WO2020133703A1 - 指纹识别装置和电子设备 - Google Patents

指纹识别装置和电子设备 Download PDF

Info

Publication number
WO2020133703A1
WO2020133703A1 PCT/CN2019/077370 CN2019077370W WO2020133703A1 WO 2020133703 A1 WO2020133703 A1 WO 2020133703A1 CN 2019077370 W CN2019077370 W CN 2019077370W WO 2020133703 A1 WO2020133703 A1 WO 2020133703A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
micro
light
microlens
fingerprint
Prior art date
Application number
PCT/CN2019/077370
Other languages
English (en)
French (fr)
Inventor
蒋鹏
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201980000384.8A priority Critical patent/CN110337655B/zh
Priority to CN201920857662.9U priority patent/CN210109828U/zh
Priority to CN202020145246.9U priority patent/CN211349383U/zh
Priority to CN201980002383.7A priority patent/CN110720106B/zh
Priority to PCT/CN2019/090436 priority patent/WO2020151159A1/zh
Publication of WO2020133703A1 publication Critical patent/WO2020133703A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present application relates to the technical field of fingerprint identification, and in particular to a fingerprint identification device and electronic equipment.
  • the first one is based on periodic micro-hole array under-screen optical fingerprint recognition technology, this scheme has large light energy loss and long sensor exposure time; the other is based on micro-lens under-screen optical fingerprint recognition technology, this scheme The fingerprint distortion of the fingerprint recognition device is relatively large.
  • the embodiments of the present application provide a fingerprint identification device and an electronic device. Compared with the solution of the periodic through-hole array, the light loss in the vertical direction can be avoided, and the exposure time of the fingerprint sensor can be reduced. Compared with the micro lens solution, the fingerprint recognition device can also reduce the imaging distortion of the entire system. Therefore, the fingerprint recognition device of the embodiment of the present application greatly improves the imaging quality and contrast of fingerprint recognition.
  • a fingerprint identification device comprising: an object-side telecentric lens array for receiving an optical signal formed by reflection of a human finger, and collimating and focusing the optical signal; a fingerprint sensor is provided at Below the object-side telecentric lens array, and adopts a detachable assembly structure with the object-side telecentric lens array, and the fingerprint sensor is used for based on the optical signal passing through the object-side telecentric lens array Perform imaging.
  • the object-side telecentric lens array and the fingerprint sensor are fixed by an adhesive frame.
  • the object-side telecentric lens array includes: a microlens array, the microlens array includes a plurality of microlens units, and the microlens unit includes one or more microlenses.
  • the microlens unit includes a plurality of the microlenses, the main optical axes and focal points of the plurality of the microlenses coincide; and a micro-aperture diaphragm array is disposed below the microlens array and is located in the microlens
  • the micro-aperture diaphragm array includes a plurality of micro-aperture diaphragms, and the micro-lens units correspond to the micro-aperture diaphragms in one-to-one correspondence.
  • the microlens array and the microaperture diaphragm array are located on both surfaces of the same transparent substrate, and the transparent substrate is glass or plastic.
  • the microlens array and the microaperture diaphragm array are respectively located on different substrates; the substrate on which the microlens array is located is a transparent substrate, and the transparent substrate is glass or plastic, and the The microlens array and the microaperture diaphragm array are filled with any one of the following transparent media or any combination of the following transparent media: air, glass, and plastic.
  • one pixel unit of the fingerprint sensor corresponds to at least one microlens unit.
  • the transparent substrate includes one or more light-shielding layers, and the light-shielding layer is located between the microlens array and the micro-aperture diaphragm array; the light-shielding layer includes multiple Through holes, the through holes are configured to allow the optical signal from above the micro lens unit to pass through, and the through holes correspond to the micro lens unit in one-to-one correspondence; when the transparent substrate When multiple light-shielding layers are included, the diameter of the light-through hole of the light-shielding layer located on the upper layer is larger than the diameter of the light-through hole of the light-shielding layer located on the lower layer.
  • the object-side telecentric lens array further includes a low-refractive-index material layer, the low-refractive-index material layer is disposed above the microlens array, for filling and protecting the micro Lens array.
  • the micro-aperture diaphragm is disposed at the focal point of the micro lens unit, and the object-side telecentric lens array guides all the lenses parallel to the main optical axis of the micro lens unit.
  • the optical signal passes through and transmits the optical signal to the fingerprint sensor.
  • the micro-aperture stop is disposed away from the main optical axis of the micro lens unit, and the object-side telecentric lens array guide is inclined to the main optical axis direction of the micro lens unit
  • the optical signal at a specific angle passes and transmits the optical signal to the fingerprint sensor.
  • the distance of the micro-aperture diaphragm deviating from the main optical axis of the micro-lens unit ranges from 0 ⁇ m to 50 ⁇ m.
  • the duty ratio of the microlenses in the microlens unit ranges from 50% to 100%.
  • the spherical cap of the micro lens is spherical or aspherical.
  • the focal length of the microlens ranges from 10 ⁇ m to 2000 ⁇ m.
  • the diameter of the micro-aperture diaphragm ranges from 1 ⁇ m to 10 ⁇ m.
  • the device further includes: a filter, disposed above the fingerprint sensor, and configured to filter the optical signal formed by reflection of a human finger.
  • the filter is provided on the surface of the fingerprint sensor and/or is provided on the surface of the object-side telecentric lens array.
  • the arrangement of the microlens array is a square arrangement or a hexagonal arrangement.
  • the fingerprint identification device when the fingerprint identification device is applied to an electronic device with a display screen, the fingerprint identification device is fixed below the display screen, and there is a gap with the display screen.
  • the electronic device further includes a middle frame, and the fingerprint identification device is fixed to the middle frame.
  • the distance between the fingerprint identification device and the display screen is greater than or equal to 20 ⁇ m.
  • the microlens is implemented through a micro-nano processing technology or a stamping technology.
  • the micro-aperture diaphragm is manufactured by a micro-nano machining process or a nano-printing process.
  • an electronic device including a display screen and the fingerprint identification device in the first aspect or any possible implementation manner of the first aspect, the fingerprint identification device being disposed below the display screen , And there is a gap between the fingerprint recognition device and the display screen.
  • the electronic device further includes a middle frame, and the fingerprint identification device is fixed on the middle frame.
  • the fingerprint recognition device can also reduce the imaging distortion of the entire system. The fingerprint recognition device can achieve higher imaging quality and contrast.
  • the detachable assembly structure is adopted between the fingerprint sensor and the object-side telecentric lens array, which is convenient for assembly, and the distance between the two can be flexibly adjusted, thereby obtaining a better solution than the solution of growing the microlens array directly on the surface of the fingerprint sensor Collimation and imaging quality.
  • providing a light-shielding layer in the transparent substrate can reduce the interference of ambient light, stray light, etc. on fingerprint detection, and can also reduce the crosstalk of optical signals between adjacent microlens units to further obtain better imaging quality and effect.
  • FIG. 1 shows a schematic block diagram of an application scenario of an embodiment of the present application.
  • FIG. 2 is a schematic block diagram of a fingerprint identification device according to an embodiment of the present application.
  • Fig. 3 shows an imaging principle diagram of an object-side telecentric lens.
  • FIG. 4 is a schematic block diagram of an object-side telecentric lens array in an embodiment of the present application.
  • FIG. 5 shows a schematic structural diagram of a fingerprint identification device according to an embodiment of the present application.
  • FIG. 6 shows a schematic structural diagram of another fingerprint identification device according to an embodiment of the present application.
  • FIG. 7 shows a schematic structural diagram of another fingerprint identification device according to an embodiment of the present application.
  • FIG. 8 is an assembly structure diagram of a fingerprint identification device according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of an electronic device according to an embodiment of the present application.
  • the fingerprint identification device provided in the embodiments of the present application can be applied to smart phones, tablet computers, and other mobile terminals or other terminal devices with display screens; more specifically, in the above terminal devices, the fingerprint identification device It may be specifically an optical fingerprint device, which may be disposed in a partial area or all areas below the display screen to form an under-display optical fingerprint system.
  • the terminal device 100 includes a display screen 120 and a fingerprint recognition device 130, wherein the fingerprint recognition device 130 is disposed below the display screen 120 Local area.
  • the fingerprint recognition device 130 may include a sensing array having a plurality of optical sensing units, wherein the sensing array may also be a fingerprint sensor.
  • the area where the sensing array is located or its optical sensing area is the fingerprint detection area 103 of the fingerprint identification device 130. As shown in FIG. 1, the fingerprint detection area 103 is located in the display area 102 of the display screen 120.
  • the terminal device 100 adopting the above structure does not need a special reserved space on the front of it to set fingerprint keys (such as the Home key).
  • the display screen 120 may be a display screen with a self-luminous display unit, such as an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display screen or a micro light-emitting diode (Micro-LED) display screen .
  • the display screen 120 may be specifically a touch display screen, which can not only display images, but also detect a user's touch or pressing operation, thereby providing a human-computer interaction interface for the user.
  • the terminal device 100 may include a touch controller, and the touch controller may specifically be a touch panel, which may be provided on the surface of the display screen 120, or may be partially integrated or integrated as a whole Into the display screen 120 to form the touch display screen.
  • the fingerprint recognition device 130 may use the display unit (ie, OLED light source) of the OLED display screen 120 located in the fingerprint detection area 103 as an excitation light source for optical fingerprint detection.
  • the fingerprint identification device 130 may also use an internal light source or an external light source to provide an optical signal for fingerprint detection.
  • the fingerprint identification device 130 may be applicable to non-self-luminous display screens, such as liquid crystal display screens or other passive light-emitting display screens.
  • the fingerprint recognition device 130 may further include an excitation light source for optical fingerprint detection, the excitation light source It may be specifically an infrared light source or a light source with a specific wavelength and invisible light, which may be provided under the backlight module of the liquid crystal display or the edge area under the protective cover of the terminal device 100, and the fingerprint identification device 130 is arranged under the backlight module, and the backlight module allows the fingerprint detection light to pass through the liquid crystal panel and the backlight module through openings or other optical design of the film layers such as the diffusion sheet, the brightness enhancement sheet, the reflection sheet, etc. Reach the induction array of the fingerprint identification device 130.
  • the excitation light source It may be specifically an infrared light source or a light source with a specific wavelength and invisible light, which may be provided under the backlight module of the liquid crystal display or the edge area under the protective cover of the terminal device 100, and the fingerprint identification device 130 is arranged under the backlight module, and the backlight module allows the fingerprint detection light to pass through the liquid crystal panel and the backlight module through openings
  • the sensing array of the fingerprint recognition device 130 may specifically be a photodetector array, which includes a plurality of photodetectors distributed in an array, and the photodetectors may be used as the optical sensing unit as described above .
  • the sensing array of the fingerprint recognition device 130 may specifically be a photodetector array, which includes a plurality of photodetectors distributed in an array, and the photodetectors may be used as the optical sensing unit as described above .
  • the sensing array of the fingerprint recognition device 130 may specifically be a photodetector array, which includes a plurality of photodetectors distributed in an array, and the photodetectors may be used as the optical sensing unit as described above .
  • the fingerprint recognition device 130 may also be disposed in the entire area below the display screen 120, thereby extending the fingerprint detection area 103 to the entire display area 102 of the entire display screen 120, to achieve Full-screen fingerprint recognition.
  • the terminal device 100 may further include a transparent protective cover 110, and the cover 110 may be a glass cover or a sapphire cover, which is disposed above the display screen 120 and Cover the front of the terminal device 100. Therefore, in the embodiment of the present application, the so-called finger pressing on the display screen 120 actually means pressing on the cover plate 110 above the display screen 120 or covering the surface of the protective layer of the cover plate 110.
  • the fingerprint recognition device 130 may include a light detection part 134 and an optical component 132, the light detection part 134 includes the sensing array and is electrically connected to the sensing array
  • the connected reading circuit and other auxiliary circuits may be fabricated on a chip (Die) through a semiconductor process; that is, the light detection portion 134 may be fabricated on an optical imaging chip or an image sensor chip.
  • the optical component 132 may be disposed above the sensing array of the light detection portion 134, and the optical component 132 may include a filter layer, a light guide layer, and other optical elements; the filter layer may be used for The ambient light penetrating the finger is filtered out, and the light guide layer is mainly used to guide (eg, optically collimate or converge) the reflected light reflected from the finger surface to the sensing array for optical detection.
  • the light emitted by the display screen 120 is reflected on the surface of the finger to be detected above the display screen 120, and the reflected light reflected from the finger is optically collimated or condensed by the micro-hole array or micro-lens array, and then further filtered light
  • the layer after filtering is received by the light detection part 134, and the light detection part 134 may further detect the received reflected light, thereby acquiring a fingerprint image of the finger to realize fingerprint recognition.
