WO2020133977A1 - 阵列基板、显示面板和显示装置 - Google Patents

阵列基板、显示面板和显示装置 Download PDF

Info

Publication number
WO2020133977A1
WO2020133977A1 PCT/CN2019/092946 CN2019092946W WO2020133977A1 WO 2020133977 A1 WO2020133977 A1 WO 2020133977A1 CN 2019092946 W CN2019092946 W CN 2019092946W WO 2020133977 A1 WO2020133977 A1 WO 2020133977A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
electrode
electrodes
array substrate
Prior art date
Application number
PCT/CN2019/092946
Other languages
English (en)
French (fr)
Inventor
辛征航
楼均辉
张萌
Original Assignee
云谷(固安)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云谷(固安)科技有限公司 filed Critical 云谷(固安)科技有限公司
Publication of WO2020133977A1 publication Critical patent/WO2020133977A1/zh
Priority to US17/007,474 priority Critical patent/US11387281B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3031Two-side emission, e.g. transparent OLEDs [TOLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers

Definitions

  • the present application relates to the field of display technology, and in particular, to an array substrate, a display panel, and a display device.
  • the present application provides an array substrate, a display panel, and a display device.
  • an array substrate which includes:
  • a first electrode layer, the first electrode layer is formed on the substrate
  • a light-emitting layer formed on the first electrode layer including a first light-emitting area and a second light-emitting area, the first light-emitting area includes a plurality of first light-emitting blocks, and the second light-emitting area includes a plurality of Second light-emitting blocks, the plurality of first light-emitting blocks and the plurality of second light-emitting blocks are formed in the same process; and
  • a second electrode layer, the second electrode layer is formed on the light-emitting layer
  • the first electrode layer includes a plurality of first electrodes disposed corresponding to the first light-emitting area, each of the first electrodes corresponds to a plurality of the first light-emitting blocks, and on the same first electrode
  • the first light-emitting blocks have the same color
  • the first light-emitting area is a transparent area
  • the second light-emitting area is a non-transparent area.
  • the same color of the first light-emitting block corresponding to the same first electrode can reduce the difficulty of evaporation and reduce the risk of color mixing;
  • the first light-emitting area is a transparent area that can allow light to pass through, so that the photosensitive device equipped with the array substrate electronic device can be configured It is placed under the first light-emitting area, so that it can collect or emit light while avoiding occupying the display area of the electronic device, which is beneficial to increase the screen ratio.
  • At least part of the first light-emitting area is surrounded by the second light-emitting area.
  • the first electrodes are strip electrodes, and the plurality of first electrodes are arranged in one row and multiple columns, one column and multiple rows, two columns and multiple rows, two rows and multiple columns, or multiple rows and multiple columns.
  • the first electrodes on the first electrode layer are arranged regularly, which can reduce the processing difficulty, and the second electrode layer uses a surface electrode structure, which can further simplify the process steps and reduce production costs.
  • the column direction of the first electrode is parallel or perpendicular to the column direction of the first light-emitting block.
  • the optional first electrode layer further includes a plurality of second electrodes provided corresponding to the second light-emitting regions, and each of the second electrodes corresponds to a plurality of second light-emitting blocks; wherein, the first The column direction of the electrode is the same as the column direction of the second light-emitting block, and in the column direction, the width of the first electrode is greater than or equal to the width of the second electrode.
  • each of the first electrodes corresponds to multiple columns of the first light-emitting blocks along the first direction, corresponding to the two first light-emitting blocks adjacent to each other on the same first electrode along the second direction are aligned Setting or dislocation setting, the second direction is perpendicular to the first direction. Based on this, it is possible to reduce the number of first electrodes and reduce the processing difficulty while reducing the mask deformation amount while the pixel density of the first light-emitting region is unchanged.
  • the alignment setting can reduce the processing requirements on the mask; the misalignment setting can improve the uniformity of the arrangement of the first light-emitting blocks and improve the display effect.
  • the distance between the central axes of two first light-emitting blocks adjacent to the same first electrode in the second direction is the size of the first light-emitting block in the second direction 0.5-2 times. .
  • each of the first electrodes includes:
  • a plurality of first sub-electrodes, the first sub-electrodes adjacent in the second direction are arranged in a misaligned manner, each of the first sub-electrodes corresponds to a column of the first light-emitting blocks arranged along the first direction, each One of the first sub-electrodes includes a plurality of strip electrodes or bulk electrodes, and the second direction is perpendicular to the first direction; and
  • a connecting portion electrically connects two adjacent strip electrodes or block electrodes.
  • the first light-emitting blocks corresponding to two adjacent first electrodes are aligned or misaligned.
  • the alignment setting can reduce the processing requirements on the mask; the misalignment setting can improve the uniformity of the arrangement of the first light-emitting blocks and improve the display effect.
  • the first electrode layer is an anode
  • the second electrode layer is a cathode
  • the second electrode layer is a surface electrode. Can effectively simplify the processing difficulty.
  • the second electrode layer includes a fifth electrode provided corresponding to the first light-emitting region, and the fifth electrode is a surface electrode.
  • both sides of the first electrode in the column direction are wavy, and the wave crests of the two wavy sides are oppositely set, and the wave troughs are relatively set;
  • Both sides of the first light-emitting block in the column direction of the first electrode are wavy, and the wave peaks and wave troughs of the two wavy sides are oppositely arranged. Therefore, between different width positions of the first electrode and different distances between adjacent first electrodes, the positions of the generated diffraction fringes are different, and the derivative effects at different positions cancel each other, thereby effectively reducing the diffraction effect.
  • the projected shape of each of the first electrodes on the substrate includes at least one first graphics unit; the projected shape of each of the first light-emitting blocks on the substrate includes at least one A second graphics unit; the first graphics unit and/or the second graphics unit includes a circle, an oval, a dumbbell, a gourd, or a rectangle.
  • Optional also includes:
  • a pixel defining layer formed on the first electrode layer and including a plurality of first pixel defining holes provided corresponding to the first light emitting area, each of the first pixel defining holes corresponding to at least One of the first light-emitting blocks.
  • the first pixel-defining hole is defined by the pixel-defining layer to isolate the first light-emitting blocks corresponding to the two adjacent first pixel-defining holes, thereby reducing the risk of color mixing.
  • the pixel-defining layer further includes a plurality of second pixel-defining holes corresponding to the second light-emitting area, and the size of the second pixel-defining hole is equal to or smaller than the size of the first pixel-defining hole.
  • the size of the first pixel-defining hole and the second pixel-defining hole are equal, which can reduce the difficulty of processing the mask; the size of the first pixel-defining hole can be larger than the size of the second pixel-defining hole, thereby defining the hole in the adjacent first pixel
  • the interval between them is equal to the interval between adjacent second pixel-defining holes, the distribution density of the first pixel-defining holes is reduced, the number of gaps between the first pixel-defining holes is reduced, and the diffraction probability of light is reduced.
  • the plurality of first light-emitting blocks and the plurality of second light-emitting blocks are all arranged in multiple rows, and one-to-one correspondence; the color of the first light-emitting block in the same column is close to the second light-emitting block
  • the first second light-emitting blocks provided in the first light-emitting area have the same color. .
  • the risk of color mixing of the first light-emitting region in the same column direction is small.
  • the plurality of first light-emitting blocks and the plurality of second light-emitting blocks are all arranged in multiple columns, and at least one of the first light-emitting blocks in the same column is close to the second light-emitting block in the column
  • At least one second light-emitting block provided in the first light-emitting area constitutes a pixel repeating unit. Based on this, display transition can be performed at the junction of the first light-emitting area and the second light-emitting area to improve the display effect.
  • the first electrode layer and/or the second electrode layer are made of a transparent material; the light transmittance of the transparent material is greater than or equal to 90%.
  • a display panel including:
  • An encapsulation layer is encapsulated on a side of the array substrate away from the substrate; the encapsulation layer includes a polarizer, the polarizer covers the second light-emitting area, but does not cover the first light-emitting District; and
  • the chip assembly controls the display state of the first light-emitting block and the second light-emitting block.
  • the display effect at the junction can be improved and the visual difference can be reduced.
  • a display device including:
  • the display panel according to any one of the above embodiments, the display panel covering the device body;
  • the device area is located below the first light-emitting area, and the device area includes a photosensitive device that emits or collects light through the first light-emitting area.
  • the photosensitive device is disposed below the first light-emitting area to ensure that the photosensitive device can work normally and does not occupy the display area, thereby increasing the screen ratio.
  • first light-emitting blocks and second light-emitting blocks in this application are vapor-deposited with one mask, thereby reducing the number of masks and reducing production costs. Since multiple first light-emitting blocks can be formed on the same first electrode, multiple holes can be formed on the mask corresponding to the same electrode on the first light-emitting area, so as to open a large hole on the mask, The strength of the mask can be improved, the stress can be buffered, the deformation of the mask can be reduced, and the risk of color mixing between adjacent first light-emitting blocks can be effectively reduced.
  • Fig. 1 is a schematic structural diagram of an array substrate according to an exemplary embodiment of the present application.
  • FIG. 2 is an A-A cross-sectional view of FIG. 1.
  • FIG. 3-6 are schematic structural diagrams of an array substrate according to an exemplary embodiment of the present application.
  • FIGS. 7-10A are schematic structural diagrams of a first light-emitting region on an array substrate according to an exemplary embodiment of the present application.
  • Fig. 10B is a schematic diagram of a partial structure of an array substrate according to an exemplary embodiment of the present application.
  • 11-13B are schematic cross-sectional views of an array substrate according to an exemplary embodiment of the present application.
  • FIGS. 14-20 are schematic structural diagrams of a first light-emitting area on an array substrate according to an exemplary embodiment of the present application.
  • Fig. 21 is a schematic cross-sectional view of an array substrate according to an exemplary embodiment of the present application.
  • 22-26 are schematic structural diagrams of an array substrate according to an exemplary embodiment of the present application.
  • Fig. 27 is a schematic cross-sectional view of a display panel according to an exemplary embodiment of the present application.
  • Fig. 28 is a schematic cross-sectional view of a display device according to an exemplary embodiment of the present application.
  • Fig. 29 is a schematic structural diagram of a display device according to an exemplary embodiment of the present application.
  • first, second, third, etc. may be used to describe various information in this application, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information
  • second information may also be referred to as first information.
  • Electronic devices such as mobile phones, tablet computers, etc., due to the need to integrate such as front camera, earpiece and infrared sensor, etc., can be notched on the display panel (Notch), set the camera, earpiece and infrared sensor in the slotted area , But the slotted area is not used to display the picture, such as using Liu Haiping, etc., or using the method of making holes in the screen.
  • electronic devices that implement a camera function external light can enter the photosensitive device located below the screen through the opening on the screen.
  • these electronic devices cannot be displayed in various areas of the entire screen. For example, the screen cannot be displayed in the camera area, so they are not true full screens.
  • FIG. 1 is a schematic structural diagram of an array substrate 100 according to an exemplary embodiment of the present application
  • FIG. 2 is an A-A cross-sectional view of FIG. 1.
  • the light-emitting layer 3 may include a first light-emitting region 31 and a second light-emitting region 32. As shown in FIG. 1, at least part of the first light-emitting area 31 may be surrounded by the second light-emitting area 32. For example, the first light emitting area 31 may be completely surrounded by the second light emitting area 32, or one side edge of the first light emitting area 31 may be in contact with the opposite side edge of the second light emitting area 32. In an embodiment, as shown in FIG. 1, the first light-emitting area 31 may be arc-shaped; alternatively, the first light-emitting area 31 may be circular, rectangular, elliptical, or irregular in shape.
  • the array substrate 100 may include a substrate 1, a first electrode layer 2, a light-emitting layer 3, and a second electrode layer 4.
  • the substrate 1 may include a layer structure such as a substrate, an inorganic layer, and an organic layer.
