WO2020134251A1 - 扫描设备自主导向方法、装置和扫描设备 - Google Patents

扫描设备自主导向方法、装置和扫描设备 Download PDF

Info

Publication number
WO2020134251A1
WO2020134251A1 PCT/CN2019/108143 CN2019108143W WO2020134251A1 WO 2020134251 A1 WO2020134251 A1 WO 2020134251A1 CN 2019108143 W CN2019108143 W CN 2019108143W WO 2020134251 A1 WO2020134251 A1 WO 2020134251A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning device
rtk
information
sensor
offset
Prior art date
Application number
PCT/CN2019/108143
Other languages
English (en)
French (fr)
Inventor
李建
孙尚民
王永明
许艳伟
喻卫丰
胡煜
宗春光
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Publication of WO2020134251A1 publication Critical patent/WO2020134251A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/024Guidance services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services

Definitions

  • the present disclosure relates to the field of autonomous guidance, and in particular, to an autonomous guidance method, apparatus, and scanning device for a scanning device.
  • Autonomous guidance means that the scanning equipment implements autonomous scanning path planning and movement according to a certain route.
  • automatic guidance can realize the intelligentization of scanning equipment, reduce the participation of personnel, and improve the automation of equipment.
  • the scanning device uses GPS positioning to move back and forth on a certain route to scan the test object, or uses a single-line laser sensor to achieve autonomous guidance.
  • a method for autonomous guidance of a scanning device including: determining whether landmark line information can be recognized based on ground image information, wherein an image sensor is installed on the scanning device, and the image sensor is used to obtain ground image information; Yes, the target offset of the scanning device is determined based on the landmark line information; otherwise, it is determined whether the RTK trajectory information of the scanning device can be obtained.
  • a real-time dynamic carrier phase differential RTK sensor is installed on the scanning device.
  • the RTK sensor is used to Obtain the RTK trajectory information of the scanning device; if possible, determine the target offset of the scanning device based on the position information of the RTK mobile station corresponding to the RTK sensor; and implement the autonomous guidance of the scanning device based on the target offset.
  • determining the target offset in the operation of the scanning device based on the landmark line information includes: determining a reference deviation of the scanning device from the landmark line; extracting the coordinate value of the landmark line in the ground image; based on the fitting algorithm Fit the slope and intercept of the landmark line in the ground image; determine the first offset of the scanning device relative to the landmark line based on the slope and intercept; determine that the scanning device is in operation based on the first offset and the reference deviation The target offset.
  • the RTK mobile station corresponding to the RTK sensor is set on the scanning device, the RTK base station corresponding to the RTK sensor is set at a predetermined position on the ground, and the target deviation in the operation of the scanning device is determined based on the position information of the RTK mobile station corresponding to the RTK sensor
  • the shift includes: obtaining the RTK guidance path; determining the GPS positioning offset based on the global positioning system GPS positioning signal received by the RTK base station and the RTK base station's own positioning signal; correcting the positioning information of the RTK mobile station based on the GPS positioning offset; Based on the RTK guidance path and the corrected positioning information of the RTK mobile station, the target offset during the operation of the scanning device is determined.
  • acquiring the RTK guidance path includes: acquiring the movement trajectory of the scanning device based on the image sensor; and using the movement trajectory of the scanning device as the RTK guidance path.
  • the automatic guidance of the scanning device is implemented based on the inertial measurement unit IMU installed on the scanning device.
  • the IMU is integrated in the RTK sensor.
  • an autonomous guidance device for a scanning device including: an image sensor provided on the scanning device and configured to acquire ground image information; a real-time dynamic carrier phase differential RTK sensor provided on the scanning device , Is configured to obtain RTK trajectory information of the scanning device; the processor is configured to determine whether the landmark line information can be recognized based on the ground image information; if it can, determine the target offset of the scanning device in operation based on the landmark line information Otherwise, it is determined whether the RTK trajectory information of the scanning device can be obtained; if it is possible, the target offset of the scanning device in operation is determined based on the position information of the RTK mobile station corresponding to the RTK sensor; the scanning device is implemented based on the target offset Self-directed.
  • the processor is configured to determine the reference deviation of the scanning device from the landmark line; extract the coordinate value of the landmark line in the ground image; fit the slope of the landmark line in the ground image based on the fitting algorithm And intercept; determine the first offset of the scanning device relative to the landmark line based on the slope and the intercept; determine the target offset of the scanning device during operation based on the first offset and the reference deviation.
  • the RTK mobile station corresponding to the RTK sensor is set on the scanning device, and the RTK base station corresponding to the RTK sensor is set at a predetermined location on the ground; the processor is further configured to obtain the RTK guidance path; the global positioning system is based on the RTK base station reception GPS positioning signals and the RTK base station's own positioning signals determine the GPS positioning offset; based on the GPS positioning offset, the positioning information of the RTK mobile station is corrected; based on the RTK guidance path and the corrected positioning information of the RTK mobile station, the scanning device is determined The target offset in operation.
  • the processor is further configured to acquire the movement trajectory of the scanning device based on the image sensor; use the movement trajectory of the scanning device as the RTK guide path.
  • the inertial measurement unit IMU is installed on the scanning device; the processor is further configured to implement automatic guidance of the scanning device based on the IMU if the RTK trajectory information of the scanning device cannot be obtained.
  • the IMU is integrated in the RTK sensor.
  • a scanning device autonomous guidance device including: a memory; and a processor coupled to the memory, the processor configured to perform the scanning device autonomous guidance as described above based on instructions stored in the memory method.
  • a scanning device including the above-mentioned autonomous guiding device of the scanning device.
  • a computer-readable storage medium on which computer program instructions are stored, which when executed by a processor implements the above-mentioned autonomous guidance method for a scanning device.
  • FIG. 1 is a schematic flowchart of some embodiments of a self-directing method for a scanning device of the present disclosure.
  • FIG. 2 is a schematic flow chart of other embodiments of the self-directing method of the scanning device of the present disclosure.
  • FIG. 3 is a schematic flowchart of still other embodiments of the autonomous guidance method of a scanning device of the present disclosure.
  • FIG. 4 is a schematic flowchart of still other embodiments of the autonomous guidance method of a scanning device of the present disclosure.
  • FIG. 5 is a schematic structural diagram of some embodiments of an autonomous guiding device of a scanning device of the present disclosure.
  • FIG. 6 is a schematic structural diagram of still other embodiments of the autonomous guiding device of the scanning device of the present disclosure.
  • FIG. 7 is a schematic structural view of other embodiments of the autonomous guiding device of the scanning device of the present disclosure.
  • FIG. 8 is a schematic structural diagram of still other embodiments of the autonomous guiding device of the scanning device of the present disclosure.
  • FIG. 1 is a schematic flowchart of some embodiments of a self-directing method for a scanning device of the present disclosure.
  • step 110 it is determined whether the landmark line information can be recognized based on the ground image information. If it is possible, step 120 is performed; otherwise, step 130 is performed.
