WO2020133379A1 - 一种含水率和电导率检测系统及检测方法 - Google Patents

一种含水率和电导率检测系统及检测方法 Download PDF

Info

Publication number
WO2020133379A1
WO2020133379A1 PCT/CN2018/125426 CN2018125426W WO2020133379A1 WO 2020133379 A1 WO2020133379 A1 WO 2020133379A1 CN 2018125426 W CN2018125426 W CN 2018125426W WO 2020133379 A1 WO2020133379 A1 WO 2020133379A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
wire
side circuit
circuit
conductivity
Prior art date
Application number
PCT/CN2018/125426
Other languages
English (en)
French (fr)
Inventor
孟敏
孟雨潇
Original Assignee
江苏麦赫物联网科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏麦赫物联网科技有限公司 filed Critical 江苏麦赫物联网科技有限公司
Publication of WO2020133379A1 publication Critical patent/WO2020133379A1/zh
Priority to US16/997,962 priority Critical patent/US11927547B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • G01N22/04Investigating moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Specific substances contained in the oils or fuels
    • G01N33/2847Water in oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/221Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/22Measuring resistance of fluids

Definitions

  • the invention relates to the technical field of material parameter detection, in particular to a water content and conductivity detection system and a detection method.
  • the moisture content and electrical conductivity of materials need to be tested during the production process.
  • the moisture content and salinity of crude oil are very important indicators, not only directly related to production efficiency. It is also important data for formation data analysis.
  • the traditional detection methods mainly include impedance method, capacitance method, radio frequency attenuation method, etc.
  • the main problems of these methods are: the full range of 0 ⁇ 100% detection cannot be achieved, especially the detection under high water conditions; subject to the degree of mineralization The impact is very large and cannot be detected in the case of high salinity; the overall detection accuracy is low.
  • the present invention provides a water content and conductivity detection system, which can realize the full range of water content and salinity detection to ensure accurate detection At the same time, the present invention also provides a corresponding detection method.
  • a moisture content and conductivity detection system characterized in that it includes a double-sided microstrip circuit and a detection circuit
  • the double-sided microstrip circuit includes a shielding ground layer, one side of the shielding ground layer
  • a measurement-side circuit is provided, and a reference-side circuit is provided on the other side.
  • the measurement-side circuit and the reference-side circuit both include an insulating layer and a wire.
  • the measurement-side circuit's measurement wire and the reference-side circuit's reference wire length The materials are the same.
  • the detection circuit includes a signal generator connected to the microprocessor. The signal generator is connected to the input terminal of the power splitter.
  • the two output terminals and the ground terminal of the power splitter are electrically connected to the One end of the reference lead, one end of the measuring lead, one end of the shielding ground layer, the other end of the reference lead is connected to an input end of the amplitude and phase detector through a phase shifter, the other end of the measuring lead, the other end of the shielding ground layer Are respectively connected to the other input terminal and the ground terminal of the amplitude discriminator, the output terminal of the amplitude discriminator is connected to the microprocessor, the measurement side circuit contacts the measured medium, and the reference side circuit Contact with air or with low dielectric constant materials.
  • the measurement-side insulation layer of the measurement-side circuit and the reference-side insulation layer of the reference-side circuit have the same material and the same thickness;
  • the signal generator outputs a variable frequency signal of 200-960 MHz, the power The splitter splits out 1:1 two-way signals and outputs them to the measurement-side circuit and the reference-side circuit respectively; one end of the measurement lead passes through the measurement-side insulation layer, the shielded ground layer, and the reference
  • the high-frequency shielding wire of the side insulating layer is connected to the power splitter, and the other end of the measuring wire passes through another high-frequency shielding wire penetrating the measuring-side insulating layer, the shielding ground layer, and the reference-side insulating layer Connected to the amplitude discriminator;
  • the shielding ground layer is provided with a sealed insulating via hole matched with the high-frequency shielded wire;
  • the reference side circuit side is provided with a sealing cover, which is filled in the sealing cover There is the low dielectric constant material;
  • a method for detecting water content and conductivity characterized in that it includes the following steps: (1) The microprocessor controls the signal generator to emit a microwave signal, and splits two signals through the power divider to the measurement side circuit and the reference side circuit ; (2) First, test under the condition of no water and pure water, get the nominal water content of 0% and water content of 100%, and store it in the microprocessor; when the measured side circuit is in contact with the medium containing water, the microwave signal transmission on the measuring wire The speed is reduced, and there is a phase shift with the micro signal on the reference wire.
  • the microprocessor for calculation and processing to obtain the moisture content of the measured medium; Test, the lowest and highest calibration values are obtained and stored in the microprocessor; when the medium of the measurement side circuit contacts water or minerals, the conductivity becomes higher, and the amplitude of the microwave signal of the measurement side wire is attenuated relative to the amplitude of the microwave signal of the reference side wire.
  • the amplitude and phase detectors input to the microprocessor for calculation and processing to obtain the conductivity of the measured medium, and the corresponding mineralization rate can be obtained according to the conductivity.
