WO2020134339A1 - 毫米波/太赫兹波成像设备 - Google Patents

毫米波/太赫兹波成像设备 Download PDF

Info

Publication number
WO2020134339A1
WO2020134339A1 PCT/CN2019/110409 CN2019110409W WO2020134339A1 WO 2020134339 A1 WO2020134339 A1 WO 2020134339A1 CN 2019110409 W CN2019110409 W CN 2019110409W WO 2020134339 A1 WO2020134339 A1 WO 2020134339A1
Authority
WO
WIPO (PCT)
Prior art keywords
millimeter wave
terahertz wave
detector array
terahertz
wave
Prior art date
Application number
PCT/CN2019/110409
Other languages
English (en)
French (fr)
Inventor
李元景
游�燕
赵自然
马旭明
武剑
黄士卫
Original Assignee
同方威视技术股份有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司, 清华大学 filed Critical 同方威视技术股份有限公司
Publication of WO2020134339A1 publication Critical patent/WO2020134339A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers

Definitions

  • the present disclosure relates to the technical field of security inspection, in particular to a millimeter wave/terahertz wave imaging device.
  • the human body security technology based on passive millimeter wave/terahertz waves has unique advantages: it performs imaging by detecting the millimeter wave/terahertz wave radiation of the target itself to conduct security inspections of the human body (no active radiation is required), and utilizes millimeter wave/terahertz waves The penetration ability of Hertz waves enables the detection of hidden dangers.
  • millimeter wave and terahertz wave imaging technologies can be divided into focal plane imaging systems and mechanical scanning-based imaging systems.
  • the millimeter wave terahertz camera based on focal plane imaging technology uses complex technology and requires special equipment.
  • the basic principle is to simultaneously image different positions of the target through numerous element antennas distributed on the focal plane and appropriate reflectors and lenses.
  • the NGC system of Northrop Grumman Company in the United States uses a focal plane array antenna to achieve real-time imaging, but the system is complicated.
  • the NGC system has a horizontal field resolution of 15° and a vertical 10° field of view resolution of 0.5°, and requires 1040. detector.
  • the current mainstream solution is a one-dimensional linear detector array plus mechanical scanning to scan the entire field of view.
  • a typical detector is linearly distributed and when the detector is conically scanned, the linear arrangement of the detector results in a much lower sampling density of the image in the middle of the field of view than the edge, and the edge area is a place we are less concerned about than the center area. . Furthermore, with such an arrangement, rotating the image (without rotating the entire camera) may result in the loss of some potential information.
  • the purpose of the present disclosure is to provide a millimeter wave/terahertz wave imaging device so that the sampling dense points are concentrated in the middle of the full field of view, and the sampling points are evenly distributed in most areas of the field of view.
  • a millimeter wave/terahertz wave imaging device which includes: a quasi-optical component, a millimeter wave/terahertz wave detector array, and a reflector adjustment device,
  • the quasi-optical component is suitable for reflecting and converging the millimeter wave/terahertz wave spontaneously radiated or reflected by the object to be inspected to the millimeter wave/terahertz wave detector array, and includes suitable for receiving and reflecting from the object to be inspected Reflector of the beam;
  • the millimeter wave/terahertz wave detector array is adapted to receive the beam from the quasi-optical assembly
  • the reflecting plate adjusting device is adapted to adjust the movement of the reflecting plate, so that the trajectory envelope of the reflecting plate reflecting the spontaneously radiated or reflected beam of the object to be inspected is like a circle or an ellipse.
  • the reflector adjustment device includes:
  • a fixing plate an example of the fixing plate facing the reflecting plate is provided with a cylindrical member, and a track groove is provided on the cylindrical member, and the center line of the track groove adopts a hyperbolic paraboloid and the cylinder The boundary formed by the cylindrical surface of the shaped piece;
  • a parallelogram structure formed by the first link, the reflector, the posture guide and the second link, one end of the first link and one end of the posture guide are hinged to the reflector, respectively, the first
  • the two ends of the two connecting rods are respectively hinged with the first connecting rod and the posture guide rod;
  • the first connecting rod is rotatably connected with the fixed plate, and the free end of the posture guide rod and the track groove
  • the sliding connection makes the free end of the posture guide rod slide in the track groove when the first link rotates around its axis.
  • a driving motor connected to the first link is further included to drive the first link to rotate.
  • the first connecting rod adopts the output shaft of the driving motor.
  • the free end of the posture guide bar is provided with a slider slidingly connected to the track groove.
  • the reflecting plate adjusting device further includes an anti-escape mechanism provided on the posture guide bar and adapted to prevent the slider from coming out of the track groove.
  • the axial distance of the centerline of the track groove from the end of the cylindrical member away from the fixing plate is constant, and the anti-escape mechanism includes pressing against the cylindrical member away A pressing member on one end of the fixing plate, and a pressing spring for pressing the pressing member against the cylindrical member.
  • the track groove is opened on the inner surface of the cylindrical member.
  • the track groove is opened on the outer surface of the cylindrical member.
  • a photoelectric encoder is provided on the first link, and the photoelectric encoder is used to detect the real-time angular displacement of the first link and calculate the real-time attitude angle of the reflector.
  • the quasi-optical assembly further includes a focusing lens adapted to converge the beam from the reflecting plate, the focusing lens is located on the reflecting plate and the millimeter wave/terahertz along the path of the beam Between wave detector arrays.
  • the quasi-optical assembly further includes a focusing lens adapted to converge the beam from the object to be inspected, the focusing lens being located between the reflecting plate and the object to be inspected.
  • the millimeter wave/terahertz wave detector array is distributed in a ring shape.
  • the ring shape includes at least one of a circular ring, an oval ring, and a polygonal ring.
  • the polygonal ring includes at least one of a regular diamond ring, a flat diamond ring, and a rectangular ring.
  • a plurality of millimeter wave/terahertz wave detectors in the millimeter wave/terahertz wave detector array are evenly distributed on the ring.
  • the projections of the multiple millimeter wave/terahertz wave detectors in the millimeter wave/terahertz wave detector array in the field normal direction or the direction perpendicular to the field normal direction are uniform Distribution.
  • the millimeter wave/terahertz wave detector array is linearly distributed.
  • the reflective plate is planar.
  • the reflective plate uses a smooth metal surface or metal grid.
  • the reflective plate is a Fresnel mirror or a parabolic mirror.
  • the millimeter wave/terahertz wave imaging device further includes:
  • a data processing device that is connected to the millimeter wave/terahertz wave detector array to receive scan data for the subject from the millimeter wave/terahertz wave detector array and generate millimeter wave/terahertz waves Hertzian wave image;