  • the substrate may include a flexible substrate or a rigid substrate, wherein the flexible substrate may be made of a flexible material, and the flexible material may be polyimide (Polyimide, PI for short), polycarbonate (Polycarbonate, PC for short, also called PC plastic) , Polyethylene terephthalate (Polyethylene terephthalate, referred to as PET), etc.; rigid substrate can be made of organic glass.
  • the first electrode layer 2 is formed on the substrate 1, the light-emitting layer 3 is formed on the first electrode layer 2, and the second electrode layer 4 is formed on the light-emitting layer 3.
  • the first light-emitting area 31 is a transparent area, and the second light-emitting area 32 is a non-transparent area.
  • the photosensitive device included in the electronic device provided with the array substrate 100 may be provided corresponding to the first light emitting area 31. The external light can pass through the first light-emitting area 31 and be collected by the photosensitive device, and the internal light can pass through the first light-emitting area 31 and be emitted.
  • the screen corresponding to the photosensitive device can be displayed normally while ensuring the normal operation of the photosensitive device, so as not to affect the screen ratio of the electronic device.
  • the area of the first light emitting area 31 corresponding to the photosensitive device can be used to display an image, and the image shown by the first light emitting area 31 and the image shown by the second light emitting area 32 can coincide To ensure the integrity of the image display and improve the display effect.
  • the first light-emitting area 31 corresponding to the photosensitive device may also be a static display.
  • the first light-emitting area 31 may include a plurality of first light-emitting blocks 311 and the second light-emitting area 32 may include a plurality of second light-emitting blocks 321.
  • the first light-emitting block 311 and the second light-emitting block 321 can be formed in the same process to reduce the number of masks and reduce production costs.
  • the first electrode layer 2 may further include a plurality of first electrodes disposed corresponding to the first light-emitting region 31, the first electrodes may correspond to a plurality of first light-emitting blocks 311, and the same first electrode corresponds to The first light-emitting block 311 has the same color.
  • the first electrode layer 2 may include first electrodes 21, 22, and 23.
  • the first electrode 21, the first electrode 22, and the first electrode 23 respectively correspond to two first light emitting layers.
  • Block 311 The corresponding first light-emitting blocks 311 on the first electrode 21 are all red color blocks
  • the corresponding first light-emitting blocks 311 on the first electrode 22 are all green color blocks
  • the corresponding first light-emitting blocks 311 on the first electrode 23 are all Blue color block.
  • each first electrode may further include three or more first light-emitting blocks 311, and the number of first light-emitting blocks 311 included in different first electrodes may be the same or different. Application is not restricted.
  • a plurality of first light-emitting blocks 311 can be vapor-deposited with one mask. Since a plurality of first light-emitting blocks 311 can be formed on the same first electrode, the corresponding one can correspond to the first light-emitting area on one mask Multiple holes are formed in the area of 31. Compared with opening a large hole in the mask, the strength of the mask can be improved, the deformation of the mask can be reduced, and the probability of color mixing between adjacent first light-emitting blocks 311 can be effectively reduced.
  • the first electrode may be a strip electrode.
  • the plurality of first electrodes may be arranged in a multi-row and multi-column structure; or, as shown in FIG. 4, the plurality of first electrodes may be Arranged in a row and multi-column structure.
  • the column direction of the first electrode is the longitudinal extension direction of the strip electrodes, that is, the Y direction shown in FIGS. 3 and 4; the row direction of the first electrode is the lateral parallel direction of the strip electrodes, that is, FIG. 3 , X direction shown in FIG. 4.
  • the column direction may be the horizontal side-by-side direction of the strip electrodes, that is, the X direction as shown in FIG. 5, and the row direction is the longitudinal extension direction of the strip electrodes, that is, the Y direction as shown in FIG. 5.
  • the column direction of the first electrode may be the same as or perpendicular to the row direction of the first light-emitting block 311.
  • the row direction of the first light-emitting blocks 311 is the X direction and the column direction of the first electrodes is the Y direction, then the row direction of the first light-emitting blocks 311 is perpendicular to the column direction of the first electrodes.
  • the row direction of the first light-emitting blocks 311 is the X direction
  • the column direction of the first electrodes is also the X direction, then the row direction of the first light-emitting blocks 311 is parallel to the column direction of the first electrodes.
  • the first electrode layer 2 may further include a plurality of second electrodes 24 disposed corresponding to the second light-emitting regions 32, and the second electrodes 24 may correspond to a plurality of second lights Block 321.
  • the column direction of the second light-emitting blocks 321 may be perpendicular to the column direction of the first electrodes 21, as shown in FIG. 5, the column direction of the second light-emitting blocks 321 is the Y direction, and the column direction of the first electrodes 21 The direction is the X direction.
  • the column direction of the second light-emitting block 321 may be the same as the column direction of the first electrode 21, and in this column direction, the width of the first electrode 21 is greater than or equal to the width of the second electrode 24.
  • the column directions of the first electrodes 21, 22, and 23 are all Y directions, and the column direction of the second light-emitting block 321 is also the Y direction.
  • the The width D1 is greater than or equal to the width D2 of the second electrode 24, that is, D1 ⁇ D2.
  • D1 may be equal to D2, as shown in FIG. 4; or, D1 may be greater than D2, as shown in FIG.
  • the width of the first electrode 21 is larger than the width of the second electrode 24, the area of the first light-emitting block 311 is relatively large, which is beneficial to increase the aperture ratio of the first light-emitting block 311, thereby increasing the luminous intensity to effectively compensate Since the first light-emitting area 31 is a transparent area and bidirectionally transmits light, the brightness is reduced.
  • the Y direction is taken as the column direction of the first electrode and the second light-emitting block 321 as an example for description. In other embodiments, the entire rotation may be 90°, and the X direction as the first electrode and the second The column direction of the light-emitting block 321.
  • the first electrode may correspond to multiple rows of first light-emitting blocks 311 along the first direction, and the first direction may be the longitudinal extension direction of the first electrode, that is, Y shown in FIG. 7 direction. Based on this, under the condition that the pixel density of the first light emitting region 31 is unchanged, the number of first electrodes can be effectively reduced while reducing the mask deformation, thereby reducing the processing difficulty.
  • two adjacent first light-emitting blocks 311 on the same first electrode are aligned; or, as As shown in FIG. 8, two first light-emitting blocks 311 adjacent to each other in the X direction on the same first electrode are arranged in a misaligned manner.
  • the misalignment arrangement shown in FIG. 8 can improve the uniformity of the arrangement of the first light-emitting blocks 311 and effectively improve the display effect.
  • corresponding first light-emitting blocks 311 on two adjacent first electrodes may be aligned.
  • the corresponding first light-emitting blocks 311 on two adjacent first electrodes may also be arranged in a misaligned manner.
  • the distance between the central axes of two first light-emitting blocks 311 adjacent to the same first electrode in the second direction is 0.5-2 times the size of the first light-emitting blocks 311 in the second direction.
  • the first light-emitting blocks 311A and the first light-emitting blocks 311B adjacent to each other in the X-direction are arranged in a misaligned manner, and the distance between the first light-emitting blocks 311A and the first light-emitting blocks 311B in the Y direction is D3, D3 is equal to the length D4 of the first light-emitting block 311B in the Y direction.
  • D3 1.5*D4.
  • D3 may also be 0.5 times, 0.8 times, 1.2, or 2 times D4.
  • the first electrode 23 may include a plurality of first sub-electrodes 231, which are arranged in a misaligned manner in the Y direction.
  • Each first sub-electrode 231 may include a plurality of bulk electrodes or strip electrodes.
  • the first electrode 23 may include a first sub-electrode 231 and a second sub-electrode 232.
  • the first sub-electrode 231 may include a plurality of bulk electrodes 2311.
  • the block electrodes 2311 and the first light-emitting blocks there is a one-to-one correspondence between the block electrodes 2311 and the first light-emitting blocks; alternatively, a single block electrode 2311 may correspond to multiple first light-emitting blocks 311.
  • the second sub-electrode 232 may include a plurality of bulk electrodes 2321.
  • the first electrode 23 may further include a connecting portion 233 that connects two adjacent sub-electrodes. As shown in FIG. 10A, the two adjacent sub-electrodes 231 and 232 are electrically connected by the connecting portion 23, and a wave-shaped first electrode 23 extending in the X direction can be obtained. In some embodiments, the X direction and the Y direction can be adjusted adaptively, such as interchange of directions or overall rotation by 90°.
  • Fig. 10B is a schematic diagram of a partial structure of an array substrate according to an exemplary embodiment of the present application.
  • the first electrodes 21, 22, 23 may be arranged in a three-row two-column structure as shown in FIG. 10B in the first light-emitting region 31.
  • the first electrodes may also be arranged in a two-row, two-column, three-row, three-column structure, etc. in the first light-emitting region.
  • all the first electrodes in the same row may correspond to the first light-emitting blocks 311 of the same color.
  • the first light-emitting blocks 311 of the same color may be corresponding to all the first electrodes in the same column.
  • the first electrode layer 2 may be an anode
  • the second electrode layer 4 may be a cathode
  • the second electrode layer 4 may be a surface electrode, which can effectively simplify the processing difficulty.
  • the second electrode layer 4 may include a transparent material layer 41 and a metal layer 42.
  • the transparent material layer 4 may cover the first light-emitting area 31 and the second light-emitting area 32, and the metal layer 42 may cover the second light-emitting area 32.
  • the entire transparent material layer 41 is formed in the same process. Wherein, providing the second light emitting region 32 with the metal layer 42 can reduce the resistance of the second electrode layer 4, thereby effectively reducing the voltage drop.
  • the second electrode layer 4 may include a third electrode 43 and a fourth electrode 44.
  • the third electrode 43 may be provided corresponding to the first light emitting area 31, and the fourth electrode 44 may be provided corresponding to the second light emitting area 31.
  • the third electrode 43 may be a transparent material layer, and the fourth electrode may be a metal layer.
  • both the third electrode 43 and the fourth electrode 44 may be metal layers, and the thickness of the metal layer of the third electrode 43 corresponding to the first light-emitting region 31 is smaller than that corresponding to the second light-emitting region 32 The thickness of the metal layer of the fourth electrode 44.
  • the transparent material layer may be made of one or more of indium tin oxide, indium zinc oxide, silver-doped indium tin oxide, and silver-doped indium zinc oxide;
  • the metal layer may be made of Mg, Ag, and Made of one or more of Al, such as pure metal or alloy, such as MgAg alloy.
  • the light transmittance of the first light-emitting area 31 can be effectively improved, thereby further improving the photographing effect of the camera located below the first light-emitting area 31.
  • the second electrode layer may further include a fifth electrode 45 provided corresponding to the first light-emitting region 31.
  • the fifth electrode 45 may be a surface electrode;
  • the fifth electrode 45 may be a single-layer structure or a stacked structure.
  • the fifth electrode 45 may be a single-layer metal layer, a single-layer metal mixture layer, or a single-layer transparent metal oxide layer;
  • the fifth electrode 45 may be It is a stack of a transparent metal oxide layer and a metal layer or a stack of a transparent metal oxide layer and a metal mixture layer.
  • the material of the fifth electrode 45 is doped with metal, the thickness of the fifth electrode 45 is greater than or equal to 100 angstrom and less than or equal to 500 angstrom, further, the thickness of the fifth electrode 45 is greater than or equal to 100 angstrom If the thickness is less than or equal to 200 angstroms, the thickness of the fifth electrode 45 is continuous, and the transparency of the fifth electrode 45 is greater than 40%, so that the light transmittance of the first light-emitting region 31 can be effectively improved.
  • the material of the fifth electrode 45 is doped with metal.
  • the thickness of the fifth electrode 45 is greater than or equal to 50 angstroms and less than or equal to 200 angstroms, the thickness of the fifth electrode 45 is continuous as a whole, and The transparency of the fifth electrode 45 is greater than 50%. Further, the transparency of the fifth electrode 45 is greater than 60%.
  • the fifth electrode 45 may be a single-layer structure, wherein the single-layer metal layer material may be Al or Ag; the single-layer metal mixture layer material may be MgAg or an Al-doped metal mixed material; transparent metal oxidation
  • the object may be ITO or IZO.
  • the third electrode 43 is a metal layer, the thickness of which can be greater than 10 angstroms, and forms an integral continuous surface electrode, and the transparency of the metal layer is> 40%; further, the metal layer The thickness can be greater than 50 angstroms, and form a whole continuous surface electrode, and the transparency of the metal layer is >50%.
  • both the first electrode layer 2 and the second electrode layer 4 may be made of transparent materials.
  • the light transmittance of the transparent material may be greater than or equal to 90%.
  • the transparent material may include at least one of indium tin oxide, indium zinc oxide, silver-doped indium tin oxide, and silver-doped indium zinc oxide. In this way, the light transmittance of the first light-emitting area 31 can be effectively improved, for example, the light transmittance can be made to be more than 80%.
