WO2020133147A1 - 一种网络设备以及通信系统 - Google Patents

一种网络设备以及通信系统 Download PDF

Info

Publication number
WO2020133147A1
WO2020133147A1 PCT/CN2018/124644 CN2018124644W WO2020133147A1 WO 2020133147 A1 WO2020133147 A1 WO 2020133147A1 CN 2018124644 W CN2018124644 W CN 2018124644W WO 2020133147 A1 WO2020133147 A1 WO 2020133147A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna array
network device
active module
antenna
unit
Prior art date
Application number
PCT/CN2018/124644
Other languages
English (en)
French (fr)
Inventor
石晓明
冯云
李红宝
梁宁
姚阿敏
于海生
高超祖
彭锋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/124644 priority Critical patent/WO2020133147A1/zh
Publication of WO2020133147A1 publication Critical patent/WO2020133147A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • This application relates to the field of communication technology, and in particular, to a network device and a communication system.
  • the network device includes a baseband processing unit (building baseband unit, BBU) 101 and an active antenna 102, wherein the active antenna 102 implements a remote radio frequency module ( remote unit (RRU) and antenna array integration, the antenna array is equipped with multiple antenna elements, and each antenna element works in parallel.
  • BBU building baseband unit
  • RRU remote radio frequency module
  • the antenna array 201 is provided on the first surface of the active antenna 102 and the RRU 202 is provided on the second surface of the active antenna 102.
  • the single-sided heat dissipation is provided by the second surface provided with the RRU 202, which limits the high-power output, and the cost remains high and the cost performance is low.
  • the embodiments of the present invention provide a network device and a communication system that can effectively reduce costs and can flexibly implement network expansion.
  • a first aspect of an embodiment of the present invention provides a network device, including a baseband processing unit with a baseband processing function, an antenna array, and at least one active module, wherein the antenna array is a large-scale antenna array, and the large-scale antenna array is Based on the principle of multi-user beamforming, a large number of antenna elements are arranged on the network device side;
  • the at least one active module is arranged in a decoupling structure with the antenna array, and the active module is used to connect the baseband processing unit and the antenna array;
  • the antenna array includes at least one antenna array unit, the Any one of the at least one antenna array unit includes a plurality of antenna elements.
  • all antenna array units included in the network device form an omnidirectional coverage, so that all antenna array units included in the antenna array in the horizontal plane can cover radio propagation modes in all directions.
  • This enables network equipment to effectively use precious and scarce frequency band resources, and because the active module and the antenna array are arranged in a decoupling structure, the antenna array and the active module can be independently evolved, or The antenna array or the active module is replaced separately, which increases the application scenario of the network device and improves the freedom of the network device to apply to the network environment.
  • the antenna array unit includes a reflective plate, and the multiple antenna elements are provided on the reflective plate;
  • the reflecting plate has a square structure, a rectangular structure, an arc structure, a cylindrical structure or a polygonal column structure.
  • the specific shape of the reflecting plate is not limited as shown in this aspect, as long as all the antenna array units included in the network device form full coverage.
  • the antenna array includes a plurality of antenna array units that are sequentially placed against each other, and if the reflective plate is curved Structure, the antenna array has a cylindrical structure, and the cross section of the antenna array has a circular structure.
  • the antenna array includes a plurality of antenna array units that are sequentially placed against each other, and if the reflective plate has a square structure Or a rectangular structure, the antenna array has a polygonal column shape, and the cross section of the antenna array has a polygonal structure.
  • the network device further includes a mounting bracket, and the mounting bracket includes multiple mounting positions, and the multiple Between any two of the installation positions, one installation position of the plurality of installation positions corresponds to one sector, and different installation positions correspond to different sectors, the plurality of installation positions At least one of the antenna array units is installed at any one of the installation locations.
  • this embodiment includes the mounting bracket
  • the specific number and arrangement of the installation locations are not limited, as long as all antenna array units installed at all installation locations can achieve omnidirectional coverage.
  • the number of antenna arrays included in the network device is multiple, and the frequency bands supported by different antenna arrays The scope is different.
  • the network device shown in this aspect can be used to expand the frequency band.
  • the number of antenna arrays included in the network device is multiple, and different antenna arrays support different frequency band ranges.
  • multiple antenna arrays are arranged in sequence along the axis of the antenna array.
  • This embodiment supports each antenna array included in the network device.
  • the frequency band is not limited. In application scenarios that require frequency band expansion, a new antenna array can be installed on the network device to support the network device for new frequency points.
  • the antenna element includes two orthogonal first radiating units and second radiating units, and the target antenna array
  • the unit is correspondingly provided with a first active module and a second active module, the target antenna array unit is one of the at least one antenna array unit; the first active module and the target antenna unit All first radiation units included are connected, and/or the second active module is connected to all second radiation units included in the target antenna unit.
  • the network device further includes a first connector and a second connector, the first connector and the target antenna All the first radiating units included in the array unit are connected, and the second connector is connected to all the second radiating units included in the target antenna array unit;
  • the first active module is connected to the first connector by a cable, and/or, the second active module is connected to the second connector by a cable.
  • the antenna A first port is provided on an end face of the array toward the first active module, and N first connectors are provided inside the first port, where N is a positive integer greater than or equal to 1;
  • the network device further includes a connecting member, the connecting member includes a second port and a sealing sleeve connected to the second port, the sealing sleeve includes N cables therein, and N second ports are provided inside the second port Two connectors, N of the second connectors are connectors of the N cables, and when the first port and the second port are in a connected state, the N first connectors and the N The second connectors are connected one by one.
  • the end surface of the antenna array facing the active module is provided with a third port, and N are provided inside the third port
  • the network device further includes a connector for connecting the third port, the third port
  • the specific method of connecting the second port please refer to the specific method of connecting the first port and the second port shown above for details, which will not be described in detail.
  • the sealing sleeve can install N cables inside the sealing sleeve to prevent the N cables from contacting with water, dust, etc., effectively increasing the service life of the cable, and
  • the first connector of N cables can be connected to the N second connectors at one time, which improves the connection between the first active module and the first port
  • the efficiency of the connection of a radiating unit is the same.
  • the second port is connected to the third port, the first connector of N cables can be connected to the N second connectors at one time, which improves the The efficiency of the connection between the second active module and the second radiation unit.
  • a second aspect of an embodiment of the present invention provides a communication system, including a network device, and user equipment for communicating with the network device, wherein the network device is as described in any one of the first aspects of the foregoing embodiment of the present invention Narrate.
  • FIG. 1 is a structural example of a network device provided by the prior art
  • FIG. 2 is another structural example of a network device provided by the prior art
  • FIG. 3 is a schematic structural diagram of an embodiment of a communication system provided by the present invention.
  • FIG. 4 is a schematic structural diagram of an embodiment of a network device provided by the present invention.
  • FIG. 5 is a schematic structural diagram of another embodiment of a network device provided by the present invention.
  • FIG. 6 is a schematic structural diagram of another embodiment of a network device provided by the present invention.
  • FIG. 7 is a schematic cross-sectional structure diagram of an embodiment of a network device provided by the present invention.
  • FIG. 8 is a schematic top structural view of an embodiment of a network device provided by the present invention.
  • FIG. 9 is a schematic cross-sectional structure diagram of an embodiment of an antenna array provided by the present invention.
  • FIG. 10 is a schematic top structural view of another embodiment of a network device provided by the present invention.
  • FIG. 11 is a schematic structural diagram of an embodiment of an antenna array unit provided by the present invention.
  • FIG. 12 is a schematic structural top view of another embodiment of a network device provided by the present invention.
  • FIG. 13 is a schematic structural diagram of another embodiment of an antenna array unit provided by the present invention.
  • FIG. 14 is a schematic diagram of a bottom surface structure of an embodiment of an antenna array provided by the present invention.
  • FIG. 15 is a schematic structural view of an embodiment of a connector provided by the present invention.
  • FIG. 16 is a schematic structural view of another embodiment of a connector provided by the present invention.
  • FIG. 17 is a schematic structural diagram of another embodiment of a network device provided by the present invention.
  • MIMO multiple input multiple output
  • the massive MIMO technology configures a large number of antenna elements in the network equipment, so that the spatial freedom of the system is improved, which can effectively improve the system capacity and energy efficiency and spectrum efficiency. Due to the improvement of the spatial freedom of the massive MIMO system, the signal processing complexity of the system terminal can be greatly reduced, and only simple linear signal processing algorithms need to be arranged on the network device side to reduce or eliminate inter-user interference and cells in the cell Interference, channel estimation error and noise.
  • the communication system shown in this embodiment includes a user equipment 301 and a network device 32.
