WO2024001903A1 - 一种天线装置和通信设备 - Google Patents

一种天线装置和通信设备 Download PDF

Info

Publication number
WO2024001903A1
WO2024001903A1 PCT/CN2023/101701 CN2023101701W WO2024001903A1 WO 2024001903 A1 WO2024001903 A1 WO 2024001903A1 CN 2023101701 W CN2023101701 W CN 2023101701W WO 2024001903 A1 WO2024001903 A1 WO 2024001903A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge
port
antenna device
radiating element
power
Prior art date
Application number
PCT/CN2023/101701
Other languages
English (en)
French (fr)
Other versions
WO2024001903A9 (zh
Inventor
薛团结
张关喜
李波杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024001903A1 publication Critical patent/WO2024001903A1/zh
Publication of WO2024001903A9 publication Critical patent/WO2024001903A9/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • the present application relates to the field of communication technology, specifically an antenna device and communication equipment.
  • Access network equipment In wireless communication networks, access network equipment (such as base stations), as key network nodes, plays a key role in the communication network. With the development of mobile communications, the form of access network equipment has also shown diversified development. Access network equipment includes antennas, and access network equipment sends and receives signals through antennas.
  • the antenna includes a radiating element array and an antenna port. The radiating element array can be connected to the antenna port, and the antenna port can be connected to the radio frequency port.
  • the antenna port and the radio frequency port can be connected in one-to-one correspondence.
  • the antenna ports can also be connected to many-to-many radio frequency ports.
  • each radio frequency port in multiple radio frequency ports can be connected to multiple antenna ports.
  • Each antenna port is connected.
  • This application provides an antenna device and communication equipment for reducing power waste.
  • the present application provides an antenna device.
  • the antenna device includes a first mounting surface, a second mounting surface, a plurality of radiation element arrays and a first circuit unit.
  • the first circuit unit includes a first electric bridge, a second electric bridge and a third electric bridge.
  • the first input port of the first power bridge is connected to the first radio frequency port, and the second input port of the first power bridge is connected to the second radio frequency port.
  • the first output port of the first bridge is connected to the antenna port connected to N1 radiating element arrays disposed on the first mounting surface among the plurality of radiating element arrays, where N1 is a positive integer.
  • the third input port of the second power bridge is connected to the third radio frequency port, and the fourth input port of the second power bridge is connected to the fourth radio frequency port.
  • the third output port of the second bridge is connected to the antenna port connected to the N2 radiating element arrays located on the first mounting surface in the plurality of radiating element arrays.
  • N2 is a positive integer. Each radiating element in the N2 radiating element arrays The array is different from each of the N1 radiating element arrays.
  • the second output port of the first bridge is connected to the fifth input port of the third bridge.
  • the fourth output port of the second bridge is connected to the sixth input port of the third bridge.
  • the fifth output port of the third bridge is connected to the antenna port connected to the N3 radiating element array provided on the second mounting surface, where N3 is a positive integer.
  • the angle between the first mounting surface and the second mounting surface on the side facing away from the N1 radiating unit arrays is the first included angle, and the first included angle is less than 180°.
  • the first radio frequency port, the second radio frequency port, the third radio frequency port and the fourth radio frequency port can connect N1 radiating unit arrays, N2 radiating unit arrays and N3 radiating unit arrays through the first bridge unit, multiple radiation Power sharing can be achieved between unit arrays, and the power of each array can be adjusted according to needs.
  • the first output port of the first bridge is connected to the antenna port connected to the N1 radiating element arrays provided on the first mounting surface among the plurality of radiating element arrays. Therefore, the power of the signals input by the first input port and the second input port can be concentrated on the signal output by one output port of the first bridge.
  • the third output port of the second bridge is connected to the antenna port connected to the N2 radiating element arrays disposed on the first mounting surface among the plurality of radiating element arrays, the third input port and the fourth input port of the second bridge The power of the signal input to the port can be concentrated on the signal output by one output port of the second bridge.
  • the second output port of the first bridge is connected to the fifth input port of the third bridge.
  • the fourth output port of the second bridge is connected to the sixth input port of the third bridge.
  • the power of the signal input by the fifth input port and the sixth input port of the third bridge can be concentrated on the signal output by one output port of the third bridge, for example, it can be concentrated on the N3 radiating unit arrays connected to the fifth output port. .
  • the radiating element array (N1 radiating element array and N2 radiating element array) deployed on the first mounting surface of the antenna device is in working state, while the radiating element array (N3 radiating element array) deployed on the second mounting surface
  • the power of the signals emitted by the first radio frequency port and the second radio frequency port can be concentrated on the N1 radiating element arrays deployed on the first installation surface, and the power of the signals emitted by the third radio frequency port and the fourth radio frequency port
  • the power can be concentrated on the N2 radiating element array deployed on the first mounting surface, thereby improving power utilization and reducing power waste.
  • the first radio frequency port, the second radio frequency port, the fourth radio frequency port can be concentrated on the N3 radiating unit array deployed on the second mounting surface, thereby improving power utilization and reducing power waste.
  • each radiating unit array among the N2 radiating unit arrays is different from each radiating unit array among the N1 radiating unit arrays.
  • the logical port formed by the first radio frequency port and the second radio frequency port The logical ports formed by the third radio frequency port and the fourth radio frequency port can not interfere with each other on the analog circuit. That is to say, the signals emitted by the first radio frequency port and the second radio frequency port are set based on the needs of N1 radiating unit arrays. The power and phase of the signal.
  • the power and phase of the signals emitted by the third radio frequency port and the fourth radio frequency port are set. Therefore, the power amplifier connected to each radio frequency port can send signals with the power supported by itself, thereby avoiding the problem that the power amplifier connected with the radio frequency port cannot send signals with the power supported by itself, thereby reducing power waste caused by power over-sending.
  • the third bridge may further include a sixth output port, and the sixth output port may be connected to a load.
  • the antenna device further includes a third mounting surface. The sixth output port of the third bridge is connected to the antenna port connected to the N4 radiating element array provided on the third mounting surface, where N4 is a positive integer.
  • the radiating element array (N4 radiating element arrays) deployed on the third mounting surface of the antenna device is in working state, and the radiating element arrays deployed on the first and second mounting surfaces are not in working state, the The power of signals emitted by the first radio frequency port, the second radio frequency port, the third radio frequency port and the fourth radio frequency port can be concentrated on the N4 radiating element array deployed on the third mounting surface, thereby improving power utilization and reducing power waste.
  • the third mounting surface may be a mounting surface different from the first mounting surface and the second mounting surface.
  • the third mounting surface and the second mounting surface are located on opposite sides of the first mounting surface.
  • the third electric bridge can be directly connected to the N3 radiating element arrays, and the third electric bridge can also be connected to the N3 radiating element arrays through other devices.
  • the antenna device further includes a fourth electric bridge, and the third electric bridge can be connected to the N3 radiating element arrays through the fourth electric bridge.
  • the fifth output port of the third bridge is connected to the seventh input port of the fourth bridge, and the seventh output port of the fourth bridge is connected to the N3 radiating unit arrays. It can be seen that the third electric bridge can be connected to the N3 radiating element arrays through the fourth electric bridge. In this way, the N3 radiating element arrays can be connected to more radio frequency ports through the fourth electric bridge.
  • the antenna device further includes a second circuit unit, and the eighth input port of the fourth bridge is connected to the ninth output port of the second circuit unit.
  • the N3 radiating unit arrays can be connected to the radio frequency ports connected to the two circuit units through the fourth bridge, so that when the N3 radiating unit arrays are in the working state, the radio frequency ports connected to the two circuit units emit The power of the signal can be concentrated on the signal emitted by the N3 radiating element array.
  • the eighth output port of the fourth bridge is connected to the antenna port connected to the N4 radiating element array provided on the third mounting surface, and N4 is a positive integer.
  • the N4 radiating unit arrays can be connected to the radio frequency ports connected to the two circuit units through the fourth bridge, so that when the N4 radiating unit arrays are in the working state, the radio frequency ports connected to the two circuit units emit The power of the signal can be concentrated on the signal emitted by the N4 radiating element array.
  • the antenna device further includes a first power divider, and the first bridge is connected to the N1 radiating element arrays through the first power divider.
  • the first output port of the first bridge is connected to the input port of the first power splitter, and the output port of the first power splitter is connected to N1 radiating unit arrays.
  • the first power divider can support a larger number of radiating unit arrays without increasing the number of RF ports. Since the number of RF ports is small, this solution can reduce costs, and since the number of radiating unit arrays can be increased, Antenna device performance can be improved.
  • the antenna device further includes a first phase shifter, and the first bridge is connected to the radiating element array in the N1 radiating element arrays through the first phase shifter.
  • the phase of the signal output by the first bridge can be changed through the first phase shifter, which can improve the adjustability of the antenna device in actual application scenarios.
  • an output port of the first power splitter is connected to one of the N1 radiating element arrays through a first phase shifter. Since the phase of the signal emitted by the radiating element array can be adjusted through the first phase shifter, the beam forming capability (also called beam scanning capability) of the N1 radiating element arrays can be improved.
  • the antenna device further includes a first microstrip line, and the first bridge is connected to the N1 radiating element arrays through the first microstrip line.
  • the first microstrip line can be used to adjust the phase of the received signal, which can improve the adjustability of the antenna device in practical application scenarios.
  • the first output port of the first bridge is connected to N1 radiating element arrays through a first microstrip line.
  • the phase of the signal output by the first output port of the first electric bridge can be adjusted through the first microstrip line, so that the phase of the signal received by the radiation element array connected to the first microstrip line is consistent with the phase of the signal output by the first electric bridge.
  • the phase of the signal received by the radiation unit array of the second output port is aligned, and then the phase-aligned signal can be output through the radiation unit array, thereby improving the signal strength.
  • the first microstrip line is used to delay the phase of the signal output by the first output port of the first bridge by a first preset value.
  • the first preset value may be determined based on the phase difference between the phase of the signal output by the first output port of the first bridge and the phase of the signal received by the N3 radiating element array.
  • the phase of the signal output by the third bridge is 90° higher than the phase of the signal output by the first bridge. degree, therefore the first microstrip line can be used to delay the phase of the signal output by the first output port of the first bridge by 90 degrees (that is, the first preset value is 90 degrees).
  • the first preset value may be 180 degrees.
  • the phase of the adjusted signal of the first microstrip line can be aligned with the phase of the signal output by the output port of the third bridge. Furthermore, the phase of the signal received by the radiating element array connected to the first microstrip line can be aligned with the phase of the signal output by the output port of the third bridge. The phases of the signals received by the radiation unit array at the second output port of the first bridge can be aligned, and then the phase-aligned signals can be output through the radiation unit array, thereby improving the signal strength.
  • the parameters of the first electric bridge can be flexibly set according to actual needs.
  • the first electric bridge can be a 90-degree electric bridge or a 180-degree electric bridge.
  • the first bridge includes two input ports and two output ports.
  • the power ratio of the first bridge can be set flexibly, for example, it can be set to 2:1 or 1:1.
  • the power ratio of the first bridge being 1:1 can be understood as: the signal input by one input port (such as the first input port or the second input port) of the first bridge is output by the first output port and the second output port.
  • the power ratio of the signals is 1:1.
  • the power of the signals received by the two input ports of the first bridge can be concentrated on the first On the signal output by one output port of the bridge. Since the output powers supported by the multiple power amplifiers connected to the two input ports of the first bridge may be equal, when the power ratio of the first bridge is 1:1, the multiple power amplifiers can equally The signal is transmitted with the output power supported by itself, so that the power ratio of the two input signals of the first bridge is 1:1, thereby reducing power waste. On the other hand, multiple power amplifiers transmit signals with the output power they can support, which can alleviate the situation of power dissatisfaction.
  • the antenna device further includes a second power splitter, and the second electric bridge is connected to the N2 radiating element arrays through the second power splitter.
  • the second electric bridge is connected to the N2 radiating element arrays through the second power splitter.
  • the third output port of the second bridge is connected to the input port of the second power splitter, and the output port of the second power splitter is connected to the N2 radiating unit array.
  • the power of the signal emitted from the third output port can be distributed to the N2 radiating unit arrays connected to the second power splitter.
  • the second power splitter can support a larger number of RF ports without increasing the number of RF ports. Radiating element array, because the number of radio frequency ports is small, this solution can reduce costs, and because the number of radiating element arrays can be increased, the performance of the antenna device can be improved.
  • the antenna device further includes a second phase shifter, and the second bridge is connected to the radiating element array in the N2 radiating element arrays through the second phase shifter.
  • the phase of the signal output by the second bridge can be changed through the second phase shifter, which can improve the adjustability of the antenna device in actual application scenarios.
  • an output port of the second power splitter is connected to one of the N2 radiating element arrays through a second phase shifter. Since the phase of the signal emitted by the radiating element array can be adjusted through the second phase shifter, the beam forming capability (also called beam scanning capability) of the N2 radiating element arrays can be improved.
  • the antenna device further includes a second microstrip line, and the second bridge is connected to the N2 radiating element arrays through the second microstrip line.
  • the second microstrip line can be used to adjust the phase of the received signal, which can improve the adjustability of the antenna device in actual application scenarios.
  • the third output port of the second bridge is connected to the N2 radiating unit arrays through a second microstrip line.
  • phase of the signal output by the third output port of the second bridge can be adjusted through the second microstrip line, so that the phase of the signal received by the radiation element array connected to the second microstrip line is consistent with the phase of the signal output by the third output port of the second bridge.
  • the phase alignment of the signal received by the radiation unit array of the fourth output port can then output the phase-aligned signal through the radiation unit array, thereby improving the signal strength.
  • the second microstrip line is used to delay the phase of the signal output by the third output port of the second bridge by a second preset angle.
  • the second preset angle may be determined based on the phase difference between the phase of the signal output by the third output port of the second bridge and the phase of the signal received by the N3 radiating element array.
  • the second microstrip line can be used to delay the phase of the signal output by the third output port of the second bridge by 90 degrees (that is, the second preset angle is 90 degrees).
  • the second preset angle may be 180 degrees.
  • the phase of the adjusted signal of the second microstrip line can be aligned with the phase of the signal output by the output port of the third bridge, and the phase of the signal received by the radiation element array connected to the second microstrip line is consistent with the phase of the signal output by the output port of the third bridge.
  • the phase of the signal received by the radiating unit array at the fourth output port of the bridge can be aligned, and then the phase-aligned signal can be output through the radiating unit array, thereby improving the signal strength.
  • the parameters of the first electric bridge can be flexibly set according to actual needs.
  • the second electric bridge is a 90-degree electric bridge or a 180-degree electric bridge.
  • the second bridge includes two input ports and two output ports.
  • the power ratio of the second bridge can be set flexibly, for example, it can be set to 2:1, or set to 1:1.
  • the power ratio of the second bridge is 1:1, which can be understood as: the signal input by one input port (such as the third input port or the fourth input port) of the second bridge is output by the third output port and the fourth output port.
  • the power ratio of the signals is 1:1.
  • the power of the signals received by the two input ports of the second bridge can be concentrated on the first On the signal output by one output port of the bridge (for example, in a possible example, the power of the signal received by the two input ports can be all concentrated on the signal output by one output port of the first bridge). Since the output powers supported by the multiple power amplifiers connected to the two input ports of the second bridge may be equal, when the power ratio of the second bridge is 1:1, the multiple power amplifiers can support the same output power. The signal is transmitted with the output power supported by itself, so that the power ratio of the two input signals of the second bridge is 1:1, thereby reducing power waste. On the other hand, multiple power amplifiers transmit signals with the output power they can support, which can alleviate the situation of power dissatisfaction.
  • the parameters of the third electric bridge can be flexibly set according to actual needs.
  • the third electric bridge is a 90-degree electric bridge or a 180-degree electric bridge.
  • the third bridge includes two input ports and two output ports.
  • the power ratio of the third bridge is 1:1.
  • the plurality of radiating units further includes N5 radiating unit arrays provided on the first mounting surface, N5 is a positive integer, and the N5 radiating unit arrays are connected to the fifth radio frequency port.
  • N5 may be 1 or an integer greater than 1.
  • the fifth radio frequency port is connected to N5 radiating element arrays through a third power splitter.
  • this application can distribute the power of the signal emitted from the fifth radio frequency port to at least two radiating element arrays through the function of the third power divider.
  • the third power splitter can support a larger number of radiating unit arrays without increasing the number of RF ports. Since the number of RF ports is small, this solution can reduce costs, and because it can increase the number of radiating unit arrays, Antenna device performance can be improved.
  • the third power splitter is connected to the N5 radiating unit arrays through a third phase shifter. Since the phase of the signal emitted by the radiating unit array can be adjusted through the third phase shifter, the beam forming capability (also called beam scanning capability) of the N5 radiating unit arrays can be improved.
  • the present application provides a communication device, including the antenna device in the first aspect or any possible implementation manner of the first aspect in the above content.
  • the present application provides a communication system, including the antenna device in the first aspect or any possible implementation of the first aspect in the above content.
  • Figure 1A is a schematic diagram of a communication system architecture applicable to the embodiment of the present application.
  • Figure 1B is a schematic structural diagram of an antenna device according to an embodiment of the present application.
  • Figure 2A is a possible structural schematic diagram of an access network device provided by an embodiment of the present application.
  • FIG. 2B is a possible structural schematic diagram of some components in the antenna device 1 in the embodiment of the present application.
  • FIG. 2C is another possible structural schematic diagram of the access network device provided by the embodiment of the present application.
  • FIG. 2D is a possible structural schematic diagram of some components in the antenna device 1 in the embodiment of the present application.
  • Figure 2E is a schematic structural diagram of another possible structure of the access network device provided by the embodiment of the present application.
  • FIG. 3A is a possible structural schematic diagram of the antenna device 1 provided by the embodiment of the present application.
  • FIG. 3B is another possible structural schematic diagram of the antenna device 1 provided by the embodiment of the present application.
  • FIG. 3C is another possible structural schematic diagram of the antenna device 1 provided by the embodiment of the present application.
  • FIG. 4A is another possible structural schematic diagram of the antenna device 1 provided by the embodiment of the present application.
  • FIG. 4B is another possible structural schematic diagram of the antenna device 1 provided by the embodiment of the present application.
  • FIG. 5A is another possible structural schematic diagram of the antenna device 1 provided by the embodiment of the present application.
  • FIG. 5B is another possible structural schematic diagram of the antenna device 1 provided by the embodiment of the present application.
  • Figure 6 is a schematic diagram of a network structure of the communication system in the embodiment of the present application.
  • At least one means one, or more than one, including one, two, three and more;
  • Multiple means two, or more than two, including two, three, four and more;
  • Connection refers to coupling, including direct connection or indirect connection through other devices to achieve electrical connection.
  • the communication system applicable to the embodiments of this application may be the fifth generation (5G) network architecture, or may be used in other network architectures, such as the Global System of Mobile communication (GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system, Universal Mobile Telecommunication System (UMTS), evolved long term evolution (eLTE) system and other mobile communications such as 6G in the future system.
