WO2020133535A1 - 一种开关机控制方法和除颤仪 - Google Patents

一种开关机控制方法和除颤仪 Download PDF

Info

Publication number
WO2020133535A1
WO2020133535A1 PCT/CN2018/125866 CN2018125866W WO2020133535A1 WO 2020133535 A1 WO2020133535 A1 WO 2020133535A1 CN 2018125866 W CN2018125866 W CN 2018125866W WO 2020133535 A1 WO2020133535 A1 WO 2020133535A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection signal
power
shutdown
processor
detection device
Prior art date
Application number
PCT/CN2018/125866
Other languages
English (en)
French (fr)
Inventor
王启
陈大兵
李志伟
李利亚
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to CN201880098820.5A priority Critical patent/CN112912802B/zh
Priority to PCT/CN2018/125866 priority patent/WO2020133535A1/zh
Publication of WO2020133535A1 publication Critical patent/WO2020133535A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers

Definitions

  • the present application relates to the field of electronic technology, and in particular to an on-off control method and a defibrillator.
  • Defibrillator is an infrequently used high-risk first-aid device, which is mainly used for defibrillation treatment of dangerous conditions such as ventricular fibrillation and atrial fibrillation.
  • Automatic defibrillator Automated External Defibrillator, AED
  • AED Automatic External Defibrillator
  • AEDs are generally equipped with disposable batteries and run a fixed period of automatic self-test to achieve low or no maintenance goals. In general public places, the standby life of AED is 3-5 years after being equipped with disposable batteries.
  • AED failures are battery-related failures, of which the majority of failure modes are exhausted. This type of failure will directly lead to the situation that the battery is insufficient during rescue and cannot be rescued, which in turn leads to The patient died. How to solve the problem of battery exhaustion caused by accidental startup of AED during standby is a problem in the industry. On the other hand, AED is generally used by non-professional medical staff. How to solve the problem of accidental shutdown during the rescue process is also of strong clinical significance
  • Embodiments of the present application provide a power-on/off control method and a defibrillator.
  • a defibrillator By setting a first detection device and a second detection device, and according to the output signals of the first detection device and the second detection device, it is determined that the defibrillator enters the power-on mode Or shutdown mode, which improves the reliability of the on-off function through two detection devices, reduces the probability of the AED being unable to turn on, erroneously turn on or erroneously shut down, and ultimately extends the life of the defibrillator battery while reducing clinical risk .
  • an embodiment of the present application provides a defibrillator.
  • the defibrillator includes: a processor, and a first detection device and a second detection device that independently detect the on and off behavior of the defibrillator, and the processor According to the output signals of the first detection device and the second detection device, enter a power-on mode or a power-off mode.
  • the first detection device detects a power-on behavior, and outputs a first power-on detection signal
  • the second detection device detects a power-on behavior, and outputs a second power-on detection signal
  • the processor After receiving the first power-on detection signal of the first detection device or the second power-on detection signal output by the second detection device, the processor enters the power-on mode.
  • the processor after receiving the first power-on detection signal output by the first detection device or the second power-on detection signal output by the second detection device, the processor first confirms the first power-on detection signal or Only after the second power-on detection signal is valid, the power-on mode is entered.
  • the processor determines that the duration of the received first power-on detection signal is greater than the first preset duration, and determines that the first power-on detection signal is valid;
  • the duration of the received second power-on detection signal is greater than the first preset time duration, and it is determined that the second power-on detection signal is valid.
  • the processor after receiving the first power-on detection signal or the second power-on detection signal, the processor first performs interference removal processing on the received first power-on detection signal or the second power-on detection signal;
  • the effectiveness of the power-on signal is determined according to the first power-on detection signal or the second power-on detection information after the interference removal processing.
  • the defibrillator also includes an input device and electrode pads; after entering the power-on mode, the processor also performs the following steps:
  • the first detection device detects a shutdown behavior and also outputs a first shutdown detection signal
  • the second detection device detects a shutdown behavior, and also outputs a second shutdown detection signal
  • the processor After receiving the first shutdown detection signal and/or the second shutdown detection signal, the processor enters a shutdown mode.
  • the processor first confirms the first shutdown detection signal and/or the second shutdown detection signal It is valid before it enters shutdown mode.
  • the processor determines that the duration of the received first shutdown detection signal is greater than the third preset duration, and determines that the first shutdown detection signal is valid;
  • the processor determines that the duration of the received second shutdown detection signal is greater than the third preset duration, and determines that the second shutdown detection signal is valid.
  • the processor after receiving the first shutdown detection signal or the second shutdown detection signal, the processor first performs interference removal processing on the received first shutdown detection signal or the second shutdown detection signal;
  • the effectiveness of the shutdown signal is determined according to the first shutdown detection signal or the second shutdown detection information after the interference removal processing.
  • the processor further performs the following steps before entering the shutdown mode:
  • the first detection device is a non-contact detection device
  • the second detection device is a contact switch
  • the method before detecting that the duration of the first power-on detection signal or the second power-on detection signal after noise removal is greater than the first preset time duration, the method further includes:
  • the storing a preset duration in each duration cache area in the multiple duration cache areas includes:
  • a preset duration of the first detection device is stored in the second duration buffer area, and the preset duration of the first detection device is that the processor acquires multiple historical start-ups of the first detection device at a first preset time interval and is invalid Duration, and the preset duration of the first detection device is determined according to the maximum value of the multiple historical invalid boot durations;
  • the preset duration of the second detection device is that the processor acquires multiple historical start-ups of the second detection device at a second preset time interval and is invalid Duration, and the preset duration of the second detection device is determined according to the average value of the multiple historical start-up invalid durations.
  • an embodiment of the present application provides an on-off control method applied to a defibrillator, characterized in that the defibrillator includes a processor and a first detection device that independently detects the defibrillator's on and off behavior And the second detection device, the method includes the processor entering the power-on mode or the power-off mode according to the output signals of the first detection device and the second detection device.
  • an embodiment of the present application provides a computer-readable storage medium, which stores a plurality of program instructions, characterized in that the plurality of program instructions are used by a processor to execute any one of the foregoing Kinds of methods.
  • the on-off control method and the defibrillator disclosed in the present invention determine that the defibrillator enters the power-on mode or the power-off mode by setting the first detection device and the second detection device, and according to the output signals of the first detection device and the second detection device In this way, the reliability of the on-off function is improved by the two detection devices, which reduces the probability that the AED cannot be turned on, erroneously turned on or erroneously turned off, and ultimately extends the life of the defibrillator battery while reducing clinical risk.
  • FIG. 1A is a schematic structural diagram of a defibrillator according to an embodiment of the present application.
  • 1B is a schematic diagram of a spectrum of instantaneous interference provided by an embodiment of the present application.
  • FIG. 3 is a shutdown control method provided by an embodiment of the present application.
  • FIG. 1A is a schematic structural diagram of a defibrillator according to an embodiment of the present application.
  • an embodiment of the present application provides a defibrillator 100 including a processor 101 and an independent detection defibrillator.
  • the first detection device 102 and the second detection device 103 of the tremor on and off behaviors, that is, the first detection device 102 and the second detection device 103 are combined to perform on-off control.
  • the processor 101 determines whether to enter the power-on mode according to the received output signals of the first detection device 102 and the second detection device 103; or the first detection device 102 and the second detection device 103 are combined to detect the shutdown behavior, and the processor 101 According to the received output signals of the first detection device 102 and the second detection device 103, it is determined whether to enter the shutdown mode.
  • the processor 101 may be a central processing unit (CPU) or a microcontroller unit (MCU). For a defibrillator with limited internal space, the latter is more likely to be used .
  • CPU central processing unit
  • MCU microcontroller unit
  • the first detection device 102 may be a contact switch or a non-contact sensor.
  • the contact switch includes an in-position switch, a key switch, a spring switch, etc.;
  • the non-contact sensor includes a Hall sensor, a photoelectric sensor, an ultrasonic sensor, a capacitive sensor, and the like.
  • the second detection device 103 may also be a contact switch or a non-contact sensor.
  • the first detection device 102 is a Hall sensor. When the rescuer opens or closes the lid of the AED with the magnet, the Hall sensor senses the change in the magnetic field and generates an on-off signal. The AED automatically turns on to enter the clinical work startup mode or enters a low level.
  • the second detection device 103 is an in-position switch, when the rescuer opens or closes the AED cover, the in-position switch is triggered by the cover displacement, so that the in-position switch is in the on or off state to generate the switch Signal, the AED automatically turns on to enter the power-on mode of clinical work or enters the power-off mode of low-power work. Then, while the user opens or closes the AED cover, the second detection device 103 detects that the in-position switch is turned on or off.
  • a detection device 102 can sense the change of the magnetic field at the same time, and at the same time trigger the generation of an on-off signal, so that the output signals of the two detection devices triggered at the same time can reduce the false opening of the defibrillator due to the invalid or wrong output signal of one detection device.
  • the probability of shutdown significantly improves the stability and reliability of the defibrillator's on-off behavior.
  • the first detection device 102 is a non-contact detection device
  • the second detection device 103 is a contact switch.
  • the first detection device 102 and the second detection device 103 are different types of detection devices.
  • the output signal of one detection device is unstable
  • the use of another detection device of a different type can avoid the same environmental factors or Errors caused by unstable output of similar signals under operating conditions have improved the stability and reliability of the defibrillator's on-off behavior.