  • a display device connected to the data processing device for receiving and displaying millimeter wave/terahertz wave images from the data processing device.
  • FIG. 1 is a schematic perspective view of a reflector adjusting device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic plan view of the reflecting plate adjusting device shown in FIG. 1;
  • FIG. 3 is a schematic diagram of the connection between the posture guide bar and the track groove shown in FIG. 1;
  • FIG. 4 is a schematic diagram of the principle of a millimeter wave/terahertz wave imaging device according to the present disclosure
  • FIG. 5 is a schematic structural view of a focusing lens between an object to be inspected and a reflecting plate according to an embodiment of the present disclosure
  • Fig. 6 is a millimeter wave/terahertz wave detector array uniformly distributed in a circular ring and its corresponding scanning trajectory and sampling statistics;
  • FIG. 7 is a millimeter wave/terahertz wave detector array with a circular ring inserted horizontally and its corresponding scanning trajectory and sampling statistics;
  • Figure 8 is a millimeter wave/terahertz wave detector array with a regular diamond ring uniformly distributed and its corresponding scanning trajectory and sampling statistics;
  • 9 is a millimeter wave/terahertz wave detector array with a regular diamond-shaped ring inserted horizontally and its corresponding scanning trajectory and sampling statistics;
  • Fig. 10 is a millimeter wave/terahertz wave detector array uniformly distributed in a flat diamond ring and its corresponding scanning trajectory and sampling statistics;
  • 11 is a millimeter-wave/terahertz wave detector array with horizontal diamond-shaped rings inserted horizontally and its corresponding scanning trajectory and sampling statistics;
  • Figure 12 is a linearly distributed millimeter wave/terahertz wave detector array and its corresponding scanning trajectory and sampling statistics.
  • the imaging device includes a quasi-optical component, a reflector adjustment device 5 and a millimeter-wave/terahertz wave detector array 2, wherein the quasi-optical component is adapted to reflect and converge the spontaneously radiated millimeter wave/terahertz wave of the subject 31 to the millimeter
  • the wave/terahertz wave detector array 2 includes a reflecting plate 1 adapted to receive and reflect the beam from the subject 31 and a focusing lens 4 adapted to converge the beam from the reflecting plate 1.
  • the millimeter wave/terahertz wave detector array 2 is suitable for receiving beams reflected and converged by quasi-optical components.
  • the reflection plate adjusting device 5 is adapted to adjust the movement of the reflection plate 1 so that the trajectory envelope of the reflection plate 1 reflecting the beam of spontaneous radiation of the object 31 to be detected is circular or elliptical.
  • the beam reflected by the reflector 1 is a millimeter wave or terahertz wave spontaneously radiated by the subject 31, however, those skilled in the art should understand that the beam can also be irradiated to the The millimeter wave/terahertz wave reflected by the inspection object 31 and reflected by the inspection object 31.
  • the reflecting plate adjusting device 5 includes a fixing plate 59.
  • An example of the fixing plate 59 facing the reflecting plate 1 is provided with a cylindrical member 54, and a track groove 55 is provided on the cylindrical member 54.
  • the center line of the groove 55 adopts the boundary line formed by the hyperbolic paraboloid and the cylindrical surface of the cylindrical member 54.
  • the reflector adjusting device 5 further includes a parallelogram structure formed by the first link 51, the reflector 1, the attitude guide 53 and the second link 52.
  • the reflection plate 1 is hinged, and both ends of the second link 52 are hinged with the first link 51 and the posture guide 53 respectively; the first link 51 is rotatably connected to the fixed plate 59, and the free end of the posture guide 53 is connected to the track groove 55 sliding connection, so that when the first link 51 rotates around its axis, the reflector 1 is driven to rotate, and the attitude guide 53 slides in the track groove 55 while the reflector 1 is rotating, thus making it perpendicular to the plane of the view
  • the pitch angle of is larger, and the roll angle formed in the direction perpendicular to the plane of the view is smaller.
  • the trajectory of the normal line of the reflector 1 is an elliptical cone, that is, ellipse scanning is realized (as shown in FIG. 4), and the sampling Dense points are concentrated in the middle of the full field of view, and in most areas of the field of view, the sampling points are evenly distributed and the interpolation is convenient.
  • the range of pitch angle is ⁇ 40°
  • the range of roll angle is ⁇ 35°.
  • the reflector adjustment device 5 further includes a drive motor 6 connected to the first link 51 for driving the first link 51 to rotate.
  • the output shaft of the drive motor 6 can be used as the first link 51.
  • the first link 51 may also be rigidly connected to the output shaft of the drive motor 6 so that the first link 51 is driven by the output shaft of the drive motor 6 The rotation causes the posture guide 53 to slide in the track groove 55.
  • the drive motor 6 is the only power source of the reflector adjustment device 5, and its output shaft is preferably adjusted to a suitable value via the speed reducer 7 (for example, it may be 60rpm to 1200rpm).
  • a slider 56 slidably connected to the track groove 55 is provided at the free end of the posture guide rod 53, and the slider 56 may be in the form of a bearing, for example.
  • the reflector adjusting device 5 further includes an anti-escape mechanism provided on the posture guide 53 and adapted to prevent the slider 56 from coming out of the track groove 55.
  • the axial distance of the center line of the track groove 55 from the end of the cylindrical member 54 away from the fixing plate 59 is constant.
  • the escape prevention mechanism includes a pressing member 57 pressed against the end of the cylindrical member 54 away from the fixing plate 59, and an end for pressing the pressing member 57 against the cylindrical member 54
  • the upper compression spring 58, wherein the compression member 57 may also take the form of a bearing connected to the posture guide 53.
  • the track groove 55 is opened on the inside surface of the cylindrical member 54, in this case, the posture guide 53 extends into the inside of the cylindrical member 54, and A sliding groove 55 provided on the inner surface of the cylindrical member 54 is slidingly connected. It should be noted that, in some other embodiments of the present disclosure, the track groove 55 may also be opened on the outer surface of the cylindrical member 54.
  • the focusing lens 4 is located between the reflection plate 1 and the millimeter wave/terahertz wave detector array 2 along the path of the beam. It should be noted that those skilled in the art should understand that, in some other embodiments of the present disclosure, the focusing lens 4 may also be disposed between the reflective plate 1 and the subject 31, that is, the subject 31 emits or reflects spontaneously. The returned millimeter wave/terahertz wave passes through the focusing lens 4 and then is reflected by the reflecting plate 1 to the millimeter wave/terahertz wave detector array 2 and received by the millimeter wave/terahertz wave detector array 2, as shown in FIG. 5.
  • a photoelectric encoder 8 is provided on the first link 51, and the photoelectric encoder 8 is used to detect the real-time angular displacement of the first link 51 and calculate the reflection plate 1 Real-time attitude angle.
  • the photoelectric encoder 8 is located on the portion of the first link 51 between the fixed plate 59 and the speed reducer 7.