  • the communication system shown in this embodiment uses the fifth-generation mobile communication technology (5th-Generation, 5G) as an example to illustrate:
  • the network device 32 shown in this embodiment specifically includes a baseband processing unit BBU321, at least one active module 322, and an antenna array 323.
  • the network device 32 includes one active module 322 as an example for illustration.
  • the network device 32 may include multiple active modules 322. The active The specific number of modules 322 is not repeated in this embodiment.
  • the BBU321 shown in this embodiment is used for baseband processing functions such as encoding, multiplexing, modulation, and spread spectrum.
  • the BBU321 and the active module 322 are connected by an optical fiber.
  • the active shown in this embodiment The module 322 may be a remote radio unit (RRU).
  • the active module 322 may specifically include an intermediate frequency module, a transceiver module, a power amplifier, and a filter module.
  • the intermediate frequency module is used for modulation and demodulation of optical transmission, digital up-down conversion, A/D conversion, etc.; the transceiver module completes the conversion of the intermediate frequency signal to the radio frequency signal; and then passes through the power amplifier and filter module to transmit the radio frequency signal through the antenna array Go out.
  • This embodiment does not limit the number of channels supported by the active module.
  • the active module may support 8 channels, 16 channels, or 32 channels.
  • the optical fiber is directly connected to the active module 322 from the BBU321, and the baseband digital signal is transmitted between the BBU321 and the active module 322, so that the network device can control the signal of a user from the specified active module 322
  • the channel is transmitted, which can greatly reduce the interference between users.
  • the signal of the user equipment is received by the channel of the closest active module 322, and then transmitted from this channel to the network device through the optical fiber, which can greatly reduce the interference between the user equipment on different channels.
  • the active module 322 and the antenna array 323 shown in this embodiment are arranged in a decoupling structure, that is, on the network device side, the active module 322 and the antenna array 323 are provided separately.
  • the antenna array 323 shown in this embodiment may be a large-scale antenna array, where the large-scale antenna array is based on the principle of multi-user beamforming, a large number of antenna elements arranged on the network device side, and a large number of antenna elements are modulated for each Beams are separated by spatial signals, and dozens of signals are simultaneously transmitted on the same frequency resource.
  • This full mining of space resources can effectively use precious and scarce frequency band resources and increase network capacity dozens of times.
  • Beamforming refers to, from the perspective of network equipment, the superimposition effect generated by digital signal processing is like completing the construction of a virtual antenna pattern on the network equipment side.
  • Beamforming refers to, from the perspective of network equipment, the superimposition effect generated by digital signal processing is like completing the construction of a virtual antenna pattern on the network equipment side.
  • the energy emitted by the network equipment can be collected to the location of the specific user equipment without spreading in other directions, and the network equipment can track the user equipment's signal in real time to track it, so that the best emission direction follows
  • the movement of the user equipment ensures that the electromagnetic signal at the receiving point of the user equipment is in a superimposed state at any time. It can be seen that the application of large-scale antenna arrays can not only greatly increase network capacity and user experience, but also have a profound impact on the communications industry.
  • the network device shown in FIG. 4 includes an antenna array 401 and an active module 402.
  • the BBU is not shown in FIG. 4.
  • the embodiment shown in FIG. 4 does not limit the specific location of the BBU.
  • the embodiment shown in FIG. 4 takes the number of the active modules 402 as an example for illustrative description. In specific applications, the The number of source modules 402 may be multiple.
  • the network device may include two active modules, namely an active module 501 and an active module 502.
  • the active module 402 and the antenna array 401 shown in this example are arranged in a decoupling structure, and the active module 402 is used to connect the baseband processing unit and the antenna array 401.
  • the baseband processing unit, the antenna array 401, and the active module 402 please refer to the embodiment shown in FIG. 3 for details, and details are not described in detail.
  • each antenna array unit included in the antenna array 401 includes multiple antenna elements, the specific shape and arrangement of the antenna array unit in this embodiment
  • the number and specific arrangement of the antenna elements on the reflecting plate are not limited, as long as all antenna array units included in the antenna array 401 form omnidirectional coverage.
  • all antenna array elements included in the antenna array 401 form omnidirectional coverage (omnidirectional coverage) means that all antenna array elements included in the antenna array 401 can cover radio propagation modes in various directions in a horizontal plane.
  • FIG. 4 is a schematic diagram of a partial structure of a network device
  • the antenna array includes an antenna array unit, and the antenna array unit includes a reflection plate and a plurality of antenna elements arranged on the reflection plate;
  • the reflective plate shown in this embodiment may have a cylindrical structure as shown in FIG. 4, so that the antenna array 401 included in the network device has a cylindrical structure as a whole.
  • the reflective plate may also have a polygonal column structure, so that the antenna array 401 included in the network device has a polygonal column structure as a whole, for example, the antenna array 401 may have a column structure such as a hexagonal column shape , No specific restrictions.
  • FIG. 6 is an overall schematic diagram of a partial structure of a network device
  • FIG. 7 is a schematic diagram of a cross-sectional structure of the antenna array.
  • the antenna array includes a plurality of antenna array units.
  • the antenna array includes 16 antenna array units 600 that are sequentially held against each other.
  • Each antenna array unit 600 includes a reflection plate 601 and a plurality of antenna elements 602 provided on the reflection plate 601.
  • each antenna array unit 600 may have a rectangular structure, and then 16 antenna array units 600 are sequentially placed against each other to form In the case of a 16-sided cylindrical structure, the cross section of the antenna array has a 16-sided structure.
  • each antenna array unit may have a square structure, and then the multiple antenna array units are sequentially held against A polygonal columnar structure is formed.
  • the cross section of the antenna array is a polygonal structure.
  • each antenna array unit may have an arc structure, and the multiple antenna array units are sequentially placed against
  • a cylindrical structure may be formed.
  • the antenna array has a circular structure in cross section.
  • FIG. 8 is a schematic diagram of a top view of the antenna array.
  • the network device further includes an installation bracket, and the installation bracket includes a plurality of installation positions, and any two installation positions among the plurality of installation positions are spaced apart, and one of the plurality of installation positions
  • the installation position corresponds to one sector, and different installation positions correspond to different sectors.
  • the installation position is used to install at least one antenna array unit.
  • different installation positions correspond to different fans Area, where the sector refers to a wireless coverage area covering a certain geographic area, that is, the sector is a division of the wireless coverage area, this embodiment does not limit the specific number of mounting positions included in the mounting bracket and the arrangement method, As long as all antenna array units installed at all installation positions can achieve omnidirectional coverage.
  • the installation position 8021 (FIG. 8 does not 10) and the mounting position 8022 may be located at two non-adjacent apex positions of the top end surface of the mounting bracket 801.
  • an antenna array unit 803 may be installed at each of the installation positions 8021, and in order to achieve omnidirectional coverage, the overall structure of the antenna array unit 803 in this example is a semicircular arc shape and the antenna array The unit 803 has a semi-circular cross-sectional structure. More specifically, as further shown in FIG.
  • the antenna array in this example includes two antenna array units 803 having a semi-circular cross-section, so that each of the antennas
  • the coverage area of the sector corresponding to the array unit 803 is 180 degrees, and the coverage areas covered by the sectors corresponding to different antenna array units 802 do not overlap each other.
  • the specific description of the mounting bracket 801, the mounting position 8021, and the mounting position 8022 can be For details, see the above description, and do not repeat them in detail.
  • multiple antenna array units can be installed at one installation location 8021. Taking FIG. 10 as an example, the installation at one installation location 8021 is connected to each other. Take two antenna array units as an example, namely an antenna array unit 1001 and an antenna array unit 1002. In this embodiment, the angle between the antenna array unit 1001 and the antenna array unit 1002 is not limited, for example, as shown in FIG. 11 It is shown as an example, where FIG.
  • FIG. 11 is a schematic structural view of two antenna array units installed at one installation position. It can be seen that the angle between the antenna array unit 1001 and the antenna array unit 1002 may be 90 degrees, In order that the coverage area of the sector corresponding to each antenna array unit is 90 degrees, and the coverage areas covered by the sectors corresponding to different antenna array units do not overlap each other, the antenna array unit 1001 in this embodiment
  • the specific size of the angle between the antenna array unit 1002 and the antenna array unit 1002 is not limited, as long as the antenna array unit 1001 and the antenna array unit 1002 can be combined to complete 180 degrees of coverage, which makes the installation on the mounting bracket All the antenna array units at the mounting position 8021 on the 801 and the mounting position 8022 form 360-degree omnidirectional coverage.
  • the specific description of the mounting bracket 801, the mounting position 8021, and the mounting position 8022 can be For details, see the above description, and do not repeat it in detail; in order to achieve omnidirectional coverage, the installation location 8021 or the installation location 8022 can be installed with multiple antenna array units.
  • Take the example shown in FIG. 12 to install at one installation location 8021 Take three antenna array units connected to each other as an example, namely an antenna array unit 1201, an antenna array unit 1202 and an antenna array unit 1203.
