WO2020133313A1 - 一种对位芳纶纺丝流量控制系统及控制方法 - Google Patents

一种对位芳纶纺丝流量控制系统及控制方法 Download PDF

Info

Publication number
WO2020133313A1
WO2020133313A1 PCT/CN2018/125220 CN2018125220W WO2020133313A1 WO 2020133313 A1 WO2020133313 A1 WO 2020133313A1 CN 2018125220 W CN2018125220 W CN 2018125220W WO 2020133313 A1 WO2020133313 A1 WO 2020133313A1
Authority
WO
WIPO (PCT)
Prior art keywords
para
spinning
aramid
booster pump
control
Prior art date
Application number
PCT/CN2018/125220
Other languages
English (en)
French (fr)
Inventor
韩正奇
庹新林
Original Assignee
中芳特纤股份有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中芳特纤股份有限公司, 清华大学 filed Critical 中芳特纤股份有限公司
Priority to PCT/CN2018/125220 priority Critical patent/WO2020133313A1/zh
Publication of WO2020133313A1 publication Critical patent/WO2020133313A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means

Definitions

  • the invention relates to the technical field of aramid fiber production, in particular to a para-aramid spinning flow control system and control method.
  • Aramid fiber that is, polyparaphenylene terephthalamide (para-aramid) fiber, has excellent physical and chemical properties such as high strength, high modulus, high temperature resistance, acid and alkali resistance, and light weight, and is widely used in aerospace. In the military field and civil field, it also has a wide range of applications as a reinforcing material in composite materials.
  • para-aramid fiber The production process of para-aramid fiber includes polymerization, spinning and recycling. Spinning is the last process. The quality of the spinning process directly determines the quality of aramid fiber products. Therefore, para-aramid spinning is aramid production. One of the most important links in the world.
  • Para-aramid spinning is mainly made by dissolving polyparaphenylene terephthalamide (para-aramid) resin and concentrated sulfuric acid in the screw, and then dry-spinning wet spinning by the spinning machine.
  • the spinning machine for producing aramid fiber is generally composed of multiple spinning positions. If a spinning position is clogged during the production process, it will inevitably affect the spinning quality of other spinning positions.
  • the first method is to add a bypass valve to the main pipe of the spinning machine inlet. When one or more spinning positions on the spinning machine are blocked, open and adjust the size of the bypass valve to ensure other normal spinning The pressure and flow of the bit remain normal.
  • the advantage of this method is that other normal spinning positions are not affected by the malfunctioning spinning position, and this method can solve the problem online to avoid losses caused by equipment shutdown.
  • the main disadvantage of this method is that the material discharged through the bypass valve will be used as waste, causing serious waste.
  • the second method because there are multiple spinning positions on one spinning machine, when one spinning position is blocked, the quality of other spinning positions will not cause serious problems, so no treatment will be done; until multiple spinning positions fail , To the extent that it seriously affects the product quality of other spinning positions, the entire production line is stopped for centralized processing.
  • the problem with this method is that when the nozzle of a single spinning position is clogged without treatment, the quality is slightly affected.
  • the produced aramid fiber has a large weight per unit length, that is, the output rate is reduced; multiple spinning positions fail to stop and cause production losses.
  • the present invention proposes a para-aramid spinning flow control system and control method. Through the overall chain control of the spinning production line, the dynamic adjustment of the spinning process is realized to avoid the waste of materials and the loss caused by shutdown and shutdown.
  • the technical scheme adopted by the present invention is a para-aramid spinning flow control system, including: sulfuric acid system, para-aramid feeding system, twin-screw extruder, screw extruder drive motor, first pressure sensor, Booster pump, filter, second pressure sensor, spinning box, metering pump, controller.
  • the sulfuric acid system is used to control the flow of sulfuric acid according to the set value
  • Para-aramid feeding system used to control the output of para-aramid resin according to the set value
  • Twin-screw extruder for fully dissolving, mixing, shearing and extruding the input sulfuric acid solution and para-aramid powder resin
  • the drive motor of the screw extruder is used to control the rotation speed of the screw in the twin screw extruder
  • the first pressure sensor is used to measure the outlet pressure of the twin screw extruder
  • the booster pump is used to provide pressure difference to the filter and kinetic energy for the materials in the pipeline, and at the same time output the speed signal to the control system;
  • Filter used to filter impurities in the material
  • the second pressure sensor is used to measure the pressure value on the main pipe of the spinning machine inlet material
  • the metering pump is used to transfer the material on the branch pipe to the spinning position of the spinning box;
  • Spinning box multiple spinning positions are installed in the spinning box for spinning materials into silk.
  • the output ends of the sulfuric acid system and the para-aramid feeding system are connected to the feeding hopper of the twin-screw extruder through pipes; the driving motor of the screw extruder is located on the side of the twin-screw extruder; twin-screw extruder
  • the output port of the machine is connected to the input port of the booster pump.
