WO2020134298A1 - 纹路识别装置以及纹路识别装置的操作方法 - Google Patents

纹路识别装置以及纹路识别装置的操作方法 Download PDF

Info

Publication number
WO2020134298A1
WO2020134298A1 PCT/CN2019/109436 CN2019109436W WO2020134298A1 WO 2020134298 A1 WO2020134298 A1 WO 2020134298A1 CN 2019109436 W CN2019109436 W CN 2019109436W WO 2020134298 A1 WO2020134298 A1 WO 2020134298A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
image
texture
image sensor
array
Prior art date
Application number
PCT/CN2019/109436
Other languages
English (en)
French (fr)
Inventor
王海生
董学
刘英明
丁小梁
王雷
李昌峰
李亚鹏
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/648,628 priority Critical patent/US11232279B2/en
Publication of WO2020134298A1 publication Critical patent/WO2020134298A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1347Preprocessing; Feature extraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/147Details of sensors, e.g. sensor lenses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/145Illumination specially adapted for pattern recognition, e.g. using gratings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/10Character recognition
    • G06V30/28Character recognition specially adapted to the type of the alphabet, e.g. Latin alphabet
    • G06V30/293Character recognition specially adapted to the type of the alphabet, e.g. Latin alphabet of characters other than Kanji, Hiragana or Katakana