  • the microwave signal distributed by the power divider is consistent in length and material. Wire, according to whether the measured medium contains water or minerals, the microwave signal on the measurement wire and the microwave signal on the reference wire can be changed, and the accurate detection result can be obtained by comparing the amplitude and phase detectors.
  • the phase shifter can adjust the microwave on the reference wire
  • the phase of the signal plays the role of calibration and zero adjustment to realize the full range detection of moisture content and salinity; further, the insulation material on the measurement side and the reference side are of the same material and the same thickness, and the power divider is divided into 1:1 two Signal, which makes the detection more accurate and reliable, and at different temperatures, although the dielectric constant of the insulating layer material changes, the phase change caused by the measurement side circuit and the reference side circuit is the same, which can automatically compensate for the temperature.
  • the systematic measurement error ensures the accuracy of the measurement structure.
  • FIG. 1 is a schematic diagram of the present invention
  • FIG. 2 is a schematic diagram of a specific structure of a double-sided microstrip circuit.
  • a moisture content and conductivity detection system includes a double-sided microstrip circuit and a detection circuit.
  • the double-sided microstrip circuit includes a shield ground layer 3, and a measurement side is provided on one side of the shield ground layer 3
  • the circuit and the other side are provided with a reference-side circuit.
  • the measurement-side circuit includes a measurement-side insulation layer 2 and a measurement wire 1.
  • the reference-side circuit includes a reference-side insulation layer 4 and a reference wire 5.
  • the measurement-side circuit's measurement wire 1 and the reference-side circuit The length and material of the reference wire 5 are uniform, the measurement side insulation layer 2 is the same material and the thickness is the same, the detection circuit includes a digital high frequency signal generator connected to the microprocessor, and the digital high frequency signal generator is connected to the high frequency power divider
  • the input terminal, the two output terminals OUT1, OUT2 and the ground terminal GND of the high-frequency power splitter are electrically connected to the reference measurement conductor 1 end, the reference conductor 5 end, and the shielding ground layer 3 end, and the other end of the reference conductor 5 is connected through a phase shifter.
  • the measurement side circuit is in contact with the measured medium.
  • the reference side circuit is in contact with air or low dielectric constant material.
  • the two ends of the measuring wire need to be led out to the side of the reference side circuit and then connected to the high frequency power splitter and amplitude phase detector Electrically controlled connection, so the following structure is adopted: one end of the measuring wire 1 is connected to the high-frequency power splitter through a measuring-side high-frequency shielded wire 7 penetrating the measuring-side insulating layer 2, the shielding ground layer 3, and the reference-side insulating layer 4, and the measuring wire 1 The other end is connected to the amplitude discriminator through another high-frequency shielding wire 8 that penetrates the measurement-side insulating layer 2, the shielding ground layer 3, and the reference-side insulating layer 4.
  • the shielding ground layer 3 is provided with a high-frequency
  • the sealed insulation vias 6 matched with the shielded wires 7 and 8; because the two high-frequency shielded wires 7 and 8 on the measurement side penetrate to the circuit side of the reference side, the reference wire 5 needs to be consistent with the length of the measurement wire, so the arrangement is as shown in the figure.
  • the reference side high-frequency shielding wires 9, 10 are also provided on both sides of the reference wire 5.
  • the signal generator outputs a variable frequency signal of 200-960MHz, and the power divider divides the 1:1 two-way signal and outputs it to the measurement side circuit and the reference side circuit respectively.
  • a water content and conductivity detection method which includes the following steps: (1) The microprocessor controls the signal generator to emit a microwave signal of 200-960MHz, and divides the 1:1 two-way signal through the power divider to the measurement side circuit and Reference side circuit; according to the microwave transmission theory, the microwave transmission speed formula is: Where c is the speed of light, ⁇ is the mixed dielectric constant, and ⁇ is the magnetic permeability. The permeability of 1 is negligible, so the microwave transmission speed depends on the mixed dielectric constant.
  • the mixed dielectric constant of the reference side circuit is composed of the dielectric constant of the reference side insulating layer and the air or low dielectric constant material filler, which is a fixed value under constant temperature conditions.
  • the mixed dielectric constant of the measuring side circuit is composed of the dielectric constant of the measuring side insulating layer and the dielectric constant of the measured medium.
  • phase difference signal Vpo under pure oil medium is obtained through calibration, which is Vpw in pure water, that is, the water content is calibrated 0-100%, and Vpo ⁇ Vpw, these two parameters are stored in the microprocessor.
  • the phase difference signal is Vpx
  • the microprocessor collects the DC voltage signal to process the conductivity of the measured medium, and finally obtains it based on the conductivity Corresponding mineralization rate, because there is a corresponding relationship between conductivity and mineralization rate, the corresponding mineralization rate can be obtained after calculating the conductivity.
  • the phase DC voltage signal Va output by the amplitude and phase detector corresponds to the amplitude difference between the measuring wire and the reference wire.
  • a standard conductivity solution such as pure water with a conductivity of 0
  • the specific conductivity is determined by the range.
  • the amplitude difference signal Va0 when the conductivity is 0 is obtained.
  • the amplitude difference signal is Vax
  • the microprocessor Since the microprocessor is connected to the communication circuit, the measured result can be transmitted through the communication circuit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