  • GSM Global System of Mobile communication
  • CDMA code division multiple access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • UMTS Universal Mobile Telecommunication System
  • eLTE evolved long term evolution
  • FIG. 1A exemplarily shows a schematic diagram of a communication system architecture applicable to embodiments of the present application.
  • the communication system includes access network equipment and terminal equipment.
  • An embodiment of the present application provides an antenna device, which is an antenna device for an access network device.
  • the access network equipment can transmit signals between the antenna device and the terminal equipment.
  • the antenna device provided in the embodiment of the present application may also be called an antenna feed system.
  • the access network device is used as a base station as an example.
  • Access network equipment can be (radio access network, (R)AN) equipment, which is used to provide network access functions for authorized terminal equipment in a specific area, and can be used according to the level of the terminal equipment, business needs, etc. Transmission tunnels of different qualities.
  • R radio access network
  • (R)AN) equipment which is used to provide network access functions for authorized terminal equipment in a specific area, and can be used according to the level of the terminal equipment, business needs, etc. Transmission tunnels of different qualities.
  • Access network equipment is a device that provides wireless communication functions for terminal equipment.
  • the access network equipment in this application includes but is not limited to: next-generation base station (gnodeB, gNB) in 5G, evolved node B (evolved node B, eNB), radio network controller (radio network controller, RNC), node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit ( baseBand unit (BBU), transmission point (transmitting and receiving point, TRP), transmitting point (TP), mobile switching center, etc.
  • gnodeB, gNB next-generation base station
  • eNB evolved node B
  • RNC radio network controller
  • node B node B
  • base station controller base station controller
  • BSC base transceiver station
  • home base station for example, home evolved nodeB, or home node B, HNB
  • the terminal device may be a device used to implement wireless communication functions.
  • the terminal device is a mobile phone as an example.
  • the terminal device may be a user equipment (UE), access terminal, terminal unit, terminal station, or mobile station in a 5G network or a future evolved public land mobile network (PLMN). , mobile station, remote station, remote terminal, mobile equipment, wireless communication equipment, terminal agent or terminal device, etc.
  • UE user equipment
  • PLMN public land mobile network
  • the access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a device with wireless communications Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices or wearable devices, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control (industrial) Wireless terminals in control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc. Terminals can be mobile or fixed.
  • FIG. 1B is a schematic architectural diagram of an access network device provided by the embodiment of the present application as an example shown in FIG. 1B.
  • the architecture of the access network equipment may include an antenna device.
  • the architecture of the access network equipment may also include other components.
  • Figure 1B takes the architecture of the access network equipment also including a radio frequency processing unit and a baseband processing unit as an example for illustration.
  • Figure 1B shows the connection between the antenna device and the radio frequency processing unit and the connection between the radio frequency processing unit and the baseband processing unit as an example. In actual applications, there may also be other connection relationships between the antenna device and other components in the access network equipment architecture. .
  • the radio frequency processing unit includes radio frequency ports, such as radio frequency port c1, radio frequency port c2, radio frequency port c3 and radio frequency port c4 exemplarily shown in FIG. 1B.
  • the antenna device includes a radiating element array, such as the radiating element array 41, the radiating element array 42, the radiating element array 43 and the radiating element array 44 exemplarily shown in FIG. 1B.
  • the antenna device also includes electric bridges, such as the electric bridge 51, the electric bridge 52, the electric bridge 53 and the electric bridge 54 shown exemplarily in FIG. 1B.
  • the input port t1 and the input port t2 of the bridge 52 are respectively connected to the radio frequency port c1 and the radio frequency port c2, and the output port b1 and the output port b2 of the bridge 52 are respectively connected to the input port t5 and the electric bridge of the bridge 51.
  • the input port t3 and the input port t4 of the bridge 54 are respectively connected to the radio frequency port c3 and the radio frequency port c4.
  • the output port b3 and the output port b4 of the bridge 54 are respectively connected to the input port t6 of the bridge 51 and the input port t8 of the bridge 53.
  • the output port b5 and the output port b6 of the bridge 51 are connected to the radiating element array 44 and the radiating element array 42 respectively.
  • the output port b7 and the output port b8 of the bridge 53 are connected to the radiating element array 41 and the radiating element array 43 respectively.
  • the amplitude or phase of the signals emitted by the two radiating unit arrays is very likely to be different.
  • the radiating element array 41 and the radiating element array 42 as an example, when the amplitude or phase of the signals generated by the baseband meets the requirements of the signals emitted by the radiating element array 41 and the radiating element array 42, it is equivalent to the simultaneous superposition of multiple signals of the same frequency in the baseband, resulting in The amplitude and phase of the synthesized baseband signal are random, so that the signals pass through each power amplifier (the power amplifier connected to RF port c1, the power amplifier connected to RF port c2, the power amplifier connected to RF port c3, and the power amplifier connected to RF port c4). ), the power output by each power amplifier is different, so there is at least one power amplifier that does not generate power at the output power it supports. When sending signals, that is, at least one power amplifier has the problem of over-power transmission (or under-power transmission).
  • the power of the signals emitted by the four RF ports can be allocated to the radiating unit array in working state, resulting in power waste.
  • the following is an example where the radiating unit array 41 and the radiating unit array 42 are in the working state, and the radiating unit array 123 and the radiating unit array 122 are not in the working state.
  • each power amplifier in the radio frequency processing unit 2 uses its own supported output power. Send a signal.
  • each power amplifier in the radio frequency processing unit 2 can send signals at its own supported rated output power or maximum output power.
  • the maximum output power in the embodiment of this application may also be called instantaneous power or peak power, and may be greater than the rated power.
  • the rated output power of each power amplifier connected to the radio frequency processing unit 2 may be the same, or the maximum output power may be the same.
  • the bridge 52 can connect the input port t1 and the input port
  • the signal received by t2 is sent through a port (output port b1 or output port b2), for example, through the output port b2.
  • the output port b1 does not send out a signal
  • the input port t5 of the bridge 51 No signal is received, and the input port t7 of the bridge 53 receives the signal from the output port b2.
  • the output end of the bridge 54 may also be a port that can send out signals.
  • the output port b3 of the bridge 51 can send out signals, but the output port b4 cannot send out signals.
  • the bridge 51 Since the input port t5 of the bridge 51 does not receive a signal and the input port t6 receives a signal from the output port b3, the bridge 51 will distribute all the power of the signal received at the input port to the output ports b5 and b6 respectively, and It is not possible to distribute all the power of the received signal to the signal emitted by the radiating element array connected to the output port b6. Similarly, the bridge 53 will distribute all the power of the signal received at the input port to the output ports b7 and b8 respectively, but cannot distribute all the power of the received signal to the radiation emitted by the radiating element array connected to the output port b7. Signal.
  • FIG. 2A exemplarily shows a possible structural schematic diagram of the access network device provided by the embodiment of the present application.
  • the access network device shown in Figure 2A may be the access network device in Figure 1A.
  • the access network equipment may include an antenna device 1, a radio frequency processing unit 2, and a baseband processing unit 3.
  • the antenna device 1 may include a plurality of radiating element arrays 11 .
  • Three radiating unit arrays 11 are exemplarily shown in FIG. 2A , namely radiating unit array 111 , radiating unit array 112 and radiating unit array 113 .
  • a radiation unit array 11 may include one or more radiation units.
  • the division method of the radiation unit array 11 is not limited.
  • multiple radiating units on a mounting surface are arranged in a matrix, and one column of radiating units is a radiating unit array 11 .
  • two adjacent columns of radiating units form a radiating unit array 11 .
  • the radiating unit corresponding to a small matrix of several rows and several columns is a radiating unit array 11 .
  • the number of radiating units in the two radiating unit arrays may be the same or different; the sizes of the two radiating unit arrays may be the same or different, and the embodiments of the present application do not limit this.
  • the radiating elements in the radiating element array 11 may also be called antenna elements, oscillators, etc.
  • the antenna device 1 in the embodiment of the present application may include multiple mounting surfaces 12 .
  • the mounting surface 12 in the embodiment of the present application is used to install multiple radiating unit arrays 11 .
  • Two mounting surfaces 12 are exemplarily shown in FIG. 2A , namely the mounting surface 121 and the mounting surface 122 .
  • the radiating unit array 111 and the radiating unit array 112 are disposed on the mounting surface 121
  • the radiating unit array 113 is disposed on the mounting surface 122 .
  • the angle between the mounting surface 121 and the mounting surface 122 on the side away from the radiation unit array 111 is less than 180°. In FIG.
  • the angle between the mounting surface 121 and the mounting surface 122 on the side away from the radiation unit array 111 is marked as ⁇ .
  • Figure 2A takes ⁇ as 90 degrees as an example for illustration. In practical applications, the angle can be less than 180 degrees, for example, it can also be 75 degrees, 45 degrees, etc.
  • the radiating element array 11 installed on the mounting surface 12 is connected to the antenna port.
  • the connection method between the antenna port and the radiating unit array is flexible and changeable.
  • the embodiments of the present application are not limited.
  • one antenna port is connected to the radiation unit array.
  • the unit array is called a radiating unit array.
  • An antenna port in the embodiment of this application may refer to a physical antenna port or a logical antenna port. Among them, a logic Edited antenna ports may include one or more physical antenna ports.
  • each of the multiple mounting surfaces is deployed with a radiating element array, and more radiating element arrays can be introduced.
  • Each installation surface can emit electromagnetic signals, which can effectively expand the diameter of the antenna and the area of the antenna device 1, thereby improving the coverage of the antenna device 1 without increasing wind load and installation space.
  • the antenna surface may be called an antenna surface or an antenna array, and specifically may refer to the area covered by the radiating unit of the antenna device 1 .
  • the antenna device in the embodiment of the present application includes a circuit unit 13 .
  • the circuit unit 13 includes at least 3 bridges.
  • the circuit unit 13 includes a bridge 131 , a bridge 132 and a bridge 133 as an example.
  • One end of the circuit unit 13 can be connected to the antenna port, and the other end can be connected to the radio frequency port 21 on the radio frequency processing unit 2 .
  • FIG. 2A exemplarily shows four radio frequency ports, which are radio frequency port r1, radio frequency port r2, radio frequency port r3 and radio frequency port r4.
  • the electric bridges mentioned in the embodiments of the present application may also be called other electric bridges. Name, for example, coupler.
  • the electric bridges mentioned in the embodiments of the present application (such as the first electric bridge, the second electric bridge, the third electric bridge, the electric bridge 131, the electric bridge 132 and the electric bridge 133, etc.) can also be other types of electric bridges that can implement the embodiments of the present application.
  • the device with the bridge function is not limited in the embodiment of the present application.
  • the bridge is used as an example for introduction in the embodiment of the present application.
  • the bridge 131 includes an input port p1 and an input port p2.
  • the input port p1 is connected to the radio frequency port r1, and the input port p2 is connected to the radio frequency port r2.
  • the output end of the bridge 131 includes two ports, namely the output port s1 and the output port s2.
  • the output port s1 is connected to N1 radiating element arrays, and N1 is a positive integer.
  • N1 is used as an example as 1.
  • the output port s1 is connected to the radiating element array 111 (or the output port s1 is connected to the antenna port connected to the radiating element array 111), and the output port s2 is connected to the input port p6 of the bridge 133.
  • the input port of a device may also be called an input port
  • the output port of a device may also be called an output port.
  • the input port p1 of the bridge 131 can receive the signal from the radio frequency port r1, and the input port p2 of the bridge 131 can receive the signal from the radio frequency port r2.
  • the power of the signals received by the input port p1 and the input port p2 may be concentrated on the signal output by one output port (output port s1 or output port s2) of the bridge 131.
  • the power of the signal received by the input port p1 and the input port p2 is concentrated on the signal output by the output port s1, that is, the power of the signal received by the input port p1 and the input port p2 can be concentrated on the radiating unit connected to the output port s1 on the signal sent by array 111.
  • the electric bridge 131 is a 90-degree electric bridge, and the power ratio of the electric bridge 131 is 1:1. Then when the phase difference of the signals from the radio frequency port r1 and the radio frequency port r2 is 90 degrees and the amplitude is equal (the power ratio is 1:1), then the power of the signals received by the input port p1 and the input port p2 can be concentrated on one of the bridge 131 On the signal output by the output port (output port s1 or output port s2).
  • the phase of the signal emitted by RF port r1 lags 90 degrees with respect to the phase of the signal emitted by RF port r2, and the amplitude of the signal emitted by RF port r1 is equal to the amplitude of the signal emitted by RF port r2, then the signal emitted by RF port r1 and the RF The power of the signal emitted by port r2 is concentrated on the signal output by output port s1.
  • the phase of the signal emitted by RF port r2 lags 90 degrees with respect to the phase of the signal emitted by RF port r1, and the signal emitted by RF port r1 has the same amplitude as the signal emitted by RF port r2, then the signal emitted by RF port r1 and The power of the signal emitted by the radio frequency port r2 is concentrated on the signal output by the output port s2.
  • the two input ports of the bridge receive The power of the received signal can be concentrated on the signal emitted by one output port of the bridge.
  • the functions or parameters of the bridge may change.
  • the conditions under which the power of the signal received by the two input ports of the bridge can be concentrated on one output port of the bridge may also change. For example, it may change to "The phase difference of the signals received by the two input ports is 180 degrees and the amplitude is equal," etc. This embodiment of the present application does not limit this.
  • the bridge 132 includes an input port p3 and an input port p4.
  • the input port p3 is connected to the radio frequency port r3, and the input port p4 is connected to the radio frequency port r4.
  • the output end of the bridge 132 includes two ports, namely the output port s3 and the output port s4.
  • the output port s3 is connected to the input port p5 of the bridge 133, and the output port s4 is connected to N2 radiating unit arrays.
  • N2 is a positive integer. In FIG. 2A , N2 is set to 1 for example, and the output port s4 is connected to the radiating element array 112 (or the output port s4 is connected to the antenna port to which the radiating element array 112 is connected).
  • the input port p4 of the bridge 132 can receive the signal from the radio frequency port r4, and the input port p3 of the bridge 132 can receive the signal from the radio frequency port r4. Signal from RF port r3.
  • the power of the signal received by the input port p4 and the input port p3 may be concentrated on the signal output by one output port (output port s4 or output port s3) of the bridge 132.
  • the power of the signal received by the input port p4 and the input port p3 is concentrated on the signal output by the output port s4, that is, the power of the signal received by the input port p4 and the input port p3 can be concentrated on the radiating unit connected to the output port s4 on the signal emitted by array 112.
  • the bridge 132 is a 90-degree bridge.
  • the phase difference of the signals from the radio frequency port r4 and the radio frequency port r3 is 90 degrees and the amplitude is equal, the power of the signals received by the input port p4 and the input port p3 can be concentrated on On the signal output by an output port (output port s4 or output port s3) of the bridge 132.
  • the input port p6 of the bridge 133 can receive the signal output by the output port s2 of the bridge 131, and the input port p5 of the bridge 133 can receive the signal output by the output port s3 of the bridge 132.
  • the output port s5 is connected to N3 radiating element arrays. N3 is a positive integer. In Figure 2A, N3 is 1 for an example.
  • the output port s5 is connected to the radiating element array 113 (or the output port s5 is connected to the antenna port to which the radiating element array 113 is connected). .
  • the power of the signals received by output port s2 and output port s3 can be Focus on the signal output by one output port of the bridge 133 (such as the output port s5 shown in FIG. 2A).
  • the power of the signal received by the output port s2 and the output port s3 is concentrated on the signal output by the output port s5, that is, the power of the signal received by the output port s2 and the output port s3 can be concentrated on the radiating unit connected to the output port s5 on the signal sent by array 113.
  • the bridge 131 is a 90-degree bridge.
  • the signals from the radio frequency port r1 and the radio frequency port r2 have a phase difference of 90 degrees and the same amplitude. Then the power of the signals received by the input port p1 and the input port p2 can be concentrated on the bridge. On the signal output by the output port s2 of 131.
  • the bridge 132 is a 90-degree bridge.
  • the phase difference of the signals from the radio frequency port r4 and the radio frequency port r3 is 90 degrees and the amplitude is equal, the power of the signals received by the input port p4 and the input port p3 can be concentrated on the output of the bridge 132 On the signal output by port s3.
  • the bridge 133 is a 90-degree bridge.
  • the signals from the output port s2 and the output port s3 have a phase difference of 90 degrees and the same amplitude. Then the power of the signals received by the input port p6 and the input port p5 can be concentrated on one output of the bridge 133.
  • On the signal output by the port (such as output port s5).
  • output port s5 please refer to the relevant description of the aforementioned bridge 131 and will not be described again here.
  • the output end of the bridge 133 includes an output port s5 as an example.
  • the output end of the bridge 133 may also include multiple ports, which is not limited by the embodiment of the present application.
  • the embodiment of the present application can provide a circuit protection measure.
  • the output port of the bridge of this stage that is not connected to an antenna, bridge or power divider is connected to a load.
  • the parameters of the electric bridge can be flexibly configured according to needs, for example, they can be a 90-degree electric bridge or a 180-degree electric bridge.
  • the electric bridge (the first electric bridge, the second electric bridge or the third electric bridge) is taken as an example of a 90-degree electric bridge.
  • the number of input ports and the number of output ports of the bridge can also be set flexibly.
  • a bridge including two input ports and two output ports is used as an example for introduction. In practical applications, it can also be Flexible settings according to actual scenarios.
  • a bridge may also include three or more input ports so that the bridge can receive signals from more RF ports.
  • the bridge 131 in Figure 2A may include three input ports, and the three input ports are respectively connected to three radio frequency ports.
  • the bridge 131 includes three output ports, and the three output ports of the bridge 131 can respectively connect to the radiating unit arrays on three mounting surfaces.
  • the bridge 131 can distribute the power of signals received at three input ports to one output port. In this way, when one mounting surface is in working state, the bridge 131 can concentrate the power of the signals received by the three input ports to the mounting surface in working state.
  • the output port connected to the radiating element array can achieve the effect of reducing power waste through the bridge 131 .
  • the power ratio of the electric bridge can be flexibly set according to needs, for example, it can be set to 2:1 or 1:1.
  • the power ratio of the bridge is 1:1 as an example for introduction.
  • the power ratio of the bridge in the embodiment of the present application is 1:1, which can be understood as: the power ratio of the signal input at one input port of the bridge to the signals output by the two output ports is 1:1. If the bridge is a 90-degree bridge, in this case, when the power ratio of the signals input to the two input ports of the bridge is 1:1, and the phase difference of the signals input to the two input ports is 90 degrees, Then the power of the signals input by the two input ports of the bridge can be concentrated on the signal output by one radio frequency port. In this way, power waste can be reduced.
  • the bridge is a 90-degree bridge, in this case, when the power ratio of the signals input to the two input ports of the bridge is 2:1, and The phase difference between the signals input by the two input ports is 90 degrees, so the power of the signals input by the two input ports of the bridge can be concentrated on the signal output by one radio frequency port. In this way, power waste can be reduced.
  • the multiple input Multiple power amplifiers connected to the port can all transmit signals with their own supported output power, so that the power ratio of the two input signals of the bridge is 1:1, thereby reducing power waste.