  • the antenna array unit 1201, the antenna array unit 1202 and the antenna array unit The angle between any two adjacent antenna array units in 1203 is not limited, for example, as shown in FIG. 13, where FIG. 13 is a schematic structural view of three antenna array units installed at one installation location, It can be seen that the angle between the antenna array unit 1201 and the antenna array unit 1202 can be 120 degrees, and the angle between the antenna array unit 1202 and the antenna array unit 1203 can be 120 degrees, so that each The coverage area of the sector corresponding to the antenna array unit is 60 degrees, and the coverage areas covered by the sectors corresponding to different antenna array units do not overlap each other, so that all antenna array units installed on the mounting bracket 801 It is sufficient to form an omnidirectional coverage.
  • connection method of the antenna array and the active module is described.
  • any one of the antenna elements 804 included in the antenna array shown in this embodiment includes two orthogonal first radiating units 8041 and second radiating units 8042, optionally,
  • the first radiation unit 8041 may be positively polarized at 45 degrees
  • the second radiation unit 8042 may be negatively polarized at 45 degrees
  • the first radiation unit 8041 may be horizontally polarized.
  • the second radiation unit 8042 may be vertically polarized, as long as the first radiation unit 8041 and the second radiation unit 8042 have an orthogonal relationship.
  • the network device shown in this embodiment may include multiple active modules, specifically including at least one first active module and/or at least one second active module. Specifically, at least one corresponding to the target antenna array unit is provided A first active module and/or at least one second active module, wherein the target antenna array unit is any antenna array unit included in the network device;
  • the first active module corresponding to the target antenna array unit is connected to all first radiating units included in the target antenna unit, and/or, the second active unit corresponding to the target antenna array unit
  • the source module is connected to all second radiating units included in the target antenna unit.
  • connection method of the antenna array and the active module in conjunction with specific application scenarios:
  • the network device may only include one of the first active modules, and the first active module For connecting to all the first radiating elements included in the antenna array, or, the network device may include only one having the second active module, and the second active module is used for connecting with the antenna All the second radiating units included in the array are connected.
  • the network device may include two first active modules.
  • the network device may include a first active module 901 and a first active module 902, wherein the first active module 901 is used to connect with all the first radiating units installed at the installation position 8021, and the first active module 902 is used to connect to the first installation module at the installation position 8022 All first radiating units are connected; or, the network device may include two second active modules, wherein one second active module is used to connect to all second radiating units installed at the installation location 8021, and another A second active module is used to connect with all the first radiating units installed at the installation location 8022.
  • the network device may include two first active modules.
  • the network device may include a first active module 1204 and a first An active module 1205, wherein the first active module 1204 is used to connect with all the first radiation units installed at the installation position 8021, and the first active module 1205 is used to connect with all the first radiation units installed at the installation position 8022 Radiation unit connection; or, the network device may include two second active modules, wherein one second active module is used to connect to all second radiation units installed at the installation location 8021, and the other second The active module is used to connect with all the first radiating units installed at the installation location 8022.
  • the network device may include only the first active module for connecting the first radiating unit, or the The network device only needs to include a second active module for connecting to the second radiating unit.
  • the network device may include at least one first active module and at least one second active module at the same time, specific description of the first active module and the second active module, Please refer to the above for details, and do not repeat them in detail.
  • the end face of the antenna array shown in this embodiment facing the active module is provided with a first port 1401, and the first port 1401 is provided with N of the first connectors 1402 inside, in this embodiment
  • N the specific value of N is not limited, as long as the N is a positive integer greater than or equal to 1, taking FIG. 14 as an example, the value of N may be 5;
  • the N first connectors are respectively connected to the N antenna array units, and the first connectors connected to different antenna array units are different. More specifically, the connection of the first connector to the antenna array unit refers to The first connector is connected to all the first radiating units included in the antenna array unit.
  • the network device further includes a connecting member 1500, and the connecting member 1500 includes a second port 1501 and A sealing sleeve 1502 connected to the second port 1501, the sealing sleeve 1502 in a hollow structure includes N cables inside, as shown in FIG. 16, wherein FIG. 16 is a schematic diagram of the front structure of the second port, and the second port 1501 N second connectors 1602 are provided inside, and the N second connectors 1602 are respectively connectors of the N cables;
  • the structure of the first port 1401 and the second port 1501 shown in this embodiment are matched, so that the first port 1401 and the second port 1501 can be threaded, snapped, etc.
  • a detachable connection is made, and when the first port 1401 and the second port 1501 are connected, N first connectors 1402 and N second connectors 1602 are connected one by one to realize the first The connection between the active module and the first radiating unit.
  • the end of the antenna array shown in this embodiment facing the active module is provided with a third port 1403.
  • the third port 1403 is provided with N second connectors 1404.
  • the embodiment does not limit the specific value of N, as long as the N is a positive integer greater than or equal to 1, taking FIG. 14 as an example, the value of N may be 5;
  • the N second connectors are respectively connected to the N antenna array units, and the second connectors connected to different antenna array units are different. More specifically, the connection of the second connector to the antenna array unit refers to The second connector is connected to all the second radiating units included in the antenna array unit.
  • the network device further includes a connector for connecting the third port 1403.
  • a connector for connecting the third port 1403.
  • the sealing sleeve 1502 can install N cables inside the sealing sleeve 1502 to prevent the N cables from contacting water, dust, etc., which effectively improves the cable Service life, and when connecting the first port to the second port, the first connector of N cables and the N second connectors can be connected at once, which improves the connection of the first active
  • the efficiency of connecting the module to the first radiating unit is also the same.
  • the second port is connected to the third port, the first connector of N cables and the second connectors of N cables can be realized at once The connection improves the efficiency of connecting the second active module with the second radiating unit.
  • the network device shown in this embodiment can also be used to expand the frequency band.
  • the number of antenna arrays included in the network device is multiple, and different antenna arrays support different frequency band ranges.
  • the network device includes a first antenna array 1701 and a second antenna array 1702.
  • the multiple antenna arrays are sequentially along the axis of the antenna array Arrangement and arrangement.
  • the frequency band supported by each antenna array included in the network device is not limited.
  • the first antenna array 1701 included in the network device may be a common design for the radiating unit supporting the 3.5G frequency band and the radiating unit supporting the 4.5G frequency band.
  • a first active module can be installed on the network device, and all the radiating units supporting the 3.5G frequency band can be connected through the first active module, and then based on the use of the network Situation, if it is determined that the subsequent network environment needs to continue to support the 4.5G frequency band, there is no need to install new network equipment, as long as the second active module is installed on the network equipment, and all the 4.5G frequency bands are connected through the second active module Radiation unit; another example, if it is determined that the subsequent network environment needs to continue to support the 2.6G band, but the first antenna array 1701 installed on the network device does not support the 2.6G band, then the second antenna array that supports the 2.6G band can be used 1702 is installed in the current network equipment. It can be seen
  • the antenna array and the active module are integrated, and as the cell capacity increases, the number of network devices needs to be increased.
  • the antenna array and the active module can be independently evolved, or the The antenna array or the active module is replaced separately. For example, if the power of the active module originally installed on the network device is too low to support the current communication requirements, the active module that supports higher power can be replaced. Replacing the active module that was originally installed on the network device with too low a power increases the application scenario of the network device and improves the freedom of the network device to apply to the network environment.
  • the network device when the network device is initially created, the network device may include only the first active module, and during subsequent use of the network device, when the service volume increases, the first active device included in the initial creation of the network device is initially created If the module cannot support the subsequent increased service volume, the second active module may be added to the network device to expand the network capacity supported by the network device, thereby enabling the network device to support a larger capacity Business volume.
  • the network equipment when the network equipment is initially created, if the network equipment is used in a suburban scenario, only the first active module can be installed on the network equipment to meet the current network capacity.
  • the solution shown in this embodiment is adopted, without recreating the network device, and only by installing the second active module on the current network device, the network expansion can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明提供了一种网络设备以及通信系统,包括基带处理单元、天线阵列以及至少一个有源模块,所述至少一个有源模块与所述天线阵列呈解耦结构设置,所述有源模块用于连接所述基带处理单元以及所述天线阵列;所述至少一个天线阵列单元形成全向覆盖,从而使得在水平面内所述天线阵列所包括的所有天线阵列单元能够覆盖各个方向的无线电传播方式,可使得网络设备有效的利用宝贵而稀缺的频带资源,又因有源模块与所述天线阵列呈解耦结构设置,则所述天线阵列以及所述有源模块可独立进行演进,也可根据需要对所述天线阵列或所述有源模块单独进行更换,增加了网络设备的应用场景,提升了网络设备适用网络环境的自由度。

