WO2020134567A1 - 平面光波导、plc芯片、光束整形结构及wss - Google Patents

平面光波导、plc芯片、光束整形结构及wss Download PDF

Info

Publication number
WO2020134567A1
WO2020134567A1 PCT/CN2019/115122 CN2019115122W WO2020134567A1 WO 2020134567 A1 WO2020134567 A1 WO 2020134567A1 CN 2019115122 W CN2019115122 W CN 2019115122W WO 2020134567 A1 WO2020134567 A1 WO 2020134567A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
planar
planar optical
beam shaping
array
Prior art date
Application number
PCT/CN2019/115122
Other languages
English (en)
French (fr)
Inventor
王谦
李永宏
郭正伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020134567A1 publication Critical patent/WO2020134567A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types

Definitions

  • the embodiments of the present application relate to the technical field of optical communication, and in particular, to a planar optical waveguide, a PLC chip, a beam shaping structure, and WSS.
  • Wavelength selective switch is an optical switch that can realize the switching of any wavelength optical signal to any optical channel, and is the core device of optical crossover technology in optical networks.
  • the WSS includes an optical fiber interface array, a beam shaping structure, an optical dispersion structure, and an optical switch structure that are sequentially arranged.
  • the optical fiber interface array includes at least one input optical fiber interface and a plurality of output optical fiber interfaces, and each optical fiber interface is coupled to the beam shaping structure.
  • the beam shaping structure is used to shape the beam, so that the beam spot transmitted in the WSS is different from the beam spot transmitted outside the WSS, and the beam spot transmitted outside the WSS may be a circular Gaussian spot within the WSS
  • the spot of the transmitted light beam may be an elliptical Gaussian spot amplified by the circular Gaussian spot.
  • the beam shaping structure includes a tapered planar optical waveguide.
  • the tapered planar optical waveguide is a quasi-cylindrical body, including two bottom surfaces parallel to each other, two end surfaces intersecting both bottom surfaces, and two bottom surfaces and two The two side surfaces where the end surfaces intersect, the two bottom surfaces, the two end surfaces, and the two side surfaces are all flat.
  • the two end surfaces include a first end surface and a second end surface. The width of the second end surface is greater than the width of the first end surface. The inclination at all positions on the intersection line parallel to the cross section of any bottom surface is equal.
  • the uniformity of the phase of the light beam transmitted from the planar optical waveguide is inversely related to the inclination of the position near the second end face on the intersection line, that is, the position near the second end face on the intersection line.
  • the embodiments of the present application provide a planar optical waveguide, an optical waveguide array, a planar lightwave circuit (PLC) chip, a beam shaping structure, and a WSS, which help to improve the uniformity of the phase of the light beam transmitted from the planar optical waveguide , Improve the PLC chip and the beam shaping effect of the beam shaping structure, thereby improving the performance of WSS.
  • PLC planar lightwave circuit
  • a planar optical waveguide is provided.
  • the planar optical waveguide is a quasi-cylindrical body with a sheet shape, and includes a first bottom surface and a second bottom surface parallel to the first direction.
  • the first bottom surface and the second bottom surface Parallel to each other, the first bottom surface and the second bottom surface are both flat, the thickness of the planar optical waveguide is less than or equal to 10 microns, the thickness is the dimension of the planar optical waveguide in the second direction, the second direction is perpendicular to the The first bottom surface of the planar optical waveguide;
  • the planar optical waveguide includes a first portion, a second portion, and a third portion that sequentially extend and smoothly transition in the above-mentioned first direction, and the width of the connection between the first portion and the second portion is smaller than that of the second portion and the third portion
  • the width of the connection, the width is the dimension of the planar optical waveguide in the third direction, and the third direction is perpendicular to both the first direction and the second direction;
  • the first part is used to conduct the light received from the end far away from the second part to the second part, or to transmit the light received from the second part out of the plane light through the end far away from the second part waveguide;
  • the second portion includes two side surfaces, the side surface is a curved surface bulging outward, and the inclination of the intersection of the side surface and the cross section parallel to the first bottom surface of the planar optical waveguide is from where it contacts the first portion
  • the contact with the third part gradually decreases, and the inclination is the angle between the tangent of the intersection line on the cross section and the first direction;
  • the third part is used to transmit the light received from the second part out of the planar optical waveguide through the end away from the second part, or to transmit the light received from the end away from the second part to the first Two parts.
  • the planar optical waveguide includes a first portion, a second portion, and a third portion that extend in sequence and smoothly transition
  • the second portion includes two side surfaces, the side surface is an outwardly convex arc surface, and the side surface is parallel to the parallel
  • the inclination of the intersection line of the cross section of a bottom surface gradually decreases from the junction with the first part to the junction with the third part, so the inclination of the point close to the third part on the intersection line is relatively small, from The phase uniformity of the light beam conducted by the planar optical waveguide is good.
  • the intersection of the side surface of the second portion and the cross section parallel to the first bottom surface of the planar optical waveguide includes a sine curve or a cosine curve.
  • the intersection line includes a sine curve or a cosine curve, which can improve the uniformity of the phase of the light beam conducted by the planar optical waveguide.
  • the extended shape of the first portion of the planar optical waveguide is curvilinear. Since the extended shape of the first portion is curvilinear, in this way, in the optical waveguide array composed of the planar optical waveguide, the pitches of the third portions of the at least three planar optical waveguides may not all be equal, which is convenient for achieving at least three The adjustment of the pitch of the third part of the planar optical waveguide.
  • the angle between the side where the third portion and the second portion do not intersect and the first bottom surface is an acute angle.
  • the angle between the side where the third part and the second part do not intersect and the first bottom surface is an acute angle, so that the light entering the planar optical waveguide and the light exiting the planar optical waveguide can be made There is an angle between them, and the planar optical waveguide can conduct light and deflect it.
  • the angle between the side where the third part and the second part do not intersect and the first bottom surface has a value range of 41 ⁇ 50 degrees.
  • an optical waveguide array including at least one planar optical waveguide, and the at least one planar optical waveguide are all the foregoing first aspect or the first or second optional implementation of the first aspect Way to provide a planar optical waveguide.
  • the planar optical waveguide includes a first portion, a second portion, and a third portion that sequentially extend and smoothly transition.
  • the second portion includes two side surfaces, and the side surfaces are outwardly convex arc surfaces.
  • the inclination of the intersection of this side and the cross section parallel to the first bottom surface of the planar optical waveguide gradually decreases from the junction with the first part to the junction with the third part, so the intersection is close to the third part.
  • the inclination of the position point is relatively small, and the phase uniformity of the light beam transmitted from the planar optical waveguide is good, so that the phase uniformity of the light beam transmitted from the optical waveguide array is good.
  • the optical waveguide array includes at least three planar optical waveguides, and the pitches of the third portions of the at least three planar optical waveguides are not all equal.
  • a PLC chip in a third aspect, includes the optical waveguide array provided in the second aspect or the optional implementation manner of the second aspect.
  • the PLC chip includes an optical waveguide array
  • the optical waveguide array includes at least one planar optical waveguide
  • the planar optical waveguide includes a first portion, a second portion, and a third portion that sequentially extend and smoothly transition.
  • the second portion includes two side surfaces, and the side surface is The arc surface bulging outward, the inclination of the intersection of the side surface and the cross section parallel to the first bottom surface of the planar optical waveguide gradually decreases from the junction with the first portion to the junction with the third portion, so the intersection The inclination of the point close to the third part on the line is relatively small, and the phase uniformity of the light beam transmitted from the planar optical waveguide is good, so that the phase uniformity of the light beam transmitted from the optical waveguide array is good, PLC The beam shaping effect of the chip is better.
  • a beam shaping structure includes an optical fiber interface array and the PLC chip provided in the above third aspect.
  • the optical fiber interface array includes at least one optical fiber interface, and the at least one optical fiber interface is connected to the PLC chip.
  • At least one of the planar optical waveguides corresponds to each other, and the end of the first portion of the planar optical waveguide away from the second portion is coupled to the corresponding optical fiber interface.
  • the beam shaping structure includes a PLC chip
  • the PLC chip includes an optical waveguide array
  • the optical waveguide array includes at least one planar optical waveguide
  • the planar optical waveguide includes a first portion, a second portion, and a third portion that sequentially extend and smoothly transition
  • the second portion It includes two side surfaces, the side surface is an outwardly convex arc surface, and the inclination of the intersection of the side surface and the cross section parallel to the first bottom surface of the planar optical waveguide is from the contact with the first portion to the third portion
  • the position gradually decreases, so the inclination of the point close to the third part on the intersection line is relatively small, and the phase uniformity of the light beam conducted from the planar optical waveguide is good, so that the light beam conducted from the optical waveguide array
  • the uniformity of the phase is better, the beam shaping effect of the PLC chip is better, and the beam shaping effect of the beam shaping structure is better.
  • the beam shaping structure further includes a collimating lens and a base, the planar lightwave circuit chip, the optical fiber interface array, and the collimating lens are respectively disposed on the base, and the collimating lens is located
  • the third portion of the planar optical waveguide in the planar lightwave circuit chip is away from the end of the second portion.
  • the optical waveguide array and the collimating lens are used for beam shaping in two different directions, and the PLC chip, the optical fiber interface array and the collimating lens are arranged on the base, which can facilitate the beam shaping structure to be formed as an integral structure.
  • an optical waveguide array including at least one planar optical waveguide, and the at least one planar optical waveguide is provided by the third or fourth optional implementation manner of the first aspect Planar optical waveguide.
  • the planar optical waveguide includes a first portion, a second portion, and a third portion that sequentially extend and smoothly transition.
  • the second portion includes two side surfaces, and the side surfaces are outwardly convex arc surfaces.
  • the inclination of the intersection of this side and the cross section parallel to the first bottom surface of the planar optical waveguide gradually decreases from the junction with the first part to the junction with the third part, so the intersection is close to the third part.
  • the inclination of the position point is relatively small, and the phase uniformity of the light beam transmitted from the planar optical waveguide is good, so that the phase uniformity of the light beam transmitted from the optical waveguide array is good.
  • the optical waveguide array includes at least three planar optical waveguides, and the pitches of the third portions of the at least three planar optical waveguides are not all equal.
  • a PLC chip in a sixth aspect, includes the optical waveguide array provided in the fifth aspect or the optional implementation manner of the fifth aspect.
  • the PLC chip includes an optical waveguide array
  • the optical waveguide array includes at least one planar optical waveguide
  • the planar optical waveguide includes a first portion, a second portion, and a third portion that sequentially extend and smoothly transition.
  • the second portion includes two side surfaces, and the side surface is The arc surface bulging outward, the inclination of the intersection of the side surface and the cross section parallel to the first bottom surface of the planar optical waveguide gradually decreases from the junction with the first portion to the junction with the third portion, so the intersection The inclination of the point close to the third part on the line is relatively small, and the phase uniformity of the light beam transmitted from the planar optical waveguide is good, so that the phase uniformity of the light beam transmitted from the optical waveguide array is good, PLC The beam shaping effect of the chip is better.
  • the PLC chip further includes a collimating lens disposed on the first bottom surface of the optical waveguide array, and the first bottom surface of the optical waveguide array is composed of at least one planar optical waveguide
  • the first bottom surface is constituted, and the orthographic projection area on the first bottom surface of the optical waveguide array where the third portion of the planar optical waveguide and the second portion do not intersect overlaps the area where the collimating lens is located.
  • the optical waveguide array and the collimating lens are used for beam shaping in two different directions, and setting the collimating lens on the first bottom surface of the optical waveguide array can reduce the volume of the beam shaping structure including the PLC chip .
  • a beam shaping structure includes an optical fiber interface array and the PLC chip provided in the sixth aspect or the optional implementation manner of the sixth aspect.
  • the optical fiber interface array includes at least one optical fiber interface.
  • the at least one optical fiber interface is in one-to-one correspondence with at least one planar optical waveguide in the PLC chip, and an end of the first portion of the planar optical waveguide away from the second portion is coupled to the corresponding optical fiber interface.
  • the beam shaping structure includes a PLC chip
  • the PLC chip includes an optical waveguide array
  • the optical waveguide array includes at least one planar optical waveguide
  • the planar optical waveguide includes a first portion, a second portion, and a third portion that sequentially extend and smoothly transition
  • the second portion It includes two side surfaces, the side surface is an outwardly convex arc surface, and the inclination of the intersection of the side surface and the cross section parallel to the first bottom surface of the planar optical waveguide is from the contact with the first portion to the third portion
  • the position gradually decreases, so the inclination of the point close to the third part on the intersection line is relatively small, and the phase uniformity of the light beam conducted from the planar optical waveguide is good, so that the light beam conducted from the optical waveguide array
  • the uniformity of the phase is better, the beam shaping effect of the PLC chip is better, and the beam shaping effect of the beam shaping structure is better.
  • the beam shaping structure further includes a base, and the above-mentioned planar lightwave circuit chip and optical fiber interface array are respectively disposed on the base.
  • the PLC chip and the optical fiber interface array are arranged on the base, which can facilitate the beam shaping structure to be formed as a whole structure.
  • a WSS including an optical dispersion structure, an optical switch structure, and the beam shaping structure provided in the fourth aspect or the optional implementation manner of the fourth aspect, or, the WSS includes an optical dispersion structure, An optical switch structure and the beam shaping structure provided in the seventh aspect or the optional implementation manner of the seventh aspect, the light dispersion structure is located between the beam shaping structure and the optical switch structure, and the light dispersion structure is located in the beam shaping structure
  • the third part of the planar optical waveguide is away from the side of the end of the second part;
  • the beam shaping structure is used for beam shaping of the received light
  • the light dispersion structure is used to disperse the light transmitted through the beam shaping structure to the light dispersion structure, so that the light transmitted through the beam shaping structure to the light dispersion structure spreads in the first plane;
  • the optical switch structure is used to select the light beam transmitted to the optical switch structure through the optical dispersion structure, so that the light beams of different wavelengths transmitted through the optical dispersion structure to the optical switch structure can be transmitted through different optical fiber interfaces Out the wavelength selection switch.
  • the beam shaping structure includes a PLC chip
  • the PLC chip includes an optical waveguide array
  • the optical waveguide array includes at least one planar optical waveguide
  • the planar optical waveguide includes a first portion, a second portion, and a Three parts
  • the second part includes two side surfaces
  • the side surface is an outwardly convex arc surface
  • the inclination of the intersection of the side surface and the cross section parallel to the first bottom surface of the planar optical waveguide is from where it contacts the first portion