  • the position of the filter layer of the optical component 132 is not limited to below the light guide layer; for example, in an alternative
  • the filter layer may also be disposed between the light guide layer and the display screen 120, that is, above the light guide layer; or, the optical component 132 may include two filter layers, The two are respectively arranged above and below the light guide layer.
  • the filter layer may also be integrated into the light guide layer, or may even be omitted, which is not limited in this application.
  • the optical component 132 and the light detection part 134 can be packaged in the same optical fingerprint chip. It may also be installed inside the fingerprint recognition device as a relatively independent component from the light detection part 134, that is, the optical component 132 is provided outside the chip where the light detection part 134 is located, for example, the optical component 132 is attached Above the chip, or integrate some elements of the optical assembly 132 into the above chip. There are various implementation solutions for the light guide layer of the optical component 132.
  • the light guide layer of the optical component 132 is specifically an optical path modulator or an optical path collimator made of semiconductor silicon wafers or other substrates (such as silicon oxide or nitride), which has Multiple optical path modulation units or collimation units.
  • the optical path modulation unit or collimation unit may be specifically a through hole having a high aspect ratio. Therefore, the multiple collimation units or lens units may constitute a through hole array.
  • the light incident on the optical path modulation unit or the collimating unit can pass through and be received by the optical sensing unit below it, and each optical sensing unit can basically receive the light passing above it.
  • the light guide layer may also include an optical lens (Lens) layer, which has one or more optical lens units, such as a lens group composed of one or more aspherical microlenses.
  • the reflected light reflected from the finger is collimated or condensed by the optical lens unit and then received by the optical sensing unit below it. According to this, the sensing array can detect the fingerprint image of the finger.
  • the sensor array of the light detection part 134 may specifically include only a single sensor array, or a dual sensor array (Dual Array) or multiple sensor arrays (Multiple Array) with two or more sensor arrays arranged side by side ) Architecture.
  • the optical component 132 may use a single light guide layer to simultaneously cover the two or more sensing arrays; alternatively, the optical component 132 may also include two or more light guide layers arranged side by side, such as two or more optical path modulators or optical path collimators, or two or more optical lens layers, the two or more light guide layers arranged side by side
  • the light layers are respectively arranged above the two or more sensor arrays, and are used to guide or concentrate the related reflected light to the sensor arrays below it.
  • the display screen 120 may also use a non-self-luminous display screen, such as a backlit liquid crystal display screen; in this case, the fingerprint recognition device 130 cannot use the display screen 120
  • the display unit is used as an excitation light source. Therefore, it is necessary to integrate an excitation light source inside the fingerprint recognition device 130 or set an excitation light source outside to realize optical fingerprint detection.
  • the detection principle is consistent with the content described above.
  • the fingerprint recognition device is taken as an example of an off-screen optical fingerprint recognition device
  • the fingerprint recognition device of the terminal device 100 may also use ultrasonic waves Fingerprint recognition devices or other types of fingerprint recognition devices instead. This application does not specifically limit the type and specific structure of the fingerprint recognition device, as long as the above fingerprint recognition device can meet the performance requirements for fingerprint recognition inside the display screen of the terminal device.
  • the fingerprint identification device 130 may use a periodic micro-hole array to transmit light to the sensing array. In this scheme, the light energy loss is large and the sensor exposure time is long.
  • the fingerprint recognition device 130 may use a micro lens to transmit light to the sensing array, and since an ordinary lens is used, during the imaging process, when the object distance changes, the size of the resulting image Changes will occur accordingly, which may result in lenses with the same focal length, corresponding to different object distances, having different magnifications.
  • ordinary lenses have a certain depth of field. When the measured object is not within the depth of field of the lens, the image will become blurred and cannot be clearly focused. As a result, the fingerprint recognition accuracy is not high.
  • the embodiments of the present application provide a new fingerprint recognition device, which can be arranged under the display screen.
  • the fingerprint identification device 200 may include an object-side telecentric lens array 210 and a fingerprint sensor 220.
  • the object-side telecentric lens array 210 is used to receive an optical signal reflected by a human finger to form a The optical signal is collimated and focused.
  • the fingerprint sensor 220 is disposed below the object-side telecentric lens array 210, and adopts a detachable assembly structure with the object-side telecentric lens array 210, and the fingerprint sensor 220 is used to pass through the object The optical signal of the telecentric lens array 210 is imaged.
  • the detachable assembly structure facilitates the assembly and disassembly of the fingerprint sensor 220 and the object-side telecentric lens array 210, and can flexibly adjust the distance between the two, so that a micro lens array can be obtained directly on the surface of the fingerprint sensor.
  • the scheme has better collimation and imaging quality.
  • the embodiment of the present application adopts a frame affixing process to realize the detachable assembly structure. For details, refer to FIG. 5 and the description of its content.
  • the detachable assembly structure can also be implemented by other means, such as a mechanical fixing method, as long as it can facilitate assembly and disassembly, and can flexibly adjust the distance between the fingerprint sensor 220 and the object-side telecentric lens array 210, embodiments of the present application No limitation.
  • a mechanical fixing method such as a mechanical fixing method
  • the so-called telecentric lens is essentially a combination of an ordinary lens and a small hole imaging principle. It can be within a certain object distance range, so that the resulting image magnification will not change, does not change with the depth of field, and there is no parallax. Applying it to fingerprint recognition technology can improve the accuracy of fingerprint recognition.
  • telecentric lenses can be divided into object-side telecentric lenses, image-side telecentric lenses, and dual telecentric lenses.
  • the principle of the object-side telecentric lens is mainly explained below with reference to FIG. 3.
  • Figure 3 shows the imaging principle of an object-side telecentric lens.
  • an aperture stop is placed at the focal plane of the image side of the ordinary lens.
  • the function of this aperture stop is to allow only parallel incident object rays (such as ray 1 and ray 2) to reach the image plane for imaging. It can be seen from the geometric relationship that there is no relationship at all at this time. That is to say, the object is at infinity.
  • the object-side telecentric lens after the array miniaturization constitutes the object-side telecentric lens array 210 in the fingerprint recognition device 200 provided by the embodiment of the present application.
  • the object-side telecentric lens array 210 may include a micro lens array 211 and a micro aperture stop array 212.
  • the microlens array 211 may include multiple microlens units, the microlens unit includes one or more microlenses, and when the microlens unit includes multiple microlenses, multiple microlenses The main optical axis and the focal point coincide.
  • a micro-aperture diaphragm array 212 is disposed below the micro-lens array 211 and is located at the image-plane focal plane of the micro-lens unit, the micro-aperture diaphragm array 212 includes a plurality of micro-aperture diaphragms, the micro-lens unit One-to-one correspondence with the micro-aperture diaphragm.
  • one pixel unit of the fingerprint sensor 220 corresponds to at least one microlens unit.
  • one pixel unit of the fingerprint sensor 220 may correspond to the four microlens units, so as to increase the pixel array density of the fingerprint sensor 220.
  • the microlens array 211 and the microaperture diaphragm array 212 can be processed on both surfaces of the same base material, which can reduce process steps. That is, the microlens array 211 and the microaperture diaphragm array 212 are located on the front and back surfaces of the same transparent substrate.
  • the transparent substrate is glass or plastic.
  • the microlens array 211 and the microaperture diaphragm array 212 may be respectively located on different substrates, and then the microaperture diaphragm array 212 is disposed below the microlens array 211.
  • the substrate on which the microlens array 211 is located may be a transparent substrate, such as glass or plastic, and the substrate on which the microaperture diaphragm array 212 is located may be a transparent substrate or other non-transparent substrate materials, which is not limited in this embodiment .
  • the microlens array 211 and the microaperture diaphragm array 212 may be filled with any one of the following transparent media or any combination of the following transparent media: air, glass, and plastic.
  • the microlenses in the embodiments of the present application may be implemented using a micro-nano processing technology or a stamping process, and the micro-aperture diaphragms in the embodiments of the present application may be manufactured through a micro-nano processing technology or a nano-printing technology, and further It is possible to miniaturize the array of telecentric lenses.
  • a single pixel period needs to be related to the resolution requirements of the object.
  • a fingerprint recognition device installed under the display screen can set the pixel period of the telecentric lens to be along the plane of the display screen X/
  • Each sampling rate in the Y direction is 25 ⁇ m.
  • the fingerprint identification device adopts an object-side telecentric lens, which can collect fingerprints on the area above the telecentric lens, and focus the light in the upper area to the pixel unit of the fingerprint sensor. And by miniaturizing and arraying telecentric lenses, fingerprint imaging within a certain distance can be achieved. Compared with the solution of the periodic via array, the light loss in the vertical direction can be avoided, and the exposure time of the fingerprint sensor can be reduced. Compared with the micro lens solution, the fingerprint recognition device can also reduce the imaging distortion of the entire system, and the fingerprint recognition device can achieve higher imaging quality and contrast.
  • the duty ratio of the microlenses in the microlens unit may range from 50% to 100%, and the spherical cap of the microlenses may be spherical or aspherical.
  • the focal length of the microlens may be 10 ⁇ m to 2000 ⁇ m.
  • the diameter of the micro-aperture diaphragm may range from 1 ⁇ m to 10 ⁇ m.
  • FIG. 5 shows a schematic structural diagram of a fingerprint identification device according to an embodiment of the present application.
  • the fingerprint recognition device 200 is applied to an electronic device having a display screen, the fingerprint recognition device 200 is fixed below the display screen, and there is a gap with the display screen.
  • the electronic device includes a middle frame, the fingerprint identification device 200 may also be fixed on the middle frame.
  • the fingerprint recognition device 200 may include an object-side telecentric lens array 210 and a fingerprint sensor 220.
  • the fingerprint recognition device 200 may further include a filter 214 for The optical signal formed by reflection is filtered.
  • the filter 214 may be disposed between the fingerprint sensor 220 and the display screen.
  • the filter 214 may be disposed between the object-side telecentric lens array 210 and the fingerprint sensor 220.
  • the filter 214 can also be directly grown on the surface of the fingerprint sensor 220 through a growth process.
  • the position of the filter 214 is not limited to the object-side telecentric lens array 210 and the fingerprint sensor 220, but may also be disposed between the object-side telecentric lens array 210 and the display screen. That is, it is located above the object-side telecentric lens array 210.
  • the filter 214 may be directly grown on the upper surface of the object-side telecentric lens array 210 through a growth process.
  • the fingerprint recognition device 200 may further include two layers of filter plates 214, which are respectively disposed above and below the object-side telecentric lens array 210.
  • the filter 214 is not limited to a growth process, and may also be disposed above the fingerprint sensor 220 through other processes, such as an evaporation process, which is not limited in this embodiment.
  • the filter can be used to reduce the undesired background light in the fingerprint sensing, so as to improve the optical sensitivity of the fingerprint sensor to the received light.
  • the filter can specifically be used to filter out the wavelength of ambient light, for example, near infrared light and part of red light. For another example, blue light or part of blue light.
  • human fingers absorb most of the energy of light with a wavelength below 580 nm. If one or more optical filters or optical filter coatings can be designed to filter light with a wavelength from 580 nm to infrared, the ambient light pair can be greatly reduced The impact of optical detection in fingerprint sensing.
  • the filter 214 may be an infrared cut-off optical filter.
  • the fingerprint sensor 220 and the object-side telecentric lens array 210 adopt a detachable assembly structure
  • the embodiment in FIG. 5 shows that the detachable assembly structure is implemented by using a frame mounting process .
  • the four sides are fixed between the fingerprint sensor 220 and the object-side telecentric lens array 210 by a frame adhesive 213.
  • the frame adhesive 213 may be an ultra-thin double-sided adhesive or other adhesive with adhesive properties As long as the fingerprint sensor 220 and the object-side telecentric lens array 210 can be framed and fixed, this embodiment is not limited.
  • the object-side telecentric lens array 210 may include a microlens array 211 and a microaperture diaphragm array 212.
  • FIG. 5 shows an alternative embodiment, namely, the microlens array 211 and the microaperture
  • the diaphragm array 212 is located on the front and back surfaces of the same transparent substrate.
  • this embodiment also shows that the micro-aperture diaphragm array 212 is located at the image square focal plane of the micro lens unit 2110, and the micro-aperture diaphragm 2120 is disposed at the focal point of the micro lens unit 2110, so the object-side telecentric lens array 210 may guide the optical signal parallel to the main optical axis direction of the micro lens unit 2110 to pass.
  • the micro-aperture stop 2120 may also be set away from the main optical axis of the micro lens unit 2110.
  • the object-side telecentric lens array 210 may guide a specific direction inclined to the main optical axis direction of the micro lens unit 2110.
  • the optical signal at an angle passes where the distance of the micro-aperture stop 2120 deviating from the main optical axis of the micro-lens unit 2110 may range from 0 ⁇ m to 50 ⁇ m, optionally, the micro-aperture stop 2120 is deviated from the micro-lens
  • the main optical axis of the unit 2110 is set at 5 ⁇ m.
