学技术大学 | 一种基于真三轴静载的岩石霍普金森冲击加载实验装置 |
CN108152155A (zh) * | 2017-11-27 | 2018-06-12 | 中国石油天然气股份有限公司 | 一种页岩冲击致裂模拟系统及其使用方法 |
CN109406311A (zh) * | 2018-12-26 | 2019-03-01 | 深圳大学 | 真三轴动静组合加载霍普金森压杆的温度控制系统及方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113484159A (zh) * | 2021-06-21 | 2021-10-08 | 北京理工大学 | 一种分离式霍普金森压杆用低温环境箱 |
CN113484159B (zh) * | 2021-06-21 | 2022-04-15 | 北京理工大学 | 一种分离式霍普金森压杆用低温环境箱 |
CN113295517A (zh) * | 2021-07-28 | 2021-08-24 | 中国科学院地质与地球物理研究所 | 用于水合物动力学试验的霍普金森杆装置 |
Also Published As
Publication number | Publication date |
---|---|
CN109406311A (zh) | 2019-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020134577A1 (zh) | 真三轴动静组合加载霍普金森压杆的温度控制系统及方法 | |
WO2020134579A1 (zh) | 三轴六向霍普金森压杆的动静载荷同步伺服控制系统 | |
US20220146387A1 (en) | Temperature-controllable large-size geotechnique true triaxial multi-field coupling test system and test method | |
CN110940596B (zh) | 一种岩石高应力高温微纳米压痕试验系统 | |
Jabary et al. | Structure-soil-structure interaction effects on structures retrofitted with tuned mass dampers | |
US20210325287A1 (en) | Dynamic True Triaxial Electromagnetic Hopkinson Bar System | |
WO2020134576A1 (zh) | 霍普金森束杆动态测试系统 | |
CN108459035A (zh) | 一种用于中子散射的便携式原位多场耦合加载装置 | |
US11982664B1 (en) | True three-dimensional dynamic and static combination shear device under high- temperature, high pore pressure and chemical coupling and method therefor | |
CN103335895A (zh) | 多尺度岩石直剪仪 | |
CN208223987U (zh) | 用于分离式霍普金森压杆试验装置的高温环境箱 | |
CN111122340A (zh) | 一种破碎岩体多场耦合试验及监测系统 | |
US11703433B2 (en) | Dynamic true triaxial electromagnetic Hopkinson bar system and testing method | |
Li et al. | Development of a novel triaxial rock testing method based on biaxial test apparatus and its application | |
CN111220523A (zh) | 一种模拟复杂载荷条件下的地热开采试验方法 | |
CN113702200A (zh) | 一种温压耦合双向电磁加载动态压剪实验装置及测试方法 | |
CN211652376U (zh) | 破碎岩体多场耦合试验及监测系统 | |
WO2024152388A1 (zh) | 一种超大型深部工程灾害物理模拟设施 | |
CN113984504A (zh) | 一种多功能岩石力学试验系统及其试验方法 | |
Huang et al. | Numerical simulation of cracking behavior in artificially designed rock models subjected to heating from a central borehole | |
CN203376215U (zh) | 适用于大跨度载荷和多尺度试样的岩石直剪仪 | |
CN114544391A (zh) | 高温环境固体材料动态拉剪力学特性测试装置及测试方法 | |
CN113281194B (zh) | 一种适用于岩石全应力空间受载的剪切盒装置 | |
WO2021012459A1 (zh) | 双轴四向动静组合电磁加载霍普金森平板冲击加载装置 | |
CN112908502B (zh) | 一种弹簧板式水平和垂直双方向激励解耦装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19905565 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/10/2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19905565 Country of ref document: EP Kind code of ref document: A1 |