Description

一种网络设备以及通信系统 技术领域
本申请涉及通信技术领域,尤其涉及一种网络设备以及通信系统。
背景技术
现有技术提供的的结构可如图1所示,该网络设备包括基带处理单元(building baseband unit,BBU)101以及有源天线102,其中,所述有源天线102实现了远端射频模块(remote radio unit,RRU)和天线阵列的集成,天线阵列设置有多路天线振子,各天线振子并列工作。
但是,结合图2所示可知,所述有源天线102的第一面设置有所述天线阵列201,所述有源天线102的第二面设置有所述RRU202,则有源天线102只能通过设置有所述RRU202的第二面进行单面散热,限制了大功率输出,而且成本居高不下,性价比低。
发明内容
本发明实施例提供了一种有效的降低成本,并能够灵活实现网络扩容的网络设备以及通信系统。
本发明实施例第一方面提供了一种网络设备,包括具有基带处理功能的基带处理单元、天线阵列以及至少一个有源模块,其中,所述天线阵列为大规模天线阵列,大规模天线阵列是基于多用户波束成形的原理,在网络设备侧布置的大量天线振子;
所述至少一个有源模块与所述天线阵列呈解耦结构设置,所述有源模块用于连接所述基带处理单元以及所述天线阵列;所述天线阵列包括至少一个天线阵列单元,所述至少一个天线阵列单元中的任一天线阵列单元包括多个天线振子。
采用本方面所示的网络设备,该网络设备所包括的所有天线阵列单元形成全向覆盖,从而使得在水平面内所述天线阵列所包括的所有天线阵列单元能够覆盖各个方向的无线电传播方式,可使得网络设备有效的利用宝贵而稀缺的频带资源,又因有源模块与所述天线阵列呈解耦结构设置,则所述天线阵列以及所述有源模块可独立进行演进,也可根据需要对所述天线阵列或所述有源模块单独进行更换,增加了网络设备的应用场景,提升了网络设备适用网络环境的自由度。
基于本发明实施例第一方面,本发明实施例第一方面的一种可选的实现方式中,所述天线阵列单元包括反射板,所述反射板上设置所述多个天线振子;
所述反射板呈方形结构、长方形结构、弧形结构、圆柱形结构或多边柱形结构。
本方面所示对所述反射板的具体形状不做限定,只要所述网络设备所包括的所有天线阵列单元形成全覆盖即可。
基于本发明实施例第一方面,本发明实施例第一方面的一种可选的实现方式中,所述天线阵列包括依次抵持设置的多个天线阵列单元,若所述反射板呈弧形结构,则所述天线阵列呈圆柱形结构,且所述天线阵列的横截面呈圆形结构。
基于本发明实施例第一方面,本发明实施例第一方面的一种可选的实现方式中,所述天线阵列包括依次抵持设置的多个天线阵列单元,若所述反射板呈方形结构或呈长方形结 构,则所述天线阵列呈多边柱形,且所述天线阵列的横截面呈多边形结构。
基于本发明实施例第一方面,本发明实施例第一方面的一种可选的实现方式中,所述网络设备还包括安装支架,所述安装支架包括有多个安装位置,且所述多个安装位置中的任意两个安装位置之间间隔设置,所述多个安装位置中的一个安装位置与一个扇区对应,且不同的安装位置与不同的扇区对应,所述多个安装位置中的任一个安装位置上安装有至少一个所述天线阵列单元。
本方面所示,因不同的安装位置对应不同的扇区,其中,扇区是指覆盖一定地理区域的无线覆盖区,即扇区是对无线覆盖区域的划分,本实施例对安装支架所包括的安装位置的具体数量以及排布方式不做限定,只要安装在所有安装位置上的所有天线阵列单元能够实现全向覆盖即可。
基于本发明实施例第一方面,本发明实施例第一方面的一种可选的实现方式中,所述网络设备所包括的天线阵列的数量为多个,且不同的天线阵列所支持的频段范围不同。
采用本方面所示的网络设备可实现频段的扩展,具体的,所述网络设备所包括的天线阵列的数量为多个,且不同的天线阵列所支持的频段范围不同,为实现全向覆盖且不同的天线振子之间在覆盖范围上互不遮挡,则多个天线阵列沿所述天线阵列的轴向,依次排列设置,本实施例对所述网络设备所包括的每一天线阵列所支持的频段不做限定。在需要频段扩展的应用场景下,可在网络设备上安装新的天线阵列,以实现网络设备对新的频点的支持。
基于本发明实施例第一方面,本发明实施例第一方面的一种可选的实现方式中,所述天线振子包括两个正交的第一辐射单元和第二辐射单元,与目标天线阵列单元对应设置有第一有源模块和第二有源模块,所述目标天线阵列单元为所述至少一个天线阵列单元中的一个天线阵列单元;所述第一有源模块与所述目标天线单元所包括的所有第一辐射单元连接,和/或,所述第二有源模块与所述目标天线单元所包括的所有第二辐射单元连接。
基于本发明实施例第一方面,本发明实施例第一方面的一种可选的实现方式中,所述网络设备还包括第一接头以及第二接头,所述第一接头与所述目标天线阵列单元所包括的所有所述第一辐射单元连接,所述第二接头与所述目标天线阵列单元所包括的所有所述第二辐射单元连接;
所述第一有源模块通过电缆与所述第一接头连接,和/或,所述第二有源模块通过电缆与所述第二接头连接。
基于本发明实施例第一方面,本发明实施例第一方面的一种可选的实现方式中,若所述第一有源模块用于连接N个所述目标天线阵列单元,则所述天线阵列朝向所述第一有源模块的端面设置有第一端口,所述第一端口内部设置有N个所述第一接头,所述N为大于或等于1的正整数;
所述网络设备还包括连接件,所述连接件包括第二端口以及与所述第二端口连接的密封套,所述密封套内部包括N个电缆,所述第二端口内部设置有N个第二接头,N个所述第二接头为所述N个电缆的接头,在所述第一端口与所述第二端口之间呈连接状态时,N个所述第一接头与N个所述第二接头分别一一对接。
基于本发明实施例第一方面,本发明实施例第一方面的一种可选的实现方式中,天线阵列朝向有源模块的端面设置有第三端口,所述第三端口内部设置有N个所述第二接头,为实现所述天线阵列单元和所述第二有源模块的连接,则所述网络设备还包括用于连接所述第三端口的连接件,所述第三端口与所述第二端口的连接的具体方式,请详见上述所示的第一端口与所述第二端口连接的具体方式,具体不做赘述。
采用本方面所示的网络设备,所述密封套可对所述密封套内部的N个电缆进行安装,以避免N个电缆接触到水、灰尘等,有效的提升了电缆的使用寿命,而且在将所述第一端口连接到所述第二端口上时,可一次性的实现N个电缆的第一接头与N个第二接头连接,提升了将所述第一有源模块与所述第一辐射单元连接的效率,同样的,在将所述第二端口连接到所述第三端口上时,可一次性的实现N个电缆的第一接头与N个第二接头连接,提升了将所述第二有源模块与所述第二辐射单元连接的效率。
本发明实施例第二方面提供了一种通信系统,包括网络设备,以及用于与所述网络设备通信的用户设备,其中,所述网络设备如上述本发明实施例第一方面任一项所述。
附图说明
图1为现有技术所提供的网络设备的一种结构示例;
图2为现有技术所提供的网络设备的另一种结构示例;
图3为本发明所提供的通信系统的一种实施例结构示意图;
图4为本发明所提供的网络设备的一种实施例结构示意图;
图5为本发明所提供的网络设备的另一种实施例结构示意图;
图6为本发明所提供的网络设备的另一种实施例结构示意图;
图7为本发明所提供的网络设备的一种实施例剖面结构示意图;
图8为本发明所提供的网络设备的一种实施例俯视结构示意图;
图9为本发明所提供的天线阵列的一种实施例剖面结构示意图;
图10为本发明所提供的网络设备的另一种实施例俯视结构示意图;
图11为本发明所提供的天线阵列单元的一种实施例结构示意图;
图12为本发明所提供的网络设备的另一种实施例俯视结构示意图;
图13为本发明所提供的天线阵列单元的另一种实施例结构示意图;
图14为本发明所提供的天线阵列的一种实施例底面结构示意图;
图15为本发明所提供的连接件的一种实施例结构示意图;
图16为本发明所提供的连接件的另一种实施例结构示意图;
图17为本发明所提供的网络设备的另一种实施例结构示意图。
具体实施方式