  • the photoelectric encoder 8 may also be disposed on other parts, such as the first link between the fixed plate 59 and the reflective plate 1.
  • the millimeter wave/terahertz wave detector array 2 shows several distribution modes of the millimeter wave/terahertz wave detector array 2 and their corresponding scanning trajectories and sampling statistics.
  • the millimeter wave/terahertz wave detector array 2 is distributed in a ring shape and is located in the same plane.
  • the ring may be a circular ring (as shown in FIGS. 6 and 7), an elliptical ring, a polygonal ring, and the like.
  • the polygon ring may be a regular diamond ring (as shown in FIGS. 8 and 9), a flat diamond ring (as shown in FIGS. 10 and 11), a rectangular ring, and the like.
  • a plurality of millimeter wave/terahertz wave detectors in the millimeter wave/terahertz wave detector array 2 can be evenly distributed on the ring. It can also be distributed on the ring in a horizontal insertion space, that is, the multiple millimeter wave/terahertz wave detectors in the millimeter wave/terahertz wave detector array 2 in the direction of the field of view normal or perpendicular to the field of view The projection is evenly distributed.
  • the normal field of view refers to the direction of the horizontal line from the center of the reflecting plate 1 to the longitudinal center line of the field of view 3.
  • the millimeter wave/terahertz wave detector array 2 is uniformly distributed in a circular ring (as shown in Figure 6(a)), and the envelope of the scanning trajectory formed by the reflector adjustment device is circular or quasi-circular
  • the shape is shown in Figure 6(b), and its sampling is shown in Figure 6(c). It can be seen that the dense sampling points are concentrated in the middle of the field of view. At this time, the center point of the field of view can be used as a millimeter wave/terahertz wave
  • the calibration point of the detector is suitable for imaging multiple people at the same time.
  • the millimeter wave/terahertz wave detector array 2 is distributed in a circular ring and horizontally inserted into the air (as shown in FIG. 7(a)).
  • the envelope of the scanning trajectory formed by the reflector adjustment device is elliptical or Ellipse-like, as shown in Figure 7(b), and its sampling is shown in Figure 7(c). It can be seen that the sampling is basically uniformly distributed in the field of view, at this time the top of the field of view can be used as millimeter wave/terahertz wave detection
  • the calibration point of the device is suitable for imaging a single person.
  • the scanning trajectory can achieve a fairly uniform effect at the center.
  • the sampling point distribution is more uniform than that of the millimeter-wave/terahertz wave detector circular ring, and the subsequent image processing requires The difference is more convenient.
  • the side vertex angle range is preferably 1° to 44°
  • the central area is more uniformly distributed (the area of the excessively dense area is reduced), but the reflector adjustment device is required to provide a larger pitch angle and smaller Angle of roll.
  • the millimeter wave/terahertz wave detector array 2 is uniformly distributed in a regular diamond ring (as shown in Figure 8(a)), and the envelope of the scanning trajectory formed by the reflector adjustment device is elliptical or elliptical-like As shown in Figure 8(b), the sampling is shown in Figure 8(c). It can be seen that the sampling is basically uniformly distributed in the field of view, and the top of the field of view can be used as a correction for the millimeter wave/terahertz wave detector Point, this distribution is suitable for imaging a single person.
  • the millimeter wave/terahertz wave detector array 2 is distributed in a regular diamond-shaped ring horizontally (as shown in FIG. 9(a)), and the envelope of the scanning trajectory formed by the reflector adjustment device is elliptical or similar Oval, as shown in Fig. 9(b), and its sampling as shown in Fig. 9(c), it can be seen that the sampling is basically evenly distributed in the field of view, at this time the top of the field of view can be used as a millimeter wave/terahertz wave detector
  • the calibration point is suitable for imaging a single person.
  • the millimeter wave/terahertz wave detector array 2 is evenly distributed in a flat diamond ring (as shown in FIG. 10(a)), and the envelope of the scanning trajectory formed by the reflector adjustment device is elliptical or oval-like
  • the shape is shown in Figure 10(b), and the sampling is shown in Figure 10(c). It can be seen that the sampling is basically uniformly distributed in the field of view. At this time, the top of the field of view can be used as a millimeter wave/terahertz wave detector. Correction point, this distribution method is suitable for imaging a single person.
  • the millimeter wave/terahertz wave detector array 2 is distributed in a flat rhombic ring with horizontal insertion (as shown in Fig. 11(a), the side vertex angle is 20°), and the scan formed by the reflector adjustment device
  • the envelope of the trajectory is ellipse or ellipse-like, as shown in Figure 11(b), and its sampling is shown in Figure 11(c). It can be seen that the sampling is basically evenly distributed in the field of view.
  • the calibration point of the millimeter wave/terahertz wave detector is suitable for imaging a single person.
  • the millimeter wave/terahertz wave detector array 2 is linearly distributed (as shown in FIG. 12(a)), and the distribution direction is parallel to the normal direction of the field of view.
  • the advantage is that in the ellipse-like envelope scanning mode, the scanning trajectory can achieve a fairly uniform effect in most areas, as shown in Figures 12(b) and 12(c).
  • the number of millimeter wave/terahertz wave detectors in the millimeter wave/terahertz wave detector array 2 should be based on the required field of view The size and the required resolution are determined. The size of the millimeter wave/terahertz wave detector should be determined according to the wavelength, processing technology, and required sampling density.
  • the reflective plate 1 may be planar, such as a smooth metal surface or a metal grid grid, in other implementations of the present disclosure
  • the reflector 1 may also be non-planar, such as a Fresnel reflector or a parabolic reflector.
  • the imaging device may further include a data processing device (not shown).
  • the data processing device is wirelessly or wiredly connected to the millimeter wave/terahertz wave detector array 2 to receive the scan data from the millimeter wave/terahertz wave detector array 2 for the subject 31 and generate a millimeter wave/terahertz wave image.
  • the imaging apparatus may further include a display device connected to the data processing device for receiving and displaying millimeter wave/terahertz wave images from the data processing device.
  • the reflector plate adjusting device 5 drives the reflector plate 1 to move, so that the reflector plate 1 spontaneously radiates or reflects the beam returned by the subject 31
  • the trajectory envelope of the reflection is circular or ellipse-like.
  • the advantage over the cylindrical trajectory is that the dense sampling points are concentrated in the middle of the field of view, not at the edge of the field of view, and in most areas of the field of view The points are evenly distributed and the interpolation is convenient.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种毫米波/太赫兹波成像设备,包括:准光学组件、毫米波/太赫兹波探测器阵列(2)和反射板调节装置(5),准光学组件适用于将被检对象(31)自发辐射或反射回来的毫米波/太赫兹波反射并汇聚至毫米波/太赫兹波探测器阵列(2),并包括适用于接收并反射来自被检对象(31)的波束的反射板(1);毫米波/太赫兹波探测器阵列(2)适用于接收来自准光学组件的波束;反射板调节装置(5)适用于调节反射板(1)的运动,以使得反射板(1)对被检对象(31)自发辐射或反射回来的波束进行反射的轨迹包络为类圆形或类椭圆形,以使得采样密集点集中在全视场中间,而不是在视场边缘,且在视场的大部分区域,采样点分布均匀,插值方便。