  • the material of the object-side telecentric lens array 210 may be glass, plastic, or other transparent materials.
  • the arrangement manner of the microlens array 211 may be a square arrangement, a hexagonal arrangement, or any other form, which is not limited in the embodiments of the present application.
  • the duty ratio of the micro lens can be as high as 100%.
  • the object-side telecentric lens array 210 may further include a low-refractive-index material layer 215 disposed above the microlens array 211 to fill and protect the microlenses Array 211, and still ensure that the image-side focal plane of the microlens unit 2110 coincides with the micro-aperture diaphragm array 212.
  • the low-refractive-index material layer 215 fills the surface of the microlens array 211, making the entire fingerprint identification device 200 easier to install when applied to electronic equipment or other equipment.
  • a low refractive index material layer 215 may be disposed above the microlens array 211 by using processes such as growth, coating, soaking, evaporation, or other processes, which is not limited in this embodiment. It can be understood that when the low-refractive-index material layer 215 is disposed above the microlens array 211, the filter 214 is disposed on the surface of the object-side telecentric lens array 210, which is essentially that the filter 214 is disposed on the low-refractive-index material The surface of layer 215.
  • the low-refractive-index material layer 215 shown in FIG. 6 is only schematic. After filling the micro-lens array 211, the low-refractive-index material layer 215 may have a certain thickness. The thickness depends on the actual situation. The setting is not limited in this embodiment.
  • the transparent substrate includes two light shielding layers 216, that is, the light shielding layer 216 is located between the microlens array 211 and the microaperture diaphragm array 212.
  • the transparent substrate may further include only one light-shielding layer 216 or multiple light-shielding layers 216.
  • the light shielding layer 216 is configured to allow the optical signal from above the micro lens unit 2110 to pass through.
  • Each light shielding layer 216 includes a plurality of light passing holes, and the light passing hole and the micro lens unit one One correspondence.
  • the diameter of the through hole of the light shielding layer 216 located on the upper layer is larger than the diameter of the through hole of the light shielding layer 216 located on the lower layer.
  • the center of the light-through hole here is located on the main optical axis of the microlens unit 2110. Therefore, the object-side telecentric lens array 210 can guide the optical signal parallel to the main optical axis direction of the micro lens unit 2110 to pass.
  • the interference of ambient light, stray light, etc. on fingerprint detection can be reduced, and the crosstalk of the optical signal between adjacent microlens units 2110 can also be reduced, to further obtain better imaging quality and effect.
  • the light-passing hole of the light-shielding layer 216 may also be set away from the main optical axis of the microlens unit 2110 together with the micro-aperture stop, so that the object-side telecentric lens array 210 can be guided The optical signal of a specific angle inclined to the main optical axis direction of the micro lens unit 2110 is passed,
  • FIG. 8 shows a schematic structural diagram of a fingerprint identification device provided by an embodiment of the present application.
  • the fingerprint recognition device is applied to an electronic device (for example, a smart phone), as shown in FIG. 8, the lower surface of the protective cover 310 is attached to the upper surface of the display screen 320, and the fingerprint recognition device 330 may be fixedly disposed on the display Below the screen 320, the lower surface of the fingerprint recognition device 330 is soldered and fixed to the flexible circuit board 350. And there is a gap 390 between the fingerprint recognition device 330 and the display screen 320.
  • the fingerprint identification device 330 may be fixedly connected to a device that is easily removable inside the electronic device to be installed under the display screen 320, for example, the fingerprint identification device 330 may be installed on the middle frame 370
  • the lower surface, the middle frame 370 can be used as a fixing frame between the fingerprint recognition device 330 and the display screen 320, and the upper surface of the middle frame 370 can be attached to the edge portion of the lower surface of the display screen 320 through foam adhesive 360 Together.
  • the middle frame 370 is disposed between the display screen 320 and the back cover and is used to carry various internal components.
  • the internal components include but are not limited to batteries, motherboards, cameras, cables, various sensors, microphones, earpieces, etc. And other parts.
  • the fingerprint recognition device 330 and the display screen 320 are completely decoupled, which prevents damage to the display screen 320 when the fingerprint recognition device 330 is installed or removed.
  • the fingerprint recognition device 330 may also be installed between the display screen 320 and the middle frame 370 with a gap therebetween.
  • the fingerprint recognition device 330 may be installed on the upper surface of the middle frame 370.
  • the fingerprint identification device 330 and the battery can coincide in the thickness direction of the electronic device, so that the placement of the fingerprint identification device is no longer limited.
  • the distance between the fingerprint recognition device 330 and the display screen 320 may be greater than or equal to 20 ⁇ m.
  • the safety distance between the fingerprint identification device 330 and the display screen 320 is satisfied, and no device loss will be caused due to vibration or falling.
  • the middle frame 370 can be specifically made of metal or alloy material, or even made of plastic material. In this case, the middle frame 370 can even be integrally formed with the frame of the electronic device.
  • the so-called integrated molding is the internal middle frame and the frame Is a whole.
  • the frame can be just a metal welt, or a metal-like coating can be applied to the middle frame.
  • the middle frame 370 may also be a composite middle frame. Taking a mobile phone as an example, the middle frame 370 includes an inner middle frame 1 and an outer middle frame 2, the inner middle frame 1 is used to carry mobile phone parts, and the outer middle frame 2 is inside.
  • the outer edge of the outer middle frame 2 is provided with a mobile phone button, and the inner middle frame 1 and the outer middle frame 2 are integrated into one. Because the middle frame of the mobile phone is designed as the inner middle frame and the outer middle frame, the inner and outer middle frames are integrated into a whole. When the mobile phone is impacted, the outer middle frame is first worn. Because there are only buttons on the outer middle frame, it is simple and convenient to replace the outer middle frame. Low cost; furthermore, an elastic material can be provided between the inner and outer middle frames. Since the inner and outer middle frames are relatively fixed under the compression of the elastic layer, the elastic layer can reduce the inner center when the outer middle frame is under impact The impact of the box.
  • a layer of foam can be provided under the display screen 320, and a sealed environment can be formed between the display screen 320 and the fingerprint recognition device 330, so as to meet the requirements of shading and dust prevention.
  • the foam layer can be opened at the installation position of the fingerprint recognition device 330, so that the fingerprint recognition device 330 can receive the optical signal transmitted through the display screen 320.
  • the finger When the finger is placed above the illuminated display 320, the finger will reflect the light emitted by the display 320, and this reflected light will penetrate the display 320.
  • the fingerprint is a diffuse reflector whose reflected light exists in all directions. Using a specific light path, the fingerprint sensor only receives light in a specific direction, and the fingerprint can be solved by an algorithm.
  • An embodiment of the present application further provides an electronic device.
  • the electronic device includes the fingerprint identification device and the display screen in the foregoing various embodiments, and the fingerprint identification device is located below the display screen. Further, the electronic device further includes a middle frame, and the fingerprint identification device may be fixed on the middle frame.
  • FIG. 9 is a schematic block diagram of an electronic device 400 provided according to an embodiment of the present application.
  • the electronic device 400 shown in FIG. 8 includes: a radio frequency (Radio Frequency) circuit 410, a memory 420, other input devices 430, a display screen 440, a sensor 450, an audio circuit 460, an I/O subsystem 470, a processor 480, And power supply 490 and other components.
  • a radio frequency (Radio Frequency) circuit 410 included in FIG. 7
  • the structure of the electronic device shown in FIG. 7 does not constitute a limitation on the electronic device, and may include more or fewer components than the illustration, or combine some components, or split some components , Or different component arrangements.
  • the display screen 440 belongs to a user interface (User Interface, UI), and the electronic device 400 may include a user interface that is less than that illustrated or less.
  • UI User Interface
  • the RF circuit 410 can be used for receiving and sending signals during receiving and sending information or during a call.
  • the RF circuit includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • the RF circuit 410 can also communicate with other devices through a wireless communication network.
  • the memory 420 may be used to store software programs and modules.
  • the processor 480 executes various functional applications and data processing of the electronic device 400 by running the software programs and modules stored in the memory 420.
  • the memory 420 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, application programs required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; the storage data area may store The data created by the use of the electronic device 400 (such as audio data, phone book, etc.) and the like.
  • the memory 420 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the other input device 430 may be used to receive input digital or character information, and generate signal input related to user settings and function control of the electronic device 400.
  • other input devices 430 may include but are not limited to physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and light mice (light mice are touch sensitive that do not display visual output Surface, or an extension of a touch-sensitive surface formed by a screen, etc.).
  • the other input device 430 is connected to the other input device controller 471 of the I/O subsystem 470, and performs signal interaction with the processor 480 under the control of the other device input controller 471.
  • the display screen 440 may be used to display information input by the user or information provided to the user and various menus of the electronic device 400, and may also accept user input.
  • the specific display screen 440 may be a touch screen, and may include a display panel 441 and a touch panel 442.
  • the touch panel 442 can cover the display panel 441, and the user can according to the content displayed on the display panel 441 (the display content includes but is not limited to, a soft keyboard, a virtual mouse, a virtual key, an icon, etc.) Operate on or near the control panel 442, after detecting the operation on or near it, the touch panel 442 transmits it to the processor 480 through the I/O subsystem 470 to determine the user input, and then the processor 480 passes the I according to the user input
  • the /O subsystem 470 provides corresponding visual output on the display panel 441.
  • the touch panel 442 and the display panel 441 are implemented as two independent components to realize the input and input functions of the electronic device 400, in some embodiments, the touch panel 442 and the display panel 441 may be Integrate to realize the input and output functions of the electronic device 400.
  • the electronic device 400 may further include at least one sensor 450.
  • the sensor 450 may be a fingerprint sensor located under or within the display screen 440, that is, the fingerprint identification device in the embodiment of the present application.
  • the audio circuit 460, the speaker 461, and the microphone 462 may provide an audio interface between the user and the electronic device 400.
  • the audio circuit 460 can convert the received audio data converted signal to the speaker 461, which converts the speaker 461 into a sound signal output; on the other hand, the microphone 462 converts the collected sound signal into a signal, which is received by the audio circuit 460 Convert to audio data, and then output the audio data to the RF circuit 410 to send to another mobile phone, for example, or output the audio data to the memory 420 for further processing.
  • the I/O subsystem 470 is used to control input and output external devices, and may include other device input controllers 471, sensor controllers 472, and display controllers 473.
  • one or more other input control device controllers 471 receive signals from other input devices 430 and/or send signals to other input devices 430, which may include physical buttons (press buttons, rocker buttons, etc.) , Dial, slide switch, joystick, click wheel, light mouse (light mouse is a touch-sensitive surface that does not display visual output, or an extension of the touch-sensitive surface formed by the screen). It is worth noting that the other input control device controller 471 can be connected to any one or more of the above devices.
  • the display controller 473 in the I/O subsystem 470 receives signals from the display screen 440 and/or sends signals to the display screen 440. After the display screen 440 detects the user input, the display controller 473 converts the detected user input into interaction with the user interface object displayed on the display screen 440, that is, realizes human-computer interaction.
  • the sensor controller 472 may receive signals from one or more sensors 440 and/or send signals to one or more sensors 440.
  • the processor 480 is the control center of the electronic device 400, and uses various interfaces and lines to connect various parts of the entire electronic device, by running or executing the software programs and/or modules stored in the memory 420, and calling the stored in the memory 420
  • the data performs various functions of the electronic device 400 and processes the data, thereby monitoring the electronic device as a whole.
  • the processor 480 may include one or more processing units; preferably, the processor 480 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, and application programs, etc.
  • the modem processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 480.
  • the processor 480 may be used to execute various steps in the method embodiments of the present application.
  • the electronic device 400 further includes a power supply 490 (such as a battery) that supplies power to various components.
  • a power supply 490 (such as a battery) that supplies power to various components.
  • the power supply can be logically connected to the processor 480 through a power management system, so as to realize functions such as charging, discharging, and power consumption management through the power management system.
  • the electronic device 400 may further include a camera, a Bluetooth module, etc., which will not be repeated here.
  • circuits, branches, and units may be implemented in other ways.
  • the branch described above is schematic.
  • the division of the unit is only a logical function division. In actual implementation, there may be other divisions.
  • multiple units or components may be combined or integrated into A branch, or some features can be ignored, or not implemented.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Image Input (AREA)

