WO2020133224A1 - 一种天线单元及阵列天线 - Google Patents

一种天线单元及阵列天线 Download PDF

Info

Publication number
WO2020133224A1
WO2020133224A1 PCT/CN2018/124912 CN2018124912W WO2020133224A1 WO 2020133224 A1 WO2020133224 A1 WO 2020133224A1 CN 2018124912 W CN2018124912 W CN 2018124912W WO 2020133224 A1 WO2020133224 A1 WO 2020133224A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole
parasitic
antenna unit
disposed
feed line
Prior art date
Application number
PCT/CN2018/124912
Other languages
English (en)
French (fr)
Inventor
陈勇利
许心影
Original Assignee
瑞声精密制造科技(常州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声精密制造科技(常州)有限公司 filed Critical 瑞声精密制造科技(常州)有限公司
Priority to PCT/CN2018/124912 priority Critical patent/WO2020133224A1/zh
Publication of WO2020133224A1 publication Critical patent/WO2020133224A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/385Two or more parasitic elements

Definitions

  • the invention relates to the technical field of communication, in particular to an antenna unit and an array antenna.
  • the present invention is directed to solving the existing technical problems of existing dual-frequency and dual-polarized antennas, and provides an antenna unit and an array antenna.
  • the present invention provides an antenna unit.
  • the antenna unit includes a ground layer, a dielectric layer, and a radiation patch assembly.
  • the radiation patch assembly is disposed on the dielectric layer, and the ground layer is located on the A side of the dielectric layer facing away from the radiation patch assembly;
  • the radiation patch assembly includes a first polarization assembly and a second polarization assembly;
  • the first polarization assembly includes a first pole, a second pole, A first parasitic pole, a second parasitic pole, and a first feed line;
  • the second polarized component includes a third pole, a fourth pole, a third parasitic pole, a fourth parasitic pole, and a second feed line;
  • the first pole and the second pole are arranged on the dielectric layer at intervals along the first direction;
  • the first pole is provided with a first feeding part, and the first feed line is from the first feed
  • the electric part extends to the second pole;
  • the second pole is provided with a first ground point, and is connected to the ground layer
  • the first parasitic pole and the second parasitic pole are symmetrically arranged with the first feed line as a symmetry axis; the third parasitic pole and the fourth parasitic pole are provided with the second The feeder is set symmetrically with respect to the axis of symmetry.
  • the first parasitic pole includes a first parasitic portion
  • the second parasitic pole includes a second parasitic portion
  • the first parasitic portion is disposed on the fourth pole, and the first parasitic portion
  • the opposite ends are respectively located on opposite sides of the fourth pole in the first direction
  • the second parasitic portion is disposed on the third pole and is axially symmetric with the first parasitic portion
  • the first The three parasitic poles include a third parasitic portion
  • the fourth parasitic pole includes a fourth parasitic portion
  • the third parasitic portion is disposed on the first pole, and opposite ends of the third parasitic portion are respectively located The two opposite sides of the first pole in the second direction
  • the second parasitic portion is disposed on the third pole and is axially symmetric with the first parasitic portion.
  • the first parasitic pole further includes a first extending portion, the first extending portion is disposed at opposite ends of the first parasitic portion, and extends away from the third pole;
  • the second parasitic pole further includes a second extending portion, the second extending portion is disposed at opposite ends of the second parasitic portion, and extends away from the fourth pole;
  • the third pole further Including a third extending portion, the third extending portion is disposed at opposite ends of the third parasitic portion, and extends away from the second pole;
  • the fourth pole further includes a fourth extending portion, The fourth extending portion is provided at opposite ends of the fourth parasitic portion and extends away from the first pole.
  • first spacing between the first pole and the second pole there is a first spacing between the first pole and the second pole; a second spacing between the third pole and the fourth pole; the first parasitic portion is The extension length in the first direction is greater than the first pitch; the extension length of the third parasitic portion in the second direction is greater than the second pitch.
  • the first pole and the second pole have the same shape
  • the third pole and the fourth pole have the same shape
  • the first pole, the second pole, The third pole and the fourth pole have the same shape
  • the first pole, the second pole, the third pole and the fourth pole are all arranged in a butterfly structure on the side of the dielectric layer away from the ground layer.
  • the present invention also provides an array antenna, which includes at least two of the foregoing antenna units.
  • the antenna units are arranged in a straight line.
  • the beneficial effect of the present invention is to realize the dual-frequency coverage of the millimeter wave band by using a pole structure with parasitics, wherein the parasitic layout can reduce the high and low frequency interference on the relative vertical polarization.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of an antenna unit provided by the present invention.
  • FIG. 2 is a schematic diagram of the explosion structure of the antenna unit provided by the present invention.
  • FIG. 3 is a schematic diagram of a three-dimensional structure of a first polarization component of an antenna unit provided by the present invention.
  • FIG. 4 is a schematic diagram of a three-dimensional structure of a second polarization component of an antenna unit provided by the present invention.
  • FIG. 5 is a schematic diagram of an adaptation structure of the first polarization component and the second polarization component of the antenna unit provided by the present invention.
  • FIG. 6 is a schematic diagram of an adaptation structure of the second polarization component and the first polarization component of the antenna unit provided by the present invention.
  • FIG. 7 is a schematic diagram of a three-dimensional structure of an array antenna provided by a second embodiment of the invention.
  • FIG. 8A is a graph of the reflection coefficient of the first polarization component of the antenna unit 100.
  • FIG. 8B is an efficiency curve diagram of the first polarization component of the antenna unit 100.
  • FIG. 8C is a 28 GHz gain pattern of the first polarization component of the antenna unit 100.
  • FIG. 8D is a 39 GHz gain pattern of the first polarization component of the antenna unit 100.
  • FIG. 9A is a graph of the reflection coefficient of the second polarization component of the antenna unit 100.
  • FIG. 9B is an efficiency curve diagram of the second polarization component of the antenna unit 100.