  • the junction with the third part gradually decreases, so the inclination of the point close to the third part on the intersection line is relatively small, and the phase uniformity of the light beam transmitted from the planar optical waveguide is good, so that the optical waveguide
  • the phase uniformity of the beams transmitted by the array is better, the beam shaping effect of the PLC chip is better, the beam shaping effect of the beam shaping structure is better, and the beam shaping performance of the WSS is better.
  • a planar optical waveguide is provided.
  • the planar optical waveguide is a quasi-cylindrical body with a sheet shape, and includes a first bottom surface and a second bottom surface parallel to the first direction.
  • the first bottom surface and the second bottom surface Parallel, the first bottom surface and the second bottom surface are both flat, the thickness of the planar optical waveguide is less than or equal to 10 microns, the thickness is the dimension of the planar optical waveguide in the second direction, the second direction is perpendicular to the plane
  • the planar optical waveguide includes a first end surface and a second end surface.
  • the width of the first end surface is smaller than the width of the second end surface.
  • the width is the dimension of the planar optical waveguide in the third direction.
  • the third direction is perpendicular to the first One direction and the second direction;
  • the planar optical waveguide includes two side surfaces, and the side surface is an outwardly convex arc surface, and the inclination of the intersection of the side surface and the cross section parallel to the first bottom surface of the planar optical waveguide faces the first end from the first end
  • the two end surfaces gradually decrease, and the inclination is the angle between the tangent of the intersection line on the cross section and the above-mentioned first direction;
  • first end face is opposite to the second end face, the intersection of the first end face and the cross section parallel to the planar optical waveguide and the cross section of the second end face and the first bottom surface parallel to the planar optical waveguide
  • the intersection line is parallel, and the two side surfaces of the planar optical waveguide are opposite.
  • the first end surface intersects the first bottom surface, the second bottom surface, and the two side surfaces, respectively, and the second end surface respectively faces the first bottom surface, the second The bottom and the two sides intersect.
  • the intersection of the side surface of the planar optical waveguide and the cross section parallel to the first bottom surface of the planar optical waveguide includes a sine curve or a cosine curve.
  • the angle between the second end surface and the first bottom surface is an acute angle.
  • the size of the angle between the second end surface and the first bottom surface ranges from 41 to 50 degrees.
  • an optical waveguide array includes at least one planar optical waveguide, and the at least one planar optical waveguide is provided by the foregoing ninth aspect or the first optional implementation manner of the ninth aspect.
  • Planar optical waveguide is provided by the foregoing ninth aspect or the first optional implementation manner of the ninth aspect.
  • a PLC chip in an eleventh aspect, includes the optical waveguide array provided in the tenth aspect.
  • a beam shaping structure includes an optical fiber interface array and the PLC chip provided in the eleventh aspect.
  • the optical fiber interface array includes at least one optical fiber interface, the at least one optical fiber interface and the At least one planar optical waveguide in the PLC chip has a one-to-one correspondence, and the first end face of the planar optical waveguide is coupled to the corresponding optical fiber interface.
  • the beam shaping structure further includes a collimating lens and a base, the PLC chip, the fiber interface array, and the collimating lens are respectively disposed on the base, and the collimating lens is located on the The side of the second end face of the planar optical waveguide in the PLC chip.
  • an optical waveguide array including at least one planar optical waveguide, and the at least one planar optical waveguide is provided by the second or third optional implementation manner of the foregoing ninth aspect Planar optical waveguide.
  • a PLC chip including the optical waveguide array provided in the thirteenth aspect.
  • the PLC chip further includes a collimating lens disposed on the first bottom surface of the optical waveguide array, and the first bottom surface of the optical waveguide array is composed of the at least one planar optical waveguide
  • the first bottom surface is composed of, and the orthographic projection area of the second end surface of the planar optical waveguide on the first bottom surface of the optical waveguide array overlaps with the area where the collimator lens is located.
  • a beam shaping structure includes an optical fiber interface array and the PLC chip provided in the fourteenth aspect.
  • the optical fiber interface array includes at least one optical fiber interface, and the at least one optical fiber interface and the At least one planar optical waveguide in the PLC chip has a one-to-one correspondence, and the first end face of the planar optical waveguide is coupled to the corresponding optical fiber interface.
  • the beam shaping structure further includes a base, and the PLC chip and the optical fiber interface array are respectively disposed on the base.
  • a WSS including an optical dispersion structure, an optical switch structure, and the beam shaping structure provided by the above-mentioned twelfth aspect or the optional implementation manner of the twelfth aspect, or, the WSS includes light A dispersion structure, an optical switch structure, and the beam shaping structure provided by the above fifteenth aspect or the optional implementation manner of the fifteenth aspect, the light dispersing structure is located between the beam shaping structure and the optical switch structure, the light dispersing structure Located on the side of the second end face of the planar optical waveguide of the beam shaping structure;
  • the beam shaping structure is used for beam shaping of the received light
  • the light dispersion structure is used to disperse the light transmitted through the beam shaping structure to the light dispersion structure, so that the light transmitted through the beam shaping structure to the light dispersion structure spreads in the first plane;
  • the optical switch structure is used to select the light beam transmitted to the optical switch structure through the optical dispersion structure, so that the light beams of different wavelengths transmitted through the optical dispersion structure to the optical switch structure can pass through different optical fiber interfaces
  • the wavelength selection switch is transmitted out.
  • the planar optical waveguide includes a first bottom surface and a second bottom surface parallel to the first direction, and the first bottom surface and the second bottom surface are parallel to each other ,
  • the first bottom surface and the second bottom surface are both flat
  • the planar optical waveguide includes a first portion, a second portion, and a third portion that sequentially extend and smoothly transition in the first direction.
  • the width of the connection between the first portion and the second portion is less than the The width of the connection between the second part and the third part.
  • the second part includes two side surfaces.
  • the side surface is an outwardly curved surface, and the inclination of the intersection of the side surface and the cross section parallel to the first bottom surface is A part of the junction gradually decreases toward the junction of the third part, so the inclination of the point close to the third part on the intersection line is relatively small, and the phase uniformity of the light beam transmitted from the planar optical waveguide is better It helps to improve the beam shaping effect of the PLC chip, thereby improving the beam shaping effect of the beam shaping structure and improving the performance of WSS.
  • FIG. 1 is a functional schematic diagram of a WSS involved in an embodiment of the present application
  • FIG. 2 is a schematic diagram of a three-dimensional structure of a planar optical waveguide involved in an embodiment of the present application
  • FIG. 3 is a schematic perspective view of another planar optical waveguide according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a three-dimensional structure of a planar optical waveguide provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the front view structure of the planar optical waveguide shown in FIG. 4;
  • FIG. 6 is a schematic plan view of the planar optical waveguide shown in FIG. 4;
  • FIG. 7 is a schematic diagram of the intersection of the side surface of the second portion of the planar optical waveguide shown in FIG. 4 and a cross section parallel to the first bottom surface thereof;
  • FIG. 8 is a schematic perspective view of another planar optical waveguide provided by an embodiment of the present application.
  • FIG. 9 is a schematic plan view of the planar optical waveguide shown in FIG. 8.
  • FIG. 10 is a schematic diagram of light beams transmitted in the planar optical waveguide shown in FIG. 8;
  • FIG. 11 is a schematic diagram of a front view structure of yet another planar optical waveguide provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of an intersection of a planar optical waveguide and a cross section parallel to the first bottom surface thereof provided by an embodiment of the present application;
  • FIG. 13 is a corresponding phase curve diagram of the planar optical waveguide shown in FIG. 2;
  • FIG. 14 is a corresponding phase curve diagram of a planar optical waveguide provided by an embodiment of the present application.
  • 15 is a schematic diagram of a front view structure of an optical waveguide array provided by an embodiment of the present application.
  • 16 is a schematic diagram of a front view structure of another optical waveguide array provided by an embodiment of the present application.
  • FIG. 17 is a schematic front view of a PLC chip structure provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram of a frontal structure of another PLC chip provided by an embodiment of the present application.
  • FIG. 19 is a schematic top view of a PLC chip provided by an embodiment of the present application.
  • 20 is a schematic diagram of a front view of a beam shaping structure provided by an embodiment of the present application.
  • 21 is a schematic diagram of a front view of another beam shaping structure provided by an embodiment of the present application.
  • FIG. 22 is a schematic diagram of a front view of yet another beam shaping structure provided by an embodiment of the present application.
  • FIG. 23 is a schematic diagram of a front view of yet another beam shaping structure provided by an embodiment of the present application.
  • FIG. 24 is a schematic diagram of a front view structure of a planar optical waveguide provided by an embodiment of the present application.
  • FIG. 1 is a functional schematic diagram of a 1 ⁇ N WSS involved in an embodiment of the present application.
  • the WSS includes an optical fiber interface array 001, a beam shaping structure 002, an optical dispersion structure 003, an optical switch structure 004, and an optical fiber interface array 001 includes one input fiber interface (not shown in FIG. 1) and N (three shown in FIG. 1) output fiber interfaces (not shown in FIG. 1), and each fiber interface is connected to the beam shaping structure 002.
  • the light dispersion structure 003 may be a grating, for example, it may be a grating based on dense wavelength multiplexing (DWDM), and the optical switch structure 004 may be liquid crystal on silicon (LCOS)
  • An optical switch or a microelectromechanical systems optical switch, for example, the optical switch structure 004 may be a beam deflector.
  • the fiber interface array 001 may be located in the beam shaping structure 002.
  • the overall structure formed by the fiber interface array 001 and the beam shaping structure 002 may be called a beam shaping structure, and the beam shaping structure may also be called a beam shaping system.
  • the optical dispersion structure 003 may also be called an optical dispersion system
  • the optical switch structure 004 may also be called an optical switch system.
  • the WSS shown in FIG. 1 When the WSS shown in FIG. 1 is used, beams including optical signals of different wavelengths are input to the WSS through the input optical fiber interface, and the beams input to the WSS enter the optical dispersion structure 003 through the beam shaping structure 002, and the optical dispersion structure 003 conducts the beam Dispersion, so that the optical signals of different wavelengths are scattered in the first plane (that is, the wavelength split in FIG. 1), and the light beam emitted from the optical dispersion structure 003 enters (not shown in FIG. 1) the optical switch structure 004 , The optical switch structure 004 selects and switches the optical signals of different wavelengths in the second plane (that is, the beam deflection in FIG.
  • the first plane may be a horizontal plane
  • the second plane may be a vertical plane.
  • the beam shaping structure 002 is used to shape the beam so that the beam spot transmitted inside the WSS is different from the beam spot transmitted outside the WSS.
  • the spot of the light beam transmitted outside the WSS is a circular Gaussian spot
  • the spot of the light beam transmitted inside the WSS is an elliptical Gaussian spot amplified by the circular Gaussian spot.
  • the beam shaping structure is mainly composed of separate lens groups and mirror groups, which makes WSS have many components, resulting in a complicated manufacturing process and high cost of WSS.
  • the use of an integrated beam shaping structure to replace discrete lens groups and mirror groups is of great significance to the manufacturing cost of WSS.
  • PLC chips are optical chips made using wafer semiconductor processing technology, and have important applications in optical communications.
  • the PLC chip can be applied to a planar lightwave circuit power splitter (PLC-splitter).
  • PLC chips can use integrated planar optical waveguides instead of separate lens groups and mirror groups to perform beam shaping, simplify the manufacturing process of WSS, and reduce the cost of WSS.
  • FIG. 2 is a schematic structural diagram of a planar optical waveguide involved in an embodiment of the present application.
  • the planar optical waveguide is a tapered waveguide and the planar optical waveguide is a quasi-cylindrical body, including two parallel to each other
  • the bottom surface 011 (only one is marked in FIG. 2), the two end surfaces that intersect the two bottom surfaces 011, and the two side surfaces 012 that intersect the two bottom surfaces 011 and the two end surfaces (only in FIG. 2) Mark one)
  • the two end faces include the first end face 013 and the second end face 014, the two bottom faces 011, the two end faces and the two side faces 012 are all flat, and the width of the second end face 014 (not shown in FIG.
  • the first end of the planar optical waveguide may be referred to as a head end, and the second end may be referred to as an end, so that the first end face 013 may be the head end face of the planar optical waveguide, and the second end face 014 may be the end face of the planar optical waveguide.
  • the width of the first end surface 013 is 9.3um (micrometer), and the width of the second end surface 014 is 110um.
  • the planar optical waveguide can expand the beam spot to 76um in one direction.
  • the phase uniformity of the light beam transmitted from the planar optical waveguide is close to the second end surface 014 on the intersection line (the two intersection lines of the side surface 012 of the planar optical waveguide and the cross section parallel to the bottom surface 011)
  • the inclination of the point is negatively correlated.
  • the planar optical waveguide shown in FIG. 2 the inclination of the point close to the second end surface 014 on the intersection line is relatively large, resulting in the phase of the light beam conducted from the planar optical waveguide
  • the uniformity of the LED is poor, resulting in poor beam shaping effect of the PLC chip.
  • the beam shaping effect of the beam shaping structure is poor, which affects the performance of WSS (such as insertion loss ).
  • FIG. 3 is a schematic structural diagram of another planar optical waveguide involved in an embodiment of the present application.
  • the planar optical waveguide shown in FIG. 3 can be considered to be close to each side of the planar optical waveguide shown in FIG. 2
  • the microstructure groove 015 is provided at the position of the second end surface 014, and the microstructure groove 015 constitutes an approximate planar lens, which can flatten the phase of the light beam, so that the phase uniformity of the light beam transmitted from the planar optical waveguide is good.
  • the microstructure groove 015 is likely to cause light scattering and damage.
  • the planar optical waveguide includes a first bottom surface and a second bottom surface parallel to the first direction, and the first bottom surface and the second bottom surface are parallel to each other ,
  • the first bottom surface and the second bottom surface are both flat
  • the planar optical waveguide includes a first portion, a second portion, and a third portion that sequentially extend and smoothly transition in the first direction.
  • the width of the connection between the first portion and the second portion is less than the The width of the connection between the second part and the third part.
  • the second part includes two side surfaces.
  • the side surface is an outwardly curved surface, and the inclination of the intersection of the side surface and the cross section parallel to the first bottom surface is The junction of one part gradually decreases toward the junction of the third part, so the inclination of the point close to the third part on the intersection line is relatively small, so that it is not necessary to provide a microstructure groove on the side of the planar optical waveguide Improve the uniformity of the phase of the light beam transmitted from the planar optical waveguide, improve the beam shaping effect of the PLC chip and the beam shaping structure, and thus improve the performance of the WSS.
  • the description of the following embodiments please refer to the description of the following embodiments.
  • FIG. 4 is a schematic perspective view of a planar optical waveguide 100 according to an embodiment of the present application
  • FIG. 5 is a schematic front view of the planar optical waveguide 100 shown in FIG. 4
  • FIG. 6 is a schematic view of the planar optical waveguide 100 shown in FIG. 4.
  • the planar optical waveguide 100 is a quasi-cylindrical body with a sheet shape, including a first bottom surface A1 and a second bottom surface A2 parallel to the first direction x, and the first bottom surface A1 and the second The bottom surfaces A2 are parallel to each other, the first bottom surface A1 and the second bottom surface A2 are both flat, the thickness h of the planar optical waveguide 100 is less than or equal to 10 microns, and the thickness h is the dimension of the planar optical waveguide 100 in the second direction y, The second direction y is perpendicular to the first bottom surface A1.