  • the light emitting layer 3 may include an organic light emitting material layer and a common layer.
  • the organic light emitting material layer may include a plurality of independent individuals to form the first light emitting block.
  • the common layer may include a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer, at least one of the hole injection layer, hole transport layer, electron transport layer, and electron injection layer covers the first electrode layer 2 and the gap between the adjacent first electrodes, so that the first electrode layer 2 and the second electrode layer 4 can be isolated by one or more of the common layers to avoid short circuits.
  • both sides in the column direction of the first electrode may be wavy, and the peaks and valleys of the two sides are relatively arranged. In this way, the gap between the first electrodes of two adjacent columns is continuously changed or intermittently changed in the column direction.
  • the first electrode 21 may be periodically changed regardless of whether its width changes continuously or intermittently, and the length of one change period may correspond to the width of one pixel.
  • the first light-emitting area 31 may be provided with a plurality of rows of wavy first electrodes, so that the width of the first electrode continuously changes or intermittently changes in the column direction, so that the adjacent two columns of first electrodes have a continuously changing interval or intermittently Varying spacing. Therefore, between different width positions of the first electrode and different pitches of adjacent two rows of first electrodes, the positions of the generated diffraction fringes are different, and the diffraction effects at different positions cancel each other, which can effectively reduce the diffraction effect, which is beneficial to Improve the photo effect of the camera located below the first light-emitting area 31.
  • the first electrodes are arranged in multiple rows and columns, the Y direction is the column direction of the first electrode, and the X direction is the row direction of the first electrode.
  • Each first electrode may include one or more peaks and one or more valleys. Taking the first electrode 21 as an example, the position shown by T in FIG. 14 is a peak, and the position shown by B is a valley.
  • the width D5 at the opposite peaks of the two sides of the first electrode is between 30 ⁇ m and (AX) ⁇ m; the width D6 at the opposite valleys of the two sides of the first electrode is greater than X and less than the width at the opposite peaks D5, where A is the size of the first light-emitting block, X is the width value at the smallest electrode size, and A is greater than or equal to (30+X) ⁇ m.
  • X may be 4 microns; in an embodiment, X may be less than 4 microns.
  • the spacing between adjacent first electrodes also changes accordingly.
  • the peaks of the two rows of first electrodes have a minimum distance W1 opposite each other, and the peaks of two rows of first electrodes have a maximum distance W2 opposite each other.
  • the minimum pitch W1 is (A-D5)
  • the maximum pitch W2 is (A-D6).
  • the shape of the projection of the first electrode 21 on the substrate may include at least one first graphic unit, so that the above-mentioned peaks and troughs may be formed.
  • the first graphic unit may be circular, oval, dumbbell-shaped, gourd-shaped, or rectangular.
  • each first electrode 21 may be composed of multiple circles; in an embodiment, as shown in FIG. 16, the first electrode 21 may be composed of multiple ellipses; in one implementation In an example, as shown in FIG. 17, the first electrode 21 may be composed of a plurality of dumbbells.
  • the first electrode 21 may also be composed of multiple gourd shapes, where the gourd shape may be composed of two circular shapes.
  • the first electrode 21 may also be composed of a first pattern unit. As shown in FIG. 18, each first electrode 21 is composed of a gourd-shaped pattern unit. In an embodiment, as shown in FIG. 19, since each first electrode 21 is composed of an elliptical pattern unit, then the first electrode 21 includes only peaks and no troughs, correspondingly, two columns of first There is only a minimum distance between the electrodes.
  • the shape of the projection of the first light-emitting block 311 on the substrate may include at least one second graphic unit, so that the above-mentioned peaks and troughs may be formed.
  • the second graphic unit may include a circle, an ellipse, a dumbbell, a gourd, or a rectangle.
  • the first light-emitting block 311 may be rectangular.
  • the shapes of the first electrode 21 and the first light-emitting block 311 may be the same or different. As shown in FIG. 14, the shape of the corresponding first light-emitting block 311 on the first electrode 21 is similar to the shape of the first electrode 21, and all are shapes composed of a plurality of circles. In an embodiment, as shown in FIG. 15, the shape of the corresponding first light-emitting block 311 on the first electrode 21 is different from the shape of the first electrode 21.
  • the first electrode 21 is a shape composed of multiple circles, and
  • the first light-emitting block 311 is rectangular, or in an embodiment, the first light-emitting block 311 may also be circular or elliptical.
  • both the first electrode 21 and the first light-emitting block 311 are rectangular; in an embodiment, the corresponding first light-emitting block 311 on the rectangular first electrode 21 may also be It is round or oval.
  • Fig. 21 is a schematic cross-sectional view of an array substrate according to an exemplary embodiment of the present application.
  • the array substrate 100 may further include a pixel defining layer 5, the pixel defining layer 5 is formed on the first electrode layer 2, and includes a plurality of pixels disposed corresponding to the first light emitting area 31
  • One first pixel defines a hole 51.
  • each pixel defining hole 51 may be provided with a plurality of first light-emitting blocks 311, as shown in FIG. 21; or, in an embodiment, each pixel defining hole 51 may also be provided with a first
  • the light-emitting block 311 can effectively reduce the risk of color mixing between adjacent first light-emitting blocks 311.
  • the pixel defining layer 5 may further include a plurality of second pixel defining holes 52 provided corresponding to the second light emitting area 32.
  • the second pixel-defining holes may correspond to the second light-emitting blocks one-to-one, or a single second pixel-defining hole may correspond to multiple second light-emitting blocks.
  • the size of the second pixel defining hole 52 is equal to or smaller than the size of the first pixel defining hole 51. As shown in FIG. 22, the size of the first pixel defining hole 51 and the second pixel defining hole 52 are equal, which can effectively reduce the difficulty of processing the mask; or, as shown in FIG. 23, the size of the first pixel defining hole 51 can be When the size of the second pixel-defining hole 52 is larger than that of the adjacent first pixel-defining hole 51, the distribution density of the first pixel-defining hole 51 is relatively small The number of gaps between the first pixel defining holes 51 is small, which can effectively reduce the probability of light diffraction.
  • the pixel-defining layer 5 may be made entirely of transparent organic materials; or, the pixel-defining layer 5 may also be made of transparent inorganic materials; or, a section of the pixel-defining layer 5 corresponding to the first light-emitting region 31 may be used It is made of transparent material, and a section corresponding to the second light-emitting area 32 may be made of non-transparent material.
  • multiple first light-emitting blocks 311 and multiple second light-emitting blocks 321 are provided in multiple columns, and the columns of the first light-emitting blocks 311 and the second light-emitting blocks 321 are one by one Correspondingly, in this way, the distribution density of the first light emitting region 31 can be relatively large.
  • the column direction of the plurality of first light-emitting blocks 311 and the plurality of second light-emitting blocks 321 is the Y direction; in some embodiments, the plurality of first light-emitting blocks 311 and the plurality of The column direction of the second light-emitting block 321 may be the X direction.
  • the color of the first light-emitting blocks 311 in the same column is the same as the color of the first second light-emitting block 321 near the first light-emitting area 31 in the second light-emitting block 321 in the column, which can reduce the first light-emitting area 31 Process requirements, to effectively avoid the risk of color mixing of the first light emitting region 31 in the same column direction.
  • the first light-emitting block 311C and the first light-emitting block 311D form a column.
  • the second light-emitting block 321A close to the first light-emitting area 31 and the first light-emitting block 311C and the first light-emitting block 311C
  • One light-emitting block 311D has the same color.
  • the first light-emitting block 311C and the first light-emitting block 311D are both blue; or, when the second light-emitting block 321A is green, the first light-emitting block 311C and the first light-emitting block The blocks 311D are all green; or, when the second light-emitting block 321A is red, the first light-emitting block 311C and the first light-emitting block 311D are both red.
  • one or more second light-emitting blocks 321 arranged in a row of second light-emitting blocks close to the first light-emitting region 31 and one or more adjacent first light-emitting blocks 311 in the column of first light-emitting blocks 311 Form a pixel repeating unit.
  • the pixel repeating unit may include three primary colors.
  • the second light-emitting block 321A, the first light-emitting block 311C, and the first light-emitting block 311D may form a pixel repeat including red, green, and blue color blocks Unit (as shown by the dotted frame in FIG. 25); in an embodiment, as shown in FIG.
  • the second light-emitting block 321A, the second light-emitting block 321B, and the first light-emitting block 311C can be composed of a red, green and blue
  • the pixel repeating unit of the color patch (as shown by the dotted frame in FIG. 26). In this way, a display transition can be performed at the junction of the first light-emitting area 31 and the second light-emitting area 32 to improve the display effect.
  • the pixel repeating unit may also include two primary colors, such as red and green, red and blue, or green and blue.
  • the pixel repeating unit may also include four or more primary colors.
  • the number of the first light-emitting block 311 and the second light-emitting block 321 constituting the pixel repeating unit may be adjusted accordingly.
  • Fig. 27 is a schematic cross-sectional view of a display panel according to an exemplary embodiment of the present application.
  • the present application further provides a display panel 200.
  • the display panel 200 may include an encapsulation layer 201 and the array substrate 100 described in any of the foregoing embodiments.
  • the encapsulation layer 201 is located on the side of the array substrate 100 away from the substrate.
  • a transparent display area provided corresponding to the first light emitting area 31 and a non-transparent display area provided corresponding to the second light emitting area may be formed on the display panel 100.
  • a photosensitive device can be placed under the transparent display area, and the photosensitive device can collect external light through the transparent display area or emit light outward.
  • the transparent display area when the photosensitive device is in the working state, the transparent display area may be switched to the non-display state, and when the photosensitive device is in the off state, the transparent display area may be switched to the display state.
  • the encapsulation layer 201 may include a polarizer (not shown in the figure), the polarizer may cover the area corresponding to the second light-emitting area, and not cover the area corresponding to the first light-emitting area to avoid the polarizer Settings affect external incident light and/or light emitted by electronic devices.
  • the first light emitting area of the array substrate 100 is at least partially surrounded by the second light emitting area.
  • the display panel 200 may further include a chip assembly 202, which may be used to control the first The display state of the light-emitting block and the second light-emitting block, and can make the color of the first light-emitting block and the second light-emitting block located at the junction of the first light-emitting area and the second light-emitting area consistent, thereby visually weakening the transparent display area and the non-transparent The difference between the display areas effectively improves the user's visual effect.
  • Fig. 28 is a schematic cross-sectional view of a display device according to an exemplary embodiment of the present application.
  • the present application provides a display device 300.
  • the display device 300 may include a device body 301 and the display panel 200 described in any one of the foregoing embodiments.
  • the display panel 200 is provided on the device body 301 and The device bodies 301 are connected to each other.
  • the display panel 200 may use the display panel in any of the foregoing embodiments to display static or dynamic images.
  • Fig. 29 is a schematic structural diagram of a display device according to an exemplary embodiment of the present application.
  • the device body 301 may include a device area 3011, and the device area 3011 may be provided with photosensitive devices such as a camera 400 and a light sensor.
  • the transparent display area of the display panel 200 is set corresponding to the device area 3011, so that the photosensitive device can collect external light through the first light-emitting area.
  • the display panel in the first light-emitting area can effectively improve the diffraction effect generated when external light passes through the first light-emitting area, thereby effectively improving the quality of the image captured by the camera 400 on the display device and avoiding image distortion due to diffraction At the same time, it can also improve the accuracy and sensitivity of the light sensor to sense external light.
  • the display device may be any product or component with a display function such as a liquid crystal display device, electronic paper, mobile phone, tablet computer, television, display, notebook computer, digital photo frame, or navigator.
  • a display function such as a liquid crystal display device, electronic paper, mobile phone, tablet computer, television, display, notebook computer, digital photo frame, or navigator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种阵列基板(100)、显示面板(200)和显示装置(300)。阵列基板(100),包括:衬底(1);第一电极层(2),所述第一电极层(2)形成于所述衬底(1)上;发光层(3),所述发光层(3)形成于所述第一电极层(2)上,包括第一发光区(31)和第二发光区(32),所述第一发光区(31)包括多个第一发光块(311),所述第二发光区(32)包括多个第二发光块(321),所述多个第一发光块(311)和所述多个第二发光块(321)在同一个工艺中形成;和第二电极层(4),所述第二电极层(4)形成于所述发光层(3)上;其中,所述第一电极层(2)包括对应所述第一发光区(31)设置的多个第一电极(21),每一所述第一电极(21)上对应多个所述第一发光块(311),且同一所述第一电极(21)上的第一发光块(311)的颜色相同,所述第一发光区(31)为透明区,所述第二发光区(32)为非透明区。