随着无线通信技术的发展,移动互联网流量到2020年将会增长1000倍。第五代蜂窝网络通信被指能够带来1000倍的系统容量提升,并且能提供许多新特性,比如支持海量低功耗设备接入,扩大覆盖率,提高可靠性,降低延迟等。这些目标需要采用一些新的技 术来实现,比如大规模天线(massiveMIMO)技术,全双工技术,协作中继技术,毫米波通信和设备到设备通信(device-to-device,D2D)等。其中多输入多输出(multiple-inputmultiple-output,MIMO)技术,由于能够显著地提升通信系统的可靠性和容量,已经被成功的应用在多种通信标准中。
但是,大规模MIMO技术通过在网络设备配置大量的天线振子,使得系统的空间自由度得到提升,从而能有效地提升系统容量以及能量效率和频谱效率。由于大规模MIMO系统空间自由度的提升,可以大大降低系统终端的信号处理复杂度,并且在网络设备端只需要布置简单的线性信号处理算法就能够达到减小或消除小区内用户间干扰、小区间干扰、信道估计误差以及噪声的影响。
以下结合图3所示对申请所示的通信系统的具体结构进行示例性说明:
本实施例所示的通信系统包括用户设备301以及网络设备32,本实施例所示的通信系统以应用至第五代移动通信技术(5th-Generation,5G)中为例进行示例性说明:
本实施例所示的所述网络设备32具体包括基带处理单元BBU321、至少一个有源模块322以及天线阵列323。其中,图3以所述网络设备32包括有一个有源模块322为例进行示例性说明,在具体应用中,所述网络设备32可包括有多个所述有源模块322,所述有源模块322的具体数量在本实施例中不做赘述。
本实施例所示的所述BBU321用于进行编码、复用、调制和扩频等基带处理功能,所述BBU321与所述有源模块322通过光纤连接,本实施例所示的所述有源模块322可为射频拉远单元(remote radio unit,RRU),所述有源模块322可具体包括中频模块、收发信机模块、功放和滤波模块。所述中频模块用于光传输的调制解调、数字上下变频、A/D转换等;收发信机模块完成中频信号到射频信号的变换;再经过功放和滤波模块,将射频信号通过天线阵列发射出去。本实施例对所述有源模块所支持的通道数量不做限定,例如,所述有源模块可支持8通道、16通道或32通道等。
具体的,在下行方向:光纤从BBU321直接连到有源模块322,BBU321和有源模块322之间传输的是基带数字信号,这样网络设备可以控制某个用户的信号从指定的有源模块322通道发射出去,这样可以大大降低用户间的干扰。
在上行方向:用户设备的信号被距离最近的有源模块322的通道收到,然后从这个通道经过光纤传到网络设备,这样也可以大大降低不同通道上用户设备之间的干扰。
与图1所示的现有技术不同的是,本实施例所示的所述有源模块322与所述天线阵列323呈解耦结构设置,即在所述网络设备侧,所述有源模块322与所述天线阵列323为分开设置的。
本实施例所示的所述天线阵列323可为大规模天线阵列,其中,大规模天线阵列是基于多用户波束成形的原理,在网络设备侧布置的大量天线振子,对大量天线振子调制各自的波束,通过空间信号隔离,在同一频率资源上同时传输几十条信号。这种对空间资源的充分挖掘,可以有效利用宝贵而稀缺的频带资源,并且几十倍地提升网络容量。
其中,波束成形(Beamforming)是指,从网络设备方面看,利用数字信号处理产生的叠加效果就如同完成了网络设备端虚拟天线方向图的构造。通过这一技术,网络设备所发 射的能量可以汇集到特定用户设备所在位置,而不向其他方向扩散,并且网络设备可以通过监测用户设备的信号,对其进行实时跟踪,使最佳发射方向跟随用户设备的移动,保证在任何时候用户设备接收点的电磁波信号都处于叠加状态。可见,大规模天线阵列的应用不单可以大幅度提升网络容量和用户体验,也将对通信行业产成深远的影响。
基于图3所示的通信系统,以下对本申请所提供的网络设备的具体结构进行说明:
首先以图4所示为例,图4所示的网络设备包括天线阵列401以及有源模块402,图4所示未示出BBU,图4所示的实施例对BBU的具体位置不做限定,只要所述BBU与所述有源模块402连接即可,且图4所示的实施例以所述有源模块402的数量为一个为例进行示例性说明,在具体应用中,所述有源模块402的数量可为多个,如图5所示,所述网络设备可包括有两个有源模块,即有源模块501以及有源模块502。
继续参见图4所示可知,本示例所示的所述有源模块402与所述天线阵列401呈解耦结构设置,所述有源模块402用于连接所述基带处理单元以及所述天线阵列401,对所述基带处理单元、所述天线阵列401以及所述有源模块402的具体说明,请详见图3所示的实施例,具体不做赘述。
以所述天线阵列401包括有至少一个天线阵列单元为例,所述天线阵列401所包括的每一天线阵列单元中包括多个天线振子,本实施例对所述天线阵列单元的具体形状以及设置在所述反射板上的天线振子的数量以及具体排布方式不做限定,只要所述天线阵列401所包括的所有天线阵列单元形成全向覆盖即可。
其中,所述天线阵列401所包括的所有天线阵列单元形成全向覆盖(omnidirectional coverage)是指,在水平面内所述天线阵列401所包括的所有天线阵列单元能够覆盖各个方向的无线电传播方式。
以下对所述天线阵列的可选的几种结构进行示例性说明:
所述天线阵列的第一种结构可参见图4所示,其中,图4为网络设备的一种局部结构整体示意图;
在图4所示的实施例中,所述天线阵列包括有一个天线阵列单元,所述天线阵列单元包括反射板以及设置在所述反射板上的多个天线振子;
具体的,为实现全向覆盖,则本实施例所示的反射板可呈如图4所示的圆柱形结构,以使网络设备所包括的天线阵列401整体呈圆柱形结构。
可选的,所述反射板还可呈多边柱形结构,以使网络设备所包括的天线阵列401整体呈多边柱形结构,例如,所述天线阵列401可呈六边柱形等柱形结构,具体不做限定。
所述天线阵列的第二种结构可参见图6以及图7所示,其中,图6为网络设备的一种局部结构整体示意图,图7为天线阵列的剖面结构示意图。
在本种结构中,所述天线阵列包括有多个天线阵列单元,具体以所述天线阵列包括依次抵持设置的16个天线阵列单元600为例,具体的,16个天线阵列单元600中,每一天线阵列单元600包括反射板601以及设置在反射板601上的多个天线振子602。
可选的,在所述反射板601长方形结构的情况下,如图6以及图7所示,每一天线阵列单元600可呈长方形结构,则在16个天线阵列单元600依次抵持设置以形成呈16边柱 形结构的情况下,所述天线阵列的横截面呈16边形结构。
可选的,在所述天线阵列包括有多个天线阵列单元且所述反射板呈正方形结构的情况下,每一天线阵列单元可呈正方形结构,则在多个天线阵列单元依次抵持设置以形成呈多边柱形结构,在此种情况下,所述天线阵列的横截面呈多边形结构。
可选的,在所述天线阵列包括有多个天线阵列单元且所述反射板呈弧形结构的情况下,每一天线阵列单元可弧形结构,则在多个天线阵列单元依次抵持设置的情况下,可形成呈圆柱形结构,在此种情况下,所述天线阵列的横截面呈圆形结构。
所述天线阵列的第三种结构可参见图8所示,图8所示为天线阵列的俯视结构示意图。
具体的,所述网络设备还包括安装支架,所述安装支架包括有多个安装位置,所述多个安装位置中的任意两个安装位置之间间隔设置,所述多个安装位置中的一个安装位置与一个扇区对应,且不同的安装位置与不同的扇区对应,所述安装位置用于安装有至少一个所述天线阵列单元,本实施例中,因不同的安装位置对应不同的扇区,其中,扇区是指覆盖一定地理区域的无线覆盖区,即扇区是对无线覆盖区域的划分,本实施例对安装支架所包括的安装位置的具体数量以及排布方式不做限定,只要安装在所有安装位置上的所有天线阵列单元能够实现全向覆盖即可。