一种含水率和电导率检测系统及检测方法,其能够实现含水率、矿化度的全范围检测,保证检测精确度,同时,还提供了对应的检测方法,其包括双面微带电路和检测电路,双面微带电路包括屏蔽接地层(3),屏蔽接地层(3)一面设置有测量侧电路、另一面设置有参考侧电路,测量侧电路与参考侧电路均包括绝缘层(2、4)和导线(1、5),检测电路包括连接微处理器的信号发生器,信号发生器连接功分器输入端,功分器的两个输出端(OUT2、OUT1)和接地端(GND)分别电控连接参考导线(5)一端、测量导线(1)一端、屏蔽接地层(3)一端,参考导线(5)另一端通过移相器连接鉴幅鉴相器的一个输入端(IN2),测量导线(1)另一端、屏蔽接地层(3)另一端分别连接鉴幅鉴相器的另一个输入端(IN1)和接地端(GND)。

Description

一种含水率和电导率检测系统及检测方法 技术领域
本发明涉及材料参数检测技术领域,具体为一种含水率和电导率检测系统及检测方法。
背景技术
在石油、化工等很多行业,生产过程中都需要对材料的含水率和电导率进行检测,尤其是石油行业,原油的含水率和矿化度是非常重要的指标,不仅跟生产效益直接相关,也是地层数据分析的重要数据。目前传统的检测方法主要有阻抗法、电容法、射频衰减法等,这些方法都存在的主要问题有:不能实现0~100%全范围检测,尤其是高含水条件下的检测;受矿化度影响非常大,高矿化度情况下无法检测;整体检测精度较低。
技术问题
为了解决现有含水率和矿化度不能全范围、精确检测的问题,本发明提供了一种含水率和电导率检测系统,其能够实现含水率、矿化度的全范围检测,保证检测精确度,同时,本发明还提供了对应的检测方法。
技术解决方案
其技术方案是这样的:一种含水率和电导率检测系统,其特征在于,其包括双面微带电路和检测电路,所述双面微带电路包括屏蔽接地层,所述屏蔽接地层一面设置有测量侧电路、另一面设置有参考侧电路,所述测量侧电路与所述参考侧电路均包括绝缘层和导线,所述测量侧电路的测量导线与所述参考侧电路的参考导线长度、材质均一致,所述检测电路包括连接微处理器的信号发生器,所述信号发生器连接功分器输入端,所述功分器的两个输出端和接地端分别电控连接所述参考导线一端、所述测量导线一端、所述屏蔽接地层一端,所述参考导线另一端通过移相器连接鉴幅鉴相器的一个输入端,所述测量导线另一端、屏蔽接地层另一端分别连接所述鉴幅鉴相器的另一个输入端和接地端,所述鉴幅鉴相器的输出端连接所述微处理器,所述测量侧电路接触被测介质,所述参考侧电路接触空气或者接触低介电常数材料。
有益效果
其进一步特征在于,所述测量侧电路的测量侧绝缘层与所述参考侧电路的参考侧绝缘层材质相同且厚度一致;所述信号发生器输出200-960MHz的可变频率信号,所述功分器分出1:1两路信号分别输出给所述测量侧电路与所述参考侧电路;所述测量导线一端通过一根贯穿所述测量侧绝缘层、所述屏蔽接地层、所述参考侧绝缘层的高频屏蔽线连接所述功分器,所述测量导线另一端通过另一根贯穿所述测量侧绝缘层、所述屏蔽接地层、所述参考侧绝缘层的高频屏蔽线连接所述鉴幅鉴相器;所述屏蔽接地层上开有与所述高频屏蔽线配合的密封绝缘过孔;所述参考侧电路侧设置有密封罩壳,所述密封罩壳内填充有所述低介电常数材料;所述微处理器连接通讯电路。