Description

阵列基板、显示面板和显示装置 技术领域
本申请涉及显示技术领域,尤其涉及一种阵列基板、显示面板和显示装置。
背景技术
随着电子设备的快速发展,用户对屏占比的要求越来越高,使得电子设备的全面屏显示受到越来越多的关注。而由于需要集成如前置摄像头、听筒以及红外感应元件等,电子设备并不能在整个屏幕的各个区域均进行显示,无法实现真正意义上的全面屏。
发明内容
有鉴于此,本申请提供一种阵列基板、显示面板和显示装置。
根据本申请的实施例,提供一种阵列基板,其特征在于,包括:
衬底;
第一电极层,所述第一电极层形成于所述衬底上;
发光层,所述发光层形成于所述第一电极层上,包括第一发光区和第二发光区,所述第一发光区包括多个第一发光块,所述第二发光区包括多个第二发光块,所述多个第一发光块和所述多个第二发光块在同一个工艺中形成;和
第二电极层,所述第二电极层形成于所述发光层上;
其中,所述第一电极层包括对应所述第一发光区设置的多个第一电极,每一所述第一电极上对应多个所述第一发光块,且同一所述第一电极上的第一发光块的颜色相同,所述第一发光区为透明区,所述第二发光区为非透明区。同一第一电极对应的第一发光块颜色一致能够降低蒸镀难度,降低混色风险;第一发光区为透明区能够允许光线透过,从而使得配置有该阵列基板电子设备所包括的感光器件可以放置于该第一发光区下方,从而在能够采集或者发射光线的同时避免占用电子设备的显示区域,有利于提高屏占比。
可选的,至少部分所述第一发光区被所述第二发光区包围。
可选的,所述第一电极为条状电极,多个所述第一电极排列成一行多列、一列多行、两列多行、两行多列或多行多列。第一电极层上的第一电极采用规律性排布,能够降低加工难度,并且第二电极层采用面电极结构,进一步能够简化工艺步骤,降低生产成本。
可选的,所述第一电极的列方向与所述第一发光块的列方向平行或者垂直。
可选的所述第一电极层还包括对应所述第二发光区设置的多个第二电极,每一所述第二电极上对应多个所述第二发光块;其中,所述第一电极的列方向与所述第二发光块的列方向相同,且在所述列方向上,所述第一电极的宽度大于或等于所述第二电极的宽度。有利于增加第一发光块在列方向上的宽度,增加第一发光块的面积,有利于增加第一发光块的开口率,从而加大发光强度,以弥补由于第一发光区为透明区而双向透光导致暗度降低的弊端。
可选的,每一所述第一电极上沿第一方向对应多列所述第一发光块,对应同一所述第一电极上沿第二方向相邻的两个所述第一发光块对齐设置或者错位设置,所述第二方向与所述第一方向垂直。基于此,可以在第一发光区的像素密度不变的情况下,可以在降低掩膜形变量的同时,减少第一电极的数量,降低加工难度。其中对齐设置可以降低对掩膜的加工要求;错位设置能够提高第一发光块排布的均匀性,提升显示效果。
可选的,对应同一所述第一电极上相邻的两个所述第一发光块的中轴线在所述第二方向上的间距为所述第一发光块在所述第二方向上尺寸的0.5-2倍。。
可选的,每一所述第一电极包括:
多个第一子电极,在所述第二方向上相邻的所述第一子电极错位排列,每一所述第一子电极对应一列沿第一方向设置的所述第一发光块,每一所述第一子电极包括多个条状电极或块状电极,所述第二方向与所述第一方向垂直;和
连接部,所述连接部电性连接相邻的两个条状电极或块状电极。
可选的,相邻两个所述第一电极对应的所述第一发光块对齐设置或错位设置。对齐设置可以降低对掩膜的加工要求;错位设置能够提高第一发光块排布的均匀性,提升显示效果。
可选的,第一电极层为阳极、第二电极层为阴极,所述第二电极层为面电极。能够有效简化加工难度。
优选的,所述第二电极层包括对应于所述第一发光区设置的第五电极,所述第五电极为面电极。
可选的,所述第一电极在列方向上的两条边均为波浪形,且两条波浪形的边的波峰相对设置,波谷相对设置;和/或
所述第一发光块在所述第一电极的列方向上的两条边均为波浪形,且两条波浪形的边的波峰相对设置、波谷相对设置。因此在第一电极的不同宽度位置以及相邻第一电极的不同间距之间,产生的衍射条纹的位置不同,不同位置处的衍生效应相互抵消,从而可以有效减弱衍射效应。
可选的,每一所述第一电极在所述衬底上的投影的形状包括至少一个第一图形单元;每一所述第一发光块在所述衬底上的投影的形状包括至少一个第二图形单元;所述第一图形单元和/或所述第二图形单元包括圆形、椭圆形、哑铃形、葫芦形或矩形。
可选的,还包括:
像素限定层,所述像素限定层形成于所述第一电极层上,且包括对应于所述第一发光区设置的多个第一像素限定孔,每一所述第一像素限定孔对应至少一个所述第一发光块。通过像素限定层限定出第一像素限定孔,以隔离相邻的两个第一像素限定孔对应的第一发光块,降低混色风险。
可选的,所述像素限定层还包括对应于所述第二发光区的多个第二像素限定孔,所述第二像素限定孔的尺寸等于或小于所述第一像素限定孔的尺寸。第一像素限定孔和第二像素限定孔的尺寸相等,可以降低对掩膜的加工难度;第一像素限定孔的尺寸可以大于第二像素限定孔的尺寸,从而在相邻第一像素限定孔之间间距等于相邻第二像素限定孔之间间距时,减小第一像素限定孔的分布密度,减少第一像素限定孔之间的间隙数量,降低光线的衍射概率。
可选的,多个所述第一发光块和多个所述第二发光块均排布成多列,且一一对应;同一列中所述第一发光块颜色与第二发光块中靠近所述第一发光区设置的第一个第二发光块颜色一致。。以降低对第一发光区的工艺要求,使得第一发光区在同一列方向的混色风险较小。可选的,多个所述第一发光块和多个所述第二发光块均排布成多列,同一列的至少一个所述第一发光块与该列所述第二发光块中靠近所述第一发光区设置的至少一个所述第二发光块组成一个像素重复单元。基于此,可以在第一发光区和第二发光区的交界处进行显示过渡,提升显示效果。
可选的,所述第一电极层和/或所述第二电极层为透明材料制成;所述透明材质的透光率大于或等于90%。
根据本申请实施例的第二方面,提供一种显示面板,包括:
如上述任一项实施例所述的阵列基板;
封装层,所述封装层封装于所述阵列基板上远离所述衬底的一侧;所述封装层包括偏光片,所述偏光片覆盖所述第二发光区,未覆盖所述第一发光区;和
芯片组件,控制所述第一发光块和所述第二发光块的显示状态。通过芯片组件调节第一发光区和第二发光区交界处的显示颜色,可以提升交界处的显示效果,降低视觉差异。
根据本申请实施例的第三方面,提供一种显示装置,包括:
设备本体,具有器件区;和
如上述任一项实施例所述的显示面板,所述显示面板覆盖在所述设备本体上;
其中,所述器件区位于所述第一发光区的下方,且所述器件区包括透过所述第一发光区发射或者采集光线的感光器件。感光器件设置于该第一发光区的下方,以保证感光器件能够正常工作,并且不占用显示区域,从而提升屏占比。
由上述实施例可知,本申请中多个第一发光块和第二发光块采用一张掩膜进行蒸镀,从而减少掩膜的数量,降低生产成本。由于可以在同一第一电极上形成多个第一发光块,在掩膜上对应于第一发光区上同一电极的区域可以形成多个孔,从而相较于在掩膜上开设一个大孔,能够提高掩膜的强度,缓冲应力,减少掩膜的形变,有效降低相邻第一发光块之间混色的风险。
附图说明
此处的附图被并入说明书中并构成本说明书的一部,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是本申请根据一示例性实施例示出的阵列基板的结构示意图。
图2是图1的A-A截面图。
图3-6是本申请根据一示例性实施例示出的阵列基板的结构示意图。
图7-10A是本申请根据一示例性实施例示出的阵列基板上第一发光区的结构示意图。
图10B是本申请根据一示例性实施例示出的阵列基板的局部结构示意图。
图11-13B是本申请根据一示例性实施例示出的阵列基板的截面示意图。
图14-20是本申请根据一示例性实施例示出的阵列基板上第一发光区的结构示意图。
图21是本申请根据一示例性实施例示出的阵列基板的截面示意图。
图22-26是本申请根据一示例性实施例示出的阵列基板上的结构示意图。
图27是本申请根据一示例性实施例示出的显示面板的截面示意图。
图28是本申请根据一示例性实施例示出的显示装置的截面示意图。
图29是本申请根据一示例性实施例示出的显示装置的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
电子设备如手机、平板电脑等,由于需要集成诸如前置摄像头、听筒以及红外感应元件等,故而可通过在显示面板上开槽(Notch),在开槽区域设置摄像头、听筒以及红外感应元件等,但开槽区域并不用来显示画面,如采用刘海屏等,或者采用在屏幕上开孔的方式。对于实现摄像功能的电子设备来说,外界光线可通过屏幕上的开孔处进入位于屏幕下方的感光器件。但是这些电子设备并不能在整个屏幕的各个区域均进行显示,如在摄像头区域不能显示画面,因而均不是真正意义上的全面屏。
基于当前电子设备的发展趋势,如何在保证电子设备前置拍摄功能的同时,将电子设备所配置的显示面板屏占比提高至接近100%,已经成为本领域内需要解决的问题。
图1是本申请根据一示例性实施例示出的一种阵列基板100的结构示意图,图2是图1的A-A截面图。
在一实施例中,发光层3可以包括第一发光区31和第二发光区32。如图1所示,至少部分第一发光区31可以被第二发光区32包围。例如,第一发光区31可以全部被第二发光区32包围,或者第一发光区31的一侧边缘可以与第二发光区32的相对侧边缘接触。在一实施例中,如图1所示,第一发光区31可以为弧形;或者,第一发光区31可以为圆形、矩形、椭圆形或不规则形状等。