Definitions

  • the embodiments of the present disclosure relate to a texture recognition device and an operation method of the texture recognition device.
  • At least one embodiment of the present disclosure provides a texture recognition device, which includes a light source array and an image sensor array.
  • the light source array includes a plurality of light sources; the image sensor array is disposed on one side of the light source array and includes a plurality of image sensors configured to receive light emitted from the plurality of light sources and reflected to the light via the texture
  • the light of the image sensor is used for texture image acquisition; wherein each image sensor includes a plurality of signal switches, and the signal of each image sensor is read by the plurality of signal switches for forming the texture An image pixel of an image.
  • each of the image sensors includes a photosensitive element and a plurality of signal switches electrically connected to the photosensitive element; the plurality of signal switches are connected to the same texture acquisition line .
  • each of the sub-image sensors includes a photosensitive element and a signal switch electrically connected to the photosensitive element; wherein, each of the image sensors includes The plurality of sub-signals of the plurality of sub-image sensors are respectively output to the data output circuit through the signal switches of the plurality of sub-image sensors, and then the data output circuit superimposes the plurality of sub-signals to form one of the texture images Image pixels.
  • each of the image sensors includes a plurality of sub-image sensors, and each of the sub-image sensors includes a photosensitive element and a plurality of electrically connected to the photosensitive element A signal switch; wherein, a plurality of sub-signals of the plurality of sub-image sensors included in each of the image sensors are respectively output and superimposed by a plurality of signal switches of the plurality of sub-image sensors to obtain signals of each of the image sensors, Then, the signal of each image sensor obtained by superposition is output to a data output circuit for forming one image pixel of the texture image.
  • the multiple sub-image sensors of each image sensor are arranged in an M ⁇ N array, where M and N are positive integers and at least one of them is greater than 1.
  • the light source is a point light source, a linear light source, a zigzag light source, or a zigzag light source.
  • the texture recognition device provided by at least one embodiment of the present disclosure further includes a display panel, the display panel includes a pixel unit array, and the pixel unit array includes a plurality of pixel units; the pixel unit array includes the light source array, Each of the plurality of light sources includes one or more of the pixel units.
  • each of the light sources includes a plurality of the pixel units, wherein when the plurality of pixel units included in each of the light sources are arranged to form a point-shaped light source At this time, a plurality of the pixel units included in each of the light sources are configured to be lit at intervals.
  • the display panel includes an organic light emitting diode display panel or a quantum dot light emitting diode display panel.
  • the texture recognition apparatus further includes a controller, wherein the plurality of light sources include at least one first light source and at least one second light source, and the second light source is along the first light source.
  • the first direction is offset by a first distance; the controller is configured to control the lighting of the first light source at a first moment during the texture acquisition of the image sensor array, at a different time than the first At the second moment of the moment, the second light source is controlled to light up.
  • the plurality of light sources further include at least one third light source, and the third light source is offset from the first light source by a second distance along the first direction And the second distance is less than the first distance; the controller is further configured to be different from the first time and the second time during the image sensor array performing the texture acquisition At the third moment, the third light source is turned on.
  • the time interval between the third time and the first time is greater than or equal to the afterimage erasing time of the image sensor.
  • the controller is further configured to control the lighting arrangement to be the first at the first time during the texture acquisition by the image sensor array A plurality of first light sources of the pattern, controlling the lighting of the plurality of second light sources arranged as a second pattern at the second time, wherein the second pattern and the first pattern are offset in the first direction First distance.
  • the controller is further configured to control the lighting of a plurality of patterns in a third pattern at a third time different from the first time and the second time A third light source, the third pattern and the first pattern are offset by a second distance along the first direction, and the second distance is smaller than the first distance.
  • the first pattern, the second pattern, and the third pattern are the same.
  • the imaging range of the first light source on the image sensor array is in a first ring shape
  • the imaging range of the second light source on the image sensor array In a second ring shape; the first ring and the second ring do not overlap or the overlapping area is less than the interference threshold.
  • the imaging range of the first light source on the image sensor array is in a first ring shape
  • the imaging range of the second light source on the image sensor array In a second ring shape
  • the imaging range of the third light source on the image sensor array is in a third ring shape
  • the third ring shape covers the center of the first ring shape
  • At least one embodiment of the present disclosure provides an operation method of a texture recognition device, which includes a light source array and an image sensor array.
  • the light source array includes a plurality of light sources;
  • the image sensor array is disposed on one side of the light source array, and includes a plurality of image sensors, wherein the plurality of image sensors are configured to receive light emitted from the plurality of light sources and reflected by the texture
  • the light to the image sensor is used for texture image acquisition, each of the image sensors includes a plurality of signal switches; the operation method includes: reading the signal of each image sensor through the plurality of signal switches One image pixel used to form the texture image.
  • each of the image sensors includes a photosensitive element and a plurality of signal switches electrically connected to the photosensitive element, and each of the sub-image sensors includes a photosensitive element And a signal switch electrically connected to the photosensitive element; the operation method further includes: using the same texture acquisition line to provide a driving signal for a plurality of signal switches of each image sensor.
  • each of the image sensors includes a plurality of sub-image sensors, and each of the sub-image sensors includes a photosensitive element and a signal switch electrically connected to the photosensitive element;
  • the operation method further includes: outputting a plurality of sub-signals of the plurality of sub-image sensors included in each of the image sensors to a data output circuit, and then the data output circuit superimposing the plurality of sub-signals for use in One image pixel forming the texture image.
  • each of the image sensors includes a plurality of sub-image sensors, and each of the sub-image sensors includes a photosensitive element and a signal switch electrically connected to the photosensitive element;
  • the operation method further includes: superimposing a plurality of sub-signals of the plurality of sub-image sensors included in each of the image sensors, and then outputting to a data output circuit for forming one image pixel of the texture image.
  • the texture recognition device includes a display panel, the display panel includes a pixel unit array, the pixel unit array includes a plurality of pixel units, and the pixel unit array includes all The light source array, each of the plurality of light sources includes one or more of the pixel units; the operation method further includes: lighting one or more of the pixel units of each of the light sources to form a point light source , Linear light source, zigzag light source or zigzag light source.
  • each of the light sources includes a plurality of pixel units for forming a point-shaped light source; the operation method further includes: lighting at intervals to form the point-shaped light source Multiple of the pixel units.
  • the plurality of light sources include at least one first light source and at least one second light source, and the second light source is offset from the first light source in the first direction by A distance; the operation method further includes: during the process of the texture acquisition by the image sensor array, lighting the first light source at a first time, and lighting the second light at a second time different from the first time Two light sources.
  • the plurality of light sources further include at least one third light source, and the third light source is offset from the first light source by a second distance along the first direction, And the second distance is less than the first distance; the operation method further includes: during the process of acquiring the texture of the image sensor array, at a time different from the first time and the second time At the third moment, the third light source is turned on.
  • the imaging range of the first light source on the image sensor array is a first ring
  • the imaging range of the second light source on the image sensor array is A second ring
  • the first ring and the second ring do not overlap or the overlapping area is less than the interference threshold.
  • the imaging range of the first light source on the image sensor array is a first ring
  • the imaging range of the second light source on the image sensor array is A second ring shape
  • the imaging range of the third light source on the image sensor array is a third ring shape
  • the third ring shape covers the ring center of the first ring shape, the first ring shape and the second ring shape
  • the time interval between the third time and the first time is greater than or equal to the afterimage erasing time of the image sensor.
  • 1A is a schematic cross-sectional view of a texture recognition device provided by at least one embodiment of the present disclosure
  • 1B is a schematic plan view of an image sensor array in a texture recognition device provided by at least one embodiment of the present disclosure
  • 1C is a schematic plan view of another image sensor array in a texture recognition device provided by at least one embodiment of the present disclosure
  • FIG. 1D is a schematic plan view of yet another image sensor array in a texture recognition device provided by at least one embodiment of the present disclosure
  • FIG. 2 is a schematic cross-sectional view of another texture recognition device provided by at least one embodiment of the present disclosure
  • 3 is a texture image formed by a light source of a texture recognition device according to at least one embodiment of the present disclosure
  • 4A is a schematic diagram of a part of a light source array in a texture recognition device provided by at least one embodiment of the present disclosure
  • FIG. 4B is a schematic diagram of the imaging range of the light source array in FIG. 4A;
  • FIG. 5A is another schematic diagram of a part of the light source array in a texture recognition device provided by at least one embodiment of the present disclosure
  • FIG. 5B is a schematic diagram of the imaging range of the light source array in FIG. 5A;
  • 6A and 6B are schematic diagrams of the shape of a light source in a texture recognition device provided by at least one embodiment of the present disclosure
  • 6C-6E are schematic diagrams of a plurality of pixel units in a texture recognition device provided by at least one embodiment of the present disclosure to light up to form light sources of different shapes;
  • FIG. 7 is a texture image obtained by a texture recognition device provided by at least one embodiment of the present disclosure.
  • Fig. 8 is a picture of the residual image in the texture image.
  • One of the means to realize this technology is to integrate an image sensor with a fingerprint recognition function into the display device, realize the off-screen fingerprint recognition method, and increase the area of the display area of the display device.
  • the image sensor of the texture recognition device usually includes a photosensitive element and a switching transistor electrically connected to the photosensitive element.
  • the gate of the switching transistor is electrically connected to the texture acquisition line, the source of the switching transistor is electrically connected to the photosensitive element, and the drain of the switching transistor is electrically connected to the detection output line.
  • the switching transistor is turned on to connect the photosensitive element to the driving circuit through the detection output line, so that the driving circuit can obtain the electrical signal generated by the photosensitive element.
  • the switching transistor is turned off. This allows the drive circuit to determine the texture image based on the acquired electrical signal.
  • Fig. 8 shows a frame image with afterimages.
  • the gradually weakened point on the side of the large circular spot in the picture is that the image sensor has not completely released the photo-generated charge after collecting the previous frame image Afterimages appearing in the current frame, the afterimages seriously affect the clarity and accuracy of the image texture. Therefore, the texture image can be acquired in a time-sharing manner.
  • An embodiment of the present disclosure provides a texture recognition device, which includes a light source array and an image sensor array.
  • the light source array includes a plurality of light sources;
  • the image sensor array is disposed on one side of the light source array and includes a plurality of image sensors configured to receive light emitted from the plurality of light sources and reflected to the image sensor via the texture for the texture Image acquisition;
  • each of the image sensors includes a plurality of signal switches, and each signal of the image sensor is used to form an image pixel of the texture image.
  • At least one embodiment of the present disclosure provides an operation method of a texture recognition device, which includes a light source array and an image sensor array.
  • the light source array includes a plurality of light sources;
  • the image sensor array is disposed on one side of the light source array, and includes a plurality of image sensors, wherein the plurality of image sensors are configured to receive light emitted from the plurality of light sources and reflected to the image sensor via the texture Light is used for texture image acquisition, and each image sensor includes a plurality of signal switches; the operation method includes: reading the signal of each image sensor through the plurality of signal switches for forming an image pixel of the texture image.
  • FIG. 1A is a schematic cross-sectional view of a texture recognition device 100 provided by some embodiments of the present disclosure
  • FIG. 1B is a schematic plan view of an image sensor array 120 in the texture recognition device 100 provided by this embodiment
  • FIG. 1C is a texture provided by this embodiment
  • FIG. 1D is a schematic plan view of another image sensor array 120 in the texture recognition device 100 provided in this embodiment.
  • the texture recognition device 100 has a touch side 112 (shown as the upper side of the texture recognition device 100 in FIG. 1A), and includes a light source array and an image sensor array 120.
  • the texture recognition device 100 may Used for the collection of lines (such as fingerprints or palm lines), for fingerprint or palm line recognition.
  • the light source array includes a plurality of light sources 111, which are arranged in an array within a predetermined area; the image sensor array 120 is provided on one side of the light source array, for example, on the side of the light source array away from the touch side, the image sensor array 120 includes multiple An image sensor 121, and the plurality of image sensors 121 are configured to receive light emitted from the plurality of light sources 111 and reflected to the image sensor 121 via the texture for texture acquisition.
  • the light reflected to the image sensor 121 is light reflected by the texture-recognizing device 100 by a texture-operating body (for example, an operator's finger or palm).
  • each image sensor 121 includes a photosensitive element 122 and a plurality of signal switches electrically connected to the photosensitive element 122, for example, the signal switch is a switching transistor 123, and the plurality of signal switches of each image sensor 121 are connected The same texture acquisition line 124, so that the switching states of the multiple signal switches are the same.
  • the signal of each image sensor 121 is read through a plurality of signal switches for forming one image pixel of the texture image.
  • each image sensor 121 includes multiple sub-image sensors (shown as four in FIG. 1C and FIG.
  • each sub-image sensor includes a photosensitive element 122 and a switching transistor 123, and multiple sub-signal quantities of multiple sub-image sensors of each image sensor 121 are superimposed to use An image pixel that forms a texture image.