一种含水率和电导率检测方法,其特征在于,其包括以下步骤:(1)微处理器控制信号发生器发出微波信号,经过功分器分出两路信号给测量侧电路与参考侧电路;(2)先进行不含水和纯水状态下测试,得到标定含水0%和含水100%,存入微处理器;当测量侧电路接触的被侧介质含水时,测量导线上的微波信号传输速度降低,与参考导线上的微信号产生相移,通过鉴幅鉴相器的比较,输入给微处理器计算处理得到被测介质含水率;(3)先进行不含水和满量程电导率的测试,得到最低和最高标定值存入微处理器;当测量侧电路接触的介质含水或矿物质时,电导率变高,测量侧导线的微波信号幅度相对参考侧导线的微波信号幅度产生衰减,通过鉴幅鉴相器比较,输入给微处理器计算处理得到被测介质的电导率,根据电导率得出对应的矿化率。
采用本发明的系统和方法后,通过设置接触被测介质的测量侧电路,接触空气或者接触低介电常数材料参考侧电路,功分器分配的微波信号经过长度、材质均一致测量导线与参考导线,根据被测介质是否含水或矿物质得到测量导线上的微波信号与参考导线上的微波信号变化,通过鉴幅鉴相器比较可以得到精确的检测结果,移相器可以调节参考导线上微波信号的相位,起到标定调零作用,实现含水率、矿化度的全范围检测;进一步的,测量侧绝缘层与参考侧绝缘层材质相同且厚度一致,功分器分出1:1两路信号,使得检测更加精确可靠,而且在不同温度下,虽然绝缘层材料的介电常数发生变化,但是测量侧电路与参考侧电路带来的相位变化是同等的,可以自动补偿温度带来的系统测量误差,保证测量结构的准确。
附图说明
图1为本发明原理图;图2为双面微带电路具体结构示意图。
本发明的实施方式
见图1,图2所示,一种含水率和电导率检测系统,其包括双面微带电路和检测电路,双面微带电路包括屏蔽接地层3,屏蔽接地层3一面设置有测量侧电路、另一面设置有参考侧电路,测量侧电路包括测量侧绝缘层2与测量导线1,参考侧电路均包括参考侧绝缘层4和参考导线5,测量侧电路的测量导线1与参考侧电路的参考导线5长度、材质均一,测量侧绝缘层2参考侧绝缘层4材质相同且厚度一致,检测电路包括连接微处理器的数字高频信号发生器,数字高频信号发生器连接高频功分器输入端,高频功分器的两个输出端OUT1、OUT2和接地端GND分别电控连接参考测量导线1一端、参考导线5一端、屏蔽接地层3一端,参考导线5另一端通过移相器连接鉴幅鉴相器的一个输入端IN2,测量导线1另一端、屏蔽接地层3另一端分别连接鉴幅鉴相器的另一个输入端IN1和接地端GND,鉴幅鉴相器的输出端输出相位信号和幅度信号给微处理器,测量侧电路接触被测介质,参考侧电路接触空气或者接触低介电常数材料,低介电常数材料即介电常数k比较低(低于二氧化硅,k=3.9)的电介质,主要应用在微电子领域,当接触低介电常数材料时,需要在外面设置密封罩壳,然后在密封罩壳内填充有低介电常数材料。