  • the first pressure sensor is installed on the main pipe of the twin screw extruder to the booster pump.
  • the output port of the booster pump is connected to the input port of the filter.
  • the output port of the filter It is connected to the main pipeline inlet of the front end of the spinning machine metering pump.
  • the second pressure sensor is installed on the main pipe from the filter to the spinning box.
  • the spinning machine metering pump is located above the spinning box;
  • the nylon feeding system, the drive motor of the screw extruder, the first pressure sensor, the booster pump, and the second pressure sensor are connected to the controller by circuits.
  • the flow control system for para-aramid spinning in the present invention is mainly divided into three subsystems, namely:
  • the controller, second pressure sensor and booster pump form a booster pump control subsystem.
  • the second pressure sensor detects the pressure and transmits it to the controller, and the controller receives the spinning position of the spinning machine After the pressure change caused by clogging, PID calculation is performed to output the signal to appropriately reduce the speed of the booster pump.
  • the controller, the first pressure sensor, the booster pump and the screw extruder drive motor form a screw control subsystem.
  • the controller drives the screw extruder according to the pressure value of the first pressure sensor and the speed change of the booster pump The motor speed is controlled.
  • the controller When the controller receives the change in the speed signal of the booster pump, it first filters the speed signal.
  • the filter process is mainly to remove the impact of the high frequency on the control system.
  • the filtering method can be selected low-pass filter, median average Filters, etc., input the filtered data to the feedforward controller for processing.
  • the feedforward controller can select first-order lag compensation or second-order lag compensation.
  • the controller receives the pressure signal of the twin screw extruder, it performs PID processing on it, and simultaneously outputs the processing result of the PID controller and the feedforward control to the driver of the screw extruder motor. Control motor speed changes.
  • the controller, booster pump, sulfuric acid system and para-aramid feeding system constitute the feed control subsystem.
  • the work flow of the feed control subsystem is as follows:
  • the controller obtains the current working nozzle number M, unit sulfuric acid flow rate F1, unit para-aramid flow rate F2, and current booster pump speed R, booster pump capacity L, and unit nozzle flow rate F0;
  • the third step is to set and start the timer T;
  • the fourth step is to judge whether the timer is over. If the timer does not end, set the para-aramid flow rate to (2N-M)*F2, set the sulfuric acid flow rate to (2N-M)*F1; if the timer ends, set the para-aramid flow rate to N* F2, set the sulfuric acid flow rate to N*F1;
  • the controller inputs the sulfuric acid flow rate and the para-aramid flow rate set in the fourth step into the sulfuric acid system and the para-aramid feeding system, respectively, to control the output of the sulfuric acid and the para-aramid fiber.
  • the speed of the booster pump, the speed of the screw extruder and the feed speed will be adjusted accordingly, and the spinning quality will fluctuate slightly during the adjustment period, and will remain the original afterwards
  • the quality and weight of the aramid fiber produced per unit length remain unchanged, that is, the output rate remains unchanged.
  • the branch is closed and the clogged spinning nozzle is repaired. After the repair, the branch is opened, and the speed of the booster pump, screw extruder, and feed speed will be increased accordingly, without stopping for maintenance.
  • the present invention adopts the overall dynamic control of the batching system, screw, booster pump and spinning machine.
  • the control system can solve the problem of clogging the nozzle of the spinning position of the spinning machine in real time and ensure the spinning quality , There is no waste of materials; the loss caused by shutdown maintenance is solved.
  • Figure 1 is a flow control system diagram of para-aramid spinning
  • Figure 2 is a schematic diagram of flow control of para-aramid spinning
  • Figure 3 is a schematic diagram of the para-aramid spinning flow control system
  • Figure 4 is the control flow chart of the booster pump
  • Figure 5 is a flow chart of screw control
  • Fig. 6 is a flow chart of feed control.
  • FIG. 1 is a flow control system diagram of para-aramid spinning according to the present invention.
  • a para-aramid spinning flow control system includes: sulfuric acid system 1, para-aramid feeding system 2.
  • Sulfuric acid system used to control the output of sulfuric acid flow according to the set value
  • Para-aramid feeding system 2 used to control the output of para-aramid resin according to the set value
  • Twin-screw extruder 3 used to fully dissolve, mix, shear and extrude the input sulfuric acid solution and para-aramid powder resin;
  • the screw extruder drive motor 4 is used to control the rotation speed of the screw in the twin screw extruder
  • the first pressure sensor 5 is used to measure the outlet pressure of the twin screw extruder
  • Booster pump 6 used to provide pressure difference to the filter and kinetic energy for the materials in the pipeline, and at the same time output the speed signal to the control system;
  • Filter 7 used to filter impurities in the material
  • the second pressure sensor 8 is used to measure the pressure value on the main pipeline of the spinning machine inlet material