  • An image sensor is installed on the scanning device, and the ground image information can be obtained through the image sensor.
  • the scanning device is, for example, a vehicle scanning inspection device or a container scanning and inspection device.
  • the image sensor is, for example, a visual image sensor.
  • the image sensor may be installed above the wheels of the scanning device. For example, the direction in which the image sensor collects images is at a predetermined angle to the ground, for example, 45 ° angle to collect landmark lines on the ground.
  • a target offset in operation of the scanning device is determined.
  • the distance of the scanning device from the predetermined trajectory can be determined, and then the angle information of the wheels can be adjusted.
  • step 130 it is determined whether RTK (Real-time Kinematic, Real-Time Dynamic Carrier Phase Difference) trajectory information of the scanning device can be obtained.
  • RTK Real-time Kinematic, Real-Time Dynamic Carrier Phase Difference
  • An RTK sensor is installed on the scanning device, and RTK trajectory information of the scanning device can be obtained through the RTK sensor.
  • the RTK sensor can be installed on the top of the vehicle scanning device and can receive satellite signals.
  • the straight line formed by the two antennas of the RTK sensor is consistent with the vehicle's target walking direction.
  • the antenna is used for positioning and measuring direction.
  • step 140 if the RTK trajectory information of the scanning device can be obtained, the target offset during the operation of the scanning device is determined based on the position information of the RTK mobile station corresponding to the RTK sensor. among them.
  • the RTK mobile station is installed on the scanning device.
  • step 150 based on the target offset, the autonomous guidance of the scanning device is achieved.
  • the target offset during the operation of the scanning device is determined according to the landmark line information, otherwise, the RTK movement corresponding to the RTK sensor is used to move The position information of the station determines the target offset during the operation of the scanning device, and then realizes the autonomous guidance of the scanning device.
  • This embodiment realizes the autonomous guidance of the scanning device based on multi-sensor fusion, which can be applied to different work sites and is not affected by the building. , Improve the accuracy of the self-directed scanning equipment.
  • FIG. 2 is a schematic flow chart of other embodiments of the self-directing method of the scanning device of the present disclosure.
  • the scanning device works in the working area, it can combine with the image sensor to realize the autonomous guidance of the scanning device.
  • the reference deviation of the scanning device from the landmark line is determined. For example, according to the installation position of the image sensor, the reference deviation of the scanning device from the landmark line when the image sensor initially shoots the landmark line is determined.
  • step 220 the coordinate value of the landmark line in the ground image is extracted. For example, real-time detection of the coordinate value of the outline of the landmark line in the image.
  • step 230 based on the fitting algorithm, the slope and intercept of the landmark line in the ground image are fitted.
  • the coordinate of the initial center point of the landmark line in the ground image is Ci(x, y)
  • the coordinate of the contour point of the landmark line detected in real time in the ground image is Cn(x, y), which can be based on the minimum
  • a first offset of the scanning device relative to the landmark line is determined.
  • the first offset can be determined based on the slope and intercept and the pixel value of each pixel in the image.
  • the posture of the wheel of the scanning device can also be calculated.
  • step 250 based on the first offset and the reference deviation, a target offset during operation of the scanning device is determined.
  • step 260 based on the target offset, the autonomous guidance of the scanning device is achieved.
  • the angle of the wheels of the scanning device can be adjusted according to the target offset, so that the scanning device can move along a predetermined path.
  • the target offset in the operation of the scanning device is determined according to the landmark line information, thereby achieving the autonomous guidance of the scanning device, which
  • the solution has high navigation accuracy and does not depend on reference objects, which can meet the autonomous guidance requirements of scanning equipment.
  • FIG. 3 is a schematic flowchart of still other embodiments of the autonomous guidance method of a scanning device of the present disclosure.
  • step 310 the RTK guidance path is established in advance.
  • the movement trajectory of the scanning device is acquired based on the image sensor, and the movement trajectory of the scanning device is used as the RTK guide path.
  • all the latitude and longitude coordinates of the scanning device measured by the RTK sensor when the scanning device is traveling in one direction are recorded; when the traveling scanning device changes direction, according to the acquired Using the curve fitting algorithm to solve the straight line trajectory of the RTK when the scanning device travels; each time the scanning device changes direction, it refits the straight line trajectory of the scanning device according to the latitude and longitude coordinates to establish the RTK guide path.
  • the GPS positioning offset is determined based on the GPS positioning signal received by the RTK base station and the positioning signal of the RTK base station itself.
  • the RTK base station is installed at a predetermined location on the ground.
  • the GPS positioning offset can be calculated based on the reference positioning information of the RTK base station and the positioning information measured by the base station.
  • step 330 based on the GPS positioning offset, the positioning information of the RTK mobile station is corrected. After acquiring the latitude and longitude coordinates of the RTK mobile station, combined with the GPS positioning offset to supplement the positioning error of the RTK mobile station, the latitude and longitude coordinates of the RTK mobile station are calculated.
  • step 340 based on the RTK guidance path and the corrected positioning information of the RTK mobile station, the target offset during the operation of the scanning device is determined.
  • step 350 based on the target offset, the autonomous guidance of the scanning device is achieved.
  • the autonomous guidance of the scanning device can be implemented based on RTK.
  • FIG. 4 is a schematic flowchart of still other embodiments of the autonomous guidance method of a scanning device of the present disclosure.
  • step 410 according to the installation position of the image sensor, it is determined that the reference deviation between the scanning device and the landmark line when the image sensor initially shoots the landmark line.
  • step 420 the ground image information measured by the image sensor is acquired, and adaptive threshold segmentation is performed. Because the gray difference between the marking line and the background is large, the landmark line can be identified through adaptive threshold segmentation.
  • step 430 it is determined whether the landmark line can be recognized. If it is possible, step 440 is executed; otherwise, step 450 is executed.
  • step 440 the coordinate value of the landmark line in the ground image is extracted.
  • step 441 based on the fitting algorithm, the slope and intercept of the landmark line in the ground image are fitted, and the first offset of the scanning device relative to the landmark line is calculated.
  • a target offset during operation of the scanning device is determined.
  • step 443 based on the target offset, the autonomous guidance of the scanning device is achieved.
  • step 444 the latitude and longitude coordinates of the scanning device detected by the RTK sensor are recorded, and when the scanning device changes direction, the RTK guide path is fitted.
  • step 450 it is determined whether the RTK trajectory information of the scanning device can be obtained. If it is possible, step 451 is executed; otherwise, step 460 is executed.
  • step 451 the GPS positioning offset is determined based on the GPS positioning signal received by the RTK base station and the positioning signal of the RTK base station itself.
  • step 452 based on the GPS positioning offset, the positioning information of the RTK mobile station is corrected.
  • step 453 based on the RTK guidance path and the corrected positioning information of the RTK mobile station, the target offset during the operation of the scanning device is determined.