  • the processor 101 enters the boot mode according to the output signals of the first detection device 102 and the second detection device 103, which specifically includes: the first detection device 102 detects the boot behavior, and then outputs the first boot detection signal; The second detection device 103 detects the power-on behavior and outputs a second power-on detection signal; after the processor 101 receives the first power-on detection signal or the second power-on detection signal, it enters the power-on mode.
  • the user detects the power-on behavior through the first detection device 102, and when the power-on behavior is detected, the first power-on detection signal is output.
  • the second detection device 103 can output the second power-on detection signal, and the processor 101 only needs to receive When one of the power-on detection signals is reached, the power-on mode can be entered, which can reduce the problem of failure to start the defibrillator due to an error in the power-on detection signal of the detection device and reduce the clinical risk.
  • the processor 101 first confirms that the first power-on detection signal or the second power-on detection signal is valid before entering the power-on mode.
  • the processor 101 may be just an interference signal instead of a valid power-on detection signal. If the power-on mode is entered based on the invalid power-on detection signal, it will cause excessive power consumption of the defibrillator. Therefore, first determine the validity of the power-on detection signal to avoid accidental power-on and extend the life of the defibrillator battery. Methods for confirming the validity of the power-on detection signal include: eliminating interference signals, extending the signal input time, and determining the stability of the power-on detection signal.
  • the processor 101 when confirming whether the first power-on detection signal or the second power-on detection signal is valid, specifically executes the following steps: determining that the duration of the received first power-on detection signal is greater than the first preset duration, then Determine that the first power-on detection signal is valid; determine that the duration of the received second power-on detection signal is greater than the first preset duration, and then determine that the second power-on detection signal is valid.
  • the first detection device 102 and the second detection device 103 whether it is a contact switch or a non-contact sensor, some invalid signals may be generated during the triggering process, such as poor contact or the sensor receiving the trigger signal is critical
  • the value may cause the detection device to output a signal, but such a signal cannot effectively trigger the processor 101 to enter the power-on mode. Therefore, it is necessary to determine the validity of the signal to reduce the damage to the device by power-on and power-off operations based on the invalid signal.
  • This invalid signal has a short duration, and the validity of the signal can be detected according to whether the duration of the signal reaches the first preset duration.
  • first preset duration Before this process, first set or obtain the first preset duration.
  • the first preset duration can be adjusted by the user or fixed by the merchant, or after the processor 101 receives the output signal of the first device or the second device, but fails to enter the boot mode. The time difference between them determines the first preset duration.
  • the method before detecting that the duration of the first power-on detection signal or the second power-on detection signal after the interference removal process is greater than the first preset duration, the method further includes: each duration in the multiple duration buffer areas The cache area stores a preset duration; the preset duration in a duration cache area is randomly obtained as the first preset duration.
  • the device cache module in the defibrillator includes multiple duration cache areas, each duration cache area stores a preset duration, when the processor 101 receives the first power-on detection signal or the second power-on detection signal, A preset duration is randomly obtained from a duration buffer area as the first preset duration, and then used to determine the validity of the power-on detection signal. In this way, the randomness of the first preset duration can be increased to avoid the situation where the setting of the first preset duration is invalid.
  • a preset duration is stored in each duration cache area of the multiple duration cache areas, including:
  • An initial preset duration is stored in the first duration cache area, and the initial preset duration is determined by the longest historical boot-up duration in the first detection device 102 or the second detection device 103;
  • the preset duration of the first detection device 102 being the time when the processor 101 acquires multiple historical boot invalid times of the first detection device 102 at the first preset time interval, And determine the preset duration of the first detection device 102 according to the maximum value among multiple historical invalid durations of booting;
  • the preset duration of the second detection device 103 is the time when the processor 101 obtains a plurality of historical startup invalid times of the second detection device 103 at a second preset time interval, And determine the preset duration of the second detection device 103 according to the average value of multiple historical invalid boot durations.
  • the power-on duration of the first detection device 102 indicates that the first detection device 102 detects the power-on behavior and outputs a first power-on detection signal.
  • the processor 101 receives the first power-on detection signal and enters the power-on mode.
  • t1 similarly, the boot time of the second detection device 103 represents the time taken by the second test and the device to detect the boot behavior until the processor 101 enters the boot mode, and is set to t2, then the formula for obtaining the initial preset time T 0 is :
  • T 0 max(t1, t2) (1)
  • max(t1, t2) means taking the maximum value of t1 and t2.
  • the length of time that the first detection device 102 is invalid for booting indicates that the first detection device 102 detects the booting behavior and outputs a first boot detection signal.
  • the processor 101 receives the first boot detection signal but does not successfully enter the boot mode.
  • the processor 101 obtains a plurality of historical power-on invalid durations of the first detection device 102 at the first preset time interval s1, because a well-functioning detection device does not frequently cause power-on invalidity, so s1 may be a larger time Intervals, such as 1 day, 3 days, 10 days, etc.
  • the plurality may be N, N is an integer greater than 0, denoted as t11, t12, ..., t1N, and then the first detection device 102 determines the preset duration according to the maximum value of multiple historical invalid durations, the process may be Expressed as:
  • T 1 max(t11,t12,...,t1N) (2)
  • T 1 represents the preset duration of the first detection device 102.
  • the invalid boot time of the second detection device 103 indicates that the second detection device 103 detects the boot behavior and outputs a second boot detection signal.
  • the processor 101 receives the second boot detection signal but does not successfully enter the boot mode. Duration, the processor 101 acquires multiple historical boot invalid durations of the second detection device 103 at the second preset time interval s2, s2 may be the same as s1, or may be different from s1, multiple may be M, M is greater than An integer of 0, denoted as t21, t22, ..., t2M, and then the preset duration of the second detection device 103 is determined according to the average value of multiple historical invalid boot durations. This process can be expressed as:
  • T 2 is the preset duration of the second detection device 103.
  • the randomness of the first preset duration can be increased to avoid the first A case where the preset duration setting is invalid.
  • the preset duration of the first detection device 102 and the preset duration of the second detection device 103 the first preset duration can be independently learned and changed as the device is used, further improving the first The validity and accuracy of the preset duration.
  • the processor after receiving the first power-on detection signal or the second power-on detection signal, the processor first performs interference removal processing on the received first power-on detection signal or second power-on detection signal; A power-on detection signal or second power-on detection information is used to judge the validity of the power-on signal.
  • the method of eliminating interference includes installing filters or adding anti-interference commands to the software.
  • the first and second power-on detection signals output by the first monitoring device 102 and the second monitoring device 103 are filtered by the filter before being output to the processor 101.
  • the interference in the power-on detection signal may be instantaneous interference.
  • Instantaneous interference is a kind of electromagnetic interference with short time, wide spectrum and large amplitude, including electric fast burst, surge or electrostatic discharge.
  • Electric fast pulse group is generated when the inductive load in the circuit is disconnected, the surge is caused by lightning induction or high-power switch, and the electrostatic discharge is caused by lightning phenomenon, electrostatic discharge when the human body touches the device, and device discharge.
  • these three types of instantaneous interference may be included.
  • the processor 101 may not directly filter the received first power-on detection signal or the second power-on detection signal, but directly use the received first power-on detection signal. Or the second power-on detection signal to judge validity.
  • FIG. 1B is a schematic diagram of a spectrum of instantaneous interference provided by an embodiment of the present application, where (a) in FIG. 1B represents the amplitude diagram of the instantaneous interference, and the amplitude is the current or voltage reached by the instantaneous interference, as shown in FIG. 1B As shown in (a) in, the amplitude of the instantaneous interference can reach the maximum value in a short time, the maximum value can be several thousand volts, or several thousand amperes, and then quickly fall back, and the short time may be microseconds or nanoseconds. Seconds. (B) in FIG.
  • 1B represents a harmonic amplitude diagram of instantaneous interference, and the harmonic amplitude (current or voltage) decreases as the frequency increases.
  • the signal that the voltage or current exceeds the preset voltage or current in the first time interval can be filtered out, and the first time interval can be a minimum value, such as 1 Subtle or 4 nanoseconds, the preset voltage can be 4kV (kilovolt) or 50A (ampere), etc.; it can also be used to filter harmonics, which are integer multiples of the fundamental frequency, set according to the characteristics of harmonics Filtering conditions, that is, filtering out integer multiples of the fundamental frequency, can effectively filter out harmonics.
  • the defibrillator further includes an input device and an electrode pad; after entering the power-on mode, the processor 101 also performs the following steps: detecting the user's effective usage behavior through the input device or the electrode pad within a second preset duration; If no effective usage behavior of the user is detected within the second preset time period, the shutdown mode is entered.
  • the shutdown mode in addition to the normal shutdown state, can also include the defibrillator entering a low-power operating mode that maintains one or more of the necessary detection, self-test, or system operation, for example, in low-power mode, control Status indicator or buzzer to indicate the status of the machine, regular wake-up self-test, etc.
  • the processor 101 may enter the power-off mode to reduce the power of the defibrillator Consume. Therefore, the processor 101 may detect the user's effective usage behavior through the input device or electrode pad within the second preset duration to determine whether there is a situation where the device is vacant, if the user's effectiveness is not detected within the second preset duration Use behavior, then enter the shutdown mode.
  • Input devices include physical keys, touch screens, voice input devices, etc.
  • the second preset duration may be set by the user according to the actual usage, or may be set by the manufacturer, and may be 10 minutes, 15 minutes, etc.