  • the metering pump 10 is used to transfer the material on the branch pipe to the spinning position of the spinning box;
  • the spinning box 9 is equipped with multiple spinning positions in the spinning box for spinning materials into silk.
  • the output ends of the sulfuric acid system 1 and the para-aramid feeding system 2 are connected to the feed hopper of the twin-screw extruder 3 by pipes; the screw extruder drive motor 4 is located on the side of the twin-screw extruder 3 ;
  • the output port of the twin screw extruder 3 is connected to the input port of the booster pump 6,
  • the first pressure sensor 5 is installed on the main pipe of the twin screw extruder 3 to the booster pump 6, the output port of the booster pump 6 and the filter
  • the input port of the filter 7 is connected, and the output port of the filter 7 is connected to the main pipe inlet of the front end of the spinning machine metering pump 10.
  • the second pressure sensor 8 is installed on the main pipe of the filter to the spinning machine.
  • the spinning machine metering pump 10 is located Above the spinning box 9; the sulfuric acid system 1, para-aramid feeding system 2, screw extruder drive motor 4, first pressure sensor 5, booster pump 6, second pressure sensor 8 and control
  • the 11 devices are connected by a circuit.
  • the pressure sensors used are made of Hastelloy alloy, and the measuring range is 0-16bar;
  • the twin screw extruder motor uses a 300kw asynchronous motor, and the drive is a Siemens G120 inverter;
  • the booster pump motor uses a servo motor
  • the drive is a Siemens S20 drive, and the spinning machine uses a 16-bit spinning machine;
  • the controller used in the overall system is Siemens 1500 PLC.
  • the controller 11 collects the first pressure sensor 5, Two pressure sensors 8 and booster pump 6 speed signals are implemented respectively: booster pump control, screw control and feed system control, where the feed system control includes the control of the sulfuric acid system and the control of the para-aramid feeding system. among them:
  • the controller 11, the second pressure sensor 8 and the booster pump 6 form a booster pump control system.
  • the controller 11 controls and adjusts the speed of the booster pump 6 according to the pressure value on the main pipe reflected by the second pressure sensor 8.
  • the controller 11, the first pressure sensor 5, the booster pump 6 and the screw extruder drive motor 4 form a screw control system.
  • the controller 11 controls the screw according to the pressure value of the first pressure sensor 5 and the change in the speed of the booster pump 6 Extruder drive motor 4 speed control.
  • the controller 11, booster pump 6, sulfuric acid system 1 and para-aramid feeding system 2 form a feed control system.
  • the para-aramid spinning flow control system when the spinning system is in normal production, the para-aramid spinning flow control system does not need to act, and all link equipment only needs to operate according to the system settings. When the spinning position is clogged, the para-aramid spinning flow control system begins to intervene to control the dynamic adjustment of each link.
  • the PLC controller sends the feedback 4-20ma pressure signal to the PID controller for processing.
  • the PID controller sends the processing result to the booster pump servo driver as a 4-20ma signal to control the booster pump 6. Rotation speed output to maintain the balance of spinning machine inlet pressure.
  • the PLC controller When the booster pump control system is in action, the PLC controller simultaneously sends the speed signal of the booster pump 6 to the screw control system to perform feedforward adjustment of the screw speed.
  • the feedforward regulator of the embodiment of the present invention uses first-order lag compensation
  • the algorithm of the compensator is:
  • AV is the output signal
  • KG is proportional gain
  • TC is the time constant
  • LGT is pure lag time
  • the feedforward control used in the present invention is not limited to first-order lag compensation, but can also be second-order lag compensation or other feedforward regulators, and the regulators to be used can be selected according to different working conditions.
  • the PID controller After the pressure value fed back by the first pressure sensor 5 is processed by the PID controller and the processing result of the feedforward regulator described above, it acts on the frequency converter of the screw motor to control the rotation speed of the screw motor to change.
  • the controller 11 needs to control the flow rate of sulfuric acid and para-aramid fiber while controlling the booster pump control and screw control, so as to adapt to the impact of the reduction in the amount of material caused by the clogging of the spinning position.
  • the working principle of the feeding system is as follows:
  • the controller obtains the current working nozzle number M, unit sulfuric acid flow rate F1, unit para-aramid flow rate F2, and current booster pump speed R, booster pump capacity L, and unit nozzle flow rate F0;
  • the third step is to set and start the timer T;
  • the fourth step is to judge whether the timer is over. If the timer does not end, set the para-aramid flow rate to (2N-M)*F2, set the sulfuric acid flow rate to (2N-M)*F1; if the timer ends, set the para-aramid flow rate to N* F2, set the sulfuric acid flow rate to N*F1;
  • the controller inputs the sulfuric acid flow rate and the para-aramid flow rate set in the fourth step into the sulfuric acid system and the para-aramid feeding system, respectively, to control the output of the sulfuric acid and the para-aramid fiber.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