  • step 454 based on the target offset, the autonomous guidance of the scanning device is achieved.
  • step 460 based on the IMU (Inertial Measurement Unit) installed on the scanning device, the automatic guidance of the scanning device is realized.
  • the IMU can be integrated in the RTK sensor. For example, when the image sensor does not detect the landmark line and the RTK signal is weak, according to the accelerometer and gyroscope of the IMU, the scanning device maintains the motion acceleration and angle of the previous moment to realize automatic guidance of the scanning device in a short time.
  • step 470 it is judged whether it times out. If it is, the autonomous guidance is ended, otherwise, step 420 is continued.
  • the autonomous guidance of the scanning device in different environments can be achieved, and the degree of automation of the scanning device is improved.
  • FIG. 5 is a schematic structural diagram of some embodiments of an autonomous guiding device of a scanning device of the present disclosure.
  • the device includes an image sensor 510, an RTK sensor 520, and a processor 530.
  • the image sensor 510 is provided on the scanning device and is configured to acquire ground image information.
  • the scanning device is, for example, a vehicle scanning and inspection device, and the image sensor is, for example, a visual image sensor.
  • the image sensor may be installed above the wheels of the scanning device.
  • the direction in which the image sensor captures the image is at a predetermined angle to the ground, for example, at an angle of 45° to facilitate collection Landmark lines on the ground.
  • the RTK sensor 520 is provided on the scanning device and is configured to obtain RTK trajectory information of the scanning device.
  • the RTK sensor can be installed on the top of the vehicle scanning device and can receive satellite signals.
  • the straight line formed by the two antennas of the RTK sensor is consistent with the vehicle's target walking direction.
  • the processor 530 is configured to judge whether the landmark line information can be recognized based on the ground image information; if the landmark line information can be recognized, based on the landmark line information, determine the target offset of the scanning device during operation; otherwise, judge Whether the RTK trajectory information of the scanning device can be obtained; if the RTK trajectory information can be obtained, the target offset of the scanning device in operation is determined based on the position information of the RTK mobile station corresponding to the RTK sensor; based on the target offset, the scanning device is implemented Self-directed.
  • the image sensor when the scanning device is working in the work area, can be combined with the image sensor to achieve autonomous guidance.
  • the processor 530 determines the reference deviation of the scanning device from the landmark line; extracts the coordinate value of the landmark line in the ground image; based on the fitting algorithm, fits the slope and intercept of the landmark line in the ground image; based on The slope and intercept determine the first offset of the scanning device relative to the landmark line; based on the first offset and the reference deviation, determine the target offset of the scanning device during operation.
  • the autonomous guidance of the scanning device may be implemented based on RTK.
  • the processor 530 obtains the RTK guidance path; determines the GPS positioning offset based on the global positioning system GPS positioning signal received by the RTK base station and the RTK base station's own positioning signal; based on the GPS positioning offset, positioning information for the RTK mobile station Perform correction; determine the target offset during the operation of the scanning device based on the RTK guidance path and the corrected positioning information of the RTK mobile station.
  • the movement trajectory of the scanning device can be obtained based on the image sensor, and the movement trajectory of the scanning device can be used as the RTK guide path.
  • the target offset in the operation of the scanning device is determined based on the landmark line information, otherwise, the RTK movement corresponding to the RTK sensor is used to move The position information of the station determines the target offset during the operation of the scanning device, and then realizes the autonomous guidance of the scanning device.
  • This embodiment can be applied to different work sites and is not affected by the building.
  • the autonomous guidance of the scanning device is realized based on multi-sensor fusion , Improve the degree of automation of scanning equipment.
  • the scanning device autonomous guidance device further includes an IMU 540, where the IMU 540 is installed on the scanning device, and in some embodiments, the IMU 540 may be integrated in RTK sensor 520.
  • the processor 530 is further configured to implement automatic guidance of the scanning device based on the IMU installed on the scanning device if the RTK trajectory information of the scanning device cannot be obtained.
  • the autonomous guidance of the scanning device in different environments can be achieved, and the degree of automation of the scanning device is improved.
  • FIG. 7 is a schematic structural view of other embodiments of the autonomous guiding device of the scanning device of the present disclosure.
  • the device includes a memory 710 and a processor 720, where:
  • the memory 710 may be a magnetic disk, flash memory, or any other non-volatile storage medium.
  • the memory is used to store instructions in the embodiments corresponding to FIGS. 1-4.
  • the processor 720 is coupled to the memory 710, and may be implemented as one or more integrated circuits, such as a microprocessor or a microcontroller.
  • the processor 720 is used to execute instructions stored in the memory.
  • the device 800 includes a memory 810 and a processor 820.
  • the processor 820 is coupled to the memory 810 through the BUS bus 830.
  • the device 800 can also be connected to the external storage device 850 through the storage interface 840 to call external data, and can also be connected to the network or another computer system (not shown) through the network interface 860, which will not be described in detail here.
  • the data instructions are stored in the memory, and the above instructions are processed by the processor.
  • the autonomous guidance of the scanning device can be implemented, which can be applied to different work sites without being affected by the building, which improves the automation of the scanning device degree.
  • a scanning device is also protected.
  • the scanning device includes the autonomous guiding device of the scanning device in the above embodiments.
  • a computer-readable storage medium has stored thereon computer program instructions, which when executed by a processor, implements the steps of the method in the embodiments corresponding to FIGS. 1-4.
  • the embodiments of the present disclosure may be provided as methods, devices, or computer program products. Therefore, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Moreover, the present disclosure may take the form of a computer program product implemented on one or more computer usable non-transitory storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code .
  • each flow and/or block in the flowchart and/or block diagram and a combination of the flow and/or block in the flowchart and/or block diagram may be implemented by computer program instructions.
  • These computer program instructions can be provided to the processor of a general-purpose computer, special-purpose computer, embedded processing machine, or other programmable data processing device to produce a machine that enables the generation of instructions executed by the processor of the computer or other programmable data processing device
  • These computer program instructions may also be stored in a computer readable memory that can guide a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer readable memory produce an article of manufacture including an instruction device, the instructions
  • the device implements the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and/or block diagrams.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device, so that a series of operating steps are performed on the computer or other programmable device to produce computer-implemented processing, which is executed on the computer or other programmable device
  • the instructions provide steps for implementing the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and/or block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种扫描设备自主导向方法,包括:判断是否能够根据地面图像信息识别出地标线信息(110),其中,扫描设备上安装图像传感器,图像传感器用于获取地面图像信息;若能够,则基于地标线信息确定扫描设备运行中的目标偏移量(120);否则,判断是否能够获取扫描设备的RTK轨迹信息(130),其中,扫描设备上安装RTK传感器,RTK传感器用于获取扫描设备的RTK轨迹信息;若能够,则基于RTK传感器对应的RTK移动站的位置信息确定扫描设备运行中的目标偏移量(140);基于目标偏移量实现扫描设备的自主导向(150)。还涉及一种扫描设备自主导向装置、扫描设备和计算机可读存储介质。