  • the user's effective use behaviors include: connecting electrode pads to the human body, modifying defibrillator settings, and controlling the defibrillator for defibrillation, one or more of simulation.
  • the electrode pad is used to connect with the human body for clinical treatment, and it can be determined whether there is an effective use behavior of the user by detecting whether the electrode pad is connected to the human body.
  • the input device of the defibrillator including a keyboard or a touch screen, can receive user operations or settings on the defibrillator, and control the defibrillator to defibrillate or simulate.
  • the processor 101 detects one or more of these behaviors , You can determine that the user's effective use behavior is detected.
  • the first detection device 102 detects a shutdown behavior and also outputs a first shutdown detection signal; the second detection device 103 detects a shutdown behavior and also outputs a second shutdown detection signal; the processor 101 receives the first shutdown detection signal And/or after the second shutdown detection signal, enter the shutdown mode.
  • both the first detection device 102 and the second detection device 103 can detect the shutdown behavior and output a shutdown detection signal.
  • the processor 101 After receiving the first shutdown detection signal and/or the second shutdown detection signal, the processor 101 enters the shutdown mode, which includes two cases: (1) After the processor 101 receives the first shutdown detection signal or the second shutdown detection signal, Enter the shutdown mode; (2) The processor 101 enters the shutdown mode after receiving the first shutdown detection signal and the second shutdown detection signal.
  • the processor 101 can enter the shutdown mode as long as it receives one of the first shutdown detection signal or the second shutdown detection signal, which is helpful for rapid shutdown.
  • the processor 101 needs to enter the shutdown mode after receiving the first shutdown detection signal and the second shutdown detection signal at the same time, where “simultaneously” means that the time interval that occurs is less than the first preset shutdown interval, the first The preset time interval may be a small value, such as 1 second, 30 milliseconds, and so on. If the processor 101 detects only one shutdown detection signal, it may be a user's erroneous shutdown operation, which may cause a clinical risk during the use of the defibrillator. Therefore, the first shutdown detection signal and the second shutdown are detected at the same time After detecting the signal, entering the shutdown mode can reduce clinical risks and improve the accuracy of entering the shutdown mode.
  • the processor 101 first confirms that the first shutdown detection signal and/or the second shutdown detection signal are valid before entering the shutdown mode.
  • the first shutdown detection signal and the second shutdown detection signal may be invalid signals, for example, a sensor failure of the first detection device 102 or the second detection device 103 due to environmental influences, or the first failure caused by poor contact or operation error The invalid operation of the contact switch of one detection device 102 or the second detection device 103. Therefore, the process of determining that the shutdown detection signal is valid corresponds to the case in which the processor 101 enters the shutdown mode according to the received shutdown detection signal.
  • the processor 101 receives the first shutdown detection signal or the second shutdown detection signal , Then it is necessary to determine the validity of the first shutdown detection signal or the second shutdown detection signal, and then enter the shutdown mode; if the processor 101 receives the first shutdown detection signal and/or the second shutdown detection signal, then it is necessary to determine the first shutdown The validity of the detection signal and/or the second shutdown detection signal. If it is determined that the first shutdown detection signal and/or the second shutdown detection signal are valid, then the shutdown mode is entered.
  • the method for determining the validity of the shutdown detection signal is the same as the method for determining the validity of the startup detection signal, including eliminating interference signals, extending the signal input time, and determining the stability of the startup detection signal.
  • the processor 101 determines that the duration of the received first shutdown detection signal is greater than the third preset duration, and determines that the first shutdown detection signal is valid; the processor 101 determines the duration of the received second shutdown detection signal If it is greater than the third preset duration, it is determined that the second shutdown detection signal is valid.
  • both the first detection device 102 and the second detection device 103 may output an invalid shutdown signal, for example, the first detection device 102 or the second detection caused by environmental influences or sensing distance processing thresholds
  • the sensor of the device 103 is malfunctioning, or the contact switch of the first detection device 102 or the second detection device 103 outputs an invalid shutdown signal due to poor contact or operation error.
  • the duration of these signals is short, it is not enough for the processor 101 to perform the shutdown operation. Therefore, when determining the validity of the first shutdown detection signal and the second shutdown detection signal, the first shutdown detection signal or the second It is determined whether the duration of the shutdown detection signal is greater than the third preset duration.
  • the third preset duration can be adjusted by the user or fixed by the merchant, or after the processor 101 receives the output signal of the first device or the second device, but fails to enter the shutdown mode. The time difference between them is ok.
  • the processor after receiving the first shutdown detection signal or the second shutdown detection signal, the processor first performs interference removal processing on the received first shutdown detection signal or second shutdown detection signal; and then determines the first A shutdown detection signal or second shutdown detection information performs the validity of the shutdown signal.
  • the power-off process also generates interference, and disturbs the first power-off detection signal or the second power-off detection, so that the obtained power-off detection signal is more accurate and better used to judge the effectiveness of the power-off signal.
  • the process of interference removal is the same as the process of power-on detection signal interference removal.
  • the processor before entering the shutdown mode, the processor further performs the following steps: detecting the user's effective use behavior through the input device or the electrode pad; if the user's effective use behavior is detected, stopping entering the shutdown mode.
  • shutting down the defibrillator may cause the use process to be interrupted and cause a clinical accident. Therefore, the user's effective usage behavior is detected. If the user's effective usage behavior is detected, then Stop entering shutdown mode.
  • the detection equipment improves the reliability of the switch function, reduces the probability of the AED being unable to start, mistakenly start, or mistakenly shut down, and ultimately extends the life of the defibrillator battery while reducing clinical risk.
  • An embodiment of the present application also provides a power-on/off control method, which is applied to the defibrillator described in the above embodiment, and the method includes: the processor according to the output signals of the first detection device and the second detection device To enter power-on mode or power-off mode.
  • the on-off control method provided by the embodiment of the present application includes a power-on control method.
  • FIG. 2 is a power-on control method provided by the embodiment of the present application. As shown in FIG. 2, The methods described include:
  • the first detection device detects a power-on behavior, and outputs a first power-on detection signal
  • the second detection device detects a startup behavior, and then outputs a second startup detection signal
  • the processor After receiving the first power-on detection signal of the first detection device or the second power-on detection signal output by the second detection device, the processor performs the first power-on detection signal or the second power-on detection signal. De-interference processing;
  • the processor determines that the first power-on detection signal or the second power-on detection signal is valid, and enters the power-on mode;
  • the defibrillator further includes an input device and electrode pads; after entering the power-on mode, the processor detects the user's effective usage behavior through the input device or electrode pads within a second preset duration;
  • the power-on control method detects the power-on behavior through the first detection device, outputs a first power-on detection signal, the second detection device detects the power-on behavior, outputs a second power-on detection signal, and the processor receives the first power-on detection signal Or the second power-on detection signal, it performs interference removal processing to improve the signal quality, thereby improving the reliability of the power-on detection signal; then determine the duration of the first power-on detection signal or the second detection signal after the interference-free processing It is greater than the first preset duration to determine that one of the power-on signals is effective, which reduces the failure of the detection equipment to be turned on due to operational errors or environmental impact, improves the timeliness of entering the power-on mode, and reduces the occurrence of clinical accidents.
  • the processor in the power-on mode, if no effective usage behavior of the user is detected, the processor automatically enters the power-off mode, reducing the invalid power consumption of the defibrillator and extending the battery life of the defibrillator.
  • the on-off control method provided by the embodiment of the present application includes a shutdown control method, please refer to FIG. 3, and FIG. 3 is a startup control method provided by the embodiment of the present application. As shown in FIG. The methods described include:
  • the first detection device detects a shutdown behavior, and also outputs a first shutdown detection signal
  • the second detection device detects a shutdown behavior and also outputs a second shutdown detection signal
  • the processor After receiving the first shutdown detection signal and/or the second shutdown detection signal, the processor performs interference removal processing on the first shutdown detection signal and the second shutdown detection signal;
  • the processor detects the user's effective usage behavior through the input device or electrode pads;
  • the shutdown control method detects the shutdown behavior through the first detection device, outputs a first shutdown detection signal, the second detection device detects the shutdown behavior, outputs a second shutdown detection signal, and the processor receives the first shutdown detection signal Or the second shutdown detection signal, perform interference removal processing to improve the reliability of the shutdown detection signal; then determine the duration of the first shutdown detection signal and the second detection signal after the interference removal processing is greater than the second preset duration To determine that the two shutdown signals are effective at the same time, and after determining that the shutdown signal is effective, if the user's effective use behavior is detected, stop entering the shutdown mode, reducing the detection equipment due to operational errors or environmental impact and other factors caused by the wrong shutdown behavior, If the user's effective use behavior is not detected, the shutdown mode is entered, which improves the reliability of entering the shutdown mode and reduces the probability of a clinical accident in the defibrillator.
  • An embodiment of the present application further provides a computer storage medium, where the computer storage medium may store a program, and when the program is executed, it includes some or all steps of any one of the power-on and power-off methods described in the foregoing method embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Electrotherapy Devices (AREA)