  • FIG. 9C is a 28 GHz gain pattern of the second polarization component of the antenna unit 100.
  • FIG. 9D is a 39 GHz gain pattern of the second polarization component of the antenna unit 100.
  • a first embodiment of the present invention provides an antenna unit 100.
  • the antenna unit 100 includes a ground layer 10, a dielectric layer 20, and a radiation patch assembly 30.
  • the radiation patch assembly 30 is disposed on the dielectric layer 20 and is grounded.
  • the layer 10 is located on the side of the dielectric layer 20 facing away from the radiation patch assembly 30, that is, the dielectric layer 20 is disposed between the ground layer 10 and the radiation patch assembly 30.
  • the dielectric constant of the dielectric layer 20 and the tangent of the loss angle can be adjusted as needed.
  • the dielectric constant of the dielectric layer 20 is 2.8 and the tangent of the loss angle is 0.002, which greatly reduces the antenna The loss of the overall performance of the unit 100.
  • the radiation patch assembly 30 includes a first polarization assembly 40 and a second polarization assembly 50, so that the antenna unit 100 can provide dual-polarized electromagnetic waves.
  • the first polarization component 40 includes a first pole 401, a second pole 402, a first parasitic pole 403, a second parasitic pole 404, and a first feed line 405.
  • the second polarization component 50 includes a third pole 501, a fourth pole 502, a third parasitic pole 503, a fourth parasitic pole 504, and a second feed line 505.
  • the first pole 401 and the second pole 402 are disposed on the side of the dielectric layer 20 away from the ground layer 10, and the first pole 401 and the second pole 402 are spaced apart along the first direction. At the same time, both the first pole 401 and the second pole 402 extend in the first direction.
  • both the first pole 401 and the second pole 402 extend in the first direction and are axisymmetrically arranged in the second direction, that is, the symmetry axes of the first pole 401 and the second pole 402 are in the second direction Above, where the first direction and the second direction are perpendicular to each other.
  • the first pole 401 and the second pole 402 have a butterfly structure, that is, the distance between the opposite ends of the first poles 401 close to each other is smaller than the distance between the opposite ends to improve the direction of the first polarization Of the frequency bandwidth.
  • the butterfly structure may be trapezoidal, triangular, etc.
  • the first pole 401 and the second pole 402 are both trapezoidal structures, and the first pole 401 and the second pole 402 are close to each other at one end
  • the side length is smaller than the distance between the opposite ends, that is, the side length of the first pole 401 near the second pole 402 is smaller than the side length of the first pole 401 away from the second pole 402.
  • the first pole 401 is provided with a first power feeder 4011.
  • the antenna unit 100 is provided with a first coaxial line 406 that penetrates the dielectric layer 20 and the ground layer 10 and feeds the first power feeder 4011.
  • the first feed line 405 extends from the first power feeder 4011 to the second pole 402, and the first feed line 405 is connected to the inner core of the first coaxial line 406 and the second pole 402.
  • the inner core of the first coaxial line 406 is A conductive core made of a conductive material, so that an external excitation signal can be transmitted to the second pole 402 through the first feed line 405 through the inner core of the first coaxial line 406.
  • the first pole 401 is connected to the ground layer 10 through the outer conductive core of the first coaxial line 406.
  • the connection in the present invention refers to the electrical connection between the two to realize the transmission of electrical signals.
  • the first power feeder 4011 includes a through hole formed in the first pole 401, and the inner core of the first coaxial line 406 passes through the through hole and is connected to the first feed line 405.
  • the first feed line 405 extends along the first direction and is perpendicular to the second feed line 505.
  • the second pole 402 is provided with a first ground point 4021, which may be one or more.
  • the second pole 402 is connected to the ground layer 10 through the first ground point 4021.
  • the first parasitic pole 403 and the second parasitic pole 404 are respectively disposed on opposite sides of the first feed line 405, and the first parasitic pole 403 is connected to the fourth pole 502, and the second parasitic pole 404 and the third pole
  • the sub 501 is connected to reduce high and low frequency interference in the first polarization direction.
  • the first parasitic pole 403 and the second parasitic pole 404 are symmetrically arranged with the first feed line 405 as a symmetry axis.
  • the first parasitic pole 403 includes a first parasitic portion 4032
  • the second parasitic pole 404 includes a second parasitic portion 4042, where the first parasitic portion 4032 extends in the first direction and is connected to the fourth The pole 502 is connected.
  • opposite ends of the first parasitic portion 4032 are respectively located on opposite sides of the fourth pole 502 in the first direction.
  • the extension distance of the first parasitic portion 4032 in the first direction is greater than the distance between the first pole 401 and the second pole 402.
  • the second parasitic portion 4042 is connected to the third pole 501 and is axially symmetric with the first parasitic portion 4032, and the axis of symmetry is the first feed line 405 to obtain a stronger coupling effect.
  • the first parasitic pole 403 further includes a first extension 4031.
  • the first extension 4031 is disposed at opposite ends of the first parasitic portion 4032 and extends away from the third pole 501.
  • the second parasitic pole 404 further includes a second extension 4041.
  • the second extension 4041 is disposed at opposite ends of the second parasitic portion 4042 and extends away from the fourth pole 502 to further enhance the antenna unit 100 Anti-interference ability to high frequency and low frequency signals.
  • an angle ⁇ is formed between the first extending portion 4031 and the first parasitic portion 4032, 135°> ⁇ >90°, and the second extending portion 4041 and the first extending portion 4031 take the first feed line 405 as the axis of symmetry, Axially set.
  • the included angle ⁇ is satisfied, 130° ⁇ 100°.
  • the third pole 501 and the fourth pole 502 are disposed on the side of the dielectric layer 20 away from the ground layer 10, and the third pole 501 and the fourth pole 502 are spaced along the second direction At the same time, the third pole 501 and the fourth pole 502 both extend in the second direction.
  • both the third pole 501 and the fourth pole 502 extend in the second direction, the second direction is perpendicular to the first direction, and the first direction and the second direction intersect at the intersection, the first pole 401 and the second pole 402 are arranged symmetrically about the intersection, and the third pole 501 and the fourth pole 502 are also arranged symmetrically about the intersection.