Description

扫描设备自主导向方法、装置和扫描设备
相关申请的交叉引用
本申请是以CN申请号为201811580349.1,申请日为2018年12月24日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及自主导向领域,尤其涉及一种扫描设备自主导向方法、装置和扫描设备。
背景技术
自主导向是指,扫描设备依据一定的路线,实现自主的扫描路径规划和移动。在安检领域,自动导向可以实现扫描设备的智能化,减少人员的参与程度,提高设备的自动化程度。
相关技术中,扫描设备利用GPS定位,在一定的路线上往返运动,以对被检物进行扫描,或者利用单线激光传感器实现自主导向。
发明内容
根据本公开一方面,提出一种扫描设备自主导向方法,包括:判断是否能够根据地面图像信息识别出地标线信息,其中,扫描设备上安装图像传感器,图像传感器用于获取地面图像信息;若能够,则基于地标线信息确定扫描设备运行中的目标偏移量;否则,判断是否能够获取扫描设备的RTK轨迹信息,其中,扫描设备上安装实时动态载波相位差分RTK传感器,RTK传感器用于获取扫描设备的RTK轨迹信息;若能够,则基于RTK传感器对应的RTK移动站的位置信息确定扫描设备运行中的目标偏移量;基于目标偏移量实现扫描设备的自主导向。
在一些实施例中,基于地标线信息确定扫描设备运行中的目标偏移量包括:确定扫描设备与地标线的基准偏差;提取地标线在地面图像中的坐标值;基于拟合算法拟合出地标线在地面图像中的斜率和截距;基于斜率和截距确定扫描设备相对于地标线的第一偏移量;基于第一偏移量与基准偏差确定扫描设备运行中的目标偏移量。
在一些实施例中,RTK传感器对应的RTK移动站设置在扫描设备上,RTK传感器 对应的RTK基站设置在地面预定位置,基于RTK传感器对应的RTK移动站的位置信息确定扫描设备运行中的目标偏移量包括:获取RTK导向路径;基于RTK基站接收的全球定位系统GPS定位信号和RTK基站自身的定位信号确定GPS定位偏移量;基于GPS定位偏移量对RTK移动站的定位信息进行校正;基于RTK导向路径和RTK移动站校正后的定位信息,确定扫描设备运行中的目标偏移量。
在一些实施例中,获取RTK导向路径包括:基于图像传感器获取扫描设备的移动轨迹;将扫描设备的移动轨迹作为RTK导向路径。
在一些实施例中,若不能够获取扫描设备的RTK轨迹信息,则基于扫描设备上安装的惯性测量单元IMU实现扫描设备的自动导向。
在一些实施例中,IMU集成在RTK传感器中。
根据本公开的另一方面,还提出一种扫描设备自主导向装置,包括:图像传感器,设置在扫描设备上,被配置为获取地面图像信息;实时动态载波相位差分RTK传感器,设置在扫描设备上,被配置为获取扫描设备的RTK轨迹信息;处理器,被配置为判断是否能够根据地面图像信息识别出地标线信息;若能够,则基于地标线信息确定扫描设备运行中的目标偏移量;否则,判断是否能够获取扫描设备的RTK轨迹信息;若能够,则基于RTK传感器对应的RTK移动站的位置信息确定扫描设备运行中的目标偏移量;基于目标偏移量实现扫描设备的自主导向。
在一些实施例中,处理器被配置为确定扫描设备与地标线的基准偏差;提取地标线在地面图像中的坐标值;基于拟合算法拟合出地标线在地面图像中的斜率和截距;基于斜率和截距确定扫描设备相对于地标线的第一偏移量;基于第一偏移量与基准偏差确定扫描设备运行中的目标偏移量。
在一些实施例中,RTK传感器对应的RTK移动站设置在扫描设备上,RTK传感器对应的RTK基站设置在地面预定位置;处理器还被配置为获取RTK导向路径;基于RTK基站接收的全球定位系统GPS定位信号和RTK基站自身的定位信号确定GPS定位偏移量;基于GPS定位偏移量对RTK移动站的定位信息进行校正;基于RTK导向路径和RTK移动站校正后的定位信息,确定扫描设备运行中的目标偏移量。
在一些实施例中,处理器还被配置为基于图像传感器获取扫描设备的移动轨迹;将扫描设备的移动轨迹作为RTK导向路径。
在一些实施例中,惯性测量单元IMU,安装在扫描设备上;处理器还被配置为若不能够获取扫描设备的RTK轨迹信息,则基于IMU实现扫描设备的自动导向。
在一些实施例中,IMU集成在RTK传感器中。
根据本公开的另一方面,还提出一种扫描设备自主导向装置,包括:存储器;以及耦接至存储器的处理器,处理器被配置为基于存储在存储器的指令执行如上述的扫描设备自主导向方法。
根据本公开的另一方面,还提出一种扫描设备,包括上述的扫描设备自主导向装置。
根据本公开的另一方面,还提出一种计算机可读存储介质,其上存储有计算机程序指令,该指令被处理器执行时实现上述的扫描设备自主导向方法。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1为本公开扫描设备自主导向方法的一些实施例的流程示意图。
图2为本公开扫描设备自主导向方法的另一些实施例的流程示意图。
图3为本公开扫描设备自主导向方法的再一些实施例的流程示意图。
图4为本公开扫描设备自主导向方法的又一些实施例的流程示意图。
图5为本公开扫描设备自主导向装置的一些实施例的结构示意图。
图6为本公开扫描设备自主导向装置的再一些实施例的结构示意图。
图7为本公开扫描设备自主导向装置的另一些实施例的结构示意图。
图8为本公开扫描设备自主导向装置的又一些实施例的结构示意图。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。
同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开 及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。
在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开进一步详细说明。