由于测量侧电路需要与被测介质接触,且被测介质为原油等液体,为了保证能够可靠检测,需要将测量导线两端引出到参考侧电路一侧后与高频功分器、鉴幅鉴相器电控连接,因此采用了如下结构:测量导线1一端通过一根贯穿测量侧绝缘层2、屏蔽接地层3、参考侧绝缘层4的测量侧高频屏蔽线7连接高频功分器,测量导线1另一端通过另一根贯穿测量侧绝缘层2、屏蔽接地层3、参考侧绝缘层4的测量侧高频屏蔽线8连接鉴幅鉴相器,屏蔽接地层3上开有与测量侧高频屏蔽线7、8配合的密封绝缘过孔6;由于两根测量侧高频屏蔽线7、8贯穿到参考侧电路一侧,参考导线5需要与测量导线长度一致,因此如图所述布置,参考导线5两侧也设置了参考侧高频屏蔽线9、10。
信号发生器输出200-960MHz的可变频率信号,功分器分出1:1两路信号分别输出给测量侧电路与参考侧电路。
一种含水率和电导率检测方法,其包括以下步骤:(1)微处理器控制信号发生器发出200-960MHz的微波信号,经过功分器分出1:1两路信号给测量侧电路与参考侧电路;根据微波传输理论,微波传输速度公式为:
Figure 895271dest_path_image001
其中c为光速,ε为混合介电常数,μ为磁导率。磁导率为1可以忽略,这样微波的传输速度取决于混合介电常数。参考侧电路的混合介电常数由参考侧绝缘层介电常数和空气或者低介电常数材料填充物组成,在恒温条件下是一个固定不变的值。测量侧电路的混合介电常数由测量侧绝缘层介电常数和被测介质的介电常数组成。(2)当测量侧电路与参考侧电路接触的介质相同且都不含水分时,测量导线与参考导线上的微波信号传输速度一样,相位相同;当测量侧电路接触的被侧介质含水时,测量导线上的微波信号传输速度降低,与参考导线上的微信号产生相移,通过鉴幅鉴相器的比较,得到被测介质含水率;具体的,鉴幅鉴相器输出的相位直流电压信号Vp对应测量导线和参考导线的相差,在测量被侧介质含水率之前,先进行不含水介质和纯水的标定,譬如纯油和纯水。通过标定得到在纯油介质下的相差信号Vpo,纯水时为Vpw,即标定了含水率0-100%,而且Vpo<Vpw,这两个参数存储在微处理器里面。在实时测量时,相差信号为Vpx,那么被侧介质的含水率α计算公式为:α=(Vpx-Vpo)/(Vpw-Vpo)。(3)当测量侧电路与参考侧电路接触的介质相同且都不含水分时,电导率一致,测量导线与参考导线上的微波信号的幅度和衰减程度一样;参考侧电路的介质恒定而且电导率很低接近为0,因此参考导线上的微波信号幅度衰减恒定,当测量侧电路接触的介质含水或矿物质时,电导率变高,测量侧导线的微波信号幅度相对参考侧导线的微波信号幅度产生衰减,通过鉴幅鉴相器比较,得到与幅度比值的对数相对应的直流电压信号,微处理器对该直流电压信号进行采集处理被测介质的电导率,最后根据电导率得出对应的矿化率,由于电导率和矿化率存在对应关系,计算得到电导率后即可得出对应的矿化率。具体的,鉴幅鉴相器输出的相位直流电压信号Va对应测量导线和参考导线的幅差,在测量介质电导率之前,先进行标准电导率溶液的标定,譬如电导率为0的纯水,以及电导率高的溶液,具体的电导率由量程范围决定。通过标定得到电导率为0时的幅差信号Va0,满量程电导率时为Va1,Va0>Va1,这两个参数存储在微处理器里面。在实时测量时,幅差信号为Vax,那么混合介质的电导率σ计算公式为:σ=(Va0-Vax)*range/(Va0-Va1),range是仪器的电导率测量满量程。
由于微处理器连接通讯电路,可以将测得结果通过通讯电路传输出去。