  • the first pole 401 and the second pole 402 have the same shape, or the third pole 501 and the fourth pole 502 have the same shape.
  • the first pole 401, the second pole 402, the third pole 501, and the fourth pole 502 all have the same shape, and the same shape is preferably a butterfly structure, that is, the poles are close to each other and opposite one end The distance between the two sides is smaller than the distance between the opposite ends.
  • the butterfly structure can be trapezoidal, triangular, etc.
  • the fourth pole 502 is provided with a second power feeder 5021, the antenna unit 100 is provided with a second coaxial line 506, and the second power feeder 5021 penetrates the dielectric layer 20 and the ground layer 10 through the second coaxial wire 506 And feed power to the second power feeder 5021.
  • the inner core of the second feed line 505 and the second coaxial line 506 is connected to the third pole 501.
  • the inner core of the second coaxial line 506 is a conductive core made of a conductive material, so that the external excitation signal can pass through the second
  • the inner core of the axis 506 is transmitted to the third pole 501 via the second feed line 505.
  • the fourth pole 502 is connected to the ground layer 10 through the outer conductive core of the second coaxial line 506.
  • the second power feeder 5021 includes a through hole formed in the fourth pole 502, and the inner core of the second coaxial line 506 passes through the through hole and is connected to the second feed line 505.
  • the third pole 501 is provided with a second ground point 5011.
  • the second ground point 5011 may be one or more.
  • the third pole 501 is connected to the ground layer 10 through the second ground point 5011.
  • the third parasitic pole 503 and the fourth parasitic pole 504 are respectively disposed on opposite sides of the second feed line 505, and the third parasitic pole 503 is connected to the first pole 401, and the fourth parasitic pole 504 and the second pole
  • the sub 402 is connected to reduce high and low frequency interference in the second polarization direction.
  • the third parasitic pole 503 and the fourth parasitic pole 504 are symmetrically arranged with the second feed line 505 as a symmetry axis.
  • the third parasitic pole 503 includes a third parasitic portion 5032
  • the fourth parasitic pole 504 includes a fourth parasitic portion 5042, wherein the third parasitic portion 5032 extends in the second direction and is connected to the first
  • the poles 401 are connected, and opposite ends of the third parasitic portion 5032 are respectively located on opposite sides of the first pole 401 in the second direction.
  • the extension distance of the third parasitic portion 5032 in the second direction is greater than the distance between the third pole 501 and the fourth pole 502, and the fourth parasitic portion 5042 is connected to the second pole 402 and connected to the third parasitic
  • the part 5032 is axisymmetrically set, and its symmetry axis is the second feed line 505 to obtain a stronger coupling effect.
  • the third parasitic pole 503 further includes a third extension 5031.
  • the third extension 5031 is disposed at opposite ends of the third parasitic portion 5032 and extends away from the second pole 402.
  • the fourth parasitic pole 504 further includes a fourth extending portion 5041 which is disposed at opposite ends of the fourth parasitic portion 5042 and extends away from the first pole 401 to further enhance the antenna unit 100 Anti-interference ability to high frequency and low frequency signals.
  • an angle ⁇ is formed between the third extension portion 5031 and the third parasitic portion 5032, 135°> ⁇ >90°, and the fourth extension portion 5041 and the third extension portion 5031 take the second feed line 505 as the axis of symmetry, Axially set.
  • is equal to ⁇ , and it is satisfied that 130° ⁇ 100°.
  • the dielectric layer 20 is provided with the first pole 401 and the second pole 402 arranged in the first direction and the third pole 501 and the fourth pole 502 arranged in the second direction away from the ground layer 10.
  • the parasitic pole structure is used to realize dual-frequency coverage of the millimeter wave band, wherein the parasitic layout can reduce high and low frequency interference on the relative vertical polarization. At the same time, a larger bandwidth covering 28 GHz and 39 GHz is realized.
  • a second embodiment of the present invention provides an array antenna 200.
  • the array antenna 200 includes an antenna unit 100.
  • the number of antenna units 100 in the array antenna 200 is not specifically limited, and can be determined according to the gain value to be achieved and the space in which the array antenna 200 is embedded in the base station applied.
  • the antenna units 100 there are at least two antenna units 100, and the antenna units 100 are arranged closely one after another and will not be connected.
  • the array antenna provided in this embodiment specifically includes four antenna units 100. More preferably, four antenna elements 100 in the array antenna 200 are arranged in a straight line.
  • the reflection coefficients, radiation efficiency, and gain patterns of the first polarization component 40 and the second polarization component 50 of the antenna unit 100 are shown in FIGS. 8A-8D and 9A-9D.
  • the radiation efficiency of the first polarizing component 40 and the second polarizing component 50 is higher, the coverage bandwidth is larger, and the gain effect is better.
  • FIG. 8A is a graph of the reflection coefficient of the first polarizing component 40 of the antenna unit 100.
  • FIG. 8B is an efficiency curve diagram of the first polarization component 40 of the antenna unit 100.
  • FIG. 8C is a low-frequency gain effect diagram of the first polarization component 40 of the antenna unit 100.
  • FIG. 8D is a high-frequency gain effect diagram of the first polarization component 40 of the antenna unit 100.
  • FIG. 9A is a graph of the reflection coefficient of the second polarization component 50 of the antenna unit 100. As shown in FIG. 9A, FIG. 9A is a graph of the reflection coefficient of the second polarization component 50 of the antenna unit 100. As shown in FIG. 9A
  • FIG. 9B is an efficiency curve diagram of the second polarization component 50 of the antenna unit 100.
  • FIG. 9C is a low-frequency gain pattern of the second polarization component 50 of the antenna unit 100.
  • FIG. 9D is a high-frequency gain pattern of the second polarization component 50 of the antenna unit 100.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明提供了一种天线单元及阵列天线,所述天线单元包括接地层、介质层以及辐射贴片组件;所述辐射贴片组件包括第一极化组件以及第二极化组件;所述第一极化组件包括第一极子、第二极子、第一寄生极子、第二寄生极子以及第一馈线;所述第二极化组件包括第三极子、第四极子、第三寄生极子、第四寄生极子以及第二馈线;所述第一极子和所述第二极子沿第一方向布设于所述介质层远离所述接地层一侧,且在第二方向上对称设置,所述第一方向和第二方向相互垂直。本发明利用带寄生的极子结构实现毫米波波段的双频覆盖,其中寄生布局在相对的垂直极化上可以降低高低频干扰。