  • the multiple sub-image sensors of the image sensor are arranged in an M ⁇ N array, where M and N are positive integers and at least one of them is greater than 1.
  • the multiple sub-image sensors of the image sensor are arranged in a 2 ⁇ 2 array, a 2 ⁇ 3 array, or a 3 ⁇ 3 array, etc. The embodiments of the present disclosure do not specifically limit this.
  • each of the plurality of sub-image sensors of the image sensor 121 includes a photosensitive element 122 and a switching transistor 123 electrically connected to the photosensitive element 122. Therefore, as a whole, the image sensor 121 includes a plurality of signal switches for reading electrical signals generated by the photoelectric action from the image sensor for forming one image pixel of the texture image.
  • the photosensitive element 122 may use a photodiode, for example, the photodiode is a PN-type or PIN-type photodiode, and the semiconductor material used may be silicon, germanium, selenium, gallium arsenide, or the like.
  • the switching transistor 123 includes functional parts such as a gate, a source, a drain, and a channel.
  • the gate of the switching transistor 123 is electrically connected to the texture collecting line 124, and the texture collecting line 124 is electrically connected to the scan driving circuit 126; the source of the switching transistor 123 is electrically connected to the photosensitive element 121; the drain of the switching transistor is electrically connected to the detection output line 125 Connected, the detection output line 125 is connected to the data output circuit 127.
  • the switching transistor 123 when the texture acquisition line 124 transmits the gate-on signal provided by the scan driving circuit 126, the switching transistor 123 is turned on to couple the photosensitive element 122 to the data output circuit 127 through the detection output line 125, so that the data output circuit 127 can acquire
  • the electrical signal generated by the photosensitive element 122 may, for example, superimpose the signal amounts of multiple sub-image sensors of each image sensor 121 to form one image pixel of the texture image.
  • the switching transistor 123 When the texture acquisition line 124 transmits the gate-off signal provided by the scan driving circuit 126, the switching transistor 123 is turned off.
  • the data output circuit 127 can determine the texture image based on the multiple electrical signals it has acquired.
  • each image sensor 121 includes a plurality of sub-image sensors, and a plurality of sub-signals configured to include a plurality of sub-image sensors of each image sensor 121 are output to the data output circuit 127 via the switching transistor 123, and then The data output circuit 127 superimposes these sub-signals to obtain the signal of each image sensor for forming an image pixel of the texture image.
  • a plurality of sub-signals configured to include a plurality of sub-image sensors of each image sensor 121 are output to the data output circuit 127 via the switching transistor 123, and then The data output circuit 127 superimposes these sub-signals to obtain the signal of each image sensor for forming an image pixel of the texture image.
  • the four sub-image sensors are arranged in a 2 ⁇ 2 array, the gate lines 124 corresponding to each row are independently connected to the scan driving circuit 126, and the data lines 125 corresponding to each column are independently connected to the
  • the data output circuit 127 can therefore read out the electrical signals separately for the four sub-image sensors, and then superimpose the four electrical signals to form one image pixel of the texture image.
  • each image sensor 121 includes multiple sub-image sensors, and the multiple sub-signals of the multiple sub-image sensors configured for each image sensor 121 are output by the switching transistor 123 and superimposed to obtain each image.
  • the signal of the sensor and then the signal of each image sensor obtained by superposition are output to the data output circuit 127 for forming an image pixel of the texture image.
  • four sub-image sensors are also arranged in a 2 ⁇ 2 array, corresponding gate lines 124 of two rows are electrically connected to each other and connected to the scan driving circuit 126, and corresponding data lines 125 of two columns are electrically connected to each other And it is connected to the data output circuit 127, so for the four sub-image sensors, the sum of the four electrical signals can be read out uniformly to form an image pixel of the texture image.
  • the projected area of each image sensor on the substrate is equal, for example, the photosensitive area of a single photosensitive element in FIG. 1B can be formed It is greater than the sum of the photosensitive areas of the four photosensitive elements in FIG. 1C, or substantially equal to the sum of the photosensitive areas of the four photosensitive elements in FIG. 1C.
  • the signal transmission and release performance of the switching transistor 123 can be adjusted by adjusting the aspect ratio of the channel of the switching transistor 123.
  • the aspect ratio of the channel of the switching transistor 123 can be further increased, thereby further increasing the signal release speed of the switching transistor 123.
  • each image sensor 121 includes a plurality of switching transistors 123, so the release speed of the electrical signal can be increased, and the time for eliminating afterimages can be reduced.
  • each image sensor 121 includes multiple sub-image sensors, the multiple sub-image sensors are driven separately and each sub-image sensor includes a switching transistor 123, so the image sensor 121 guarantees the amount of signal obtained (four sub-image sensors When the sum of the signal amount is large enough, the electrical signal in each sub-image sensor can also be released separately (for example, simultaneously), thereby increasing the release speed of the electrical signal and reducing the time for eliminating afterimages.
  • the signal quantity in one image sensor 121 can be released through four switching transistors 123.
  • this solution can greatly improve the power
  • the release speed of the signal reduces the time for eliminating afterimages. Therefore, when image acquisition is performed in a time-sharing manner, the image acquisition rate can be increased while ensuring the clarity and accuracy of the acquired image.
  • the light emitted by the light source 111 can be reflected by the operating body, for example, the light reaches the image through the gap between each light source 111 in the light source array
  • the sensor 121 and the image sensor 121 can collect the texture image of the operating body.
  • the operating body with a texture may be a hand.
  • the texture recognized by the image sensor 121 is a skin texture, such as fingerprints, palm lines, etc.
  • the operating body with a texture may also be a non-living body with a certain texture.
  • objects made of resin and other materials with certain textures are not specifically limited in the embodiments of the present disclosure.
  • the image sensor array 120 is disposed on the side of the light source array away from the touch side 112.
  • the image sensor array 120 may be arranged in the same layer as the light source array.
  • the image sensor array 120 includes The plurality of image sensors 121 and the light source 111 are arranged at the same layer interval.
  • the two may be formed on the same array substrate through a semiconductor process.
  • the signal switch of the image sensor may be formed together with the switching element (such as a thin film transistor) in the pixel unit in the same process, thereby
  • the manufacturing process can be simplified, the cost can be reduced, and the thickness of the device can be made thin.
  • the light source array may be formed on the side of the image sensor array 120 away from the touch side. At this time, the light emitted by the light source 111 may be emitted from the gap of the adjacent image sensor 121 and reflected to the image sensor 121 via the texture.
  • the image sensor array 120 may be separately prepared as a detection chip and then installed on one side of the texture recognition device 100.
  • the embodiments of the present disclosure do not specifically limit the arrangement of the image sensor array 120 and the light source array, as long as it can realize that a plurality of image sensors 121 can receive the light emitted from the light source 111 and reflected to the image sensor 121 via the texture for use in The texture can be collected.
  • the texture recognition device 100 is, for example, a display device with an under-screen texture recognition function, and accordingly includes a display panel 110 including a pixel unit array, and the pixel unit array A plurality of pixel units 103 are included.
  • each pixel unit includes a thin film transistor 102 and a light emitting device 101, and the light emitting device 101 includes, for example, an anode, a cathode, and a light emitting layer between the anode and the cathode (not shown in the figure).
  • each pixel unit 103 may include multiple sub-pixel units that emit different colors of light (such as red light, blue light, and green light), or the pixel unit 103 may also emit monochromatic light (such as red light, blue light, and green light) This is not limited by the embodiments of the present disclosure.
  • the pixel unit array of the display panel 110 is used to be implemented as a light source array, and the plurality of pixel units 103 are implemented to form a plurality of light sources 111. That is, the pixel unit 101 of the display panel 110 is multiplexed as a photosensitive light source, so the compactness of the device can be improved, and the arrangement difficulty of each functional structure can be reduced.
  • each light source 111 includes one or more pixel units 103, so that the light source 111 can be formed into a point-shaped light source, a linear light source, a zigzag light source, or a light source with a certain shape through different arrangements of the one or more pixel units 103 Glyph light source, etc.
  • a hyphen-shaped light source refers to a light source that does not emit light in the center of the light source.
  • the 2 ⁇ 2 pixel unit can form a zigzag light source as shown in FIG. 6C.
  • a zigzag light source can be formed by selectively lighting a part of the light sources at specific positions in the 4 ⁇ 4 pixel units.
  • the point light source may include 4 ⁇ 4 pixel units arranged in an array continuously, and these pixel units are all lit, or, as shown in FIG.
  • the light sources spaced apart from each other in the pixel unit of the pixel unit are discontinuous so that, in general, the lighting method also forms a point light source.
  • the above light source lighting modes can prevent the energy of the light source from being too high and affecting the formation of the texture image.
  • the light source may also be formed in other shapes, which is not specifically limited in the embodiments of the present disclosure.
  • the pixel units 103 in the entire display area of the display panel 110 can be controlled to be multiplexed as photosensitive light sources, and the image sensor array 120 can also be arranged below the entire display area accordingly, thereby enabling full-screen texture recognition.
  • the display panel 110 is an organic light emitting diode (Organic Light Emitting Diode, OLED) display panel or a quantum dot light emitting diode (Quantum Dot Light Emitting Diodes, QLED) display panel, etc., which is not specifically limited in the embodiments of the present disclosure.
  • the OLED display panel may be, for example, a flexible OLED display panel.
  • the OLED display panel has self-luminous characteristics, and the light emission of its display pixel unit can also be controlled or modulated as needed, which can facilitate the collection of lines and help to improve the integration of the device.
  • the display panel 110 includes signal lines (including gate lines, data lines, detection lines, etc.) for providing electrical signals (including scan signals, data signals, detection signals, etc.), for example, may
  • the light-emitting state of the light-emitting device is controlled by the driving circuit to achieve the lighting of the pixel unit.
  • the display panel 110 further has a protective cover 113, and the surface of the protective cover 113 forms a touch-side surface 112.
  • the protective cover 113 is made of a transparent material such as glass or polyimide.
  • the display panel 110 further has functional layers such as a touch layer and a polarizer layer. These functional layers may be combined on the display panel 110 through optical transparent adhesive (OCA adhesive).
  • OCA adhesive optical transparent adhesive
  • a display device with an under-screen texture recognition function includes a display panel 110 and a separately provided light-emitting element as a photosensitive light source for achieving texture recognition. These light-emitting elements are disposed in adjacent pixel cell arrays, for example. The pixel units are arranged between or overlapping with the pixel units, which is not limited in the embodiments of the present disclosure.
  • the texture recognition device 100 when a point light source or a line light source emits light, when the light emitted to the touch side 112 irradiates the touch side surface, due to the total reflection of the touch side surface, these lights A portion of the incident angle greater than or equal to the critical angle ⁇ of total reflection will undergo total reflection, resulting in that this part of the light cannot exit the touch side surface, thereby generating a ring-shaped total reflection area. Accordingly, a part of these lights whose incident angle is smaller than the critical angle ⁇ of total reflection exits from the touch-side surface.
  • the texture image can be collected by the light reflected by the total reflection area.
  • the total reflection condition of the corresponding position is destroyed, and when the valley of the fingerprint touches the total reflection area, the corresponding position does not destroy the total reflection condition.
  • the light in the total reflection area causes the light incident on the image sensor array 120 to be different at different positions, forming a light and dark texture image.
  • the ring center of the ring-shaped portion becomes a detection invalid area due to interference caused by light emitted from the touch-side surface and reflected by the structure inside the texture recognition device or the like.
  • the invalid area of the ring center needs to be additionally detected.
  • the imaging of one light source 111 The range is formed as a ring, and its imaging range is limited, so it may not be possible to obtain a sufficient texture image.
  • a plurality of light sources 111 may be turned on at the same time or in a time-sharing manner, so that the image sensor array 120 obtains a larger area (for example, a complete) fingerprint texture image.
  • the texture recognition device further includes a controller 130, which is coupled to the light source array, thereby signally connected to the light source array, and can control the operation of the light source array.
  • the plurality of light sources 111 include at least one first light source 111A and at least one second light source 111B.
  • the second light source 111B and the first light source 111A are along a first direction (shown in FIG.
  • the controller 130 is configured to control the lighting of the first light source 111A at a first time and the lighting of the second light source 111B at a second time different from the first time during image acquisition by the image sensor array 120.
  • the time interval between the first moment and the second moment can be set to be very short To increase the speed of image acquisition.
  • the image sensor array 120 can obtain multiple partial texture images in a short time, and the multiple partial texture images can be stitched together to obtain a texture image in the entire range for texture image recognition .
  • the imaging range of the first light source 111A on the image sensor array 120 is a first ring 121A
  • the imaging range of the second light source 111B on the image sensor array 120 is a second ring 121B
  • the first ring 121A There is no overlap with the second ring 111B or the overlap area is smaller than the interference threshold.
  • the overlapping area may be considered to be less than the interference threshold.
  • the ring center mentioned in the embodiments of the present disclosure refers to the part of the inner ring of the ring, for example, the part inside the ring that is not shaded in the figure.
  • the fingerprint images in the first ring 121A and the second ring 111B can be used together for image recognition.
  • the multiple light sources 111 further include at least one third light source 111C.
  • the third light source 111C and the first light source 111A are offset by a second distance D2 along the first direction, and the second The distance D2 is smaller than the first distance D1.
  • the second distance D2 is less than half of the first distance D1, so that the third light source 111C is closer to the first light source 111A between the first light source 111A and the second light source 111B.
  • the controller 130 is further configured to control the third light source 111C to be turned on at a third time different from the first time and the second time during the texture acquisition of the image sensor array 120, so that the third light source 111C
  • the imaging range of can complement the imaging range of the first light source 111A.
  • multiple partial texture images obtained by the image sensor array 120 may complement each other to form a more complete texture image.
  • the imaging range of the first light source 111A on the image sensor array 120 is a first ring 121A