Abstract

一种除颤仪(100),包括:处理器(101),以及独立检测除颤仪(100)开、关机行为的第一检测设备(102)和第二检测设备(103),所述处理器(101)根据所述第一检测设备(102)和第二检测设备(103)的输出信号,进入开机模式或关机模式。通过两个检测设备提升开关机功能的可靠性,减少AED无法开机、误开机或误关机的概率,最终在降低临床风险的情况下,延长了除颤仪(100)电池的寿命。

Description

一种开关机控制方法和除颤仪 技术领域
本申请涉及电子技术领域,尤其涉及一种开关机控制方法和除颤仪。
背景技术
除颤仪是一个不经常使用的高风险急救设备,主要用于对心脏室颤,房颤等危险病症进行除颤治疗。自动除颤仪(Automated External Defibrillator,AED)是一种预期应用在院外公共场合(机场,车站等人流密集场所)的除颤仪。与院内常规除颤仪不一样,AED一般配置一次性电池,并运行固定周期的自动自检以达到少维护或免维护目标。一般公共场合AED配置一次性电池后待机寿命可到3-5年。目前从业界来看,有关AED的失效约20%为电池相关故障,其中电量耗尽的失效模式为绝大多数,该种失效会直接导致抢救时电池电量不足而无法进行抢救的情况,进而导致患者死亡。如何解决AED在待机过程中由于误开机导致的电池电量耗尽问题是业界难题。另一方面,AED一般由非专业医护人员使用,如何解决使用抢救过程中的误关机问题也具有较强的临床意义
发明内容
本申请实施例提供一种开关机控制方法和除颤仪,通过设置第一检测设备和第二检测设备,并根据第一检测设备和第二检测设备的输出信号,确定除颤仪进入开机模式或关机模式,这样通过两个检测设备提升了开关机功能的可靠性,减少了AED无法开机、误开机或误关机的概率,最终在降低临床风险的情况下,延长了除颤仪电池的寿命。
第一方面,本申请实施例提供一种除颤仪,所述除颤仪包括:处理器,以及独立检测除颤仪开、关机行为的第一检测设备和第二检测设备,所述处理器根据所述第一检测设备和第二检测设备的输出信号,进入开机模式或关机模式。
可选情况下,所述第一检测设备检测到开机行为,则输出第一开机检测信号;
所述第二检测设备检测到开机行为,则输出第二开机检测信号;
所述处理器接收到所述第一检测设备的第一开机检测信号或第二检测设备输出的第二开机检测信号后,进入开机模式。
可选情况下,所述处理器接收到所述第一检测设备输出的第一开机检测信号或所述第二检测设备输出的第二开机检测信号后,先确认所述第一开机检测信号或第二开机检测信号有效,才进入开机模式。
可选情况下,所述处理器判断接收到的第一开机检测信号的持续时长大于第一预设时长,则确定所述第一开机检测信号有效;
判断接收到的第二开机检测信号的持续时长大于第一预设时长,则确定所述第二开机检测信号有效。
可选情况下,所述处理器接收到所述第一开机检测信号或第二开机检测信号后,先对接收到的第一开机检测信号或第二开机检测信号进行去干扰处理;
再根据去干扰处理后的第一开机检测信号或第二开机检测信息进行开机信号的有效性判断。
可选情况下,所述除颤仪还包括输入设备和电极片;在进入开机模式后,所述处理器还执行下述步骤:
在第二预设时长内通过所述输入设备或电极片检测用户的有效使用行为;如果在所述第二预设时长内没有检测到用户的有效使用行为,则进入关机模式或低电量工作模式或关机模式。
可选情况下,所述第一检测设备检测到关机行为,还输出第一关机检测信号;
所述第二检测设备检测到关机行为,还输出第二关机检测信号;
所述处理器接收到所述第一关机检测信号和/或所述第二关机检测信号后,进入关机模式。
可选情况下,所述处理器在接收到所述第一关机检测信号和/或所述第二关机检测信号后,先确认所述第一关机检测信号和/或所述第二关机检测信号有效,才进入关机模式。
可选情况下,所述处理器判断接收到的第一关机检测信号的持续时长大于第三预设时长,则确定所述第一关机检测信号有效;
所述处理器判断接收到的第二关机检测信号的持续时长大于第三预设时 长,则确定所述第二关机检测信号有效。
可选情况下,所述处理器接收到所述第一关机检测信号或第二关机检测信号后,先对接收到的第一关机检测信号或第二关机检测信号进行去干扰处理;
再根据去干扰处理后的第一关机检测信号或第二关机检测信息进行关机信号的有效性判断。
可选情况下,所述处理器在确定所述关机信号有效后,进入关机模式前,还执行下述步骤:
通过所述输入设备或电极片检测用户的有效使用行为;
如果检测到用户的有效使用行为,则停止进入关机模式。
可选情况下,所述第一检测设备为非接触式检测设备,所述第二检测设备为接触式开关。
可选情况下,在检测去噪后的第一开机检测信号或第二开机检测信号的持续时长大于第一预设时长之前,所述方法还包括:
在多个时长缓存区域中的每一个时长缓存区域存储一个预设时长;
随机获取一个时长缓存区域中的预设时长,作为第一预设时长。
可选情况下,所述在多个时长缓存区域中的每一个时长缓存区域存储一个预设时长,包括:
在第一时长缓存区域中存储初始预设时长,所述初始预设时长为所述第一检测设备或所述第二检测设备中耗时最长的历史开机时长确定;
在第二时长缓存区域中存储第一检测设备预设时长,所述第一检测设备预设时长为所述处理器以第一预设时间间隔获取所述第一检测设备的多个历史开机无效时长,并根据所述多个历史开机无效时长中的最大值确定所述第一检测设备预设时长;
在第三时长缓存区域中存储第二检测设备预设时长,所述第二检测设备预设时长为所述处理器以第二预设时间间隔获取所述第二检测设备的多个历史开机无效时长,并根据所述多个历史开机无效时长的均值确定所述第二检测设备预设时长。
第二方面,本申请实施例提供一种开关机控制方法,应用于除颤仪,其特征在于,所述除颤仪包括处理器,以及独立检测除颤仪开、关机行为的第一检 测设备和第二检测设备,所述方法包括:所述处理器根据所述第一检测设备和第二检测设备的输出信号,进入开机模式或关机模式。
第三方面,本申请实施例提供一种计算机可读存储介质,其存储有多条程序指令,其特征在于,所述多条程序指令用于被处理器调用后执行如前所述的任意一种方法。
本发明公开的开关机控制方法和除颤仪,通过设置第一检测设备和第二检测设备,并根据第一检测设备和第二检测设备的输出信号,确定除颤仪进入开机模式或关机模式,这样通过两个检测设备提升了开关机功能的可靠性,减少了AED无法开机、误开机或误关机的概率,最终在降低临床风险的情况下,延长了除颤仪电池的寿命。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A为本申请实施例提供的一种除颤仪的结构示意图;
图1B为本申请实施例提供的一种瞬时干扰的频谱示意图;
图2为本申请实施例提供的一种开机控制方法;
图3为本申请实施例提供的一种关机控制方法。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下对本申请实施例做详细描述。
请参阅图1A,图1A为本申请实施例提供的一种除颤仪的结构示意图,如图1A所示,本申请实施例提供一种除颤仪100,包括处理器101,以及独立检测除颤仪开、关机行为的第一检测设备102和第二检测设备103,即第一 检测设备102和第二检测设备103结合用于进行开关机控制。处理器101根据接收到的第一检测设备102和第二检测设备103的输出信号,确定是否进入开机模式;或第一检测设备102和第二检测设备103结合用于检测关机行为,处理器101根据接收到的第一检测设备102和第二检测设备103的输出信号,确定是否进入关机模式。
其中,处理器101可以是中央处理器(Central Process Unit,CPU),也可以是微控制单元(Microcontroller Unit,MCU),对于内部空间受限的除颤仪来说,后者的使用概率更高。
第一检测设备102可以是接触式开关或非接触式传感器,接触式开关包括在位开关、按键开关、弹簧开关等;非接触式传感器包括霍尔传感器、光电传感器、超声传感器、电容传感器等。同样的,第二检测设备103也可以是接触式开关或非接触式传感器。例如第一检测设备102为霍尔传感器,当施救者打开或关闭带有磁铁的AED盖子时,霍尔传感器感应到磁场变化产生开关机信号,AED自动开机进入临床工作的开机模式或进入低功耗待机的关机模式;第二检测设备103为在位开关,当施救者打开或关闭AED盖子时,通过盖子位移触发在位开关,使在位开关处于接通或断开状态产生开关机信号,AED自动开机进入临床工作的开机模式或进入低功耗工作的关机模式那么在用户打开或关闭AED盖子的同时,第二检测设备103检测到在位开关接通或断开的同时,第一检测设备102可同时感应到磁场的变化,进而同时触发产生开关机信号,这样同时触发的两个检测设备输出信号,可以减少因为一个检测设备输出信号无效或者错误而导致除颤仪误开、关机的概率,明显提升除颤仪开关机行为的稳定性和可靠性。
可选情况下,所述第一检测设备102为非接触式检测设备,所述第二检测设备103为接触式开关。