在一实施例中,如图2所示,该阵列基板100可以包括衬底1、第一电极层2、发光层3和第二电极层4。其中,衬底1可以包括基板、无机层和有机层等层结构。该基板可以包括柔性基板或者刚性基板,其中柔性基板可以采用柔性材料制成,该柔性材料可以为聚酰亚胺(Polyimide,简称PI)、聚碳酸酯(Polycarbonate,简称PC,也称PC塑料)、聚对苯二甲酸类(Polyethylene terephthalate,简称PET)等;刚性基板可以采用有机玻璃制成。第一电极层2形成在衬底1上,发光层3形成于第一电极层2上,第二电极层4形成于发光层3上。第一发光区31为透明区,第二发光区32为非透明区。配置有该阵列基板100的电子设备所包括的感光器件可以对应于第一发光区31设置。外部光线可以透过第一发光区31后被感光器件采集,内部光线可以透过第一发光区31而射出。基于此,可以在保证感光器件正常工作的同时,与感光器件对应的屏幕能够正常显示,从而不影响电子设备的屏占比。其中,当感光器件处于关闭状态时,感光器件对应的第一发光区31区域可以用于显示图像,并且第一发光区31示出的图像与第二发光区32示出的图像之间可以吻合,以保证图像显示的完整性,提升显示效果。在一实施例中,感光器件对应的第一发光区31也可以是静态显示。
在一实施例中,第一发光区31可以包括多个第一发光块311,第二发光区32可以包括多个第二发光块321。其中,第一发光块311和第二发光块321可以在同一个工艺中形成,以减少掩膜的数量,降低生产成本。
在一实施例中,第一电极层2还可以包括多个对应第一发光区31设置的第一电极,第一电极上可以对应多个第一发光块311,并且,同一第一电极对应的第一发光块311的颜色相同。
图3至图6是本申请根据不同示例性实施例示出的阵列基板的结构示意图。在一实施例中,如图3所示,第一电极层2可以包括第一电极21、22和23,第一电极21、第一电极22和第一电极23上分别对应两个第一发光块311。第一电极21上对应的第一发 光块311均为红色色块,第一电极22上对应的第一发光块311均为绿色色块,第一电极23上对应的第一发光块311均为蓝色色块。在一些实施例中,每个第一电极上还可以包括三个或者三个以上的第一发光块311,且不同第一电极所包括的第一发光块311的数量可以相同也可以不同,本申请并不限制。
其中,多个第一发光块311可以采用一张掩膜进行蒸镀,由于可以在同一第一电极上形成多个第一发光块311,相应的可以在一张掩膜上对应第一发光区31的区域形成多个孔,相较于在掩膜上开设一个大孔,能够提高掩膜的强度,减少掩膜的形变,有效降低相邻第一发光块311之间混色的概率。
在一实施例中,该第一电极可以为条状电极,如图3所示,多个第一电极可以排列成多行多列结构;或者,如图4所示,多个第一电极可以排列成一行多列结构。其中,第一电极的列方向即为条状电极的纵向延伸方向,即图3、图4中所示的Y方向;第一电极的行方向即为条状电极的横向并排方向,即图3、图4中所示的X方向。在一些实施例中,列方向可以为条状电极的横向并排方向,即如图5所示的X方向,行方向为条状电极的纵向延伸方向,即如图5所示的Y方向。
在一些实施例中,第一电极的列方向可以与第一发光块311的行方向相同或者垂直。如图4所示,第一发光块311的行方向为X方向,第一电极的列方向为Y方向,则第一发光块311的行方向与第一电极的列方向垂直。如图5所示,第一发光块311的行方向为X方向,第一电极的列方向也为X方向,则第一发光块311的行方向与第一电极的列方向平行。
在一实施例中,如图4至图6所示,第一电极层2还可以包括多个对应第二发光区32设置的第二电极24,第二电极24上可以对应多个第二发光块321。在一实施例中,第二发光块321的列方向可以与第一电极21的列方向垂直,如图5所示,第二发光块321的列方向为Y方向,而第一电极21的列方向为X方向。在另一实施例中,第二发光块321的列方向可以与第一电极21的列方向相同,且在该列方向上,第一电极21的宽度大于或等于第二电极24的宽度。如图4和图6所示,第一电极21、22和23的列方向均为Y方向,且第二发光块321的列方向也为Y方向,则在Y方向上,第一电极21的宽度的D1大于或等于第二电极24的宽度D2,即D1≥D2。其中,D1可以等于D2,如图4所示;或者,D1可以大于D2,如图6所示。
由于第一电极21的宽度相对第二电极24的宽度较大,因此第一发光块311的面积相对较大,有利于增加第一发光块311的开口率,从而加大发光强度,以有效弥补由于 第一发光区31为透明区而双向透光导致亮度降低的弊端。当然,在此仅以Y向为第一电极和第二发光块321的列方向为例进行说明,在其他实施例中,也可以是整体旋转90°,以X方向为第一电极和第二发光块321的列方向。
图7至图10A是本申请根据不同示例性实施例示出的阵列基板上第一发光区的结构示意图。在一实施例中,如图7所示,第一电极可以沿第一方向对应多列第一发光块311,该第一方向可以为第一电极的纵向延伸方向,即图7所示的Y方向。基于此,在第一发光区31的像素密度不变的情况下,可以在降低掩膜形变量的同时,有效减少第一电极的数量,从而降低加工难度。
在一实施例中,在与第一方向垂直的第二方向上,即在图7所示的X方向上,同一第一电极上相邻的两个第一发光块311对齐设置;或者,如图8所示,同一第一电极上沿X方向相邻的两个第一发光块311错位设置。相对于图7所示的对齐设置的方式,图8所示的错位设置的方式能够提高第一发光块311排布的均匀性,有效提升显示效果。
在一实施例中,如图8所示,相邻的两个第一电极上对应的第一发光块311可以对齐设置。在一实施例中,如图9所示,相邻的两个第一电极上对应的第一发光块311也可以错位设置。
在一实施例中,同一第一电极上相邻的两个第一发光块311的中轴线在第二方向上的间距为第一发光块311在该第二方向上尺寸的0.5-2倍。如图8所示,在X方向上相邻的第一发光块311A与第一发光块311B错位设置,且第一发光块311A与第一发光块311B中轴线在Y方向上的间距为D3,D3等于第一发光块311B在Y方向上的长度D4。在一实施例中,如图9所示,D3=1.5*D4。在一实施例中D3还可以是D4的0.5倍、0.8倍、1.2或者2倍。
在一实施例中,如图9和图10A所示,第一电极23可以包括多个第一子电极231,该多个第一子电极231在Y方向上错位排列。每一第一子电极231可以包括多个块状电极或者条状电极。在一实施例中,如图9所示,第一电极23可以包括第一子电极231和第二子电极232。其中,第一子电极231可以包括多个块状电极2311。在一实施例中,块状电极2311与第一发光块之间一一对应;或者,单个块状电极2311可以对应多个第一发光块311。第二子电极232可以包括多个块状电极2321。
在一实施例中,如图9和图10A所示,第一电极23还可以包括连接部233,该连接部233连接相邻的两个子电极。如图10A所示,通过连接部23电性连接相邻的两个子 电极231、232,可以得到沿X方向延伸且呈波浪形的第一电极23。在一些实施例中,X方向和Y方向可以进行适应性调整,如方向互换或整体旋转90°等。
图10B是本申请根据一示例性实施例示出的阵列基板的局部结构示意图。第一电极21、22、23在第一发光区31内可以排布成如图10B所示的三行两列的结构。在一些实施例中,第一电极在第一发光区内也可以排布成两行两列、三行三列的结构等。在一实施例中,在同一行的所有第一电极上可以对应颜色相同的第一发光块311。在一些实施例中,也可以在同一列的所有第一电极上对应颜色相同的第一发光块311。
在一实施例中,第一电极层2可以为阳极、第二电极层4可以为阴极。在一些实施例中,第二电极层4可以为面电极,能够有效简化加工难度。
图11至图13B是本申请根据一示例性实施例示出的阵列基板的截面示意图。在一实施例中,如图11所示,第二电极层4可以包括透明材料层41和金属层42。其中,透明材料层4可以覆盖第一发光区31和第二发光区32,而金属层42可以覆盖第二发光区32。其中整个透明材料层41是在同一工艺中形成。其中,在第二发光区32设置金属层42可以降低第二电极层4的电阻,从而有效降低压降。
在一实施例中,如图12所示,第二电极层4可以包括第三电极43和第四电极44。其中,第三电极43可以对应第一发光区31设置,第四电极44可以对应第二发光区31设置。其中,该第三电极43可以为透明材料层,第四电极可以为金属层。在一实施例中,如图13A所示,第三电极43和第四电极44均可以为金属层,且第一发光区31对应的第三电极43的金属层厚度小于第二发光区32对应的第四电极44的金属层厚度。
上述实施例中,透明材料层可以采用氧化铟锡、氧化铟锌、掺杂银的氧化铟锡和掺杂银的氧化铟锌中一种或者多种制成;金属层可以采用Mg、Ag和Al中的一种或者多种制成,如可以采用纯金属制成或者合金制成,例如MgAg系合金。能够有效提高第一发光区31的透光率,进而有利于提升位于第一发光区31下方的摄像头的拍照效果。在一实施例中,如图13B所示,所述第二电极层还可以包括对应所述第一发光区31设置的第五电极45。在一实施例中第五电极45可以为面电极;