Description

毫米波/太赫兹波成像设备
相关申请的交叉引用
本申请主张在2018年12月29日在中国专利局提交的中国专利申请No.201811654168.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及安检技术领域,特别是涉及一种毫米波/太赫兹波成像设备。
背景技术
基于被动式毫米波/太赫兹波的人体安检技术,具有独特的优点:其通过检测目标本身的毫米波/太赫兹波辐射实现成像以对人体进行安检(无需主动辐射),并利用毫米波/太赫兹波的穿透能力实现藏匿危险物的检测。根据成像体制的不同,毫米波和太赫兹波成像技术可以分为焦平面成像体制和基于机械扫描的成像体制。
基于焦平面成像技术的毫米波太赫兹相机使用复杂的技术而且需要特殊的装置,其基本原理是通过分布在焦平面上的众多单元天线以及适当的反射镜、透镜对目标的不同位置同时成像。如美国Northrop Grumman公司的NGC系统,使用焦平面阵列天线可以实现实时成像,但是系统复杂,例如NGC系统在水平15°,垂直10°的视场分辨率为0.5°的角分辨率,需要1040个探测器。为了降低系统成本和复杂度,当前主流的解决方案是一维线性探测器阵列加上机械扫描的方式来对整个视场进行扫描成像。
典型的探测器呈线性分布且探测器圆锥扫描时,探测器的线性布置导致图像在视场的中间部分相比边缘的采样密度低很多,而边缘区域相比中心区域是我们更不关心的地方。此外,对这样的布置,旋转图像(不旋转整个相机)可能导致损失一些潜在信息。
发明内容
本公开的目的在于提供一种毫米波/太赫兹波成像设备,以使得采样密集点集中在全视场中间,且在视场的大部分区域,采样点分布均匀。
根据本公开的实施例,提供了一种毫米波/太赫兹波成像设备,其包括:准光学组件、毫米波/太赫兹波探测器阵列和反射板调节装置,
所述准光学组件适用于将被检对象自发辐射或反射回来的毫米波/太赫兹波反射并汇聚至所述毫米波/太赫兹波探测器阵列,并包括适用于接收并反射来自被检对象的波束的反射板;
所述毫米波/太赫兹波探测器阵列适用于接收来自所述准光学组件的波束;和
所述反射板调节装置适用于调节所述反射板的运动,以使得所述反射板对所述被检对象自发辐射或反射回来的波束进行反射的轨迹包络为类圆形或类椭圆形。
在一些实施例中,所述反射板调节装置包括:
固定板,所述固定板面向所述反射板的一例设置有圆筒形件,在所述圆筒形件上设置有轨道槽,所述轨道槽的中心线采用双曲抛物面与所述圆筒形件的圆柱面所形成的交界线;和
由第一连杆、反射板、姿态导杆和第二连杆形成的平行四边形结构,所述第一连杆的一端和所述姿态导杆的一端分别与所述反射板铰接,所述第二连杆的两端分别与所述第一连杆和所述姿态导杆铰接;所述第一连杆与所述固定板转动式连接,所述姿态导杆的自由端与所述轨道槽滑动连接,使得所述第一连杆绕其轴线转动时,所述姿态导杆的自由端在所述轨道槽内滑动。
在一些实施例中,还包括与所述第一连杆连接的驱动电机,用于驱动所述第一连杆转动。
在一些实施例中,所述第一连杆采用所述驱动电机的输出轴。
在一些实施例中,所述姿态导杆的自由端设置有与所述轨道槽滑动连接的滑块。
在一些实施例中,所述反射板调节装置还包括设置在所述姿态导杆上适用于防止所述滑块从所述轨道槽脱出的防脱出机构。
在一些实施例中,所述轨道槽的中心线距离所述筒形件远离所述固定板的一端的轴向距离是恒定的,所述防脱出机构包括压靠在所述圆筒形件远离所述固定板的一端上的压紧件,以及用于将所述压紧件压靠在所述圆筒形件上的压紧弹簧。
在一些实施例中,所述轨道槽开设在所述圆筒形件的内表面上。
在一些实施例中,所述轨道槽开设在所述圆筒形件的外表面上。
在一些实施例中,所述第一连杆上设置有光电编码器,所述光电编码器用于检测所述第一连杆的实时角位移,并计算出所述反射板的实时姿态角。
在一些实施例中,所述准光学组件还包括适用于汇聚来自所述反射板的波束的聚焦透镜,所述聚焦透镜沿所述波束的路径位于所述反射板和所述毫米波/太赫兹波探测器阵列之间。
在一些实施例中,所述准光学组件还包括适用于汇聚来自所述被检对象的波束的聚焦透镜,所述聚焦透镜位于所述反射板和被检对象之间。
在一些实施例中,所述毫米波/太赫兹波探测器阵列呈环形分布。
在一些实施例中,所述环形包括圆形环、椭圆形环、多边形环中的至少一种。
在一些实施例中,所述多边形环包括正菱形环、扁菱形环、长方形环中的至少一种。
在一些实施例中,所述毫米波/太赫兹波探测器阵列中的多个毫米波/太赫兹波探测器均匀分布在所述环形上。
在一些实施例中,所述毫米波/太赫兹波探测器阵列中的多个毫米波/太赫兹波探测器在视场法向或垂直于所述视场法向的方向上的投影是均匀分布的。
在一些实施例中,所述毫米波/太赫兹波探测器阵列呈线性分布。
在一些实施例中,所述反射板是平面的。
在一些实施例中,所述反射板采用光滑的金属表面或金属栅网格。
在一些实施例中,所述反射板是菲涅尔反射镜或抛物面反射镜。
在一些实施例中,毫米波/太赫兹波成像设备还包括:
数据处理装置,所述数据处理装置与所述毫米波/太赫兹波探测器阵列连接以接收来自所述毫米波/太赫兹波探测器阵列的对于被检对象的扫描数据并生成毫米波/太赫兹波图像;和
显示装置,所述显示装置与所述数据处理装置相连接,用于接收和显示来自数据处理装置的毫米波/太赫兹波图像。
附图说明
图1为根据本公开的一个实施例的反射板调节装置的立体示意图;
图2为图1所示的反射板调节装置的平面示意图;
图3为图1所示的姿态导杆与轨道槽的连接示意图;
图4为根据本公开的一种毫米波/太赫兹波成像设备的原理示意图;