  • the planar optical waveguide 100 includes a first portion 1001, a second portion 1002, and a third portion 1003 that extend in sequence and smoothly transition in the first direction x.
  • the width w1 at the connection between the first portion 1001 and the second portion 1002 is smaller than the second portion 1002
  • the width w2 at the connection with the third portion 1003 is the dimension of the planar optical waveguide 100 in the third direction z, which is perpendicular to both the first direction x and the second direction y.
  • the first part 1001 is used to conduct the light received from the end (not shown) of the first part 1001 away from the second part 1002 to the second part 1002, or to pass the light received from the second part 1002 through the first part
  • the end of 1001 away from the second portion 1002 conducts the planar optical waveguide 100.
  • the second portion 1002 includes two side surfaces A32, each side surface A32 is an outwardly convex arc surface, and each side surface A32 has an inclination of an intersection of the cross section of the planar optical waveguide 100 parallel to the cross section of the first bottom surface A1 thereof
  • the degree gradually decreases from the contact with the first portion 1001 to the contact with the third portion 1002, and the inclination is the angle between the tangent of the intersection line on the cross-section and the first direction x.
  • the third part 1003 is used to guide the light received from the second part 1002 through the third part 1003 to the end away from the second part 1002 out of the planar optical waveguide 1001, or from the third part 1003 to the end away from the second part 1002 The received light is transmitted to the second part 1002.
  • FIG. 7 is a schematic diagram of the intersection of the two side surfaces of the second portion 1002 of the planar optical waveguide 100 and the cross section of the planar optical waveguide 100 parallel to the first bottom surface A1 in the cross section of the planar optical waveguide 100 provided by an embodiment of the present application.
  • the intersection of the two side surfaces A32 of the second portion 1002 and the cross section of the planar optical waveguide 100 parallel to the first bottom surface A1 is the intersection line Q1 and the intersection line Q2, the intersection line Q1 and the intersection
  • the inclination of each intersection line in the line Q2 gradually decreases from the junction with the first section 1001 to the junction with the third section 1002, and on the intersection line Q1 and the intersection line Q2, the intersection with the first section 1001 and the second section
  • the inclination of the points at equal distances from each other is equal, in other words, the intersection line Q1 and the intersection line Q2 are symmetrical about a vertical plane of the cross section.
  • the position point E1, the position point E2 and the position point E3 are three position points on the intersection line Q1 distributed from the junction with the first part 1001 to the junction with the third part 1002, then the inclination of the intersection line Q1 is from The position point E1, the position point E2 to the position point E3 gradually decreases, the position point E4 is the position point on the intersection line Q2, the distance between the position point E4 and the first part 1001 and the second part 1002 is equal to the position point E1 and the second When the distance between the part 1001 and the second part 1002 meets, the inclination of the position E1 is equal to the inclination of the position E4.
  • each side A32 of the second portion 1002 and the cross section parallel to the first bottom surface A1 of the planar optical waveguide 100 includes a sine curve or a cosine curve, which may be a portion including a sine curve or a cosine curve For example, it includes a part on the sine curve of 1/4+n periods, or a part on the cosine curve of 3/4+n periods, which is not limited in the embodiment of the present application, where n is greater than or An integer equal to 0.
  • the end of the first portion 1001 away from the second portion 1002 may be referred to as the first end of the planar optical waveguide 100, and the side where the first portion 1001 and the second portion 1002 do not intersect It may be referred to as the first end face of the planar optical waveguide 100 (for example, the first end face A4 in FIGS. 5 and 6), and the end of the third portion 1003 away from the second portion 1002 may be referred to as the second end of the planar optical waveguide 100.
  • the side where the three parts 1003 and the second part 1002 do not intersect may be referred to as the second end face of the planar optical waveguide 100 (for example, the second end face A5 in FIGS. 5 and 6 ).
  • the end of the first portion 1001 away from the second portion 1002 is the first end of the planar optical waveguide 100.
  • the side where the first portion 1001 and the second portion 1002 do not intersect is the first end surface of the planar optical waveguide 100, and the third portion 1003 is away from the first One end of the second portion 1002 is the second end of the planar optical waveguide 100, and the side where the third portion 1003 and the second portion 1002 do not intersect is the second end surface of the planar optical waveguide 100.
  • FIGS. 4 to 6 the side (that is, the second end surface A5) of the third portion 1003 and the second portion 1002 that does not intersect is perpendicular to the first bottom surface A1. Since the first bottom surface A1 and the second bottom surface A2 of the planar optical waveguide 100 are parallel, the side where the third portion 1003 and the second portion 1002 do not intersect is also perpendicular to both the first bottom surface A1 and the second bottom surface A2.
  • FIG. 8 is a schematic perspective structural view of another planar optical waveguide 100 provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural plan view of the planar optical waveguide 100 shown in FIG. 8.
  • the third part 1003 and The angle g between the non-intersecting surface of the second part 1002 (that is, the second end surface A5) and the first bottom surface A1 is an acute angle, and the value of the angle g ranges from 41 to 50 degrees.
  • the size of the angle g is 45 degrees.
  • the angle between the third portion 1003 and the second portion 1002 that does not intersect (that is, the second end surface A5) and the first bottom surface A1 of the planar optical waveguide 100 is an acute angle, thereby obtaining the plane shown in FIG. 8 Optical waveguide 100.
  • 41 to 50 degrees is only exemplary, and the size of the included angle g may also be other values, which is not limited in the embodiment of the present application.
  • the light passes through the side where the first portion 1001 and the second portion 1002 of the planar optical waveguide 100 do not intersect (that is, the first The end surface A4) enters the planar optical waveguide 100, and after being transmitted in the planar optical waveguide 100, the light is reflected on the side (that is, the second end surface A5) of the third portion 1003 and the second portion 1002 of the planar optical waveguide 100 that do not intersect Then, it exits from the first bottom surface A1 of the planar optical waveguide 100.
  • angle g 45 degrees
  • both the first part 1001 and the third part 1003 include two sides, the two sides of the first part 1001 and the two sides of the third part 1003 are both flat, and the sides of the first part 1001 , The side of the second part 1002 and the side of the third part 1003 smoothly transition. As shown in FIGS.
  • the first part 1001 includes two sides A31
  • the third part 1003 includes two sides A33
  • the two sides A31 and the two sides A33 are both flat
  • the two parts of the first part 1001 Side A31, two sides A32 of the second part 1002 and two sides A33 of the third part 1003 transition smoothly, two sides A31 of the first part 1001, two sides A32 of the second part 1002, and two sides of the third part 1003
  • the two side surfaces A33 constitute two side surfaces A3 of the planar optical waveguide 100.
  • both the first part 1001 and the third part 1003 include two sides with flat surfaces, it is not difficult to understand that the width and w1 at any position on the first part 1001 (the connection between the first part 1001 and the second part 1002 Width) is equal, the width at any position on the third part 1003 is equal to w2 (the width at the junction of the third part 1003 and the second part 1002), further, the width of the first end face A4 is equal to w1, the second end face A5 The width of is equal to w2.
  • FIGS. 4 and 8 are described by taking the extension shape of the first portion 1001 as a linear shape as an example.
  • the extension shape of the first portion 1001 may also be a curved shape.
  • FIG. 11 shows a schematic diagram of a front view structure of yet another planar optical waveguide 100 provided by an embodiment of the present application.
  • the planar optical waveguide 100 the extended shape of the first portion 1001 is curved, for example, It is "S" type or "S" type curve.
  • the planar optical waveguide can limit the light to be conducted in the planar optical waveguide.
  • the planar optical waveguide 100 shown in FIG. 11 can make the light in the planar optical waveguide Within 100 bending conduction.
  • FIG. 12 is a schematic diagram of an intersection line of a planar optical waveguide 100 and a cross section parallel to the first bottom surface A1 provided by an embodiment of the present application.
  • FIG. 12 may be the planar light shown in FIG. 4 or FIG. 8
  • the shape of the intersection of the planar optical waveguide 100 and the cross-section parallel to the first bottom surface A1 satisfies the functional formula:
  • w1 represents the width of the side (that is, the first end face A4) of the first portion 1001 and the second portion 1002 does not intersect
  • w2 represents the third portion 1003 and the first
  • the width of the side where the two parts 1002 do not intersect that is, the second end face A5
  • L1 represents the length of the first part 1001 (the length is the dimension in the first direction x)
  • L2 represents the length of the second part 1002
  • L3 represents The length of the third part 1003, a is a constant in [0.5, 1.5]
  • z represents the intersection of the side surface A3 of the planar optical waveguide 100 and the cross-section parallel to its first bottom surface A1, any point to the first part
  • the distance between the side where 1001 and the second part 1002 do not intersect that is, the first end surface A4)
  • w represents the width at any of the above positions
  • the value range of z is [0, L1+L2+L3]
  • w The range of values is [w1,
  • w1 represents the width of the connection between the first part 1001 and the second part 1002
  • w2 represents the width of the connection between the third part 1003 and the second part 1002
  • L represents the length of the second part 1002
  • z represents the second part 1002
  • the distance between the side surface A32 and the cross section parallel to the first bottom surface A1 of the planar optical waveguide 100 at any point from the contact surface of the first portion 1001 and the second portion 1002 of the planar optical waveguide 100, w represents the above
  • the value range of z is [0, L]
  • the value range of w is [w1, w2].
  • the planar optical waveguide may include a core layer and a cladding layer, and the cladding layer may include a lower cladding layer and an upper cladding layer.
  • the core layer is located between the lower cladding layer and the upper cladding layer.
  • the structure of the cladding layer The structure of the core layer may be the same or different.
  • the structure of the cladding layer is different from the structure of the core layer.
  • the cladding layer is usually in a sheet shape and the shape of the side of the cladding away from the core layer is generally rectangular.
  • the planar optical waveguide 100 described in the embodiments of the present application may be the core layer of an actual planar optical waveguide.
  • planar optical waveguide 100 when the structure of the cladding is the same as the structure of the core layer, the planar optical waveguide 100 described in the embodiments of the present application It may also be an overall structure of a planar optical waveguide including a cladding layer and a core layer, which is not limited in the embodiments of the present application.
  • the planar optical waveguide shown in FIG. 2 is a tapered waveguide.
  • the second part 1002 of the planar optical waveguide 100 provided in the embodiment of the present application can also be regarded as a tapered waveguide.
  • the phase uniformity of the light beam transmitted from the planar optical waveguide is usually It is also related to the length of the tapered waveguide. The effect of improving the phase uniformity of the planar optical waveguide 100 provided by the embodiment of the present application will be described below by using the planar optical waveguide shown in FIG. 2 and the second part 1002 provided by the embodiment of the present application as tapered waveguides.
  • FIG. 13 is a phase curve diagram corresponding to the planar optical waveguide shown in FIG. 2 (that is, a curve diagram of the phase of the light beam conducted from the planar optical waveguide shown in FIG. 2)
  • FIG. 14 is a plane provided by an embodiment of the present application.
  • a phase graph corresponding to the optical waveguide 100 that is, a graph of the phase of the light beam conducted from the planar optical waveguide 100).
  • curve 1, curve 2 and curve 3 all represent the refractive index difference (the difference between the refractive index of the core layer and the cladding layer) is 0.36% (percent), the width of the first end face is 7 microns, the The corresponding phase curve diagram of a planar optical waveguide with a width of 160 microns, and the lengths of the tapered waveguides indicated by curves 1, curve 2 and curve 3 are 20 mm, 25 mm and 30 mm respectively. Compare curves 1 to 3 No matter whether it is the planar optical waveguide shown in FIG.
  • the phase of the light beam transmitted from the planar optical waveguide under the condition that the refractive index difference and the width of the two end faces are fixed Uniformity is directly related to the length of the tapered waveguide.
  • curve 1 comparing the same curves of FIG. 13 and FIG. 14 (for example, curve 1), it can be seen that when the refractive index difference is the same, the width of the first end face is the same, the width of the second end face is the same, and the length of the tapered waveguide is the same,
  • the planar optical waveguide 100 provided by the embodiments of the present application can significantly improve the uniformity of the phase of the light beam.
  • the planar optical waveguide provided by the embodiments of the present application includes a first bottom surface and a second bottom surface parallel to the first direction, the first bottom surface and the second bottom surface are parallel to each other, and the first bottom surface and the second bottom surface are both flat ,
  • the planar optical waveguide includes a first portion, a second portion, and a third portion that extend in sequence and smoothly transition in the first direction, the width of the connection between the first portion and the second portion is smaller than the width of the connection between the second portion and the third portion
  • the second part includes two side surfaces, the side surface is a curved surface bulging outwards, and the inclination of the intersection of the side surface and the cross section parallel to the first bottom surface is from the contact with the first portion to the third portion
  • the position gradually decreases, so the inclination of the point close to the third part on the intersection line is relatively small, and the phase uniformity of the light beam transmitted from the planar optical waveguide is good, which helps to improve the PLC chip and the beam shaping structure
  • An embodiment of the present application further provides an optical waveguide array.
  • the optical waveguide array includes at least one planar optical waveguide, and each of the at least one planar optical waveguide may be the planar optical waveguide 100 shown in FIG. 4, FIG. 8, or FIG. 11.
  • FIG. 15 is a schematic diagram of a front view structure of an optical waveguide array 10 provided by an embodiment of the present application
  • FIG. 16 is a schematic diagram of a front view structure of another optical waveguide array 10 provided by an embodiment of the present application. See FIG. 15 and FIG. 16.
  • the optical waveguide array 10 includes at least one planar optical waveguide 100 (m is shown in the figure, m is an integer greater than 1).
  • at least one planar optical waveguide 100 may be the planar optical waveguide 100 shown in FIG.
  • planar optical waveguide 100 with the bottom surface A1 vertical
  • at least one planar optical waveguide 100 may be the planar optical waveguide 100 shown in FIG. 8 (that is, the side where the third portion 1003 and the second portion 1002 do not intersect with the first
  • the angle g between the bottom surfaces A1 is an acute angle planar optical waveguide 100); in the optical waveguide array 10 shown in FIG. 16, at least one planar optical waveguide 100 may be the planar optical waveguide 100 shown in FIG.
  • each The side where the third portion 1003 and the second portion 1002 of the planar optical waveguide 100 do not intersect is perpendicular to the first bottom surface A1, or the side where the third portion 1003 and the second portion 1002 of each planar optical waveguide 100 do not intersect with the first
  • the angle g between a bottom surface A1 is an acute angle.
  • the side where the third portion 1003 and the second portion 1002 do not intersect is the second end surface A5.
  • At least one planar optical waveguide 100 is arranged in a row in the same plane, and the column direction is the z direction in FIGS. 15 and 16, for example.
  • At least one end of the third portion 1003 of the planar optical waveguide 100 away from the second portion 1002 is located on the same side, and the first bottom surface A1 is located on the same side.
  • the side (ie, the second end surface A5) of the third portion 1003 and the second portion 1002 of the at least one planar optical waveguide 100 that are not intersected is coplanar, and the first bottom surface A1 is coplanar.
  • the optical waveguide array 10 includes at least three planar optical waveguides 100.
  • any adjacent two planar lights in the at least three planar optical waveguides 100 The pitch of the first portion 1001 of the waveguide 100 (eg, the pitch of the first end surface A4) is equal to the pitch of the third portion 1003 (eg, the pitch of the second end surface A5) of any two adjacent planar optical waveguides 100, at least three The pitch of the third portion 1003 of the planar optical waveguide 100 (for example, the pitch of the second end surface A5) is equal.