Description

一种天线单元及阵列天线 【技术领域】
本发明涉及通信技术领域,特别涉及一种天线单元及阵列天线。
【背景技术】
目前在毫米波段,对于同时实现双频和双极化的阵列研究较少。28GHz和39GHz同时覆盖的带宽较窄,且实现起来的形式过于复杂,双极化所产生的交叉极化比依然较差,且在体积上有一定的劣势。
【发明内容】
本发明针对解决现有双频和双极化天线的存在的技术问题,而提供一种天线单元及阵列天线。
为实现上述目的,本发明提供了一种天线单元,所述天线单元包括接地层、介质层以及辐射贴片组件,所述辐射贴片组件设置于所述介质层,所述接地层位于所述介质层背离所述辐射贴片组件的一侧;所述辐射贴片组件包括第一极化组件以及第二极化组件;所述第一极化组件包括第一极子、第二极子、第一寄生极子、第二寄生极子以及第一馈线;所述第二极化组件包括第三极子、第四极子、第三寄生极子、第四寄生极子以及第二馈线;所述第一极子和所述第二极子沿第一方向间隔布设于所述介质层;所述第一极子设置有第一馈电部,所述第一馈线自所述第一馈电部延伸至所述第二极子;所述第二极子设置有第一接地点,且通过所述第一接地点与接地层连接;所述第三极子和所述第四极子沿第二方向间隔布设于所述介质层,所述第二方向与所述第一方向垂直,且所述第一方向和所述第二方向在交叉点相交,所述第一极子和第二极子关于所述交叉点对称设置,所述第三极子和所述第四极子关于所述交叉点对称设置;所述第三极子设置有第二 接地点,且通过所述第二接地点与接地层连接;所述第四极子设置有第二馈电部,所述第二馈线自所述第二馈电部延伸至所述第三极子;所述第一寄生极子和所述第二寄生极子分别设置于所述第三极子与所述第四极子,并关于所述第一方向对称设置;所述第三寄生极子和所述第四寄生极子分别设置于所述第一极子与所述第二极子,且并关于所述第二方向对称设置。
优选地,所述第一寄生极子和所述第二寄生极子以所述第一馈线为对称轴对称设置;所述第三寄生极子和所述第四寄生极子以所述第二馈线为对称轴对称设置。
优选地,所述第一寄生极子包括第一寄生部,所述第二寄生极子包括第二寄生部,所述第一寄生部设置于所述第四极子,所述第一寄生部相对的两端分别位于第四极子在第一方向上的相对两侧;所述第二寄生部设置于所述第三极子,并与所述第一寄生部轴对称设置;所述第三寄生极子包括第三寄生部,所述第四寄生极子包括第四寄生部,所述第三寄生部设置于所述第一极子,所述第三寄生部相对的两端分别位于第一极子在第二方向上的相对两侧;所述第二寄生部设置于所述第三极子,并与所述第一寄生部轴对称设置。
优选地,所述第一寄生极子还包括第一延伸部,所述第一延伸部设置于所述第一寄生部的相对两端,并向远离所述第三极子方向延伸;所述第二寄生极子还包括第二延伸部,所述第二延伸部设置于所述第二寄生部的相对两端,并向远离所述第四极子方向延伸;所述第三极子还包括第三延伸部,所述第三延伸部设置于所述第三寄生部的相对两端,并向远离所述第二极子方向延伸;所述第四极子还包括第四延伸部,所述第四延伸部设置于所述第四寄生部的相对两端,并向远离所述第一极子方向延伸。
优选地,所述第一延伸部与所述第一寄生部之间呈夹角α;所述第二延伸部与所述第一延伸部以第一馈线为对称轴,轴对称设置;所述第三延伸部与所述第三寄生部之间呈夹角β;所述第四延伸部与所述第三延伸部以第二馈线为轴对称,轴对称设置;所述夹角α和夹角β满足,130°>α=β>100°。
优选地,所述第一极子和所述第二极子之间具有第一间距;所述第三极子和所述第四极子之间具有第二间距;所述第一寄生 部在第一方向上的延伸长度大于所述第一间距;所述第三寄生部在第二方向上的延伸长度大于所述第二间距。
优选地,所述第一极子和所述第二极子具有相同形状,所述第三极子和所述第四极子具有相同形状;或所述第一极子、第二极子、第三极子和所述第四极子具有相同的形状。
优选地,所述第一极子、第二极子、第三极子和所述第四极子均呈蝶形结构布设于介质层远离接地层一侧。
本发明还提供一种阵列天线,所述阵列天线包括至少两个前述的天线单元。
优选地,所述天线单元呈直线排列。
本发明的有益效果是:利用带寄生的极子结构实现毫米波波段的双频覆盖,其中寄生布局在相对的垂直极化上可以降低高低频干扰。
【附图说明】
图1是本发明提供的天线单元立体结构示意图。
图2是本发明提供的天线单元爆炸结构示意图。
图3是本发明提供的天线单元的第一极化组件立体结构示意图。
图4是本发明提供的天线单元的第二极化组件立体结构示意图。
图5是本发明提供的天线单元的第一极化组件与第二极化组件适配结构示意图。
图6是本发明提供的天线单元的第二极化组件与第一极化组件适配结构示意图。
图7是本发明第二实施例提供的阵列天线立体结构示意图。
图8A为天线单元100的第一极化组件的反射系数曲线图。
图8B为天线单元100的第一极化组件的效率曲线图。
图8C为天线单元100的第一极化组件的28GHz的增益方向图。
图8D为天线单元100的第一极化组件的39GHz的增益方向图。
图9A为天线单元100的第二极化组件的反射系数曲线图。
图9B为天线单元100的第二极化组件的效率曲线图。
图9C为天线单元100的第二极化组件的28GHz的增益方向图。