Abstract

本申请实施例提供了一种指纹识别装置和电子设备,该指纹识别装置包括:物方远心镜头阵列,用于接收经由人体手指反射形成的光信号,并对所述光信号进行准直和聚焦;指纹传感器,设置于所述物方远心镜头阵列的下方,并且与所述物方远心镜头阵列采用分离式装配结构,所述指纹传感器用于基于穿过所述物方远心镜头阵列的所述光信号进行成像。本申请实施例的指纹识别装置能够实现物方远心镜头阵列与指纹传感器之间的灵活装配。

Description

指纹识别装置和电子设备
本申请要求于2018年12月26日提交中国专利局、申请号为PCT/CN2018/124007、名称为“指纹识别装置和电子设备”的PCT申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及指纹识别技术领域,尤其涉及一种指纹识别装置和电子设备。
背景技术
已公开的屏下光学指纹识别装置技术主要有两种。第一种是基于周期性微孔阵列的屏下光学指纹识别技术,这种方案光能量损失大,且传感器曝光时间长;另一种是基于微透镜的屏下光学指纹识别技术,这种方案的指纹识别装置的成像畸变较大。
发明内容
有鉴于此,本申请实施例提供了一种指纹识别装置和电子设备,相对于周期性通孔阵列的方案来说,可以避免垂直方向的光损失,进而可以减少指纹传感器的曝光时间。相对于微透镜的方案,该指纹识别装置也能让整个系统的成像畸变减小。因此,本申请实施例的指纹识别装置,使得指纹识别的成像质量和对比度得到了很大的提高。
第一方面,提供了一种指纹识别装置,包括:物方远心镜头阵列,用于接收经由人体手指反射形成的光信号,并对所述光信号进行准直和聚焦;指纹传感器,设置于所述物方远心镜头阵列的下方,并且与所述物方远心镜头阵列采用可分离式装配结构,所述指纹传感器用于基于穿过所述物方远心镜头阵列的所述光信号进行成像。
在一种可能的实现方式中,所述物方远心镜头阵列与所述指纹传感器通过粘合剂框贴固定。
在一种可能的实现方式中,所述物方远心镜头阵列包括:微透镜阵列,所述微透镜阵列包括多个微透镜单元,所述微透镜单元包括一片或多 片微透镜,当所述微透镜单元包括多片所述微透镜时,多片所述微透镜的主光轴和焦点均重合;以及微孔径光阑阵列,设置于所述微透镜阵列的下方并且位于所述微透镜单元的像方焦平面处,所述微孔径光阑阵列包括多个微孔径光阑,所述微透镜单元与所述微孔径光阑一一对应。
在一种可能的实现方式中,所述微透镜阵列与所述微孔径光阑阵列位于同一透明基底的正、反两个表面,所述透明基底为玻璃或者塑料。
在一种可能的实现方式中,所述微透镜阵列与所述微孔径光阑阵列分别位于不同基底;所述微透镜阵列所在的基底为透明基底,所述透明基底为玻璃或者塑料,并且所述微透镜阵列与所述微孔径光阑阵列之间通过以下任一透明介质或以下透明介质的任意组合填充:空气、玻璃和塑料。
在一种可能的实现方式中,所述指纹传感器的一个像素单元对应至少一个所述微透镜单元。
在一种可能的实现方式中,所述透明基底中包括一层或多层遮光层,所述遮光层位于所述微透镜阵列和所述微孔径光阑阵列之间;所述遮光层包括多个通光孔,所述通光孔被设置为允许来自所述微透镜单元上方的所述光信号通过,并且所述通光孔与所述微透镜单元一一对应;当所述透明基底中包括多层所述遮光层时,位于上层的所述遮光层的通光孔的直径大于位于下层的所述遮光层的通光孔的直径。
在一种可能的实现方式中,所述物方远心镜头阵列还包括低折射率材料层,所述低折射率材料层设置在所述微透镜阵列上方,用于填平并保护所述微透镜阵列。
在一种可能的实现方式中,所述微孔径光阑设置于所述微透镜单元的焦点处,所述物方远心镜头阵列导引平行于所述微透镜单元的主光轴方向的所述光信号通过,并将所述光信号传输到所述指纹传感器。
在一种可能的实现方式中,所述微孔径光阑偏离于所述微透镜单元的主光轴设置,所述物方远心镜头阵列导引倾斜于所述微透镜单元的主光轴方向的特定角度的所述光信号通过,并将所述光信号传输到所述指纹传感器。
可选地,所述微孔径光阑偏离于所述微透镜单元的主光轴的距离范围为0μm~50μm。
在一种可能的实现方式中,所述微透镜单元中的所述微透镜的占空比 的范围为50%~100%。
在一种可能的实现方式中,所述微透镜的球冠为球面或者非球面。
在一种可能的实现方式中,所述微透镜的焦距范围为10μm~2000μm。
在一种可能的实现方式中,所述微孔径光阑的直径范围为1μm~10μm。
在一种可能的实现方式中,所述装置还包括:滤波片,设置于所述指纹传感器的上方,用于对由人体手指反射形成的所述光信号进行过滤。
在一种可能的实现方式中,所述滤波片设置于所述指纹传感器的表面和/或生设置于所述物方远心镜头阵列的表面。
在一种可能的实现方式中,所述微透镜阵列的排列方式为正方形排列或六边形排列。
在一种可能的实现方式中,当所述指纹识别装置应用于具有显示屏的电子设备时,所述指纹识别装置固定于所述显示屏的下方,且与所述显示屏之间存在间隙。
在一种可能的实现方式中,所述电子设备还包括中框,所述指纹识别装置固定于所述中框。
在一种可能的实现方式中,所述指纹识别装置与所述显示屏之间的距离大于等于20μm。
在一种可能的实现方式中,所述微透镜通过微纳加工工艺或压模工艺实现。
在一种可能的实现方式中,所述微孔径光阑通过微纳加工工艺或纳米印制工艺来制作。
第二方面,提供了一种电子设备,包括显示屏和所述第一方面或第一方面的任一可能的实现方式中的指纹识别装置,所述指纹识别装置设置于所述显示屏的下方,并且所述指纹识别装置与所述显示屏之间存在间隙。
在一种可能的实现方式中,所述电子设备还包括中框,所述指纹识别装置固定于所述中框上。
通过采用远心镜头,能够对远心镜头上方区域进行指纹采集,并将上方区域的光聚焦到指纹传感器的像素单元。并且通过将远心镜头微型化和阵列化,可以实现在一定距离内的指纹成像。相对于周期性通孔阵列的方案来说,可以避免垂直方向的光损失,进而可以减少指纹传感器的曝光时 间。相对于微透镜的方案,该指纹识别装置也能让整个系统的成像畸变减小。该指纹识别装置可以达到较高的成像质量以及对比度。
同时,指纹传感器与物方远心镜头阵列采用可分离式装配结构,方便组装,还可以灵活调整两者之间的距离,进而可以得到比直接在指纹传感器表面生长微透镜阵列的方案更好的准直性和成像质量。另外,指纹识别装置与显示屏存在间隙,可以实现在中框安装固定的方式,因而可以灵活组装,方便更换合适参数的物方远心镜头阵列,以达到更好的成像效果。另外,在透明基底中设置遮光层,可以减少环境光、杂散光等对于指纹检测的干扰,还可以减少相邻微透镜单元之间的光信号的串扰,进一步得到更好的成像质量和效果。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1示出了本申请实施例的应用场景的示意性框图。
图2是本申请实施例的指纹识别装置的示意性框图。
图3示出了物方远心镜头的成像原理图。
图4是本申请实施例中物方远心镜头阵列的示意性框图。
图5示出了本申请实施例的指纹识别装置的结构性示意图。
图6示出了本申请实施例的另一种指纹识别装置的结构性示意图。
图7示出了本申请实施例的另一种指纹识别装置的结构性示意图。
图8是本申请实施例的指纹识别装置的装配结构图。
图9是本申请实施例的电子设备的示意性框图。
具体实施方式
为了使本领域的人员更好地理解本申请实施例中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请实施例的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都应当属于本申请实施例保护的范围。
一种常见的应用场景,本申请实施例提供的指纹识别装置可以应用在 智能手机、平板电脑以及其他具有显示屏的移动终端或者其他终端设备;更具体地,在上述终端设备中,指纹识别装置可以具体为光学指纹装置,其可以设置在显示屏下方的局部区域或者全部区域从而形成屏下(Under-display)光学指纹系统。
如图1所示为本申请实施例可以适用的终端设备的结构示意图,所述终端设备100包括显示屏120和指纹识别装置130,其中,所述指纹识别装置130设置在所述显示屏120下方的局部区域。所述指纹识别装置130可以包括具有多个光学感应单元的感应阵列,其中,所述感应阵列也可以是一个指纹传感器。所述感应阵列所在区域或者其光学感应区域为所述指纹识别装置130的指纹检测区域103。如图1所示,所述指纹检测区域103位于所述显示屏120的显示区域102之中,因此,使用者在需要对所述终端设备100进行解锁或者其他指纹验证的时候,只需要将手指按压在位于所述显示屏120的指纹检测区域103,便可以实现指纹输入。由于指纹检测可以在屏内实现,因此采用上述结构的终端设备100无需其正面专门预留空间来设置指纹按键(比如Home键)。
作为一种优选的实施例,所述显示屏120可以采用具有自发光显示单元的显示屏,比如有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。另外,所述显示屏120可以具体为触控显示屏,其不仅可以进行画面显示,还可以检测用户的触摸或者按压操作,从而为用户提供一个人机交互界面。比如,在一种实施例中,所述终端设备100可以包括触摸控制器,所述触摸控制器可以具体为触控面板,其可以设置在所述显示屏120表面,也可以部分集成或者整体集成到所述显示屏120内部,从而形成所述触控显示屏。以采用OLED显示屏为例,所述指纹识别装置130可以利用所述OLED显示屏120位于所述指纹检测区域103的显示单元(即OLED光源)来作为光学指纹检测的激励光源。
在其他实施例中,所述指纹识别装置130也可以采用内置光源或者外置光源来提供用于进行指纹检测的光信号。在这种情况下,所述指纹识别装置130可以适用于非自发光显示屏,比如液晶显示屏或者其他的被动发光显示屏。以应用在具有背光模组和液晶面板的液晶显示屏为例,为支持液晶显示屏的屏下指纹检测,所述指纹识别装置130还可以包括用于光学 指纹检测的激励光源,所述激励光源可以具体为红外光源或者特定波长非可见光的光源,其可以设置在所述液晶显示屏的背光模组下方或者设置在所述终端设备100的保护盖板下方的边缘区域,而所述指纹识别装置130设置在所述背光模组下方,且所述背光模组通过对扩散片、增亮片、反射片等膜层进行开孔或者其他光学设计以允许指纹检测光穿过液晶面板和背光模组并到达所述指纹识别装置130的感应阵列。
并且,所述指纹识别装置130的感应阵列具体可以为光探测器(Photo detector)阵列,其包括多个呈阵列式分布的光探测器,所述光探测器可以作为如上所述的光学感应单元。当手指按压在所述指纹检测区域103时,所述指纹检测区域103的显示单元发出的光线在手指表面的指纹发生反射并形成反射光,其中所述手指指纹的脊和谷的反射光是不同的,反射光从所述显示屏120透过并被所述光探测器阵列所接收并转换为相应的电信号,即指纹检测信号;基于所述指纹检测信号便可以获得指纹图像数据,并且可以进一步进行指纹匹配验证,从而在所述终端设备100实现光学指纹识别功能。
在其他替代实施例中,所述指纹识别装置130也可以设置在所述显示屏120下方的整个区域,从而将所述指纹检测区域103扩展到整个所述显示屏120的整个显示区域102,实现全屏指纹识别。
应当理解的是,在具体实现上,所述终端设备100还可以包括透明保护盖板110,所述盖板110可以为玻璃盖板或者蓝宝石盖板,其设置于所述显示屏120的上方并覆盖所述终端设备100的正面。因此,本申请实施例中,所谓的手指按压在所述显示屏120实际上是指按压在所述显示屏120上方的盖板110或者覆盖所述盖板110的保护层表面。
作为一种可选的实现方式,如图1所示,所述指纹识别装置130可以包括光检测部分134和光学组件132,所述光检测部分134包括所述感应阵列以及与所述感应阵列电连接的读取电路及其他辅助电路,其可以在通过半导体工艺制作在一个芯片(Die);即所述光检测部分134可以制作在光学成像芯片或者图像传感芯片上。
所述光学组件132可以设置在所述光检测部分134的感应阵列的上方,所述光学组件132可以包括滤光层(Filter)、导光层以及其他光学元件;所述滤光层可以用于滤除穿透手指的环境光,而所述导光层主要用于 将从手指表面反射回来的反射光导引(比如光学准直或者汇聚)至所述感应阵列进行光学检测。