  • the pitch of the second end surface A5 is equal.
  • the distance between the second end surface A5 of the i-th planar optical waveguide 100 and the second end surface A5 of the i+1th planar optical waveguide 100 is Si
  • the second The distance between the end surface A5 and the second end surface A5 of the j+1th planar optical waveguide 100 is Sj
  • Si and Sj are equal
  • i and j are integers greater than or equal to 1 and less than m
  • i and j are not equal.
  • the optical waveguide array 10 includes at least three planar optical waveguides 100.
  • any adjacent two of the at least three planar optical waveguides 100 The spacing of the end of the first portion 1001 of the planar optical waveguide 100 away from the second portion 1002 is not equal to the spacing of the third portion 1003 of any two adjacent planar optical waveguides 100 (for example, the spacing of the second end surface A5), at least The pitches of the third portions 1003 of the three planar optical waveguides 100 (for example, the pitch of the second end face A5) are not all equal. For example, as shown in FIG.
  • the distance between the second end surface A5 of the i-th planar optical waveguide 100 and the second end surface A5 of the i+1th planar optical waveguide 100 is Si
  • the second The distance between the end surface A5 and the second end surface A5 of the j+1th planar optical waveguide 100 is Sj
  • the second end surface A5 of the kth planar optical waveguide 100 and the second end surface A5 of the k+1th planar optical waveguide 100 If the spacing is Sk (not shown in Fig.
  • Si, Sj and Sk are not all equal, that is, Si and Sj are equal, Si and Sk are not equal, or Si and Sk are equal, Si and Sj are not equal, Or, Sj and Sk are equal, Si and Sj are not equal, i, j, and k are all integers greater than or equal to 1 and less than m, and i, j, and k are not equal.
  • the optical waveguide array includes a planar optical waveguide.
  • the planar optical waveguide includes a first bottom surface and a second bottom surface parallel to the first direction. The first bottom surface and the second bottom surface are mutually connected. Parallel, the first bottom surface and the second bottom surface are both flat, and the planar optical waveguide includes a first portion, a second portion, and a third portion that sequentially extend and smoothly transition in the first direction, and the width of the connection between the first portion and the second portion is less than The width of the connection between the second part and the third part.
  • the second part includes two side surfaces.
  • the side surface is an outwardly convex arc surface, and the inclination of the intersection of the side surface and the cross section parallel to the first bottom surface is from The junction of the first part gradually decreases toward the junction of the third part, so the inclination of the point close to the third part on this intersection line is relatively small, and the phase uniformity of the light beam transmitted from the planar optical waveguide is relatively uniform Good, so that the phase uniformity of the light beam emitted from the optical waveguide array is good, which helps to improve the beam shaping effect of the PLC chip and the beam shaping structure, thereby improving the performance of the WSS.
  • An embodiment of the present application further provides a PLC chip, which includes the optical waveguide array 10 shown in FIG. 15 or FIG. 16.
  • FIG. 17 is a schematic front view structure diagram of a PLC chip 0 provided by an embodiment of the present application
  • FIG. 18 is a schematic front view structure diagram of another PLC chip 0 provided by an embodiment of the present application
  • FIG. 19 is an embodiment of the present application
  • Provided is a schematic structural plan view of a PLC chip 0, wherein the PLC chip 0 shown in FIG. 17 includes the optical waveguide array 10 shown in FIG. 15 and the PLC chip 0 shown in FIG. 18 includes the optical waveguide array shown in FIG. 16 10.
  • the side where the third portion 1003 and the second portion 1002 of each planar optical waveguide 100 do not intersect (that is, the second end surface A5 ) Is perpendicular to the first bottom surface A1, or the angle g between the surface of the third portion 1003 and the second portion 1002 of each planar optical waveguide 100 (that is, the second end surface A5) and the first bottom surface A1 Is an acute angle.
  • the PLC chip 0 may include the optical waveguide array 10, if in the optical waveguide array 10, the side of the third portion 1003 and the second portion 1002 of each planar optical waveguide 100 (that is, the second end surface A5) and The angle g between the first bottom surface A1 is an acute angle, and the PLC chip 0 may include an optical waveguide array 10 and a collimator lens (CLens).
  • CLens collimator lens
  • the PLC chip 0 further includes a collimating lens 20.
  • the collimating lens 20 is disposed on the first bottom surface of the optical waveguide array 10 (FIGS. 17 to 19).
  • the first bottom surface of the optical waveguide array 10 is composed of the first bottom surface A1 of at least one planar optical waveguide 100, and the third portion 1003 and the second portion 1002 of each planar optical waveguide 100 do not intersect (That is, the second end surface A5)
  • the orthographic projection area on the first bottom surface of the optical waveguide array 10 overlaps with the area where the collimator lens 20 is located, so that light can enter the collimator lens 20 easily.
  • the collimating lens 20 is mounted on the first bottom surface of the optical waveguide array 10.
  • the PLC chip since the PLC chip includes an optical waveguide array, the optical waveguide array includes a planar optical waveguide, and the planar optical waveguide includes a first bottom surface and a second bottom surface parallel to the first direction. The bottom surface and the second bottom surface are parallel to each other. The first bottom surface and the second bottom surface are both flat.
  • the planar optical waveguide includes a first portion, a second portion, and a third portion that extend and smoothly transition in sequence in the first direction. The width of the part connection is smaller than the width of the connection between the second part and the third part.
  • the second part includes two side surfaces, the side surface is an arc surface bulging outward, and the side surface intersects the cross section parallel to the first bottom surface
  • the inclination of the line gradually decreases from the junction with the first part to the junction with the third part, so the inclination of the point close to the third part on the intersection line is relatively small, and the light beam conducted from the planar optical waveguide
  • the uniformity of the phase is better, so the uniformity of the phase of the light beam emitted from the optical waveguide array is better, which helps to improve the beam shaping effect of the PLC chip and the beam shaping structure, thereby improving the performance of the WSS.
  • the collimating lens is provided on the optical waveguide array, so the problem of large size of the PLC chip caused by the separate deployment of the optical waveguide array and the collimating lens can be avoided, and the size of the PLC chip can be reduced , And then reduce the size of the beam shaping structure and WSS.
  • An embodiment of the present application further provides a beam shaping structure, and the beam shaping structure includes the PLC chip provided in the foregoing embodiment, for example, includes the PLC chip 0 shown in FIG. 17 or FIG. 18.
  • FIG. 20 is a schematic diagram of a front view structure of a beam shaping structure provided by an embodiment of the present application.
  • FIG. 21 is a schematic diagram of a front view structure of another beam shaping structure provided by an embodiment of the present application.
  • FIG. 20 includes the beam shaping structure shown in FIG. 17
  • the PLC chip 0 is used as an example for illustration.
  • FIG. 21 takes the beam shaping structure including the PLC chip 0 shown in FIG. 18 as an example.
  • the beam shaping structure includes the PLC chip 0 and the optical fiber interface array 1.
  • the optical fiber interface array 1 includes at least one (not shown in FIG. 20 and FIG. 21) optical fiber interfaces 11, and the number of at least one optical fiber interface 11 is equal to the number of at least one planar optical waveguide 100 in the PLC chip 0.
  • an end of the first portion 1001 of a planar optical waveguide 100 away from the second portion 1002 is coupled to an optical fiber interface 11, and at least one planar optical waveguide 100 is coupled to at least one optical fiber interface 11 in a one-to-one correspondence.
  • the beam shaping structure further includes a base 2, and the PLC chip 0 and the optical fiber interface array 1 are respectively disposed on the base 2.
  • the PLC chip 0 and the optical fiber interface array 1 can be mounted on the base 2.
  • the angle g between A1 is an acute angle.
  • the beam shaping structure may further include a collimating lens.
  • FIG. 22 is a schematic diagram of a front view structure of yet another beam shaping structure provided by an embodiment of the present application.
  • FIG. 23 is a schematic diagram of a front view structure of yet another beam shaping structure provided by an embodiment of the present application.
  • the beam shaping The structure includes a PLC chip 0 and an optical fiber interface array 1.
  • the optical fiber interface array 1 includes at least one (not shown in FIG. 22 and FIG. 23) optical fiber interface 11.
  • the number of at least one optical fiber interface 11 is at least one planar light in the PLC chip 0.
  • the number of waveguides 100 is equal.
  • the beam shaping structure further includes a collimating lens 2 and a base 3, and the PLC chip 0, the fiber interface array 1 and the collimating lens 2 are respectively disposed on the base 3, see FIG. 15, FIG. 16, FIG. 22 and FIG. 23.
  • the collimating lens 2 is located on the side of the third portion 1003 of the at least one planar optical waveguide 100 of the PLC chip 0 away from the second portion 1002.
  • the PLC chip 0, the optical fiber interface array 1 and the collimating lens 2 may be mounted on the base 3.
  • the planar optical waveguide and the collimating lens are used to perform beam shaping in two different directions, and the two different directions are generally vertical two directions. .
  • the pitch of the at least three optical fiber interfaces 11 is generally fixed.
  • the planar optical waveguide 100 The distance of the end of the first part 1001 away from the second part 1002 can match the pitch of the optical fiber interface 11, the pitch of the third part 1003 can be unequal to the pitch of the optical fiber interface 11, and the third part of the at least three planar optical waveguides 100 The spacing of 1003 may not be equal.
  • the beam shaping structure shown in FIGS. 21 and 23 the planar optical waveguide 100 The distance of the end of the first part 1001 away from the second part 1002 can match the pitch of the optical fiber interface 11, the pitch of the third part 1003 can be unequal to the pitch of the optical fiber interface 11, and the third part of the at least three planar optical waveguides 100 The spacing of 1003 may not be equal.
  • a beam shaping structure can avoid a pitch conversion device (that is, a device for converting the output beam pitch ), thereby reducing the cost of WSS.
  • a separate lens group and a mirror group can generally be used to form a beam shaping structure, but the separate lens group and the mirror group need to be coupled, and the size of the beam shaping structure will be larger.
  • the beam shaping structure provided by the embodiments of the present application includes a PLC chip, and the PLC chip includes an optical waveguide array.
  • the optical waveguide array includes a planar optical waveguide, and the planar optical waveguide includes a first parallel to the first direction.
  • the bottom surface and the second bottom surface The first bottom surface and the second bottom surface are parallel to each other.
  • the first bottom surface and the second bottom surface are both flat.
  • the planar optical waveguide includes a first portion, a second portion, and a Three parts, the width of the connection between the first part and the second part is smaller than the width of the connection between the second part and the third part, the second part includes two sides, the side is a curved surface bulging outward, and the side is parallel to the
  • the inclination of the intersection line of the cross section of the first bottom surface gradually decreases from the junction with the first part to the junction with the third part, so the inclination of the point close to the third part on the intersection line is relatively small,
  • the phase uniformity of the light beam transmitted from the planar optical waveguide is good, so the phase uniformity of the light beam emitted from the optical waveguide array is good, which helps to improve the beam shaping effect of the PLC chip and the beam shaping structure, thereby improving WSS Performance.
  • An embodiment of the present application further provides a WSS.
  • the WSS includes an optical dispersion structure, an optical switch structure, and a beam shaping structure provided by the foregoing embodiment.
  • the light dispersion structure in the WSS may be the light dispersion structure 003 in FIG. 1
  • the optical switch structure may be the light dispersion structure 004 in FIG. 1
  • the beam shaping structure may be the fiber interface array 001 and beam shaping in FIG. Structure 002 constitutes the overall structure.
  • the light dispersion structure is located between the beam shaping structure and the optical switch structure, and the light dispersion structure is located on the side of the end of the third portion of the planar optical waveguide of the beam shaping structure away from the second portion; beam shaping The structure is used for beam shaping of the received light; the light dispersing structure is used to disperse the light transmitted through the beam shaping structure to the light dispersing structure, so that the light transmitted through the beam shaping structure to the light dispersing structure is scattered in the first plane On; the optical switch structure is used to select the light beam transmitted through the optical dispersion structure to the optical switch structure, so that the light of different wavelengths in the light beam transmitted through the optical dispersion structure to the optical switch structure can be transmitted through different optical fiber interfaces for wavelength selection switch.
  • FIG. 24 is a schematic diagram of a front view structure of a planar optical waveguide 200 provided by an embodiment of the present application.
  • the structure of the planar optical waveguide 200 is a pseudo-cylinder, and the planar optical waveguide 200 includes a first parallel to the first direction x A bottom surface B1 and a second bottom surface (not shown in the figure), the first bottom surface B1 is parallel to the second bottom surface, the first bottom surface B1 and the second bottom surface are both flat, and the thickness of the planar optical waveguide 200 is less than or equal to 10 microns, the The thickness is the dimension of the planar optical waveguide 200 in the second direction (not marked in FIG. 24), which is perpendicular to the first bottom surface B1.
  • the planar optical waveguide 200 includes a first end surface B2 and a second end surface B3.
  • the width c1 of the first end surface B2 is smaller than the width c2 of the second end surface B3.
  • the width is the size of the planar optical waveguide 200 in the third direction z.
  • the direction z is perpendicular to the first direction x and the second direction at the same time.
  • the planar optical waveguide 200 includes two side surfaces B4, and both side surfaces B4 are outwardly convex curved surfaces, and the side surface of the planar optical waveguide 200 is parallel to its The inclination of the intersection of the cross section of a bottom surface B1 gradually decreases from the first end surface B2 to the second end surface B3, and the inclination is between the tangent of the intersection line on the cross section and the first direction x Angle.
  • the first end surface B2 is opposite to the second end surface B3, the intersection of the first end surface B2 and the cross section parallel to the first bottom surface B1 and the intersection of the second end surface B3 and the cross section parallel to the first bottom surface B1,
  • the two side surfaces B4 are opposed to each other.
  • the first end surface B2 intersects the first bottom surface B1, the second bottom surface and the two side surfaces B4, respectively, and the second end surface B3 intersects the first bottom surface B1, the second bottom surface and the two side surfaces B4, respectively.
  • intersection of the side surface B4 of the planar optical waveguide 200 and the cross section parallel to its first bottom surface B1 includes a sine curve or a cosine curve.
  • the angle between the second end surface B3 of the planar optical waveguide 200 and the first bottom surface B1 is an acute angle, and the size of the included angle may be 41-50 degrees.
  • planar optical waveguide 200 is the same as the structure of the second part 1002 of the planar optical waveguide 100 provided in the foregoing embodiment, and the embodiments of the present application will not repeat them here.
  • An embodiment of the present application further provides an optical waveguide array.
  • the optical waveguide array includes at least one planar optical waveguide, and at least one planar optical waveguide may be the planar optical waveguide 200 shown in FIG. 24.
  • At least one planar optical waveguide 200 in the optical waveguide array is arranged in a row in the same plane, and the second of the at least one planar optical waveguide 200 The end faces are on the same side, and the first bottom face is on the same side.
  • the second end surface B3 of the at least one planar optical waveguide 200 is coplanar, and the first bottom surface B1 is coplanar.
  • the embodiment of the present application also provides a PLC chip, a beam shaping structure and a WSS.
  • the structure of the PLC chip can refer to the structure of the PLC chip 0 provided in the above embodiment, and the structure of the beam shaping structure can refer to FIG. 20
  • the beam shaping structure shown in FIG. 23 is different from the above embodiment.
  • the planar optical waveguide in the PLC chip 0 and the beam shaping structure is the planar optical waveguide 200 shown in FIG. 24. Examples are not repeated here.
  • the size may also have errors.
  • the parallel, vertical, size, etc. described in the embodiments of the present application It is approximately vertical, parallel, and approximate dimensions.
  • the vertical in the embodiments of the present application may include angles of 87 degrees, 88 degrees, 91 degrees, 93 degrees, etc.
  • parallel may include angles of 2 degrees and 3 degrees.
  • the thickness less than or equal to 10 microns may be less than or equal to 10.2 microns, 10.5 microns, 9.8 microns, etc.