图9D为天线单元100的第二极化组件的39GHz的增益方向图。
【具体实施方式】
为了使本发明的目的,技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图1,本发明第一实施例提供一种天线单元100,该天线单元100包括接地层10,介质层20以及辐射贴片组件30,其中辐射贴片组件30设置于介质层20,接地层10位于介质层20背离辐射贴片组件30一侧,也即介质层20设置于接地层10和辐射贴片组件30之间。以减少电磁损耗,介质层20的介电常数和损耗角的正切值可以根据需要进行调节,优选地,介质层20的介电常数为2.8,损耗角正切值为0.002,从而大大降低了对天线单元100整体性能的损耗。
请参阅图2-6,辐射贴片组件30包括第一极化组件40和第二极化组件50,以使天线单元100可以提供双极化电磁波。其中,第一极化组件40包括第一极子401、第二极子402、第一寄生极子403、第二寄生极子404以及第一馈线405。
第二极化组件50包括第三极子501、第四极子502、第三寄生极子503、第四寄生极子504以及第二馈线505。
第一极子401以及第二极子402设置于介质层20远离接地层 10一侧,且第一极子401和第二极子402沿着第一方向间隔布设。同时,第一极子401和第二极子402均在第一方向上延伸。
优选地,第一极子401和第二极子402均在第一方向上延伸且在第二方向上轴对称设置,也即第一极子401和第二极子402对称轴在第二方向上,其中第一方向和第二方向相互垂直。
第一极子401和第二极子402为蝶形结构,即第一极子401彼此相互靠近一端相对两边之间的距离小于彼此相对另一端之间的距离,以提高第一极化方向上的频带宽度。
具体地,该蝶形结构可以是梯形、三角形等,优选地,第一极子401和第二极子402均为梯形结构,且第一极子401和第二极子402彼此相互靠近一端的边长小于彼此相对另一端的距离,即第一极子401靠近第二极子402一端的边长小于第一极子401远离第二极子402一端的边长。
第一极子401上设置有第一馈电部4011,该天线单元100设置有第一同轴线406,第一同轴线406贯穿介质层20以及接地层10,并馈电至第一馈电部4011。第一馈线405自第一馈电部4011延伸至第二极子402,且第一馈线405与第一同轴线406的内芯以及第二极子402连接,第一同轴线406的内芯为导电材料制成的导电芯,从而使得外部激励信号可以通过第一同轴线406的内芯经第一馈线405传输给第二极子402。
同时,第一极子401通过第一同轴线406外导电芯与接地层10连接。本发明中的连接是指两者之间电连接,以实现电信号的传输。
第一馈电部4011包括开设于第一极子401上的贯通孔,第一同轴线406的内芯穿过该贯通孔与第一馈线405连接。
优选地,第一馈线405沿着第一方向延伸设置,且与第二馈线505相互垂直设置。
第二极子402设置有第一接地点4021,该第一接地点4021 可以是一个或多个,第二极子402通过第一接地点4021与接地层10连接。
第一寄生极子403和第二寄生极子404分别设置于第一馈线405的相对两侧,且第一寄生极子403与第四极子502连接,第二寄生极子404与第三极子501连接,以降低第一极化方向上的高低频的干扰。
优选地,第一寄生极子403和第二寄生极子404以第一馈线405为对称轴对称设置。
在部分实施例中,第一寄生极子403包括第一寄生部4032,第二寄生极子404包括第二寄生部4042,其中第一寄生部4032在第一方向上延伸设置,并与第四极子502连接。优选地,第一寄生部4032相对的两端分别位于第四极子502在第一方向上的相对两侧。
进一步,第一寄生部4032在第一方向上的延伸距离大于第一极子401和第二极子402之间的间距。第二寄生部4042与第三极子501连接并与第一寄生部4032轴对称设置,其对称轴为第一馈线405,以获得更强的耦合效果。
在部分实施例中,第一寄生极子403还包括第一延伸部4031,第一延伸部4031设置于第一寄生部4032的相对两端,并向远离第三极子501方向延伸。第二寄生极子404还包括第二延伸部4041,第二延伸部4041设置于第二寄生部4042的相对两端,并向远离所述第四极子502方向延伸,以进一步增强天线单元100对高频、低频信号的抗干扰能力。
优选地,第一延伸部4031与第一寄生部4032之间呈夹角α,135°>α>90°,且第二延伸部4041与第一延伸部4031以第一馈线405为对称轴,轴对称设置。
更优地,夹角α满足,130°≥α≥100°。
请再参阅图2-图6,第三极子501和第四极子502设置于介 质层20远离接地层10一侧,且第三极子501和第四极子502沿着第二方向间隔布设,同时,第三极子501和第四极子502在均在第二方向上延伸。
优选地,第三极子501和第四极子502均在第二方向上延伸,第二方向与所述第一方向垂直,且第一方向和第二方向在交叉点相交,第一极子401和第二极子402关于交叉点对称设置,第三极子501和第四极子502也关于所述交叉点对称设置。第一极子401和第二极子402具有相同的形状,或第三极子501和第四极子502具有相同的形状。