所述显示屏120发出的光线在所述显示屏120上方的待检测手指表面发生反射,从手指反射回来的反射光经微孔阵列或者微透镜阵列进行光学准直或者汇聚之后,进一步经过滤光层的滤波后被所述光检测部分134接收,所述光检测部分134可以进一步对接收到的该反射光进行检测,从而获取到所述手指的指纹图像以实现指纹识别。
应当理解,上述指纹识别装置130仅是一种示例性的结构,在具体实现上,该光学组件132的滤光层的位置并不局限在所述导光层的下方;比如,在一种替代实施例中,该滤光层也可以设置在所述导光层和所述显示屏120之间,即位于所述导光层上方;或者,所述光学组件132可以包括两层滤光层,二者分别设置在所述导光层的上方和下方。在其他替代实施例中,该滤光层也可以集成到所述导光层内部,甚至也可以省略掉,本申请对此不做限制。
在具体实现上,所述光学组件132可以与所述光检测部分134封装在同一个光学指纹芯片。也可以是作为与光检测部分134相对独立的部件安装在指纹识别装置内部,即是将所述光学组件132设置在所述光检测部分134所在的芯片外部,比如将所述光学组件132贴合在所述芯片上方,或者将所述光学组件132的部分元件集成在上述芯片之中。其中,所述光学组件132的导光层有多种实现方案。
在一种实施例中,所述光学组件132的导光层具体为在半导体硅片或者其他基材(比如硅氧化物或氮化物)制作而成的光路调制器或者光路准直器,其具有多个光路调制单元或者准直单元,具体地,所述光路调制单元或者准直单元可以具体为具有高深宽比的通孔,因此所述多个准直单元或者透镜单元可以构成通孔阵列。在从手指反射回来的反射光中,入射到所述光路调制单元或者准直单元的光线可以穿过并被其下方的光学感应单元接收,每一个光学感应单元基本上能够接收到其上方的通孔导引过来的指纹纹路的反射光,从而所述感应阵列便可以检测出手指的指纹图像。
在其他替代实施例中,所述导光层也可以包括光学透镜(Lens)层,其具有一个或多个光学透镜单元,比如一个或多个非球面型微透镜组成的透镜组。从手指反射回来的反射光经所述光学透镜单元进行光路准直或者 汇聚之后,并被其下方的光学感应单元接收,据此,所述感应阵列可以检测出手指的指纹图像。
另一方面,所述光检测部分134的感应阵列可以具体只包括单一的感应阵列,也可以采用具有两个或以上并排设置的感应阵列的双感应阵列(Dual Array)或多感应阵列(Multiple Array)的架构。当所述光检测部分134采用双感应阵列或者多感应阵列架构时,所述光学组件132可以采用单独一个导光层同时覆盖所述两个或以上的感应阵列;可替代地,所述光学组件132也可以包括两个或以上并排设置的导光层,比如两个或以上的光路调制器或光路准直器,或者两个或以上的光学透镜层,所述两个或以上并排设置的导光层分别对应设置在所述两个或以上的感应阵列的上方,用于将相关反射光导引或者汇聚到其下方的感应阵列。
在其他替代实现方式中,所述显示屏120也可以采用非自发光的显示屏,比如采用背光的液晶显示屏;在这种情况下,所述指纹识别装置130便无法采用所述显示屏120的显示单元作为激励光源,因此需要在所述指纹识别装置130内部集成激励光源或者在其外部设置激励光源来实现光学指纹检测,其检测原理与上面描述内容是一致的。
应当理解,虽然在图1所示的实施例中以所述指纹识别装置为屏下光学指纹识别装置为例,但是,在其他实施例中,所述终端设备100的指纹识别装置也可以采用超声波指纹识别装置或者其他类型的指纹识别装置代替。本申请对指纹识别装置的类型和具体结构不作特殊限制,只要上述指纹识别装置可以满足在终端设备的显示屏内部进行指纹识别的性能要求便可。
在一种实现方式中,指纹识别装置130可以采用周期性微孔阵列将光线传输到感应阵列上,这种方案光能量损失大,传感器曝光时间长。
在另一种实现方式中,指纹识别装置130可以采用微透镜将光线传输到感应阵列上,并且由于采用的是普通的透镜,在成像过程中,当物距发生变化时,其所成图像大小会相应的发生变化,可能会导致同一个焦距的镜头,对应不同的物距,将会有不同的放大倍率。另外,普通镜头都存在一定范围的景深,当被测物体不在镜头的景深范围内时图像就会变得模糊,无法清晰聚焦。从而导致指纹识别精度不高。
为了解决上述各种问题,本申请实施例提供了一种新的指纹识别装 置,该指纹识别装置可以设置在显示屏下方。具体地,如图2所示,该指纹识别装置200可以包括物方远心镜头阵列210和指纹传感器220,所述物方远心镜头阵列210用于接收经由人体手指反射形成光信号,进而对该光信号进行准直和聚焦。所述指纹传感器220设置于所述物方远心镜头阵列210的下方,并且与所述物方远心镜头阵列210采用可分离式装配结构,所述指纹传感器220用于基于穿过所述物方远心镜头阵列210的所述光信号进行成像。所述可分离式装配结构方便将指纹传感器220和物方远心镜头阵列210进行组装和拆卸,可以灵活调整上述两者之间的距离,进而可以得到比直接在指纹传感器表面生长微透镜阵列的方案更好的准直性和成像质量。本申请实施例采用框贴工艺来实现所述可分离式装配结构,具体参见图5及其内容描述。所述可分离式装配结构还可以通过其他方式实现,比如机械固定方式,只要能够方便组装和拆卸,灵活调整指纹传感器220和物方远心镜头阵列210之间的距离即可,本申请实施例不做限定。为了便于理解,首先对远心镜头做一个简单的介绍。
所谓远心镜头,实质为普通镜头与小孔成像原理的结合。其可以在一定的物距范围内,使得到的图像放大倍率不会变化,不随景深变化而变化,并且无视差,将其应用于指纹识别技术中,可以提高指纹识别的精度。
通常,远心镜头又可以分为物方远心镜头、像方远心镜头和双远心镜头。下面结合图3来主要说明物方远心镜头的原理。
图3示出了物方远心镜头的成像原理。如图3所示,在普通透镜的像方焦平面处放置孔径光阑,这个孔径光阑的作用是只让平行入射的物方光线(如光线1和光线2)可以到达像平面成像,从几何关系可以看出这时像没有近大远小的关系了。也就是说,相当于物体在无穷远处。
由于单个远心镜头进行成像,通常需要比较大的成像面,因此整个透镜组会比较厚。但是将远心镜头阵列化微型化之后,就可以对一定距离的物体成像,从而可以应用于指纹识别技术中。而阵列化微型化之后的物方远心镜头即构成本申请实施例提供的指纹识别装置200中的物方远心镜头阵列210。
如图4所示,物方远心镜头阵列210可以包括微透镜阵列211和微孔径光阑阵列212。可选地,微透镜阵列211可以包括多个微透镜单元,所述 微透镜单元包括一片或多片微透镜,当所述微透镜单元包括多片所述微透镜时,多片所述微透镜的主光轴和焦点均重合。
微孔径光阑阵列212,设置于微透镜阵列211的下方并且位于所述微透镜单元的像方焦平面处,所述微孔径光阑阵列212包括多个微孔径光阑,所述微透镜单元与所述微孔径光阑一一对应。
在本申请实施例中,指纹传感器220的一个像素单元对应至少一个所述微透镜单元。可替代地,可以将指纹传感器220的一个像素单元对应四个所述微透镜单元,以提高指纹传感器220的像素阵列密度。
作为一种可选的实施例,微透镜阵列211与微孔径光阑阵列212可以加工到同一基底材料的两个表面上,可以减少工艺步骤。即微透镜阵列211与微孔径光阑阵列212位于同一透明基底的正、反两个表面,可选地,所述透明基底为玻璃或者塑料。
作为另一种可选的实施例,微透镜阵列211与微孔径光阑阵列212可以分别位于不同基底上,之后再将微孔径光阑阵列212设置于微透镜阵列211的下方。可选地,微透镜阵列211所在的基底可以为透明基底,例如玻璃或者塑料,微孔径光阑阵列212所在的基底可以为透明基底,也可以为其他非透明基底材料,本实施例不做限定。可选地,微透镜阵列211与微孔径光阑阵列212之间可以通过以下任一透明介质或以下透明介质的任意组合填充:空气、玻璃和塑料。
可选地,本申请实施例中的微透镜可以采用微纳加工工艺或压模工艺实现,而本申请实施例中的微孔径光阑可以通过微纳加工工艺或纳米印制工艺来制作,进而可以实现将物方远心镜头微型化阵列化。
对于阵列化的物方远心镜头,单个像素周期需与物体的分辨率需求相关,例如设置于显示屏下的指纹识别装置,可以将远心镜头的像素周期设置为沿显示屏的平面X/Y方向各为25μm采样率。
本申请实施例提供的指纹识别装置,采用物方远心镜头,能够对远心镜头上方区域进行指纹采集,并将上方区域的光聚焦到指纹传感器的像素单元。并且通过将远心镜头微型化和阵列化,可以实现在一定距离内的指纹成像。相对于周期性通孔阵列的方案来说,可以避免垂直方向的光损失,进而可以减少指纹传感器的曝光时间。相对于微透镜的方案,该指纹识别装置也能让整个系统的成像畸变减小,该指纹识别装置可以达到较高 的成像质量以及对比度。
可选地,本申请实施例中,所述微透镜单元中的所述微透镜的占空比的范围可以为50%~100%,所述微透镜的球冠可以为球面或者非球面,所述微透镜的焦距范围可以为10μm~2000μm。可选地,所述微孔径光阑的直径范围可以为1μm~10μm。
图5示出了本申请实施例的指纹识别装置的结构性示意图。当指纹识别装置200应用于具有显示屏的电子设备时,指纹识别装置200固定于所述显示屏的下方,且与所述显示屏之间存在间隙。当所述电子设备包括中框时,指纹识别装置200还可以固定于所述中框上。
如图2所介绍的内容,指纹识别装置200除了可以包括物方远心镜头阵列210,指纹传感器220之外,可选地,指纹识别装置200还可以包括滤波片214,用于对由人体手指反射形成的所述光信号进行过滤。滤波片214可以设置在指纹传感器220的上方和所述显示屏之间,例如,如图5所示,滤波片214可以设置在物方远心镜头阵列210和指纹传感器220之间。可选地,滤波片214还可以通过生长工艺,直接生长在所述指纹传感器220的表面。
应理解,在具体实现上,滤波片214的位置并不局限在物方远心镜头阵列210和指纹传感器220之间,也可以设置在物方远心镜头阵列210和所述显示屏之间,即位于所述物方远心镜头阵列210的上方,可选地,滤波片214可以通过生长工艺直接生长在物方远心镜头阵列210的上表面。作为一种可选的实施例,指纹识别装置200还可以包括两层滤波片214,分别设置在物方远心镜头阵列210的上方和下方。
在其他可替代的实施例当中,滤波片214不限于采用生长工艺进行设置,也可以通过其他工艺设置在指纹传感器220的上方,比如蒸镀工艺,本实施例不做限定。
应理解,滤波片可以用来减少指纹感应中的不期望的背景光,以提高指纹传感器对接收到的光的光学感应。该滤波片具体可以用于过滤掉环境光波长,例如,近红外光和部分的红光等。又例如,蓝光或者部分蓝光。例如,人类手指吸收波长低于580nm的光的能量中的大部分,如果一个或多个光学过滤器或光学过滤涂层可以设计为过滤波长从580nm至红外的光,则可以大大减少环境光对指纹感应中的光学检测的影响。
可选地,该滤波片214可以为红外截止光学滤波片。
在图2具体描述内容当中,已经介绍了指纹传感器220和物方远心镜头阵列210采用可分离式装配结构,图5当中的实施例示出了采用框贴工艺来实现所述可分离式装配结构。具体地,指纹传感器220和物方远心镜头阵列210之间通过框贴胶213将四边进行固定,框贴胶213可以是超薄双面胶,也可以是其他具有粘合性质的粘合剂,只要能够将指纹传感器220和物方远心镜头阵列210进行框贴固定即可,本实施例不做限定。
图4当中已经介绍过,物方远心镜头阵列210可以包括微透镜阵列211和微孔径光阑阵列212,图5当中示出了一种可选的实施例,即微透镜阵列211与微孔径光阑阵列212位于同一透明基底的正、反两个表面。同时,本实施例还示出了微孔径光阑阵列212位于微透镜单元2110的像方焦平面处,并且微孔径光阑2120设置于微透镜单元2110的焦点处,因此物方远心镜头阵列210可以导引平行于微透镜单元2110的主光轴方向的光信号通过。可选地,微孔径光阑2120还可以偏离于微透镜单元的2110的主光轴设置,此时,物方远心镜头阵列210可以导引倾斜于微透镜单元2110的主光轴方向的特定角度的光信号通过,这里微孔径光阑2120偏离于所述微透镜单元2110的主光轴的距离的范围可以为0μm~50μm,可选地,将微孔径光阑2120偏离于所述微透镜单元2110的主光轴5μm处设置。