可选的,以图8所示为例,以安装支架801包括有两个安装位置,即安装位置8021以及安装位置8022所示为例,则本示例中,所述安装位置8021(图8没有,图10有)以及所述安装位置8022可位于所述安装支架801顶端端面的两个不相邻的顶点位置处。具体的,可在各所述安装位置8021处安装有一个天线阵列单元803,则为实现全向覆盖,则本示例中的所述天线阵列单元803的整体结构呈半圆弧形且所述天线阵列单元803的横截面呈半圆形结构,更具体的,进一步结合图9所示,本示例中的天线阵列包括两个横截面呈半圆形的天线阵列单元803,以使每个所述天线阵列单元803对应的扇区的覆盖范围为180度,且不同的天线阵列单元802所对应的扇区所覆盖的覆盖范围互不重叠。
可选的,还以安装支架801包括有两个安装位置,即安装位置8021以及安装位置8022所示为例,对所述安装支架801、所述安装位置8021以及安装位置8022的具体说明,可详见上述所示,具体不做赘述;为实现全向覆盖,则一个安装位置8021可安装有多个天线阵列单元,以图10所示为例,以安装于一个安装位置8021处相互连接的两个天线阵列单元为例,即天线阵列单元1001以及天线阵列单元1002,本实施例对所述天线阵列单元1001和所述天线阵列单元1002之间的夹角不做限定,例如以图11所示为例,其中,图11为安装于一个安装位置处的两个天线阵列单元的结构示意图,可见,所述天线阵列单元1001和所述天线阵列单元1002之间的夹角可为90度,以使每个所述天线阵列单元对应的扇区的覆盖范围为90度,且不同的天线阵列单元所对应的扇区所覆盖的覆盖范围互不重叠,本实施例对所述天线阵列单元1001和所述天线阵列单元1002之间的夹角的具体大小不做限定,只要所述天线阵列单元1001和所述天线阵列单元1002组合能够完成180度覆盖即可,进而使得安装于所述安装支架801上的安装位置8021以及安装位置8022上的所有天线阵列单元形成360度全向覆盖即可。
可选的,还以安装支架801包括有两个安装位置,即安装位置8021以及安装位置8022所示为例,对所述安装支架801、所述安装位置8021以及安装位置8022的具体说明,可详见上述所示,具体不做赘述;为实现全向覆盖,则安装位置8021或安装位置8022可安装有多个天线阵列单元,以图12所示为例,以安装于一个安装位置8021处相互连接的三个天线阵列单元为例,即天线阵列单元1201、天线阵列单元1202以及天线阵列单元1203,本实施例对所述天线阵列单元1201、所述天线阵列单元1202以及所述天线阵列单元1203中任意相邻的两个天线阵列单元之间的夹角不做限定,例如以图13所示为例,其中,图13为安装于一个安装位置处的三个天线阵列单元的结构示意图,可见,所述天线阵列单元1201和天线阵列单元1202之间的夹角可为120度,所述天线阵列单元1202和所述天线阵列单元1203之间的夹角可为120度,以使每个所述天线阵列单元对应的扇区的覆盖范围为60度,且不同的天线阵列单元所对应的扇区所覆盖的覆盖范围互不重叠,使得安装于所述安装支架801上的所有天线阵列单元形成全向覆盖即可。
基于上述对所述天线阵列结构的说明,以下对所述天线阵列和所述有源模块的连接方式进行说明:
以图9所示为例,本实施例所示的所述天线阵列所包括的任一所述天线振子804包括两个正交的第一辐射单元8041和第二辐射单元8042,可选的,所述第一辐射单元8041可为正45度极化,所述第二辐射单元8042可为负45度极化,还可选的,所述第一辐射单元8041可呈水平极化,所述第二辐射单元8042可呈垂直极化,只要所述第一辐射单元8041和第二辐射单元8042之间呈正交关系即可。
本实施例所示的网络设备可包括有多个有源模块,具体包括至少一个第一有源模块和/或至少一个第二有源模块,具体的,与目标天线阵列单元对应设置有至少一个第一有源模块和/或至少一个第二有源模块,其中,所述目标天线阵列单元为所述网络设备所包括的任一天线阵列单元;
与所述目标天线阵列单元对应的所述第一有源模块与所述目标天线单元所包括的所有第一辐射单元连接,和/或,与所述目标天线阵列单元对应的所述第二有源模块与所述目标天线单元所包括的所有第二辐射单元连接。
可见,本实施例所示的所述网络设备所包括的所有所述第一有源模块与所述天线阵列所包括的所有第一辐射单元连接,所有所述第二有源模块与所述天线阵列所包括的所有第二辐射单元连接。
以下结合具体应用场景对所述天线阵列和所述有源模块的连接方式进行说明:
在低容量场景下,以图4、图6以及图7所示的网络设备的结构所示,所述网络设备可仅包括有一个有所述第一有源模块,则该第一有源模块用于与所述天线阵列所包括的所有第一辐射单元连接,或,所述网络设备可仅包括有一个有所述第二有源模块,则该第二有源模块用于与所述天线阵列所包括的所有第二辐射单元连接。
以图8以及图10所示的网络设备的结构所示,所述网络设备可包括有两个第一有源模块,具体如图10所示,所述网络设备可包括有第一有源模块901以及第一有源模块902,其中,第一有源模块901用于与安装于安装位置8021处的所有第一辐射单元连接,第一有 源模块902用于与安装于安装位置8022处的所有第一辐射单元连接;或,所述网络设备可包括有两个第二有源模块,其中,一个第二有源模块用于与安装于安装位置8021处的所有第二辐射单元连接,另一个第二有源模块用于与安装于安装位置8022处的所有第一辐射单元连接。
以图12所示的网络设备的结构所示,所述网络设备可包括有两个第一有源模块,具体如图12所示,所述网络设备可包括有第一有源模块1204以及第一有源模块1205,其中,第一有源模块1204用于与安装于安装位置8021处的所有第一辐射单元连接,第一有源模块1205用于与安装于安装位置8022处的所有第一辐射单元连接;或,所述网络设备可包括有两个第二有源模块,其中,一个第二有源模块用于与安装于安装位置8021处的所有第二辐射单元连接,另一个第二有源模块用于与安装于安装位置8022处的所有第一辐射单元连接。
以上对所述有源模块的设置方式的说明为可选的示例,只要在低容量的场景下,所述网络设备可只包括用于连接第一辐射单元的第一有源模块,或所述网络设备只包括用于连接第二辐射单元的第二有源模块即可。
在高容量场景下,所述网络设备可同时包括有至少一个第一有源模块和至少一个第二有源模块,对所述第一有源模块以及所述第二有源模块的具体说明,请详见上述所示,具体不做赘述。
进一步的,参见图14所示,本实施例所示的天线阵列朝向有源模块的端面设置有第一端口1401,所述第一端口1401内部设置有N个所述第一接头1402,本实施例对所述N的具体取值不做限定,只要所述N为大于或等于1的正整数即可,以图14所示为例,所述N的取值可为5;
具体的,N个第一接头分别与N个天线阵列单元连接,且不同的天线阵列单元所连接的第一接头不相同,更具体的,所述第一接头与天线阵列单元连接是指,所述第一接头与该天线阵列单元所包括的所有第一辐射单元连接。
为实现所述天线阵列单元和所述第一有源模块的连接,则如图15所示,所述网络设备还包括有连接件1500,所述连接件1500包括第二端口1501以及与所述第二端口1501连接的密封套1502,呈中空结构的所述密封套1502内部包括N个电缆,以图16所示,其中,图16为第二端口的正面结构示意图,所述第二端口1501内部设置有N个第二接头1602,N个所述第二接头1602分别为所述N个电缆的接头;
本实施例所示的所述第一端口1401和所述第二端口1501的结构相匹配设置,以使所述第一端口1401与所述第二端口1501可通过螺纹、或通过卡扣等方式进行可拆卸的连接,而在所述第一端口1401与所述第二端口1501连接时,N个所述第一接头1402与N个所述第二接头1602分别一一对接,以实现第一有源模块与所述第一辐射单元的连接。
进一步的,继续参见图14所示,本实施例所示的天线阵列朝向有源模块的端面设置有第三端口1403,所述第三端口1403内部设置有N个所述第二接头1404,本实施例对所述N的具体取值不做限定,只要所述N为大于或等于1的正整数即可,以图14所示为例,所述N的取值可为5;