优选地,第一极子401、第二极子402、第三极子501以及第四极子502均有相同的形状,该相同的形状优选为蝶形结构,即极子彼此相互靠近一端相对两边之间的距离小于彼此相对另一端之间的距离,该蝶形结构可以是梯形、三角形等。
第四极子502上设置有第二馈电部5021,该天线单元100设置有第二同轴线506,该第二馈电部5021通过第二同轴线506贯穿介质层20以及接地层10,并馈电至第二馈电部5021。第二馈线505与第二同轴线506的内芯与第三极子501连接,第二同轴线506的内芯为导电材料制成的导电芯,从而使得外部激励信号可以通过第二同轴线506的内芯经第二馈线505传输给第三极子501。同时,第四极子502通过第二同轴线506外导电芯与接地层10连接。
第二馈电部5021包括开设于第四极子502上的贯通孔,第二同轴线506的内芯穿过该贯通孔与第二馈线505连接。
第三极子501设置有第二接地点5011,该第二接地点5011可以是一个或多个,第三极子501通过第二接地点5011与接地层10连接。
第三寄生极子503和第四寄生极子504分别设置于第二馈线505的相对两侧,且第三寄生极子503与第一极子401连接,第四 寄生极子504与第二极子402连接,以降低第二极化方向上的高低频的干扰。
优选地,第三寄生极子503和第四寄生极子504以第二馈线505为对称轴对称设置。
在部分实施例中,第三寄生极子503包括第三寄生部5032,第四寄生极子504包括第四寄生部5042,其中第三寄生部5032在第二方向上延伸设置,并与第一极子401连接,且第三寄生部5032相对的两端分别位于第一极子401在第二方向上的相对两侧。优选地,第三寄生部5032在第二方向上的延伸距离大于第三极子501和第四极子502之间的间距,第四寄生部5042与第二极子402连接并与第三寄生部5032轴对称设置,其对称轴为第二馈线505,以获得更强的耦合效果。
在部分实施例中,第三寄生极子503还包括第三延伸部5031,第三延伸部5031设置于第三寄生部5032的相对两端,并向远离第二极子402方向延伸。第四寄生极子504还包括第四延伸部5041,第四延伸部5041设置于第四寄生部5042的相对两端,并向远离所述第一极子401方向延伸,以进一步增强天线单元100对高频、低频信号的抗干扰能力。
优选地,第三延伸部5031与第三寄生部5032之间呈夹角β,135°>β>90°,且第四延伸部5041与第三延伸部5031以第二馈线505为对称轴,轴对称设置。
更优地,α等于β,且满足,130°≥α≥100°。
本发明通过将在介质层20远离接地层10设置有沿第一方向布设的第一极子401和第二极子402以及沿着第二方向布设第三极子501和第四极子502。
同时,通过在第一方向上设置与第三极子501连接的第一寄生极子403,以及与第四极子502连接的第二寄生极子404。并在第二方向上设置与第一极子401连接的第三寄生极子503,与第二 极子402连接的第四寄生极子504,其中第一方向和第二方向互为垂直。利用该带寄生的极子结构实现毫米波波段的双频覆盖,其中寄生布局在相对的垂直极化上可以降低高低频干扰。同时,实现在28GHz和39GHz覆盖的较大带宽。
请参阅图7,本发明的第二实施方式提供一种阵列天线200。该阵列天线200包括天线单元100。阵列天线200中的天线单元100的个数具体不做限制,可以根据需要达到的增益值以及应用于的基站中嵌设阵列天线200的空间来决定。
较优的,天线单元100至少为两个,并且天线单元100依次紧密设置,不会相连。
为了使上述结构的阵列天线200能够兼具高增益、低旁瓣、宽频带和小型化等优点,本实施方式中提供的阵列天线具体包括4个天线单元100。更优地,阵列天线200中的天线单元100为四个呈直线排列。
在本实施方式中,天线单元100的第一极化组件40以及第二极化组件50的反射系数、辐射效率以及增益方向图如图8A-8D以及9A-9D所示,在上述具体实施方式中第一极化组件40以及第二极化组件50对应的工作频率下,第一极化组件40以及第二极化组件50的辐射效率较高,覆盖的带宽较大,增益效果较优。
如图8A所示,图8A为天线单元100的第一极化组件40的反射系数曲线图。
如图8B所示,图8B为天线单元100的第一极化组件40的效率曲线图。
如图8C所示,图8C为天线单元100的第一极化组件40的低频增益效果图。
如图8D所示,图8D为天线单元100的第一极化组件40的高频增益效果图。
如图9A所示,图9A为天线单元100的第二极化组件50的 反射系数曲线图。
如图9B所示,图9B为天线单元100的第二极化组件50的效率曲线图。
如图9C所示,图9C为天线单元100的第二极化组件50的低频增益方向图。
如图9D所示,图9D为天线单元100的第二极化组件50的高频增益方向图。
以上所述的仅是发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离发明创造构思的前提下,还可以做出改进,但这些均属于发明的保护范围。