可选地,在本申请实施例中,物方远心镜头阵列210的材质可以是玻璃,也可以是塑料,还可以是其他透明质材料。另外,该微透镜阵列211的排列方式可以是正方形排列,也可以是六边形排列,还可以是其他任意形式,本申请实施例对此不构成限定。当微透镜阵列211采用正方形排列方式时,所述微透镜的占空比可以高达100%。
可选地,如图6所示,物方远心镜头阵列210还可以包括低折射率材料层215,低折射率材料层215设置在微透镜阵列211的上方,用于填平并保护微透镜阵列211,并且仍然保证所述微透镜单元2110的像方焦平面与微孔径光阑阵列212重合。采用低折射率材料层215填平微透镜阵列211的表面,使得整个指纹识别装置200应用到电子设备或者其他设备时更加易于安装。可选地,可以采用生长、涂覆、浸泡、蒸镀等工艺或者其他工艺将低折射率材料层215设置于微透镜阵列211的上方,本实施例不做限定。可以理解的是,当微透镜阵列211的上方设置有低折射率材料层215 时,滤波片214设置于物方远心镜头阵列210的表面其实质为滤波片214设置于所述低折射率材料层215的表面。
需要注意的是,图6所示出的低折射率材料层215只是示意性的,低折射率材料层215填平微透镜阵列211后,还可以具有一定的厚度,所述厚度依据实际情况而设定,本实施例不做限定。
图7为本申请实施例的另一种指纹识别装置的结构性示意图。与图6所示出的指纹识别装置不同的是,图7当中,透明基底内包括两层遮光层216,即所述遮光层216位于微透镜阵列211和微孔径光阑阵列212之间。可选地,所述透明基底当中还可以只包括一层遮光层216或者包括多层遮光层216。遮光层216被设置为允许来自所述微透镜单元2110上方的所述光信号通过,每一层遮光层216当中均包括多个通光孔,并且所述通光孔与所述微透镜单元一一对应。可选地,如图7所示,位于上层的遮光层216的通光孔的直径大于位于下层的遮光层216的通光孔的直径。可选地,这里所述通光孔的中心位于微透镜单元2110的主光轴上。因此物方远心镜头阵列210可以导引平行于微透镜单元2110的主光轴方向的光信号通过。通过在透明基底中设置遮光层216,可以减少环境光、杂散光等对于指纹检测的干扰,还可以减少相邻微透镜单元2110之间所述光信号的串扰,进一步得到更好的成像质量和效果。
作为一种可选的实施例,遮光层216的通光孔还可以与所述微孔径光阑一起偏离于所述微透镜单元2110的主光轴设置,使得物方远心镜头阵列210可以导引倾斜于微透镜单元2110的主光轴方向的特定角度的光信号通过,
图8示出了本申请实施例提供的指纹识别装置的示意性结构图。当该指纹识别装置应用于电子设备(例如智能手机)时,如图8所示,保护盖板310的下表面与显示屏320的上表面贴合,该指纹识别装置330可以固定设置在该显示屏320的下方,该指纹识别装置330的下表面与柔性电路板350进行焊接固定。并且该指纹识别装置330与该显示屏320之间存在间隙390。作为一种可选地实现方式,该指纹识别装置330可以通过固定连接在电子设备内部容易拆卸的器件上来实现安装在该显示屏320的下方,例如可以将指纹识别装置330安装在中框370的下表面,该中框370可以作为该指纹识别装置330与该显示屏320之间的固定架,该中框370的上 表面可以与该显示屏320的下表面边缘部分通过泡棉背胶360贴合。该中框370设置于显示屏320和后盖中间并用于承载内部各种组件的框架,其内部各种组件包括但不限于电池,主板,摄像头,排线,各种感应器,话筒,听筒等等零部件。由此,使得该指纹识别装置330和该显示屏320完全解耦,避免了安装或者拆卸该指纹识别装置330时损坏该显示屏320。
可替代地,该指纹识别装置330也可以安装在显示屏320和中框370之间,并且与显示屏320之间具有间隙。例如,可以将指纹识别装置330安装在中框370的上表面。从而不需避让电子设备内部的各种零部件,例如,该指纹识别装置330与电池在电子设备的厚度方向上可以重合,使得指纹识别装置的摆放位置不再受限。
可选地,该指纹识别装置330与显示屏320下方的距离可以大于或等于20μm。满足指纹识别装置330与显示屏320安装的安全距离,不会因振动或者跌落而造成器件损失。
该中框370具体可以由金属或者合金材料制成,甚至可以由塑胶材料制成,这种情况下,该中框370甚至可以和电子设备的边框一体成型,所谓一体成型就是内部中框和边框是一个整体。比如,边框可以只是一个金属贴边,或者可以在中框上面镀一层类似金属的涂料。进一步地,该中框370还可以是复合中框,以手机为例,中框370包括内中框1与外中框2,内中框1用于承载手机零部件,外中框2在内中框1外,外中框2外沿装有手机按键,内中框1与外中框2整合为一体。由于将手机中框设计成内中框与外中框,内外中框整合为一整体,手机受撞击时,首先是外中框磨损,由于外中框上只有按键,更换外中框简单方便,成本低;进一步地,可以在内外中框之间设置有弹性材料,由于内外中框在弹性层弹力的压紧下相对固定,因此,在外中框承受冲击力时弹性层可以减小对内中框的冲击。
可选地,在显示屏320的下方可以设置一层泡棉,在显示屏320下方与指纹识别装置330之间可以形成密闭环境,以此可以达到遮光、防尘的要求。而在指纹识别装置330的安装位置处可以将泡棉层开孔,使得指纹识别装置330能够接收到透过显示屏320的光信号。当手指放于点亮的显示屏320上方,手指就会反射显示屏320发出的光,此反射光会穿透显示屏320。指纹是一个漫反射体,其反射光在各方向都存在。使用特定光路, 使指纹传感器只接收特定方向的光,通过算法可以解算出指纹。
本申请实施例还提供了一种电子设备,该电子设备包括上述各种实施例中的指纹识别装置和显示屏,该指纹识别装置位于显示屏的下方。进一步地,该电子设备还包括中框,该指纹识别装置可以固定于该中框上。
图9是根据本申请实施例提供的电子设备400的示意性框图。图8所示的电子设备400包括:射频(Radio Frequency,RF)电路410、存储器420、其他输入设备430、显示屏440、传感器450、音频电路460、I/O子系统470、处理器480、以及电源490等部件。本领域技术人员可以理解,图7中示出的电子设备结构并不构成对电子设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。本领领域技术人员可以理解显示屏440属于用户界面(User Interface,UI),且电子设备400可以包括比图示或者更少的用户界面。
下面结合图9对电子设备400的各个构成部件进行具体的介绍:
RF电路410可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器480处理;另外,将设计上行的数据发送给基站。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路410还可以通过无线通信与网络和其他设备通信。存储器420可用于存储软件程序以及模块,处理器480通过运行存储在存储器420的软件程序以及模块,从而执行电子设备400的各种功能应用以及数据处理。存储器420可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据电子设备400的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器420可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
其他输入设备430可用于接收输入的数字或字符信息,以及产生与电子设备400的用户设置以及功能控制有关的信号输入。具体地,其他输入设备430可包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆、光鼠(光鼠是不显示可视输出的触摸敏感表面,或者是由屏幕形成的触摸敏感表面的延伸)等中的一种或多种。 其他输入设备430与I/O子系统470的其他输入设备控制器471相连接,在其他设备输入控制器471的控制下与处理器480进行信号交互。
显示屏440可用于显示由用户输入的信息或提供给用户的信息以及电子设备400的各种菜单,还可以接受用户输入。具体的显示屏440可以是触控屏,可包括显示面板441,以及触控面板442。触控面板442可覆盖显示面板441,用户可以根据显示面板441显示的内容(该显示内容包括但不限于,软键盘、虚拟鼠标、虚拟按键、图标等等),在显示面板441上覆盖的触控面板442上或者附近进行操作,触控面板442检测到在其上或附近的操作后,通过I/O子系统470传送给处理器480以确定用户输入,随后处理器480根据用户输入通过I/O子系统470在显示面板441上提供相应的视觉输出。虽然在图9中,触控面板442与显示面板441是作为两个独立的部件来实现电子设备400的输入和输入功能,但是在某些实施例中,可以将触控面板442与显示面板441集成而实现电子设备400的输入和输出功能。
电子设备400还可包括至少一种传感器450,例如,该传感器450可以是位于显示屏440下或显示屏440内的指纹传感器,也就是本申请实施例中的指纹识别装置。
音频电路460、扬声器461,麦克风462可提供用户与电子设备400之间的音频接口。音频电路460可将接收到的音频数据转换后的信号,传输到扬声器461,由扬声器461转换为声音信号输出;另一方面,麦克风462将收集的声音信号转换为信号,由音频电路460接收后转换为音频数据,再将音频数据输出至RF电路410以发送给比如另一手机,或者将音频数据输出至存储器420以便进一步处理。
I/O子系统470用来控制输入输出的外部设备,可以包括其他设备输入控制器471、传感器控制器472、显示控制器473。可选的,一个或多个其他输入控制设备控制器471从其他输入设备430接收信号和/或者向其他输入设备430发送信号,其他输入设备430可以包括物理按钮(按压按钮、摇臂按钮等)、拨号盘、滑动开关、操纵杆、点击滚轮、光鼠(光鼠是不显示可视输出的触摸敏感表面,或者是由屏幕形成的触摸敏感表面的延伸)。值得说明的是,其他输入控制设备控制器471可以与任一个或者多个上述设备连接。所述I/O子系统470中的显示控制器473从显示屏 440接收信号和/或者向显示屏440发送信号。显示屏440检测到用户输入后,显示控制器473将检测到的用户输入转换为与显示在显示屏440上的用户界面对象的交互,即实现人机交互。传感器控制器472可以从一个或者多个传感器440接收信号和/或者向一个或者多个传感器440发送信号。
处理器480是电子设备400的控制中心,利用各种接口和线路连接整个电子设备的各个部分,通过运行或执行存储在存储器420内的软件程序和/或模块,以及调用存储在存储器420内的数据,执行电子设备400的各种功能和处理数据,从而对电子设备进行整体监控。可选的,处理器480可包括一个或多个处理单元;优选的,处理器480可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器480中。该处理器480可以用来执行本申请方法实施例中的各个步骤。
电子设备400还包括给各个部件供电的电源490(比如电池),优选的,电源可以通过电源管理系统与处理器480逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗等功能。
尽管未示出,电子设备400还可以包括摄像头、蓝牙模块等,在此不再赘述。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及电路,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的电路、支路和单元,可以通过其它的方式实现。例如,以上所描述的支路是示意性 的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到一个支路,或一些特征可以忽略,或不执行。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (25)