Claims (8)

  1. 一种含水率和电导率检测系统,其特征在于,其包括双面微带电路和检测电路,所述双面微带电路包括屏蔽接地层,所述屏蔽接地层一面设置有测量侧电路、另一面设置有参考侧电路,所述测量侧电路与所述参考侧电路均包括绝缘层和导线,所述测量侧电路的测量导线与所述参考侧电路的参考导线长度、材质均一致,所述检测电路包括连接微处理器的信号发生器,所述信号发生器连接功分器输入端,所述功分器的两个输出端和接地端分别电控连接所述参考导线一端、所述测量导线一端、所述屏蔽接地层一端,所述参考导线另一端通过移相器连接鉴幅鉴相器的一个输入端,所述测量导线另一端、屏蔽接地层另一端分别连接所述鉴幅鉴相器的另一个输入端和接地端,所述鉴幅鉴相器的输出端连接所述微处理器,所述测量侧电路接触被测介质,所述参考侧电路接触空气或者接触低介电常数材料。
  2. 根据权利要求1所述的一种含水率和电导率检测系统,其特征在于,所述测量侧电路的测量侧绝缘层与所述参考侧电路的参考侧绝缘层材质相同且厚度一致。
  3. 根据权利要求1所述的一种含水率和电导率检测系统,其特征在于,所述信号发生器输出200-960MHz的可变频率信号,所述功分器分出1:1两路信号分别输出给所述测量侧电路与所述参考侧电路。
  4. 根据权利要求1所述的一种含水率和电导率检测系统,其特征在于,所述测量导线一端通过一根贯穿所述测量侧绝缘层、所述屏蔽接地层、所述参考侧绝缘层的高频屏蔽线连接所述功分器,所述测量导线另一端通过另一根贯穿所述测量侧绝缘层、所述屏蔽接地层、所述参考侧绝缘层的高频屏蔽线连接所述鉴幅鉴相器。
  5. 根据权利要求4所述的一种含水率和电导率检测系统,其特征在于,所述屏蔽接地层上开有与所述高频屏蔽线配合的密封绝缘过孔。
  6. 根据权利要求1所述的一种含水率和电导率检测系统,其特征在于,所述参考侧电路侧设置有密封罩壳,所述密封罩壳内填充有所述低介电常数材料。
  7. 根据权利要求1所述的一种含水率和电导率检测系统,其特征在于,所述微处理器连接通讯电路。
  8. 使用权利要求1所述的含水率和电导率检测系统的检测方法,其特征在于,其包括以下步骤:(1)微处理器控制信号发生器发出微波信号,经过功分器分出两路信号给测量侧电路与参考侧电路;(2)先进行不含水和纯水状态下测试,得到标定含水0%和含水100%,存入微处理器;当测量侧电路接触的被侧介质含水时,测量导线上的微波信号传输速度降低,与参考导线上的微信号产生相移,通过鉴幅鉴相器的比较,输入给微处理器计算处理得到被测介质含水率;(3)先进行不含水和满量程电导率的测试,得到最低和最高标定值存入微处理器;当测量侧电路接触的介质含水或矿物质时,电导率变高,测量侧导线的微波信号幅度相对参考侧导线的微波信号幅度产生衰减,通过鉴幅鉴相器比较,输入给微处理器计算处理得到被测介质的电导率,根据电导率得出对应的矿化率。
     