在一实施例中,第五电极45可以为单层结构或叠层结构。第五电极45为单层结构时,第五电极45可以为单层金属层、单层金属混合物层或单层透明金属氧化物层;第五电极45为叠层结构时,第五电极45可以为透明金属氧化物层与金属层的叠层或透明金属氧化物层与金属混合物层的叠层。
在一实施例中,第五电极45的材料中掺杂有金属,第五电极45的厚度大于或等于100埃且小于或等于500埃,进一步地,第五电极45的厚度大于或等于100埃且小于或等于200埃,第五电极45的厚度整体连续,第五电极45的透明度大于40%,使得第一发光区31的透光率能够有效提升。
在一实施例中,第五电极45的材料中掺杂有金属,第五电极45的厚度大于或等于50埃,小于或等于200埃时,所述第五电极45的厚度整体连续,且所述第五电极45的透明度大于50%,进一步地,第五电极45的透明度大于60%。
在一实施例中,第五电极45可以为单层结构,其中,单层金属层材料可以为Al或Ag;单层金属混合物层材料可以为MgAg或掺杂Al的金属混合材料;透明金属氧化物可以为ITO或IZO。
在一实施例中,如图13A所示,第三电极43为金属层,其厚度可以大于10埃,并形成一整体连续的面电极,且金属层的透明度>40%;进一步地,金属层的厚度可以大于50埃,并形成一整体连续的面电极,且金属层的透明度>50%。
在一实施例中,第一电极层2和第二电极层4均可以采用透明材料制成。在一实施例中,透明材料的透光率可以大于等于90%。其中,透明材料可以包括氧化铟锡、氧化铟锌、掺杂银的氧化铟锡和掺杂银的氧化铟锌中至少一种。如此使得第一发光区31的透光率能够有效提升,例如可以使得透光率为80%以上。
在一实施例中,发光层3可以包括有机发光材料层和公共层。其中,有机发光材料层可以包括多个独立的个体,以形成第一发光块。公共层可以包括空穴注入层、空穴传输层、电子传输层及电子注入层,该空穴注入层、空穴传输层、电子传输层及电子注入层中的至少一层覆盖第一电极层2以及相邻第一电极之间的间隙,从而可以通过该公共层中的一层或者多层隔离第一电极层2和第二电极层4,避免短路。
图14-20是本申请根据不同示例性实施例示出的阵列基板上第一发光区的结构示意图。在一实施例中,如图14所示,第一电极的列方向(图14中的Y方向)上的两条边均可以为波浪形,且两条边的波峰相对设置、波谷相对设置。如此使得相邻两列第一电极的间隙在列方向呈现为连续变化或者间断变化。第一电极21在列方向上,无论其宽度是连续变化还是间断变化都可以为周期性变化,一个变化周期的长度可以对应于一个像素的宽度。
第一发光区31可以设置有多行波浪形的第一电极,以在列方向上,第一电极的宽度 连续变化或者间断变化,从而使得相邻两列第一电极具有连续变化的间距或者间断变化的间距。因此在第一电极的不同宽度位置以及相邻两列第一电极的不同间距之间,产生的衍射条纹的位置不同,不同位置处的衍射效应相互抵消,从而可以有效减弱衍射效应,进而有利于提升位于该第一发光区31下方的摄像头的拍照效果。
在一实施例中,如图14所示,其中,第一电极呈多行多列排布,Y方向为第一电极的列方向、X方向为第一电极的行方向。每一第一电极均可以包括一个或者多个波峰和一个或者多个波谷。以第一电极21为例,图14中T所示位置处为波峰,B所示位置处为波谷。其中,第一电极的两条边的波峰相对处的宽度D5在30μm至(A-X)μm之间;第一电极的两条边的波谷相对处的宽度D6大于X,且小于波峰相对处的宽度D5,其中A为第一发光块大小,X为电极尺寸最小处的宽度值,且A大于或等于(30+X)μm。在一实施例中,X可以为4微米;在一实施例中,X可以小于4微米。
由于第一电极的边呈波浪形变化,从而导致相邻第一电极之间的间距亦随之产生变化。在一实施例中,如图14所示,两列第一电极的波峰相对处具有最小间距W1,并在两列第一电极的波谷位置相对处具有最大间距W2。其中,最小间距W1为(A-D5),最大间距W2为(A-D6)。
在一些实施例中,第一电极21在衬底上的投影的形状可以包括至少一个第一图形单元,从而可以形成上述的波峰和波谷。第一图形单元可以为圆形、椭圆形、哑铃形、葫芦形或矩形。如图14和图15所示,每一第一电极21可以由多个圆形组成;在一实施例中,如图16所示,第一电极21可以由多个椭圆形组成;在一实施例中,如图17所示,第一电极21可以由多个哑铃形组成。在一些实施例中,第一电极21还可以由多个葫芦形组成,其中葫芦形可以由两个圆形组成。在一实施例中,第一电极21也可以是由一个第一图形单元组成。如图18中所示,每个第一电极21均由一个葫芦形图形单元组成。在一实施例中,如图19所示,由于每个第一电极21均由一个椭圆形的图形单元组成,那么,第一电极21仅包括波峰,不存在波谷,相应的,两列第一电极间仅存在最小间距。
在一实施例中,第一发光块311在衬底上的投影的形状可以包括至少一个第二图形单元,从而可以形成上述的波峰和波谷。该第二图形单元可以包括圆形、椭圆形、哑铃形、葫芦形或矩形。如图20所示,第一发光块311可以为矩形。
在一实施例中,第一电极21与第一发光块311的形状可以相同或不同。如图14所示,第一电极21上对应的第一发光块311的形状与该第一电极21的形状类似,均为由 多个圆形组成的形状。在一实施例中,如图15所示,第一电极21上对应的第一发光块311形状与该第一电极21的形状不同,第一电极21为有多个圆形组成的形状,而第一发光块311为长方形,或者在一实施例中,第一发光块311也可以为圆形或者椭圆形等。在一实施例中,如图20所示,第一电极21与第一发光块311均为矩形;在一实施例中,该呈矩形的第一电极21上对应的第一发光块311还可以是圆形或者椭圆形等。
图21是本申请根据一示例性实施例示出的一种阵列基板的截面示意图。在一实施例中,如图21所示,该阵列基板100还可以包括像素限定层5,该像素限定层5形成于第一电极层2上,并且包括对应于第一发光区31设置的多个第一像素限定孔51。在一实施例中,每一像素限定孔51内可以设置多个第一发光块311,如图21所示;或者,在一实施例中,每一像素限定孔51内也可以设置一个第一发光块311,可以有效降低相邻第一发光块311之间的混色风险。
图22-26是本申请根据不同示例性实施例示出的阵列基板上的结构示意图。如图22所示,像素限定层5还可以包括对应于第二发光区32设置的多个第二像素限定孔52。在一实施例中,第二像素限定孔可以与第二发光块之间一一对应,或者也可以是单个第二像素限定孔内对应多个第二发光块。
在一实施例中,第二像素限定孔52的尺寸等于或小于第一像素限定孔51的尺寸。如图22所示,第一像素限定孔51和第二像素限定孔52的尺寸相等,可以有效降低对掩膜的加工难度;或者,如图23所示,第一像素限定孔51的尺寸可以大于第二像素限定孔52的尺寸,从而相邻第一像素限定孔51之间的间距等于相邻第二像素限定孔52之间的间距时,第一像素限定孔51的分布密度相对较小,第一像素限定孔51之间的间隙数量少,能够有效降低光线的衍射概率。在一实施例中,像素限定层5可以整体采用透明有机材质制成;或者,像素限定层5也可以采用透明无机材质制成;或者,像素限定层5对应第一发光区31的一段可以采用透明材质制成,而对应第二发光区32的一段可以采用非透明材质制成。
在一实施例中,如图24所示,多个第一发光块311和多个第二发光块321均设置多列,并且第一发光块311的列和第二发光块321的列一一对应,如此可以使得第一发光区31的分布密度相对较大。在一实施例中,如图24所示,多个第一发光块311和多个第二发光块321的列方向为Y方向;在一些实施例中,多个第一发光块311和多个第二发光块321的列方向可以为X方向。
在一实施例中,同一列第一发光块311的颜色与该列第二发光块321中靠近第一发 光区31的第一个第二发光块321颜色相同,可以降低对第一发光区31的工艺要求,有效避免第一发光区31在同一列方向的混色风险。如图24所示,第一发光块311C和第一发光块311D组成一列,在该列中的第二发光块中靠近第一发光区31的第二发光块321A与第一发光块311C和第一发光块311D的颜色相同。即,当第二发光块321A为蓝色时,第一发光块311C和第一发光块311D均为蓝色;或者,当第二发光块321A为绿色时,第一发光块311C和第一发光块311D均为绿色;或者,当第二发光块321A为红色时,第一发光块311C和第一发光块311D均为红色。
在一实施例中,一列第二发光块中靠近第一发光区31设置的一个或者多个第二发光块321和该列第一发光块311中相邻的一个或者多个第一发光块311组成一个像素重复单元。在一实施例中,像素重复单元可以包括三原色,如图25所示,第二发光块321A、第一发光块311C和第一发光块311D可以组成一个包括红色、绿色和蓝色色块的像素重复单元(如图25中虚线框所示);在一实施例中,如图26所示,第二发光块321A、第二发光块321B和第一发光块311C可以组成一个包括红色、绿色和蓝色色块的像素重复单元(如图26中虚线框所示)。如此可以在第一发光区31和第二发光区32的交界处进行显示过渡,提升显示效果。在一些实施例中,该像素重复单元也可以包括两个原色,例如红色和绿色、红色和蓝色或者绿色和蓝色。在一些实施例中,像素重复单元也可以包括四个或者四个以上的原色,相应的,组成该像素重复单元的第一发光块311和第二发光块321的数量可以相应进行调整。