建筑物对GPS信号有较大的影响,难以保证信号的有效性,进而限制了扫描设备的使用场景。另外,利用单线激光传感器实现自主导向,需要在轨迹的附近安装参照物,使扫描设备依据参照物行驶,当扫描距离较长时,增加了现场的工作难度。
图1为本公开扫描设备自主导向方法的一些实施例的流程示意图。
在步骤110,判断是否能够根据地面图像信息识别出地标线信息,若能够,则执行步骤120,否则,执行步骤130。扫描设备上安装有图像传感器,通过图像传感器能够获取地面图像信息。扫描设备例如为车辆扫描检查设备或集装箱扫描检查设备,图像传感器例如为视觉图像传感器,图像传感器可以安装在扫描设备的车轮上方,例如,图像传感器采集图像的方向与地面成预定角度,例如为45°角,以便采集地面上的地标线。
在步骤120,基于地标线信息,确定扫描设备运行中的目标偏移量。当扫描设备在工作区域工作时,结合地面上的地标线,能够确定扫描设备偏离预定轨迹的距离,进而可以调整车轮的角度信息。
在步骤130,判断是否能够获取扫描设备的RTK(Real-time kinematic,实时动态载波相位差分)轨迹信息。扫描设备上安装有RTK传感器,通过RTK传感器可以获取扫描设备的RTK轨迹信息。RTK传感器可以安装在车辆扫描设备的顶部,能够接收卫星信号,RTK传感器的两根天线形成的直线与车辆目标行走方向一致,其中,天线用于定位和测量方向。
在步骤140,若能够获取扫描设备的RTK轨迹信息,则基于RTK传感器对应的RTK移动站的位置信息,确定扫描设备运行中的目标偏移量。其中。RTK移动站安装在扫描设备上。
在步骤150,基于目标偏移量,实现扫描设备的自主导向。
在该实施例中,若能够根据图像传感器获取的地面图像信息,识别出地标线信息,则根据地标线信息,确定扫描设备运行中的目标偏移量,否则,根据RTK传感器对应的RTK移动站的位置信息,确定扫描设备运行中的目标偏移量,进而实现扫描设备的自主导向,该实施例基于多传感器融合实现扫描设备的自主导向,能够适用不同的工作现场,不受建筑物影响,提高了扫描设备自主导向的准确性。
图2为本公开扫描设备自主导向方法的另一些实施例的流程示意图。当扫描设备在工作区域工作时,能够结合图像传感器实现扫描设备的自主导向。
在步骤210,确定扫描设备与地标线的基准偏差。例如,根据图像传感器的安装位置,确定图像传感器在初始拍摄地标线时,扫描设备与地标线的基准偏差。
在步骤220,提取地标线在地面图像中的坐标值。例如,实时的检测图像中地标线轮廓的坐标值。
在步骤230,基于拟合算法,拟合出地标线在地面图像中的斜率和截距。例如,地标线的初始中心点在地面图像中的坐标为Ci(x,y),实时检测出的地标线的轮廓点在地面图像中的坐标为Cn(x,y),可以基于最小二乘法,拟合出地标线在地面图像中的斜率和截距,例如,拟合成的一条直线y=kx+b,其中,k为斜率,b为截距。
在步骤240,基于斜率和截距,确定扫描设备相对于地标线的第一偏移量。例如,根据斜率和截距以及图像中每个像素点的像素值,可以确定第一偏移量,另外,还可以计算出扫描设备的车轮的姿态。
在步骤250,基于第一偏移量与基准偏差,确定扫描设备运行中的目标偏移量。
在步骤260,基于目标偏移量,实现扫描设备的自主导向。例如,根据目标偏移量可以调整扫描设备的车轮的角度,进而使得扫描设备可以沿着预定路径进行移动。
在该实施例中,当能够根据图像传感器获取的地面图像信息,识别出地标线信息时,根据地标线信息,确定扫描设备运行中的目标偏移量,进而实现扫描设备的自主导向,该方案导航精度高,并且不依赖参照物,能够满足扫描设备的自主导向需求。
图3为本公开扫描设备自主导向方法的再一些实施例的流程示意图。
在步骤310,预先建立RTK导向路径。例如,基于图像传感器获取扫描设备的移动轨迹,将扫描设备的移动轨迹作为RTK导向路径。
在一些实施例中,在扫描设备依据图像传感器进行自主导向过程中,记录下扫描设备单向行驶时,RTK传感器测量的扫描设备的所有经纬度坐标;当行驶的扫描设备 换向时,根据已经获取的坐标,采用曲线拟合算法,求解出扫描设备行驶时RTK的直线轨迹;每次扫描设备换向时,依据经纬度坐标,重新拟合扫描设备的直线轨迹,建立RTK导向路径。
在步骤320,基于RTK基站接收的GPS定位信号和RTK基站自身的定位信号,确定GPS定位偏移量。例如,RTK基站安装在地面预定位置,当扫描设备移动到开阔区域时,依据RTK基站的基准定位信息以及基站测量的定位信息,可以计算出GPS定位偏移量。
在步骤330,基于GPS定位偏移量,对RTK移动站的定位信息进行校正。在获取RTK移动站的经纬度坐标后,结合GPS定位偏移量,补充RTK移动站的定位误差,计算出RTK移动站的经纬度坐标。
在步骤340,基于RTK导向路径和RTK移动站校正后的定位信息,确定扫描设备运行中的目标偏移量。
在步骤350,基于目标偏移量,实现扫描设备的自主导向。
在该实施例中,在不能根据图像传感器获取的地面图像信息,识别出地标线信息的情况下,可以基于RTK实现扫描设备的自主导向。
图4为本公开扫描设备自主导向方法的又一些实施例的流程示意图。
在步骤410,根据图像传感器的安装位置,确定图像传感器在初始拍摄地标线时,扫描设备与地标线的基准偏差。
在步骤420,获取图像传感器测得的地面图像信息,并进行自适应阈值分割。由于标志线和背景的灰度差较大,通过自适应阈值分割,可以识别出地标线。
在步骤430,判断是否能够识别出地标线,若可以,则执行步骤440,否则,执行步骤450。
在步骤440,提取地标线在地面图像中的坐标值。
在步骤441,基于拟合算法,拟合出地标线在地面图像中的斜率和截距,并计算出扫描设备相对于地标线的第一偏移量。
在步骤442,基于第一偏移量与基准偏差,确定扫描设备运行中的目标偏移量。
在步骤443,基于目标偏移量,实现扫描设备的自主导向。
在步骤444,记录RTK传感器检测的扫描设备的经纬度坐标,当扫描设备换向时,拟合出RTK导向路径。