  • multiple power amplifiers transmit signals with the output power they can support, which can alleviate the situation of power dissatisfaction.
  • the first radio frequency port, the second radio frequency port, the third radio frequency port and the fourth radio frequency port can connect N1 radiating unit arrays, N2 radiating unit arrays and N3 radiating units through the first bridge unit unit array, so power sharing can be achieved between radiating unit arrays, and the power of each array can be adjusted according to needs.
  • the power of the signal received by the input port p1 and the input port p2 can be concentrated on the signal output by the output port s1 of the bridge 131, that is, the power of the signal received by the input port p1 and the input port p2 can be concentrated on the output port s1. on the signal emitted by the connected radiating element array 111.
  • the power of the signals received by the input port p1 and the input port p2 may be all concentrated on the signal emitted by the radiating element array 111 connected to the output port s1.
  • the power of the signal received by the input port p4 and the input port p3 can be concentrated on the signal output by the output port s4 of the bridge 132, that is, the power of the signal received by the input port p4 and the input port p3 can be concentrated on the output port. on the signal sent by the radiating unit array 112 connected to s4.
  • the power of the signals received by the input port p4 and the input port p3 may be all concentrated on the signal emitted by the radiating element array 112 connected to the output port s4.
  • the radiating element array (such as the radiating element array 111 and the radiating element array 112) deployed on the mounting surface 121 of the antenna device 1 is in the working state
  • the radiating element array (such as the radiating element array) deployed on the mounting surface 122 of the antenna device 1
  • the power of the signals emitted by the radio frequency port r1 and the radio frequency port r2 can be concentrated on the radiating unit array 111 deployed on the installation surface 121
  • the power of the signals emitted by the radio frequency port r3 and the radio frequency port r4 can be Concentrating on the radiating unit array 112 deployed on the mounting surface 121 can improve power utilization and reduce power waste.
  • each of the N2 radiating unit arrays is different from each of the N1 radiating unit arrays.
  • the radiating element arrays (such as the radiating element array 111 and the radiating element array 112) deployed on the mounting surface 121 of the antenna device 1 are in working state, and the radiating element arrays (such as the radiating element array 113) deployed on the mounting surface 122 of the antenna device 1 ) is not in working state, the logical port composed of radio frequency port r1 and radio frequency port r2 and the logical port composed of radio frequency port r3 and radio frequency port r4 can not interfere with each other on the analog circuit.
  • the array 111 needs to set the power and phase of the signals emitted by the radio frequency port r1 and the radio frequency port r2.
  • the power and phase of the signals emitted by the radio frequency port r3 and the radio frequency port r4 are set based on the requirements of the radiating element array 112 .
  • the power amplifier connected to the radio frequency port of the radio frequency front end of the radio frequency processing unit 2 (such as the power amplifier connected to the radio frequency port r1, the power amplifier connected to the radio frequency port r2, the power amplifier connected to the radio frequency port r3, the power amplifier connected to the radio frequency port r4, etc.) It can send signals with its own supported output power, thereby avoiding the problem that the power amplifier connected to the radio frequency port cannot send signals with its own supported output power, thereby reducing power waste caused by power over-sending problems.
  • the inability of the power amplifier connected to the radio frequency port to send signals with its own supported output power can also be called power over-sending. It can be seen that the solution provided by the embodiment of the present application can avoid the power over-sending problem of the power amplifier.
  • the solution provided by the embodiments of the present application can solve the power over-transmission problem of the power amplifier, that is, the power amplifier connected to the radio frequency port can send signals with the output power supported by itself. Compared with the power amplifier connected with the radio frequency port, which cannot send signals with the output power supported by itself, The solution for transmitting signals with output power, the solution provided by the embodiments of this application can increase the signal level received by the terminal equipment, thereby improving the coverage performance of the antenna device.
  • the power of the signal received by the input port p1 and the input port p2 can be concentrated on the output port of the bridge 131 on the signal output by s2.
  • the power of the signals received by the input port p4 and the input port p3 can be concentrated on the signal output by the output port s3 of the bridge 132 .
  • the power of the signal received by the output port s2 and the output port s3 may be concentrated on the signal output by the output port s5 of the bridge 133 .
  • the radiating element array (such as the radiating element array 111 and the radiating element array 112) deployed on the mounting surface 121 of the antenna device 1 is not in the working state, and the radiating element array (such as the radiating element array 112) deployed on the mounting surface 122 of the antenna device 1
  • the unit array 113) is in the working state.
  • the power of the signals emitted by the radio frequency port r1, the radio frequency port r2, the radio frequency port r3 and the radio frequency port r4 can be concentrated on the radiating element array 113 deployed on the installation surface 122, thereby improving the Power utilization, reducing power waste.
  • the power of the signals emitted by the radio frequency port r1, the radio frequency port r2, the radio frequency port r3 and the radio frequency port r4 can also be adjusted according to the needs of the radiation array 111, the radiation element array 112 and the radiation element array. divided among 113.
  • the circuit unit in the embodiment of the present application has a relatively simple structure and low complexity.
  • the access network equipment provided by the embodiment of the present application may also include other components, for example, it may also include the radio frequency processing unit 2 and the baseband processing unit shown in Figure 2A.
  • FIG. 2A the connection between the radio frequency processing unit 2 and the baseband processing unit 3 is taken as an example for illustration.
  • the radio frequency processing unit 2 can be used to perform frequency selection, amplification and frequency down-conversion processing on the signal received through the radiating element array 11, and convert it into an intermediate frequency signal or a baseband signal and send it to the baseband processing unit 3.
  • the radio frequency processing unit 2 is used to transmit the intermediate frequency signal or the baseband signal emitted by the baseband processing unit 3 through up-conversion and amplification processing through the radiation unit array 11 .
  • the radio frequency processing unit 2 may also be called a radio frequency remote unit (RRU), or may also be a radio frequency module in an active antenna unit (active antenna unit, AAU).
  • the baseband processing unit 3 can also be called a baseband unit (BBU).
  • the antenna device in the embodiment of the present application may be a passive antenna.
  • the antenna device in the embodiment of the present application can be installed on a pole.
  • the back of the antenna device is a pole, and the front is an array of radiating elements.
  • Access network equipment emits electromagnetic radiation through antennas to transmit signals.
  • the RRU in the access network equipment can be installed on the pole or under the pole.
  • FIG. 2A exemplarily shows the number of radiating units included on one mounting surface.
  • the number of antenna ports can be expanded in horizontal and/or vertical dimensions. This embodiment of the present application does not Make restrictions.
  • the first mounting surface and the second mounting surface involved in the embodiment of the present application may be two different mounting surfaces.
  • the first mounting surface may be the mounting surface 121 and the second mounting surface may be the mounting surface 122.
  • the unit array may include a radiating unit array 111 .
  • the N2 radiation element arrays may include the radiation element array 112 .
  • the N3 radiation unit arrays may include the radiation unit array 113 .
  • the first included angle in the embodiment of the present application may be the included angle marked ⁇ in FIG. 2A.
  • the first bridge involved in the embodiment of the present application may be bridge 131, the first input port of the first bridge may be the input port p1 of bridge 131, and the second input port of the first bridge may be bridge 131.
  • the input port p2 of 131, the first output port of the first bridge 131 may be the output port s1 of the bridge 131, and the second output port of the first bridge may be the output port s2 of the bridge 131.
  • the second bridge involved in the embodiment of the present application may be the bridge 132, the third input port of the second bridge may be the input port p3 of the bridge 132, and the fourth input port of the second bridge may be the bridge 132.
  • the input port p4 of 132, the third output port of the second bridge 132 may be the output port s4 of the bridge 132, and the fourth output port of the second bridge 132 may be the output port s3 of the bridge 132.
  • the third electric bridge involved in the embodiment of the present application may be electric bridge 133
  • the fifth input port of the third electric bridge may be the input port p6 of electric bridge 133
  • the sixth input port of the third electric bridge may be electric bridge 133.
  • the input port p5 of 133 and the fifth output port of the third bridge may be the output port s5 of bridge 133.
  • the first radio frequency port may be radio frequency port r1, the second radio frequency port may be radio frequency port r2, the third radio frequency port may be radio frequency port r3, and the fourth radio frequency port may be radio frequency port r4.
  • the installation surface on which N1 radiating unit arrays and N2 radiating unit arrays are installed is called the first installation surface
  • the installation surface on which N3 radiating unit arrays are installed is called the second installation surface.
  • the first mounting surface and the second mounting surface are not located on the same plane, but are located on two different mounting surfaces at a first angle.
  • a larger number of radiating units can be installed in the embodiment of the present application. Array, thereby improving the coverage of the antenna device and improving the performance of the antenna device.
  • the first mounting surface may be one surface (flat or curved surface), or a combination of multiple surfaces (flat or curved surface).
  • the first mounting surface includes two surfaces, one surface (plane or curved surface) is provided with N1 radiating unit arrays, and the other surface (plane or curved surface) is provided with N2 radiating unit arrays. There may be a gap between the two surfaces. A certain angle.
  • N1 radiating unit arrays may also be deployed on multiple surfaces, and N2 radiating unit arrays may also be deployed on one or more surfaces.
  • the second mounting surface may be one surface (plane or curved surface), or a combination of multiple surfaces (plane or curved surface), and N3 radiating element arrays are disposed on one or more surfaces ( plane or curved surface).
  • Figure 2B is a possible structural schematic diagram of some components in the antenna device 1 in the embodiment of the present application.
  • the above-mentioned first mounting surface 121 is located on one mounting plate, and the second mounting surface 122 is located on another mounting plate.
  • the two mounting plates can be connected by welding, threaded connection or integral molding.
  • the mounting board on which the first mounting surface 121 is provided may include a reflective plate, such as coating and preparing a reflective plate on the mounting board on which the first mounting surface 121 is provided, or a mounting board on which the first mounting surface 121 is provided.
  • the board itself is a reflective board.
  • the mounting plate on which the first mounting surface 121 is provided can be made of metal (such as aluminum), so that the mounting plate on which the first mounting surface 121 is provided serves as a reflecting plate.
  • the mounting plate on which the second mounting surface 122 is provided may include a reflective plate, such as coating a reflective plate on the mounting board on which the second mounting surface 122 is provided, or a reflective plate on which the second mounting surface 122 is provided.
  • the mounting plate itself is a reflective plate.
  • the mounting plate on which the second mounting surface 122 is provided can be made of metal (such as aluminum), so that the mounting plate on the second mounting surface 122 can be used as a reflecting plate.
  • the reflector can reflect the antenna signal to the target coverage area.
  • the reflective plate can reflect the signal transmitted to the reflective plate to the radiating element array in the antenna device, so that the radiating element array receives the signal.
  • the reflective plate can also be called a bottom plate, an antenna panel or a reflective surface, etc.
  • FIG. 2C exemplarily shows another possible structural schematic diagram of the access network device.
  • the antenna device 1 in the access network equipment shown in Figure 2C also includes a mounting surface 123, and a radiating element array 114 is also deployed on the mounting surface 123.
  • the radiating element array 114 is connected to the output port s6 of the bridge 133 .
  • the mounting surface 123 and the mounting surface 122 are located on opposite sides of the mounting surface 121 .
  • the power of the signal received by the output port s2 and the output port s3 may be concentrated on the signal output by one output port of the bridge 133 (such as the output port s5 or the output port s6 shown in FIG. 2A).
  • the power of the signal received by the output port s2 and the output port s3 is concentrated on the signal output by the output port s6, that is, the power of the signal received by the output port s2 and the output port s3 can be concentrated on the radiating unit connected to the output port s6 on the signal emitted by array 114.
  • the bridge 131 is a 90-degree bridge.
  • the signals from the radio frequency port r1 and the radio frequency port r2 have a phase difference of 90 degrees and the same amplitude. Then the power of the signals received by the input port p1 and the input port p2 can be concentrated on the bridge. On the signal output by the output port s2 of 131.
  • the bridge 132 is a 90-degree bridge.
  • the phase difference of the signals from the radio frequency port r4 and the radio frequency port r3 is 90 degrees and the amplitude is equal, the power of the signals received by the input port p4 and the input port p3 can be concentrated on the output of the bridge 132 On the signal output by port s3.
  • the bridge 133 is a 90-degree bridge.
  • the signals from the output port s2 and the output port s3 have a phase difference of 90 degrees and the same amplitude. Then the power of the signals received by the input port p6 and the input port p5 can be concentrated on one output of the bridge 133. On the signal output by the port (such as output port s6).
  • the radiating unit array 114 on the mounting surface 123 when the radiating unit array 114 on the mounting surface 123 is in the working state, the radiating unit arrays on the other mounting surfaces, such as the radiating unit array 111, the radiating unit array 112 and the radiating unit array 113 are not in the working state.
  • the power of the signals emitted by the radio frequency port r1, the radio frequency port r2, the radio frequency port r3 and the radio frequency port r4 can be concentrated on the radiating unit array 114 deployed on the installation surface 123 (for example, in a possible example, the radio frequency port r1, the radio frequency port The power of the signals emitted by r2, radio frequency port r3 and radio frequency port r4 can all be concentrated on the radiating element array 114) deployed on the installation surface 123.
  • the antenna device 1 shown in FIG. 2C can achieve 360-degree coverage. That is to say, since one antenna device includes multiple installation surfaces, and different installation surfaces cover different areas, one antenna device can achieve 360-degree coverage without blind spots. , it can also be understood that one antenna device 1 can achieve more cell coverage, and the radiating unit array of one cell is not in working state, and the radiating unit arrays of other cells are not affected and can continue to work.
  • the third mounting surface involved in the embodiment of the present application may be the mounting surface 123, and the N4 radiating unit arrays may include the radiating unit array 114.
  • the third mounting surface and the second mounting surface are located on opposite sides of the first mounting surface.
  • the angle between the first mounting surface and the third mounting surface on the side away from the N1 radiating unit array is the second angle.
  • the second angle may be equal to the first angle, or may not be equal.
  • the embodiments of this application are not limiting.
  • the second included angle is less than 180 degrees.
  • the third bridge involved in the embodiment of the present application may be the bridge 133, and the sixth output port of the third bridge may be the output port s6 of the bridge 133.
  • the installation surface on which N4 radiating element arrays are installed is called the third installation surface.
  • the first mounting surface and the third mounting surface are not located on the same plane, but are located on two different mounting surfaces forming an included angle, and the included angle may be equal to the aforementioned first included angle. It can also be unequal.
  • embodiments of the present application can set up a larger number of radiating unit arrays, thereby improving the coverage of the antenna device and improving the performance of the antenna device.
  • the third mounting surface may be one surface (flat or curved surface), or a combination of multiple surfaces (flat or curved surface), N4 A radiation unit array is disposed on one or more surfaces (plane or curved surface) included in the third mounting surface.
  • Figure 2D is a possible structural schematic diagram of some components in the antenna device 1 in the embodiment of the present application.
  • the above-mentioned first mounting surface 121 is located on one mounting plate
  • the second mounting surface 122 is located on another mounting plate
  • the third mounting surface 123 is located on another mounting plate.
  • the mounting plate and the mounting plate with the first mounting surface 121 can be connected by welding, threaded connection or integral molding.
  • the mounting plate on which the third mounting surface 123 is provided and the installation plate on which the second mounting surface 122 is provided may be located on opposite sides of the installation plate on which the first mounting surface 121 is provided.
  • the mounting board on which the third mounting surface 123 is provided may include a reflective plate, such as coating and preparing a reflective plate on the mounting board on which the third mounting surface 123 is provided, or a mounting board on which the third mounting surface 123 is provided.
  • the board itself is a reflective board.
  • the mounting plate on which the third mounting surface 123 is disposed can be made of metal (such as aluminum), so that the mounting plate on the third mounting surface 123 can be used as a reflecting plate.
  • the antenna device 1 transmits a signal
  • the reflector can reflect the antenna signal to the target coverage area.
  • the reflective plate can reflect the signal transmitted to the reflective plate to the radiating element array in the antenna device, so that the radiating element array receives the signal.
  • the reflective plate can also be called a bottom plate, an antenna panel or a reflective surface, etc.
  • the circuit unit of the antenna device 1 provided in the embodiment of the present application may also be provided with a microstrip line, and the microstrip line may be used to align the phases of each output port of the circuit unit.
  • the antenna device further includes a first microstrip line, and the first bridge is connected to the N1 radiating element array through the first microstrip line.
  • the first microstrip line can be used to adjust the phase of the received signal, which can improve the adjustability of the antenna device in practical application scenarios.
  • the first microstrip line is used to delay the phase of the signal output by the first output port of the first bridge by a first preset value.
  • the first preset value may be determined based on the phase difference between the phase of the signal output by the first output port of the first bridge and the phase of the signal received by the N3 radiating element array.
  • the first microstrip line can be used to delay the phase of the signal output by the first output port of the first bridge by 90 degrees (that is, the first preset value is 90 degrees).
  • the first preset value may be 180 degrees. In this way, the phase of the adjusted signal of the first microstrip line can be aligned with the phase of the signal output by the output port of the third bridge.
  • phase of the signal received by the radiating element array connected to the first microstrip line can be aligned with the phase of the signal output by the output port of the third bridge.
  • the phases of the signals received by the radiation unit array at the second output port of the first bridge can be aligned, and then the phase-aligned signals can be output through the radiation unit array, thereby improving the signal strength.
  • the antenna device further includes a second microstrip line, and the second bridge is connected to the N2 radiating element array through the second microstrip line.
  • the second microstrip line can be used to adjust the phase of the received signal, which can improve the adjustability of the antenna device in actual application scenarios.
  • the second microstrip line is used to delay the phase of the signal output by the third output port of the second bridge by a second preset angle.
  • the second preset angle may be determined based on the phase difference between the phase of the signal output by the third output port of the second bridge and the phase of the signal received by the N3 radiating element array.
  • the second microstrip line can be used to delay the phase of the signal output by the third output port of the second bridge by 90 degrees (that is, the second preset angle is 90 degrees).
  • the second preset angle may be 180 degrees.
  • the phase of the adjusted signal of the second microstrip line can be aligned with the phase of the signal output by the output port of the third bridge, and the phase of the signal received by the radiation element array connected to the second microstrip line is consistent with the phase of the signal output by the output port of the third bridge.
  • the phase of the signal received by the radiating unit array at the fourth output port of the bridge can be aligned, and then the phase-aligned signal can be output through the radiating unit array, thereby improving the signal strength.
  • FIG. 2E exemplarily shows another possible structural schematic diagram of the access network equipment.
  • the access network equipment structure shown in Figure 2E can be regarded as an extended embodiment of the embodiment shown in Figure 2C.
  • the difference from Figure 2C is that the circuit unit 13 in the access network equipment shown in Figure 2E includes a microstrip line 134 and a microstrip line 135.
  • the microstrip line 134 can be used to adjust the phase of the signal output by the output port s4.
  • the microstrip line 135 can be used to adjust the phase of the signal output by the output port s1.
  • the four output interfaces of the circuit unit 13 (the output interface connected to the output port s1, the output interface connected to the output port s5 The phase of the signal output by the interface, the output interface connected to the output port s6 and the output interface connected to the output port s4) can be aligned. Since the output interface connected to the output port s5 and the output interface connected to the output port s6 are also connected to the bridge 133, Therefore, the output port s1 and the output port s4 are respectively connected to an additional section of microstrip line.