  • the imaging range of the second light source 111B on the image sensor array 120 is a second ring 121B
  • the third light source 111C The imaging range on the image sensor array 120 is a third ring 121C; the third ring 121C covers the ring center of the first ring 121A, the first ring 121A and the second ring 121B do not overlap or the overlapping area is less than the interference threshold.
  • the imaging ranges of the second light source 111B and the third light source 111C do not overlap or the overlapping area is smaller than the interference threshold.
  • the imaging ranges of the second light source 111B and the third light source 111C overlap, but the overlapping area is smaller than the interference threshold.
  • the time interval between the third time and the second time can be set to be very short, so as to increase the image acquisition speed.
  • the time interval between the third time and the first time is greater than or equal to the afterimage erasing time of the image sensor 121, whereby the imaging afterimage of the first light source 111A on the image sensor 121 to the imaging of the third light source 111C can be eliminated influences.
  • the afterimage erasing time can be determined in advance through experiments or calculations, so the appropriate time interval between the third time and the first time can be selected to avoid the adverse effects caused by the afterimage.
  • the image sensor array 120 can obtain a texture image with sufficient clarity and completeness that is not affected by afterimages.
  • the time interval between the second time and the third time may also be set to be greater than or equal to the afterimage erasing time of the image sensor 121, thereby eliminating the imaging afterimage of the second light source 111B on the image sensor 121 to the third Influence of the imaging of the light source 111B.
  • the afterimage removal time may be determined by the following method.
  • the light source is controlled to emit light of a predetermined intensity, and the electrical signal Lt1 generated by the photosensitive element 122 of the sub-image sensor is detected within the time T1.
  • the light source is turned off, and the electrical signal Lt2_b generated by the photosensitive element 122 of the sub-image sensor is detected within B different times T2_b (1 ⁇ b ⁇ B; b is a positive integer, B is a positive integer).
  • the corresponding residual image ratio Lag_b of the photosensitive element 122 of each sub-image sensor within the time T2_b can be determined, where ,
  • the average value of the residual image ratio corresponding to the time T2_b is determined according to the residual image ratio Lag_b corresponding to the photosensitive element 122 of the sub-image sensor.
  • the time T2_b may be used as the preset residual image removal duration.
  • the residual image elimination ratio may be a value between 20% and 100%.
  • the residual image elimination ratio may be 20%, 50%, 70%, 80%, or 100%.
  • the performance of the photosensitive element 122 of the sub-image sensor is different, and the duration of the afterimage removal is also different. Therefore, the specific value of the afterimage removal ratio can be designed and determined according to the actual application environment, which is not limited by the embodiments of the present disclosure.
  • the controller 130 is further configured to control the lighting arrangement at the first time during the texture acquisition by the image sensor array 120 at the first time.
  • a plurality of first light sources 111A of a pattern (shown as squares in the figure), at a second time, control to turn on a plurality of second light sources 112B arranged in a second pattern (shown as squares in the figure), and the second The pattern and the first pattern are offset by a first distance D1 along the first direction.
  • the image sensor array 120 can obtain a plurality of partial texture images, which can be used together for image recognition.
  • the controller 130 is further configured to control the lighting in a third pattern (shown as squares in the figure) at a third time different from the first time and the second time Multiple third light sources 111C, and the third pattern and the first pattern are offset by a second distance D2 along the first direction, the second distance D2 is less than the first distance D1, for example, the second distance D2 is less than the first distance D1 Half.
  • the multiple partial texture images obtained by the image sensor array 120 can complement each other to form a more complete texture image.
  • the first pattern, the second pattern, and the third pattern are the same as each other, so as to form the texture images of the portions having substantially the same shape to facilitate the stitching of the texture images formed at different times.
  • the shapes formed by the plurality of first light sources 111A, the plurality of second light sources 112B, and the plurality of third light sources 111C are not limited to the above squares, and may also be as shown in FIGS. 6A and 6B, for example. Pentagon, hexagon, heptagon, octagon or circle etc.
  • the first light source 111A, the second light source 112B, or the third light source 111C may be a point light source 1111 as shown in FIG. 6A or a line light source 1112 as shown in FIG. 6B.
  • the point light source 1111 or the line light source 1112 can be obtained by lighting one or more pixel units.
  • multiple light sources in multiple first patterns, multiple second patterns, and multiple third patterns may also be controlled to light, such as multiple first patterns arranged in an array , Multiple second patterns and multiple third patterns of multiple light sources, so as to realize the identification of larger lines.
  • the plurality of light sources 111 may further include a fourth light source, a fifth light source, etc., and are lit according to the above-mentioned rules. These schemes can realize the identification of larger lines.
  • any of the above solutions can form a complete texture image as shown in FIG. 7.
  • the partial texture image obtained by lighting part of the light sources in a short time is sufficient to meet the needs of texture recognition, so it is not necessary to form a complete texture image.
  • a certain time-sharing light source with a certain distance is used as the photosensitive light source of the image sensor array, so that the image sensor array can acquire a clear and accurate texture image in a short time.
  • the overall recognition of larger lines can also be achieved.
  • the image sensor 121 and the controller 130 may take various forms, and the embodiment of the present disclosure does not limit this.
  • the sub-image sensor of the image sensor 121 may be a charge-coupled device (CCD) image sensor, a complementary metal oxide semiconductor (CMOS) type image sensor, or a photodiode (such as a PIN photodiode, etc.).
  • CCD charge-coupled device
  • CMOS complementary metal oxide semiconductor
  • a photodiode such as a PIN photodiode, etc.
  • An appropriate type of image sensor If necessary, the image sensor 121 may sense only light of a certain wavelength (for example, red light or green light), or may sense all visible light.
  • the image sensor array may be attached to one side of the display panel 110 by OCA glue.
  • the controller 130 may be various types of integrated circuit chips with processing functions, which may have various computing architectures, such as a complex instruction set computer (CISC) structure, a reduced instruction set computer (RISC) structure, or an implementation The structure of various instruction set combinations.
  • the controller 130 may be a microprocessor, such as an X86 processor or an ARM processor, or may be a digital processor (DSP), a field programmable logic gate array (FPGA) chip, or the like.
  • DSP digital processor
  • FPGA field programmable logic gate array
  • the controller 130 may further include a memory for storing a control program for lighting a plurality of light sources (or a plurality of pixel units) forming a certain pattern, and lighting a plurality of different regions in a time-sharing manner.
  • Light source control program etc.
  • the storage unit may be any form of storage medium, such as volatile memory or non-volatile memory, etc., such as semiconductor memory or magnetic medium memory, etc., which are not limited by the embodiments of the present disclosure.
  • the texture recognition device provided by the embodiments of the present disclosure may be implemented as various forms of electronic devices such as mobile phones, tablet computers, and e-books.
  • At least one embodiment of the present disclosure provides an operation method of a texture recognition device.
  • the operation method includes: reading the signal of each image sensor 121 through a plurality of signal switches for use An image pixel that forms a texture image.
  • each image sensor 121 includes a photosensitive element 122 and a plurality of signal switches electrically connected to the photosensitive element 122, for example, the signal switch is a switching transistor 123, and each image sensor 121 One signal switch is connected to the same texture acquisition line 124.
  • the operation method of the texture recognition device 100 further includes: using the same texture acquisition line to provide a driving signal for the plurality of signal switches of each image sensor 121. And, the signal of each image sensor 121 is used to form one image pixel of the texture image.
  • each image sensor includes a plurality of sub-image sensors (shown as four in the figure), and the plurality of sub-image sensors are respectively driven.
  • each sub-image sensor includes a photosensitive element and a switching transistor.
  • the operation method of the texture recognition device includes: superimposing the signal amounts of the plurality of sub-image sensors of each image sensor to form one image pixel of the texture image.
  • each image sensor includes multiple sub-image sensors, and each sub-image sensor includes a photosensitive element and a signal switch electrically connected to the photosensitive element; at this time, the operation method of the texture recognition device further includes: The plurality of sub-signals of the plurality of sub-image sensors included in each image sensor are respectively output to the data output circuit, and then the data output circuit superimposes these sub-signals to form one image pixel of the texture image. For example, the above example of FIG. 1C will not be repeated here.
  • each image sensor includes multiple sub-image sensors, and each sub-image sensor includes a photosensitive element and a signal switch electrically connected to the photosensitive element; at this time, the operation method of the texture recognition device further includes: A plurality of sub-signals of a plurality of sub-image sensors included in each image sensor are superimposed, and then output to a data output circuit for forming one image pixel of the texture image. For example, the above example of FIG. 1D will not be repeated here.
  • the multiple sub-image sensors of the image sensor are arranged in an M ⁇ N array, where M and N are positive integers and at least one of them is greater than 1.
  • M and N are positive integers and at least one of them is greater than 1.
  • the specific arrangement of the sub-image sensors can be referred to the above embodiments, and will not be repeated here.
  • the signal quantity in an image sensor can be released through four switching transistors. Compared with the signal quantity of an image sensor using a switching transistor to release, this solution can greatly increase the speed of electrical signal release and reduce The time for eliminating afterimages. Therefore, when image acquisition is performed in a time-sharing manner, the image acquisition rate can be increased while ensuring the clarity and accuracy of the acquired image.
  • the texture recognition device is, for example, a display device with an under-screen texture recognition function, and accordingly includes a display panel including a pixel unit array including a plurality of pixel units .
  • the pixel unit array of the display panel is used to be implemented as a light source array, and the multiple pixel units are implemented to form multiple light sources.
  • each light source includes one or more pixel units.
  • the operation method of the texture recognition device 100 further includes: lighting one or more pixel units 103 of each light source 111 to form a point light source, a linear light source, a zigzag light source, or a zigzag light source, etc., having a certain shape Light source.
  • the multiple light sources include at least one first light source and at least one second light source, and the second light source is offset from the first light source by a first distance D1 in the first direction.
  • the operation method of the texture recognition device 100 includes: during the texture acquisition of the image sensor array 120, the first light source is turned on at a first time, and the second light source is turned on at a second time different from the first time.
  • the imaging range of the first light source on the image sensor array is a first ring
  • the imaging range of the second light source on the image sensor array 120 is a second ring
  • the first ring and the second ring do not overlap or overlap
  • the area is smaller than the interference threshold.
  • the multiple light sources further include at least one third light source, the third light source and the first light source are offset by a second distance D2 along the first direction, and the second distance D2 is less than the first distance D1.
  • the operation method of the texture recognition device 100 includes: during the texture acquisition by the image sensor array 120, controlling the third light source to be turned on at a third time different from the first time and the second time so that the third The imaging range of the light source can supplement the imaging range of the first light source.
  • the imaging range of the first light source on the image sensor array 120 is a first ring
  • the imaging range of the second light source on the image sensor array 120 is a second ring
  • the third light source is on the image sensor array 120
  • the imaging range is in a third ring shape; the third ring shape covers the ring center of the first ring shape, and the first ring shape and the second ring shape do not overlap or the overlapping area is less than the interference threshold.
  • the time interval between the third time and the first time is greater than or equal to the afterimage erasing time of the image sensor 121, whereby the influence of the imaging afterimage of the first light source on the image sensor on the imaging of the third light source can be eliminated.
  • the afterimage erasing time can be determined in advance through experiments or calculations, so the appropriate time interval between the third time and the first time can be selected to avoid the adverse effects caused by the afterimage. The determination of the afterimage erasing time can be referred to the above embodiment, which will not be repeated here.
  • the operation method of the texture recognition apparatus 100 may further include: during the texture acquisition by the image sensor array 120, control the point at the first moment A plurality of first light sources arranged brightly as a first pattern, and controlling a plurality of second light sources arranged arranged as a second pattern at a second time, and the second pattern and the first pattern are offset by a first distance along the first direction D1.
  • the operation method of the texture recognition device 100 may further include: controlling to turn on a plurality of third light sources in a third pattern at a third time different from the first time and the second time, and the first The three patterns and the first pattern are offset by a second distance D2 along the first direction, and the second distance D2 is smaller than the first distance D1.
  • multiple partial texture images obtained by the image sensor array 220 can complement each other to form a more complete texture image.
  • the shapes formed by the plurality of first light sources, the plurality of second light sources, and the plurality of third light sources are not limited to the above-mentioned squares, and may also be pentagons shown in FIGS. 6A and 6B, for example. , Hexagons, heptagons, octagons or circles, etc.
  • the first light source, the second light source, or the third light source may be a point light source as shown in FIG. 6A or a line light source as shown in FIG. 6B.
  • the operation method of the texture recognition device 100 may further include lighting a plurality of light sources in a plurality of first patterns, a plurality of second patterns, and a plurality of third patterns, for example, lighting arranged in an array Multiple first patterns, multiple second patterns, and multiple third patterns of multiple light sources, thereby realizing the identification of larger lines.
  • the plurality of light sources 111 may further include a fourth light source, a fifth light source, etc., and are lit according to the above-mentioned rules. These schemes can realize the identification of larger patterns. For example, any of the above solutions can form a complete texture image as shown in FIG. 7.
  • the partial texture image obtained by lighting part of the light sources in a short time is also sufficient to meet the needs of texture recognition, so it is not necessary to form a complete texture image.
  • a certain time-sharing light source with a certain distance is used as the photosensitive light source of the image sensor array, so that the image sensor array can acquire a clear and accurate texture image in a short time.
  • the overall recognition of larger lines can also be achieved.
  • the image sensor 121 may take various forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Image Input (AREA)