在步骤450,判断是否能够获取扫描设备的RTK轨迹信息,若可以,则执行步骤 451,否则,执行步骤460。
在步骤451,基于RTK基站接收的GPS定位信号和RTK基站自身的定位信号,确定GPS定位偏移量。
在步骤452,基于GPS定位偏移量,对RTK移动站的定位信息进行校正。
在步骤453,基于RTK导向路径和RTK移动站校正后的定位信息,确定扫描设备运行中的目标偏移量。
在步骤454,基于目标偏移量,实现扫描设备的自主导向。
在步骤460,基于扫描设备上安装的IMU(Inertial Measurement Unit,惯性测量单元),实现扫描设备的自动导向。IMU可以集成在RTK传感器中。例如,当图像传感器没有检测出地标线且RTK信号较弱时,根据IMU的加速度计和陀螺仪,使得扫描设备保持上一时刻的运动加速度和角度,实现短时间内扫描设备的自动导向。
在步骤470,判断是否超时,若是,则结束自主导向,否则,继续执行步骤420。
在该实施例中,结合图像传感器、RTK传感器和IMU的优点,能够实现不同环境下扫描设备的自主导向,提高了扫描设备的自动化程度。
图5为本公开扫描设备自主导向装置的一些实施例的结构示意图。该装置包括图像传感器510、RTK传感器520和处理器530。
图像传感器510设置在扫描设备上,被配置为获取地面图像信息。扫描设备例如为车辆扫描检查设备,图像传感器例如为视觉图像传感器,图像传感器可以安装在扫描设备的车轮上方,例如,图像传感器采集图像的方向与地面成预定角度,例如为45°角,以便采集地面上的地标线。
RTK传感器520设置在扫描设备上,被配置为获取扫描设备的RTK轨迹信息。RTK传感器可以安装在车辆扫描设备的顶部,能够接收卫星信号,RTK传感器的两根天线形成的直线与车辆目标行走方向一致。
处理器530被配置为判断是否能够根据地面图像信息识别出地标线信息;若能够识别出地标线信息,则基于地标线信息,确定扫描设备运行中的目标偏移量;否则,判断是否能够获取扫描设备的RTK轨迹信息;若能够获取RTK轨迹信息,则基于RTK传感器对应的RTK移动站的位置信息,确定扫描设备运行中的目标偏移量;基于目标偏移量,实现扫描设备的自主导向。
在一些实施例中,当扫描设备在工作区域工作时,能够结合图像传感器实现扫描设备的自主导向。例如,处理器530确定扫描设备与地标线的基准偏差;提取地标线 在地面图像中的坐标值;基于拟合算法,拟合出地标线在地面图像中的斜率和截距;基于斜率和截距,确定扫描设备相对于地标线的第一偏移量;基于第一偏移量与基准偏差,确定扫描设备运行中的目标偏移量。
在另一些实施例中,在不能根据图像传感器获取的地面图像信息,识别出地标线信息的情况下,可以基于RTK实现扫描设备的自主导向。例如,处理器530获取RTK导向路径;基于RTK基站接收的全球定位系统GPS定位信号和RTK基站自身的定位信号,确定GPS定位偏移量;基于GPS定位偏移量,对RTK移动站的定位信息进行校正;基于RTK导向路径和RTK移动站校正后的定位信息,确定扫描设备运行中的目标偏移量。其中,可以基于图像传感器获取扫描设备的移动轨迹,将扫描设备的移动轨迹作为RTK导向路径。
在该实施例中,若能够根据图像传感器获取的地面图像信息,识别出地标线信息,则根据地标线信息,确定扫描设备运行中的目标偏移量,否则,根据RTK传感器对应的RTK移动站的位置信息,确定扫描设备运行中的目标偏移量,进而实现扫描设备的自主导向,该实施例能够适用不同的工作现场,不受建筑物影响,基于多传感器融合实现扫描设备的自主导向,提高了扫描设备的自动化程度。
在本公开的另一些实施例中,还可以如图6所示,该扫描设备自主导向装置还包括IMU 540,其中,IMU 540安装在扫描设备上,在一些实施例中,IMU 540可以集成在RTK传感器520中。
处理器530还被配置为若不能够获取扫描设备的RTK轨迹信息,则基于扫描设备上安装的IMU,实现扫描设备的自动导向。
在该实施例中,结合图像传感器、RTK传感器和IMU的优点,能够实现不同环境下扫描设备的自主导向,提高了扫描设备的自动化程度。
图7为本公开扫描设备自主导向装置的另一些实施例的结构示意图。该装置包括存储器710和处理器720,其中:
存储器710可以是磁盘、闪存或其它任何非易失性存储介质。存储器用于存储图1-4所对应实施例中的指令。处理器720耦接至存储器710,可以作为一个或多个集成电路来实施,例如微处理器或微控制器。该处理器720用于执行存储器中存储的指令。
在一些实施例中,还可以如图8所示,该装置800包括存储器810和处理器820。处理器820通过BUS总线830耦合至存储器810。该装置800还可以通过存储接口840连接至外部存储装置850以便调用外部数据,还可以通过网络接口860连接至网络或 者另外一台计算机系统(未标出),此处不再进行详细介绍。
在该实施例中,通过存储器存储数据指令,再通过处理器处理上述指令,基于多传感器融合实现扫描设备的自主导向,能够适用不同的工作现场,不受建筑物影响,提高了扫描设备的自动化程度。
在本公开的另一些实施例中,还保护一种扫描设备,该扫描设备包括上述实施例中的扫描设备自主导向装置。
在另一些实施例中,一种计算机可读存储介质,其上存储有计算机程序指令,该指令被处理器执行时实现图1-4所对应实施例中的方法的步骤。本领域内的技术人员应明白,本公开的实施例可提供为方法、装置、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用非瞬时性存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
至此,已经详细描述了本公开。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开 的技术方案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改。本公开的范围由所附权利要求来限定。