具体的,N个第二接头分别与N个天线阵列单元连接,且不同的天线阵列单元所连接的第二接头不相同,更具体的,所述第二接头与天线阵列单元连接是指,所述第二接头与该天线阵列单元所包括的所有第二辐射单元连接。
为实现所述天线阵列单元和所述第二有源模块的连接,则所述网络设备还包括用于连接所述第三端口1403的连接件,该连接件的具体结构,请参见上述所示,具体不做赘述;
所述第三端口1403与所述第二端口的连接的具体方式,请详见上述所示的第一端口与所述第二端口连接的具体方式,具体不做赘述。
可见,采用本实施例所示的网络设备,所述密封套1502可对所述密封套1502内部的N个电缆进行安装,以避免N个电缆接触到水、灰尘等,有效的提升了电缆的使用寿命,而且在将所述第一端口连接到所述第二端口上时,可一次性的实现N个电缆的第一接头与N个第二接头连接,提升了将所述第一有源模块与所述第一辐射单元连接的效率,同样的,在将所述第二端口连接到所述第三端口上时,可一次性的实现N个电缆的第一接头与N个第二接头连接,提升了将所述第二有源模块与所述第二辐射单元连接的效率。
可选的,采用本实施例所示的网络设备还可实现频段的扩展,具体的,所述网络设备所包括的天线阵列的数量为多个,且不同的天线阵列所支持的频段范围不同,例如,以图17所示为例,所述网络设备包括有第一天线阵列1701以及第二天线阵列1702,所述第一天线阵列1701以及所述第二天线阵列1702具体结构的说明,请详见上述所示,具体不做赘述。
具体的,若所述网络设备包括有多个天线阵列,为实现全向覆盖且不同的天线振子之间在覆盖范围上互不遮挡,则多个天线阵列沿所述天线阵列的轴向,依次排列设置,本实施例对所述网络设备所包括的每一天线阵列所支持的频段不做限定。
以图17所示为例,所述网络设备所包括的第一天线阵列1701可为支持3.5G频段的辐射单元和支持4.5G频段的辐射单元共用的设计,则在初期创建网络设备时,若确定当前的网络环境需要的支持3.5G频段,则可在所述网络设备上安装第一有源模块,通过该第一有源模块连接所有支持3.5G频段的辐射单元,而后续根据网络的使用情况,如确定出后续网络环境需要继续支持4.5G频段,则无需安装新的网络设备,只要在该网络设备上安装第二有源模块,通过该第二有源模块连接所有支持4.5G频段的辐射单元;再如,如确定出后续网络环境需要继续支持2.6G频段,但已安装在网络设备上的第一天线阵列1701不支持2.6G频段,则可将支持2.6G频段的第二天线阵列1702安装在当前的网络设备,可见,本实施例所示的网络设备,可通过增加有源模块或通过增加天线阵列的方式实现网络设备所支持的频点的扩展。
以下对本实施例所示的网络设备的有益效果进行说明:
结合图1所示的现有技术可知,在现有技术的方案中,天线阵列和有源模块是一体化设置,在小区容量提高时,需要增加网络设备的数量,而本实施例所示的方案中,因所述网络设备所包括的天线阵列和有源模块之间采用的是解耦设计的方案,则所述天线阵列以及所述有源模块可独立进行演进,也可根据需要对所述天线阵列或所述有源模块单独进行 更换,例如,若原先安装在网络设备上的有源模块的功率过低,不能够支持当前的通信需求,则可将支持更高功率的有源模块替换原先安装在所述网络设备上的功率过低的有源模块,增加了网络设备的应用场景,提升了网络设备适用网络环境的自由度。
又如,在初期创建网络设备时,所述网络设备可仅包括所述第一有源模块,而且网络设备后续的使用过程中,业务量提升时,初期创建网络设备所包括的第一有源模块不能够支持后续所提升的业务量,则可在所述网络设备上增加所述第二有源模块,以扩充所述网络设备所支持的网络容量,从而使得网络设备能够支持更大容量的业务量。
例如,在初期创建网络设备时,若将网络设备应用于郊区的场景中,则可在网络设备上仅安装第一有源模块即可满足当前的网络容量,若郊区的业务量后续有大幅度的提升,则采用本实施例所示的方案,无需重新创建网络设备,而仅需要在当前的网络设备上安装第二有源模块,即可实现网络扩容。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种网络设备,其特征在于,包括具有基带处理功能的基带处理单元、天线阵列以及至少一个有源模块,所述至少一个有源模块与所述天线阵列呈解耦结构设置,所述有源模块用于连接所述基带处理单元以及所述天线阵列;
    所述天线阵列包括至少一个天线阵列单元,所述至少一个天线阵列单元中的任一天线阵列单元包括多个天线振子,且所述至少一个天线阵列单元形成全向覆盖。
  2. 根据权利要求1所述的网络设备,其特征在于,所述天线阵列单元包括反射板,所述反射板上设置所述多个天线振子;
    所述反射板呈方形结构、长方形结构、弧形结构、圆柱形结构或多边柱形结构。
  3. 根据权利要求2所述的网络设备,其特征在于,所述天线阵列包括依次抵持设置的多个天线阵列单元,若所述反射板呈弧形结构,则所述天线阵列呈圆柱形结构,且所述天线阵列的横截面呈圆形结构。
  4. 根据权利要求2所述的网络设备,其特征在于,所述天线阵列包括依次抵持设置的多个天线阵列单元,若所述反射板呈方形结构或呈长方形结构,则所述天线阵列呈多边柱形,且所述天线阵列的横截面呈多边形结构。
  5. 根据权利要求2所述的网络设备,其特征在于,所述网络设备还包括安装支架,所述安装支架包括有多个安装位置,且所述多个安装位置中的任意两个安装位置之间间隔设置,所述多个安装位置中的一个安装位置与一个扇区对应,且不同的安装位置与不同的扇区对应,所述多个安装位置中的任一个安装位置上安装有至少一个所述天线阵列单元。
  6. 根据权利要求1至5任一项所述的网络设备,其特征在于,所述网络设备所包括的天线阵列的数量为多个,且不同的天线阵列所支持的频段范围不同。
  7. 根据权利要求2至6任一项所述的网络设备,其特征在于,所述天线振子包括两个正交的第一辐射单元和第二辐射单元,与目标天线阵列单元对应设置有第一有源模块和/或第二有源模块,所述目标天线阵列单元为所述至少一个天线阵列单元中的一个天线阵列单元;
    所述第一有源模块与所述目标天线单元所包括的所有第一辐射单元连接,和/或,所述第二有源模块与所述目标天线单元所包括的所有第二辐射单元连接。
  8. 根据权利要求7所述的网络设备,其特征在于,所述网络设备还包括第一接头以及第二接头,所述第一接头与所述目标天线阵列单元所包括的所有所述第一辐射单元连接,所述第二接头与所述目标天线阵列单元所包括的所有所述第二辐射单元连接;
    所述第一有源模块通过电缆与所述第一接头连接,和/或,所述第二有源模块通过电缆与所述第二接头连接。
  9. 根据权利要求8所述的网络设备,其特征在于,若所述第一有源模块用于连接N个所述目标天线阵列单元,则所述天线阵列朝向所述第一有源模块的端面设置有第一端口,所述第一端口内部设置有N个所述第一接头,所述N为大于或等于1的正整数;
    所述网络设备还包括连接件,所述连接件包括第二端口以及与所述第二端口连接的密封套,所述密封套内部包括N个电缆,所述第二端口内部设置有N个第二接头,N个所述 第二接头为所述N个电缆的接头,在所述第一端口与所述第二端口之间呈连接状态时,N个所述第一接头与N个所述第二接头分别一一对接。
  10. 一种通信系统,其特征在于,包括网络设备,以及用于与所述网络设备通信的用户设备,其中,所述网络设备如权利要求1至权利要求9任一项所述。
PCT/CN2018/124644 2018-12-28 2018-12-28 一种网络设备以及通信系统 WO2020133147A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/124644 WO2020133147A1 (zh) 2018-12-28 2018-12-28 一种网络设备以及通信系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/124644 WO2020133147A1 (zh) 2018-12-28 2018-12-28 一种网络设备以及通信系统