  • the microstrip line It can be a microstrip line with a phase delay of 90 degrees to align the phases of the signals output by the four interfaces, and then the phase-aligned signals can be output through the radiating element array, thereby improving the signal strength.
  • the microstrip line 134 may be a transmission line or a coaxial line or other connection lines that can achieve the same effect.
  • the microstrip line 134 is a microstrip line that delays the phase by a first preset value.
  • the first preset value may be, for example, the above-mentioned 90 degrees, or may be other angles.
  • the microstrip line 135 may be a transmission line or a coaxial line or other connection lines that can achieve the same effect.
  • the microstrip line 135 is a microstrip line that delays the phase by a second preset angle.
  • the second preset angle may be, for example, the above-mentioned 90 degrees, or may be other angles.
  • the output port can be connected to a microstrip line used to shift the phase by 180 degrees.
  • the first microstrip line involved in the embodiment of this application may be the microstrip line 135
  • the second microstrip line may be the microstrip line 134 .
  • the access network equipment shown in Figure 2E is an improvement on the architecture of the access network equipment shown in Figure 2C.
  • the architecture shown in Figure 2E can also be improved on the architecture of the access network equipment shown in Figure 2A.
  • microstrip lines are deployed between the output port s1 and the output port s4 and the radiating unit array. For the rest of the content, refer to the previous content and will not be described again.
  • Figures 3A, 3B and 3C exemplarily illustrate several possible ways of the antenna device 1 provided by the embodiments of the present application.
  • the antenna device 1 provided in the embodiment of the present application may include one or more circuit units 13.
  • the antenna device 1 may include multiple circuit units 13 as an example.
  • the antenna device 1 shown in FIG. 3A includes four circuit units 13 .
  • One output port of the bridge 131 in each circuit unit 13 is connected to the N1 radiating element array provided on the mounting surface 121 (in FIG. 3A, N1 is equal to 1 for example), and the bridge 132 in each circuit unit 13
  • One output port of the circuit unit 13 is connected to the N2 radiating unit arrays located on the mounting surface 121 (in FIG. 3A, N2 equals 1 is used as an example for illustration), and one output port of the bridge 133 of the circuit unit 13 is connected to the N3 arrays located on the mounting surface 122.
  • the radiating element array (in Figure 3A, N3 equals 1 is used as an example for illustration), and the other output port of the bridge 133 of the circuit unit 13 is connected to the N4 radiating element array provided on the mounting surface 123 (in Figure 3A, N4 is equal to 1 as an example). Example for illustration).
  • the connection method of each circuit unit to the radiating unit array and the radio frequency port can be referred to the relevant descriptions in FIG. 2A and FIG. 2C , and will not be described again here.
  • each circuit unit is connected to 4 radio frequency ports.
  • Each circuit unit is connected to (N1+N2+N3+N4) radiating unit arrays. It is worth explaining that any two radiating unit arrays connected to any two circuit units are different.
  • a radiating element array is connected to an output port of a bridge in a circuit unit, and an output port of a bridge can be connected to one or more radiating element arrays.
  • the spacing between two adjacent radiating unit arrays on the same mounting surface can be set according to the actual situation, and is not limited in the embodiments of this application.
  • the spacing between two adjacent radiating unit arrays on the mounting surface can be is 57 mm.
  • the total length of the mounting surface 121 can be set to 500 mm. This size is only an example and does not constitute a limitation on the embodiments of the present application.
  • the radiating element array deployed on the mounting surface 121 of the antenna device 1 (for example, the 8 radiating element arrays deployed on the mounting surface 121 ) is in a working state, and the radiating element array deployed on the mounting surface 122 of the antenna device 1
  • the unit array (such as the four radiating unit arrays deployed on the mounting surface 122) is not in working state, and the radiating unit array deployed on the mounting surface 123 of the antenna device 1 (such as the four radiating unit arrays deployed on the mounting surface 123) is not in working state.
  • the power of the signals emitted by the 16 radio frequency ports shown in Figure 3A can be concentrated on the 8 radiating unit arrays deployed on the mounting surface 121 (for example, in a possible example, the power of the signals emitted by the 16 radio frequency ports shown in Figure 3A
  • the power of the signals emitted by the 16 RF ports shown can be all concentrated on the 8 radiating unit arrays deployed on the mounting surface 121), thereby improving power utilization and reducing power waste.
  • the difference in FIG. 3B is that in FIG. 3B , the antenna device 1 includes three circuit units 13 as an example. The remaining contents are similar to those in Figure 3A and will not be described again.
  • the radiating element array deployed on the mounting surface 121 of the antenna device 1 (for example, the 6 radiating element arrays deployed on the mounting surface 121 ) is in a working state, and the radiating element array deployed on the mounting surface 122 of the antenna device 1
  • the unit array (such as the three radiating unit arrays deployed on the mounting surface 122) is not in working state, and the radiating unit array deployed on the mounting surface 123 of the antenna device 1 (such as the three radiating unit arrays deployed on the mounting surface 123) is not in working state.
  • Working state in this case, the 12 RF ports shown in Figure 3B
  • the power of the emitted signal can be concentrated on the six radiating unit arrays deployed on the mounting surface 121, thereby improving power utilization and reducing power waste.
  • Figure 3C also includes a bridge 901 and a bridge 902, the mounting surface 123 includes two radiating element arrays, and the mounting surface 122 includes two radiating element arrays.
  • the output port s5 of the bridge 133 may be connected to the radiating element array 113 and the radiating element array 114 through the bridge 901 .
  • the output port of the bridge 903 can also be connected to the radiating element array 113 and the radiating element array 114 through the bridge 901 .
  • the output ports of the electric bridge 904 and the electric bridge 905 can also be connected to the radiating element arrays deployed on the mounting surfaces 122 and 123 through the electric bridge 902 .
  • the rest of the content is similar to that in Figure 3A and will not be described again.
  • the two input ports of the bridge 901 are respectively connected to the output port of the bridge 133 and the output port of the bridge 903.
  • the two output ports of the bridge 901 are connected to the two radiating element arrays on the mounting surface 123 and the mounting surface 122 respectively.
  • the two input ports of the bridge 902 are respectively connected to the output port of the bridge 904 and the output port of the bridge 905.
  • the two output ports of the bridge 902 are respectively connected to the two radiating element arrays on the mounting surface 123 and the mounting surface 122 .
  • the power of the signal sent by the radio frequency port r1 and the radio frequency port r2 can be concentrated on the signal sent by the output port s2, and then enter the bridge. 133 in.
  • the power of the signals emitted by the radio frequency port r3 and the radio frequency port r4 may be concentrated on the signal received by the input port p5 of the bridge 133 .
  • the signal received by the input port p6 and the signal received by the input port p5 can be controlled to meet certain conditions (for example, the bridge 133 is a 90-degree bridge, the amplitude of the two signals is equal, and the phase difference is 90 degrees).
  • the power of the signals received by the input port p6 and the input port p5 can be concentrated on the signal sent by the output port s5, and then enter the bridge 901. That is to say, the power of the signals emitted by the radio frequency port r1, the radio frequency port r2, the radio frequency port r3 and the radio frequency port r4 can be concentrated on one input port of the bridge 901. Similarly, the power of the signals emitted by the four radio frequency ports connected to another set of circuit units (the four radio frequency ports connected to the bridge 903 shown in Figure 3C) can be concentrated on another input port of the bridge 901.
  • the bridge 901 is a 90-degree bridge, the amplitudes of the two signals are equal and the phase difference is 90 degrees), so the two input ports of the bridge 901 can be controlled.
  • the power of signals received by two input ports can be concentrated on one output port of the bridge 901. That is to say, through the antenna device shown in FIG. 3A , the power of the signals emitted by the radio frequency port r1, radio frequency port r2, radio frequency port r3, radio frequency port r4 and the four radio frequency ports connected to the electric bridge 903 can be concentrated on the electric bridge 901
  • the connected radiating element array is located on the mounting surface 123, thereby reducing power waste.
  • the power of the signals emitted by the eight radio frequency ports connected to the bridge 902 can be concentrated on the radiating element array located on the mounting surface 123 connected to the bridge 902 , thereby reducing the power. waste.
  • the fourth electric bridge mentioned in the embodiment of this application may be the electric bridge 901 or the electric bridge 902 in FIG. 3C.
  • the radiating element array is connected to the eight radio frequency ports connected to the two circuit units through the electric bridge 901 (the fourth electric bridge).
  • the radiating element array 114 can obtain the radiating element array 114 through the fourth electric bridge.
  • the power of signals emitted by all radio frequency ports (eight radio frequency ports) connected to the bridge can be reduced, thereby reducing power waste and increasing the power of signals emitted by the radiating unit array 114 .
  • the fourth electric bridge is used as an example to connect all radio frequency ports connected to two circuit units.
  • the fourth electric bridge can also connect all radio frequency ports connected to a larger number of circuit units.
  • one output port of the fourth bridge is connected to a radiating element array on the mounting surface 123
  • another output port of the fourth bridge can be connected to a radiating element array on the mounting surface 122 .
  • the two input ports of the fourth bridge are respectively connected to the output port of bridge one and the output port of bridge two.
  • the input port of bridge one is connected to all the radio frequency ports connected to one circuit unit, and the input port of bridge two is connected to another All radio frequency ports connected to one circuit unit, so that the fourth bridge can connect the 16 radio frequency ports connected to the two circuit units through bridge one and bridge two.
  • an output port of a bridge (such as the output port s6 of the bridge 133 in Figure 3C, an output port of the bridge 903, an output port of the bridge 904 and an output of the bridge 905 port) is not connected to components such as antennas, bridges or power dividers.
  • a circuit protection measure such as making this level of bridge not connected to antennas, bridges or power dividers.
  • the output port of a device such as a splitter is connected to a load.
  • the access network equipment shown in Figure 3A, Figure 3B and Figure 3C is an improvement on the architecture of the access network equipment shown in Figure 2C (the antenna device of the access network equipment shown in Figure 2C Including three mounting surfaces), the architecture shown in Figure 3A, Figure 3B and Figure 3C can also be improved on the architecture of the access network equipment shown in Figure 2A (the antenna device of the access network equipment shown in Figure 2A includes Two installations surface), in this case, the solution provided by the antenna device 1 shown in FIGS. 3A, 3B and 3C can also be applied.
  • the antenna device 1 shown in FIGS. 3A, 3B and 3C does not have a mounting surface. 123, and a radiating unit array installed on the mounting surface 123. The rest of the content is similar to the previous content and will not be repeated.
  • the fourth bridge when the third bridge is bridge 133, the fourth bridge can be bridge 901, and the seventh input port of the fourth bridge can be the bridge 901 connected to the output port s5 of bridge 133. port, the eighth input port of the fourth bridge may be a port on the bridge 903 connected to the output port of the bridge 903 , and the seventh output port of the fourth bridge may be an output on the bridge 901 connected to the radiating unit array 113 port, the eighth output port of the fourth bridge may be an output port on the bridge 901 connected to the radiating unit array 114 .
  • Figs. 4A and 4B exemplarily illustrate the application provided by the embodiments of the present application.
  • the mounting surface 121 also includes N5 radiating element arrays, where N5 is 1 or an integer greater than 1.
  • N5 radiating element arrays are connected to one radio frequency port (for distinction, this radio frequency port may be called the fifth radio frequency port).
  • the N5 radiating element arrays may include the radiating element array 611 in Figure 4A.
  • the radiating element array 611 is connected to a radio frequency port r5, and the power of the signal emitted by the radio frequency port r5 is concentrated on the radiating element array 611.
  • the radiating element array 612 is connected to the radio frequency port r6, and the power of the signal emitted by the radio frequency port r6 is concentrated on the radiating element array 612.
  • the radiating element array 613 is connected to the radio frequency port r7, and the power of the signal emitted by the radio frequency port r7 is concentrated on the radiating element array 613.
  • the radiating element array 614 is connected to the radio frequency port r8, and the power of the signal emitted by the radio frequency port r8 is concentrated on the radiating element array 614.
  • the N5 radiating element arrays may include radiating element arrays 611 and 615 in Figure 4B.
  • the radiating element array 611 and the radiating element array 615 are both connected to a radio frequency port r5.
  • the radio frequency port can be connected to the multiple radiating element arrays through a power splitter.
  • at least one of the plurality of radiating element arrays is connected to the power splitter through a phase shifter.
  • the radio frequency port r5 can be connected to the radiating element array 611 and the radiating element array 615 through the power splitter 621.
  • the radiation element array 611 is connected to the power splitter 621 through a phase shifter 622.
  • the power of the signal emitted by the radio frequency port r5 can be allocated to the radiating element array 611 and the radiating element array 615.
  • the power splitter can support a larger number of radiating unit arrays without increasing the number of RF ports. Since the number of RF ports is small, this solution can reduce costs, and because the number of radiating unit arrays can be increased, it can improve Antenna device performance. Since the phase of the signal emitted by the radiating element array can be adjusted through the phase shifter, the beam forming capability (also called beam scanning capability) of the radiating element array connected to the phase shifter can be improved.
  • the radio frequency ports and the antenna ports can be arranged in a one-to-one and/or one-to-many correspondence manner.
  • the number of radio frequency links can be saved, and when the installation surface 121 is in the working state, but the installation surface 123 and the installation surface 122 are not in the working state, the radio frequency port r5, radio frequency port r6, radio frequency port r7, radio frequency port r8, radio frequency port
  • the power of the signals emitted by the port r1, the radio frequency port r2, the radio frequency port r3 and the radio frequency port r4 is concentrated in the radiation array on the mounting surface 121, thereby increasing the power of the signal emitted by the radiation array installed on the mounting surface 121.
  • the antenna device 1 shown in FIG. 4A may also include multiple circuit units 13.
  • the antenna device 1 includes one circuit unit is used as an example for illustration.
  • the circuit unit 13 in FIG. 4A is schematically illustrated by taking the circuit unit 13 shown in FIG. 2C as an example.
  • the circuit unit 13 in FIG. 4A may also be the circuit unit 13 shown in FIG. 2E .
  • the third power divider involved in the embodiment of this application may be a power divider 621, and the third phase shifter may be a phase shifter 622.
  • the bridge when the number of radio frequency ports is equal to the total number of radiating unit arrays.
  • the bridge includes two input ports and two output ports.
  • the number of radio frequency ports included in the front mounting surface (such as the mounting surface 121) can be identified as K (K is a positive integer).
  • K R+ H.
  • the electric bridge connected to the radio frequency port in the antenna device 1 can be called a first-level electric bridge, and the electric bridge connected to the output port of the first-level electric bridge can be called a second-level electric bridge.
  • the number of included level 2 bridges may be half the number of level 1 bridges.
  • the two output ports of the second-level bridge can be connected to the two output ports on the two side mounting surfaces (such as mounting surface 123 and mounting surface 122) respectively. Radiating element array connection. If an output port of a certain level of bridge is not connected to the antenna, bridge or power divider, in order to avoid circuit burnout and other reasons, the level of the bridge is not connected to the antenna, bridge or power divider.
  • the output port can be connected to a load.
  • Figures 5A and 5B exemplarily show The following are schematic diagrams of several possible architectures of the antenna device 1 provided by the embodiments of the present application.
  • Figure 5A takes the improvement of the antenna device 1 shown in Figure 2C as an example.
  • the difference from Figure 2C is that the output port s1 in Figure 5A is connected to N1 radiating element arrays.
  • N1 is 2 for the example.
  • the output port s1 connects the radiating element array 111 and the radiating element array 711.
  • the output port s4 is connected to N2 radiating element arrays.
  • N2 is 2 for example.
  • the output port s4 is connected to the radiating element array 112 and the radiating element array 712 .
  • the output port s1 can be divided into N1 ports through the power splitter 811, and then the N1 ports of the power splitter 811 can be connected to the N1 radiating unit arrays in a one-to-one correspondence. Specifically, one of the N1 ports of the power splitter 811 is connected to one of the N1 radiating unit arrays, and one of the N1 radiating unit arrays is connected to the N1 ports of the power splitter 811 Connect to one of the ports.
  • the power of the signal emitted from the output port s1 can be distributed to the N1 radiating element arrays connected to the power divider 811.
  • the power splitter can support a larger number of radiating unit arrays without increasing the number of RF ports. Since the number of RF ports is small, this solution can reduce costs, and because the number of radiating unit arrays can be increased, it can improve Antenna device performance.
  • the antenna device 1 may further include one or more phase shifters.
  • the antenna device further includes a first phase shifter, and the first bridge is connected to the radiating element array in the N1 radiating element arrays through the first phase shifter.
  • the phase of the signal output by the first bridge can be changed through the first phase shifter, which can improve the adjustability of the antenna device in actual application scenarios.
  • the antenna device further includes a second phase shifter, and the second bridge is connected to the radiating element array in the N2 radiating element arrays through the second phase shifter.
  • the phase of the signal output by the second bridge can be changed through the second phase shifter, which can improve the adjustability of the antenna device in actual application scenarios.
  • the power divider in the antenna device can be used in combination with the phase shifter.
  • at least one of the N1 radiating element arrays is connected to the power splitter 811 through a phase shifter.
  • the radiating element array 111 in Figure 5A is connected to the power divider 811 through a phase shifter 821. connected between power dividers 811. Since the phase of the signal emitted by the radiating unit array can be adjusted through the phase shifter, the beam forming capability (also called beam scanning capability) of the N1 radiating unit arrays can be improved.
  • the output port s4 can be divided into N2 ports through the power splitter 812, and then the N2 ports of the power splitter 812 can be connected to the N2 radiating unit arrays in one-to-one correspondence. Specifically, one of the N2 ports of the power splitter 812 is connected to one of the N2 radiating unit arrays, and one of the N2 radiating unit arrays is connected to the N2 ports of the power splitter 812 Connect to one of the ports.
  • the power divider 812 the power of the signal emitted from the output port s4 can be distributed to the N2 radiating element arrays connected to the power divider 812.
  • At least one of the N2 radiating element arrays is connected to the power divider 812 through a phase shifter.
  • the radiating element array 712 in FIG. 5A is connected to the power splitter through a phase shifter 822. connected between splitters 812.
  • the first power divider mentioned in the embodiment of this application may be a power divider 811
  • the second power divider may be a power divider 812
  • the first phase shifter may be a phase shifter 821
  • the second power divider may be a power divider 812.
  • the phase shifter may be phase shifter 822.
  • the antenna device 1 includes two circuit units 13 as an example.
  • the content of each circuit unit 13 can be referred to the description in FIG. 5A and will not be described again.
  • the access network equipment shown in Figures 5A and 5B is an improvement on the architecture of the access network equipment shown in Figure 2C (the antenna device of the access network equipment shown in Figure 2C includes three mounting surface), the architecture shown in Figures 5A and 5B can also be improved on the architecture of the access network equipment shown in Figure 2A (the antenna device of the access network equipment shown in Figure 2A includes two mounting surfaces), In this case, the solution provided by the antenna device 1 shown in Figures 5A and 5B can also be applied.