一种对位芳纶纺丝流量控制系统及控制方法,涉及芳纶纤维生产技术领域。该系统包括:硫酸系统(1)、对位芳纶喂料系统(2)、双螺杆挤出机(3)、螺杆挤出机驱动电机(4)、第一压力传感器(5)、增压泵(6)、过滤器(7)、第二压力传感器(8)、纺丝箱体(9)、计量泵(10)、控制器(11)。该控制系统有三种控制子系统:增压泵控制子系统、螺杆控制子系统和进料控制子系统。与现有技术相比,通过对配料系统、螺杆、增压泵和纺丝机的整体动态控制,该控制系统可以实时在线解决纺丝机纺丝位喷头堵塞的问题,保证纺丝质量,不存在物料的浪费;解决了停机维修造成的损失。

Description

一种对位芳纶纺丝流量控制系统及控制方法 技术领域
本发明涉及芳纶纤维生产技术领域,特别涉及一种对位芳纶纺丝流量控制系统及控制方法。
背景技术
芳纶纤维即聚对苯二甲酰对苯二胺(对位芳纶)纤维具有高强度、高模量、耐高温、耐酸碱、质量轻等优异的物化性能,被广泛应用于航空航天等军事领域和民用领域,其作为增强材料在复合材料中也具有广泛的应用。
对位芳纶纤维的生产工艺包括聚合、纺丝和回收,其中纺丝为最后一道工艺,纺丝工艺的好坏直接决定芳纶纤维产品的质量,因此对位芳纶纺丝是芳纶生产中最重要的一个环节之一。
对位芳纶纺丝主要采用将聚对苯二甲酰对苯二胺(对位芳纶)树脂和浓硫酸在螺杆中充分溶解后经纺丝机干喷湿纺制成。而生产芳纶的纺丝机一般由多个纺丝位组成,如果生产过程中某一个纺丝位出现堵塞,势必影响其他纺丝位的纺丝质量。
目前,各个芳纶纤维的生产厂家在解决改问题的方法主要有以下两种:
第一种方法,在纺丝机入口的总管上加一个旁路阀门,当纺丝机上某一个或几个纺丝位发生堵塞后,打开并调整旁路阀门的大小,以确保其他正常纺丝位的压力和流量保持正常。该方法的优点是,其他正常纺丝位不受故障纺丝位的影响,以及该方法可以在线解决问题避免设备停车造成损失。该方法的主要缺点是,经过旁路阀门排泄掉的 物料将作为废弃物,造成严重的浪费。
第二种方法,由于一台纺丝机上有多个纺丝位,当一个纺丝位发生堵塞时,其他纺丝位质量不会产生严重问题,故不做处理;直到多个纺丝位故障,以至于严重影响其他纺丝位的产品质量时,将整条生产线停下集中进行处理。该方法存在的问题,单个纺丝位喷头堵塞不做处理时,质量略有影响,生产的芳纶纤维单位长度重量大,即产出率降低;多个纺丝位故障停车造成生产损失。
发明内容
结合现有方法存在的问题,本发明提出一种对位芳纶纺丝流量控制系统及控制方法。通过对纺丝生产线的整体连锁控制,实现对纺丝工艺的动态调整,避免造成物料浪费和停车停产造成的损失。
本发明采用的技术方案是一种对位芳纶纺丝流量控制系统,包括:硫酸系统、对位芳纶喂料系统、双螺杆挤出机、螺杆挤出机驱动电机、第一压力传感器、增压泵、过滤器、第二压力传感器、纺丝箱体、计量泵、控制器。
其中,硫酸系统,用于控制硫酸流量按照设定值输出;
对位芳纶喂料系统,用于控制对位芳纶树脂下料量按照设定值输出;
双螺杆挤出机,用于将输入的硫酸溶液和对位芳纶粉体树脂进行充分的溶解、混合、剪切和挤出操作;
螺杆挤出机驱动电机,用于控制双螺杆挤出机中螺杆的转速;
第一压力传感器,用于测定双螺杆挤出机出口压力大小;
增压泵,用于给过滤器提供压差和为管道中的物料提供动能,同时输出转速信号给控制系统;
过滤器,用于过滤物料中的杂质;
第二压力传感器,用于测定纺丝机入口物料总管道上的压力值;
计量泵,用于将分支管道上的物料输送到纺丝箱体的纺丝位上;
纺丝箱体,纺丝箱体中安装多个纺丝位,用于将物料纺成丝。
所述硫酸系统和对位芳纶喂料系统的输出端都由管道接入到双螺杆挤出机的喂料斗;螺杆挤出机驱动电机位于双螺杆挤出机的一侧;双螺杆挤出机的输出口与增压泵的输入口连接,第一压力传感器安装在双螺杆挤出机到增压泵的主管道上,增压泵输出口与过滤器的输入口连接,过滤器的输出口与纺丝机计量泵前端总管道入口连接,第二压力传感器安装在过滤器到纺丝箱体的主管道上,纺丝机计量泵位于纺丝箱体的上方;所述硫酸系统、对位芳纶喂料系统、螺杆挤出机驱动电机、第一压力传感器、增压泵、第二压力传感器分别与控制器间由电路连接。
本发明中一种对位芳纶纺丝流量控制系统,主要分为三个子系统,分别是:
A.控制器、第二压力传感器和增压泵组成一个增压泵控制子系统。当一个或几个纺丝机纺丝位出现堵塞时,纺丝机前的主管道上管道阻力增大,第二压力传感器进行压力检测,传递至控制器,控制器接收到纺丝机纺丝位堵塞产生的压力变化后,对其进行PID运算处理,将输出信号,适当降低增压泵的转速输出。
B.控制器、第一压力传感器、增压泵和螺杆挤出机驱动电机组成一个螺杆控制子系统,控制器根据第一压力传感器的压力值和增压泵的转速变化对螺杆挤出机驱动电机转速进行控制。
控制器在接收到增压泵转速信号发生变化时,先对转速信号做滤波处理,滤波处理主要是去除高频造成对控制系统造成的影响,滤波方法可以选用低通滤波器、中位值平均滤波器等,将滤波后的数据输入到前馈控制器进行处理,前馈控制器可以选用一阶滞后补偿或二阶滞后补偿等。
同时,控制器接收到的双螺杆挤出机出口压力信号后,对其进行 PID处理,将PID控制器的处理结果与前馈控制的处理结果同时输出到螺杆挤出机电机的驱动器上,驱动器控制电机转速变化。
C.控制器、增压泵、硫酸系统和对位芳纶喂料系统组成进料控制子系统。该进料控制子系统的工作流程如下:
首先,控制器获取当前工作喷头数量M,单位硫酸流量F1,单位对位芳纶流量F2,以及增压泵当前转速R,增压泵容量L,单位喷头流量F0;
第二步,计算当前工作喷头数量N=(R*L)/F0;
第三步,设置并开始定时器T;
第四步,判断定时器是否结束。若定时器未结束,设定对位芳纶流量为(2N-M)*F2,设定硫酸流量为(2N-M)*F1;若定时器结束,设定对位芳纶流量为N*F2,设定硫酸流量为N*F1;
第五步,控制器将第四步中设定的硫酸流量和对位芳纶流量分别输入到硫酸系统和对位芳纶喂料系统中,控制硫酸和对位芳纶的输出。
当纺丝机纺丝位喷头出现堵塞时,增压泵的转速、螺杆挤出机的转速以及进料速度都会相应调小,纺丝质量在调整期内会出现些微波动,之后会保持原有质量,生产的芳纶纤维单位长度重量不变,即产出率不变。而且,关闭支路,对堵塞的纺丝位喷头进行维修,修理之后,打开支路,增压泵的转速、螺杆挤出机的转速以及进料速度都会相应调大,不必停机维修。
与现有技术相比,本发明通过对配料系统、螺杆、增压泵和纺丝机的整体动态控制,该控制系统可以实时在线解决纺丝机纺丝位喷头堵塞的问题,保证纺丝质量,不存在物料的浪费;解决了停机维修造成的损失。
附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为对位芳纶纺丝流量控制系统图;
图2为对位芳纶纺丝流量控制示意图;
图3为对位芳纶纺丝流量控制系统原理图;
图4为增压泵控制流程图;
图5为螺杆控制流程图;
图6为进料控制流程图。
图中:1、硫酸系统,2、对位芳纶喂料系统,3、双螺杆挤出机,4、螺杆挤出机驱动电机,5、第一压力传感器,6、增压泵,7、过滤器,8、第二压力传感器,9、纺丝箱体,10、计量泵,11、控制器。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施方式和附图,对本发明作进一步详细说明。在此,本发明的示意性实施方式及说明用于解释本发明,但并不作为对本发明的限定。下面是结合附图对本发明进行的描述:
图1为本发明一种对位芳纶纺丝流量控制系统图,如图1所示,一种对位芳纶纺丝流量控制系统包括:硫酸系统1、对位芳纶喂料系统2、双螺杆挤出机3、螺杆挤出机驱动电机4、第一压力传感器5、增压泵6、过滤器7、第二压力传感器8、纺丝箱体9、计量泵10、控制器11,其中:
硫酸系统1,用于控制硫酸流量按照设定值输出;
对位芳纶喂料系统2,用于控制对位芳纶树脂下料量按照设定值输出;
双螺杆挤出机3,用于将输入的硫酸溶液和对位芳纶粉体树脂进 行充分的溶解、混合、剪切和挤出操作;
螺杆挤出机驱动电机4,用于控制双螺杆挤出机中螺杆的转速;
第一压力传感器5,用于测定双螺杆挤出机出口压力大小;
增压泵6,用于给过滤器提供压差和为管道中的物料提供动能,同时输出转速信号给控制系统;
过滤器7,用于过滤物料中的杂质;
第二压力传感器8,用于测定纺丝机入口物料总管道上的压力值;
计量泵10,用于将分支管道上的物料输送到纺丝箱体的纺丝位上;