Publications (1)

Publication Number Publication Date
WO2020133147A1 true WO2020133147A1 (zh) 2020-07-02

Family

ID=71129398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124644 WO2020133147A1 (zh) 2018-12-28 2018-12-28 一种网络设备以及通信系统

Country Status (1)

Country Link
WO (1) WO2020133147A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03145307A (ja) * 1989-10-31 1991-06-20 Nec Corp 全方位反射アンテナおよび方位検出装置
US20050237256A1 (en) * 2004-04-08 2005-10-27 Florenio Regala Portable co-located LOS and SATCOM antenna
CN201616508U (zh) * 2010-02-09 2010-10-27 陕西特恩电子科技有限公司 一种全向微带天线阵
CN102522634A (zh) * 2011-12-13 2012-06-27 华为技术有限公司 天线装置、基站及通信系统
CN105119060A (zh) * 2015-08-18 2015-12-02 广东曼克维通信科技有限公司 双极化全向天线及其天线反射板
CN108448258A (zh) * 2018-02-06 2018-08-24 京信通信系统(中国)有限公司 多制式融合的阵列天线
CN108461927A (zh) * 2018-02-06 2018-08-28 京信通信系统(中国)有限公司 多制式融合的有源天线

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03145307A (ja) * 1989-10-31 1991-06-20 Nec Corp 全方位反射アンテナおよび方位検出装置
US20050237256A1 (en) * 2004-04-08 2005-10-27 Florenio Regala Portable co-located LOS and SATCOM antenna
CN201616508U (zh) * 2010-02-09 2010-10-27 陕西特恩电子科技有限公司 一种全向微带天线阵
CN102522634A (zh) * 2011-12-13 2012-06-27 华为技术有限公司 天线装置、基站及通信系统
CN105119060A (zh) * 2015-08-18 2015-12-02 广东曼克维通信科技有限公司 双极化全向天线及其天线反射板
CN108448258A (zh) * 2018-02-06 2018-08-24 京信通信系统(中国)有限公司 多制式融合的阵列天线
CN108461927A (zh) * 2018-02-06 2018-08-28 京信通信系统(中国)有限公司 多制式融合的有源天线

Similar Documents

Publication Publication Date Title
CN110391506B (zh) 一种天线系统、馈电网络重构方法及装置
US9209526B2 (en) Broadband dual-polarized omni-directional antenna and feeding method using the same
US20190174475A1 (en) Wireless System with Configurable Radio and Antenna Resources
CN217956133U (zh) 以多输入多输出mimo天线方案运行的天线模块和基站
US8594735B2 (en) Conformal antenna array
US20040162115A1 (en) Wireless antennas, networks, methods, software, and services
US8041313B2 (en) System and method for wireless communications
JP2005535201A (ja) 三次元受信範囲のセルラネットワーク
JP2017539138A (ja) アンテナアレイのカップリング校正ネットワーク装置、校正方法及び記憶媒体
CN107667480B (zh) 传输设备及其方法、计算机可读介质
CN110650525B (zh) 一种多波束分配功率mac协议通信方法
US20120276892A1 (en) Hub base station
WO2014047858A1 (zh) 阵列天线和基站
WO2020133147A1 (zh) 一种网络设备以及通信系统
WO2023088446A1 (zh) 一种天线及通信系统
CN111509405B (zh) 一种天线模组及电子设备
JP4913186B2 (ja) 無線通信システム及びその設置方法
WO2021221978A1 (en) High-gain reconfigurable antenna
CN211957897U (zh) 一种一体化天线以及基站
CN220492213U (zh) 一种高增益全向天线
Chattopadhyay et al. Task identification in massive mimo technology for its effective implementation in 5G and satellite communication
CN108809377A (zh) 一种基于波束对准的mimo天线阵列
Henry et al. Performance Gains of Three-Dimensional MIMO Antenna Structures
WO2024001903A1 (zh) 一种天线装置和通信设备
JP5272085B2 (ja) 無線通信システム及びその設置方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944918

Country of ref document: EP

Kind code of ref document: A1