  1. 一种指纹识别装置,其特征在于,包括:
    物方远心镜头阵列,用于接收经由人体手指反射形成的光信号,并对所述光信号进行准直和聚焦;
    指纹传感器,设置于所述物方远心镜头阵列的下方,并且与所述物方远心镜头阵列采用可分离式装配结构,所述指纹传感器用于基于穿过所述物方远心镜头阵列的所述光信号进行成像。
  2. 根据权利要求1所述的装置,其特征在于,所述物方远心镜头阵列与所述指纹传感器通过粘合剂框贴固定。
  3. 根据权利要求2所述的装置,其特征在于,所述物方远心镜头阵列包括:
    微透镜阵列,所述微透镜阵列包括多个微透镜单元,所述微透镜单元包括一片或多片微透镜,当所述微透镜单元包括多片所述微透镜时,多片所述微透镜的主光轴和焦点均重合;以及
    微孔径光阑阵列,设置于所述微透镜阵列的下方并且位于所述微透镜单元的像方焦平面处,所述微孔径光阑阵列包括多个微孔径光阑,所述微透镜单元与所述微孔径光阑一一对应。
  4. 根据权利要求3所述的装置,其特征在于,所述微透镜阵列与所述微孔径光阑阵列位于同一透明基底的正、反两个表面,所述透明基底为玻璃或者塑料。
  5. 根据权利要求3所述的装置,其特征在于,所述微透镜阵列与所述微孔径光阑阵列分别位于不同基底;
    所述微透镜阵列所在的基底为透明基底,所述透明基底为玻璃或者塑料,并且所述微透镜阵列与所述微孔径光阑阵列之间通过以下任一透明介质或以下透明介质的任意组合填充:空气、玻璃和塑料。
  6. 根据权利要求4或5所述的装置,其特征在于,所述指纹传感器的一个像素单元对应至少一个所述微透镜单元。
  7. 根据权利要求6所述的装置,其特征在于,所述透明基底中包括一层或多层遮光层,所述遮光层位于所述微透镜阵列和所述微孔径光阑阵列之间;
    所述遮光层包括多个通光孔,所述通光孔被设置为允许来自所述微透 镜单元上方的所述光信号通过,并且所述通光孔与所述微透镜单元一一对应;
    当所述透明基底中包括多层所述遮光层时,位于上层的所述遮光层的通光孔的直径大于位于下层的所述遮光层的通光孔的直径。
  8. 根据权利要求7所述的装置,其特征在于,所述物方远心镜头阵列还包括低折射率材料层,所述低折射率材料层设置在所述微透镜阵列上方,用于填平并保护所述微透镜阵列。
  9. 根据权利要求8所述的装置,其特征在于,所述微孔径光阑设置于所述微透镜单元的焦点处,所述物方远心镜头阵列导引平行于所述微透镜单元的主光轴方向的所述光信号通过,并将所述光信号传输到所述指纹传感器。
  10. 根据权利要求8所述的装置,其特征在于,所述微孔径光阑偏离于所述微透镜单元的主光轴设置,所述物方远心镜头阵列导引倾斜于所述微透镜单元的主光轴方向的特定角度的所述光信号通过,并将所述光信号传输到所述指纹传感器。
  11. 根据权利要求10所述的装置,其特征在于,所述微孔径光阑偏离于所述微透镜单元的主光轴的距离范围为0μm~50μm。
  12. 根据权利要求9或10所述的装置,其特征在于,所述微透镜单元中的所述微透镜的占空比的范围为50%~100%。
  13. 根据权利要求12所述的装置,其特征在于,所述微透镜的球冠为球面或者非球面。
  14. 根据权利要求13所述的装置,其特征在于,所述微透镜的焦距范围为10μm~2000μm。
  15. 根据权利要求14所述的装置,其特征在于,所述微孔径光阑的直径范围为1μm~10μm。
  16. 根据权利要求15所述的装置,其特征在于,所述装置还包括:
    滤波片,设置于所述指纹传感器的上方,用于对由人体手指反射形成的所述光信号进行过滤。
  17. 根据权利要求16所述的装置,其特征在于,所述滤波片设置于所述指纹传感器的表面和/或设置于所述物方远心镜头阵列的表面。
  18. 根据权利要求17所述的装置,其特征在于,所述微透镜阵列的排 列方式为正方形排列或六边形排列。
  19. 根据权利要求18所述的装置,其特征在于,当所述指纹识别装置应用于具有显示屏的电子设备时,所述指纹识别装置固定于所述显示屏的下方,且与所述显示屏之间存在间隙。
  20. 根据权利要求19所述的装置,其特征在于,所述电子设备还包括中框,所述指纹识别装置固定于所述中框。
  21. 根据权利要求20所述的装置,其特征在于,所述指纹识别装置与所述显示屏之间的距离大于等于20μm。
  22. 根据权利要求21所述的装置,其特征在于,所述微透镜通过微纳加工工艺或压模工艺实现。
  23. 根据权利要求22所述的装置,其特征在于,所述微孔径光阑通过微纳加工工艺或纳米印制工艺来制作。
  24. 一种电子设备,其特征在于,包括显示屏和如权利要求1至23中任一项所述的指纹识别装置,所述指纹识别装置设置于所述显示屏的下方,并且所述指纹识别装置与所述显示屏之间存在间隙。
  25. 根据权利要求24所述的电子设备,其特征在于,所述电子设备还包括中框,所述指纹识别装置固定于所述中框上。
PCT/CN2019/077370 2018-12-26 2019-03-07 指纹识别装置和电子设备 WO2020133703A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980000384.8A CN110337655B (zh) 2018-12-26 2019-03-07 指纹识别装置和电子设备
CN201920857662.9U CN210109828U (zh) 2019-01-22 2019-06-06 指纹识别的装置和电子设备
CN202020145246.9U CN211349383U (zh) 2019-01-22 2019-06-06 指纹识别的装置和电子设备
CN201980002383.7A CN110720106B (zh) 2019-01-22 2019-06-06 指纹识别的装置和电子设备
PCT/CN2019/090436 WO2020151159A1 (zh) 2019-01-22 2019-06-06 指纹识别的装置和电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/124007 WO2020132974A1 (zh) 2018-12-26 2018-12-26 指纹识别装置和电子设备
CNPCT/CN2018/124007 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020133703A1 true WO2020133703A1 (zh) 2020-07-02