第一检测设备102和第二检测设备103为不同类型的检测设备,那么在一种检测设备的输出信号不稳定的情况下,采用不同类型的另一种检测设备,可以避免同样的环境因素或操作条件下造成的同类信号输出不稳定而导致的失 误问题,提升了除颤仪开关机行为的稳定性和可靠性。
可选的,处理器101根据第一检测设备102和第二检测设备103的输出信号,进入开机模式方面,具体包括:第一检测设备102检测到开机行为,则输出第一开机检测信号;第二检测设备103检测到开机行为,则输出第二开机检测信号;处理器101接收到第一开机检测信号或第二开机检测信号后,则进入开机模式。
具体地,用户通过第一检测设备102检测开机行为,当检测到开机行为后,输出第一开机检测信号,同样的,第二检测设备103能够输出第二开机检测信号,处理器101只需要接收到其中一个开机检测信号,即可进入开机模式,这样可以降低因检测设备的开机检测信号失误造成的除颤仪开机失败的问题,降低了临床风险。
可选的,所述处理器101接收到所述第一开机检测信号或第二开机检测信号后,先确认所述第一开机检测信号或第二开机检测信号有效,才进入开机模式。
具体地,在处理器101接收到开机检测信号后,可以只是一个干扰信号而并不是有效的开机检测信号,如果根据这个无效的开机检测信号进入开机模式,将会导致多余的除颤仪电量消耗,因此,先确定开机检测信号的有效性,能够避免误开机、延长除颤仪电池的寿命。确认开机检测信号有效性的方法包括:消除干扰信号、延长信号输入时间,确定开机检测信号的稳定性等方法。
可选的,在确认第一开机检测信号或第二开机检测信号是否有效时,处理器101具体执行下述步骤:判断接收到的第一开机检测信号的持续时长大于第一预设时长,则确定第一开机检测信号有效;判断接收到的第二开机检测信号的持续时长大于第一预设时长,则确定第二开机检测信号有效。
具体地,对于第一检测设备102和第二检测设备103,无论是接触式开关或者非接触式传感器,都可能在触发的过程中产生一些无效信号,例如接触不良或传感器接收到触发信号为临界值,可能导致检测设备输出信号,但是这种信号不能够有效触发处理器101进入开关机模式,因此需要通过判断信号的有效性,减少根据无效信号进行开关机操作对设备的损害。这种无效信号持续时 间短,可以根据信号持续时长是否达到第一预设时长来检测信号的有效性。在这个过程之前,先设置或获取第一预设时长。第一预设时长可以由用户设置可调整值,也可以由商家设定固定值,还可以根据处理器101接收到第一设备或第二设备的输出信号后,但没能成功进入开机模式这之间的时间差确定第一预设时长。
可选的,在检测去干扰处理后的第一开机检测信号或第二开机检测信号的持续时长大于第一预设时长之前,所述方法还包括:在多个时长缓存区域中的每一个时长缓存区域存储一个预设时长;随机获取一个时长缓存区域中的预设时长,作为第一预设时长。
在除颤仪中设备缓存模块,缓存模块中包括多个时长缓存区域,每个时长缓存区域中存储一个预设时长,当处理器101接收到第一开机检测信号或第二开机检测信号时,随机从一个时长缓存区域中获取一个预设时长作为第一预设时长,然后用于确定开机检测信号的有效性。这样,可以增加第一预设时长的随机性,避免第一预设时长设定失效的情况。
可选的,在多个时长缓存区域中的每一个时长缓存区域存储一个预设时长,包括:
在第一时长缓存区域中存储初始预设时长,初始预设时长为第一检测设备102或第二检测设备103中耗时最长的历史开机时长确定;
在第二时长缓存区域中存储第一检测设备102预设时长,第一检测设备102预设时长为处理器101以第一预设时间间隔获取第一检测设备102的多个历史开机无效时长,并根据多个历史开机无效时长中的最大值确定第一检测设备102预设时长;
在第三时长缓存区域中存储第二检测设备103预设时长,第二检测设备103预设时长为处理器101以第二预设时间间隔获取第二检测设备103的多个历史开机无效时长,并根据多个历史开机无效时长的均值确定第二检测设备103预设时长。
具体地,第一检测设备102的开机时长表示第一检测设备102检测开机行为,输出第一开机检测信号,处理器101接收到第一开机检测信号并进入开机模式整个过程消耗的时长,设为t1;同样的,第二检测设备103的开机时长表 示第二检测和设备检测开机行为到处理器101进入开机模式整个过程消耗的时长,设为t2,那么初始预设时长T 0的获取公式为:
T 0=max(t1,t2)                    (1)
其中max(t1,t2)表示取t1和t2中的最大值。
第一检测设备102的开机无效时长表示第一检测设备102检测开机行为,输出第一开机检测信号,处理器101接收到第一开机检测信号但最后没有成功进入开机模式的整个过程消耗的时长,处理器101以第一预设时间间隔s1获取第一检测设备102的多个历史开机无效时长,因为一个运行良好的检测设备不会频繁发生开机无效的情况,因此s1可以是一个较大的时间间隔,例如1天,3天,10天等。多个可以是N个,N为大于0的整数,记为t11,t12,...,t1N,然后根据多个历史无效时长中的最大值确定第一检测设备102预设时长,该过程可以用公式表达为:
T 1=max(t11,t12,...,t1N)              (2)
其中T 1表示第一检测设备102预设时长。
同样的,第二检测设备103的开机无效时长表示第二检测设备103检测开机行为,输出第二开机检测信号,处理器101接收到第二开机检测信号但最后没有成功进入开机模式的整个过程消耗的时长,处理器101以第二预设时间间隔s2获取第二检测设备103的多个历史开机无效时长,s2可以与s1相同,也可以与s1不同,多个可以是M个,M为大于0的整数,记为t21,t22,...,t2M,然后根据多个历史开机无效时长的均值确定所述第二检测设备103预设时长,该过程可以用公式表达为:
Figure PCTCN2018125866-appb-000001
其中T 2为第二检测设备103预设时长。
在本申请实施例中,通过设置多个缓存区域用于存储多个预设时长,然后从多个预设时长中获取第一预设时长,可以增加第一预设时长的随机性,避免第一预设时长设定失效的情况。另外,通过设置初始预设时长,第一检测设备102预设时长和第二检测设备103预设时长,可以使得第一预设时长随着设备的使用过程自主学习并改变,进一步提升了第一预设时长的有效性和准确率。
可选的,处理器接收到第一开机检测信号或第二开机检测信号后,先对接收到的第一开机检测信号或第二开机检测信号进行去干扰处理;再根据去干扰处理后的第一开机检测信号或第二开机检测信息进行开机信号的有效性判断。
具体地,开机检测信号中可能存在由设备开关操作产生,与电源线路、输出线路或晶体震荡器相关的干扰,其中电源线路的影响最大。去干扰的方法包括安装滤波器或软件中加入抗干扰指令等。第一监测设备102和第二监测设备103输出的第一、二开机检测信号经滤波器滤波处理后才输出给处理器101。
开机检测信号中的干扰有可能是瞬时干扰,瞬时干扰是一种时间短、频谱宽、幅度大的电磁干扰,包括电快速脉冲群、浪涌或静电放电。电快速脉冲群是电路中的电感性负载断开时产生,浪涌由雷电感应或者大功率开关产生,静电放电由雷电现象、人体接触设备时的静电放电、装置放电产生。对第一开机检测信号和第二开机检测信号进行滤波时,可能包括这三种瞬时干扰。
当然,在某些情况下,例如干扰比较小的情况下,处理器101也可以不对接收到的第一开机检测信号或第二开机检测信号进行滤波,直接用对接收到的第一开机检测信号或第二开机检测信号进行有效性判断。
请参阅图1B,图1B为本申请实施例提供的一种瞬时干扰的频谱示意图,其中图1B中的(a)表示瞬时干扰的振幅图,振幅为瞬时干扰达到的电流或电压,如图1B中的(a)所示,瞬时干扰的振幅能够在很短的时间内达到最大值,最大值可以是几千伏,或者几千安,然后快速回落,很短时间可能是微秒级或纳秒级。图1B中的(b)表示瞬时干扰的谐波幅度图,谐波振幅(电流或电压)随着频率的增大而减小。在对第一开机检测信号或第二开机信号进行滤波时,可以滤除在第一时间间隔内电压或电流超过预设电压或电流的信号,第一时间间隔可以是一个极小值,例如1微妙或4纳秒,预设电压可以是4kV(千伏)或50A(安)等;还可以是对谐波进行滤除,谐波为基波频率的整数倍,根据谐波这一特性设置滤除条件,即滤除基波频率的整数倍的信号,即可有效滤除谐波。
可选的,除颤仪还包括输入设备和电极片;在进入开机模式后,处理器101还执行下述步骤:在第二预设时长内通过输入设备或电极片检测用户的有效使用行为;如果在第二预设时长内没有检测到用户的有效使用行为,则进入 关机模式。在本文中,除了常规的关机状态,关机模式还可包括除颤仪进入维持必要检测、自检或系统运行中一项或多项的低功耗工作模式,例如在低功耗模式下,控制状态指示灯或蜂鸣器来指示机器状态,定期进行唤醒自检等。