PCT/CN2018/125426 2018-12-26 2018-12-29 一种含水率和电导率检测系统及检测方法 WO2020133379A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/997,962 US11927547B2 (en) 2018-12-26 2020-08-20 Detection system and detection method for water content and conductivity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811600592.5 2018-12-26
CN201811600592.5A CN109459450B (zh) 2018-12-26 2018-12-26 一种含水率和电导率检测系统及检测方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/997,962 Continuation US11927547B2 (en) 2018-12-26 2020-08-20 Detection system and detection method for water content and conductivity

Publications (1)

Publication Number Publication Date
WO2020133379A1 true WO2020133379A1 (zh) 2020-07-02

Family

ID=65614671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125426 WO2020133379A1 (zh) 2018-12-26 2018-12-29 一种含水率和电导率检测系统及检测方法

Country Status (3)

Country Link
US (1) US11927547B2 (zh)
CN (1) CN109459450B (zh)
WO (1) WO2020133379A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113933321A (zh) * 2021-10-18 2022-01-14 江苏麦赫物联网科技有限公司 一种复杂油水混合状态下高精度含水率测定方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110672820B (zh) * 2019-10-31 2022-02-22 陕西永凯科技有限公司 多传感器融合测量含水率和/或矿化度测量系统
CN112268913B (zh) * 2020-09-18 2022-09-02 天津大学 消除水的矿化度影响的油气水三相流微波持水率测量方法
CN112798621B (zh) * 2020-12-25 2021-10-08 孟敏 基于s形微波传输线的结冰结露检测装置及方法
CN112798656A (zh) * 2021-02-02 2021-05-14 克拉玛依市科华技术服务有限责任公司 油田水注气锅炉矿化度预判方法
WO2023047344A1 (en) * 2021-09-23 2023-03-30 Sacmi Cooperativa Meccanici Imola Societa' Cooperativa Apparatus and method for making finished or semi-finished ceramic products
CN115839961B (zh) * 2022-04-02 2023-07-18 菏泽鼎新仪器有限公司 一种原油含水量的在线测量方法及可视化分析装置
CN114965511A (zh) * 2022-05-20 2022-08-30 上海兰宝传感科技股份有限公司 基于微波的检测设备及电路
CN116337178B (zh) * 2022-12-30 2024-02-09 江苏麦赫物联网科技有限公司 一种原油储罐内界面检测方法及检测装置
CN116106373A (zh) * 2023-02-09 2023-05-12 哈尔滨理工大学 双频相敏解调原油物性参数测量系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060096368A1 (en) * 2002-11-15 2006-05-11 Jacques Morineau Method of measuring the height of a liquid using a high-frequency line probe
CN104141491A (zh) * 2014-07-10 2014-11-12 长江大学 一种基于共面微带传输线法井下原油含水率检测装置
CN104155315A (zh) * 2014-08-19 2014-11-19 江苏麦赫物联网科技有限公司 基于射频传输的在线测量粮食含水率的检测装置及方法
CN106706670A (zh) * 2017-01-11 2017-05-24 江苏麦赫物联网科技有限公司 一种多频微波含水率检测系统
CN106768181A (zh) * 2017-01-11 2017-05-31 江苏麦赫物联网科技有限公司 一种基于微波检测技术的物位液位开关
CN108535284A (zh) * 2018-06-26 2018-09-14 西安石油大学 一种基于射频法的双天线结构原油含水率测量传感器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101799436B (zh) * 2010-03-18 2012-07-25 中国农业大学 基于相位检测的土壤水分、电导率测量仪及其测量方法
KR20130136623A (ko) * 2012-06-05 2013-12-13 인제대학교 산학협력단 액체 전기전도도 측정 장치
US10067091B2 (en) * 2016-07-29 2018-09-04 Saudi Arabian Oil Company Integrated sediment and water analysis device and method
CN206420790U (zh) * 2017-01-11 2017-08-18 江苏麦赫物联网科技有限公司 基于微波分层检测的三相流原油含水率测试装置
US10591441B2 (en) * 2018-05-31 2020-03-17 Battelle Memorial Institute Oil content sensor
CN209690204U (zh) * 2018-12-26 2019-11-26 江苏麦赫物联网科技有限公司 一种含水率和电导率检测系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060096368A1 (en) * 2002-11-15 2006-05-11 Jacques Morineau Method of measuring the height of a liquid using a high-frequency line probe
CN104141491A (zh) * 2014-07-10 2014-11-12 长江大学 一种基于共面微带传输线法井下原油含水率检测装置
CN104155315A (zh) * 2014-08-19 2014-11-19 江苏麦赫物联网科技有限公司 基于射频传输的在线测量粮食含水率的检测装置及方法
CN106706670A (zh) * 2017-01-11 2017-05-24 江苏麦赫物联网科技有限公司 一种多频微波含水率检测系统
CN106768181A (zh) * 2017-01-11 2017-05-31 江苏麦赫物联网科技有限公司 一种基于微波检测技术的物位液位开关
CN108535284A (zh) * 2018-06-26 2018-09-14 西安石油大学 一种基于射频法的双天线结构原油含水率测量传感器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113933321A (zh) * 2021-10-18 2022-01-14 江苏麦赫物联网科技有限公司 一种复杂油水混合状态下高精度含水率测定方法
CN113933321B (zh) * 2021-10-18 2024-03-29 江苏麦赫物联网科技有限公司 一种复杂油水混合状态下高精度含水率测定方法