Abstract

一种纹路识别装置以及纹路识别装置的操作方法。该纹路识别装置(100)包括光源阵列和图像传感器阵列(120)。光源阵列包括多个光源(111);图像传感器阵列(120)设置在光源阵列的一侧,包括多个图像传感器(121),多个图像传感器配置(121)为可接收从多个光源(111)发出且经纹路反射至图像传感器(121)的光以用于纹路图像采集;每个所述图像传感器(121)包括多个信号开关,且每个所述图像传感器(121)的信号经多个信号开关读取以用于形成所述纹路图像的一个图像像素。该纹路识别装置(100)可以更快速地获得具有较高清晰度与准确度的纹路图像。

Description

纹路识别装置以及纹路识别装置的操作方法
本申请要求于2018年12月28日递交的中国专利申请第201811626371.5号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种纹路识别装置以及纹路识别装置的操作方法。
背景技术
随着移动终端的日益普及,越来越多的用户使用移动终端进行身份验证、电子支付等操作。由于皮肤纹路例如指纹图案或掌纹图案的唯一性,结合光学成像的指纹识别技术逐渐被移动电子设备采用以用于身份验证、电子支付等。如何设计更加优化的纹路识别装置是本领域关注的焦点问题。
发明内容
本公开至少一个实施例提供一种纹路识别装置,该纹路识别装置包括光源阵列和图像传感器阵列。光源阵列包括多个光源;图像传感器阵列设置在所述光源阵列的一侧,包括多个图像传感器,所述多个图像传感器配置为可接收从所述多个光源发出且经纹路反射至所述图像传感器的光以用于纹路图像采集;其中,每个所述图像传感器包括多个信号开关,且每个所述图像传感器的信号经所述多个信号开关读取以用于形成所述纹路图像的一个图像像素。
例如,本公开至少一个实施例提供的纹路识别装置中,每个所述图像传感器包括一个光敏元件和与所述光敏元件电连接的多个信号开关;所述多个信号开关连接同一纹路采集线。
例如,本公开至少一个实施例提供的纹路识别装置中,每个所述子图像传感器均包括一个光敏元件和与所述光敏元件电连接的信号开关;其中,每个所述图像传感器包括的所述多个子图像传感器的多个子信号分别经所述多个子图像传感器的信号开关输出至数据输出电路,然后所述数据输出电路 将所述多个子信号相叠加以用于形成所述纹路图像的一个图像像素。
例如,本公开至少一个实施例提供的纹路识别装置中,每个所述图像传感器包括多个子图像传感器,每个所述子图像传感器均包括一个光敏元件和与所述光敏元件电连接的多个信号开关;其中,每个所述图像传感器包括的所述多个子图像传感器的多个子信号分别经所述多个子图像传感器的多个信号开关输出后相叠加得到每个所述图像传感器的信号,然后经叠加得到的每个所述图像传感器的信号输出至数据输出电路以用于形成所述纹路图像的一个图像像素。
例如,本公开至少一个实施例提供的纹路识别装置中,每个所述图像传感器的多个子图像传感器排列为M×N的阵列,其中,M和N为正整数且至少之一大于1。
例如,本公开至少一个实施例提供的纹路识别装置中,所述光源为点状光源、线状光源、Z字形光源或者回字形光源。
例如,本公开至少一个实施例提供的纹路识别装置还包括显示面板,所述显示面板包括像素单元阵列,所述像素单元阵列包括多个像素单元;所述像素单元阵列包括所述光源阵列,所述多个光源的每个包括一个或多个所述像素单元。
例如,本公开至少一个实施例提供的纹路识别装置中,每个所述光源包括多个所述像素单元,其中,当每个所述光源包括的多个所述像素单元排列为形成点状光源时,每个所述光源包括的多个所述像素单元配置为被间隔点亮。
例如,本公开至少一个实施例提供的纹路识别装置中,所述显示面板包括有机发光二极管显示面板或者量子点发光二极管显示面板。
例如,本公开至少一个实施例提供的纹路识别装置还包括控制器,其中,所述多个光源包括至少一个第一光源和至少一个第二光源,所述第二光源与所述第一光源沿第一方向偏移第一距离;所述控制器配置为在所述图像传感器阵列进行所述纹路采集的过程中,在第一时刻控制点亮所述第一光源,在不同于所述第一时刻的第二时刻控制点亮所述第二光源。
例如,本公开至少一个实施例提供的纹路识别装置中,所述多个光源还包括至少一个第三光源,所述第三光源与所述第一光源沿所述第一方向偏移第二距离,且所述第二距离小于所述第一距离;所述控制器还配置为在所述 图像传感器阵列进行所述纹路采集的过程中,在不同于所述第一时刻和所述第二时刻的第三时刻控制点亮第三光源。
例如,本公开至少一个实施例提供的纹路识别装置中,所述第三时刻与所述第一时刻之间的时间间隔大于等于所述图像传感器的残影消除时间。
例如,本公开至少一个实施例提供的纹路识别装置中,所述控制器还配置为在所述图像传感器阵列进行所述纹路采集的过程中,在所述第一时刻控制点亮排列为第一图案的多个第一光源,在所述第二时刻控制点亮排列为第二图案的多个第二光源,其中,所述第二图案与所述第一图案沿所述第一方向偏移第一距离。
例如,本公开至少一个实施例提供的纹路识别装置中,所述控制器还配置为在不同于所述第一时刻和所述第二时刻的第三时刻控制点亮呈第三图案的多个第三光源,所述第三图案与所述第一图案沿所述第一方向偏移第二距离,且所述第二距离小于所述第一距离。
例如,本公开至少一个实施例提供的纹路识别装置中,所述第一图案、所述第二图案和所述第三图案相同。
例如,本公开至少一个实施例提供的纹路识别装置中,所述第一光源在所述图像传感器阵列上的成像范围呈第一环形,所述第二光源在所述图像传感器阵列上的成像范围呈第二环形;所述第一环形与所述第二环形不重叠或者重叠面积小于干扰阈值。
例如,本公开至少一个实施例提供的纹路识别装置中,所述第一光源在所述图像传感器阵列上的成像范围呈第一环形,所述第二光源在所述图像传感器阵列上的成像范围呈第二环形,所述第三光源在所述图像传感器阵列上的成像范围呈第三环形;所述第三环形覆盖所述第一环形的环心,所述第一环形与所述第二环形不重叠或者重叠面积小于干扰阈值。
本公开至少一个实施例提供一种纹路识别装置的操作方法,所述纹路识别装置包括光源阵列和图像传感器阵列。光源阵列包括多个光源;图像传感器阵列设置在所述光源阵列的一侧,包括多个图像传感器,其中,所述多个图像传感器配置为可接收从所述多个光源发出的且经纹路反射至所述图像传感器的光以用于纹路图像采集,每个所述图像传感器包括多个信号开关;所述操作方法包括:将每个所述图像传感器的信号通过所述多个信号开关读取以用于形成所述纹路图像的一个图像像素。
例如,本公开至少一个实施例提供的操作方法中,每个所述图像传感器包括一个光敏元件和与所述光敏元件电连接的多个信号开关,每个所述子图像传感器均包括一个光敏元件和与所述光敏元件电连接的信号开关;所述操作方法还包括:采用同一纹路采集线为每个所述图像传感器的多个信号开关提供驱动信号。
例如,本公开至少一个实施例提供的操作方法中,每个所述图像传感器包括多个子图像传感器,每个所述子图像传感器均包括一个光敏元件和与所述光敏元件电连接的信号开关;所述操作方法还包括:将每个所述图像传感器包括的所述多个子图像传感器的多个子信号分别输出至数据输出电路,然后所述数据输出电路将所述多个子信号相叠加以用于形成所述纹路图像的一个图像像素。
例如,本公开至少一个实施例提供的操作方法中,每个所述图像传感器包括多个子图像传感器,每个所述子图像传感器均包括一个光敏元件和与所述光敏元件电连接的信号开关;所述操作方法还包括:将每个所述图像传感器包括的所述多个子图像传感器的多个子信号相叠加,然后输出至数据输出电路以用于形成所述纹路图像的一个图像像素。
例如,本公开至少一个实施例提供的操作方法中,所述纹路识别装置包括显示面板,所述显示面板包括像素单元阵列,所述像素单元阵列包括多个像素单元;所述像素单元阵列包括所述光源阵列,所述多个光源的每个包括一个或多个所述像素单元;所述操作方法还包括:点亮每个所述光源的一个或多个所述像素单元以形成点状光源、线状光源、Z字形光源或者回字形光源。
例如,本公开至少一个实施例提供的操作方法中,每个所述光源包括用于形成点状光源的多个像素单元;所述操作方法还包括:间隔点亮用于形成所述点状光源的多个所述像素单元。
例如,本公开至少一个实施例提供的操作方法中,所述多个光源包括至少一个第一光源和至少一个第二光源,所述第二光源与所述第一光源沿第一方向偏移第一距离;所述操作方法还包括:在所述图像传感器阵列进行所述纹路采集的过程中,在第一时刻点亮第一光源,在不同于所述第一时刻的第二时刻点亮第二光源。
例如,本公开至少一个实施例提供的操作方法中,所述多个光源还包括 至少一个第三光源,所述第三光源与所述第一光源沿所述第一方向偏移第二距离,且所述第二距离小于所述第一距离;所述操作方法还包括:在所述图像传感器阵列进行所述纹路采集的过程中,在不同于所述第一时刻和所述第二时刻的第三时刻点亮第三光源。
例如,本公开至少一个实施例提供的操作方法中,所述第一光源在所述图像传感器阵列上的成像范围呈第一环形,所述第二光源在所述图像传感器阵列上的成像范围呈第二环形;所述第一环形与所述第二环形不重叠或者重叠面积小于干扰阈值。
例如,本公开至少一个实施例提供的操作方法中,所述第一光源在所述图像传感器阵列上的成像范围呈第一环形,所述第二光源在所述图像传感器阵列上的成像范围呈第二环形,所述第三光源在所述图像传感器阵列上的成像范围呈第三环形;所述第三环形覆盖所述第一环形的环心,所述第一环形与所述第二环形不重叠或者重叠面积小于干扰阈值。
例如,本公开至少一个实施例提供的操作方法中,所述第三时刻与所述第一时刻之间的时间间隔大于等于所述图像传感器的残影消除时间。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A为本公开至少一实施例提供的一种纹路识别装置的截面示意图;
图1B为本公开至少一实施例提供的一种纹路识别装置中图像传感器阵列的平面示意图;
图1C为本公开至少一实施例提供的一种纹路识别装置中另一图像传感器阵列的平面示意图;
图1D为本公开至少一实施例提供的一种纹路识别装置中再另一图像传感器阵列的平面示意图;
图2为本公开至少一实施例提供的另一种纹路识别装置的截面示意图;
图3为本公开至少一实施例提供的一种纹路识别装置的一个光源形成的纹路图像;
图4A为本公开至少一实施例提供的一种纹路识别装置中部分光源阵列 的示意图;
图4B为图4A中的光源阵列的成像范围示意图;
图5A为本公开至少一实施例提供的一种纹路识别装置中部分光源阵列的另一示意图;
图5B为图5A中的光源阵列的成像范围示意图;
图6A和图6B为本公开至少一实施例提供的一种纹路识别装置中光源的形状示意图;
图6C-图6E为本公开至少一实施例提供的一种纹路识别装置中多个像素单元点亮形成不同形状的光源的示意图;
图7为本公开至少一实施例提供的一种纹路识别装置获得的纹理图像;
图8为纹路图像中残影的图片。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
目前,窄边框显示装置技术逐渐成为主流,实现这种技术的手段之一是将具有指纹识别功能的图像传感器集成到显示装置中,实现屏下指纹识别方式,提高显示装置的显示区域的面积。
纹路识别装置的图像传感器通常包括光敏元件以及与光敏元件电连接的开关晶体管。开关晶体管的栅极与纹路采集线电连接,开关晶体管的源极与光敏元件电连接,开关晶体管的漏极与检测输出线电连接。这样在纹路采集线传输栅极开启信号时,开关晶体管导通以将光敏元件通过检测输出线与驱动电路导通,以使驱动电路可以获取到光敏元件产生的电信号。在纹路采集线传输栅极关闭信号时,开关晶体管截止。这样使得驱动电路可以根据获取到的电信号,确定纹路图像。
但是,在纹路采集线传输栅极关闭信号时,图像传感器内部的电信号需要一定的时间才能释放完毕,若在释放完毕之前即进行下一帧图像的采集,会使得该残留的信号与形成下一帧图像的信号相叠加,导致下一帧图像具有残影。图8示出了一种具有残影的一帧纹路图像,如图8所示,图片中位于大圆斑一侧逐渐减弱的点即为采集上一帧纹路图像后图像传感器未完全释放光生电荷而在当前帧中出现的残影,该残影严重影响图像纹路的清晰度与准确度。因此可以采用分时方式采集纹路图像,在该分时方式中在采集了一帧纹路图像之后,需要等待一定的时间后才能获取另一帧清晰、准确的纹路图像,否则上一帧纹路图像未消失的残影会与其后一帧形成的纹路图像相叠加,使得最终获得的图像纹路不清晰且不准确。然而,等待一定的时间使得纹路图像的获取时间增长,影响用户体验。
本公开的一个实施例提供了一种纹路识别装置,该纹路识别装置包括光源阵列和图像传感器阵列。光源阵列包括多个光源;图像传感器阵列设置在光源阵列的一侧,包括多个图像传感器,多个图像传感器配置为可接收从多个光源发出且经纹路反射至图像传感器的光以用于纹路图像采集;每个所述图像传感器包括多个信号开关,且每个所述图像传感器的信号用于形成所述纹路图像的一个图像像素。
本公开至少一个实施例提供一种纹路识别装置的操作方法,所述纹路识别装置包括光源阵列和图像传感器阵列。光源阵列包括多个光源;图像传感器阵列设置在光源阵列的一侧,包括多个图像传感器,其中,多个图像传感器配置为可接收从多个光源发出的且经纹路反射至所述图像传感器的光以用于纹路图像采集,每个图像传感器包括多个信号开关;该操作方法包括:将每个图像传感器的信号通过该多个信号开关读取以用于形成纹路图像的一个图像像素。
下面,将参考附图详细地说明本公开实施例提供的纹路识别装置以及纹路识别装置的操作方法。
图1A为本公开一些实施例提供的一种纹路识别装置100的截面示意图;图1B为该实施例提供的纹路识别装置100中图像传感器阵列120的平面示意图;图1C为该实施例提供的纹路识别装置100中另一图像传感器阵列120的平面示意图;图1D为该实施例提供的纹路识别装置100中再另一图像传感器阵列120的平面示意图。
如图1A和图1B所示,纹路识别装置100具有触摸侧112(图1A中示出为纹路识别装置100的上侧),且包括光源阵列和图像传感器阵列120,例如该纹路识别装置100可以用于纹路(例如指纹或掌纹),的采集,以用于指纹或掌纹识别。
光源阵列包括多个光源111,这些光源111在预定区域内布置为阵列;图像传感器阵列120设置在光源阵列的一侧,例如设置在光源阵列的远离触摸侧的一侧,图像传感器阵列120包括多个图像传感器121,多个图像传感器121配置为可接收从多个光源111发出且经纹路反射至图像传感器121的光以用于纹路采集。例如,该反射至图像传感器121的光是由具有纹路的操作体(例如操作者的手指或手掌)反射到该纹路识别装置100中的光。
例如,如图1B所示,每个图像传感器121包括一个光敏元件122和与光敏元件122电连接的多个信号开关,例如信号开关为开关晶体管123,每个图像传感器121的多个信号开关连接同一纹路采集线124,从而多个信号开关的开关状态相同。每个图像传感器121的信号经多个信号开关读取以用于形成纹路图像的一个图像像素。在一些实施例中,如图1C和图1D所示,每个图像传感器121包括多个子图像传感器(图1C、图1D中示出为四个),该图像传感器121包括的多个子图像传感器分别被驱动,例如,如图1C和图1D所示,每个子图像传感器均包括一个光敏元件122和一个开关晶体管123,并且每个图像传感器121的多个子图像传感器的多个子信号量相叠加以用于形成纹路图像的一个图像像素。
例如,图像传感器的多个子图像传感器排列为M×N的阵列,其中,M和N为正整数且至少之一大于1。例如,在一些实施例中,图像传感器的多个子图像传感器排列为2×2的阵列、2×3的阵列或者3×3的阵列等,本公开的实施例对此不作具体限定。
如图1C和图1D所示,图像传感器121的多个子图像传感器的每个包括光敏元件122以及与光敏元件122电连接的开关晶体管123。因此,整体而言,图像传感器121包括多个信号开关,这多个信号开关用于从该图像传感器读出光电作用产生的电信号,以用于形成纹路图像的一个图像像素。
例如,光敏元件122可以采用光电二极管,例如该光电二极管为PN型或PIN型光电二极管,其采用的半导体材料可以为硅、锗、硒、砷化镓等。开关晶体管123包括栅极、源极、漏极以及沟道等功能部分。开关晶体管123的栅极与纹路采集线124电连接,纹路采集线124电连接至扫描驱动电路126;开关晶体管123的源极与光敏元件121电连接;开关晶体管的漏极与检测输出线125电连接,检测输出线125连接至数据输出电路127。这样在纹路采集线124传输扫描驱动电路126提供的栅极开启信号时,开关晶体管123导通以将光敏元件122通过检测输出线125与数据输出电路127耦接,以使数据输出电路127可以获取到光敏元件122产生的电信号,例如可以将每个图像传感器121的多个子图像传感器的信号量相叠加来形成纹路图像的一个图像像素。在纹路采集线124传输扫描驱动电路126提供的栅极关闭信号时,开关晶体管123截止。由此,数据输出电路127可以根据其获取到的多个电信号,确定纹路图像。