图27是本申请根据一示例性实施例示出的显示面板的截面示意图。如图27所示,本申请还提供一种显示面板200,该显示面板200可以包括封装层201和上述任一项实施例中所述的阵列基板100。封装层201位于阵列基板100上远离衬底的一侧。在显示面板100上可以形成对应于第一发光区31设置的透明显示区域和对应于第二发光区设置的非透明显示区域。透明显示区域的下方可以放置感光器件,该感光器件可以通过该透明显示区域采集外部光线,或者向外发射光线。在一实施例中,当感光器件处于工作状态时,透明显示区域可以切换至非显示状态,当感光器件处于关闭状态时,透明显示区域可以切换至显示状态。在一实施例中,该封装层201可以包括偏光片(图中未示出),该偏光片可以覆盖第二发光区对应的区域,且未覆盖第一发光区对应的区域,以避免偏光片的设置影响外部的入射光线和/或电子设备发出的光线。
在一实施例中,阵列基板100的第一发光区至少部分被第二发光区包围,如图27所示,该显示面板200还可以包括芯片组件202,该芯片组件202可以用于控制第一发 光块和第二发光块的显示状态,并且能够使得位于第一发光区和第二发光区交界处的第一发光块和第二发光块颜色一致,从而在视觉上减弱透明显示区域和非透明显示区域之间的差异,有效提升用户的视觉效果。
图28是本申请根据一示例性实施例示出的显示装置的截面示意图。如图28所示,本申请提供一种显示装置300,该显示装置300可以包括装置本体301和上述任一项实施例所述的显示面板200,显示面板200设置在装置本体301上,且与该装置本体301相互连接。其中,显示面板200可以采用前述任一实施例中的显示面板,用以显示静态或者动态画面。
图29是本申请根据一示例性实施例示出的显示装置的结构示意图。如图29所示,设备本体301可以包括一器件区3011,该器件区3011可以设置有如摄像头400以及光传感器等感光器件。显示面板200的透明显示区域对应于器件区3011设置,以使得感光器件能够透过第一发光区对外部光线进行采集等操作。由于第一发光区中的显示面板能够有效改善外部光线透射该第一发光区时所产生的衍射效应,从而可有效提升显示装置上摄像头400所拍摄图像的质量,避免因衍射而导致的图像失真,同时也能提升光传感器感测外部光线的精准度和敏感度。
该显示装置可以为液晶显示装置、电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框或导航仪等任何具有显示功能的产品或部件。
本领域技术人员可以理解附图只是一个优选实施例的示意图,附图中的模块或流程并不一定是实施本申请所必须的。以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种阵列基板,其中,包括:
    衬底;
    第一电极层,所述第一电极层形成于所述衬底上;
    发光层,所述发光层形成于所述第一电极层上,包括第一发光区和第二发光区,所述第一发光区包括多个第一发光块,所述第二发光区包括多个第二发光块,所述多个第一发光块和所述多个第二发光块在同一个工艺中形成;和
    第二电极层,所述第二电极层形成于所述发光层上;
    其中,所述第一电极层包括对应所述第一发光区设置的多个第一电极,每一所述第一电极上对应多个所述第一发光块,且同一所述第一电极上的第一发光块的颜色相同,所述第一发光区为透明区,所述第二发光区为非透明区。
  2. 根据权利要求1所述的阵列基板,其中,至少部分所述第一发光区被所述第二发光区包围。
  3. 根据权利要求1所述的阵列基板,其中,所述第一电极为条状电极,多个所述第一电极排列成一行多列、一列多行、两列多行、两行多列或多行多列。
  4. 根据权利要求3所述的阵列基板,其中,所述第一电极的列方向与所述第一发光块的列方向平行或者垂直。
  5. 根据权利要求1所述的阵列基板,其中,所述第一电极层还包括对应所述第二发光区设置的多个第二电极,每一所述第二电极上对应多个所述第二发光块。
  6. 根据权利要求5所述的阵列基板,其中,所述第一电极的列方向与所述第二发光块的列方向相同,且在所述列方向上,所述第一电极的宽度大于或等于所述第二电极的宽度。
  7. 根据权利要求1所述的阵列基板,其中,每一所述第一电极上沿第一方向对应多列所述第一发光块,对应同一所述第一电极上沿第二方向相邻的两个所述第一发光块对齐设置或者错位设置,所述第二方向与所述第一方向垂直。
  8. 根据权利要求7所述的阵列基板,其中,对应同一所述第一电极上相邻的两个所述第一发光块的中轴线在所述第二方向上的间距为所述第一发光块在所述第二方向上尺寸的0.5-2倍。
  9. 根据权利要求1所述的阵列基板,其中,所述第一电极包括:
    多个第一子电极,在所述第二方向上相邻的所述第一子电极错位排列,每一所述第一子电极对应一列沿第一方向设置的所述第一发光块,每一所述第一子电极包括多个条状电极或块状电极,所述第二方向与所述第一方向垂直;和
    连接部,所述连接部电性连接相邻的两个条状电极或块状电极。
  10. 根据权利要求1所述的阵列基板,其中,相邻两个所述第一电极对应的所述第一发光块对齐设置或错位设置。
  11. 根据权利要求1所述的阵列基板,其中,所述第一电极层为阳极,所述第二电极层为阴极,所述第二电极层为面电极;所述第二电极层包括对应所述第一发光区设置的第五电极,所述第五电极为面电极。
  12. 根据权利要求1所述的阵列基板,其中,所述第一电极在列方向上的两条边均为波浪形,且两条波浪形的边的波峰相对设置,波谷相对设置;和/或
    所述第一发光块在所述第一电极的列方向上的两条边均为波浪形,且两条波浪形的边的波峰相对设置、波谷相对设置。
  13. 根据权利要求1所述的阵列基板,其中,每一所述第一电极在所述衬底上的投影的形状包括至少一个第一图形单元;
    每一所述第一发光块在所述衬底上的投影的形状包括至少一个第二图形单元;
    所述第一图形单元和/或所述第二图形单元包括圆形、椭圆形、哑铃形、葫芦形或矩形。
  14. 根据权利要求1所述的阵列基板,其中,还包括:
    像素限定层,所述像素限定层形成于所述第一电极层上,且包括对应于所述第一发光区设置的多个第一像素限定孔,每一所述第一像素限定孔对应至少一个所述第一发光块。
  15. 根据权利要求14所述的阵列基板,其中,所述像素限定层还包括对应于所述第二发光区的多个第二像素限定孔,所述第二像素限定孔的尺寸等于或小于所述第一像素限定孔的尺寸。
  16. 根据权利要求1所述的阵列基板,其中,多个所述第一发光块和多个所述第二发光块均排布成多列,且一一对应;同一列中所述第一发光块颜色与第二发光块中靠近所述第一发光区设置的第一个第二发光块颜色一致。
  17. 根据权利要求1所述的阵列基板,其中,多个所述第一发光块和多个所述第二发光块均排布成多列,同一列的至少一个所述第一发光块与该列所述第二发光块中靠近所述第一发光区设置的至少一个所述第二发光块组成一个像素重复单元。
  18. 根据权利要求1所述的阵列基板,其中,所述第一电极层和/或所述第二电极层为透明材料制成;所述透明材质的透光率大于或等于90%。
  19. 一种显示面板,其中,包括:
    如权利要求1所述的阵列基板;
    封装层,所述封装层封装于所述阵列基板上远离所述衬底的一侧;所述封装层包括偏光片,所述偏光片覆盖所述第二发光区,未覆盖所述第一发光区;和
    芯片组件,控制所述第一发光块和所述第二发光块的显示状态。
  20. 一种显示装置,其中,包括:
    装置本体,包括器件区;和
    如权利要求19所述的显示面板,所述显示面板覆盖在所述设备本体上;
    所述器件区位于所述第一发光区的下方,且所述器件区包括透过所述第一发光区发射或者采集光线的感光器件。
PCT/CN2019/092946 2018-12-28 2019-06-26 阵列基板、显示面板和显示装置 WO2020133977A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/007,474 US11387281B2 (en) 2018-12-28 2020-08-31 Array substrate, display panel and display device, enabling full screen display with transparent and non-transparent display areas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811653051.9 2018-12-28
CN201811653051.9A CN110767703B (zh) 2018-12-28 2018-12-28 阵列基板、显示面板和显示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/007,474 Continuation US11387281B2 (en) 2018-12-28 2020-08-31 Array substrate, display panel and display device, enabling full screen display with transparent and non-transparent display areas