Also Published As

Publication number Publication date
US20200378903A1 (en) 2020-12-03
CN109459450B (zh) 2023-12-19
US11927547B2 (en) 2024-03-12
CN109459450A (zh) 2019-03-12

Similar Documents

Publication Publication Date Title
CN109459450B (zh) 一种含水率和电导率检测系统及检测方法
US10317444B2 (en) Sensor and method for determining a dielectric property of a medium
US7716978B2 (en) High resolution capacitance high conductivity fluid sensor
CN106556748B (zh) 基于传输反射法的薄膜材料复介电常数的测量装置及方法
US20090212789A1 (en) Modified tdr method and apparatus for suspended solid concentration measurement
CN110763704B (zh) 基于微波Wire mesh的油水两相流含水率测量系统
JP4194179B2 (ja) 特性測定装置
CN209690204U (zh) 一种含水率和电导率检测系统
CN108680614A (zh) 双螺旋高频电容传感器高含水油水两相流持水率测量方法
US9939418B2 (en) System and method for multiphase flow measurements
CN215640997U (zh) 一种双电参原油含水率监测仪
WO2013109816A1 (en) Low-conductivity contacting-type conductivity measurement
CN109470311A (zh) 一种双隐蔽探针式粮仓用粮食多参数rf在线检测装置及检测方法
CN101788610A (zh) 一种同轴阻抗标准器的定标方法
CN212159639U (zh) 适用性宽泛的油井井口原油多参量检测仪器
KR101616114B1 (ko) 원 포트 탐침을 이용한 투자율 및 유전율 측정 장치 및 방법
CN209624459U (zh) 一种电容层析成像系统
CN106979963A (zh) 一种测量水质ph值的装置
US20210003514A1 (en) Microwave soil moisture sensor based on phase shift method and independent of electrical conductivity of the soil
CN104409275A (zh) 真空灭弧室真空度在线监测装置
GB2583361A (en) Microwave-based method and apparatus for monitoring a process variable
CN116011266B (zh) 一种利用散射参数反演长电缆电参数的方法
CN213122122U (zh) 一种无线传感容性设备介质损耗带电测试装置
US20230304955A1 (en) Temperature-compensated dielectric-constant measuring device
CN209690224U (zh) 一种基于同轴线相位法的原油含水仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944138

Country of ref document: EP

Kind code of ref document: A1