纺丝箱体9,纺丝箱体中安装多个纺丝位,用于将物料纺成丝。
所述硫酸系统1和对位芳纶喂料系统2的输出端都由管道接入到双螺杆挤出机3的喂料斗;螺杆挤出机驱动电机4位于双螺杆挤出机3的一侧;双螺杆挤出机3的输出口与增压泵6的输入口连接,第一压力传感器5安装在双螺杆挤出机3到增压泵6的主管道上,增压泵6输出口与过滤器7的输入口连接,过滤器7的输出口与纺丝机计量泵10前端总管道入口连接,第二压力传感器8安装在过滤器到纺丝机的主管道上,纺丝机计量泵10位于纺丝箱体9的上方;所述硫酸系统1、对位芳纶喂料系统2、螺杆挤出机驱动电机4、第一压力传感器5、增压泵6、第二压力传感器8分别与控制器11间由电路连接。
在本实施例中,使用的压力传感器,均采用哈氏合金材质,测量范围为0-16bar;双螺杆挤出机电机采用300kw异步电机,驱动器为西门子G120变频器;增压泵电机采用伺服电机,驱动器为西门子S20驱动器,纺丝机采用16位纺丝机;整体系统使用的控制器为西门子1500PLC。
图2结合图3,理解本发明的对位芳纶纺丝流量控制系统的控制原理,如图2所示,整个系统的控制分为三部分,控制器11通过采集第一压力传感器5、第二压力传感器8和增压泵6转速信号来分别 实现:增压泵控制、螺杆控制和进料系统控制,其中进料系统控制包括硫酸系统的控制和对位芳纶喂料系统的控制。其中:
控制器11、第二压力传感器8和增压泵6组成一个增压泵控制系统,控制器11根据第二压力传感器8反应的主管上的压力数值,控制和调整增压泵6的转速。
控制器11、第一压力传感器5、增压泵6和螺杆挤出机驱动电机4组成一个螺杆控制系统,控制器11根据第一压力传感器5的压力值和增压泵6的转速变化对螺杆挤出机驱动电机4转速进行控制。
控制器11、增压泵6、硫酸系统1和对位芳纶喂料系统2组成进料控制系统。
在本实施例中,纺丝系统正常生产时,对位芳纶纺丝流量控制系统不需要动作,各个环节设备只需按照系统设定值运行即可。当纺丝位发生堵塞时,对位芳纶纺丝流量控制系统开始介入,控制各环节动态调整。
当纺丝位发生堵塞时,总管上的第二压力传感器8先发生变化,首先动作的是增压泵控制系统。如图4所示,PLC控制器将反馈的4-20ma压力信号发送至PID控制器中处理,PID控制器将处理结果以4-20ma信号发送到增压泵伺服驱动器中,控制增压泵6转速输出,以维持纺丝机入口压力平衡。
当增压泵控制系统动作时,PLC控制器同时将增压泵6的速度信号发送至螺杆控制系统中,对螺杆的转速进行前馈调节,本发明实施例前馈调节器采用一阶滞后补偿,补偿器的算法为:
AV(S)=(KG/TC*S+1)(1-e-LGT*S)*IN(S),其中:
IN为输入信号;
AV为输出信号;
KG为比例增益;
TC为时间常数;
LGT为纯滞后时间;
本发明使用的前馈控制不限于一阶滞后补偿,也可为二阶滞后补偿或其他前馈调节器,依据不同的工况选择使用的调节器。
第一压力传感器5反馈的压力值通过PID控制器处理后与上述的前馈调节器的处理结果同时作用在螺杆电机的变频器上,控制螺杆电机转速发生变化。
控制器11在完成上述增压泵控制和螺杆控制的同时,还需要控制硫酸流量和对位芳纶下料流量,以适应纺丝位堵塞导致的物料量减少带来的影响。进料系统工作原理如下:
首先,控制器获取当前工作喷头数量M,单位硫酸流量F1,单位对位芳纶流量F2,以及增压泵当前转速R,增压泵容量L,单位喷头流量F0;
第二步,计算当前工作喷头数量N=(R*L)/F0;
第三步,设置并开始定时器T;
第四步,判断定时器是否结束。若定时器未结束,设定对位芳纶流量为(2N-M)*F2,设定硫酸流量为(2N-M)*F1;若定时器结束,设定对位芳纶流量为N*F2,设定硫酸流量为N*F1;
第五步,控制器将第四步中设定的硫酸流量和对位芳纶流量分别输入到硫酸系统和对位芳纶喂料系统中,控制硫酸和对位芳纶的输出。
本发明的描述是为了示例和描述起见而给出的,并不是无遗漏的或将本发明限制于所公开的形式。很多修改和变化对于本领域技术人员是显然的,选择和描述实施例是为了更好说明本发明的原理和实际应用,并使本领域技术人员能够理解本发明从而设计适用于特定用途的带有各种修改的实施例。