Publications (1)

Publication Number Publication Date
WO2020133977A1 true WO2020133977A1 (zh) 2020-07-02

Family

ID=69023244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092946 WO2020133977A1 (zh) 2018-12-28 2019-06-26 阵列基板、显示面板和显示装置

Country Status (4)

Country Link
US (1) US11387281B2 (zh)
CN (1) CN110767703B (zh)
TW (1) TWI690066B (zh)
WO (1) WO2020133977A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110783484B (zh) * 2019-09-24 2020-11-10 昆山国显光电有限公司 显示面板及其制作方法、显示装置
KR20210059091A (ko) * 2019-11-13 2021-05-25 삼성디스플레이 주식회사 표시 장치
CN110867476B (zh) 2019-11-27 2022-10-04 武汉天马微电子有限公司 一种显示面板及显示装置
KR20210074447A (ko) 2019-12-11 2021-06-22 삼성디스플레이 주식회사 표시 장치
CN111129085A (zh) * 2019-12-12 2020-05-08 武汉华星光电半导体显示技术有限公司 一种显示面板及其显示装置
CN111029391B (zh) * 2019-12-24 2022-09-13 昆山国显光电有限公司 透光显示面板、显示面板及显示装置
KR20210081572A (ko) * 2019-12-24 2021-07-02 엘지디스플레이 주식회사 유기발광 표시장치
KR20210082845A (ko) * 2019-12-26 2021-07-06 엘지디스플레이 주식회사 표시장치와 그 픽셀 어레이 기판

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064335A (zh) * 2006-04-28 2007-10-31 三星Sdi株式会社 有机电致发光器件及其制造方法
CN108365122A (zh) * 2017-09-30 2018-08-03 云谷(固安)科技有限公司 显示屏以及电子设备
CN108598115A (zh) * 2018-04-24 2018-09-28 武汉华星光电技术有限公司 Oled显示面板
CN108922900A (zh) * 2018-06-28 2018-11-30 厦门天马微电子有限公司 一种显示装置及其显示方法
CN209071333U (zh) * 2018-10-31 2019-07-05 云谷(固安)科技有限公司 显示屏以及显示终端

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101819983A (zh) * 2009-02-26 2010-09-01 统宝光电股份有限公司 发光装置及其制造方法与应用该发光装置的图像显示系统
KR20130068714A (ko) * 2011-12-16 2013-06-26 삼성디스플레이 주식회사 발광효율이 향상된 유기발광 표시장치 및 그 제조방법
KR20140074674A (ko) * 2012-12-10 2014-06-18 삼성디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법
US9444050B2 (en) * 2013-01-17 2016-09-13 Kateeva, Inc. High resolution organic light-emitting diode devices, displays, and related method
JP2014160603A (ja) * 2013-02-20 2014-09-04 Japan Display Inc シートディスプレイ
KR102030799B1 (ko) * 2013-03-11 2019-10-11 삼성디스플레이 주식회사 유기발광표시장치
TWI532153B (zh) * 2013-04-12 2016-05-01 介面光電股份有限公司 顯示面板
US9269862B2 (en) * 2013-11-29 2016-02-23 Epistar Corporation Light-emitting device
JP2016038581A (ja) * 2014-08-08 2016-03-22 株式会社半導体エネルギー研究所 表示パネル、表示装置および表示装置の駆動方法
CN204651324U (zh) 2015-06-12 2015-09-16 昆山国显光电有限公司 有机发光二极管显示器
TWI599556B (zh) * 2015-07-03 2017-09-21 友達光電股份有限公司 有機發光元件
CN105572932A (zh) 2016-02-23 2016-05-11 武汉华星光电技术有限公司 液晶显示器和电子设备
CN106024836B (zh) * 2016-06-03 2019-01-01 京东方科技集团股份有限公司 带指纹识别功能的显示面板及制备方法、显示设备
TWI590215B (zh) * 2016-07-11 2017-07-01 友達光電股份有限公司 顯示面板
TWI612708B (zh) * 2016-10-19 2018-01-21 敦泰電子股份有限公司 有機發光二極體面板及其製造方法
KR102501705B1 (ko) * 2017-03-24 2023-02-21 삼성디스플레이 주식회사 투명 표시 패널 및 이를 포함하는 표시 장치
CN207338380U (zh) * 2017-07-21 2018-05-08 京东方科技集团股份有限公司 一种电致发光显示面板及显示装置
CN108336117A (zh) * 2017-09-30 2018-07-27 云谷(固安)科技有限公司 显示屏以及电子设备
CN108470748B (zh) * 2018-03-03 2021-10-22 昆山国显光电有限公司 显示屏幕、显示装置及终端设备
CN108666348B (zh) * 2018-05-07 2021-08-13 京东方科技集团股份有限公司 显示基板及显示装置
CN108766990A (zh) * 2018-06-05 2018-11-06 武汉华星光电半导体显示技术有限公司 显示面板
CN108962964B (zh) * 2018-08-01 2020-06-30 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064335A (zh) * 2006-04-28 2007-10-31 三星Sdi株式会社 有机电致发光器件及其制造方法
CN108365122A (zh) * 2017-09-30 2018-08-03 云谷(固安)科技有限公司 显示屏以及电子设备
CN108598115A (zh) * 2018-04-24 2018-09-28 武汉华星光电技术有限公司 Oled显示面板
CN108922900A (zh) * 2018-06-28 2018-11-30 厦门天马微电子有限公司 一种显示装置及其显示方法
CN209071333U (zh) * 2018-10-31 2019-07-05 云谷(固安)科技有限公司 显示屏以及显示终端

Also Published As

Publication number Publication date
TWI690066B (zh) 2020-04-01
US20200403043A1 (en) 2020-12-24
US11387281B2 (en) 2022-07-12
TW201939733A (zh) 2019-10-01
CN110767703A (zh) 2020-02-07
CN110767703B (zh) 2020-09-08

Similar Documents

Publication Publication Date Title
WO2020133964A1 (zh) 阵列基板、显示面板及显示装置
TWI690066B (zh) 陣列基板、顯示面板和顯示裝置
JP7229359B2 (ja) 表示基板、表示パネル及び表示装置
US20220310712A1 (en) Method for optimizing pixel arrangement, light-transmitting display panel and display panel
TWI723799B (zh) 顯示基板、顯示面板及顯示裝置
US11968873B2 (en) Display substrate and display device
CN110767662B (zh) 显示基板、显示面板及显示装置
WO2021057012A1 (zh) 透光显示面板、显示面板、制作方法、显示装置
US11645966B2 (en) Display panel and display device
TWI718493B (zh) 顯示面板、顯示屏及顯示終端
US20220028900A1 (en) Transparent display substrates, transparent display panels and display devices
WO2020133950A1 (zh) 阵列基板、显示面板和显示装置
CN110767141A (zh) 显示基板、显示面板及显示装置
TWI704709B (zh) 透明oled基板、顯示面板及oled基板
CN113130619A (zh) 一种显示基板、显示面板及显示装置
CN110767833B (zh) 透明oled基板、阵列基板、显示屏及显示装置
CN115942834A (zh) 一种电致发光二极管显示基板、显示装置和制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902276

Country of ref document: EP

Kind code of ref document: A1