Abstract

平面光波导(100)、PLC芯片(0)、光束整形结构及WSS,平面光波导(100)为拟柱体,形状呈片状,包括第一底面(A1)和第二底面(A2),第一底面(A1)和第二底面(A2)均为平面且相互平行,平面光波导(100)的厚度(h)小于或等于10微米;平面光波导(100)包括依次延伸并平滑过渡的第一部分(1001)、第二部分(1002)和第三部分(1003),第一部分(1001)与第二部分(1002)连接处的宽度(w1)小于第二部分(1002)与第三部分(1003)连接处的宽度(w2);第二部分(1002)包括两个侧面(A32),侧面(A32)为向外隆起的弧面,且侧面(A32)与平行于第一底面(A1)的横截面的交线的倾斜度从与第一部分(1001)相接处向与第三部分(1003)相接处逐渐减小。这样的结构有助于提高从平面光波导(100)传导出的光束的相位的均匀性,改善PLC芯片(0)的光束整形效果,进而改善光束整形结构的光束整形效果,提高WSS的性能。

Description

平面光波导、PLC芯片、光束整形结构及WSS
本申请要求于2018年12月27日提交的申请号为201811614929.8、发明名称为“平面光波导、PLC芯片、光束整形结构及WSS”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及光通信技术领域,特别涉及一种平面光波导、PLC芯片、光束整形结构及WSS。
背景技术
波长选择开关(Wavelength selective switch,WSS)是一种能够实现任意波长的光信号到任意光通道的切换的光开关,是光网络中光交叉技术的核心器件。WSS包括依次设置的光纤接口阵列、光束整形结构、光色散结构和光开关结构,光纤接口阵列包括至少一个输入光纤接口和多个输出光纤接口,每个光纤接口与光束整形结构耦合。
WSS在使用时,包括不同波长的光信号的光束通过输入光纤接口输入WSS,并依次经过光束整形结构和光色散结构射入光开关结构,光开关结构对光束中不同波长的光信号进行切换得到多个光束,每个光束依次经过光色散结构和光束整形结构,通过输出光纤接口从WSS输出。其中,光束整形结构用于对光束进行整形,使在WSS内传输的光束的光斑与在WSS外传输的光束的光斑不同,在WSS外传输的光束的光斑可以为圆形高斯光斑,在WSS内传输的光束的光斑可以为对该圆形高斯光斑放大后的椭圆形高斯光斑。
目前,光束整形结构包括锥形平面光波导,该锥形平面光波导为拟柱体,包括相互平行的两个底面,与两个底面都相交的两个端面,以及与两个底面和两个端面都相交的两个侧面,两个底面、两个端面和两个侧面均为平面,两个端面包括第一端面和第二端面,第二端面的宽度大于第一端面的宽度,每个侧面与平行于任一底面的横截面的交线上的所有位置点的倾斜度相等。其中,从平面光波导传导出的光束的相位的均匀性与所述交线上靠近第二端面的位置点的倾斜度负相关,也即是,所述交线上靠近第二端面的位置点的倾斜度越大,从平面光波导传导出的光束的相位的均匀性越差,靠近第二端面的位置点的倾斜度越小,从平面光波导传导出的光束的相位的均匀性越好。
但是,上述平面光波导的侧面与平行于其任一底面的横截面的交线上的所有位置点的倾斜度相等,使得所述交线上靠近第二端面的位置点的倾斜度相对较大,因此从平面光波导传导出的光束的相位的均匀性较差,导致光束整形结构的光束整形效果较差,影响WSS的性能。
发明内容
本申请实施例提供一种平面光波导、光波导阵列、平面光波回路(planar lightwave circuits,PLC)芯片、光束整形结构及WSS,有助于提高从平面光波导传导出的光束的相位的均匀性,改善PLC芯片以及改善光束整形结构的光束整形效果,从而改善WSS的性能。本申请实施 例的技术方案如下:
第一方面,提供了一种平面光波导,该平面光波导为拟柱体,形状呈片状,包括与第一方向平行的第一底面和第二底面,该第一底面与该第二底面相互平行,该第一底面和该第二底面均为平面,该平面光波导的厚度小于或等于10微米,该厚度为该平面光波导在第二方向上的尺寸,该第二方向垂直于该平面光波导的第一底面;
该平面光波导在上述第一方向上包括依次延伸并平滑过渡的第一部分、第二部分和第三部分,该第一部分与该第二部分连接处的宽度小于该第二部分与该第三部分连接处的宽度,该宽度为该平面光波导在第三方向上的尺寸,该第三方向同时垂直于上述第一方向和第二方向;
该第一部分用于将从远离该第二部分的一端接收到的光线传导至该第二部分,或者,将从该第二部分接收到的光线通过远离该第二部分的一端传导出该平面光波导;
该第二部分包括两个侧面,该侧面为向外隆起的弧面,且该侧面与平行于该平面光波导的第一底面的横截面的交线的倾斜度从与该第一部分相接处向与该第三部分相接处逐渐减小,该倾斜度为所述交线在所述横截面上的切线与上述第一方向之间的夹角;
该第三部分用于将从该第二部分接收到的光线通过远离该第二部分的一端传导出该平面光波导,或者,将从远离该第二部分的一端接收到的光线传导至该第二部分。
由于平面光波导包括依次延伸并平滑过渡的第一部分、第二部分和第三部分,第二部分包括两个侧面,该侧面为向外隆起的弧面,该侧面与平行于平面光波导的第一底面的横截面的交线的倾斜度从与第一部分相接处向与第三部分相接处逐渐减小,因此该交线上靠近第三部分的位置点的倾斜度相对较小,从平面光波导传导出的光束的相位的均匀性较好。
在第一方面的第一种可选实现方式中,上述第二部分的侧面与平行于该平面光波导的第一底面的横截面的交线包括正弦曲线或余弦曲线。其中,该交线包括正弦曲线或余弦曲线,可以提升平面光波导传导出的光束的相位的均匀性。
在第一方面的第二种可选实现方式中,该平面光波导的第一部分的延伸形状为曲线状。由于该第一部分的延伸形状为曲线状,这样一来,在由该平面光波导构成的光波导阵列中,至少三个该平面光波导的第三部分的间距可以不都相等,便于实现至少三个该平面光波导的第三部分的间距的调整。
在第一方面的第三种可选实现方式中,在该平面光波导的中,第三部分与第二部分不相交的一面与上述第一底面之间的夹角为锐角。其中,该第三部分与该第二部分不相交的一面与该第一底面之间的夹角为锐角,这样一来,可以使射入该平面光波导的光线与射出该平面光波导的光线之间存在夹角,该平面光波导可以对光线传导,且可以使光线偏转。
在第一方面的第四种可选实现方式中,在该平面光波导的中,第三部分与第二部分不相交的一面与上述第一底面之间的夹角的大小取值范围为41~50度。
第二方面,提供了一种光波导阵列,该光波导阵列包括至少一个平面光波导,该至少一个平面光波导均为上述第一方面或第一方面的第一种或第二种可选实现方式所提供的平面光波导。
由于光波导阵列包括至少一个平面光波导,平面光波导包括依次延伸并平滑过渡的第一部分、第二部分和第三部分,第二部分包括两个侧面,该侧面为向外隆起的弧面,该侧面与平行于平面光波导的第一底面的横截面的交线的倾斜度从与第一部分相接处向与第三部分相 接处逐渐减小,因此该交线上靠近第三部分的位置点的倾斜度相对较小,从平面光波导传导出的光束的相位的均匀性较好,使得从光波导阵列传导出的光束的相位的均匀性较好。
在第二方面的可选实现方式中,该光波导阵列包括至少三个平面光波导,该至少三个平面光波导的第三部分的间距不都相等。
第三方面,提供了一种PLC芯片,该PLC芯片包括上述第二方面或第二方面的可选实现方式所提供的光波导阵列。
由于PLC芯片包括光波导阵列,光波导阵列包括至少一个平面光波导,平面光波导包括依次延伸并平滑过渡的第一部分、第二部分和第三部分,第二部分包括两个侧面,该侧面为向外隆起的弧面,该侧面与平行于平面光波导的第一底面的横截面的交线的倾斜度从与第一部分相接处向与第三部分相接处逐渐减小,因此该交线上靠近第三部分的位置点的倾斜度相对较小,从平面光波导传导出的光束的相位的均匀性较好,使得从光波导阵列传导出的光束的相位的均匀性较好,PLC芯片的光束整形效果较好。
第四方面,提供了一种光束整形结构,该光束整形结构包括光纤接口阵列和上述第三方面所提供的PLC芯片,该光纤接口阵列包括至少一个光纤接口,该至少一个光纤接口与该PLC芯片中的至少一个平面光波导一一对应,该平面光波导的第一部分远离第二部分的一端与对应的光纤接口耦合。
由于光束整形结构包括PLC芯片,PLC芯片包括光波导阵列,而光波导阵列包括至少一个平面光波导,平面光波导包括依次延伸并平滑过渡的第一部分、第二部分和第三部分,第二部分包括两个侧面,该侧面为向外隆起的弧面,该侧面与平行于平面光波导的第一底面的横截面的交线的倾斜度从与第一部分相接处向与第三部分相接处逐渐减小,因此该交线上靠近第三部分的位置点的倾斜度相对较小,从平面光波导传导出的光束的相位的均匀性较好,使得从光波导阵列传导出的光束的相位的均匀性较好,PLC芯片的光束整形效果较好,光束整形结构的光束整形效果较好。
在第四方面的可选实现方式中,该光束整形结构还包括准直透镜和底座,该平面光波回路芯片、该光纤接口阵列和该准直透镜分别设置在该底座上,该准直透镜位于平面光波回路芯片中的平面光波导的第三部分远离第二部分的一端所在侧。其中,光波导阵列和准直透镜用于在两个不同的方向上进行光束整形,将PLC芯片、光纤接口阵列和准直透镜设置在底座,可以便于光束整形结构形成为整体结构。
第五方面,提供了一种光波导阵列,该光波导阵列包括至少一个平面光波导,该至少一个平面光波导均为上述第一方面的第三种或第四种可选实现方式所提供的平面光波导。
由于光波导阵列包括至少一个平面光波导,平面光波导包括依次延伸并平滑过渡的第一部分、第二部分和第三部分,第二部分包括两个侧面,该侧面为向外隆起的弧面,该侧面与平行于平面光波导的第一底面的横截面的交线的倾斜度从与第一部分相接处向与第三部分相接处逐渐减小,因此该交线上靠近第三部分的位置点的倾斜度相对较小,从平面光波导传导出的光束的相位的均匀性较好,使得从光波导阵列传导出的光束的相位的均匀性较好。
在第五方面的可选实现方式中,该光波导阵列包括至少三个平面光波导,该至少三个平面光波导的第三部分的间距不都相等。
第六方面,提供了一种PLC芯片,该PLC芯片包括上述第五方面或第五方面的可选实现方式所提供的光波导阵列。
由于PLC芯片包括光波导阵列,光波导阵列包括至少一个平面光波导,平面光波导包括依次延伸并平滑过渡的第一部分、第二部分和第三部分,第二部分包括两个侧面,该侧面为向外隆起的弧面,该侧面与平行于平面光波导的第一底面的横截面的交线的倾斜度从与第一部分相接处向与第三部分相接处逐渐减小,因此该交线上靠近第三部分的位置点的倾斜度相对较小,从平面光波导传导出的光束的相位的均匀性较好,使得从光波导阵列传导出的光束的相位的均匀性较好,PLC芯片的光束整形效果较好。
在第六方面的可选实现方式中,该PLC芯片还包括准直透镜,该准直透镜设置在光波导阵列的第一底面上,光波导阵列的第一底面由上述至少一个平面光波导的第一底面构成,平面光波导的第三部分与第二部分不相交的一面在该光波导阵列的第一底面上的正投影区域与该准直透镜所在区域存在重叠。其中,光波导阵列和准直透镜用于在两个不同的方向上进行光束整形,将准直透镜设置在光波导阵列的第一底面上,可以减小包括该PLC芯片的光束整形结构的体积。
第七方面,提供了一种光束整形结构,该光束整形结构包括光纤接口阵列和上述第六方面或第六方面的可选实现方式所提供的PLC芯片,该光纤接口阵列包括至少一个光纤接口,该至少一个光纤接口与该PLC芯片中的至少一个平面光波导一一对应,该平面光波导的第一部分远离第二部分的一端与对应的光纤接口耦合。
由于光束整形结构包括PLC芯片,PLC芯片包括光波导阵列,而光波导阵列包括至少一个平面光波导,平面光波导包括依次延伸并平滑过渡的第一部分、第二部分和第三部分,第二部分包括两个侧面,该侧面为向外隆起的弧面,该侧面与平行于平面光波导的第一底面的横截面的交线的倾斜度从与第一部分相接处向与第三部分相接处逐渐减小,因此该交线上靠近第三部分的位置点的倾斜度相对较小,从平面光波导传导出的光束的相位的均匀性较好,使得从光波导阵列传导出的光束的相位的均匀性较好,PLC芯片的光束整形效果较好,光束整形结构的光束整形效果较好。
在第七方面的可选实现方式中,该光束整形结构还包括底座,上述平面光波回路芯片和光纤接口阵列分别设置在该底座上。其中,将PLC芯片和光纤接口阵列设置在底座上,可以便于光束整形结构形成为整体结构。
第八方面,提供了一种WSS,该WSS包括光色散结构、光开关结构和上述第四方面或第四方面的可选实现方式所提供的光束整形结构,或,该WSS包括光色散结构、光开关结构和上述第七方面或第七方面的可选实现方式所提供的光束整形结构,该光色散结构位于该光束整形结构与该光开关结构之间,该光色散结构位于该光束整形结构的平面光波导的第三部分远离第二部分的一端所在侧;
该光束整形结构用于对接收到的光线进行光束整形;
该光色散结构用于对通过该光束整形结构传输至该光色散结构的光线进行色散,使通过该光束整形结构传输至该光色散结构的光线在第一平面内散开;
该光开关结构用于对通过该光色散结构传输至该光开关结构的光束进行选择,使通过该光色散结构传输至该光开关结构的光束中的不同波长的光线能够通过不同的光纤接口传输出该波长选择开关。
由于WSS包括光束整形结构,光束整形结构包括PLC芯片,PLC芯片包括光波导阵列,而光波导阵列包括至少一个平面光波导,平面光波导包括依次延伸并平滑过渡的第一部分、 第二部分和第三部分,第二部分包括两个侧面,该侧面为向外隆起的弧面,该侧面与平行于平面光波导的第一底面的横截面的交线的倾斜度从与第一部分相接处向与第三部分相接处逐渐减小,因此该交线上靠近第三部分的位置点的倾斜度相对较小,从平面光波导传导出的光束的相位的均匀性较好,使得从光波导阵列传导出的光束的相位的均匀性较好,PLC芯片的光束整形效果较好,光束整形结构的光束整形效果较好,WSS的光束整形性能较好。
第九方面,提供了一种平面光波导,该平面光波导为拟柱体,形状呈片状,包括与第一方向平行的第一底面和第二底面,该第一底面与该第二底面平行,该第一底面和该第二底面均为平面,该平面光波导的厚度小于或等于10微米,该厚度为该平面光波导在第二方向上的尺寸,该第二方向垂直于该平面光波导的第一底面;
该平面光波导包括第一端面和第二端面,该第一端面的宽度小于该第二端面的宽度,该宽度为该平面光波导在第三方向上的尺寸,该第三方向同时垂直于上述第一方向和第二方向;
该平面光波导包括两个侧面,该侧面为向外隆起的弧面,且该侧面与平行于该平面光波导的第一底面的横截面的交线的倾斜度从该第一端面向该第二端面逐渐减小,该倾斜度为所述交线在所述横截面上的切线与上述第一方向之间的夹角;
其中,该第一端面与该第二端面相对,该第一端面与平行于该平面光波导的横截面的交线和该第二端面与平行于该平面光波导的第一底面的横截面的交线平行,该平面光波导的两个侧面相对,在该平面光波导中,第一端面分别与第一底面、第二底面和两个侧面相交,第二端面分别与第一底面、第二底面和两个侧面相交。
在第九方面的第一种可选实现方式中,该平面光波导的侧面与平行于该平面光波导的第一底面的横截面的交线包括正弦曲线或余弦曲线。
在第九方面的第二种可选实现方式中,在该平面光波导的中,第二端面与第一底面之间的夹角为锐角。
在第九方面的第三种可选实现方式中,在该平面光波导的中,第二端面与第一底面之间的夹角的大小取值范围为41~50度。
第十方面,提供了一种光波导阵列,该光波导阵列包括至少一个平面光波导,该至少一个平面光波导均为上述第九方面或第九方面的第一种可选实现方式所提供的平面光波导。
第十一方面,提供了一种PLC芯片,该PLC芯片包括上述第十方面所提供的光波导阵列。
第十二方面,提供了一种光束整形结构,该光束整形结构包括光纤接口阵列和上述第十一方面所提供的PLC芯片,该光纤接口阵列包括至少一个光纤接口,该至少一个光纤接口与该PLC芯片中的至少一个平面光波导一一对应,该平面光波导的第一端面与对应的光纤接口耦合。
在第十二方面的可选实现方式中,该光束整形结构还包括准直透镜和底座,该PLC芯片、该光纤接口阵列和该准直透镜分别设置在该底座上,该准直透镜位于该PLC芯片中的平面光波导的第二端面所在侧。
第十三方面,提供了一种光波导阵列,该光波导阵列包括至少一个平面光波导,该至少一个平面光波导均为上述第九方面的第二种或第三种可选实现方式所提供的平面光波导。
第十四方面,提供了一种PLC芯片,该PLC芯片包括上述第十三方面所提供的光波导阵列。
在第十四方面的可选实现方式中,该PLC芯片还包括准直透镜,该准直透镜设置在光波导阵列的第一底面上,光波导阵列的第一底面由上述至少一个平面光波导的第一底面构成,平面光波导的第二端面在光波导阵列的第一底面上的正投影区域与准直透镜所在区域存在重叠。
第十五方面,提供了一种光束整形结构,该光束整形结构包括光纤接口阵列和上述第十四方面所提供的PLC芯片,该光纤接口阵列包括至少一个光纤接口,该至少一个光纤接口与该PLC芯片中的至少一个平面光波导一一对应,该平面光波导的第一端面与对应的光纤接口耦合。
在第十五方面的可选实现方式中,该光束整形结构还包括底座,上述PLC芯片和光纤接口阵列分别设置在该底座上。
第十六方面,提供了一种WSS,该WSS包括光色散结构、光开关结构和上述第十二方面或第十二方面的可选实现方式所提供的光束整形结构,或,该WSS包括光色散结构、光开关结构和上述第十五方面或第十五方面的可选实现方式所提供的光束整形结构,该光色散结构位于该光束整形结构与该光开关结构之间,该光色散结构位于该光束整形结构的平面光波导的第二端面所在侧;
该光束整形结构用于对接收到的光线进行光束整形;
该光色散结构用于对通过该光束整形结构传输至该光色散结构的光线进行色散,使通过该光束整形结构传输至该光色散结构的光线在第一平面内散开;
该光开关结构用于对通过该光色散结构传输至该光开关结构的光束进行选择,使通过该光色散结构传输至该光开关结构的光束中的不同波长的光线能够通过不同的该光纤接口传输出该波长选择开关。
第九方面至第十六方面的有益效果可以参考上述第一方面至第八方面,在此不再赘述。
本申请实施例提供的技术方案带来的有益效果是:
本申请实施例提供的平面光波导、光波导阵列、PLC芯片、光束整形结构及WSS,平面光波导包括与第一方向平行的第一底面和第二底面,第一底面与第二底面相互平行,第一底面和第二底面均为平面,平面光波导在第一方向上包括依次延伸并平滑过渡的第一部分、第二部分和第三部分,第一部分与第二部分连接处的宽度小于第二部分与第三部分连接处的宽度,第二部分包括两个侧面,该侧面为向外隆起的弧面,且该侧面与平行于第一底面的横截面的交线的倾斜度从与第一部分相接处向与第三部分相接处逐渐减小,因此该交线上靠近第三部分的位置点的倾斜度相对较小,从平面光波导传导出的光束的相位的均匀性较好,有助于改善解决PLC芯片的光束整形效果,从而改善光束整形结构的光束整形效果,改善WSS的性能。
附图说明
图1是本申请实施例所涉及的一种WSS的功能示意图;
图2是本申请实施例所涉及的一种平面光波导的立体结构示意图;
图3是本申请实施例所涉及的另一种平面光波导的立体结构示意图;
图4是本申请实施例提供的一种平面光波导的立体结构示意图;
图5是图4所示的平面光波导的正视结构示意图;
图6是图4所示的平面光波导的俯视结构示意图;
图7是图4所示的平面光波导的第二部分的侧面与平行于其第一底面的横截面的交线的示意图;
图8是本申请实施例提供的另一种平面光波导的立体结构示意图;
图9是图8所示的平面光波导的俯视结构示意图;
图10是光束在图8所示的平面光波导中传导的示意图;
图11本申请实施例提供的再一种平面光波导的正视结构示意图;
图12是本申请实施例提供的一种平面光波导与平行于其第一底面的横截面的交线的示意图;
图13是图2所示的平面光波导对应的相位曲线图;
图14是本申请实施例提供的平面光波导对应的相位曲线图;
图15是本申请实施例提供的一种光波导阵列的正视结构示意图;
图16是本申请实施例提供的另一种光波导阵列的正视结构示意图;
图17是本申请实施例提供的一种PLC芯片的正视结构示意图;
图18是本申请实施例提供的另一种PLC芯片的正视结构示意图;
图19是本申请实施例提供的一种PLC芯片的俯视结构示意图;
图20是本申请实施例提供的一种光束整形结构的正视结构示意图;
图21是本申请实施例提供的另一种光束整形结构的正视结构示意图;
图22是本申请实施例提供的再一种光束整形结构的正视结构示意图;
图23是本申请实施例提供的又一种光束整形结构的正视结构示意图;
图24是本申请实施例提供的一种平面光波导的正视结构示意图。
具体实施方式
WSS能够实现任意波长的光信号到任意光通道的切换。例如,1×N的WSS(也即是1个输入通道,N个输出通道)可以实现任意波长的光信号从1个输入通道到N个输出通道中的任一输出通道的切换。图1是本申请实施例所涉及的一种1×N的WSS的功能示意图,参见图1,该WSS包括光纤接口阵列001、光束整形结构002、光色散结构003和光开关结构004,光纤接口阵列001包括一个输入光纤接口(图1中未标出)和N个(图1中示出了3个)输出光纤接口(图1中未标出),每个光纤接口与光束整形结构002连接。光色散结构003可以为光栅(grating),例如其可以是基于密集型光波复用(dense wavelength division muLtiplexing,DWDM)的光栅,光开关结构004可以为硅基上液晶(liquid crystal on silicon,LCOS)光开关或者微机电系统(microelectromechanical systems)光开关,例如,光开关结构004可以为光束偏转器(beam deflector)。在一些实施场景中,光纤接口阵列001可以位于光束整形结构002中,光纤接口阵列001和光束整形结构002构成的整体结构可以称为光束整形结构,该光束整形结构也可以称为光束整形系统,光色散结构003也可以称为光色散系统,光开关结构004也可以称为光开关系统。
该图1所示的WSS在使用时,包括不同波长的光信号的光束通过输入光纤接口输入WSS,输入WSS的光束通过光束整形结构002射入光色散结构003,光色散结构003对该光束进行色散,使不同波长的光信号在第一平面内散开(也即是图1中的波长拆分),从光色散结构 003射出的光束射入(图1中未示出)光开关结构004,光开关结构004在第二平面内对不同波长的光信号进行选择并切换(也即是图1中的光束偏转)得到多个光束,从光开关结构004射出的每个光束依次经过光色散结构003和光束整形结构002从输出光纤接口输出,且不同的光束从不同的输出光纤接口输出。其中,第一平面可以为水平平面,第二平面可以为竖直平面。光束整形结构002用于对光束进行整形,使在WSS内传输的光束的光斑与在WSS外传输的光束的光斑不同。通常,在WSS外传输的光束的光斑为圆形高斯光斑,在WSS内传输的光束的光斑为对该圆形高斯光斑放大后的椭圆形高斯光斑。
目前,光束整形结构主要由分立的透镜组和反射镜组构成,这使得WSS中的元器件较多,导致WSS的制造过程复杂且成本偏高。采用集成式的光束整形结构替代分立的透镜组和反射镜组,对WSS的制造成本有着重要的意义。PLC芯片是应用晶圆半导体加工技术制成的光学芯片,其在光通信中有着重要的应用。比如,PLC芯片可以应用于平面光波回路功分器(PLC-splitter)。PLC芯片可以采用集成式的平面光波导替代分立的透镜组和反射镜组来进行光束整形,简化WSS的制造过程,降低WSS的成本。
图2是本申请实施例所涉及的一种平面光波导的结构示意图,参见图2,该平面光波导为锥形(taper)波导,该平面光波导为拟柱体,包括相互平行的两个底面011(图2中仅标出一个),与该两个底面011都相交的两个端面,以及,与该两个底面011和该两个端面都相交的两个侧面012(图2中仅标出一个),两个端面包括第一端面013和第二端面014,两个底面011、两个端面和两个侧面012均为平面,第二端面014的宽度(图2中未标出)大于第一端面013的宽度(图2中未标出),两个侧面012与该平面光波导的横截面中平行于任一底面011的横截面的两条交线的倾斜度相等,每条交线上的所有位置点的倾斜度相等。其中,该平面光波导的第一端可以称为首端,第二端可以称为末端,从而第一端面013可以为平面光波导的首端面,第二端面014可以为平面光波导的末端面。示例地,第一端面013的宽度为9.3um(微米),第二端面014的宽度为110um,此时,该平面光波导可以使光束的光斑在一个方向上扩展到76um。
但是,从平面光波导传导出的光束的相位的均匀性与所述交线(平面光波导的侧面012与平行于其底面011的横截面的两条交线)上靠近第二端面014的位置点的倾斜度负相关,该图2所示的平面光波导中,所述交线上靠近第二端面014的位置点的倾斜度相对较大,导致从该平面光波导传导出的光束的相位的均匀性较差,从而导致PLC芯片的光束整形效果较差,当该PLC芯片应用于WSS中的光束整形结构时,该光束整形结构的光束整形效果较差,影响WSS的性能(例如插损)。
有研究建议可以在上述图2所示的平面光波导的侧面上靠近第二端面的部位设置微结构槽,来提高从该平面光波导传导出的光束的相位的均匀性。示例地,图3是本申请实施例所涉及的另一种平面光波导的结构示意图,该图3所示的平面光波导可以认为是在图2所示的平面光波导的每个侧面上靠近第二端面014的部位设置微结构槽015得到的,该微结构槽015构成近似的平面透镜,其可以将光束的相位拉平,使得从平面光波导传导出的光束的相位的均匀性较好。但是,微结构槽015容易造成光线散射而带来损害。
本申请实施例提供的平面光波导、光波导阵列、PLC芯片、光束整形结构及WSS,平面光波导包括与第一方向平行的第一底面和第二底面,第一底面与第二底面相互平行,第一底面和第二底面均为平面,平面光波导在第一方向上包括依次延伸并平滑过渡的第一部分、第 二部分和第三部分,第一部分与第二部分连接处的宽度小于第二部分与第三部分连接处的宽度,第二部分包括两个侧面,该侧面为向外隆起的弧面,且该侧面与平行于第一底面的横截面的交线的倾斜度从与第一部分相接处向与第三部分相接处逐渐减小,因此该交线上靠近第三部分的位置点的倾斜度相对较小,从而无需在平面光波导的侧面上设置微结构槽就能提高从平面光波导传导出的光束的相位的均匀性,改善PLC芯片以及光束整形结构的光束整形效果,从而改善WSS的性能。本申请的详细方案请参考下述各个实施例的描述。
图4是本申请实施例提供的一种平面光波导100的立体结构示意图,图5是图4所示的平面光波导100的正视结构示意图,图6是图4所示的平面光波导100的俯视结构示意图,参见图4至图6,平面光波导100为拟柱体,形状呈片状,包括与第一方向x平行的第一底面A1和第二底面A2,第一底面A1与第二底面A2相互平行,第一底面A1和第二底面A2均为平面,该平面光波导100的厚度h小于或等于10微米,该厚度h为该平面光波导100在第二方向y上的尺寸,第二方向y垂直于第一底面A1。
该平面光波导100在第一方向x上包括依次延伸并平滑过渡的第一部分1001、第二部分1002和第三部分1003,第一部分1001与第二部分1002连接处的宽度w1小于第二部分1002与第三部分1003连接处的宽度w2,该宽度为平面光波导100在第三方向z上的尺寸,第三方向z同时垂直于第一方向x和第二方向y。
第一部分1001用于将从第一部分1001远离第二部分1002的一端(图中未标出)接收到的光线传导至第二部分1002,或者,将从第二部分1002接收到的光线通过第一部分1001远离第二部分1002的一端传导出平面光波导100。第二部分1002包括两个侧面A32,每个侧面A32为向外隆起的弧面,且每个侧面A32与平面光波导100的截面中平行于其第一底面A1的横截面的交线的倾斜度从与第一部分1001相接处向与第三部分1002相接处逐渐减小,所述倾斜度为所述交线在所述横截面上的切线与第一方向x之间的夹角。第三部分1003用于将从第二部分1002接收到的光线通过第三部分1003远离第二部分1002的一端传导出平面光波导1001,或者,将从第三部分1003远离第二部分1002的一端接收到的光线传导至第二部分1002。
示例地,图7是本申请实施例提供的平面光波导100的第二部分1002的两个侧面与平面光波导100的截面中平行于其第一底面A1的横截面的交线的示意图,参见图4至图7,第二部分1002的两个侧面A32与平面光波导100的截面中平行于其第一底面A1的横截面的交线为交线Q1和交线Q2,交线Q1和交线Q2中每条交线的倾斜度从与第一部分1001相接处向与第三部分1002相接处逐渐减小,且交线Q1和交线Q2上,与第一部分1001和第二部分相接处距离相等的位置点的倾斜度相等,换句话来讲,交线Q1和交线Q2关于所述横截面的一垂面对称。例如,位置点E1、位置点E2和位置点E3为交线Q1上从与第一部分1001相接处向与第三部分1002相接处分布的3个位置点,则交线Q1的倾斜度从位置点E1、位置点E2到位置点E3逐渐减小,位置点E4为交线Q2上的位置点,位置点E4与第一部分1001和第二部分1002相接处距离,等于位置点E1与第一部分1001和第二部分1002相接处距离,则位置点E1的倾斜度与位置点E4的倾斜度相等。
可选地,第二部分1002的每个侧面A32与平行于平面光波导100的第一底面A1的横截面的交线包括正弦曲线或余弦曲线,可以是包括正弦曲线的部分或余弦曲线的部分,例如, 包括1/4+n个周期的正弦曲线上的部分,或者,3/4+n个周期的余弦曲线上的部分,本申请实施例对此不做限定,其中,n为大于或等于0的整数。
可选地,在本实施例提供的平面光波导100中,第一部分1001远离第二部分1002的一端可以称为平面光波导100的第一端,第一部分1001与第二部分1002不相交的一面可以称为平面光波导100的第一端面(例如图5和图6中的第一端面A4),第三部分1003远离第二部分1002的一端可以称为平面光波导100的第二端,第三部分1003与第二部分1002不相交的一面可以称为平面光波导100的第二端面(例如图5和图6中的第二端面A5)。以下以第一部分1001远离第二部分1002的一端为平面光波导100的第一端,第一部分1001与第二部分1002不相交的一面为平面光波导100的第一端面,第三部分1003远离第二部分1002的一端为平面光波导100的第二端,第三部分1003与第二部分1002不相交的一面为平面光波导100的第二端面为例进行说明,则在图4至图6所示的平面光波导100中,第三部分1003与第二部分1002不相交的一面(也即是第二端面A5)与第一底面A1垂直。由于平面光波导100的第一底面A1和第二底面A2平行,因此,第三部分1003与第二部分1002不相交的一面也与第一底面A1和第二底面A2都垂直。
图8是本申请实施例提供的另一种平面光波导100的立体结构示意图,图9是图8所示的平面光波导100的俯视结构示意图,参见图8和图9,第三部分1003与第二部分1002不相交的一面(也即是第二端面A5)与第一底面A1之间的夹角g为锐角,该夹角g的大小的取值范围为41~50度,例如,夹角g的大小为45度。可选地,可以通过磨抛工艺对图4所示的平面光波导100的第三部分1003与第二部分1002不相交的一面(也即是第二端面A5)进行磨抛,使图4所示的第三部分1003与第二部分1002不相交的一面(也即是第二端面A5)与平面光波导100的第一底面A1之间的夹角为锐角,从而得到图8所示的平面光波导100。其中,41~50度仅仅是示例性的,夹角g的大小还可以为其他数值,本申请实施例对此不做限定。
需要说明的是,该图8所示的平面光波导100在使用时,如图10所示,光线通过平面光波导100的第一部分1001与第二部分1002不相交的一面(也即是第一端面A4)射入平面光波导100,在平面光波导100中传导后,光线在平面光波导100的第三部分1003与第二部分1002不相交的一面(也即是第二端面A5)上反射后从平面光波导100的第一底面A1射出。若夹角g的大小为45度,则从该平面光波导100射出的光线与射入该平面光波导100的光线之间可以存在90度夹角,从而该图8所示的平面光波导100可以使光线进行90度转弯。
可选地,在本申请实施例中,第一部分1001和第三部分1003均包括两个侧面,第一部分1001的两个侧面和第三部分1003的两个侧面均为平面,第一部分1001的侧面、第二部分1002的侧面和第三部分1003的侧面平滑过渡。如图5、图6和图9所示,第一部分1001包括两个侧面A31,第三部分1003包括两个侧面A33,两个侧面A31和两个侧面A33均为平面,第一部分1001的两个侧面A31、第二部分1002的两个侧面A32和第三部分1003的两个侧面A33平滑过渡,第一部分1001的两个侧面A31、第二部分1002的两个侧面A32和第三部分1003的两个侧面A33构成平面光波导100的两个侧面A3。需要说明的是,当第一部分1001和第三部分1003均包括两个侧面均为平面时,不难理解,第一部分1001上任一位置处的宽度与w1(第一部分1001与第二部分1002连接处的宽度)相等,第三部分1003上任一位置处的宽度与w2(第三部分1003与第二部分1002连接处的宽度)相等,进一步地,第 一端面A4的宽度等于w1,第二端面A5的宽度等于w2。
需要说明的是,图4和图8是以第一部分1001的延伸形状为直线状为例进行说明的,在本申请实施例中,第一部分1001的延伸形状还可以为曲线状。可选地,请参考图11,其示出了本申请实施例提供的再一种平面光波导100的正视结构示意图,该平面光波导100中,第一部分1001的延伸形状为曲线状,例如可以是“S”型或类“S”型的曲线状。需要说明的是,相比于空间传输介质,平面光波导可以将光线限制在平面光波导内传导,本领域技术人员容易理解,该图11所示的平面光波导100可以使光线在平面光波导100内弯曲传导。
图12是本申请实施例提供的一种平面光波导100与平行于其第一底面A1的横截面的交线的示意图,该图12示出的可以是图4或图8所示的平面光波导100与平行于其第一底面A1的横截面的交线的示意图,参见图12,平面光波导100与平行于其第一底面A1的横截面的交线的形状满足函数式:
Figure PCTCN2019115122-appb-000001
结合图4至图6、图8和图9以及图12,w1表示第一部分1001与第二部分1002不相交的一面(也即是第一端面A4)的宽度,w2表示第三部分1003与第二部分1002不相交的一面(也即是第二端面A5)的宽度,L1表示第一部分1001的长度(长度为在第一方向x上的尺寸),L2表示第二部分1002的长度,L3表示第三部分1003的长度,a为[0.5,1.5]内的常数,z表示平面光波导100的侧面A3与平行于其第一底面A1的横截面的交线上,任一位置点到第一部分1001与第二部分1002不相交的一面(也即是第一端面A4)的距离,w表示上述任一位置点处的宽度,z的取值范围为[0,L1+L2+L3],w的取值范围为[w1,w2]。
需要说明的是,a的取值范围为[0.5,1.5]仅仅是示例性的,实际应用中,a还可以取[0.5,1.5]之外的任意数值,且a还可以等于0,本申请实施例对此不做限定。此外,根据以上描述不难理解,函数式
Figure PCTCN2019115122-appb-000002
表示的是平面光波导100的第二部分1002与平行平面光波导100的第一底面A1的横截面的交线的形状。此外,图11所示的平面光波导100的第二部分1002的形状可以采用函数式
Figure PCTCN2019115122-appb-000003
来表示,w1表示第一部分1001与第二部分1002连接处的宽度,w2表示第三部分1003与第二部分1002连接处的宽度,L表示第二部分1002的长度,z表示第二部分1002的侧面A32与平行于平面光波导100的第一底面A1的横截面的交线上,任一位置点到平面光波导100的第一部分1001与第二部分1002的接触面的距离,w表示上述任一位置点处的宽度,z的取值范围为[0,L],w的取值范围为[w1,w2]。
还需要说明的是,实际应用中,平面光波导可以包括芯层和包层,包层可以包括下包层和上包层,芯层位于下包层与上包层之间,包层的结构与芯层的结构可以相同也可以不同,通常情况下,包层的结构与芯层的结构不同,包层通常呈片状且包层远离芯层的一面的形状通常为长方形。本申请实施例中所描述的平面光波导100可以是实际的平面光波导的芯层, 当然,在包层的结构与芯层的结构相同时,本申请实施例中所描述的平面光波导100也可以是包括包层和芯层的平面光波导的整体结构,本申请实施例对此不做限定。