  • the antenna device 1 shown in Figures 5A and 5B does not need to be provided with the mounting surface 123, and can be installed on the mounting surface 123. radiating element array. The rest of the content is similar to the previous content and will not be repeated.
  • the antenna device 1 provided by the embodiment of the present application may include multiple circuit units, and each circuit unit in the multiple circuits may be the circuit unit 13 shown in FIG. 5A .
  • the solution shown in Figure 5A and Figure 5B can also be used in combination with the content shown in the aforementioned Figure 2E, Figure 3A, Figure 3B, Figure 4A or Figure 4B.
  • the antenna device 1 may include a plurality of circuit units, at least one of the plurality of circuit units
  • the structural form of the circuit unit may be the structural form of the circuit unit 13 shown in FIG. 5A
  • the structural form of at least one circuit unit among the plurality of circuit units may be the structural form of the circuit unit 13 shown in FIG. 2C .
  • the antenna device 1 may include one or more circuit units.
  • One circuit unit in the antenna device 1 is the circuit unit 13 shown in FIG. 5A or FIG. 2C .
  • the antenna device 1 may also include the circuit unit shown in FIG. 4A or FIG. 4B .
  • the N5 radiating element array shown above can be connected to one radio frequency port.
  • a power splitter when the number of radio frequency ports is less than the total number of radiating element arrays, in this case, a power splitter can be introduced, a bridge in the antenna device that is directly connected to the radio frequency ports (this bridge can be called the first The number of stage bridges) can be equal to half the number of RF ports.
  • An output port of the bridge in the antenna device that is directly connected to the radio frequency port can be connected to the power splitter or can be directly connected to the antenna port to which the radiating element array is connected.
  • the number of output ports of the power splitter can be no less than 2.
  • At least one output port of the power splitter can be connected to a phase shifter (also called an adjustable phase shifter).
  • the output port of the phase shifter can be directly connected to the radiating unit array. antenna port.
  • the electric bridge directly connected to the radio frequency port in the antenna device can be called a first-level electric bridge, and the electric bridge connected to the output port of the first-level electric bridge can be called a second-level electric bridge.
  • the number of included level 2 bridges may be half the number of level 1 bridges.
  • the two output ports of the second-level bridge can be respectively connected to the two radiating element arrays on the two side mounting surfaces (such as the mounting surface 123 and the mounting surface 122).
  • FIG. 6 exemplarily shows a structural schematic diagram of a communication system applicable to the embodiment of the present application.
  • the communication system includes three antenna devices arranged on a pole.
  • the structure of each antenna device can be
  • the above-mentioned antenna device 1 (for the structural form of the antenna device 1, please refer to the embodiments shown in FIG. 2C, FIG. 2D, FIG. 2E, FIG. 3A, FIG. 3B, FIG. 4A, FIG. 5A or FIG. 5B).
  • each antenna device can have the radiating element array on one mounting surface in the working state, while other mounting surfaces are not in the working state (such as the radiating element array on the front mounting surface (mounting surface 121) of the antenna device 1 In the working state, the radiating element arrays on the two side mounting surfaces (mounting surface 122 and mounting surface 123) are not in the working state)). In this case, the radiating elements on the mounting surface of each antenna device are in the working state.
  • the array can allocate the power of the signal emitted on the radio frequency port connected to the radiating unit array, thereby improving power utilization and reducing power waste.
  • the multiple antenna devices can achieve multi-sector cooperation.
  • a base station has multiple sectors, some sectors have more users, some sectors have fewer users, or even no users.
  • Users through the solution provided by the embodiments of this application, can transmit the power of sectors with few or even no users to sectors with more users, thereby improving the signal strength of sectors with more users, thereby improving the user perception rate. and coverage performance.
  • the antenna device provided by the embodiment of the present application can realize a single station and one antenna for one cell, and the radiation signal of one cell 3 can be fully covered at 360°, which is beneficial to reducing the cost of the communication system.
  • the antenna device provided in the embodiment of the present application can realize a single station, one antenna and three cells.
  • the antenna device 1 includes three installation surfaces.
  • the radiation signal of the radiating unit array provided on each installation surface covers a cell (a cell is, for example, a 120° sector area). This solution is beneficial to reducing the cost of the communication system.
  • each antenna device 1 among the three antennas can cover three cells 3, and a single-site, three-antenna and nine-cell network can be implemented, which is not limited in this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Support Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种天线装置和通信设备,涉及通信技术领域,用于减少功率浪费。天线装置中的第一电桥的两个输入端口和第二电桥的两个输入端口分别连接四个射频端口。第一电桥的第一输出端口与设于第一安装面的N1个辐射单元阵列连接。天线装置中的第二电桥的第三输出端口与设于第一安装面的N2个辐射单元阵列连接。天线装置中的第三电桥的两个输入端口分别连接第一电桥的第二输出端口和第二电桥的第四输出端口,第三电桥的第五输出端口与设于第二安装面的N3个辐射单元阵列连接。该四个射频端口发出的信号的功率可以集中于第一安装面或第二安装面上的辐射单元阵列,从而在部分安装面上的辐射单元处于工作状态的情况下减少功率浪费。

Description

一种天线装置和通信设备
相关申请的交叉引用
本申请要求在2022年06月29日提交中国专利局、申请号为202210757634.6、申请名称为“一种天线装置和通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,具体为一种天线装置和通信设备。
背景技术
无线通信网络中,接入网设备(比如基站)作为关键网络节点,在通信网络中起着关键作用。随着移动通信发展,接入网设备形态也呈现多样化发展。接入网设备包括天线,接入网设备通过天线收发信号。天线包括辐射单元阵列和天线端口。辐射单元阵列可以与天线端口连接,天线端口可以与射频端口连接。
天线端口与射频端口可以一一对应连接。为了实现多个天线端口所连接的辐射单元阵列之间的功率共享,天线端口也可以与射频端口之间多对多的连接,比如多个射频端口中的每个射频端口可以与多个天线端口中的每个天线端口连接。当该多个天线端口中部分天线端口处于工作状态的情况下,该多个射频端口发出的信号的功率仍会分布于该多个天线端口中的每个天线端口(包括处于工作状态的天线端口和未处于工作状态的天线端口),如此,造成功率浪费。
发明内容
本申请提供一种天线装置和通信设备,用于减少功率浪费。
第一方面,本申请提供一种天线装置。该天线装置包括第一安装面、第二安装面、多个辐射单元阵列和第一电路单元,第一电路单元包括第一电桥、第二电桥和第三电桥。
第一电桥的第一输入端口与第一射频端口连接,第一电桥的第二输入端口与第二射频端口连接。第一电桥的第一输出端口与多个辐射单元阵列中设于第一安装面的N1个辐射单元阵列连接的天线端口连接,N1为正整数。
第二电桥的第三输入端口与第三射频端口连接,第二电桥的第四输入端口与第四射频端口连接。第二电桥的第三输出端口与多个辐射单元阵列中设于第一安装面的N2个辐射单元阵列连接的天线端口连接,N2为正整数,N2个辐射单元阵列中的每个辐射单元阵列与N1个辐射单元阵列中的每个辐射单元阵列不同。
第一电桥的第二输出端口与第三电桥的第五输入端口连接。第二电桥的第四输出端口与第三电桥的第六输入端口连接。第三电桥的第五输出端口与设于第二安装面的N3个辐射单元阵列连接的天线端口连接,N3为正整数。第一安装面和第二安装面在背离N1个辐射单元阵列的一侧的夹角为第一夹角,第一夹角的角度小于180°。
由于第一射频端口、第二射频端口、第三射频端口和第四射频端口可以通过第一电桥单元连接N1个辐射单元阵列、N2个辐射单元阵列以及N3个辐射单元阵列,因此多个辐射单元阵列之间可以实现功率共享,且可以根据需求调节各个阵列的功率。
本申请中,第一电桥的第一输出端口与多个辐射单元阵列中设于第一安装面的N1个辐射单元阵列连接的天线端口连接。因此第一输入端口和第二输入端口输入的信号的功率可以集中于第一电桥的一个输出端口所输出的信号。
又由于第二电桥的第三输出端口与多个辐射单元阵列中设于第一安装面的N2个辐射单元阵列连接的天线端口连接,因此第二电桥的第三输入端口和第四输入端口输入的信号的功率可以集中于第二电桥的一个输出端口所输出的信号。
又由于第一电桥的第二输出端口与第三电桥的第五输入端口连接。第二电桥的第四输出端口与第三电桥的第六输入端口连接。第三电桥的第五输入端口和第六输入端口输入的信号的功率可以集中于第三电桥的一个输出端口所输出的信号,比如可以集中于第五输出端口所连接N3个辐射单元阵列。
因此,在天线装置的第一安装面上部署的辐射单元阵列(N1个辐射单元阵列和N2个辐射单元阵列)处于工作状态,而第二安装面上部署的辐射单元阵列(N3个辐射单元)未处于工作状态的情况下,第一射频端口和第二射频端口发出的信号的功率可以集中于第一安装面上部署的N1个辐射单元阵列,第三射频端口和第四射频端口发出的信号的功率可以集中于第一安装面上部署的N2个辐射单元阵列,从而可以提高功率利用率,减少功率浪费。
类似的,当天线装置的第二安装面上部署的辐射单元阵列处于工作状态,而第一安装面上部署的辐射单元阵列未处于工作状态的情况下,第一射频端口、第二射频端口、第三射频端口和第四射频端口发出的信号的功率可以集中于第二安装面上部署的N3个辐射单元阵列,从而可以提高功率利用率,减少功率浪费。
又由于N2个辐射单元阵列中的每个辐射单元阵列与N1个辐射单元阵列中的每个辐射单元阵列不同。当天线装置的第二安装面上部署的辐射单元阵列处于工作状态,而第一安装面上部署的辐射单元阵列未处于工作状态的情况下,第一射频端口和第二射频端口构成的逻辑端口与第三射频端口和第四射频端口构成的逻辑端口之间在模拟电路上可以互不干扰,也就是说,基于N1个辐射单元阵列的需求去设置第一射频端口和第二射频端口发出的信号的功率和相位。且基于N2个辐射单元阵列的需求去设置第三射频端口和第四射频端口发出的信号的功率和相位。因此各个射频端口连接的功率放大器可以以自身支持的功率发送信号,从而可以避免射频端口连接的功率放大器无法以自身支持的功率发送信号的问题,从而可以减少功率超发问题导致的功率浪费。
在一种可能的实施方式中,第三电桥还可以包括第六输出端口,第六输出端口可以连接负载。又一种可能的实施方式中,天线装置还包括第三安装面。第三电桥的第六输出端口与设于第三安装面的N4个辐射单元阵列连接的天线端口连接,N4为正整数。
在天线装置的第三安装面上部署的辐射单元阵列(N4个辐射单元阵列)处于工作状态,而第一安装面和第二安装面上部署的辐射单元阵列未处于工作状态的情况下,第一射频端口、第二射频端口、第三射频端口和第四射频端口发出的信号的功率可以集中于第三安装面上部署的N4个辐射单元阵列,从而可以提高功率利用率,减少功率浪费。
在一种可能的实施方式中,第三安装面可以是与第一安装面以及第二安装面不同的安装面。比如,第三安装面和第二安装面位于第一安装面相对的两侧。如此,每个安装面上设置的辐射单元阵列的辐射信号覆盖一个小区(一个小区比如为一个120°扇形区域),如此该一个天线装置可以覆盖360°的区域,该方案有利于降低通信系统的成本。
本申请中第三电桥可以直接与N3个辐射单元阵列连接,第三电桥也可以通过其他器件与N3个辐射单元阵列连接。比如,在一种可能的实施方式中,天线装置还包括第四电桥,第三电桥可以通过第四电桥与N3个辐射单元阵列连接。比如第三电桥的第五输出端口与第四电桥的第七输入端口连接,第四电桥的第七输出端口与N3个辐射单元阵列连接。可以看出,第三电桥可以通过第四电桥与N3个辐射单元阵列连接,如此,N3个辐射单元阵列可以通过第四电桥与更多的射频端口连接。