图5为根据本公开的一实施例的聚焦透镜位于被检对象和反射板之间的结构示意图;
图6为呈圆形环均匀分布的毫米波/太赫兹波探测器阵列及其相应的扫描轨迹和采样统计;
图7为呈圆形环横向插空分布的毫米波/太赫兹波探测器阵列及其相应的扫描轨迹和采样统计;
图8为呈正菱形环均匀分布的毫米波/太赫兹波探测器阵列及其相应的扫描轨迹和采样统计;
图9为呈正菱形环横向插空分布的毫米波/太赫兹波探测器阵列及其相应的扫描轨迹和采样统计;
图10为呈扁菱形环均匀分布的毫米波/太赫兹波探测器阵列及其相应的扫描轨迹和采样统计;
图11为呈扁菱形环横向插空分布的毫米波/太赫兹波探测器阵列及其相应的扫描轨迹和采样统计;以及
图12为呈线性分布的毫米波/太赫兹波探测器阵列及其相应的扫描轨迹和采样统计。
具体实施方式
虽然将参照含有本公开的较佳实施例的附图充分描述本公开,但在此描述之前应了解本领域的普通技术人员可修改本文中所描述的公开,同时获得本公开的技术效果。因此,须了解以上的描述对本领域的普通技术人员而言为一广泛的揭示,且其内容不在于限制本公开所描述的示例性实施例。
另外,在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本披露实施例的全面理解。然而明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。在其他情况下,公知的结构和装置以图示的方式体现以简化附图。
图1至图4示意性地示出了根据本公开的一实施例的被动式毫米波/太赫兹波成像设备。该成像设备包括准光学组件、反射板调节装置5和毫米波/太赫兹波探测器阵列2,其中准光学组件适用于将被检对象31自发辐射的毫米波/太赫 兹波反射并汇聚至毫米波/太赫兹波探测器阵列2,并包括适用于接收并反射来自被检对象31的波束的反射板1和适用于汇聚来自反射板1的波束的聚焦透镜4。毫米波/太赫兹波探测器阵列2适用于接收由准光学组件反射并汇聚后的波束。反射板调节装置5适用于调节反射板1的运动,以使得反射板1对被检对象31自发辐射的波束进行反射的轨迹包络为类圆形或类椭圆形。
需要说明的是,虽然在该实施例中,反射板1反射的波束是被检对象31自发辐射的毫米波或太赫兹波,然而本领域的技术人员应当理解,该波束也可以为照射到被检对象31并经被检对象31反射回来的毫米波/太赫兹波。
如图1和图2所示,反射板调节装置5包括固定板59,固定板59面向反射板1的一例设置有圆筒形件54,在圆筒形件54上设置有轨道槽55,轨道槽55的中心线采用双曲抛物面与圆筒形件54的圆柱面所形成的交界线。反射板调节装置5还包括由第一连杆51、反射板1、姿态导杆53和第二连杆52形成的平行四边形结构,第一连杆51的一端和姿态导杆53的一端分别与反射板1铰接,第二连杆52的两端分别与第一连杆51和姿态导杆53铰接;第一连杆51与固定板59转动式连接,姿态导杆53的自由端与轨道槽55滑动连接,使得当第一连杆51绕其轴线转动时,带动反射板1旋转,在反射板1旋转的同时姿态导杆53在轨道槽55内滑动,因而使得在垂直于视图所在平面形成的俯仰角较大,而在垂直于视图所在平面方向上形成的侧倾角较小,反射板1的法线经过的轨迹为椭圆锥,即实现了椭圆扫描(如图4所示),且采样密集点集中在全视场中间,且在视场的大部分区域,采样点分布均匀,插值方便。优选俯仰角的范围为±40°,侧倾角的范围为±35°。
如图1和图2所示,在一个示例性实施例中,该反射板调节装置5还包括与第一连杆51连接的驱动电机6,用于驱动第一连杆51转动。优选地,可以采用驱动电机6的输出轴作为第一连杆51。需要说明的是,在本公开的其它一些实施例中,也可以将第一连杆51与驱动电机6的输出轴刚性连接,以使得第一连杆51在驱动电机6的输出轴的带动下转动,从而使得姿态导杆53在轨道槽55内滑动。在该实施例中,驱动电机6是反射板调节装置5的唯一动力源,其输出轴优选经由减速器7将其转速调整至合适值(例如可以是60rpm至1200rpm)。
如图3所示,在一个实施例中,在姿态导杆53的自由端设置有与轨道槽55滑动连接的滑块56,该滑块56例如可以采用轴承的形式。
如图3所示,反射板调节装置5还包括设置在在姿态导杆53上适用于防止滑 块56从轨道槽55脱出的防脱出机构。如图3所示,在一个示例性实施例中,轨道槽55的中心线距离圆筒形件54远离固定板59的一端的轴向距离是恒定的。在这种情况下,防脱出机构包括压靠在圆筒形件54远离固定板59的一端上的压紧件57,以及用于将压紧件57压靠在圆筒形件54的端部上的压紧弹簧58,其中压紧件57也可以采用与姿态导杆53连接的轴承的形式。
如图2所示,在一个示例性实施例中,轨道槽55开设在圆筒形件54的内侧表面上,在这种情况下,姿态导杆53伸至圆筒形件54的内部,并与设置在圆筒形件54内表面上的轨道槽55滑动连接。需要说明的是,在本公开的其它一些实施例中,也可以将轨道槽55开设在圆筒形件54的外侧表面上。
如图4所示,在一个示例性实施例中,聚焦透镜4沿波束的路径位于反射板1和毫米波/太赫兹波探测器阵列2之间。需要说明的是,本领域的技术人员应当理解,在本公开的其它一些实施例中,聚焦透镜4也可以设置在反射板1和被检对象31之间,即被检对象31自发辐射或反射回来的毫米波/太赫兹波经过聚集透镜4,然后被反射板1反射至毫米波/太赫兹波探测器阵列2并由毫米波/太赫兹波探测器阵列2接收,如图5所示。