图2所示的平面光波导为锥形波导,本申请实施例提供的平面光波导100的第二部分1002也可以认为是锥形波导,从平面光波导传导出的光束的相位的均匀性通常还与锥形波导的长度相关。下面以图2所示的平面光波导和本申请实施例提供的第二部分1002均为锥形波导对本申请实施例提供的平面光波导100改善相位的均匀性的效果进行说明。
图13是图2所示的平面光波导对应的相位曲线图(也即是从图2所示的平面光波导传导出的光束的相位的曲线图),图14是本申请实施例提供的平面光波导100对应的相位曲线图(也即是从平面光波导100传导出的光束的相位的曲线图)。其中,曲线1、曲线2和曲线3均表示折射率差(芯层与包层的折射率的差值)为0.36%(百分之),第一端面的宽度为7微米,第二端面的宽度为160微米的平面光波导对应的相位曲线图,且曲线1、曲线2和曲线3表示的锥形波导的长度为分别为20毫米、25毫米和30毫米,对比曲线1至曲线3可以看出,无论是图2所示的平面光波导还是本申请实施例提供的平面光波导100,在折射率差以及两个端面的宽度固定的情况下,从平面光波导传导出的光束的相位的均匀性与锥形波导的长度正相关。此外,对比图13和图14的同一曲线(例如曲线1)可以看出,在折射率差相同,第一端面的宽度相同,第二端面的宽度相同以及锥形波导的长度相同的情况下,本申请实施例提供的平面光波导100可以明显提高光束的相位的均匀性。
综上所述,本申请实施例提供的平面光波导,包括与第一方向平行的第一底面和第二底面,第一底面与第二底面相互平行,第一底面和第二底面均为平面,平面光波导在第一方向上包括依次延伸并平滑过渡的第一部分、第二部分和第三部分,第一部分与第二部分连接处的宽度小于第二部分与第三部分连接处的宽度,第二部分包括两个侧面,该侧面为向外隆起的弧面,且该侧面与平行于第一底面的横截面的交线的倾斜度从与第一部分相接处向与第三部分相接处逐渐减小,因此该交线上靠近第三部分的位置点的倾斜度相对较小,从平面光波导传导出的光束的相位的均匀性较好,有助于改善PLC芯片以及光束整形结构的光束整形效果,从而改善WSS的性能。此外,与设置有微结构槽的平面光波导相比,本申请实施例提供的平面光波导还可以降低光束传播的能量损耗。
本申请实施例还提供了一种光波导阵列,该光波导阵列包括至少一个平面光波导,该至少一个平面光波导均可以为图4、图8或图11所示的平面光波导100。
可选地,图15是本申请实施例提供的一种光波导阵列10的正视结构示意图,图16是本申请实施例提供的另一种光波导阵列10的正视结构示意图,参见图15和图16,光波导阵列10包括至少一个平面光波导100(图中示出m个,m为大于1的整数)。在图15所示的光波导阵列10中,至少一个平面光波导100均可以为图4所示的平面光波导100(也即是第三部分1003与第二部分1002不相交的一面与第一底面A1垂直的平面光波导100),或者,至少一个平面光波导100均可以为图8所示的平面光波导100(也即是第三部分1003与第二部分1002不相交的一面与第一底面A1之间的夹角g为锐角的平面光波导100);在图16所示的光波导阵列10中,至少一个平面光波导100均可以为图11所示的平面光波导100,且每个平面光波导100的第三部分1003与第二部分1002不相交的一面与第一底面A1垂直,或者,每个平面光波导100的第三部分1003与第二部分1002不相交的一面与第一底面A1之间的 夹角g为锐角。其中,第三部分1003与第二部分1002不相交的一面也即是第二端面A5。
参见图15和图16,并结合图4至图6、图8、图9和图11,至少一个平面光波导100在同一平面内排成一列,列方向例如图15和图16中的z方向,至少一个平面光波导100的第三部分1003远离第二部分1002的一端位于同一侧,第一底面A1位于同一侧。可选地,至少一个平面光波导100的第三部分1003与第二部分1002不相交的一面(也即是第二端面A5)共平面,第一底面A1共平面。
可选地,光波导阵列10包括至少三个平面光波导100,参见图15并结合图4至图6以及图8和图9,至少三个平面光波导100中任意相邻的两个平面光波导100的第一部分1001的间距(例如第一端面A4的间距)与该任意相邻的两个平面光波导100的第三部分1003的间距(例如第二端面A5的间距)相等,至少三个平面光波导100的第三部分1003的间距(例如第二端面A5的间距)相等。例如,如图15所示,第i个平面光波导100的第二端面A5与第i+1个平面光波导100的第二端面A5的间距为Si,第j个平面光波导100的第二端面A5与第j+1个平面光波导100的第二端面A5的间距为Sj,则Si与Sj相等,i和j均为大于或等于1且小于m的整数,并且i与j不相等。
可选地,光波导阵列10包括至少三个平面光波导100,参见图16并结合图4至图6、图8、图9和图11,至少三个平面光波导100中任意相邻的两个平面光波导100的第一部分1001远离第二部分1002的一端的间距与该任意相邻的两个平面光波导100的第三部分1003的间距(例如第二端面A5的间距)不相等,至少三个平面光波导100的第三部分1003的间距(例如第二端面A5的间距)不都相等。例如,如图16所示,第i个平面光波导100的第二端面A5与第i+1个平面光波导100的第二端面A5的间距为Si,第j个平面光波导100的第二端面A5与第j+1个平面光波导100的第二端面A5的间距为Sj,第k个平面光波导100的第二端面A5与第k+1个平面光波导100的第二端面A5的间距为Sk(图16中未标出),则Si、Sj与Sk不都相等,也即是,Si与Sj相等,Si与Sk不相等,或者,Si与Sk相等,Si与Sj不相等,或者,Sj与Sk相等,Si与Sj不相等,i、j和k均为大于或等于1且小于m的整数,且i、j与k都不相等。
综上所述,本申请实施例提供的光波导阵列,由于光波导阵列包括平面光波导,平面光波导包括与第一方向平行的第一底面和第二底面,第一底面与第二底面相互平行,第一底面和第二底面均为平面,平面光波导在第一方向上包括依次延伸并平滑过渡的第一部分、第二部分和第三部分,第一部分与第二部分连接处的宽度小于第二部分与第三部分连接处的宽度,第二部分包括两个侧面,该侧面为向外隆起的弧面,且该侧面与平行于第一底面的横截面的交线的倾斜度从与第一部分相接处向与第三部分相接处逐渐减小,因此该交线上靠近第三部分的位置点的倾斜度相对较小,从平面光波导传导出的光束的相位的均匀性较好,从而从光波导阵列射出的光束的相位的均匀性较好,有助于改善PLC芯片以及光束整形结构的光束整形效果,从而改善WSS的性能。
本申请实施例还提供了一种PLC芯片,该PLC芯片包括图15或图16所示的光波导阵列10。
可选地,图17是本申请实施例提供的一种PLC芯片0的正视结构示意图,图18是本申请实施例提供的另一种PLC芯片0的正视结构示意图,图19是本申请实施例提供的一种PLC 芯片0的俯视结构示意图,其中,图17所示的PLC芯片0包括图15所示的光波导阵列10,图18所示的PLC芯片0包括图16所示的光波导阵列10。
根据图15和图16对光波导阵列10的描述可知,在光波导阵列10中,每个平面光波导100的第三部分1003与第二部分1002不相交的一面(也即是第二端面A5)与第一底面A1垂直,或者,每个平面光波导100的第三部分1003与第二部分1002不相交的一面(也即是第二端面A5)与第一底面A1之间的夹角g为锐角。在本申请实施例中,若在光波导阵列10中,每个平面光波导100的第三部分1003与第二部分1002不相交的一面(也即是第二端面A5)与第一底面A1垂直,则PLC芯片0可以包括光波导阵列10,若在光波导阵列10中,每个平面光波导100的第三部分1003与第二部分1002不相交的一面(也即是第二端面A5)与第一底面A1之间的夹角g为锐角,则PLC芯片0可以包括光波导阵列10和准直透镜(collimator lens,CLens)。图17至图19以光波导阵列10中的每个平面光波导100的第三部分1003与第二部分1002不相交的一面(也即是第二端面A5)与第一底面A1之间的夹角g为锐角为例进行说明,则如图17至图19所示,PLC芯片0还包括准直透镜20,准直透镜20设置在光波导阵列10的第一底面(图17至图19中均未标出)上,该光波导阵列10的第一底面由至少一个平面光波导100的第一底面A1构成,每个平面光波导100的第三部分1003与第二部分1002不相交的一面(也即是第二端面A5)在光波导阵列10的第一底面上的正投影区域与准直透镜20所在区域存在重叠,这样可以便于光线能够射入准直透镜20。可选地,准直透镜20贴装在光波导阵列10的第一底面上。
综上所述,本申请实施例提供的PLC芯片,由于PLC芯片包括光波导阵列,光波导阵列包括平面光波导,平面光波导包括与第一方向平行的第一底面和第二底面,第一底面与第二底面相互平行,第一底面和第二底面均为平面,平面光波导在第一方向上包括依次延伸并平滑过渡的第一部分、第二部分和第三部分,第一部分与第二部分连接处的宽度小于第二部分与第三部分连接处的宽度,第二部分包括两个侧面,该侧面为向外隆起的弧面,且该侧面与平行于第一底面的横截面的交线的倾斜度从与第一部分相接处向与第三部分相接处逐渐减小,因此该交线上靠近第三部分的位置点的倾斜度相对较小,从平面光波导传导出的光束的相位的均匀性较好,从而从光波导阵列射出的光束的相位的均匀性较好,有助于改善PLC芯片以及光束整形结构的光束整形效果,从而改善WSS的性能。此外,本申请实施例提供的PLC芯片中,准直透镜设置在光波导阵列上,因此可以避免单独部署光波导阵列与准直透镜导致PLC芯片的尺寸较大的问题,减小PLC芯片的尺寸,进而减小光束整形结构以及WSS的尺寸。
本申请实施例还提供了一种光束整形结构,该光束整形结构包括上述实施例提供的PLC芯片,例如包括图17或者图18所示的PLC芯片0。
图20是本申请实施例提供的一种光束整形结构的正视结构示意图,图21是本申请实施例提供的另一种光束整形结构的正视结构示意图,图20以光束整形结构包括图17所示的PLC芯片0为例进行说明,图21以光束整形结构包括图18所示的PLC芯片0为例进行说明,参见图20和图21,该光束整形结构包括PLC芯片0和光纤接口阵列1,光纤接口阵列1包括至少一个(图20和图21中未标出)光纤接口11,至少一个光纤接口11的数量与PLC芯片0中的至少一个平面光波导100的数量相等,结合图15、图17和图20,一个平面光波导100 的第一部分1001远离第二部分1002的一端与一个光纤接口11耦合,至少一个平面光波导100与至少一个光纤接口11一一对应耦合。进一步地,该光束整形结构还包括底座2,PLC芯片0和光纤接口阵列1分别设置在底座2上。可选地,PLC芯片0和光纤接口阵列1可以贴装在底座2上。
需要说明的是,图20和图21是以PLC芯片0中的每个平面光波导100的第三部分1003与第二部分1002不相交的一面(也即是第二端面A5)与第一底面A1之间的夹角g为锐角为例进行说明的。在本申请实施例中,若PLC芯片0中的每个平面光波导100的第三部分1003与第二部分1002不相交的一面(也即是第二端面A5)与第一底面A1垂直,则光束整形结构还可以包括准直透镜,具体请参考下述图22和图23所示实施例的描述。
图22是本申请实施例提供的再一种光束整形结构的正视结构示意图,图23是本申请实施例提供的又一种光束整形结构的正视结构示意图,参见图22和图23,该光束整形结构包括PLC芯片0和光纤接口阵列1,光纤接口阵列1包括至少一个(图22和图23中未标出)光纤接口11,至少一个光纤接口11的数量与PLC芯片0中的至少一个平面光波导100的数量相等,结合图15和图22,一个平面光波导100的第一部分1001远离第二部分1002的一端与一个光纤接口11耦合,至少一个平面光波导100与至少一个光纤接口11一一对应耦合。进一步地,该光束整形结构还包括准直透镜2和底座3,PLC芯片0、光纤接口阵列1和准直透镜2分别设置在底座3上,参见图15、图16、图22和图23,准直透镜2位于PLC芯片0的至少一个平面光波导100的第三部分1003远离第二部分1002的一端所在侧。可选地,PLC芯片0、光纤接口阵列1和准直透镜2可以贴装在底座3上。
需要说明的是,在本申请实施例提供的光束整形结构中,平面光波导和准直透镜用于在两个不同的方向上进行光束整形,该两个不同的方向通常为垂直的两个方向。
还需要说明的是,当光纤接口阵列1包括至少三个光纤接口11时,至少三个光纤接口11的间距通常是固定的,图21和图23所示的光束整形结构中,平面光波导100的第一部分1001远离第二部分1002的一端的间距可以与光纤接口11的间距匹配,第三部分1003的间距可以与光纤接口11的间距不相等,且至少三个平面光波导100的第三部分1003的间距可以不相等。图21和图23所示的光束整形结构可以将输出光束的间距变换成标准间距(比如127微米),这样的光束整形结构可以避免间距变换器件(也即是用于变换输出光束的间距的器件),从而降低WSS的成本。此外,通常可以采用分立的透镜组和反射镜组构成光束整形结构,但是分立的透镜组和反射镜组需要耦合,并且会导致光束整形结构的尺寸较大,本申请实施例提供的光束整形结构中,PLC芯片、光纤接口阵列和准直透镜均设置在底座上,可以取消分立的透镜组和反射镜组耦合的要求,并且可以减小光束整形结构的尺寸。
综上所述,本申请实施例提供的光束整形结构,由于光束整形结构包括PLC芯片,PLC芯片包括光波导阵列,光波导阵列包括平面光波导,平面光波导包括与第一方向平行的第一底面和第二底面,第一底面与第二底面相互平行,第一底面和第二底面均为平面,平面光波导在第一方向上包括依次延伸并平滑过渡的第一部分、第二部分和第三部分,第一部分与第二部分连接处的宽度小于第二部分与第三部分连接处的宽度,第二部分包括两个侧面,该侧面为向外隆起的弧面,且该侧面与平行于第一底面的横截面的交线的倾斜度从与第一部分相接处向与第三部分相接处逐渐减小,因此该交线上靠近第三部分的位置点的倾斜度相对较小,从平面光波导传导出的光束的相位的均匀性较好,从而从光波导阵列射出的光束的相位的均 匀性较好,有助于改善PLC芯片以及光束整形结构的光束整形效果,从而改善WSS的性能。
本申请实施例还提供了一种WSS,该WSS包括光色散结构、光开关结构和上述实施例提供的光束整形结构,该WSS的结构可以参考图1。其中,该WSS中的光色散结构可以为图1中的光色散结构003,光开关结构可以为图1中的光色散结构004,光束整形结构可以为图1中的光纤接口阵列001和光束整形结构002构成的整体结构。
在本申请实施例提供的WSS中,光色散结构位于光束整形结构与光开关结构之间,光色散结构位于光束整形结构的平面光波导的第三部分远离第二部分的一端所在侧;光束整形结构用于对接收到的光线进行光束整形;光色散结构用于对通过光束整形结构传输至光色散结构的光线进行色散,使通过光束整形结构传输至光色散结构的光线在第一平面内散开;光开关结构用于对通过光色散结构传输至光开关结构的光束进行选择,使通过光色散结构传输至光开关结构的光束中的不同波长的光线能够通过不同的光纤接口传输出波长选择开关。
图24是本申请实施例提供的一种平面光波导200的正视结构示意图,参见图24,该平面光波导200的结构为拟柱体,该平面光波导200包括与第一方向x平行的第一底面B1和第二底面(图中未标出),第一底面B1与第二底面平行,第一底面B1和第二底面均为平面,平面光波导200的厚度小于或等于10微米,该厚度为平面光波导200在第二方向(图24中未标出)上的尺寸,第二方向垂直于第一底面B1。该平面光波导200包括第一端面B2和第二端面B3,第一端面B2的宽度c1小于第二端面B3的宽度c2,该宽度为平面光波导200在第三方向z上的尺寸,第三方向z同时垂直于第一方向x和第二方向,该平面光波导200包括两个侧面B4,两个侧面B4均为向外隆起的弧面,且平面光波导200的侧面与平行于其第一底面B1的横截面的交线的倾斜度从第一端面B2向第二端面B3逐渐减小,所述倾斜度为所述交线在所述横截面上的切线与第一方向x之间的夹角。其中,第一端面B2与第二端面B3相对,第一端面B2与平行于第一底面B1的横截面的交线和第二端面B3与平行于第一底面B1的横截面的交线平行,两个侧面B4相对,第一端面B2分别与第一底面B1、第二底面和两个侧面B4相交,第二端面B3分别与第一底面B1、第二底面和两个侧面B4相交。
可选地,平面光波导200的侧面B4与平行于其第一底面B1的横截面的交线包括正弦曲线或余弦曲线。
可选地,平面光波导200的第二端面B3与第一底面B1之间的夹角为锐角,夹角的大小可以为41~50度。
其中,该平面光波导200的结构与上述实施例提供的平面光波导100的第二部分1002的结构相同,本申请实施例在此不再赘述。
本申请实施例还提供了一种光波导阵列,该光波导阵列包括至少一个平面光波导,至少一个平面光波导均可以为图24所示的平面光波导200。
可选地,与上述实施例提供的光波导阵列10类似,在本实施例中,光波导阵列中的至少一个平面光波导200在同一平面内排成一列,至少一个平面光波导200的第二端面位于同一侧,第一底面位于同一侧。可选地,至少一个平面光波导200的第二端面B3共平面,第一底面B1共平面。
本申请实施例还提供了一种PLC芯片、一种光束整形结构和一种WSS,该PLC芯片的 结构可以参考上述实施例提供的PLC芯片0的结构,该光束整形结构的结构可以参考图20至图23所示的光束整形结构,与上述实施例不同的是,在本实施例中,PLC芯片0以及光束整形结构中的平面光波导为图24所示的平面光波导200,本申请实施例在此不再赘述。
需要说明的是,实际应用中,受平面光波导制造工艺误差的影响,可能无法达到严格的垂直、平行等,并且尺寸也可能会存在误差,本申请实施例所述的平行、垂直、尺寸等为大致的垂直、平行以及大致的尺寸,例如,本申请实施例中的垂直可以是夹角为87度、88度、91度、93度等等,平行可以是夹角为2度、3度、5等等,厚度小于或等于10微米可以是厚度小于或等于10.2微米、10.5微米、9.8微米等。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
以上所述仅为本申请实施例的可选实施例,并不用以限制本申请实施例,凡在本申请实施例的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请实施例的保护范围之内。