举个例子,天线装置还包括第二电路单元,第四电桥的第八输入端口与第二电路单元的第九输出端口连接。如此,N3个辐射单元阵列可以通过第四电桥与两个电路单元所连接的射频端口连接,从而在N3个辐射单元阵列处于工作状态的情况下,该两个电路单元所连接的射频端口发出的信号的功率可以集中于N3个辐射单元阵列发出的信号。
在一种可能的实施方式中,第四电桥的第八输出端口与设于第三安装面的N4个辐射单元阵列连接的天线端口连接,N4为正整数。如此,N4个辐射单元阵列可以通过第四电桥与两个电路单元所连接的射频端口连接,从而在N4个辐射单元阵列处于工作状态的情况下,该两个电路单元所连接的射频端口发出的信号的功率可以集中于N4个辐射单元阵列发出的信号。
在一种可能的实施方式中,天线装置还包括第一功分器,第一电桥通过第一功分器与N1个辐射单元阵列连接。比如,在N1大于1的情况下,第一电桥的第一输出端口与第一功分器的输入端口连接,第一功分器的输出端口与N1个辐射单元阵列连接。可以看出,本申请通过第一功分器的作用,可以将 第一输出端口发出的信号的功率分配给第一功分器连接的N1个辐射单元阵列。通过第一功分器可以在射频端口数量不增加的情况下,支持更多数量的辐射单元阵列,由于射频端口数量较少因此该方案可以降低成本,又由于可以增加辐射单元阵列的数量,因此可以提高天线装置性能。
在一种可能的实施方式中,天线装置还包括第一移相器,第一电桥通过第一移相器与N1个辐射单元阵列中的辐射单元阵列连接。通过第一移相器可以对第一电桥输出的信号的相位进行更改,如此可以提高天线装置在实际应用场景中的可调整性。
在一种可能的实施方式中,第一功分器的一个输出端口通过第一移相器与N1个辐射单元阵列中的一个辐射单元阵列连接。由于可以通过第一移相器调整辐射单元阵列发出的信号的相位,因此N1个辐射单元阵列的波束赋型能力(也可以称为波束扫描能力)可以得到提升。
在一种可能的实施方式中,天线装置还包括第一微带线,第一电桥通过第一微带线与N1个辐射单元阵列连接。第一微带线可以用于将接收到的信号的相位进行调整,如此可以提高天线装置在实际应用场景中的可调整性。
在一种可能的实施方式中,第一电桥的第一输出端口通过第一微带线与N1个辐射单元阵列连接。如此,第一电桥的第一输出端口输出的信号的相位可以通过第一微带线进行调整,以使连接第一微带线的辐射单元阵列接收到的信号的相位与连接第一电桥的第二输出端口的辐射单元阵列接收到的信号的相位对齐,继而可以通过辐射单元阵列输出相位对齐后的信号,进而可以提升信号强度。
在一种可能的实施方式中,第一微带线用于将第一电桥的第一输出端口输出的信号的相位延迟第一预设值。比如,第一预设值可以是根据第一电桥的第一输出端口输出的信号的相位与N3个辐射单元阵列接收到的信号的相位之间的相位差确定的。
举个例子,在第一电桥的第二输出端口通过第三电桥连接辐射单元阵列的情况下,由于第三电桥输出的信号的相位相比第一电桥输出的信号的相位偏转90度,因此第一微带线可以用于将第一电桥的第一输出端口输出的信号的相位延迟90度(即第一预设值为90度)。再举个例子,若与第三电桥连接的N3个辐射单元阵列接收到的信号的相位相比第一电桥输出的信号的相位偏转180度,则第一预设值可以为180度。
如此,第一微带线调整后的信号的相位可以与第三电桥的输出端口输出的信号的相位对齐,进一步,第一微带线连接的辐射单元阵列接收到的信号的相位可以与连接第一电桥的第二输出端口的辐射单元阵列接收到的信号的相位可以对齐,继而可以通过辐射单元阵列输出相位对齐后的信号,进而可以提升信号强度。
本申请中,第一电桥的参数可以根据实际需要灵活设置,为了更好的兼容现有技术,第一电桥可以为90度电桥或180度电桥。
在一种可能的实施方式中,第一电桥包括两个输入端口和两个输出端口。第一电桥的功率比可以灵活设置,比如可以设置为2:1,或者设置为1:1。第一电桥的功率比为1:1可以理解为:第一电桥的一个输入端口(比如第一输入端口或第二输入端口)输入的信号在第一输出端口和第二输出端口输出的信号的功率比为1:1。
如此,当第一电桥的两个输入端口接收的两个信号相位相差90度且幅度相等(功率比为1:1),则该两个输入端口接收到的信号的功率可以集中于第一电桥的一个输出端口输出的信号上。由于第一电桥的两个输入端口连接的多个功率放大器自身所能支持的输出功率可能是相等的,因此当第一电桥的功率比为1:1,则该多个功率放大器可以均以自身所支持的输出功率发射信号,如此可以满足第一电桥的两个输入信号的功率比为1:1,从而可以减少功率浪费。另一方面,多个功率放大器均以自身所能支持的输出功率发射信号,可以减轻功率发不满的情况。
在一种可能的实施方式中,天线装置还包括第二功分器,第二电桥通过第二功分器与N2个辐射单元阵列连接。比如,在N2大于1的情况下,第二电桥的第三输出端口与第二功分器的输入端口连接,第二功分器的输出端口与N2个辐射单元阵列连接。
可以看出,本申请通过第二功分器的作用,可以将第三输出端口发出的信号的功率分配给第二功分器连接的N2个辐射单元阵列。通过第二功分器可以在射频端口数量不增加的情况下,支持更多数量的 辐射单元阵列,由于射频端口数量较少因此该方案可以降低成本,又由于可以增加辐射单元阵列的数量,因此可以提高天线装置性能。
在一种可能的实施方式中,天线装置还包括第二移相器,第二电桥通过第二移相器与N2个辐射单元阵列中的辐射单元阵列连接。通过第二移相器可以对第二电桥输出的信号的相位进行更改,如此可以提高天线装置在实际应用场景中的可调整性。
在一种可能的实施方式中,第二功分器的一个输出端口通过第二移相器与N2个辐射单元阵列中的一个辐射单元阵列连接。由于可以通过第二移相器调整辐射单元阵列发出的信号的相位,因此N2个辐射单元阵列的波束赋型能力(也可以称为波束扫描能力)可以得到提升。
在一种可能的实施方式中,天线装置还包括第二微带线,第二电桥通过第二微带线与N2个辐射单元阵列连接。第二微带线可以用于将接收到的信号的相位进行调整,如此可以提高天线装置在实际应用场景中的可调整性。
在一种可能的实施方式中,第二电桥的第三输出端口通过第二微带线与N2个辐射单元阵列连接。
如此,第二电桥的第三输出端口输出的信号的相位可以通过第二微带线进行调整,以使连接第二微带线的辐射单元阵列接收到的信号的相位与连接第二电桥的第四输出端口的辐射单元阵列接收到的信号的相位对齐,继而可以通过辐射单元阵列输出相位对齐后的信号,进而可以提升信号强度。
在一种可能的实施方式中,第二微带线用于将第二电桥的第三输出端口输出的信号的相位延迟第二预设角度。比如,第二预设角度可以是根据第二电桥的第三输出端口输出的信号的相位与N3个辐射单元阵列接收到的信号的相位之间的相位差确定的。
举个例子,在第二电桥的第四输出端口通过第三电桥连接辐射单元阵列的情况下,由于第三电桥输出的信号的相位相比第二电桥输出的信号的相位偏转90度,因此第二微带线可以用于将第二电桥的第三输出端口输出的信号的相位延迟90度(即第二预设角度为90度)。再举个例子,若与第三电桥连接的N3个辐射单元阵列接收到的信号的相位相比第二电桥输出的信号的相位偏转180度,则第二预设角度可以为180度。
如此,第二微带线调整后的信号的相位可以与第三电桥的输出端口输出的信号的相位对齐,连接第二微带线的辐射单元阵列接收到的信号的相位与连接第二电桥的第四输出端口的辐射单元阵列接收到的信号的相位可以对齐,继而可以通过辐射单元阵列输出相位对齐后的信号,进而可以提升信号强度。
本申请中,第一电桥的参数可以根据实际需要灵活设置,为了更好的兼容现有技术,第二电桥为90度电桥或180度电桥。
在一种可能的实施方式中,第二电桥包括两个输入端口和两个输出端口。第二电桥的功率比可以灵活设置,比如可以设置为2:1,或者设置为1:1。第二电桥的功率比为1:1可以理解为:第二电桥的一个输入端口(比如第三输入端口或第四输入端口)输入的信号在第三输出端口和第四输出端口输出的信号的功率比为1:1。
如此,当第二电桥的两个输入端口接收的两个信号相位相差90度且幅度相等(功率比为1:1),则该两个输入端口接收到的信号的功率可以集中于第一电桥的一个输出端口输出的信号上(比如,在一种可能的示例中,该两个输入端口接收到的信号的功率可以全部集中于第一电桥的一个输出端口输出的信号上)。由于第二电桥的两个输入端口连接的多个功率放大器自身所能支持的输出功率可能是相等的,因此当第二电桥的功率比为1:1,则该多个功率放大器可以均以自身所支持的输出功率发射信号,如此可以满足第二电桥的两个输入信号的功率比为1:1,从而可以减少功率浪费。另一方面,多个功率放大器均以自身所能支持的输出功率发射信号,可以减轻功率发不满的情况。
在一种可能的实施方式中,第三电桥的参数可以根据实际需要灵活设置,为了更好的兼容现有技术,第三电桥为90度电桥或180度电桥。在一种可能的实施方式中,第三电桥包括两个输入端口和两个输出端口。第三电桥的功率比为1:1。相关描述和有益效果可以参见前述第一电桥或第二电桥的相关描述,不再赘述。
在一种可能的实施方式中,多个辐射单元还包括设于第一安装面的N5个辐射单元阵列,N5为正整数,N5个辐射单元阵列与第五射频端口连接。本申请实施例中N5可以为1,也可以为大于1的整数。 当第一安装面的辐射单元阵列较多的情况下,可以通过射频端口与天线端口一对一和/或一对多对应的方式设置,如此,可以节省射频链路的数量。
在一种可能的实施方式中,N5为大于1的整数的情况下,第五射频端口通过第三功分器与N5个辐射单元阵列连接。
可以看出,本申请通过第三功分器的作用,可以将第五射频端口发出的信号的功率分配给至少两个辐射单元阵列。通过第三功分器可以在射频端口数量不增加的情况下,支持更多数量的辐射单元阵列,由于射频端口数量较少因此该方案可以降低成本,又由于可以增加辐射单元阵列的数量,因此可以提高天线装置性能。
在一种可能的实施方式中,第三功分器通过第三移相器与N5个辐射单元阵列连接。由于可以通过第三移相器调整辐射单元阵列发出的信号的相位,因此N5个辐射单元阵列的波束赋型能力(也可以称为波束扫描能力)可以得到提升。
第二方面,本申请提供一种通信设备,包括上述内容中第一方面或第一方面的任一种可能的实施方式中的天线装置。
第三方面,本申请提供一种通信系统,包括上述内容中第一方面或第一方面的任一种可能的实施方式中的天线装置。
附图说明
图1A为本申请实施例适用的一种通信系统架构示意图;
图1B为本申请实施例的天线装置的结构示意图;
图2A为本申请实施例提供的接入网设备的一种可能的结构示意图;
图2B为本申请实施例中天线装置1中的部分部件的一种可能的结构示意图;
图2C为本申请实施例提供的接入网设备的另一种可能的结构示意图;
图2D为本申请实施例中天线装置1中的部分部件的一种可能的结构示意图;
图2E为本申请实施例提供的接入网设备的另一种可能的结构示意图;
图3A为本申请实施例提供的天线装置1的一种可能的结构示意图;
图3B为本申请实施例提供的天线装置1的又一种可能的结构示意图;
图3C为本申请实施例提供的天线装置1的又一种可能的结构示意图;
图4A为本申请实施例提供的天线装置1的又一种可能的结构示意图;
图4B为本申请实施例提供的天线装置1的又一种可能的结构示意图;
图5A为本申请实施例提供的天线装置1的又一种可能的结构示意图;
图5B为本申请实施例提供的天线装置1的又一种可能的结构示意图;
图6为本申请实施例中通信系统的一种组网结构示意图。
具体实施方式
下面对本申请涉及或可能涉及的词语进行解释:
1、至少一个,是指一个,或一个以上,即包括一个、两个、三个及以上;
2、多个,是指两个,或两个以上,即包括两个、三个、四个及以上;
3、连接,是指耦合,包括直接相连或经由其他器件间接相连以实现电连通。
本申请实施例适用的通信系统可以为第五代(5th generation,5G)网络架构中,也可以用在其他网络架构,比如全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、演进的长期演进(evolved Long Term Evolution,eLTE)系统以及未来的6G等其它移动通信系统。
图1A示例性示出了本申请实施例适用的一种通信系统架构示意图。
如图1A所示,该通信系统包括接入网设备和终端设备。本申请实施例提供一种天线装置,该天线装置为接入网设备的天线装置。接入网设备可以通过该天线装置与终端设备之间传输信号。本申请实施例中提供的天线装置也可以称为天馈系统,图1A中以接入网设备为基站为例进行展示。
下面结合图1A对本申请实施例涉及的设备进行介绍。
(1)接入网设备。
接入网设备可以为(无线)接入网(radio access network,(R)AN)设备,用于为特定区域的授权终端设备提供入网功能,并能够根据终端设备的级别,业务的需求等使用不同质量的传输隧道。
接入网设备,是一种为终端设备提供无线通信功能的设备。本申请中的接入网设备包括但不限于:5G中的下一代基站(gnodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。
(2)终端设备。
终端设备可以是用于实现无线通信功能的设备,图1A中以终端设备为手机为例进行展示。在具体实现中,终端设备可以是5G网络或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。终端可以是移动的,也可以是固定的。
为了进一步介绍本申请实施例提供的方案的优势,下面通过图1B示例性示出一种本申请实施例提供的接入网设备的架构示意图。
如图1B所示,该接入网设备的架构中可以包括天线装置。该接入网设备的架构可能还包括有其他器件,图1B中以该接入网设备的架构中还包括有射频处理单元和基带处理单元为例进行示意。图1B中以天线装置与射频处理单元连接,射频处理单元与基带处理单元连接为例进行展示,实际应用中,天线装置与接入网设备的架构中的其他器件之间也可能存在其他连接关系。
射频处理单元包括射频端口,比如图1B中示例性示出的射频端口c1、射频端口c2、射频端口c3和射频端口c4。天线装置中包括辐射单元阵列,比如图1B中示例性示出的辐射单元阵列41、辐射单元阵列42、辐射单元阵列43和辐射单元阵列44。天线装置中还包括电桥,比如图1B中示例性示出的电桥51、电桥52、电桥53和电桥54。
如图1B所示,电桥52的输入端口t1和输入端口t2分别连接射频端口c1和射频端口c2,电桥52的输出端口b1和输出端口b2分别连接电桥51的输入端口t5和电桥53的输入端口t7。电桥54的输入端口t3和输入端口t4分别连接射频端口c3和射频端口c4,电桥54的输出端口b3和输出端口b4分别连接电桥51输入端口t6和电桥53输入端口t8。电桥51的输出端口b5和输出端口b6分别连接辐射单元阵列44和辐射单元阵列42。电桥53的输出端口b7和输出端口b8分别连接辐射单元阵列41和辐射单元阵列43。
为了满足不同终端设备的不同需求,两个辐射单元阵列所发出的信号的幅度或相位很大概率上是不同的。以辐射单元阵列41和辐射单元阵列42进行举例,基带产生的满足辐射单元阵列41和辐射单元阵列42所发出的信号的幅度或相位时,相当于基带会出现多个同频信号同时叠加,导致合成的基带信号幅度和相位具有随机性,使得信号分别经过各个功率放大器(射频端口c1连接的功率放大器、射频端口c2连接的功率放大器、射频端口c3连接的功率放大器和射频端口c4连接的功率放大器)时,各个功率放大器输出的功率各不相同,因此导致存在至少一个功率放大器并不是以自己支持的输出功率发 送信号的,即至少一个功率放大器存在功率超发(或者称功率发不满)的问题。
另一方面,当射频端口c1、射频端口c2、射频端口c3和射频端口c4所连接的辐射单元阵列中部分多个辐射单元阵列处于工作状态的情况下,该四个射频端口发出的信号的功率中部分功率可以分配于处于工作状态的辐射单元阵列,造成功率浪费。下面以辐射单元阵列41和辐射单元阵列42处于工作状态,辐射单元阵列123和辐射单元阵列122未处于工作状态进行举例说明。
比如,射频处理单元2中的各个功率放大器(射频端口c1连接的功率放大器、射频端口c2连接的功率放大器、射频端口c3连接的功率放大器和射频端口c4连接的功率放大器)以自身支持的输出功率发送信号。比如本申请实施例中射频处理单元2中的各个功率放大器可以以自身支持的额定输出功率或最大输出功率发送信号。本申请实施例中最大输出功率也可以称为瞬间功率或峰值功率,可以大于额定功率。本申请实施例中射频处理单元2连接的各个功率放大器的额定输出功率可以相同,或者最大输出功率可以相同。这种情况下,若射频端口c1和射频端口c2接收到的两个信号的相位相差90度(以电桥52为90度电桥进行举例),则电桥52可以将输入端口t1和输入端口t2接收到的信号通过一个端口(输出端口b1或输出端口b2)进行发送,比如,通过输出端口b2进行发送,这种情况下,由于输出端口b1未发出信号,因此电桥51的输入端口t5未接收到信号,电桥53的输入端口t7收到来自输出端口b2的信号。类似的,电桥54的输出端也可能是一个端口可以发出信号,比如电桥51的输出端口b3可以发出信号,输出端口b4发不出信号。
由于电桥51的输入端口t5接收不到信号,输入端口t6接收到来自输出端口b3的信号,因此电桥51会将输入端口接收到的信号的所有功率分别分配至输出端口b5和b6,而无法将接收到的信号的所有功率分配至输出端口b6所连接的辐射单元阵列所发出的信号。类似的,电桥53会将输入端口接收到的信号的所有功率分别分配至输出端口b7和b8,而无法将接收到的信号的所有功率分配至输出端口b7所连接的辐射单元阵列所发出的信号。
当射频端口c1、射频端口c2、射频端口c3和射频端口c4所连接的辐射单元阵列中部分多个辐射单元阵列处于工作状态,比如辐射单元阵列41和辐射单元阵列42处于工作状态,辐射单元阵列123和辐射单元阵列122未处于工作状态,则图1B所示的系统架构中,射频端口c1、射频端口c2、射频端口c3和射频端口c4发出的信号的功率中部分功率可以分配于辐射单元阵列41和辐射单元阵列42,如此,会导致功率浪费。
基于上述内容,图2A示例性示出了本申请实施例提供的接入网设备的一种可能的结构示意图。图2A中所示的接入网设备可以为图1A中的接入网设备。如图2A所示,该接入网设备可以包括天线装置1、射频处理单元2,以及基带处理单元3。
如图2A所示,天线装置1可以包括多个辐射单元阵列11。图2A中示例性示出了三个辐射单元阵列11,分别为辐射单元阵列111、辐射单元阵列112和辐射单元阵列113。
值得说明的是,本申请实施例中一个辐射单元阵列11可以包括一个或多个辐射单元。辐射单元阵列11的划分方式不做限制。例如,一个安装面的多个辐射单元矩阵排布,一列辐射单元为一个辐射单元阵列11。再例如,相邻的两列的辐射单元为一个辐射单元阵列11。再例如,若干行若干列的小矩阵对应的辐射单元为一个辐射单元阵列11。两个辐射单元阵列中的辐射单元的数量可以相同或不同;两个辐射单元阵列的尺寸可以相同或者不同,本申请实施例对此不做限制。辐射单元阵列11中的辐射单元也可以称为天线振子、振子等。
如图2A所示,本申请实施例中天线装置1可以包括多个安装面12。本申请实施例中的安装面12用于安装多个辐射单元阵列11。图2A中示例性示出了两个安装面12,分别为安装面121和安装面122。辐射单元阵列111和辐射单元阵列112设于安装面121,辐射单元阵列113设于安装面122。安装面121和安装面122在背离辐射单元阵列111的一侧的夹角的角度小于180°。图2A中将安装面121和安装面122在背离辐射单元阵列111的一侧的夹角标识为α。图2A中以α为90度为例进行示意,实际应用中该夹角小于180度即可,比如还可以为75度、45度等。
值得说明的是,本申请实施例中安装于安装面12的辐射单元阵列11连接天线端口。实际应用中,天线端口与辐射单元阵列的连接方式灵活多变,本申请实施例不做限制,为了更容易理解本申请实施例提供的方案,在本申请实施例中将一个天线端口连接的辐射单元阵列称为一个辐射单元阵列。本申请实施例中的一个天线端口可以是指一个物理的天线端口,也可以是指一个逻辑的天线端口。其中,一个逻 辑的天线端口可以包括一个或多个物理的天线端口。当天线装置1包括多个安装面的情况下,相比包括一个安装面的天线装置,该多个安装面中的每个安装面均部署有辐射单元阵列,可以引入更多的辐射单元阵列,每个安装面都可以发射电磁信号,可以等效扩大天线口径,扩大天线装置1的天面的面积,进而可以在不增加风载和安装空间的情况下提升天线装置1的覆盖范围。本申请实施例中天面可以称为天线口面或者天线阵面等,具体可以指天线装置1的辐射单元覆盖的区域。