如图2所示,在一个示例性实施例中,第一连杆51上设置有光电编码器8,该光电编码器8用于检测第一连杆51的实时角位移,并计算出反射板1的实时姿态角。如图2所示,该光电编码器8位于第一连杆51的在固定板59和减速器7之间的部分上。然而需要说明的是,在本公开的其它一些实施例中,也可以将光电编码器8设置在其它部分上,例如固定板59和反射板1之间的第一连杆上。
图6至图11示出了毫米波/太赫兹波探测器阵列2的几种分布方式及其相应的扫描轨迹和采样统计。其中,毫米波/太赫兹波探测器阵列2呈环形分布,并位于同一平面内,该环可以是圆形环(如图6、7所示)、椭圆形环、多边形环等。其中多边形环可以是正菱形环(如图8、9所示)、扁菱形环(如图10、11所示)、长方形环等。此外,毫米波/太赫兹波探测器阵列2中的多个毫米波/太赫兹波探测器可以均匀分布在环上。也可以呈横向插空分布在环上,即毫米波/太赫兹波探测器阵列2中的多个毫米波/太赫兹波探测器在视场法向或垂直于视场法向的方向上的投影是均匀分布的。在这里,视场法向指的是从反射板1的中心到视场3的纵向中心线之间的水平连线的方向。
如图6所示,毫米波/太赫兹波探测器阵列2呈圆形环均匀分布(如图6(a)所示),通过反射板调节装置形成的扫描轨迹包络为圆形或准圆形,如图6(b) 所示,其采样如图6(c)所示,可以看出,采样密集点都集中在视场中间,此时视场中心点可作为毫米波/太赫兹波探测器的校正点,该分布方式适合对多人同时进行成像。
如图7所示,毫米波/太赫兹波探测器阵列2呈圆形环横向插空分布(如图7(a)所示),通过反射板调节装置形成的扫描轨迹包络为椭圆形或类椭圆形,如图7(b)所示,其采样如图7(c)所示,可以看出,采样在视场基本均匀分布,此时视场顶部可作为毫米波/太赫兹波探测器的校正点,该分布方式适合对单人进行成像。
当毫米波/太赫兹波探测器阵列2呈菱形环分布时,可使扫描轨迹在中心部位达到相当均匀的效果。例如,当毫米波/太赫兹波探测器阵列2采用菱形环横向插空分布方式时,采样点分布比毫米波/太赫兹波探测器圆形环分布更加均匀,且后续图像处理所需进行的差值更加方便。当采用扁菱形环分布时(侧顶角范围优选为1°~44°),中心区域分布更均匀(过分密集区域范围减小),但需要反射板调节装置提供更大的俯仰角和更小的侧倾角。
如图8所示,毫米波/太赫兹波探测器阵列2呈正菱形环均匀分布(如图8(a)所示),通过反射板调节装置形成的扫描轨迹包络为椭圆形或类椭圆形,如图8(b)所示,其采样如图8(c)所示,可以看出,采样在视场基本均匀分布,此时视场顶部可作为毫米波/太赫兹波探测器的校正点,该分布方式适合对单人进行成像。
如图9所示,毫米波/太赫兹波探测器阵列2呈正菱形环横向插空分布(如图9(a)所示),通过反射板调节装置形成的扫描轨迹包络为椭圆形或类椭圆形,如图9(b)所示,其采样如图9(c)所示,可以看出,采样在视场基本均匀分布,此时视场顶部可作为毫米波/太赫兹波探测器的校正点,该分布方式适合对单人进行成像。
如图10所示,毫米波/太赫兹波探测器阵列2呈扁菱形环均匀分布(如图10(a)所示),通过反射板调节装置形成的扫描轨迹包络为椭圆形或类椭圆形,如图10(b)所示,其采样如图10(c)所示,可以看出,采样在视场基本均匀分布,此时视场顶部可作为毫米波/太赫兹波探测器的校正点,该分布方式适合对单人进行成像。
如图11所示,毫米波/太赫兹波探测器阵列2呈扁菱形环横向插空分布(如图11(a)所示,侧顶角为20°),通过反射板调节装置形成的扫描轨迹包络为 椭圆形或类椭圆形,如图11(b)所示,其采样如图11(c)所示,可以看出,采样在视场基本均匀分布,此时视场顶部可作为毫米波/太赫兹波探测器的校正点,该分布方式适合对单人进行成像。
如图12所示,在一个示例性实施例中,毫米波/太赫兹波探测器阵列2呈线性分布(如图12(a)所示),分布方向与视场法向平行。其优点是在类椭圆包络扫描方式下,可使扫描轨迹在绝大部分区域达到相当均匀的效果,如图12(b)和12(c)所示。
需要说明的是,本领域的技术人员应当理解,在本公开的其它一些实施例中,毫米波/太赫兹波探测器阵列2中的毫米波/太赫兹波探测器数量应根据所需视场大小以及所需分辨率确定,毫米波/太赫兹波探测器的大小应根据波长、加工工艺,以及所需采样密度等确定。
此外,需要说明的是,本领域的技术人员应当理解,在本公开的一些实施例中,反射板1可以是平面的,例如光滑的金属表面或金属栅网格,在本公开的另外一些实施例中,反射板1也可以是非平面的,例如菲涅尔反射镜或者抛物面反射镜。
在本公开的一个实施例中,该成像设备还可以包括数据处理装置(未示出)。该数据处理装置与毫米波/太赫兹波探测器阵列2无线连接或有线连接以接收来自毫米波/太赫兹波探测器阵列2的对于被检对象31的扫描数据并生成毫米波/太赫兹波图像。该成像设备还可以包括显示装置,该显示装置与数据处理装置相连接,用于接收和显示来自数据处理装置的毫米波/太赫兹波图像。
根据本公开上述各种实施例所述的毫米波/太赫兹波成像设备,通过反射板调节装置5带动反射板1运动,以使得反射板1对被检对象31自发辐射或反射回来的波束进行反射的轨迹包络为类圆形或类椭圆形,相比轨迹为圆柱形的优点是,采样密集点集中在视场中间,而不是在视场边缘,且在视场的大部分区域,采样点分布均匀,插值方便。
本领域的技术人员可以理解,上面所描述的实施例都是示例性的,并且本领域的技术人员可以对其进行改进,各种实施例中所描述的结构在不发生结构或者原理方面的冲突的情况下可以进行自由组合。
在详细说明本公开的较佳实施例之后,熟悉本领域的技术人员可清楚的了解,在不脱离随附权利要求的保护范围与精神下可进行各种变化与改变,且本公开亦不受限于说明书中所举示例性实施例的实施方式。