Claims (30)

  1. 一种平面光波导,其特征在于,所述平面光波导为拟柱体,形状呈片状,包括与第一方向平行的第一底面和第二底面,所述第一底面与所述第二底面相互平行,所述第一底面和所述第二底面均为平面,所述平面光波导的厚度小于或等于10微米,所述厚度为所述平面光波导在第二方向上的尺寸,所述第二方向垂直于所述第一底面;
    所述平面光波导在所述第一方向上包括依次延伸并平滑过渡的第一部分、第二部分和第三部分,所述第一部分与所述第二部分连接处的宽度小于所述第二部分与所述第三部分连接处的宽度,所述宽度为所述平面光波导在第三方向上的尺寸,所述第三方向同时垂直于所述第一方向和所述第二方向;
    所述第一部分用于将从远离所述第二部分的一端接收到的光线传导至所述第二部分,或者,将从所述第二部分接收到的光线通过所述远离所述第二部分的一端传导出所述平面光波导;
    所述第二部分包括两个侧面,所述侧面为向外隆起的弧面,且所述侧面与平行于所述第一底面的横截面的交线的倾斜度从与所述第一部分相接处向与所述第三部分相接处逐渐减小,所述倾斜度为所述交线在所述横截面上的切线与所述第一方向之间的夹角;
    所述第三部分用于将从所述第二部分接收到的光线通过远离所述第二部分的一端传导出所述平面光波导,或者,将从所述远离所述第二部分的一端接收到的光线传导至所述第二部分。
  2. 根据权利要求1所述的平面光波导,其特征在于,所述交线包括正弦曲线或余弦曲线。
  3. 根据权利要求1所述的平面光波导,其特征在于,所述第一部分的延伸形状为曲线状。
  4. 根据权利要求1至3任一项所述的平面光波导,其特征在于,所述第三部分与所述第二部分不相交的一面与所述第一底面之间的夹角为锐角。
  5. 根据权利要求4所述的平面光波导,其特征在于,所述第三部分与所述第二部分不相交的一面与所述第一底面之间的夹角的大小取值范围为41~50度。
  6. 一种光波导阵列,其特征在于,所述光波导阵列包括至少一个平面光波导,所述至少一个平面光波导均为权利要求1至3任一项所述的平面光波导。
  7. 一种光波导阵列,其特征在于,所述光波导阵列包括至少一个平面光波导,所述至少一个平面光波导均为权利要求4或5所述的平面光波导。
  8. 根据权利要求6或7所述的光波导阵列,其特征在于,所述光波导阵列包括至少三个平面光波导,所述至少三个平面光波导的所述第三部分的间距不都相等。
  9. 一种平面光波回路芯片,其特征在于,所述平面光波回路芯片包括权利要求6或8所述的光波导阵列。
  10. 一种光束整形结构,其特征在于,所述光束整形结构包括光纤接口阵列和如权利要求9所述的平面光波回路芯片,所述光纤接口阵列包括至少一个光纤接口,所述至少一个光纤接口与所述至少一个平面光波导一一对应,所述平面光波导的所述第一部分远离所述第二部分的一端与对应的所述光纤接口耦合。
  11. 根据权利要求10所述的光束整形结构,其特征在于,所述光束整形结构还包括准直透镜和底座,所述平面光波回路芯片、所述光纤接口阵列和所述准直透镜分别设置在所述底座上,所述准直透镜位于所述平面光波导的所述第三部分远离所述第二部分的一端所在侧。
  12. 一种平面光波回路芯片,其特征在于,所述平面光波回路芯片包括权利要求7或8所述的光波导阵列。
  13. 根据权利要求12所述的平面光波回路芯片,其特征在于,所述平面光波回路芯片还包括准直透镜,所述准直透镜设置在所述光波导阵列的第一底面上,所述光波导阵列的所述第一底面由所述至少一个平面光波导的所述第一底面构成,所述平面光波导的所述第三部分与所述第二部分不相交的一面在所述光波导阵列的所述第一底面上的正投影区域与所述准直透镜所在区域存在重叠。
  14. 一种光束整形结构,其特征在于,所述光束整形结构包括光纤接口阵列,和,如权利要求12或13所述的平面光波回路芯片,所述光纤接口阵列包括至少一个光纤接口,所述至少一个光纤接口与所述至少一个平面光波导一一对应,所述平面光波导的所述第一部分远离所述第二部分的一端与对应的所述光纤接口耦合。
  15. 根据权利要求14所述的光束整形结构,其特征在于,所述光束整形结构还包括底座,所述平面光波回路芯片和所述光纤接口阵列分别设置在所述底座上。
  16. 一种波长选择开关,其特征在于,所述波长选择开关包括光色散结构、光开关结构和如权利要求12至15任一项所述的光束整形结构,所述光色散结构位于所述光束整形结构与所述光开关结构之间,所述光色散结构位于所述光束整形结构的所述平面光波导的所述第三部分远离所述第二部分的一端所在侧;
    所述光束整形结构用于对接收到的光线进行光束整形;
    所述光色散结构用于对通过所述光束整形结构传输至所述光色散结构的光线进行色散,使所述通过所述光束整形结构传输至所述光色散结构的光线在第一平面内散开;
    所述光开关结构用于对通过所述光色散结构传输至所述光开关结构的光束进行选择,使所述通过所述光色散结构传输至所述光开关结构的光束中的不同波长的光线能够通过不同的 所述光纤接口传输出所述波长选择开关。
  17. 一种平面光波导,其特征在于,所述平面光波导为拟柱体,形状呈片状,包括与第一方向平行的第一底面和第二底面,所述第一底面与所述第二底面平行,所述第一底面和所述第二底面均为平面,所述平面光波导的厚度小于或等于10微米,所述厚度为所述平面光波导在第二方向上的尺寸,所述第二方向垂直于所述第一底面;
    所述平面光波导包括第一端面和第二端面,所述第一端面的宽度小于所述第二端面的宽度,所述宽度为所述平面光波导在第三方向上的尺寸,所述第三方向同时垂直于所述第一方向和所述第二方向;
    所述平面光波导包括两个侧面,所述侧面为向外隆起的弧面,且所述侧面与平行于所述第一底面的横截面的交线的倾斜度从所述第一端面向所述第二端面逐渐减小,所述倾斜度为所述交线在所述横截面上的切线与所述第一方向之间的夹角;
    其中,所述第一端面与所述第二端面相对,所述第一端面与平行于所述第一底面的横截面的交线和所述第二端面与平行于所述第一底面的横截面的交线平行,所述两个侧面相对,所述第一端面分别与所述第一底面、所述第二底面和所述两个侧面相交,所述第二端面分别与所述第一底面、所述第二底面和所述两个侧面相交。
  18. 根据权利要求17所述的平面光波导,其特征在于,所述侧面与平行于所述第一底面的横截面的所述交线包括正弦曲线或余弦曲线。
  19. 根据权利要求17或18所述的平面光波导,其特征在于,所述第二端面与所述第一底面之间的夹角为锐角。
  20. 根据权利要求19所述的平面光波导,其特征在于,所述第二端面与所述第一底面之间的夹角为的大小取值范围为41~50度。
  21. 一种光波导阵列,其特征在于,所述光波导阵列包括至少一个平面光波导,所述至少一个平面光波导均为权利要求17或18所述的平面光波导。
  22. 一种平面光波回路芯片,其特征在于,所述平面光波回路芯片包括权利要求21所述的光波导阵列。
  23. 一种光束整形结构,其特征在于,所述光束整形结构包括光纤接口阵列和如权利要求22所述的平面光波回路芯片,所述光纤接口阵列包括至少一个光纤接口,所述至少一个光纤接口与所述至少一个平面光波导一一对应,所述平面光波导的所述第一端面与对应的所述光纤接口耦合。
  24. 根据权利要求23所述的光束整形结构,其特征在于,所述光束整形结构还包括准直透镜和底座,所述平面光波回路芯片、所述光纤接口阵列和所述准直透镜分别设置在所述底 座上,所述准直透镜位于所述平面光波导的所述第二端面所在侧。
  25. 一种光波导阵列,其特征在于,所述光波导阵列包括至少一个平面光波导,所述至少一个平面光波导均为权利要求19或20所述的平面光波导。
  26. 一种平面光波回路芯片,其特征在于,所述平面光波回路芯片包括权利要求25所述的光波导阵列。
  27. 根据权利要求26所述的平面光波回路芯片,其特征在于,所述平面光波回路芯片还包括准直透镜,所述准直透镜设置在所述光波导阵列的第一底面上,所述光波导阵列的所述第一底面由所述至少一个平面光波导的所述第一底面构成,所述平面光波导的所述第二端面在所述光波导阵列的所述第一底面上的正投影区域与所述准直透镜所在区域存在重叠。
  28. 一种光束整形结构,其特征在于,所述光束整形结构包括光纤接口阵列,和,如权利要求26或27所述的平面光波回路芯片,所述光纤接口阵列包括至少一个光纤接口,所述至少一个光纤接口与所述至少一个平面光波导一一对应,所述平面光波导的所述第一端面与对应的所述光纤接口耦合。
  29. 根据权利要求28所述的光束整形结构,其特征在于,所述光束整形结构还包括底座,所述平面光波回路芯片和所述光纤接口阵列分别设置在所述底座上。
  30. 一种波长选择开关,其特征在于,所述波长选择开关包括光色散结构、光开关结构和如权利要求26至29任一项所述的光束整形结构,所述光色散结构位于所述光束整形结构与所述光开关结构之间,所述光色散结构位于所述光束整形结构的所述平面光波导的所述第二端面所在侧;
    所述光束整形结构用于对接收到的光线进行光束整形;
    所述光色散结构用于对通过所述光束整形结构传输至所述光色散结构的光线进行色散,使所述通过所述光束整形结构传输至所述光色散结构的光线在第一平面内散开;
    所述光开关结构用于对通过所述光色散结构传输至所述光开关结构的光束进行选择,使所述通过所述光色散结构传输至所述光开关结构的光束中的不同波长的光线能够通过不同的所述光纤接口传输出所述波长选择开关。
PCT/CN2019/115122 2018-12-27 2019-11-01 平面光波导、plc芯片、光束整形结构及wss WO2020134567A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811614929.8A CN109597162B (zh) 2018-12-27 2018-12-27 平面光波导、plc芯片、光束整形结构及wss
CN201811614929.8 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020134567A1 true WO2020134567A1 (zh) 2020-07-02

Family

ID=65963727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115122 WO2020134567A1 (zh) 2018-12-27 2019-11-01 平面光波导、plc芯片、光束整形结构及wss

Country Status (2)

Country Link
CN (1) CN109597162B (zh)
WO (1) WO2020134567A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109597162B (zh) * 2018-12-27 2021-04-09 华为技术有限公司 平面光波导、plc芯片、光束整形结构及wss

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09218317A (ja) * 1996-02-09 1997-08-19 Hoya Corp テーパ導波路およびそれを用いた光導波路素子
CN1732397A (zh) * 2002-12-27 2006-02-08 日本电信电话株式会社 阵列波导格子型光合分波电路
CN1874093A (zh) * 2005-05-31 2006-12-06 韩国电子通信研究院 抛物柱面波导型准直透镜和可调外腔激光二极管
JP2010277048A (ja) * 2009-06-01 2010-12-09 Fujitsu Ltd 光導波路
CN104166184A (zh) * 2014-07-26 2014-11-26 华为技术有限公司 光耦合装置及光模块
US9025920B2 (en) * 2011-12-16 2015-05-05 Electronics And Telecommunications Research Institute Optical coupling devices and silicon photonics chips having the same
WO2015111458A1 (ja) * 2014-01-24 2015-07-30 技術研究組合光電子融合基盤技術研究所 グレーティングカプラ
CN105676369A (zh) * 2014-10-24 2016-06-15 泰科电子公司 光耦合结构以及包括光栅耦合器的光学装置
CN207742371U (zh) * 2018-01-23 2018-08-17 武汉维莱特光电技术有限公司 一种波长选择开关
CN109597162A (zh) * 2018-12-27 2019-04-09 华为技术有限公司 平面光波导、plc芯片、光束整形结构及wss

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2198867A (en) * 1986-12-17 1988-06-22 Philips Electronic Associated A liquid crystal display illumination system
AU2003221350A1 (en) * 2002-03-13 2003-09-22 Nikon Corporation Light amplifying device and method of manufacturing the device, light source device using the light amplifying device, light treatment device using the light source device, and exposure device using the light source device
WO2005101075A1 (ja) * 2004-04-12 2005-10-27 Hitachi Chemical Company, Ltd. 光導波路構造
JP2011186258A (ja) * 2010-03-10 2011-09-22 Sumitomo Osaka Cement Co Ltd 光導波路素子
US9316788B2 (en) * 2010-10-14 2016-04-19 Rwth Aachen Laser to chip coupler
KR101189848B1 (ko) * 2011-02-14 2012-10-10 인하대학교 산학협력단 광도파로를 형성하는 방법
US9715050B2 (en) * 2011-11-25 2017-07-25 Cheng-Hao KO Optical wavelength dispersion device and method of manufacturing the same
EP3296783B1 (en) * 2016-09-15 2023-11-29 IMEC vzw Integrated photonics waveguide grating coupler
US10061080B2 (en) * 2016-10-25 2018-08-28 Clarkson University Multi-mode forked grating coupler
WO2018102464A2 (en) * 2016-11-29 2018-06-07 Finisar Corporation Adiabatic polarization rotator-splitter
EP3568721A1 (en) * 2017-01-12 2019-11-20 Telefonaktiebolaget LM Ericsson (PUBL) Apparatus and method for coupling light
US10330863B2 (en) * 2017-04-18 2019-06-25 Neophotonics Corporation Planar lightwave circuit optical splitter / mixer
US11175454B2 (en) * 2017-04-21 2021-11-16 Teknologian Tutkimuskeskus Vtt Oy Light escalators in optical circuits between thick and thin waveguides

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09218317A (ja) * 1996-02-09 1997-08-19 Hoya Corp テーパ導波路およびそれを用いた光導波路素子
CN1732397A (zh) * 2002-12-27 2006-02-08 日本电信电话株式会社 阵列波导格子型光合分波电路
CN1874093A (zh) * 2005-05-31 2006-12-06 韩国电子通信研究院 抛物柱面波导型准直透镜和可调外腔激光二极管
JP2010277048A (ja) * 2009-06-01 2010-12-09 Fujitsu Ltd 光導波路
US9025920B2 (en) * 2011-12-16 2015-05-05 Electronics And Telecommunications Research Institute Optical coupling devices and silicon photonics chips having the same
WO2015111458A1 (ja) * 2014-01-24 2015-07-30 技術研究組合光電子融合基盤技術研究所 グレーティングカプラ
CN104166184A (zh) * 2014-07-26 2014-11-26 华为技术有限公司 光耦合装置及光模块
CN105676369A (zh) * 2014-10-24 2016-06-15 泰科电子公司 光耦合结构以及包括光栅耦合器的光学装置
CN207742371U (zh) * 2018-01-23 2018-08-17 武汉维莱特光电技术有限公司 一种波长选择开关
CN109597162A (zh) * 2018-12-27 2019-04-09 华为技术有限公司 平面光波导、plc芯片、光束整形结构及wss

Also Published As

Publication number Publication date
CN109597162B (zh) 2021-04-09
CN109597162A (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
US20210351562A1 (en) Optical device having a substrate and a laser unit that emits light into the substrate
US9874691B2 (en) Two-stage adiabatically coupled photonic systems
CN110268588B (zh) 具有光学插入器的表面耦合激光器
CN112904481B (zh) 端面耦合器和半导体器件
US11243351B2 (en) Adiabatically coupled photonic system
CN116430521A (zh) 宽带表面耦合
CN113093333B (zh) 模斑转换器和光子器件
JP2003315853A (ja) 発散補正付き光スイッチング装置
CN112965167A (zh) 一种高效率光栅波导光学元件
WO2020134567A1 (zh) 平面光波导、plc芯片、光束整形结构及wss
CN112904499A (zh) 半导体激光器和平面光波导耦合结构、光路系统及制造方法
CN112433296B (zh) 一种波导耦合结构及光子集成系统
WO2016197332A1 (zh) 一种光纤连接器
CN112698448A (zh) 一种基于棱镜的反射式垂直光耦合结构
CN114114565B (zh) 一种半导体激光器准直器件
JPS63149610A (ja) 光タツプ装置
CN113376740B (zh) 分光/合光元件及光子器件
CN112596254A (zh) 基于光子晶体的紧凑型偏振分束器
KR102616266B1 (ko) 광섬유와 광도파로간 결합기, 그리고 이를 포함하는 광 집적회로
CN114035268B (zh) 一种光交叉波导单元
WO2023106167A1 (ja) 光接続回路デバイス
CN215297736U (zh) 一种双通道光隔离器
CN220323578U (zh) 偏振分束器及光学陀螺仪
JP5900043B2 (ja) 光結合構造およびアレイ光増幅モジュール
US20020176661A1 (en) Hybrid one-dimensional mode-matching method between round and elliptical waveguide modes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19901880

Country of ref document: EP

Kind code of ref document: A1