如图2A所示,本申请实施例中天线装置包括电路单元13。电路单元13包括至少3个电桥。图2A中以电路单元13包括电桥131、电桥132和电桥133为例进行示意。电路单元13一端可以与天线端口连接,另一端可以与射频处理单元2上的射频端口21连接。图2A中示例性示出了4个射频端口,分别为射频端口r1、射频端口r2、射频端口r3和射频端口r4。
值得说明的是,本申请实施例中提到的电桥(比如第一电桥、第二电桥、第三电桥、电桥131、电桥132和电桥133等)也可以称为其它名称,比如可以称为耦合器。本申请实施例中提到的电桥(比如第一电桥、第二电桥、第三电桥、电桥131、电桥132和电桥133等)也可以是其它可以实现本申请实施例中电桥功能的器件,本申请实施例不做限制,为了容易理解,本申请实施例中以该电桥为例进行介绍。
如图2A所示,电桥131包括输入端口p1和输入端口p2,其中,输入端口p1和射频端口r1连接,输入端口p2与射频端口r2连接。电桥131的输出端包括两个端口,分别为输出端口s1和输出端口s2,其中,输出端口s1连接N1个辐射单元阵列,N1为正整数,图2A中以N1为1进行示例,输出端口s1连接辐射单元阵列111(或者称输出端口s1连接辐射单元阵列111所连接的天线端口),输出端口s2连接电桥133的输入端口p6。本申请实施例中一个设备的输入端口也可以称为输入端的端口,一个设备的输出端口也可以称为输出端的端口。
电桥131的输入端口p1可以接收来自射频端口r1的信号,电桥131的输入端口p2可以接收来自射频端口r2的信号。输入端口p1和输入端口p2接收到的信号的功率可以集中于电桥131的一个输出端口(输出端口s1或输出端口s2)输出的信号上。当输入端口p1和输入端口p2接收到的信号的功率集中于的输出端口s1输出的信号上,即,输入端口p1和输入端口p2接收到的信号的功率可以集中于输出端口s1连接的辐射单元阵列111所发出的信号上。当输入端口p1和输入端口p2接收到的信号的功率集中于的输出端口s2输出的信号上,即,输入端口p1和输入端口p2接收到的信号的功率可以集中于输出端口s2连接的电桥133的输入端口p6所接收到的信号上。
举个例子,电桥131为90度电桥,且电桥131的功率比为1:1。则当来自射频端口r1和射频端口r2的信号相位相差90度且幅度相等(功率比为1:1),则输入端口p1和输入端口p2接收到的信号的功率可以集中于电桥131的一个输出端口(输出端口s1或输出端口s2)输出的信号上。比如,射频端口r1发出的信号的相位相对于射频端口r2发出的信号的相位滞后90度,且射频端口r1发出的信号与射频端口r2发出的信号幅度相等,则射频端口r1发出的信号和射频端口r2发出的信号的功率集中于输出端口s1输出的信号上。再比如,射频端口r2发出的信号的相位相对于射频端口r1发出的信号的相位滞后90度,且射频端口r1发出的信号与射频端口r2发出的信号幅度相等,则射频端口r1发出的信号和射频端口r2发出的信号的功率集中于输出端口s2输出的信号上。
值得说明的是,在一种可能的示例中,本申请实施例中的电桥的两个输入端口接收到的信号的相位相差90度且幅度相等的情况下,电桥的两个输入端口接收到的信号的功率可以集中于电桥的一个输出端口所发出的信号上。随着技术的发展,电桥的功能或参数可能发生变更,电桥的两个输入端口接收到的信号的功率可以集中于电桥的一个输出端口的条件也有可能会发生变动,比如可能变动为“两个输入端口接收到的信号的相位相差180度且幅度相等”等,本申请实施例对此不做限定。
如图2A所示,电桥132包括输入端口p3和输入端口p4,其中,输入端口p3与射频端口r3连接,输入端口p4和射频端口r4连接。电桥132的输出端包括两个端口,分别为输出端口s3和输出端口s4,其中,输出端口s3连接电桥133的输入端口p5,输出端口s4连接N2个辐射单元阵列,N2为正整数,图2A中以N2为1进行示例,输出端口s4连接辐射单元阵列112(或者称输出端口s4连接辐射单元阵列112所连接的天线端口)。
电桥132的输入端口p4可以接收来自射频端口r4的信号,电桥132的输入端口p3可以接收来自 射频端口r3的信号。输入端口p4和输入端口p3接收到的信号的功率可以集中于电桥132的一个输出端口(输出端口s4或输出端口s3)输出的信号上。当输入端口p4和输入端口p3接收到的信号的功率集中于的输出端口s4输出的信号上,即,输入端口p4和输入端口p3接收到的信号的功率可以集中于输出端口s4连接的辐射单元阵列112所发出的信号上。当输入端口p4和输入端口p3接收到的信号的功率集中于的输出端口s3输出的信号上,即,输入端口p4和输入端口p3接收到的信号的功率可以集中于输出端口s3连接的电桥133的输入端口p5所接收到的信号上。
举个例子,电桥132为90度电桥,则当来自射频端口r4和射频端口r3的信号相位相差90度且幅度相等,则输入端口p4和输入端口p3接收到的信号的功率可以集中于电桥132的一个输出端口(输出端口s4或输出端口s3)输出的信号上。比如可以通过控制射频端口r3发出的信号相对于射频端口r4发出的信号的相位差来控制输入端口p4和输入端口p3接收到的信号的功率集中于电桥132的哪个输出端口(输出端口s4还是输出端口s3)输出的信号。具体示例可以参见前述电桥131的相关描述,在此不再赘述。
请继续参阅图2A,电桥133的输入端口p6可以接收电桥131的输出端口s2输出的信号,电桥133的输入端口p5可以接收电桥132的输出端口s3输出的信号。输出端口s5连接N3个辐射单元阵列,N3为正整数,图2A中以N3为1进行示例,输出端口s5连接辐射单元阵列113(或者称输出端口s5连接辐射单元阵列113所连接的天线端口)。
当来自输出端口s2和输出端口s3的信号满足一定的条件(比如来自输出端口s2和输出端口s3的信号相位相差90度且幅度相等),输出端口s2和输出端口s3接收到的信号的功率可以集中于电桥133的一个输出端口(比如图2A中示出的输出端口s5)输出的信号上。当输出端口s2和输出端口s3接收到的信号的功率集中于的输出端口s5输出的信号上,即,输出端口s2和输出端口s3接收到的信号的功率可以集中于输出端口s5连接的辐射单元阵列113所发出的信号上。
举个例子,电桥131为90度电桥,来自射频端口r1和射频端口r2的信号相位相差90度且幅度相等,则输入端口p1和输入端口p2接收到的信号的功率可以集中于电桥131的输出端口s2输出的信号上。
电桥132为90度电桥,当来自射频端口r4和射频端口r3的信号相位相差90度且幅度相等,则输入端口p4和输入端口p3接收到的信号的功率可以集中于电桥132的输出端口s3输出的信号上。
电桥133为90度电桥,来自输出端口s2和输出端口s3的信号相位相差90度且幅度相等,则输入端口p6和输入端口p5接收到的信号的功率可以集中于电桥133的一个输出端口(比如输出端口s5)输出的信号上。比如可以通过控制输出端口s2发出的信号相对于输出端口s3发出的信号的相位差来控制输入端口p6和输入端口p5接收到的信号的功率集中于电桥133哪个输出端口(输出端口s6还是输出端口s5)输出的信号,具体示例可以参见前述电桥131的相关描述,在此不再赘述。
值得说明的是,图2A中以电桥133的输出端包括一个输出端口s5为例进行示意,实际应用中,电桥133的输出端还可以包括多个端口,本申请实施例不做限制。
本申请实施例中,如有某一个电桥的一个输出端口不与天线、电桥或功分器等器件相连,为避免电路烧坏等原因,本申请实施例可以提供一种电路保护措施,比如使该级电桥未连接天线、电桥或功分器等器件的输出端口连接负载。
本申请实施例中电桥(第一电桥、第二电桥或第三电桥)的参数可以根据需求灵活配置,比如可以为90度电桥或180度电桥等。本申请实施例中以电桥(第一电桥、第二电桥或第三电桥)为90度电桥举例。
本申请实施例中电桥的输入端口数量和输出端口数量也可以灵活设置,本申请实施例中以电桥包括两个输入端口和两个输出端口为例进行介绍,在实际应用中,也可以根据实际场景灵活设置。比如电桥也可能包括三个或更多个输入端口,如此电桥可以接收来自更多射频端口的信号。
举个例子,比如图2A中电桥131可以包括三个输入端口,三个输入端口分别连接三个射频端口。该电桥131包括三个输出端口,电桥131的三个输出端口可以分别连接三个安装面上的辐射单元阵列。电桥131可以将三个输入端口接收到的信号的功率分配于一个输出端口。如此,当一个安装面处于工作状态的情况下,电桥131可以将三个输入端口接收到的信号的功率集中至与处于工作状态的安装面上的 辐射单元阵列连接的输出端口,从而可以通过电桥131到达减少功率浪费的效果。
本申请实施例中电桥的功率比可以根据需求灵活设置,比如可以设置为2:1或1:1。本申请实施例中以电桥的功率比为1:1为例进行介绍。本申请实施例中的电桥的功率比为1:1可以理解为:电桥的一个输入端口输入的信号在两个输出端口所输出的信号的功率比为1:1。若电桥为90度电桥,这种情况下,当电桥的两个输入端口所输入的信号的功率比为1:1,且该两个输入端口所输入的信号的相位相差90度,则电桥的两个输入端口所输入的信号的功率可以集中于一个射频端口所输出的信号。如此,可以减轻功率浪费的情况。
类似的,当电桥的功率比为2:1,则若电桥为90度电桥,这种情况下,当电桥的两个输入端口所输入的信号的功率比为2:1,且该两个输入端口所输入的信号的相位相差90度,则电桥的两个输入端口所输入的信号的功率可以集中于一个射频端口所输出的信号。如此,可以减少功率浪费。
一种可能的实施方式中,由于电桥的多个输入端口连接的多个功率放大器自身所能支持的输出功率可能是相等的,因此当电桥的功率比为1:1,则多个输入端口连接的多个功率放大器可以均以自身所支持的输出功率发射信号,如此可以满足电桥的两个输入信号的功率比为1:1,从而可以减少功率浪费。另一方面,多个功率放大器均以自身所能支持的输出功率发射信号,可以减轻功率发不满的情况。
通过上述内容可以看出,由于第一射频端口、第二射频端口、第三射频端口和第四射频端口可以通过第一电桥单元连接N1个辐射单元阵列、N2个辐射单元阵列以及N3个辐射单元阵列,因此辐射单元阵列之间可以实现功率共享,且可以根据需求调节各个阵列的功率。
进一步,输入端口p1和输入端口p2接收到的信号的功率可以集中于电桥131的输出端口s1输出的信号上,即输入端口p1和输入端口p2接收到的信号的功率可以集中于输出端口s1连接的辐射单元阵列111所发出的信号上。比如,一种可能的示例中,输入端口p1和输入端口p2接收到的信号的功率可以全部集中于输出端口s1连接的辐射单元阵列111所发出的信号上。
又由于输入端口p4和输入端口p3接收到的信号的功率可以集中于电桥132的输出端口s4输出的信号上,即,输入端口p4和输入端口p3接收到的信号的功率可以集中于输出端口s4连接的辐射单元阵列112所发出的信号上。比如,一种可能的示例中,输入端口p4和输入端口p3接收到的信号的功率可以全部集中于输出端口s4连接的辐射单元阵列112所发出的信号上。
因此,在天线装置1的安装面121上部署的辐射单元阵列(比如辐射单元阵列111和辐射单元阵列112)处于工作状态,而天线装置1的安装面122上部署的辐射单元阵列(比如辐射单元阵列113)未处于工作状态的情况下,射频端口r1和射频端口r2发出的信号的功率可以集中于安装面121上部署的辐射单元阵列111,射频端口r3和射频端口r4发出的信号的功率可以集中于安装面121上部署的辐射单元阵列112,从而可以提高功率利用率,减少功率浪费。
在一种可能的实施方式中,N2个辐射单元阵列中的每个辐射单元阵列与N1个辐射单元阵列中的每个辐射单元阵列不同。在天线装置1的安装面121上部署的辐射单元阵列(比如辐射单元阵列111和辐射单元阵列112)处于工作状态,而天线装置1的安装面122上部署的辐射单元阵列(比如辐射单元阵列113)未处于工作状态的情况下,射频端口r1和射频端口r2构成的逻辑端口与射频端口r3和射频端口r4构成的逻辑端口之间在模拟电路上可以互不干扰,也就是说,基于辐射单元阵列111的需求去设置射频端口r1和射频端口r2发出的信号的功率和相位。基于辐射单元阵列112的需求去设置射频端口r3和射频端口r4发出的信号的功率和相位。因此射频处理单元2的射频前端的射频端口连接的功率放大器(比如射频端口r1连接的功率放大器、射频端口r2连接的功率放大器、射频端口r3连接的功率放大器和射频端口r4连接的功率放大器等)可以以自身支持的输出功率发送信号,从而可以避免射频端口连接的功率放大器无法以自身支持的输出功率发送信号的问题,从而可以减少功率超发问题导致的功率浪费。射频端口连接的功率放大器无法以自身支持的输出功率发送信号也可以称为功率超发,可以看出,本申请实施例提供的方案可以避免功率放大器的功率超发问题。
进一步,由于本申请实施例提供的方案可以解决功率放大器的功率超发问题,即射频端口连接的功率放大器可以以自身支持的输出功率发送信号,相比射频端口连接的功率放大器无法以自身支持的输出功率发送信号的方案,本申请实施例提供的方案可以使终端设备接收到的信号电平增加幅度,进而提升天线装置的覆盖性能。
又一方面,由于输入端口p1和输入端口p2接收到的信号的功率可以集中于电桥131的输出端口 s2输出的信号上。又由于输入端口p4和输入端口p3接收到的信号的功率可以集中于电桥132的输出端口s3输出的信号上。输出端口s2和输出端口s3接收到的信号的功率可以集中于电桥133的输出端口s5输出的信号上。
因此,在天线装置1的安装面121上部署的辐射单元阵列(比如辐射单元阵列111和辐射单元阵列112)未处于工作状态,而天线装置1的安装面122上部署的辐射单元阵列(比如辐射单元阵列113)处于工作状态,这种情况下,射频端口r1、射频端口r2、射频端口r3和射频端口r4发出的信号的功率可以集中于安装面122上部署的辐射单元阵列113,从而可以提高功率利用率,减少功率浪费。
另外,如图2A所示,本申请实施例中射频端口r1、射频端口r2、射频端口r3和射频端口r4发出的信号的功率也可以根据需求在辐射阵列111、辐射单元阵列112和辐射单元阵列113之间进行分配。本申请实施例中的电路单元的结构较为简单,复杂度较低。
本申请实施例提供的接入网设备也可以包括其他器件,比如还可以包括图2A中所示的射频处理单元2和基带处理单元。图2A中以射频处理单元2与基带处理单元3连接为例进行示意。射频处理单元2可用于对通过辐射单元阵列11接收到的信号进行选频、放大以及下变频处理,并将其转换成中频信号或基带信号发送给基带处理单元3。或者射频处理单元2用于将基带处理单元3发出的中频信号或基带信号经过上变频以及放大处理通过辐射单元阵列11发送。
在一些实施方式中,射频处理单元2又可称为射频拉远单元(remote radio unit,RRU),或者,还可能是有源天线单元(active antenna unit,AAU)中的射频模块。基带处理单元3又可称为基带单元(base band unit,BBU)。本申请实施例中的天线装置可以为无源天线。本申请实施例中的天线装置可以进行抱杆安装。比如天线装置的背面抱杆,正面为辐射单元阵列。接入网设备通过天线进行电磁辐射以发射信号。接入网设备中的RRU可以抱杆安装,也可以在抱杆下安装。
值得说明的是,图2A中示例性示出了一个安装面上包括的辐射单元中的数量,在实际应用中,可以在水平和/或垂直等维度扩展天线端口的数量,本申请实施例不做限制。
本申请实施例中涉及到的第一安装面和第二安装面可以为两个不同的安装面,比如第一安装面可为安装面121,第二安装面可以为安装面122,N1个辐射单元阵列可以包括辐射单元阵列111。N2个辐射单元阵列可以包括辐射单元阵列112。N3个辐射单元阵列可以包括辐射单元阵列113。本申请实施例中的第一夹角可以为图2A中标识为α的夹角。
本申请实施例中涉及到的第一电桥可以为电桥131,第一电桥的第一输入端口可以为电桥131的输入端口p1,第一电桥的第二输入端口可以为电桥131的输入端口p2,第一电桥的第一输出端口可以为电桥131的输出端口s1,第一电桥的第二输出端口可以为电桥131的输出端口s2。
本申请实施例中涉及到的第二电桥可以为电桥132,第二电桥的第三输入端口可以为电桥132的输入端口p3,第二电桥的第四输入端口可以为电桥132的输入端口p4,第二电桥的第三输出端口可以为电桥132的输出端口s4,第二电桥的第四输出端口可以为电桥132的输出端口s3。
本申请实施例中涉及到的第三电桥可以为电桥133,第三电桥的第五输入端口可以为电桥133的输入端口p6,第三电桥的第六输入端口可以为电桥133的输入端口p5,第三电桥的第五输出端口可以为电桥133的输出端口s5。
第一射频端口可以为射频端口r1,第二射频端口可以为射频端口r2,第三射频端口可以为射频端口r3,第四射频端口可以为射频端口r4。
本申请实施例中将安装有N1个辐射单元阵列和N2个辐射单元阵列的安装面称为第一安装面,将安装有N3个辐射单元阵列的安装面称为第二安装面。第一安装面和第二安装面并非位于同一平面,而是位于呈第一夹角的两个不同的安装面,在风载一定的情况下,本申请实施例可以设置数量更多的辐射单元阵列,从而可以提升天线装置的覆盖范围,提升天线装置的性能。
本申请实施例中第一安装面可以是一个面(平面或曲面),或多个面(平面或曲面)组合而成。比如第一安装面包括两个面,其中一个面(平面或曲面)上设置N1个辐射单元阵列,另一个面(平面或曲面)上设置N2个辐射单元阵列,该两个平面之间可以存在一定的夹角。在其他可能的示例中,N1个辐射单元阵列也有可能被部署于多个面,N2个辐射单元阵列也有可能被部署于一个或多个面。类似的,第二安装面可以是一个面(平面或曲面),或多个面(平面或曲面)组合而成,N3个辐射单元阵列设置于第二安装面所包括的一个或多个面(平面或曲面)。
基于图2A示出的接入网设备以及上述其他内容,图2B为本申请实施例中天线装置1中的部分部件的一种可能的结构示意图。如图2B所示,上述第一安装面121位于一个的安装板上,第二安装面122处于另一个安装板上,该两个安装板可以通过焊接、螺纹连接或者一体成型等方式进行连接。
在一种可能的实施方式中,设置第一安装面121的安装板可以包括反射板,比如在设置第一安装面121的安装板上涂布制备反射板,或设置第一安装面121的安装板本身就是反射板。具体可以使设置第一安装面121的安装板为金属(比如铝)材质,以便设置第一安装面121的安装板作为反射板。在又一种可能的实施方式中,设置第二安装面122的安装板可以包括反射板,比如在设置第二安装面122的安装板上涂布制备反射板,或设置第二安装面122的安装板本身就是反射板。具体可以使设置第二安装面122的安装板为金属(比如铝)材质,以便设置第二安装面122的安装板作为反射板。天线装置1发送信号时,反射板可以把天线信号反射到目标覆盖区域。天线接收信号时,反射板可以将射至反射板的信号反射至天线装置中的辐射单元阵列,以便辐射单元阵列接收信号。反射板也可以称为底板、天线面板或者反射面等。
基于图2A和图2B示出的实施例以及其他内容,图2C示例性示出了接入网设备的另一种可能的结构示意图。与图2A的区别是:图2C所示的接入网设备中的天线装置1还包括安装面123,安装面123上还部署辐射单元阵列114。辐射单元阵列114与电桥133的输出端口s6连接。安装面123和安装面122位于安装面121的相对的两侧。
输出端口s2和输出端口s3接收到的信号的功率可以集中于电桥133的一个输出端口(比如图2A中示出的输出端口s5或输出端口s6)输出的信号上。当输出端口s2和输出端口s3接收到的信号的功率集中于的输出端口s6输出的信号上,即,输出端口s2和输出端口s3接收到的信号的功率可以集中于输出端口s6连接的辐射单元阵列114所发出的信号上。
举个例子,电桥131为90度电桥,来自射频端口r1和射频端口r2的信号相位相差90度且幅度相等,则输入端口p1和输入端口p2接收到的信号的功率可以集中于电桥131的输出端口s2输出的信号上。
电桥132为90度电桥,当来自射频端口r4和射频端口r3的信号相位相差90度且幅度相等,则输入端口p4和输入端口p3接收到的信号的功率可以集中于电桥132的输出端口s3输出的信号上。
电桥133为90度电桥,来自输出端口s2和输出端口s3的信号相位相差90度且幅度相等,则输入端口p6和输入端口p5接收到的信号的功率可以集中于电桥133的一个输出端口(比如输出端口s6)输出的信号上。