具体地,由于误操作等,在处理器101进入开机模式后,可能存在设备空置的情况,即设备没有被使用,在这种情况下,处理器101可以进入关机模式,以减少除颤仪电量消耗。因此,处理器101可以在第二预设时长内通过输入设备或电极片检测用户的有效使用行为以确定是否存在设备空置的情况,如果在所述第二预设时长内没有检测到用户的有效使用行为,则进入关机模式。输入设备包括实体按键、触摸屏、语音输入设备等。第二预设时长可以由用户根据实际使用情况设置可变时长,也可以由出厂商设置固定时长,可以是10分钟,15分钟等。另外,用户的有效使用行为包括:电极片与人体连接、修改除颤仪设置,以及控制除颤仪进行除颤、模拟中的一个或多个。
具体地,电极片用来与人体连接进行临床治疗,通过检测电极片是否与人体连接可确定是否有用户的有效使用行为。除颤仪的输入设备,包括键盘或触摸屏等,可以接收用户对除颤仪的操作或设置,以及控制除颤仪进行除颤或模拟,处理器101检测到这些行为中的一种或多种,可以确定检测到用户的有效使用行为。
可选的,第一检测设备102检测到关机行为,还输出第一关机检测信号;第二检测设备103检测到关机行为,还输出第二关机检测信号;处理器101接收到第一关机检测信号和/或第二关机检测信号后,进入关机模式。
具体地,第一检测设备102和第二检测设备103都可以检测关机行为,并输出关机检测信号。处理器101接收到第一关机检测信号和/或第二关机检测信号后,进入关机模式,包括两种情况:(1)处理器101接收到第一关机检测信号或第二关机检测信号后,进入关机模式;(2)处理器101接收到第一关机检测信号和第二关机检测信号后,进入关机模式。
对于情况(1),处理器101只要接收到第一关机检测信号或第二关机检测信号中的一个,就可以进入关机模式,这样有助于快速关机。
对于情况(2),处理器101需要同时接收到第一关机检测信号和第二关机检测信号后,进入关机模式,这里的“同时”表示发生的时间间隔小于第一预设 关机间隔,第一预设时间间隔可以是一个很小的值,例如1秒,30毫秒等。处理器101如果只检测到一个关机检测信号,可能是用户的误关机操作,误关机操作可能导致除颤仪使用过程中发生临床风险,因此,在同时检测到第一关机检测信号和第二关机检测信号后,进入关机模式,能够降低临床风险,提高进入关机模式的准确率。
可选的,处理器101在接收到第一关机检测信号和/或第二关机检测信号后,先确认第一关机检测信号和/或第二关机检测信号有效,才进入关机模式。
具体地,第一关机检测信号和第二关机检测信号可能是无效信号,例如因为环境影响造成的第一检测设备102或第二检测设备103的传感器失灵,或者因为接触不良或操作失误造成的第一检测设备102或第二检测设备103的接触式开关的无效操作。因此,确定关机检测信号有效的过程与上述处理器101根据接收到的关机检测信号进入关机模式的2中情况是相互对应的,如果处理器101接收到第一关机检测信号或第二关机检测信号,那么需要确定第一关机检测信号或第二关机检测信号的有效性,然后进入关机模式;如果处理器101接收到第一关机检测信号和/或第二关机检测信号,那么需要确定第一关机检测信号和/或第二关机检测信号的有效性,如果确定第一关机检测信号和/或第二关机检测信号的有效,然后才进入关机模式。确定关机检测信号有效的方法与确定开机检测信号有效的方法相同,包括消除干扰信号、延长信号输入时间,确定开机检测信号的稳定性等方法。
可选的,处理器101判断接收到的第一关机检测信号的持续时长大于第三预设时长,则确定第一关机检测信号有效;处理器101判断接收到的第二关机检测信号的持续时长大于第三预设时长,则确定第二关机检测信号有效。
具体地,根据上述实施例,第一检测设备102和第二检测设备103都有可能输出无效的关机信号,例如因为环境影响或者传感距离处理临界值造成的第一检测设备102或第二检测设备103的传感器失灵,或者因为接触不良、操作失误造成第一检测设备102或第二检测设备103的接触式开关输出无效关机信号。但由于这些信号的持续时间短,不足以使处理器101执行关机操作,因此,在确定第一关机检测信号和第二关机检测信号的有效性时,可以通过确定第一关机检测信号或第二关机检测信号的持续时长是否大于第三预设时长来判断。 第三预设时长可以由用户设置可调整值,也可以由商家设定固定值,还可以根据处理器101接收到第一设备或第二设备的输出信号后,但没能成功进入关机模式这之间的时间差确定。
可选的,处理器接收到第一关机检测信号或第二关机检测信号后,先对接收到的第一关机检测信号或第二关机检测信号进行去干扰处理;再判断去干扰处理后的第一关机检测信号或第二关机检测信息进行关机信号的有效性。
与上述开机过程相同,关机过程也会产生干扰,对第一关机检测信号或第二关机检测去干扰,使得得到的关机检测信号更准确,更好地用于判断关机信号的有效性。去干扰的过程与开机检测信号去干扰的过程相同。
可选的,处理器在进入关机模式前,还执行下述步骤:通过输入设备或电极片检测用户的有效使用行为;如果检测到用户的有效使用行为,则停止进入关机模式。
具体地,确定关机信号有效后,如果用户还在使用除颤仪,关闭除颤仪可能导致使用过程中断,造成临床事故,因此检测用户的有效使用行为,如果检测到用户的有效使用行为,则停止进入关机模式。
可见,在本申请实施例中,通过设置第一检测设备和第二检测设备,并根据第一检测设备和第二检测设备的输出信号,确定除颤仪进入开机模式或关机模式,这样通过两个检测设备提升了开关机功能的可靠性,减少了AED无法开机、误开机或误关机的概率,最终在降低临床风险的情况下,延长了除颤仪电池的寿命。
本申请实施例还提供一种开关机控制方法,应用于上述实施例中所述的除颤仪,所述方法包括:所述处理器根据所述第一检测设备和第二检测设备的输出信号,进入开机模式或关机模式。
可选情况下,本申请实施例提供的开关机控制方法中包括一种开机控制方法,请参阅图2,图2为本申请实施例提供的一种开机控制方法,如图2所示,所述方法包括:
201、所述第一检测设备检测到开机行为,则输出第一开机检测信号;
202、所述第二检测设备检测到开机行为,则输出第二开机检测信号;
203、所述处理器接收到所述第一检测设备的第一开机检测信号或第二检测设备输出的第二开机检测信号后,对接收到的第一开机检测信号或第二开机检测信号进行去干扰处理;
204、所述处理器确定所述第一开机检测信号或第二开机检测信号有效,进入开机模式;
205、所述除颤仪还包括输入设备和电极片;在进入开机模式后,所述处理器在第二预设时长内通过所述输入设备或电极片检测用户的有效使用行为;
206、如果在所述第二预设时长内没有检测到用户的有效使用行为,则进入关机模式。
本申请实施例提供的开机控制方法,通过第一检测设备检测开机行为,输出第一开机检测信号,第二检测设备检测开机行为,输出第二开机检测信号,处理器接收到第一开机检测信号或第二开机检测信号时,对其进行去干扰处理,提升了信号质量,进而提升了开机检测信号的可靠性;然后确定去干扰处理后的第一开机检测信号或第二检测信号的持续时长大于第一预设时长以确定其中一个开机信号有效,降低了检测设备因为操作失误或环境影响等因素造成的无法开机行为,提升了进入开机模式的及时性,减少了临床事故的发生。最后对于开机模式中的处理器,如果没有检测到用户的有效使用行为,则处理器自动进入关机模式,减少了除颤仪的无效电能消耗,延长了除颤仪电池使用寿命。
可选情况下,本申请实施例提供的开关机控制方法中包括一种关机控制方法,请参阅图3,图3为本申请实施例提供的一种开机控制方法,如图3所示,所述方法包括:
301、所述第一检测设备检测到关机行为,还输出第一关机检测信号;
302、所述第二检测设备检测到关机行为,还输出第二关机检测信号;
303、所述处理器接收到所述第一关机检测信号和/或所述第二关机检测信号后,对所述第一关机检测信号和第二关机检测信号进行去干扰处理;
304、确认所述第一关机检测信号和/或所述第二关机检测信号有效;
305、所述处理器通过所述输入设备或电极片检测用户的有效使用行为;
306、如果检测到用户的有效使用行为,则停止进入关机模式;
307、如果未检测到用户的有效使用行为,则进入关机模式;
本申请实施例提供的关机控制方法,通过第一检测设备检测关机行为,输出第一关机检测信号,第二检测设备检测关机行为,输出第二关机检测信号,处理器接收到第一关机检测信号或第二关机检测信号时,对其进行去干扰处理,提升了关机检测信号的可靠性;然后确定去干扰处理后的第一关机检测信号和第二检测信号的持续时长大于第二预设时长以确定两个关机信号同时有效,并且,在确定关机信号有效后,如果检测到用户的有效使用行为,停止进入关机模式,降低了检测设备因为操作失误或环境影响等因素造成的误关机行为,如果没有检测到用户的有效使用行为,则进入关机模式,提升了进入关机模式的可靠性,降低了除颤仪发生临床事故的概率。
本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质可存储有程序,该程序执行时包括上述方法实施例中记载的任何一种开关机方法的部分或全部步骤。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上上述,本说明书内容不应理解为对本申请的限制。