Claims (10)

  1. 一种天线单元,其特征在于,所述天线单元包括接地层、介质层以及辐射贴片组件,所述辐射贴片组件设置于所述介质层,所述接地层位于所述介质层背离所述辐射贴片组件的一侧;
    所述辐射贴片组件包括第一极化组件以及第二极化组件;
    所述第一极化组件包括第一极子、第二极子、第一寄生极子、第二寄生极子以及第一馈线;
    所述第二极化组件包括第三极子、第四极子、第三寄生极子、第四寄生极子以及第二馈线;
    所述第一极子和所述第二极子沿第一方向间隔布设于所述介质层;
    所述第一极子设置有第一馈电部,所述第一馈线自所述第一馈电部延伸至所述第二极子;
    所述第二极子设置有第一接地点,且通过所述第一接地点与接地层连接;
    所述第三极子和所述第四极子沿第二方向间隔布设于所述介质层,所述第二方向与所述第一方向垂直,且所述第一方向和所述第二方向在交叉点相交,所述第一极子和第二极子关于所述交叉点对称设置,所述第三极子和所述第四极子关于所述交叉点对称设置;
    所述第三极子设置有第二接地点,且通过所述第二接地点与接地层连接;
    所述第四极子设置有第二馈电部,所述第二馈线自所述第二馈电部延伸至所述第三极子;
    所述第一寄生极子和所述第二寄生极子分别设置于所述第三极子与所述第四极子,并关于所述第一方向对称设置;
    所述第三寄生极子和所述第四寄生极子分别设置于所述第一极子与所述第二极子,并关于所述第二方向对称设置。
  2. 根据权利要求1所述的天线单元,其特征在于:所述第一寄生极子和所述第二寄生极子以所述第一馈线为对称轴对称设置;
    所述第三寄生极子和所述第四寄生极子以所述第二馈线为对 称轴对称设置。
  3. 根据权利要求2所述的天线单元,其特征在于:所述第一寄生极子包括第一寄生部,所述第二寄生极子包括第二寄生部,所述第一寄生部设置于所述第四极子,所述第一寄生部相对的两端分别位于第四极子在第一方向上的相对两侧;
    所述第二寄生部设置于所述第三极子,并与所述第一寄生部轴对称设置;
    所述第三寄生极子包括第三寄生部,所述第四寄生极子包括第四寄生部,所述第三寄生部设置于所述第一极子,所述第三寄生部相对的两端分别位于第一极子在第二方向上的相对两侧;
    所述第二寄生部设置于所述第三极子,并与所述第一寄生部轴对称设置。
  4. 根据权利要求3所述的天线单元,其特征在于:所述第一寄生极子还包括第一延伸部,所述第一延伸部设置于所述第一寄生部的相对两端,并向远离所述第三极子方向延伸;
    所述第二寄生极子还包括第二延伸部,所述第二延伸部设置于所述第二寄生部的相对两端,并向远离所述第四极子方向延伸;
    所述第三极子还包括第三延伸部,所述第三延伸部设置于所述第三寄生部的相对两端,并向远离所述第二极子方向延伸;
    所述第四极子还包括第四延伸部,所述第四延伸部设置于所述第四寄生部的相对两端,并向远离所述第一极子方向延伸。
  5. 根据权利要求4所述的天线单元,其特征在于:所述第一延伸部与所述第一寄生部之间呈夹角α;
    所述第二延伸部与所述第一延伸部以第一馈线为对称轴,轴对称设置;
    所述第三延伸部与所述第三寄生部之间呈夹角β;
    所述第四延伸部与所述第三延伸部以第二馈线为轴对称,轴对称设置;
    所述夹角α和夹角β满足,130°>α=β>100°。
  6. 根据权利要求3所述的天线单元,其特征在于:所述第一极子和所述第二极子之间具有第一间距;
    所述第三极子和所述第四极子之间具有第二间距;
    所述第一寄生部在第一方向上的延伸长度大于所述第一间 距;
    所述第三寄生部在第二方向上的延伸长度大于所述第二间距。
  7. 根据权利要求1所述的天线单元,其特征在于:所述第一极子和所述第二极子具有相同形状,所述第三极子和所述第四极子具有相同形状;
    或所述第一极子、第二极子、第三极子和所述第四极子具有相同的形状。
  8. 根据权利要求7所述的天线单元,其特征在于:
    所述第一极子、第二极子、第三极子和所述第四极子均呈蝶形结构布设于介质层远离接地层一侧。
  9. 一种阵列天线,其特征在于:所述阵列天线包括至少两个如权利要求1-8任意一项所述的天线单元。
  10. 根据权利要求9所述的阵列天线,其特征在于:所述天线单元呈直线排列。
PCT/CN2018/124912 2018-12-28 2018-12-28 一种天线单元及阵列天线 WO2020133224A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/124912 WO2020133224A1 (zh) 2018-12-28 2018-12-28 一种天线单元及阵列天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/124912 WO2020133224A1 (zh) 2018-12-28 2018-12-28 一种天线单元及阵列天线