Claims (20)

  1. 一种毫米波/太赫兹波成像设备,包括:准光学组件、毫米波/太赫兹波探测器阵列和反射板调节装置,
    所述准光学组件适用于将被检对象自发辐射或反射回来的毫米波/太赫兹波反射并汇聚至所述毫米波/太赫兹波探测器阵列,并包括适用于接收并反射来自被检对象的波束的反射板;
    所述毫米波/太赫兹波探测器阵列适用于接收来自所述准光学组件的波束;和
    所述反射板调节装置适用于调节所述反射板的运动,以使得所述反射板对所述被检对象自发辐射或反射回来的波束进行反射的轨迹包络为类圆形或类椭圆形。
  2. 根据权利要求1所述的成像设备,其中,所述反射板调节装置包括:
    固定板,所述固定板面向所述反射板的一侧设置有圆筒形件,在所述圆筒形件上设置有轨道槽,所述轨道槽的中心线采用双曲抛物面与所述圆筒形件的圆柱面所形成的交界线;和
    由第一连杆、反射板、姿态导杆和第二连杆形成的平行四边形结构,所述第一连杆的一端和所述姿态导杆的一端分别与所述反射板铰接,所述第二连杆的两端分别与所述第一连杆和所述姿态导杆铰接;所述第一连杆与所述固定板转动式连接,所述姿态导杆的自由端与所述轨道槽滑动连接,使得所述第一连杆绕其轴线转动时,所述姿态导杆的自由端在所述轨道槽内滑动。
  3. 根据权利要求2所述的成像设备,其中,还包括与所述第一连杆连接的驱动电机,用于驱动所述第一连杆转动。
  4. 根据权利要求3所述的成像设备,其中,所述第一连杆采用所述驱动电机的输出轴。
  5. 根据权利要求2所述的成像设备,其中,所述姿态导杆的自由端设置有与所述轨道槽滑动连接的滑块。
  6. 根据权利要求5所述的成像设备,其中,所述反射板调节装置还包括设置在所述姿态导杆上适用于防止所述滑块从所述轨道槽脱出的防脱出机构。
  7. 根据权利要求6所述的成像设备,其中,所述轨道槽的中心线距离所述筒形件远离所述固定板的一端的轴向距离是恒定的,所述防脱出机构包括压靠在所述圆筒形件远离所述固定板的一端上的压紧件,以及用于将所述压紧件压靠在所述圆筒形件上的压紧弹簧。
  8. 根据权利要求2所述的成像设备,其中,所述轨道槽开设在所述圆筒形件的内表面上。
  9. 根据权利要求2所述的成像设备,其中,所述第一连杆上设置有光电编码器,所述光电编码器用于检测所述第一连杆的实时角位移,以计算出所述反射板的实时姿态角。
  10. 根据权利要求1所述的成像设备,其中,所述准光学组件还包括适用于汇聚来自所述反射板的波束的聚焦透镜,所述聚焦透镜沿所述波束的路径位于所述反射板和所述毫米波/太赫兹波探测器阵列之间。
  11. 根据权利要求1所述的成像设备,其中,所述准光学组件还包括适用于汇聚来自所述被检对象的波束的聚焦透镜,所述聚焦透镜位于所述反射板和被检对象之间。
  12. 根据权利要求1所述的成像设备,其中,所述毫米波/太赫兹波探测器阵列呈环形分布。
  13. 根据权利要求13所述的成像设备,其中,所述环形包括圆形环、椭圆形环、多边形环中的至少一种。
  14. 根据权利要求14所述的成像设备,其中,所述多边形环包括正菱形环、 扁菱形环、长方形环中的至少一种。
  15. 根据权利要求13所述的成像设备,其中,所述毫米波/太赫兹波探测器阵列中的多个毫米波/太赫兹波探测器均匀分布在所述环上。
  16. 根据权利要求13所述的成像设备,其中,所述毫米波/太赫兹波探测器阵列中的多个毫米波/太赫兹波探测器在视场法向或垂直于所述视场法向的方向上的投影是均匀分布的。
  17. 根据权利要求13所述的成像设备,其中,所述毫米波/太赫兹波探测器阵列呈线性分布。
  18. 根据权利要求1-16中的任一项所述的成像设备,其中,所述反射板是平面的。
  19. 根据权利要求1-16中的任一项所述的成像设备,其中,所述反射板是菲涅尔反射镜或抛物面反射镜。
  20. 根据权利要求1-16中的任一项所述的成像设备,其中,还包括:
    数据处理装置,所述数据处理装置与所述毫米波/太赫兹波探测器阵列连接以接收来自所述毫米波/太赫兹波探测器阵列的对于被检对象的扫描数据并生成毫米波/太赫兹波图像;和
    显示装置,所述显示装置与所述数据处理装置相连接,用于接收和显示来自数据处理装置的毫米波/太赫兹波图像。
PCT/CN2019/110409 2018-12-29 2019-10-10 毫米波/太赫兹波成像设备 WO2020134339A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811654168.9 2018-12-29
CN201811654168.9A CN109870737B (zh) 2018-12-29 2018-12-29 毫米波/太赫兹波成像设备