Claims (24)

  1. 一种除颤仪,其特征在于,所述除颤仪包括:处理器,以及独立检测除颤仪开、关机行为的第一检测设备和第二检测设备;
    所述处理器根据所述第一检测设备和第二检测设备的输出信号,进入开机模式或关机模式。
  2. 根据权利要求1所述的除颤仪,其特征在于,
    所述第一检测设备检测到开机行为,则输出第一开机检测信号;
    所述第二检测设备检测到开机行为,则输出第二开机检测信号;
    所述处理器接收到所述第一开机检测信号或第二开机检测信号后,进入开机模式。
  3. 根据权利要求2所述的除颤仪,其特征在于,所述处理器接收到所述第一开机检测信号或第二开机检测信号后,先确认所述第一开机检测信号或第二开机检测信号有效,才进入开机模式。
  4. 根据权利要求3所述的除颤仪,其特征在于,所述处理器
    判断接收到的第一开机检测信号的持续时长大于第一预设时长,则确定所述第一开机检测信号有效;
    判断接收到的第二开机检测信号的持续时长大于第一预设时长,则确定所述第二开机检测信号有效。
  5. 根据权利有求3或4所述的除颤仪,其特征在于,所述处理器接收到所述第一开机检测信号或第二开机检测信号后,先对接收到的第一开机检测信号或第二开机检测信号进行去干扰处理;
    再根据去干扰处理后的第一开机检测信号或第二开机检测信息进行开机信号的有效性判断。
  6. 根据权利要求1-5任一项所述的除颤仪,其特征在于,所述除颤仪还包括输入设备和电极片;在进入开机模式后,所述处理器还执行下述步骤:
    在第二预设时长内通过所述输入设备或电极片检测用户的有效使用行为;如果在所述第二预设时长内没有检测到用户的有效使用行为,则进入关机模式。
  7. 根据权利要求1-5任一项所述的除颤仪,其特征在于,所述第一检测 设备检测到关机行为,还输出第一关机检测信号;
    所述第二检测设备检测到关机行为,还输出第二关机检测信号;
    所述处理器接收到所述第一关机检测信号和/或所述第二关机检测信号后,进入关机模式。
  8. 根据权利有求7所述的除颤仪,其特征在于,所述处理器在接收到所述第一关机检测信号和/或所述第二关机检测信号后,先确认所述第一关机检测信号和/或所述第二关机检测信号有效,才进入关机模式。
  9. 根据权利要求8所述的除颤仪,其特征在于,所述处理器判断接收到的第一关机检测信号的持续时长大于第三预设时长,则确定所述第一关机检测信号有效;
    所述处理器判断接收到的第二关机检测信号的持续时长大于第三预设时长,则确定所述第二关机检测信号有效。
  10. 根据权利要求8所述的除颤仪,其特征在于,所述处理器接收到所述第一关机检测信号或第二关机检测信号后,先对接收到的第一关机检测信号或第二关机检测信号进行去干扰处理;
    再根据去干扰处理后的第一关机检测信号或第二关机检测信息进行关机信号的有效性判断。
  11. 根据权利要求8所述的除颤仪,其特征在于,所述处理器在进入关机模式前,还执行下述步骤:
    通过所述输入设备或电极片检测用户的有效使用行为;
    如果检测到用户的有效使用行为,则停止进入关机模式。
  12. 根据权利要求1-11任一项所述的除颤仪,其特征在于,所述第一检测设备为非接触式检测设备,所述第二检测设备为接触式开关。
  13. 一种开关机控制方法,应用于除颤仪,其特征在于,所述除颤仪包括处理器,以及独立检测除颤仪开、关机行为的第一检测设备和第二检测设备,所述方法包括:所述处理器根据所述第一检测设备和第二检测设备的输出信号,进入开机模式或关机模式。
  14. 根据权利要求13所述的方法,其特征在于,所述处理器根据所述第 一检测设备和第二检测设备的输出信号,进入开机模式,包括:
    所述第一检测设备检测到开机行为,则输出第一开机检测信号;
    所述第二检测设备检测到开机行为,则输出第二开机检测信号;
    所述处理器接收到所述第一检测设备的第一开机检测信号或第二检测设备输出的第二开机检测信号后,则进入开机模式。
  15. 根据权利要求14所述的方法,其特征在于,所述处理器接收到所述第一检测设备输出的第一开机检测信号或所述第二检测设备输出的第二开机检测信号后,在进入开机模式前,所述方法还包括:
    所述处理器确定所述第一开机检测信号或第二开机检测信号有效。
  16. 根据权利要求15所述的方法,其特征在于,所述处理器确定所述第一开机检测信号或第二开机检测信号有效包括:
    判断接收到的第一开机检测信号的持续时长大于第一预设时长,则确定所述第一开机检测信号有效;
    判断接收到的第二开机检测信号的持续时长大于第一预设时长,则确定所述第二开机检测信号有效。
  17. 根据权利要求15或16所述的方法,其特征在于,所述处理器确定所述开机信号是否有效之前,所述方法还包括:
    所述处理器接收到所述第一开机检测信号或第二开机检测信号后,对接收到的第一开机检测信号或第二开机检测信号进行去干扰处理。
  18. 根据权利要求13-17任一项所述的方法,其特征在于,所述除颤仪还包括输入设备和电极片;在进入开机模式后,所述方法还包括:
    所述处理器在第二预设时长内通过所述输入设备或电极片检测用户的有效使用行为;
    如果在所述第二预设时长内没有检测到用户的有效使用行为,则进入关机模式。
  19. 根据权利要求13-18任一项所述的方法,其特征在于,所述处理器根据所述第一检测设备和第二检测设备的输出信号,进入关机模式包括:
    所述第一检测设备检测到关机行为,还输出第一关机检测信号;
    所述第二检测设备检测到关机行为,还输出第二关机检测信号;
    所述处理器接收到所述第一关机检测信号和/或所述第二关机检测信号后,进入关机模式。
  20. 根据权利要求19所述的方法,其特征在于,所述处理器接收到所述第一关机检测信号和/或所述第二关机检测信号后,进入关机模式前,所述方法还包括:
    确认所述第一关机检测信号和/或所述第二关机检测信号有效。
  21. 根据权利要求20所述的方法,其特征在于,所述确认所述第一关机检测信号和/或所述第二关机检测信号有效的步骤包括:
    判断接收到的第一关机检测信号的持续时长大于第三预设时长,则确定所述第一关机检测信号有效;
    判断接收到的第二关机检测信号的持续时长大于第三预设时长,则确定所述第二关机检测信号有效。
  22. 根据权利要去20所述的方法,其特征在于,在确认所述第一关机检测信号和/或所述第二关机检测信号有效之前,所述方法还包括:
    对接收到的第一关机检测信号或第二关机检测信号进行去干扰处理。
  23. 根据权利要求20所述的方法,其特征在于,在进入关机模式前,所述方法还包括:
    所述处理器通过所述输入设备或电极片检测用户的有效使用行为,如果检测到用户的有效使用行为,则停止进入关机模式。
  24. 根据权利要求13-23任一项所述的方法,其特征在于,所述第一检测设备为非接触式检测设备,所述第二检测设备为接触式开关。
PCT/CN2018/125866 2018-12-29 2018-12-29 一种开关机控制方法和除颤仪 WO2020133535A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880098820.5A CN112912802B (zh) 2018-12-29 2018-12-29 一种开关机控制方法和除颤仪
PCT/CN2018/125866 WO2020133535A1 (zh) 2018-12-29 2018-12-29 一种开关机控制方法和除颤仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/125866 WO2020133535A1 (zh) 2018-12-29 2018-12-29 一种开关机控制方法和除颤仪