Claims (15)

  1. 一种扫描设备自主导向方法,包括:
    判断是否能够根据地面图像信息,识别出地标线信息,其中,扫描设备上安装图像传感器,所述图像传感器用于获取所述地面图像信息;
    若能够识别出所述地标线信息,则基于所述地标线信息,确定所述扫描设备运行中的目标偏移量;
    否则,判断是否能够获取所述扫描设备的实时动态载波相位差分RTK轨迹信息,其中,所述扫描设备上安装RTK传感器,所述RTK传感器用于获取所述扫描设备的RTK轨迹信息;
    若能够获取所述RTK轨迹信息,则基于所述RTK传感器对应的RTK移动站的位置信息,确定所述扫描设备运行中的目标偏移量;
    基于所述目标偏移量,实现扫描设备的自主导向。
  2. 根据权利要求1所述的扫描设备自主导向方法,其中,基于所述地标线信息,确定所述扫描设备运行中的目标偏移量包括:
    确定所述扫描设备与地标线的基准偏差;
    提取所述地标线在所述地面图像中的坐标值;
    基于拟合算法,拟合出所述地标线在所述地面图像中的斜率和截距;
    基于所述斜率和截距,确定所述扫描设备相对于所述地标线的第一偏移量;
    基于所述第一偏移量与基准偏差,确定所述扫描设备运行中的目标偏移量。
  3. 根据权利要求1所述的扫描设备自主导向方法,其中,所述RTK传感器对应的RTK移动站设置在所述扫描设备上,所述RTK传感器对应的RTK基站设置在地面预定位置,基于所述RTK传感器对应的RTK移动站的位置信息,确定所述扫描设备运行中的目标偏移量包括:
    获取RTK导向路径;
    基于所述RTK基站接收的全球定位系统GPS定位信号和所述RTK基站自身的定位信号,确定GPS定位偏移量;
    基于所述GPS定位偏移量,对所述RTK移动站的定位信息进行校正;
    基于所述RTK导向路径和所述RTK移动站校正后的定位信息,确定所述扫描设备运行中的目标偏移量。
  4. 根据权利要求3所述的扫描设备自主导向方法,其中,获取RTK导向路径包括:
    基于图像传感器,获取所述扫描设备的移动轨迹;
    将所述扫描设备的移动轨迹,作为所述RTK导向路径。
  5. 根据权利要求1-4任一所述的扫描设备自主导向方法,还包括:
    若不能够获取所述扫描设备的RTK轨迹信息,则基于所述扫描设备上安装的惯性测量单元IMU,实现所述扫描设备的自动导向。
  6. 根据权利要求5所述的扫描设备自主导向方法,其中,
    所述IMU集成在所述RTK传感器中。
  7. 一种扫描设备自主导向装置,包括:
    图像传感器,设置在扫描设备上,被配置为获取地面图像信息;
    实时动态载波相位差分RTK传感器,设置在所述扫描设备上,被配置为获取所述扫描设备的RTK轨迹信息;
    处理器,被配置为判断是否能够根据所述地面图像信息识别出地标线信息;若能够识别出所述地标线信息,则基于所述地标线信息,确定所述扫描设备运行中的目标偏移量;否则,判断是否能够获取所述扫描设备的RTK轨迹信息;若能够获取所述RTK轨迹信息,则基于所述RTK传感器对应的RTK移动站的位置信息,确定所述扫描设备运行中的目标偏移量;基于所述目标偏移量,实现扫描设备的自主导向。
  8. 根据权利要求7所述的扫描设备自主导向装置,其中,
    所述处理器被配置为确定所述扫描设备与地标线的基准偏差;提取所述地标线在所述地面图像中的坐标值;基于拟合算法,拟合出所述地标线在所述地面图像中的斜率和截距;基于所述斜率和截距,确定所述扫描设备相对于所述地标线的第一偏移量;基于所述第一偏移量与基准偏差,确定所述扫描设备运行中的目标偏移量。
  9. 根据权利要求7所述的扫描设备自主导向装置,其中,所述RTK传感器对应的RTK移动站设置在所述扫描设备上,所述RTK传感器对应的RTK基站设置在地面预定位置;
    所述处理器还被配置为获取RTK导向路径;基于所述RTK基站接收的全球定位系统GPS定位信号和所述RTK基站自身的定位信号,确定GPS定位偏移量;基于所述GPS定位偏移量,对所述RTK移动站的定位信息进行校正;基于所述RTK导向路径和RTK移动站校正后的定位信息,确定所述扫描设备运行中的目标偏移量。
  10. 根据权利要求9所述的扫描设备自主导向装置,其中,
    所述处理器还被配置为基于图像传感器,获取所述扫描设备的移动轨迹;将所述扫描设备的移动轨迹,作为所述RTK导向路径。
  11. 根据权利要求7-10任一所述的扫描设备自主导向装置,还包括:
    惯性测量单元IMU,安装在所述扫描设备上;
    所述处理器还被配置为若不能够获取所述扫描设备的RTK轨迹信息,则基于所述IMU,实现所述扫描设备的自动导向。
  12. 根据权利要求11所述的扫描设备自主导向方法,其中,
    所述IMU集成在所述RTK传感器中。
  13. 一种扫描设备自主导向装置,包括:
    存储器;以及
    耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器的指令执行如权利要求1至6任一项所述的扫描设备自主导向方法。
  14. 一种扫描设备,包括权利要求7-13任一所述的扫描设备自主导向装置。
  15. 一种计算机可读存储介质,其上存储有计算机程序指令,该指令被处理器执行时实现权利要求1至6任一项所述的扫描设备自主导向方法。
PCT/CN2019/108143 2018-12-24 2019-09-26 扫描设备自主导向方法、装置和扫描设备 WO2020134251A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811580349.1A CN111352139B (zh) 2018-12-24 2018-12-24 扫描设备自主导向方法、装置和扫描设备
CN201811580349.1 2018-12-24