Family

ID=66500802

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/124007 WO2020132974A1 (zh) 2018-12-26 2018-12-26 指纹识别装置和电子设备
PCT/CN2019/077370 WO2020133703A1 (zh) 2018-12-26 2019-03-07 指纹识别装置和电子设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124007 WO2020132974A1 (zh) 2018-12-26 2018-12-26 指纹识别装置和电子设备

Country Status (2)

Country Link
CN (2) CN109791612B (zh)
WO (2) WO2020132974A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112070002A (zh) * 2020-09-07 2020-12-11 京东方科技集团股份有限公司 指纹识别方法、指纹识别结构及显示装置
WO2022130082A1 (en) * 2020-12-18 2022-06-23 3M Innovative Properties Company Optical construction including lens film and mask

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020243936A1 (zh) * 2019-06-05 2020-12-10 深圳市汇顶科技股份有限公司 屏下生物特征识别装置和电子设备
CN210295117U (zh) * 2019-06-05 2020-04-10 深圳市汇顶科技股份有限公司 指纹芯片和电子设备
WO2020248809A1 (zh) * 2019-06-13 2020-12-17 神盾股份有限公司 屏下式指纹感测模块与电子装置
CN111164607B (zh) * 2019-07-12 2023-08-22 深圳市汇顶科技股份有限公司 指纹检测的装置和电子设备
CN110418044B (zh) * 2019-07-31 2021-04-23 Oppo广东移动通信有限公司 光学系统和电子设备
WO2021036102A1 (zh) * 2019-08-23 2021-03-04 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
EP3809315B1 (en) 2019-08-23 2022-12-07 Shenzhen Goodix Technology Co., Ltd. Fingerprint detection method
WO2021072753A1 (zh) * 2019-10-18 2021-04-22 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
WO2021035714A1 (zh) 2019-08-30 2021-03-04 京东方科技集团股份有限公司 纹路图像获取装置、显示装置及准直部件
CN110674699A (zh) * 2019-08-30 2020-01-10 华为技术有限公司 一种指纹装置、电子设备及其制造方法
CN111837131B (zh) * 2019-10-18 2024-04-26 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN113296277A (zh) * 2020-02-24 2021-08-24 宁波激智科技股份有限公司 一种准直膜、及一种减干涉准直膜及其制备方法
CN113296276A (zh) * 2020-02-24 2021-08-24 宁波激智科技股份有限公司 一种准直膜及其制备方法
CN111860470A (zh) * 2020-08-27 2020-10-30 宁波舜宇奥来技术有限公司 屏下指纹识别设备与屏下指纹识别方法
CN112396965B (zh) * 2020-11-18 2023-04-07 合肥维信诺科技有限公司 一种显示面板和显示装置
CN112882279B (zh) * 2021-03-11 2022-09-09 武汉华星光电技术有限公司 一种液晶显示面板以及显示装置
FR3125920B1 (fr) * 2021-07-27 2023-11-24 St Microelectronics Grenoble 2 Capteur optique
US11830281B2 (en) 2021-08-12 2023-11-28 Samsung Electronics Co., Ltd. Electronic device including a fingerprint sensor
CN115171168A (zh) * 2022-06-24 2022-10-11 华为技术有限公司 电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1267503A (zh) * 1998-06-18 2000-09-27 中国科学院长春光学精密机械研究所 大视场无畸变指纹识别光学系统
CN1754503A (zh) * 2004-10-01 2006-04-05 三菱电机株式会社 指纹图像摄像装置
CN208027381U (zh) * 2018-02-06 2018-10-30 深圳市汇顶科技股份有限公司 屏下生物特征识别装置、生物特征识别组件和终端设备
CN109074495A (zh) * 2017-01-04 2018-12-21 深圳市汇顶科技股份有限公司 改善用于屏上指纹感测的屏下光学传感器模块的光学感测性能

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6288779B1 (en) * 1999-03-24 2001-09-11 Intel Corporation Close-up imaging device using a CMOS photosensitive element
US6643390B1 (en) * 2000-04-19 2003-11-04 Polaroid Corporation Compact fingerprint identification device
JP4507806B2 (ja) * 2004-10-01 2010-07-21 三菱電機株式会社 指紋画像撮像装置
EP2287639A3 (en) * 2009-08-17 2012-05-30 Sony Corporation Lens array imaging optics for a line sensor module
CN202306586U (zh) * 2011-11-01 2012-07-04 长春方圆光电技术有限责任公司 浸水指掌纹采集装置
CN102982324B (zh) * 2012-12-07 2015-11-18 浙江凯拓机电有限公司 多光谱指纹识别传感器
US9225888B2 (en) * 2013-11-19 2015-12-29 Largan Precision Co., Ltd. Image capturing array system and fingerprint identification device
US10191188B2 (en) * 2016-03-08 2019-01-29 Microsoft Technology Licensing, Llc Array-based imaging relay
CN106017318A (zh) * 2016-05-13 2016-10-12 西安远心光学系统有限公司 视觉测量光学系统装置
CN106022324B (zh) * 2016-08-04 2019-04-30 京东方科技集团股份有限公司 一种纹路识别显示装置
CN107358216B (zh) * 2017-07-20 2020-12-01 京东方科技集团股份有限公司 一种指纹采集模组、显示装置及指纹识别方法
CN207557977U (zh) * 2017-12-05 2018-06-29 深圳市为通博科技有限责任公司 光路调制器、指纹识别装置和终端设备
CN107948368A (zh) * 2018-01-12 2018-04-20 信利光电股份有限公司 一种芯片、模组和电子装置
CN108681703B (zh) * 2018-05-14 2022-05-31 京东方科技集团股份有限公司 用于指纹识别的装置、模组、设备及系统
WO2020024220A1 (zh) * 2018-08-02 2020-02-06 深圳市汇顶科技股份有限公司 屏下生物特征识别装置和电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1267503A (zh) * 1998-06-18 2000-09-27 中国科学院长春光学精密机械研究所 大视场无畸变指纹识别光学系统
CN1754503A (zh) * 2004-10-01 2006-04-05 三菱电机株式会社 指纹图像摄像装置
CN109074495A (zh) * 2017-01-04 2018-12-21 深圳市汇顶科技股份有限公司 改善用于屏上指纹感测的屏下光学传感器模块的光学感测性能
CN208027381U (zh) * 2018-02-06 2018-10-30 深圳市汇顶科技股份有限公司 屏下生物特征识别装置、生物特征识别组件和终端设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112070002A (zh) * 2020-09-07 2020-12-11 京东方科技集团股份有限公司 指纹识别方法、指纹识别结构及显示装置
WO2022130082A1 (en) * 2020-12-18 2022-06-23 3M Innovative Properties Company Optical construction including lens film and mask

Also Published As

Publication number Publication date
CN109791612A (zh) 2019-05-21
CN109791612B (zh) 2023-08-08
WO2020132974A1 (zh) 2020-07-02
CN209640876U (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
WO2020133703A1 (zh) 指纹识别装置和电子设备
WO2020233243A1 (zh) 一种显示组件、显示屏和电子设备
CN110337655B (zh) 指纹识别装置和电子设备
US11455823B2 (en) Under-screen fingerprint identification apparatus and electronic device
WO2020118631A1 (zh) 指纹识别装置和电子设备
JP6415778B1 (ja) アンダースクリーンバイオメトリクス認証装置および電子機器
US10963667B2 (en) Under-screen biometric identification apparatus and electronic device
CN209895353U (zh) 指纹识别装置和电子设备
WO2020082369A1 (zh) 屏下生物特征识别装置和电子设备
WO2021082017A1 (zh) 指纹检测装置和电子设备
WO2020220305A1 (zh) 屏下指纹识别装置和电子设备
WO2021072753A1 (zh) 指纹检测装置和电子设备
CN210142329U (zh) 指纹识别装置和电子设备
WO2019178793A1 (zh) 屏下生物特征识别装置和电子设备
CN111931659B (zh) 镜头系统、指纹识别装置和终端设备
CN111095277B (zh) 光学指纹装置和电子设备
CN212135449U (zh) 指纹识别装置和电子设备
WO2021051737A1 (zh) 指纹识别装置、背光模组、液晶显示屏和电子设备
CN210864756U (zh) 光学指纹装置和电子设备
WO2020252752A1 (zh) 镜头、指纹识别装置和电子设备
WO2022068129A1 (zh) 感测手指生物特征的光学感测装置及使用其的电子装置
CN111095289A (zh) 屏下指纹识别装置以及终端设备
WO2021051710A1 (zh) 指纹感测模块与电子装置
WO2020243936A1 (zh) 屏下生物特征识别装置和电子设备
CN109564338B (zh) 镜头组、指纹识别装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19901725

Country of ref document: EP

Kind code of ref document: A1