例如,在一些实施例中,每个图像传感器121包括多个子图像传感器,且配置为每个图像传感器121包括的多个子图像传感器的多个子信号分别经开关晶体管123输出至数据输出电路127,然后数据输出电路127将这些子信号相叠加得到每个图像传感器的信号,以用于形成纹路图像的一个图像像素。例如,在图1C的示例中,四个子图像传感器排列为2×2的阵列,每一行对应的栅线124各自独立地连接到扫描驱动电路126,每一列对应的数据线125各自独立地连接到数据输出电路127,因此对于该四个子图像传感器可以单独读出其中的电信号,然后再叠加这四个电信号,以用于形成纹路图像的一个图像像素。
例如,在一些实施例中,每个图像传感器121包括多个子图像传感器,且配置为每个图像传感器121包括的多个子图像传感器的多个子信号分别经开关晶体管123输出后相叠加得到每个图像传感器的信号,然后经叠加得到的每个图像传感器的信号输出至数据输出电路127,以用于形成纹路图像的一个图像像素。例如,在图1D的示例中,四个子图像传感器也排列为2×2 的阵列,两行对应的栅线124彼此电连接且连接到扫描驱动电路126,两列对应的数据线125彼此电连接且连接到数据输出电路127,因此对于该四个子图像传感器可以统一读出其中的四个电信号之和,以用于形成纹路图像的一个图像像素。
例如,对于图1B所示的实施例和图1C(或图1D)所示的实施例,每个图像传感器在基板上的投影面积相等,例如,图1B中的单个光敏元件的感光面积可以形成得大于图1C中四个光敏元件的感光面积之和,或者基本上等于图1C中四个光敏元件的感光面积之和。
例如,在一些实施例中,开关晶体管123的信号传输与释放性能可以通过调节开关晶体管123的沟道的长宽比来调节。例如,本公开的一些实施例中,可以进一步提高开关晶体管123的沟道的长宽比,从而进一步提高开关晶体管123的信号释放速度。
在纹路识别装置100中,每个图像传感器121包括多个开关晶体管123,因此可以提高电信号的释放速度,缩减残影消除的时间。在一些实施例中,每个图像传感器121均包括多个子图像传感器,多个子图像传感器分别被驱动且每个子图像传感器包括开关晶体管123,因此图像传感器121在保证获得的信号量(四个子图像传感器信号量的总和)足够大的同时,每个子图像传感器内的电信号还可以分别释放(例如同时释放),由此可以提高电信号的释放速度,缩减残影消除的时间。例如在上述实施例中,一个图像传感器121内的信号量可以经过四个开关晶体管123来释放,相对于一个图像传感器121的信号量采用一个开关晶体管123释放来说,该方案可以大幅度提高电信号的释放速度,缩减残影消除的时间,因此在采用分时的方式进行图像采集时,可以在保证采集图像清晰度与准确度的同时,提高图像采集的速率。
参见图1A,当手指等具有纹路的操作体触摸纹路识别装置100的触摸侧表面112时,光源111发出的光线可以被操作体反射,例如光线经光源阵列中各个光源111之间的间隙到达图像传感器121,图像传感器121即可以采集操作体的纹路图像。
如上所述,具有纹路的操作体可以为手,此时图像传感器121识别的纹路为皮肤纹路,例如指纹、掌纹等;另外,具有纹路的操作体也可以为具有一定纹路的非生物体,例如采用树脂等材料制作的具有一定纹路的物体,本公开的实施例对此不做具体限定。
上述实施例中,图像传感器阵列120设置在光源阵列的远离触摸侧112的一侧,例如,在其他实施例中,图像传感器阵列120可以与光源阵列同层排布,例如图像传感器阵列120包括的多个图像传感器121与光源111同层间隔排布。例如,二者可以通过半导体工艺共同形成在相同的阵列基板上。例如,当采用像素单元阵列或部分像素单元阵列复用为光源阵列的情形,例如,图像传感器的信号开关可以与像素单元中的开关元件(例如薄膜晶体管)在相同的工艺中共同形成,由此可以简化制备工艺,降低成本且可以使得装置的厚度变薄。
又例如,光源阵列可以形成在图像传感器阵列120的远离触摸侧的一侧,此时,光源111发出的光可以从相邻的图像传感器121的间隙射出并经纹路反射至图像传感器121。再例如,图像传感器阵列120可以单独制备为检测芯片之后再安装在该纹路识别装置100的一侧。
本公开的实施例对图像传感器阵列120与光源阵列的排布方式不做具体限定,只要可实现多个图像传感器121可接收从光源111发出的且经纹路反射至图像传感器121的光以用于纹路采集即可。
例如,在一些实施例中,如图2所示,纹路识别装置100例如为具有屏下纹路识别功能的显示装置,相应地包括显示面板110,该显示面板110包括像素单元阵列,该像素单元阵列包括多个像素单元103。例如,每个像素单元包括薄膜晶体管102与发光器件101,发光器件101例如包括阳极、阴极以及阳极和阴极之间的发光层(图中未示出)。例如,每个像素单元103可以包括发出不同颜色光(例如红光、蓝光和绿光)的多个子像素单元,或者,像素单元103也可以发出单色光(例如红光、蓝光和绿光),本公开的实施例对此不做限定。
例如,显示面板110的像素单元阵列被用于实现为光源阵列,多个像素单元103实现为形成多个光源111。也即,显示面板110的像素单元101被复用为感光光源,因此可以提高装置的紧凑性、降低各功能结构的布置难度。例如,每个光源111包括一个或多个像素单元103,从而光源111可以通过一个或多个像素单元103的不同排布形成为具有一定形状的点状光源、线状光源、Z字形光源或者回字形光源等。
回字形光源是指光源中心不发光的光源,例如,如图6C所示,通过选择性点亮排布为4×4的像素单元中最外围的光源,而不点亮位于中间的排布 为2×2的像素单元,可形成如图6C所示的回字形光源。如图6D所示,通过选择性点亮排布为4×4的像素单元中的部分特定位置的光源可形成Z字形光源。又例如,在一些实施例中,点状光源可以包括连续排布为阵列的4×4的像素单元,这些像素单元均被点亮,或者,如图6E所示,还可点亮4×4的像素单元中的相互间隔的光源,以使得点亮的像素单元不连续,但总体来说,该点亮方式也形成点状光源。上述这些光源点亮形式可以避免光源的能量过高而影响纹路图像的形成。例如,光源还可以形成为其他形状,本公开的实施例对此不做具体限定。
例如,显示面板110的整个显示区中的像素单元103都可以受控以被复用为感光光源,图像传感器阵列120也可以相应地布置在整个显示区下方,由此可以实现全屏纹路识别。
例如,显示面板110为有机发光二极管(Organic Light Emitting Diode,OLED)显示面板或者量子点发光二极管(Quantum Dot Light Emitting Diodes,QLED)显示面板等,本公开的实施例对此不作具体限定。OLED显示面板例如可以为柔性OLED显示面板。OLED显示面板具有自发光特性,并且其显示像素单元的发光还可以根据需要进行控制或调制,从而可以为纹路采集提供便利,而且有助于提高装置的集成度。
例如,显示面板110除了包括像素单元阵列以外,还包括用于提供电信号(包括扫描信号、数据信号、检测信号等)的信号线(包括栅线、数据线、检测线等),例如,可以通过驱动电路控制发光器件的发光状态以实现像素单元的点亮。例如,显示面板110上还具有保护盖板113,保护盖板113的表面形成触摸侧表面112。保护盖板113例如为玻璃、聚酰亚胺等透明材质。例如,在一些实施例中,在显示面板110还具有触控层、偏光片层等功能层,这些功能层可以通过光学透明胶(OCA胶)结合在显示面板110上,本公开的实施例对显示面板110的其他结构不作具体限定。
例如,在另一些实施例中,具有屏下纹路识别功能的显示装置包括显示面板110以及单独提供的作为实现纹路识别的感光光源的发光元件,这些发光元件例如设置于像素单元阵列中相邻的像素单元之间,或者与像素单元重叠设置,本公开的实施例对此不做限定。
例如,在该纹路识别装置100中,在一个点光源或线光源发光时,其向触摸侧112发射的光照射到触摸侧表面上时,由于该触摸侧表面的全反射的 作用,这些光中入射角大于或等于全反射的临界角θ的部分会发生全反射作用,导致这部分光线不能从触摸侧表面出射,由此产生环形的全反射区域。相应地,这些光中入射角小于全反射的临界角θ的部分从触摸侧表面出射。可以通过全反射区域反射的光进行纹路图像采集。例如,当指纹的脊触摸到全反射区域时,相应位置的全反射条件被破坏,而指纹的谷触摸到全反射区域时,相应位置的没有破坏全反射条件。这样,全反射区域中的光线由于谷、脊的不同影响,使得入射到图像传感器阵列120上的光在不同位置不同,形成明暗相间的纹路图像。
同时,环形部分的环心由于从触摸侧表面出射并被纹路识别装置内部的结构等反射的光所造成的干扰,而成为检测无效区域。为了获得完整的纹路图像,对于该环心的无效区域需要另外进行检测。
例如,在一些实施例中,当具有纹路的操作体例如手指触摸纹路识别装置100的触摸侧表面112时,由于如上所述的环形的全反射区域,如图3所示,一个光源111的成像范围形成为环状,其成像范围有限,因此可能不会获得足够的纹路图像。此时,可以采用同时或分时点亮多个光源111的方式,以使图像传感器阵列120获得更大面积的(例如完整的)指纹纹路图像。
例如,在一些实施例中,纹路识别装置还包括控制器130,控制器130与光源阵列耦接,由此与光源阵列信号连接,可以控制光源阵列的操作。例如,如图4A所示,多个光源111包括至少一个第一光源111A和至少一个第二光源111B,第二光源111B与第一光源111A沿第一方向(图4A中示出为水平方向,在其他实施例中也可以为竖直方向或者某一倾斜方向)偏移第一距离D1,第一距离D1例如使得第一光源111A与第二光源111B在图像传感器阵列120上的成像范围不重叠或者重叠面积小于干扰阈值(即该干扰在可接受的范围内)。此时,控制器130配置为在图像传感器阵列120进行纹路采集的过程中,在第一时刻控制点亮第一光源111A,在不同于第一时刻的第二时刻控制点亮第二光源111B。由于第一距离D1已使第一光源111A与第二光源111B在图像传感器阵列120上的成像范围不重叠或者重叠面积小于干扰阈值,因此第一时刻与第二时刻的时间间隔可以设置为很短,以提高图像采集速度。由此,如图4B所示,图像传感器阵列120可以在短时间内获得多个部分纹路图像,该多个部分纹路图像可以被拼接共同用于获取整个范围内的纹路图像,用于纹路图像识别。
例如,如图4B所示,第一光源111A在图像传感器阵列120上的成像范围呈第一环形121A,第二光源111B在图像传感器阵列120上的成像范围呈第二环形121B;第一环形121A与第二环形111B不重叠或者重叠面积小于干扰阈值。例如,当第二环形111B与第一环形121A的环心没有重叠的部分时,可认为重叠面积小于干扰阈值。本公开实施例中提及的环心是指环形的内环的部分,例如图中环形内部的没有阴影的部分。呈第一环形121A与第二环形111B的指纹图像可以共同用于图像识别。
例如,在一些实施例中,如图5A所示,多个光源111还包括至少一个第三光源111C,第三光源111C与第一光源111A沿第一方向偏移第二距离D2,且第二距离D2小于第一距离D1。例如,第二距离D2小于第一距离D1的二分之一,从而第三光源111C在第一光源111A和第二光源111B之间更靠近第一光源111A。此时,控制器130还配置为在图像传感器阵列120进行所述纹路采集的过程中,在不同于第一时刻和第二时刻的第三时刻控制点亮第三光源111C,使得第三光源111C的成像范围可以补充第一光源111A的成像范围。例如,如图5B所示,图像传感器阵列120获得的多个部分纹路图像可相互补充,以形成更加完整的纹路图像。
例如,如图5B所示,第一光源111A在图像传感器阵列120上的成像范围呈第一环形121A,第二光源111B在图像传感器阵列120上的成像范围呈第二环形121B,第三光源111C在图像传感器阵列120上的成像范围呈第三环形121C;第三环形121C覆盖第一环形121A的环心,第一环形121A与第二环形121B不重叠或者重叠面积小于干扰阈值。
例如,第二光源111B与第三光源111C的成像范围不重叠或者重叠面积小于干扰阈值,例如在图5B中,第二光源111B与第三光源111C的成像范围有重叠,但是重叠面积小于干扰阈值。此时,第三时刻与第二时刻之间的时间间隔可以设置为很短,以提高图像的采集速度。
例如,第三时刻与第一时刻之间的时间间隔大于等于图像传感器121的残影消除时间,由此可以消除第一光源111A在图像传感器121上的成像残影对第三光源111C的成像的影响。例如,该残影消除时间可以预先通过实验或者计算确定,因此可以通过选择合适的第三时刻与第一时刻的时间间隔,以避免残影造成的不良影响。由此,图像传感器阵列120可以获得不受残影影响的、具有足够清晰度与完整度的纹路图像。
又例如,第二时刻与第三时刻之间的时间间隔也可以设置为大于等于图像传感器121的残影消除时间,由此可以消除第二光源111B在图像传感器121上的成像残影对第三光源111B的成像的影响。
例如,在一些实施例中,残影消除时间可以采用如下方法确定。控制光源发出预定光强的光,在时间T1内检测子图像传感器的光敏元件122产生的电信号Lt1。之后将光源关闭,并在B个不同时间T2_b(1≤b≤B;b为正整数,B为正整数)内检测子图像传感器的光敏元件122产生的电信号Lt2_b。针对每一个时间T2_b检测到的电信号Lt2_b,根据子图像传感器的光敏元件122产生的电信号Lt1和Lt2_b,可以确定每个子图像传感器的光敏元件122在时间T2_b内对应的残影比值Lag_b,其中,
Figure PCTCN2019109436-appb-000001
然后,根据子图像传感器的光敏元件122对应的残影比值Lag_b,确定时间T2_b对应的残影比值的平均值。在时间T2_b对应的残影比值的平均值满足残影消除比例时,可以将时间T2_b作为预设残影消除时长。其中,残影消除比例可以为20%~100%中的数值。例如,残影消除比例可以为20%、50%、70%、80%或100%。当然,子图像传感器的光敏元件122的性能不同,残影消除的时长也不同,因此残影消除比例的具体数值可以根据实际应用环境进行设计确定,本公开的实施例对此不作限定。
例如,在一些实施例中,为了获得更大的纹路图像,如图4A所示,控制器130还配置为在图像传感器阵列120进行纹路采集的过程中,在第一时刻控制点亮排列为第一图案(图中示出为正方形)的多个第一光源111A,在第二时刻控制点亮排列为第二图案(图中示出为正方形)的多个第二光源112B,并且,第二图案与第一图案沿第一方向偏移第一距离D1。由此,如图4B所示,图像传感器阵列120可以获得多个部分纹路图像,该多个部分纹路图像可以共同用于图像识别。
类似地,在一些实施例中,如图5A所示,控制器130还配置为在不同于第一时刻和第二时刻的第三时刻控制点亮呈第三图案(图中示出为正方形)的多个第三光源111C,且第三图案与第一图案沿所述第一方向偏移第二距离D2,第二距离D2小于第一距离D1,例如第二距离D2小于第一距离D1的二分之一。由此,如图5B所示,图像传感器阵列120获得的多个部分纹路图像可互相补充,以形成更加完整的纹路图像。
例如,在一些实施例中,第一图案、第二图案和第三图案彼此相同,从而形成大致相同形状的各部分纹路图像,以有利于不同时刻形成的纹路图像的拼接。
本公开的一些实施例中,多个第一光源111A、多个第二光源112B以及多个第三光源111C形成的形状并不局限于上述正方形,例如还可以是图6A和图6B中示出的五边形、六边形、七边形、八边形或者圆形等。例如,第一光源111A、第二光源112B或者第三光源111C可以是如图6A所示的点光源1111,也可以是如图6B所示的线光源1112,当光源111包括一个或多个像素单元时,该点光源1111或者线光源1112可以通过点亮一个或多个像素单元来获得。例如,在一些实施例中,也可以控制点亮呈多个第一图案、多个第二图案和多个第三图案的多个光源,例如控制点亮呈阵列排布的多个第一图案、多个第二图案和多个第三图案的多个光源,从而实现对更大纹路的识别。例如,在一些实施例中,多个光源111还可以包括第四光源、第五光源等,并按照上述规律进行点亮。这些方案均可以实现对更大纹路的识别。例如,上述任一的方案均可以形成如图7所示的完整的纹路图像。
需要注意的是,在一些实施例中,在短时间内点亮部分光源获得的部分纹路图像已足以满足纹路识别的需求,因此可不必要形成完整的纹路图像。
本公开的实施例中,采用一定的规则分时点亮具有一定距离的光源作为图像传感器阵列的感光光源,使得图像传感器阵列可以在较短的时间内采集到清晰、准确的纹路图像。另外,通过分时点亮呈一定形状的多个光源还可以实现对较大纹路的整体识别。
另外需要注意的是,本公开的实施例中,图像传感器121和控制器130可以采用各种形式,本公开的实施例对此不做限定。