Publications (1)

Publication Number Publication Date
WO2020134251A1 true WO2020134251A1 (zh) 2020-07-02

Family

ID=71128604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108143 WO2020134251A1 (zh) 2018-12-24 2019-09-26 扫描设备自主导向方法、装置和扫描设备

Country Status (2)

Country Link
CN (1) CN111352139B (zh)
WO (1) WO2020134251A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114111690A (zh) * 2021-10-29 2022-03-01 江苏上汽汽车变速器有限公司 一种差壳同轴度及圆度测量方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265494A (ja) * 2004-03-17 2005-09-29 Hitachi Ltd 車両位置推定装置およびこれを用いた運転支援装置
CN104535070A (zh) * 2014-12-26 2015-04-22 上海交通大学 高精细地图数据结构、采集和处理系统及方法
CN106352867A (zh) * 2015-07-16 2017-01-25 福特全球技术公司 用于确定车辆自身位置的方法和设备
CN106407315A (zh) * 2016-08-30 2017-02-15 长安大学 一种基于街景图像数据库的车辆自主定位方法
CN107085938A (zh) * 2017-06-08 2017-08-22 中南大学 一种基于车道线与gps跟随的智能驾驶局部轨迹容错规划方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214326A (ja) * 1997-01-29 1998-08-11 Yamaha Motor Co Ltd 自動走行車両の走行制御装置
JP3897740B2 (ja) * 2003-07-23 2007-03-28 トヨタ自動車株式会社 車両の自動誘導装置及び車両位置推定装置
FR2911713B1 (fr) * 2007-01-19 2014-03-21 Thales Sa Dispositif et procede de mesure de parametres dynamiques d'un aeronef evoluant sur une zone aeroportuaire
KR100771930B1 (ko) * 2007-07-26 2007-10-31 주정환 무인운반카트
CN102789233B (zh) * 2012-06-12 2016-03-09 湖北三江航天红峰控制有限公司 基于视觉的组合导航机器人及导航方法
KR101454153B1 (ko) * 2013-09-30 2014-11-03 국민대학교산학협력단 가상차선과 센서 융합을 통한 무인 자율주행 자동차의 항법시스템
CN104828698B (zh) * 2015-04-15 2017-01-04 华东师范大学 基于自组网的北斗定位系统的起重机自动巡航系统及方法
CN105069859B (zh) * 2015-07-24 2018-01-30 深圳市佳信捷技术股份有限公司 车辆行驶状态监测方法和装置
CN105716619A (zh) * 2016-02-18 2016-06-29 江西洪都航空工业集团有限责任公司 一种基于gps-rtk技术的无人割草车室外导航与控制方法
CN106249755B (zh) * 2016-09-14 2019-08-16 北京理工大学 一种无人机自主导航系统及导航方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265494A (ja) * 2004-03-17 2005-09-29 Hitachi Ltd 車両位置推定装置およびこれを用いた運転支援装置
CN104535070A (zh) * 2014-12-26 2015-04-22 上海交通大学 高精细地图数据结构、采集和处理系统及方法
CN106352867A (zh) * 2015-07-16 2017-01-25 福特全球技术公司 用于确定车辆自身位置的方法和设备
CN106407315A (zh) * 2016-08-30 2017-02-15 长安大学 一种基于街景图像数据库的车辆自主定位方法
CN107085938A (zh) * 2017-06-08 2017-08-22 中南大学 一种基于车道线与gps跟随的智能驾驶局部轨迹容错规划方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114111690A (zh) * 2021-10-29 2022-03-01 江苏上汽汽车变速器有限公司 一种差壳同轴度及圆度测量方法及系统
CN114111690B (zh) * 2021-10-29 2024-05-03 江苏上汽汽车变速器有限公司 一种差壳同轴度及圆度测量方法及系统

Also Published As

Publication number Publication date
CN111352139B (zh) 2022-04-08
CN111352139A (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
US10788830B2 (en) Systems and methods for determining a vehicle position
Rose et al. An integrated vehicle navigation system utilizing lane-detection and lateral position estimation systems in difficult environments for GPS
EP3507572B1 (en) Apparatus and method for providing vehicular positioning
US10989560B2 (en) Map data correcting method and device
EP3012804B1 (en) Sensor calibration and position estimation based on vanishing point determination
KR101878685B1 (ko) 지도 정보를 이용한 차량 측위 시스템 및 방법
US20180180422A1 (en) Position calculating apparatus
KR102331312B1 (ko) 차량 내부 센서, 카메라, 및 gnss 단말기를 이용한 3차원 차량 항법 시스템
US20190331496A1 (en) Locating a vehicle
JP6044971B2 (ja) 推定方位角評価装置、移動体端末装置、推定方位角評価装置の制御プログラム、コンピュータ読み取り可能な記録媒体、推定方位角評価装置の制御方法、および測位装置
US20220113139A1 (en) Object recognition device, object recognition method and program
JP6031402B2 (ja) 慣性航法システム、移動体端末、慣性航法装置、及びプログラム
JP2016080460A (ja) 移動体
JP5742794B2 (ja) 慣性航法装置及びプログラム
Takeyama et al. Improvement of dead reckoning in urban areas through integration of low-cost multisensors
CN109282813A (zh) 一种无人艇全局障碍物识别的方法
JP6698430B2 (ja) 測定装置、測定方法およびプログラム
WO2020134251A1 (zh) 扫描设备自主导向方法、装置和扫描设备
TW202229818A (zh) 使用週期性地更新的錨座標系進行車道映射和定位
Ruotsalainen Visual gyroscope and odometer for pedestrian indoor navigation with a smartphone
JP5748174B2 (ja) 移動体の相対姿勢計測方法と装置
KR102622587B1 (ko) 정밀측위 시스템의 종방향 위치 오차를 보정하기 위한 장치 및 방법
CN115540854A (zh) 一种基于uwb辅助的主动定位方法、设备和介质
KR101502071B1 (ko) 랜드마크 기반 비전항법시스템을 위한 카메라 데이터 생성기와 그것을 실행시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 매체
Diop et al. A computer vision-aided motion sensing algorithm for mobile robot's indoor navigation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903948

Country of ref document: EP

Kind code of ref document: A1