Publications (1)

Publication Number Publication Date
WO2020133224A1 true WO2020133224A1 (zh) 2020-07-02

Family

ID=71129527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124912 WO2020133224A1 (zh) 2018-12-28 2018-12-28 一种天线单元及阵列天线

Country Status (1)

Country Link
WO (1) WO2020133224A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112201934A (zh) * 2020-09-23 2021-01-08 华中科技大学 一种双频天线及天线阵列

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5280297A (en) * 1992-04-06 1994-01-18 General Electric Co. Active reflectarray antenna for communication satellite frequency re-use
WO2012102576A2 (en) * 2011-01-27 2012-08-02 Ls Cable Ltd. Broad-band dual polarization dipole antenna and antenna array
CN204118258U (zh) * 2014-11-24 2015-01-21 马秋平 一种小型化对称振子全向天线
CN107293863A (zh) * 2017-05-03 2017-10-24 西安电子科技大学 一种宽波束宽带双极化天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5280297A (en) * 1992-04-06 1994-01-18 General Electric Co. Active reflectarray antenna for communication satellite frequency re-use
WO2012102576A2 (en) * 2011-01-27 2012-08-02 Ls Cable Ltd. Broad-band dual polarization dipole antenna and antenna array
CN204118258U (zh) * 2014-11-24 2015-01-21 马秋平 一种小型化对称振子全向天线
CN107293863A (zh) * 2017-05-03 2017-10-24 西安电子科技大学 一种宽波束宽带双极化天线

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112201934A (zh) * 2020-09-23 2021-01-08 华中科技大学 一种双频天线及天线阵列

Similar Documents

Publication Publication Date Title
CN107658568A (zh) 双频双极化共口径波导喇叭平面阵列天线
US20120062437A1 (en) Antenna system with planar dipole antennas and electronic apparatus having the same
CN108736147A (zh) 一种超宽带Vivaldi圆极化相控阵天线单元
CN109830802B (zh) 一种毫米波双极化贴片天线
CN207320331U (zh) 双频双极化共口径波导喇叭平面阵列天线
WO2014009697A1 (en) Antennas
CN104505578A (zh) 一种全向双圆极化天线
US20130201066A1 (en) Wireless communications device having loop antenna with four spaced apart coupling points and reflector and associated methods
CN104885291A (zh) 天线和滤波器结构
KR101366784B1 (ko) 대수주기 다이폴 배열 안테나
CN204243180U (zh) 一种水平全方向辐射的圆极化天线
CN110233336B (zh) 一种串馈圆极化天线法向组阵
US4740793A (en) Antenna elements and arrays
CN104300233A (zh) 超宽频双极化多入多出天线
CN109713440A (zh) 一种天线单元及阵列天线
CN212303896U (zh) 一种基站mimo天线单元
CN211455960U (zh) 高增益射频前端装置
WO2020133224A1 (zh) 一种天线单元及阵列天线
KR100729627B1 (ko) 단방향성 방사패턴을 갖는 초광대역 안테나
US8358247B2 (en) Twin-Vee-type dual band antenna
CN103943948A (zh) 用于入耳式无线耳机的可折叠pcb板螺旋天线
CN105742792B (zh) 一种水平全方向辐射的圆极化天线
CN109755738A (zh) 一种双极化网格天线
WO2020133321A1 (zh) 一种天线单元及阵列天线
Boroujeni et al. A broadband H-plane patch antenna decoupling technique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944854

Country of ref document: EP

Kind code of ref document: A1