例如,在一些实施例中,图像传感器121的子图像传感器可以为电荷耦合装置(CCD)图像传感器、互补金属氧化物半导体(CMOS)型图像传感器或者光敏二极管(例如PIN光敏二极管等)等各种适当类型的图像传感器。根据需要,该图像传感器121例如可以仅对某个波长的光(例如红光或绿光)感测,也可以对全部可见光进行感测。例如,图像传感器阵列可以通过OCA胶贴合在显示面板110的一侧。
例如,控制器130可以为各种类型的具有处理功能的集成电路芯片,其可以具有各种计算架构,例如复杂指令集计算机(CISC)结构、精简指令集 计算机(RISC)结构或者一种实行多种指令集组合的结构。在一些实施例中,控制器130可以是微处理器,例如X86处理器或ARM处理器,或者可以是数字处理器(DSP)、现场可编程逻辑门阵列(FPGA)芯片等。
例如,在一些实施例中,控制器130还可以包括存储器,该存储器用于存储点亮形成一定图案的多个光源(或者多个像素单元)的控制程序以及分时点亮不同区域的多个光源的控制程序等。例如,该存储单元可以为任意形式的存储介质,例如易失性存储器或非易失性存储器等,例如半导体存储器或磁性介质存储器等,本公开的实施例对此不做限定。
例如,本公开实施例提供的纹路识别装置可以实现为手机、平板电脑、电子书等各种形式的电子装置。
本公开至少一实施例提供一种纹路识别装置的操作方法,参照图1A-图1D的纹路识别装置100,该操作方法包括:将每个图像传感器121的信号通过多个信号开关读取以用于形成纹路图像的一个图像像素。
例如,在一些实施例中,参照图1B,每个图像传感器121包括一个光敏元件122和与光敏元件122电连接的多个信号开关,例如信号开关为开关晶体管123,每个图像传感器121的多个信号开关连接同一纹路采集线124。此时,纹路识别装置100的操作方法还包括:采用同一纹路采集线为每个图像传感器121的多个信号开关提供驱动信号。并且,每个图像传感器121的信号用于形成纹路图像的一个图像像素。
参见图1C和图1D,每个图像传感器包括多个子图像传感器(图中示出为四个),多个子图像传感器分别被驱动,例如,每个子图像传感器均包括一个光敏元件和一个开关晶体管。此时,纹路识别装置的操作方法包括:将每个图像传感器的多个子图像传感器的信号量相叠加以用于形成纹路图像的一个图像像素。
例如,在一些实施例中,每个图像传感器包括多个子图像传感器,每个子图像传感器均包括一个光敏元件和与光敏元件电连接的信号开关;此时,纹路识别装置的操作方法还包括:将每个图像传感器包括的多个子图像传感器的多个子信号分别输出至数据输出电路,然后数据输出电路将这些子信号相叠加以用于形成纹路图像的一个图像像素。例如上述关于图1C的示例,在此不做赘述。
例如,在另一些实施例中,每个图像传感器包括多个子图像传感器,每 个子图像传感器均包括一个光敏元件和与光敏元件电连接的信号开关;此时,纹路识别装置的操作方法还包括:将每个图像传感器包括的多个子图像传感器的多个子信号相叠加,然后输出至数据输出电路以用于形成纹路图像的一个图像像素。例如上述关于图1D的示例,在此不做赘述。
例如,图像传感器的多个子图像传感器排列为M×N的阵列,其中,M和N为正整数且至少之一大于1。子图像传感器的具体排列形式可参见上述实施例,在此不再赘述。
上述实施例中,一个图像传感器内的信号量可以经过四个开关晶体管来释放,相对于一个图像传感器的信号量采用一个开关晶体管释放来说,该方案可以大幅度提高电信号的释放速度,缩减残影消除的时间,因此在采用分时的方式进行图像采集时,可以在保证采集图像清晰度与准确度的同时,提高图像采集的速率。
例如,在一些实施例中,参照图2,纹路识别装置例如为具有屏下纹路识别功能的显示装置,相应地包括显示面板,该显示面板包括像素单元阵列,该像素单元阵列包括多个像素单元。例如,显示面板的像素单元阵列被用于实现为光源阵列,多个像素单元实现为形成多个光源。例如,每个光源包括一个或多个像素单元。在这些实施例中,纹路识别装置100操作方法还包括:点亮每个光源111的一个或多个像素单元103以形成点状光源、线状光源、Z字形光源或者回字形光源等具有一定形状的光源。具体可参照上述实施例,在此不再赘述。
例如,在一些实施例中,参见图4A,多个光源包括至少一个第一光源和至少一个第二光源,第二光源与第一光源沿第一方向偏移第一距离D1。此时,纹路识别装置100的操作方法包括:在图像传感器阵列120进行纹路采集的过程中,在第一时刻点亮第一光源,在不同于第一时刻的第二时刻点亮第二光源。
例如,参见图4B,第一光源在图像传感器阵列上的成像范围呈第一环形,第二光源在图像传感器阵列120上的成像范围呈第二环形;第一环形与第二环形不重叠或者重叠面积小于干扰阈值。
例如,在一些实施例中,参见图5A,多个光源还包括至少一个第三光源,第三光源与第一光源沿第一方向偏移第二距离D2,且第二距离D2小于第一距离D1。此时,纹路识别装置100的操作方法包括:在图像传感器阵 列120进行所述纹路采集的过程中,在不同于第一时刻和第二时刻的第三时刻控制点亮第三光源,使得第三光源的成像范围可以补充第一光源的成像范围。
例如,参见图5B,第一光源在图像传感器阵列120上的成像范围呈第一环形,第二光源在图像传感器阵列120上的成像范围呈第二环形,第三光源在图像传感器阵列120上的成像范围呈第三环形;第三环形覆盖第一环形的环心,第一环形与第二环形不重叠或者重叠面积小于干扰阈值。
例如,第三时刻与第一时刻之间的时间间隔大于等于图像传感器121的残影消除时间,由此可以消除第一光源在图像传感器上的成像残影对第三光源的成像的影响。例如,该残影消除时间可以预先通过实验或者计算确定,因此可以通过选择合适的第三时刻与第一时刻的时间间隔,以避免残影造成的不良影响。残影消除时间的确定可参照上述实施例,在此不再赘述。
与上述实施例类似地,在一些实施例中,为了获得更大的纹路图像,纹路识别装置100的操作方法还可以包括:在图像传感器阵列120进行纹路采集的过程中,在第一时刻控制点亮排列为第一图案的多个第一光源,在第二时刻控制点亮排列为第二图案的多个第二光源,并且,第二图案与第一图案沿第一方向偏移第一距离D1。
类似地,在一些实施例中,纹路识别装置100的操作方法还可以包括:在不同于第一时刻和第二时刻的第三时刻控制点亮呈第三图案的多个第三光源,且第三图案与第一图案沿所述第一方向偏移第二距离D2,第二距离D2小于第一距离D1。由此,图像传感器阵列220获得的多个部分纹路图像可互相补充,以形成更加完整的纹路图像。
本公开的实施例中,多个第一光源、多个第二光源以及多个第三光源形成的形状并不局限于上述正方形,例如还可以是图6A和图6B中示出的五边形、六边形、七边形、八边形或者圆形等。例如,第一光源、第二光源或者第三光源可以是如图6A所示的点光源,也可以是如图6B所示的线光源。例如,在一些实施例中,纹路识别装置100的操作方法还可以包括点亮呈多个第一图案、多个第二图案和多个第三图案的多个光源,例如点亮呈阵列排布的多个第一图案、多个第二图案和多个第三图案的多个光源,从而实现对更大纹路的识别。例如,在一些实施例中,多个光源111还可以包括第四光源、第五光源等,并按照上述规律进行点亮。这些方案均可以实现对更大纹 路的识别。例如,上述任一的方案均可以形成如图7所示的完整的纹路图像。
需要注意的是,在一些实施例中,在短时间内点亮部分光源获得的部分纹路图像也足以满足纹路识别的需求,因此可不必要形成完整的纹路图像。
本公开的实施例中,采用一定的规则分时点亮具有一定距离的光源作为图像传感器阵列的感光光源,使得图像传感器阵列可以在较短的时间内采集到清晰、准确的纹路图像。另外,通过分时点亮呈一定形状的多个光源还可以实现对较大纹路的整体识别。
另外需要注意的是,本公开的实施例中,图像传感器121可以采用各种形式,具体可参见上述实施例,本公开的实施例对此不做限定。
有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”或者可以存在中间元件。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种纹路识别装置,包括:
    光源阵列,包括多个光源;
    图像传感器阵列,设置在所述光源阵列的一侧,包括多个图像传感器,所述多个图像传感器配置为可接收从所述多个光源发出且经纹路反射至所述图像传感器的光以用于纹路图像采集;
    其中,每个所述图像传感器包括多个信号开关,且每个所述图像传感器的信号经所述多个信号开关读取以用于形成所述纹路图像的一个图像像素。
  2. 根据权利要求1所述的纹路识别装置,其中,每个所述图像传感器包括一个光敏元件和与所述光敏元件电连接的多个信号开关;
    所述多个信号开关连接同一纹路采集线。
  3. 根据权利要求1所述的纹路识别装置,其中,每个所述图像传感器包括多个子图像传感器,每个所述子图像传感器均包括一个光敏元件和与所述光敏元件电连接的信号开关;
    其中,每个所述图像传感器包括的所述多个子图像传感器的多个子信号分别经所述多个子图像传感器的信号开关输出至数据输出电路,然后所述数据输出电路将所述多个子信号相叠加得到每个所述图像传感器的信号,以用于形成所述纹路图像的一个图像像素。
  4. 根据权利要求1所述的纹路识别装置,其中,每个所述图像传感器包括多个子图像传感器,每个所述子图像传感器均包括一个光敏元件和与所述光敏元件电连接的多个信号开关;
    其中,每个所述图像传感器包括的所述多个子图像传感器的多个子信号分别经所述多个子图像传感器的多个信号开关输出后相叠加得到每个所述图像传感器的信号,然后经叠加得到的每个所述图像传感器的信号输出至数据输出电路,以用于形成所述纹路图像的一个图像像素。
  5. 根据权利要求3或4所述的纹路识别装置,其中,每个所述图像传感器的多个子图像传感器排列为M×N的阵列,其中,M和N为正整数且至少之一大于1。
  6. 根据权利要求1-5任一所述的纹路识别装置,其中,所述光源为点状光源、线状光源、Z字形光源或者回字形光源。
  7. 根据权利要求1-6任一所述的纹路识别装置,还包括显示面板,其中,所述显示面板包括像素单元阵列,
    所述像素单元阵列包括多个像素单元;
    所述像素单元阵列包括所述光源阵列,所述多个光源的每个包括一个或多个所述像素单元。
  8. 根据权利要求7所述的纹路识别装置,其中,每个所述光源包括多个所述像素单元,
    其中,当每个所述光源包括的多个所述像素单元排列为形成点状光源时,每个所述光源包括的多个所述像素单元配置为被间隔点亮。
  9. 根据权利要求7所述的纹路识别装置,其中,所述显示面板包括有机发光二极管显示面板或者量子点发光二极管显示面板。
  10. 根据权利要求1-9任一所述的纹路识别装置,还包括控制器,
    其中,所述多个光源包括至少一个第一光源和至少一个第二光源,所述第二光源与所述第一光源沿第一方向偏移第一距离;
    所述控制器配置为在所述图像传感器阵列进行所述纹路采集的过程中,在第一时刻控制点亮所述第一光源,在不同于所述第一时刻的第二时刻控制点亮所述第二光源;
    其中,所述第一光源在所述图像传感器阵列上的成像范围呈第一环形,所述第二光源在所述图像传感器阵列上的成像范围呈第二环形;所述第一环形与所述第二环形不重叠或者重叠面积小于干扰阈值。
  11. 根据权利要求10所述的纹路识别装置,其中,所述多个光源还包括至少一个第三光源,所述第三光源与所述第一光源沿所述第一方向偏移第二距离,且所述第二距离小于所述第一距离;
    所述控制器还配置为在所述图像传感器阵列进行所述纹路采集的过程中,在不同于所述第一时刻和所述第二时刻的第三时刻控制点亮第三光源;
    其中,所述第三时刻与所述第一时刻之间的时间间隔大于等于所述图像传感器的残影消除时间;
    所述第三光源在所述图像传感器阵列上的成像范围呈第三环形,所述第三环形覆盖所述第一环形的环心。
  12. 根据权利要求10所述的纹路识别装置,其中,所述控制器还配置为在所述图像传感器阵列进行所述纹路采集的过程中,在所述第一时刻控制 点亮排列为第一图案的多个第一光源,在所述第二时刻控制点亮排列为第二图案的多个第二光源,
    其中,所述第二图案与所述第一图案沿所述第一方向偏移第一距离。
  13. 一种纹路识别装置的操作方法,所述纹路识别装置包括:
    光源阵列,包括多个光源;
    图像传感器阵列,设置在所述光源阵列的一侧,包括多个图像传感器,其中,所述多个图像传感器配置为可接收从所述多个光源发出的且经纹路反射至所述图像传感器的光以用于纹路图像采集,每个所述图像传感器包括多个信号开关;
    所述操作方法包括:
    将每个所述图像传感器的信号通过所述多个信号开关读取以用于形成所述纹路图像的一个图像像素。
  14. 根据权利要求13所述的操作方法,其中,每个所述图像传感器包括一个光敏元件和与所述光敏元件电连接的多个信号开关;
    所述操作方法还包括:
    采用同一纹路采集线为每个所述图像传感器的多个信号开关提供驱动信号。
  15. 根据权利要求13所述的操作方法,其中,每个所述图像传感器包括多个子图像传感器,每个所述子图像传感器均包括一个光敏元件和与所述光敏元件电连接的信号开关;
    所述操作方法还包括:
    将每个所述图像传感器包括的所述多个子图像传感器的多个子信号分别输出至数据输出电路,然后所述数据输出电路将所述多个子信号相叠加以用于形成所述纹路图像的一个图像像素。
  16. 根据权利要求13所述的操作方法,其中,每个所述图像传感器包括多个子图像传感器,每个所述子图像传感器均包括一个光敏元件和与所述光敏元件电连接的信号开关;
    所述操作方法还包括:
    将每个所述图像传感器包括的所述多个子图像传感器的多个子信号相叠加,然后输出至数据输出电路以用于形成所述纹路图像的一个图像像素。
  17. 根据权利要求13-16任一所述的操作方法,其中,所述纹路识别装置包括显示面板,所述显示面板包括像素单元阵列,所述像素单元阵列包括多个像素单元;
    所述像素单元阵列包括所述光源阵列,所述多个光源的每个包括一个或多个所述像素单元;
    所述操作方法还包括:
    点亮每个所述光源的一个或多个所述像素单元以形成点状光源、线状光源、Z字形光源或者回字形光源。
  18. 根据权利要求13-16任一所述的操作方法,其中,
    所述纹路识别装置包括显示面板,所述显示面板包括像素单元阵列,所述像素单元阵列包括多个像素单元;
    所述光源阵列包括所述像素单元阵列,所述多个光源的每个包括用于形成点状光源的多个所述像素单元;
    所述操作方法还包括:
    间隔点亮用于形成所述点状光源的多个所述像素单元。
  19. 根据权利要求13-16任一所述的操作方法,其中,所述多个光源包括至少一个第一光源和至少一个第二光源,所述第二光源与所述第一光源沿第一方向偏移第一距离;
    所述操作方法还包括:
    在所述图像传感器阵列进行所述纹路采集的过程中,在第一时刻点亮第一光源,在不同于所述第一时刻的第二时刻点亮第二光源;
    其中,所述第一光源在所述图像传感器阵列上的成像范围呈第一环形,所述第二光源在所述图像传感器阵列上的成像范围呈第二环形;所述第一环形与所述第二环形不重叠或者重叠面积小于干扰阈值。
  20. 根据权利要求19所述的操作方法,其中,所述多个光源还包括至少一个第三光源,所述第三光源与所述第一光源沿所述第一方向偏移第二距离,且所述第二距离小于所述第一距离;
    所述操作方法还包括:
    在所述图像传感器阵列进行所述纹路采集的过程中,在不同于所述第一时刻和所述第二时刻的第三时刻点亮第三光源;
    其中,所述第三时刻与所述第一时刻之间的时间间隔大于等于所述 图像传感器的残影消除时间;
    所述第三光源在所述图像传感器阵列上的成像范围呈第三环形,所述第三环形覆盖所述第一环形的环心。
PCT/CN2019/109436 2018-12-28 2019-09-30 纹路识别装置以及纹路识别装置的操作方法 WO2020134298A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/648,628 US11232279B2 (en) 2018-12-28 2019-09-30 Texture recognition device and operation method of texture recognition device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811626371.5 2018-12-28
CN201811626371.5A CN111382732B (zh) 2018-12-28 2018-12-28 纹路识别装置以及纹路识别装置的操作方法