Claims (10)

  1. 一种对位芳纶纺丝流量控制系统,其特征在于,
    包括:硫酸系统(1)、对位芳纶喂料系统(2)、双螺杆挤出机(3)、螺杆挤出机驱动电机(4)、第一压力传感器(5)、增压泵(6)、过滤器(7)、第二压力传感器(8)、纺丝箱体(9)、计量泵(10)、控制器(11);
    双螺杆挤出机(3)的输出口与增压泵(6)的输入口连接,第一压力传感器(5)安装在双螺杆挤出机(3)到增压泵(6)的主管道上,增压泵(6)输出口与过滤器(7)的输入口连接,过滤器(7)的输出口与纺丝机计量泵(10)前端总管道入口连接,第二压力传感器(8)安装在过滤器(7)到纺丝箱体(9)的主管道上;所述硫酸系统(1)、对位芳纶喂料系统(2)、螺杆挤出机驱动电机(4)、第一压力传感器(5)、增压泵(6)、第二压力传感器(8)分别与控制器(11)间由电路连接;
    该控制系统由增压泵控制子系统、螺杆控制子系统和进料控制子系统三个子系统组成。
  2. 根据权利要求1所述的一种对位芳纶纺丝流量控制系统,其特征在于,增压泵控制子系统中包括:控制器(11)、第二压力传感器(8)和增压泵(6)。
  3. 根据权利要求1所述的一种对位芳纶纺丝流量控制系统,其特征在于,螺杆控制子系统包括:控制器(11)、第一压力传感器(5)、增压泵(6)和螺杆挤出机驱动电机(4)。
  4. 根据权利要求1所述的一种对位芳纶纺丝流量控制系统,其特征在于,进料控制子系统包括:控制器(11)、增压泵(6)、硫酸系统(1)和对位芳纶喂料系统(2)。
  5. 一种对位芳纶纺丝流量控制方法,其特征在于,该控制方法基于权利要求1~4任一所述的一种对位芳纶纺丝流量控制系统。
  6. 根据权利要求5所述的一种对位芳纶纺丝流量控制方法,其特征在于,增压泵控制子系统中,控制器(11)根据第二压力传感器(8)反应的主管上的压力数值,控制和调整增压泵(6)的转速。
  7. 根据权利要求5所述的一种对位芳纶纺丝流量控制方法,其特征在于,增压泵控制子系统中,控制器(11)接收到纺丝机纺丝位堵塞产生的压力变化后,对其进行PID运算处理,将输出结果控制增压泵(6)的转速输出。
  8. 根据权利要求5所述的一种对位芳纶纺丝流量控制方法,其特征在于,螺杆控制子系统中,控制器(11)根据第一压力传感器(5)的压力值和增压泵(6)的转速变化对螺杆挤出机驱动电机(4)转速进行控制。
  9. 根据权利要求5所述的一种对位芳纶纺丝流量控制方法,其特征在于,螺杆控制子系统中,控制器(11)在接收到增压泵(6)转速信号发生变化时,先对转速信号做滤波处理再进行前馈控制;控制器(11)接收到的双螺杆挤出机出口压力信号后,对其进行PID处理,将PID控制的处理结果与前馈控制的处理结果同时作用在螺杆挤出机驱动电机(4)上,控制电机转速。
  10. 权利要求5至9任一所述的一种对位芳纶纺丝流量控制方法,其特征在于,
    进料控制子系统,包括硫酸系统的控制和对位芳纶喂料系统的控制;
    进料控制方法,步骤如下:
    S1:开始;
    S2:获取当前工作喷头数量M,单位硫酸流量F1,单位对位芳纶流量F2;
    S3:获取增压泵(6)当前转速R,增压泵(6)容量L,单位喷头流量F0;
    S4:计算当前工作喷头数量N=(R*L)/F0;
    S5:设置并开始定时器T;
    S6:判断定时器是否结束;
    S7:若定时器未结束,设定对位芳纶流量为(2N-M)*F2,设定硫酸流量为(2N-M)*F1,同时返回S6;
    S8:若定时器结束,设定对位芳纶流量为N*F2,设定硫酸流量为N*F1;
    S9:结束。
PCT/CN2018/125220 2018-12-29 2018-12-29 一种对位芳纶纺丝流量控制系统及控制方法 WO2020133313A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/125220 WO2020133313A1 (zh) 2018-12-29 2018-12-29 一种对位芳纶纺丝流量控制系统及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/125220 WO2020133313A1 (zh) 2018-12-29 2018-12-29 一种对位芳纶纺丝流量控制系统及控制方法