Publications (1)

Publication Number Publication Date
WO2020134339A1 true WO2020134339A1 (zh) 2020-07-02

Family

ID=66917404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110409 WO2020134339A1 (zh) 2018-12-29 2019-10-10 毫米波/太赫兹波成像设备

Country Status (2)

Country Link
CN (1) CN109870737B (zh)
WO (1) WO2020134339A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109870737B (zh) * 2018-12-29 2021-04-16 同方威视技术股份有限公司 毫米波/太赫兹波成像设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060232828A1 (en) * 2003-03-22 2006-10-19 Qinetiq Limited Millimeter-wave imaging apparatus
CN101644770A (zh) * 2009-09-07 2010-02-10 哈尔滨工业大学 被动式毫米波成像系统
CN104914476A (zh) * 2015-07-01 2015-09-16 博康智能网络科技股份有限公司 旋转滚筒式太赫兹人体安检扫描机构
CN108562948A (zh) * 2018-06-08 2018-09-21 西安天和防务技术股份有限公司 一种基于被动式的太赫兹扫描成像系统
CN109870737A (zh) * 2018-12-29 2019-06-11 同方威视技术股份有限公司 毫米波/太赫兹波成像设备
CN209182531U (zh) * 2018-12-29 2019-07-30 同方威视技术股份有限公司 毫米波/太赫兹波成像设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060232828A1 (en) * 2003-03-22 2006-10-19 Qinetiq Limited Millimeter-wave imaging apparatus
CN101644770A (zh) * 2009-09-07 2010-02-10 哈尔滨工业大学 被动式毫米波成像系统
CN104914476A (zh) * 2015-07-01 2015-09-16 博康智能网络科技股份有限公司 旋转滚筒式太赫兹人体安检扫描机构
CN108562948A (zh) * 2018-06-08 2018-09-21 西安天和防务技术股份有限公司 一种基于被动式的太赫兹扫描成像系统
CN109870737A (zh) * 2018-12-29 2019-06-11 同方威视技术股份有限公司 毫米波/太赫兹波成像设备
CN209182531U (zh) * 2018-12-29 2019-07-30 同方威视技术股份有限公司 毫米波/太赫兹波成像设备

Also Published As

Publication number Publication date
CN109870737A (zh) 2019-06-11
CN109870737B (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
US11646329B2 (en) Image capture device, method of capturing image with the same, and irradiation device
CN101832912B (zh) 太赫兹波快速成像扫描装置
CN109725364B (zh) 毫米波/太赫兹波成像设备及人体或物品检测方法
CN104849770B (zh) 一种基于被动太赫兹安检成像系统的成像方法
CN102004311B (zh) 一种太赫兹波扫描方法和系统
CN109655931B (zh) 毫米波/太赫兹波成像设备及对人体或物品的检测方法
CN105181137A (zh) 用于地基对月观测的宽波段高光谱分辨率成像系统
WO2020134339A1 (zh) 毫米波/太赫兹波成像设备
CN109870739B (zh) 毫米波/太赫兹波成像设备
CN109856696A (zh) 毫米波/太赫兹波成像设备及人体或物品检测方法
CN104898171B (zh) 一种基于椭球面镜聚焦的高分辨率快速扫描成像的准光系统
CN109444978B (zh) 毫米波/太赫兹波成像设备及对人体或物品的检测方法
WO2020134326A1 (zh) 毫米波/太赫兹波成像设备、检测方法以及校正方法
CN109633776B (zh) 毫米波/太赫兹波成像设备及人体或物品检测方法
CN109633775B (zh) 毫米波/太赫兹波成像设备对人体或物品进行检测的方法
CN112461512A (zh) 一种大口径空间光学遥感器星上辐射定标方法及装置
WO2020134319A1 (zh) 毫米波/太赫兹波成像设备
JP7167211B2 (ja) 画像取得装置、これを用いた画像取得方法及び照射装置
CN109407168B (zh) 毫米波/太赫兹波成像设备及其反射板调节装置
CN209296948U (zh) 毫米波/太赫兹波成像设备
CN209182531U (zh) 毫米波/太赫兹波成像设备
WO2020134336A1 (zh) 毫米波/太赫兹波成像设备及对人体或物品的检测方法
CN209182526U (zh) 毫米波/太赫兹波安检仪及其反射板扫描驱动装置
US7067798B2 (en) Multiple drum apparatus for high speed scanning of microwave, mm-wave and infrared radiation
CN112469947B (zh) 表征反射元件的表面的形状和变形的表征装置、系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905377

Country of ref document: EP

Kind code of ref document: A1