Publications (1)

Publication Number Publication Date
WO2020134298A1 true WO2020134298A1 (zh) 2020-07-02

Family

ID=71126177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109436 WO2020134298A1 (zh) 2018-12-28 2019-09-30 纹路识别装置以及纹路识别装置的操作方法

Country Status (3)

Country Link
US (1) US11232279B2 (zh)
CN (1) CN111382732B (zh)
WO (1) WO2020134298A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150371074A1 (en) * 2014-06-23 2015-12-24 Shanghai Oxi Technology Co., Ltd. Integrated optical sensor and methods for manufacturing and using the same
CN107093617A (zh) * 2017-05-02 2017-08-25 京东方科技集团股份有限公司 阵列基板、图像采集方法及显示装置
CN107230698A (zh) * 2017-05-27 2017-10-03 上海天马微电子有限公司 一种显示面板及显示装置
CN108090467A (zh) * 2017-12-30 2018-05-29 深圳信炜科技有限公司 感光装置、感光模组、显示模组及电子设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160266695A1 (en) * 2015-03-10 2016-09-15 Crucialtec Co., Ltd. Display apparatus having image scanning function
CN108598117B (zh) * 2018-04-25 2021-03-12 京东方科技集团股份有限公司 一种显示装置和显示装置的指纹识别方法
CN112070018B (zh) * 2018-12-14 2023-12-01 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150371074A1 (en) * 2014-06-23 2015-12-24 Shanghai Oxi Technology Co., Ltd. Integrated optical sensor and methods for manufacturing and using the same
CN107093617A (zh) * 2017-05-02 2017-08-25 京东方科技集团股份有限公司 阵列基板、图像采集方法及显示装置
CN107230698A (zh) * 2017-05-27 2017-10-03 上海天马微电子有限公司 一种显示面板及显示装置
CN108090467A (zh) * 2017-12-30 2018-05-29 深圳信炜科技有限公司 感光装置、感光模组、显示模组及电子设备

Also Published As

Publication number Publication date
CN111382732A (zh) 2020-07-07
CN111382732B (zh) 2024-01-23
US20210248349A1 (en) 2021-08-12
US11232279B2 (en) 2022-01-25

Similar Documents

Publication Publication Date Title
TWI658410B (zh) 可變光場的生物影像感測系統
US10733412B2 (en) Display panel and display apparatus for fingerprint identification
TWI520008B (zh) 複合式光學感測器及其製作方法和使用方法
US10970517B2 (en) Texture recognition device and operation method of texture recognition device
TW201813117A (zh) 積體化感測模組、積體化感測組件及其製造方法
CN112236774B (zh) 纹路识别装置以及纹路识别装置的驱动方法
WO2020119135A1 (en) A driving method and an apparatus for a fingerprint recognition device
US20220086378A1 (en) Electronic device and imaging method thereof
WO2019148896A1 (zh) 指纹识别方法及装置、显示面板及可读存储介质
US11132527B2 (en) Photo-sensing detection apparatus, display apparatus, method of fingerprint detection, and method of operating display apparatus
CN115552488A (zh) 纹路识别装置及其制造方法、彩膜基板及其制造方法
CN111339984B (zh) 显示面板及显示装置
WO2020134298A1 (zh) 纹路识别装置以及纹路识别装置的操作方法
US11188772B2 (en) Drive method for texture recognition device and texture recognition device
CN111898397B (zh) 纹路识别装置
CN110543821B (zh) 纹路识别装置及其操作方法
WO2021051276A1 (en) Photo-sensing detection apparatus, display apparatus, method of fingerprint detection, and method of operating display apparatus
CN113743152B (zh) 纹路识别装置
WO2020248238A1 (zh) 纹路图像获取电路、显示面板及纹路图像获取方法
US12035605B2 (en) Texture recognition apparatus and manufacturing method thereof
WO2020248169A1 (zh) 纹路图像获取方法、纹路图像获取电路及显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19901672

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.08.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19901672

Country of ref document: EP

Kind code of ref document: A1