Publications (1)

Publication Number Publication Date
WO2020133535A1 true WO2020133535A1 (zh) 2020-07-02

Family

ID=71127496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125866 WO2020133535A1 (zh) 2018-12-29 2018-12-29 一种开关机控制方法和除颤仪

Country Status (2)

Country Link
CN (1) CN112912802B (zh)
WO (1) WO2020133535A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103019124A (zh) * 2012-12-27 2013-04-03 中兴通讯股份有限公司 一种防止开关误触发的方法及装置
CN105744077A (zh) * 2016-03-31 2016-07-06 广东欧珀移动通信有限公司 一种移动终端的关机控制方法、装置及移动终端
CN105898055A (zh) * 2016-04-08 2016-08-24 广东欧珀移动通信有限公司 一种移动终端的休眠方法、装置及移动终端
CN107317924A (zh) * 2017-06-20 2017-11-03 上海传英信息技术有限公司 移动终端和移动终端的休眠方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5097830A (en) * 1990-03-30 1992-03-24 Laerdal Manufacturing Corporation Defibrillator with reliability verification
JP3200584B2 (ja) * 1998-02-25 2001-08-20 株式会社日立製作所 外部シャットダウン制御方法および計算機システム
KR100363654B1 (ko) * 2001-03-16 2002-12-05 엘지전자 주식회사 복합 다중 사용자 간섭 제거 장치 및 방법
JP2004029960A (ja) * 2002-06-21 2004-01-29 Fujitsu Ltd 携帯情報機器、携帯情報機器の制御方法、およびプログラム
CN102479040B (zh) * 2010-11-25 2015-06-24 联想(北京)有限公司 一种触摸处理方法及便携移动终端
CN106919867A (zh) * 2015-12-24 2017-07-04 中兴通讯股份有限公司 移动终端及其关机控制方法和装置
CN106303012B (zh) * 2016-08-09 2019-09-06 努比亚技术有限公司 基于随身设备的开机方法及随身设备
CN106704238B (zh) * 2016-12-26 2019-01-18 广东美的环境电器制造有限公司 风扇的控制方法及装置、风扇
CN106899762A (zh) * 2017-02-21 2017-06-27 上海青橙实业有限公司 移动终端及其开机和关机的方法
CN107943334A (zh) * 2017-11-17 2018-04-20 北京恒华伟业科技股份有限公司 一种鼠标、鼠标状态控制方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103019124A (zh) * 2012-12-27 2013-04-03 中兴通讯股份有限公司 一种防止开关误触发的方法及装置
CN105744077A (zh) * 2016-03-31 2016-07-06 广东欧珀移动通信有限公司 一种移动终端的关机控制方法、装置及移动终端
CN105898055A (zh) * 2016-04-08 2016-08-24 广东欧珀移动通信有限公司 一种移动终端的休眠方法、装置及移动终端
CN107317924A (zh) * 2017-06-20 2017-11-03 上海传英信息技术有限公司 移动终端和移动终端的休眠方法

Also Published As

Publication number Publication date
CN112912802B (zh) 2023-11-03
CN112912802A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
RU2677533C2 (ru) Предотвращение непреднамеренного разряда литиевой батареи автоматического внешнего дефибриллятора
US5968083A (en) Active overload detection and protection circuit for implantable cardiac therapy devices
US9259592B2 (en) Apparatus with wireless communication module
EP0671687A2 (en) System for automatically testing an electronic device during quiescent periods
CN104853804A (zh) 医学设备的自适应自测试和应力分析
TW201905485A (zh) 備用電源模組健康狀態的檢測系統及檢測電路
WO2020133535A1 (zh) 一种开关机控制方法和除颤仪
US5748427A (en) Method and system for detecting relay failure
KR20180110586A (ko) 소프트―스타트 및 보호를 구비한 전력 공급 장치
CN102541044B (zh) 故障监测电路及医疗设备
CN209784946U (zh) 一种基于单片机的可控制复位电路
KR102216372B1 (ko) 방전 제어 기능이 구비된 심장충격기
EP2939707B1 (en) Medical apparatus
RU2671657C2 (ru) Автоматическое управление питанием наружных дефибрилляторов
CN107145402A (zh) 一种检测软件宕机的方法和电子设备
JP6294102B2 (ja) バッテリー駆動式電子機器
CN111384743B (zh) 医疗设备
CN207663241U (zh) 一种医用手术电极使用次数控制系统
JP2019000704A (ja) バッテリー駆動式掃除機
CN114515388A (zh) 除颤设备的控制方法、除颤设备和存储介质
KR20190095570A (ko) IoT 기반 AED 관리 시스템 및 방법
CN118236627A (zh) 翻盖式aed及其关机控制方法、装置、设备及存储介质
CN219225479U (zh) 一种带电源低压监测保护的嵌入式系统
CN114515384A (zh) 除颤设备的控制方法、除颤设备
CN209221244U (zh) 一种呼吸机及其异常报警系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18944508

Country of ref document: EP

Kind code of ref document: A1