Publications (1)

Publication Number Publication Date
WO2020133313A1 true WO2020133313A1 (zh) 2020-07-02

Family

ID=71127368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125220 WO2020133313A1 (zh) 2018-12-29 2018-12-29 一种对位芳纶纺丝流量控制系统及控制方法

Country Status (1)

Country Link
WO (1) WO2020133313A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3573016A (en) * 1968-07-24 1971-03-30 Owens Corning Fiberglass Corp Method and apparatus for forming fibers
CN101288831A (zh) * 2008-06-12 2008-10-22 张亚琴 中空纤维血液过滤膜的成形方法及其装置
CN101481827A (zh) * 2009-01-22 2009-07-15 江苏恒力化纤有限公司 聚酯熔体输送压力的控制方法及其系统
WO2011014524A1 (en) * 2009-07-29 2011-02-03 Graco Minnesota Inc. Variable flow control using linear pumps
CN202730319U (zh) * 2012-05-11 2013-02-13 上海舟汉纤维材料科技有限公司 适用于工业化大流量间位芳纶纺丝浴液的连续处理装置
CN106502281A (zh) * 2016-11-18 2017-03-15 哈尔滨天顺化工科技开发有限公司 一种碳纤维原丝纺丝流量控制装置
CN106596340A (zh) * 2016-12-28 2017-04-26 山东万圣博科技股份有限公司 一种聚对苯二甲酰对苯二胺树脂粘度的在线检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3573016A (en) * 1968-07-24 1971-03-30 Owens Corning Fiberglass Corp Method and apparatus for forming fibers
CN101288831A (zh) * 2008-06-12 2008-10-22 张亚琴 中空纤维血液过滤膜的成形方法及其装置
CN101481827A (zh) * 2009-01-22 2009-07-15 江苏恒力化纤有限公司 聚酯熔体输送压力的控制方法及其系统
WO2011014524A1 (en) * 2009-07-29 2011-02-03 Graco Minnesota Inc. Variable flow control using linear pumps
CN202730319U (zh) * 2012-05-11 2013-02-13 上海舟汉纤维材料科技有限公司 适用于工业化大流量间位芳纶纺丝浴液的连续处理装置
CN106502281A (zh) * 2016-11-18 2017-03-15 哈尔滨天顺化工科技开发有限公司 一种碳纤维原丝纺丝流量控制装置
CN106596340A (zh) * 2016-12-28 2017-04-26 山东万圣博科技股份有限公司 一种聚对苯二甲酰对苯二胺树脂粘度的在线检测方法

Similar Documents

Publication Publication Date Title
CN110241465B (zh) 一种ppta纺丝流量控制系统及控制方法
CN104595885B (zh) 电站锅炉给水泵最小流量再循环阀控制方法
JP6825002B2 (ja) 脱湿および/または乾燥のためのプラントを制御する方法およびシステム
CN100402623C (zh) 一种密封胶的自动化连续生产装置系统及方法
JPS58212850A (ja) 射出条件自動調整方法
CN106502193A (zh) 一种喂丝速度调控电路及系统
CN102639881B (zh) 液压系统内的运动控制
CN103438429A (zh) 锅炉汽包液位控制系统
WO2020133313A1 (zh) 一种对位芳纶纺丝流量控制系统及控制方法
CN107490245A (zh) 一种用于空分装置的自动变负荷控制方法
CN102241126A (zh) 不停机双工位滤网圆板式换网器
CN201446671U (zh) 新型串联式单螺杆挤出机
CN113304867A (zh) 一种砂石加工厂粗碎车间智能高效破碎整形调级pid逻辑控制方法
CN204687304U (zh) 一种防堵塞的高效益螺杆挤出机
CN204736421U (zh) 一种挤出片材成型机
CN103273638A (zh) 锥型双螺杆挤出机的控制方法及控制设备
CN205368556U (zh) 一种纺丝计量泵的控制系统
JPS63242333A (ja) 混練機の制御装置
CN105463590B (zh) 可吸收缝合线纺丝成形过程中的线径控制系统及控制方法
CN205529160U (zh) 可吸收缝合线纺丝成形过程中的线径控制系统
CN115107035A (zh) 一种机器人单关节人工免疫系统监控的混合控制方法
CN2686838Y (zh) 串联式单螺杆挤出机
CN105189081B (zh) 用于控制熔化物处理设备的方法
CN206718412U (zh) 一种双螺杆挤出机的自动喂料装置
CN209106302U (zh) 一种新型烟草加料自动纠偏控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944782

Country of ref document: EP

Kind code of ref document: A1