通过上述内容可以看出,当安装面123上的辐射单元阵列114处于工作状态,其余安装面上的辐射单元阵列,比如辐射单元阵列111、辐射单元阵列112和辐射单元阵列113未处于工作状态,则射频端口r1、射频端口r2、射频端口r3和射频端口r4发出的信号的功率可以集中于安装面123上部署的辐射单元阵列114(比如,一种可能的示例中,射频端口r1、射频端口r2、射频端口r3和射频端口r4发出的信号的功率可以全部集中于安装面123上部署的辐射单元阵列114)。通过图2C所示的天线装置1可以实现360度的覆盖范围,也就是说,由于一个天线装置包括多个安装面,而不同安装面覆盖不同区域,因此一个天线装置可实现360度无死角覆盖,也可以理解为一个天线装置1即可实现较多的小区覆盖,且其中一个小区的辐射单元阵列未处于工作状态,其它小区的辐射单元阵列不受影响,可以继续工作。
值得说明的是,本申请实施例中涉及到的第三安装面可为安装面123,N4个辐射单元阵列可以包括辐射单元阵列114。第三安装面和第二安装面位于第一安装面相对的两侧。本申请实施例中第一安装面和第三安装面在背离N1个辐射单元阵列的一侧的夹角为第二夹角,第二夹角可以与第一夹角相等,也可以不相等,本申请实施例不做限制。第二夹角小于180度。本申请实施例中涉及到的第三电桥可以为电桥133,第三电桥的第六输出端口可以为电桥133的输出端口s6。
本申请实施例中将安装有N4个辐射单元阵列的安装面称为第三安装面。在一种可能的实施方式中,第一安装面和第三安装面并非位于同一平面,而是位于呈一个夹角的两个不同的安装面,该夹角可以与前述第一夹角相等,也可以不相等。在风载一定的情况下,本申请实施例可以设置数量更多的辐射单元阵列,从而可以提升天线装置的覆盖范围,提升天线装置的性能。
本申请实施例中第三安装面可以是一个面(平面或曲面),或多个面(平面或曲面)组合而成,N4 个辐射单元阵列设置于第三安装面所包括的一个或多个面(平面或曲面)。
基于图2C示出的接入网设备以及上述其他内容,图2D为本申请实施例中天线装置1中的部分部件的一种可能的结构示意图。如图2D所示,上述第一安装面121位于一个的安装板上,第二安装面122处于另一个安装板上,第三安装面123处于另一个安装板上,设置第三安装面123的安装板与设置第一安装面121的安装板可以通过焊接、螺纹连接或者一体成型等方式进行连接。如图2D所示,一种可能的实施方式中,设置第三安装面123的安装板与设置第二安装面122的安装板可以位于设置第一安装面121的安装板的相对的两侧。
在一种可能的实施方式中,设置第三安装面123的安装板可以包括反射板,比如在设置第三安装面123的安装板上涂布制备反射板,或设置第三安装面123的安装板本身就是反射板。具体可以使设置第三安装面123的安装板为金属(比如铝)材质,以便设置第三安装面123的安装板作为反射板。天线装置1发送信号时,反射板可以把天线信号反射到目标覆盖区域。天线接收信号时,反射板可以将射至反射板的信号反射至天线装置中的辐射单元阵列,以便辐射单元阵列接收信号。反射板也可以称为底板、天线面板或者反射面等。
本申请实施例提供的天线装置1的电路单元中还可以设置有微带线,微带线可以用于将电路单元的各个出接口的相位对齐。举个例子,天线装置还包括第一微带线,第一电桥通过第一微带线与N1个辐射单元阵列连接。第一微带线可以用于将接收到的信号的相位进行调整,如此可以提高天线装置在实际应用场景中的可调整性。
在一种可能的实施方式中,第一微带线用于将第一电桥的第一输出端口输出的信号的相位延迟第一预设值。比如,第一预设值可以是根据第一电桥的第一输出端口输出的信号的相位与N3个辐射单元阵列接收到的信号的相位之间的相位差确定的。
比如,在第一电桥的第二输出端口通过第三电桥连接辐射单元阵列的情况下,由于第三电桥输出的信号的相位相比第一电桥输出的信号的相位偏转90度,因此第一微带线可以用于将第一电桥的第一输出端口输出的信号的相位延迟90度(即第一预设值为90度)。再举个例子,若与第三电桥连接的N3个辐射单元阵列接收到的信号的相位相比第一电桥输出的信号的相位偏转180度,则第一预设值可以为180度。如此,第一微带线调整后的信号的相位可以与第三电桥的输出端口输出的信号的相位对齐,进一步,第一微带线连接的辐射单元阵列接收到的信号的相位可以与连接第一电桥的第二输出端口的辐射单元阵列接收到的信号的相位可以对齐,继而可以通过辐射单元阵列输出相位对齐后的信号,进而可以提升信号强度。
再举个例子,天线装置还包括第二微带线,第二电桥通过第二微带线与N2个辐射单元阵列连接。第二微带线可以用于将接收到的信号的相位进行调整,如此可以提高天线装置在实际应用场景中的可调整性。
在一种可能的实施方式中,第二微带线用于将第二电桥的第三输出端口输出的信号的相位延迟第二预设角度。比如,第二预设角度可以是根据第二电桥的第三输出端口输出的信号的相位与N3个辐射单元阵列接收到的信号的相位之间的相位差确定的。
比如,在第二电桥的第四输出端口通过第三电桥连接辐射单元阵列的情况下,由于第三电桥输出的信号的相位相比第二电桥输出的信号的相位偏转90度,因此第二微带线可以用于将第二电桥的第三输出端口输出的信号的相位延迟90度(即第二预设角度为90度)。再举个例子,若与第三电桥连接的N3个辐射单元阵列接收到的信号的相位相比第二电桥输出的信号的相位偏转180度,则第二预设角度可以为180度。如此,第二微带线调整后的信号的相位可以与第三电桥的输出端口输出的信号的相位对齐,连接第二微带线的辐射单元阵列接收到的信号的相位与连接第二电桥的第四输出端口的辐射单元阵列接收到的信号的相位可以对齐,继而可以通过辐射单元阵列输出相位对齐后的信号,进而可以提升信号强度。
基于图2A、图2B、图2C和图2D示出的接入网设备以及其他内容,图2E示例性示出了接入网设备另一种可能的结构示意图。图2E所示的接入网设备结构可以视为图2C所示的实施例的扩展实施例。与图2C的区别是:图2E所示的接入网设备中的电路单元13中包括微带线134和微带线135。微带线134可以用于调整输出端口s4输出的信号的相位。微带线135可以用于调整输出端口s1输出的信号的相位。在实际应用中,电路单元13的四个出接口(连接输出端口s1的出接口、连接输出端口s5的出 接口、连接输出端口s6的出接口和连接输出端口s4的出接口)输出的信号的相位可以是对齐的,由于连接输出端口s5的出接口和连接输出端口s6的出接口还连接电桥133,因此输出端口s1和输出端口s4分别额外连接一段微带线,由于电桥133输出的信号的相位相比输出端口s1(或输出端口s4)输出的信号的相位偏转90度,因此该微带线可以是将相位延迟90度的微带线,以便使该四个接口输出的信号的相位对齐,继而可以通过辐射单元阵列输出相位对齐后的信号,进而可以提升信号强度。
微带线134可以是传输线或同轴线等可实现相同效果的其他连接线。微带线134是将相位延迟第一预设值的微带线,该第一预设值比如可以为上述90度,也可能为其他角度。微带线135可以是传输线或同轴线等可实现相同效果的其他连接线。微带线135是将相位延迟第二预设角度的微带线,该第二预设角度比如可以为上述90度,也可能为其他角度。比如,当天线装置的一个输出端口相对于另外一个输出端口输出的信号的相位偏转180度,则这种情况下,该输出端口可以连接用于将相位偏转180度的微带线。本申请实施例中涉及到的第一微带线可以为微带线135,第二微带线可以为微带线134。图2E所示的接入网设备是在图2C所示的接入网设备的架构上进行的改进,图2E所示的架构也可以在图2A所示的接入网设备的架构上进行改进,这种情况下,在图2A所示的接入网设备中,输出端口s1和输出端口s4与辐射单元阵列之间部署微带线,其余内容参考前述内容,不再赘述。
基于图2A、图2B、图2C、图2D和图2E所示实施例以及其他内容,图3A、图3B和图3C示例性示出了本申请实施例提供的天线装置1的几种可能的结构示意图。本申请实施例提供的天线装置1可以包括一个或多个电路单元13,图3A、图3B和图3C中以天线装置1可以包括多个电路单元13为例进行示意。
与图2C相比,图3A的区别之处在于:图3A所示的天线装置1中包括4个电路单元13。每个电路单元13中的电桥131的一个输出端口连接设于安装面121的N1个辐射单元阵列(图3A中以N1等于1为例进行示意),每个电路单元13中的电桥132的一个输出端口连接设于安装面121的N2个辐射单元阵列(图3A中以N2等于1为例进行示意),电路单元13的电桥133的一个输出端口连接设于安装面122的N3个辐射单元阵列(图3A中以N3等于1为例进行示意),电路单元13的电桥133的另一个输出端口连接设于安装面123的N4个辐射单元阵列(图3A中以N4等于1为例进行示意)。每个电路单元的与辐射单元阵列和射频端口的连接方式可以参见前述图2A和图2C中的相关描述,在此不再赘述。
从图3A可以看出,本申请实施例中每个电路单元连接4个射频端口。每个电路单元连接(N1+N2+N3+N4)个辐射单元阵列,值得说明的是,任意两个电路单元所连接的任意两个辐射单元阵列不同。也可以理解为一个辐射单元阵列连接一个电路单元中的一个电桥的一个输出端口,一个电桥的一个输出端口可以连接一个或多个辐射单元阵列。同一个安装面上的相邻的两个辐射单元阵列之间的间距可以根据实际情况设置,本申请实施例不做限制,比如,安装面上相邻的两个辐射单元阵列之间的间距可以为57毫米,这种情况下,安装面121的总长度可以设置为500毫米。该尺寸仅仅是一种举例,并不构成对本申请实施例的限制。
如图3A所示,在天线装置1的安装面121上部署的辐射单元阵列(比如安装面121上部署的8个辐射单元阵列)处于工作状态,而天线装置1的安装面122上部署的辐射单元阵列(比如安装面122上部署的4个辐射单元阵列)未处于工作状态,天线装置1的安装面123上部署的辐射单元阵列(比如安装面123上部署的4个辐射单元阵列)未处于工作状态,这种情况下,图3A所示的16个射频端口发出的信号的功率可以集中于安装面121上部署的8个辐射单元阵列上(比如,一种可能的示例中,图3A所示的16个射频端口发出的信号的功率可以全部集中于安装面121上部署的8个辐射单元阵列上),从而可以提高功率利用率,减少功率浪费。
与图3A相比,图3B的区别之处在于:图3B中以天线装置1包括三个电路单元13为例进行示意。其余内容与图3A中内容类似,不再赘述。
如图3B所示,在天线装置1的安装面121上部署的辐射单元阵列(比如安装面121上部署的6个辐射单元阵列)处于工作状态,而天线装置1的安装面122上部署的辐射单元阵列(比如安装面122上部署的3个辐射单元阵列)未处于工作状态,天线装置1的安装面123上部署的辐射单元阵列(比如安装面123上部署的3个辐射单元阵列)未处于工作状态,这种情况下,图3B所示的12个射频端口 发出的信号的功率可以集中于安装面121上部署的6个辐射单元阵列上,从而可以提高功率利用率,减少功率浪费。
与图3A相比,图3C的区别之处在于:图3C中还包括电桥901和电桥902,安装面123包括两个辐射单元阵列,安装面122上包括两个辐射单元阵列。电桥133的输出端口s5可以通过电桥901与辐射单元阵列113和辐射单元阵列114连接。电桥903的输出端口也可以通过电桥901与辐射单元阵列113和辐射单元阵列114连接。电桥904和电桥905的输出端口也可以通过电桥902与部署于安装面122和安装面123上的辐射单元阵列连接。其余内容与图3A中内容类似,不再赘述。
如图3C所示,电桥901的两个输入端口分别连接电桥133输出端口和电桥903输出端口。电桥901的两个输出端口分别连接安装面123和安装面122的两个辐射单元阵列。电桥902的两个输入端口分别连接电桥904输出端口和电桥905输出端口。电桥902的两个输出端口分别连接安装面123和安装面122的两个辐射单元阵列。
通过图3C可以看出,当天线装置中的一个侧安装面(安装面123或安装面122)处于工作状态,其余安装面未处于工作状态,则与处于工作状态的安装面上的辐射单元阵列连接的射频端口发出的信号的功率可以集中于该安装面上的辐射单元阵列,从而可以减少功率浪费。
举个例子,安装面123处于工作状态,安装面122和安装面121未处于工作状态,则射频端口r1和射频端口r2发出的信号的功率可以集中于输出端口s2发出的信号,进而进入电桥133中。类似的,射频端口r3和射频端口r4发出的信号的功率可以集中于电桥133的输入端口p5接收到的信号上。进一步,由于可以控制输入端口p6接收到的信号和输入端口p5接收到的信号满足一定的条件(比如电桥133为90度电桥,该两个信号振幅相等,相位相差90度)这种情况下,输入端口p6和输入端口p5接收到的信号的功率可以集中于输出端口s5发出的信号,继而进入电桥901。也就是说,射频端口r1、射频端口r2、射频端口r3和射频端口r4发出的信号的功率可以集中于电桥901的一个输入端口。类似的,另外一组电路单元所连接的4个射频端口(如图3C所示的电桥903所连接的4个射频端口)发出的信号的功率可以集中于电桥901的另一个输入端口。
又由于可以控制电桥901的两个输入端口收到的信号满足一定的条件(比如电桥901为90度电桥,该两个信号振幅相等,相位相差90度),因此可以电桥901两个输入端口收到的信号的功率可以集中于电桥901的一个输出端口。也就是说,通过图3A所示的天线装置,射频端口r1、射频端口r2、射频端口r3和射频端口r4以及电桥903所连接的4个射频端口发出的信号的功率可以集中于电桥901所连接的位于安装面123的辐射单元阵列上,从而可以减少功率浪费。
类似的,通过图3C所示的天线装置,电桥902所连接的八个射频端口发出的信号的功率可以集中于电桥902所连接的位于安装面123的辐射单元阵列上,从而可以减少功率浪费。
本申请实施例提到的第四电桥可以是图3C中的电桥901或电桥902。如图3C所示,辐射单元阵列通过电桥901(第四电桥)与两个电路单元连接的八个射频端口连接,如此,该辐射单元阵列114可以得到该辐射单元阵列114通过第四电桥所连接的所有射频端口(八个射频端口)发出的信号的功率,从而可以减少功率浪费,提高辐射单元阵列114发出的信号的功率。
图3C中以第四电桥连接两个电路单元所连接的所有射频端口为例进行示意,实际应用中,第四电桥还可以连接更多数量的电路单元所连接的所有射频端口。举个例子,第四电桥的一个输出端口连接安装面123的一个辐射单元阵列,第四电桥的另一个输出端口可以连接安装面122的一个辐射单元阵列。第四电桥的两个输入端口分别连接电桥一的输出端口,以及电桥二的输出端口,电桥一的输入端口连接一个电路单元连接的所有射频端口,电桥二的输入端口连接另外一个电路单元连接的所有射频端口,如此,第四电桥可以通过电桥一和电桥二连接该两个电路单元所连接的16个射频端口。
本申请实施例中,当一个电桥的一个输出端口(比如图3C中的电桥133的输出端口s6、电桥903的一个输出端口、电桥904的一个输出端口和电桥905的一个输出端口)不与天线、电桥或功分器等器件相连,为避免电路烧坏等原因,本申请实施例可以提供一种电路保护措施,比如使该级电桥未连接天线、电桥或功分器等器件的输出端口连接负载。
值得说明的是,图3A、图3B和图3C所示的接入网设备是在图2C所示的接入网设备的架构上进行的改进(图2C所示的接入网设备的天线装置包括三个安装面),图3A、图3B和图3C所示的架构也可以在图2A所示的接入网设备的架构上进行改进(图2A所示的接入网设备的天线装置包括两个安装 面),这种情况下,图3A、图3B和图3C所示的天线装置1所提供的方案也可以适用,比如图3A、图3B和图3C所示的天线装置1中不设置安装面123,以及安装于安装面123上的辐射单元阵列。其余内容与前述内容类似,不再赘述。
本申请实施例中当第三电桥为电桥133,第四电桥可以为电桥901,第四电桥的第七输入端口可以为电桥901上与电桥133的输出端口s5连接的端口,第四电桥的第八输入端口可以为电桥903上与电桥903输出端口连接的端口,第四电桥的第七输出端口可以为电桥901上与辐射单元阵列113连接的输出端口,第四电桥的第八输出端口可以为电桥901上与辐射单元阵列114连接的输出端口。
在图2A、图2B、图2C、图2D、图2E、图3A、图3B和图3C所示实施例以及其他内容的基础上,图4A和图4B示例性示出了本申请实施例提供的天线装置1的几种可能的架构示意图。如图4A和图4B所示,在安装面121还包括N5个辐射单元阵列,N5为1或为大于1的整数。本申请实施例中N5个辐射单元阵列与一个射频端口(为了区分,可以将该射频端口称为第五射频端口)连接。
如图4A所示。N5个辐射单元阵列可以包括图4A中的辐射单元阵列611,辐射单元阵列611连接一个射频端口r5,射频端口r5发出的信号的功率集中于辐射单元阵列611。类似的,辐射单元阵列612连接射频端口r6,射频端口r6发出的信号的功率集中于辐射单元阵列612。辐射单元阵列613连接射频端口r7,射频端口r7发出的信号的功率集中于辐射单元阵列613。辐射单元阵列614连接射频端口r8,射频端口r8发出的信号的功率集中于辐射单元阵列614。
如图4B所示,N5个辐射单元阵列可以包括图4B中的辐射单元阵列611和615,辐射单元阵列611和辐射单元阵列615均连接一个射频端口r5。当一个射频端口与多个辐射单元阵列连接的情况下,该射频端口可以通过功分器与该多个辐射单元阵列连接。进一步,该多个辐射单元阵列中至少一个辐射单元阵列通过移相器与该功分器连接。比如射频端口r5可以通过功分器621与辐射单元阵列611和辐射单元阵列615连接。辐射单元阵列611通过移相器622与功分器621连接。射频端口r5发出的信号的功率可以分配给辐射单元阵列611和辐射单元阵列615。
通过功分器可以在射频端口数量不增加的情况下,支持更多数量的辐射单元阵列,由于射频端口数量较少因此该方案可以降低成本,又由于可以增加辐射单元阵列的数量,因此可以提高天线装置性能。由于可以通过移相器调整辐射单元阵列发出的信号的相位,因此连接有移相器的个辐射单元阵列的波束赋型能力(也可以称为波束扫描能力)可以得到提升。
通过图4A和图4B所示的天线装置可以看出,当安装面121的辐射单元阵列较多的情况下,可以通过射频端口与天线端口一对一和/或一对多对应的方式设置,如此,可以节省射频链路的数量,而且当安装面121处于工作状态,而安装面123和安装面122未处于工作状态,则射频端口r5、射频端口r6、射频端口r7、射频端口r8、射频端口r1、射频端口r2、射频端口r3和射频端口r4发出的信号的功率集中于安装面121的辐射阵列中,从而可以提高安装面121上安装的辐射阵列发出的信号的功率。
值得说明的是,图4A所示的天线装置1还可以包括多个电路单元13,图4A中以天线装置1包括一个电路单元为例进行示意。另外,图4A中的电路单元13以图2C所示的电路单元13为例进行示意图,实际应用中,图4A中的电路单元13也可以为图2E所示的电路单元13。本申请实施例涉及到的第三功分器可以为功分器621,第三移相器可以为移相器622。
在一种可能的实施方式中,当射频端口数量等于辐射单元阵列总数量。电桥包括两个输入端口和两个输出端口。天线装置中直接与射频端口连接的电桥(该电桥可以称为第1级电桥)的数量标识为H(H为正整数),与射频端口之间直接连接的辐射单元阵列的数量标识为R(R为0或正整数),射频端口的总数量标识为N(N为正整数),则一种可能的实施方式中,N=R+2H。又一种可能的实施方式中,可以将正安装面(比如安装面121)中包括的射频端口的数量标识为K(K为正整数),则一种可能的实施方式中,K=R+H。或者,也可以写为数学约束公式:H=N-K,R=K-H。在一种可能的实施方式中,希望R的数量为0,这种情况下H=N/2,继而可以得到:K=N/2。也就说,第1级电桥的数量为N/2,即射频端口数量的一半。
天线装置1中与射频端口连接的电桥可以称为第1级电桥,与第1级电桥的输出端口连接的电桥可以称为第2级电桥,天线装置1的电路单元13中包括的第2级电桥的数量可以为第1级电桥的数量的一半。第2级电桥的两个输出端口可以分别与两个侧安装面(比如安装面123和安装面122)上的两个 辐射单元阵列连接。如有某一级电桥的一个输出端口不与天线、电桥或功分器等器件相连,为避免电路烧坏等原因,该级电桥未连接天线、电桥或功分器等器件的输出端口可以连接负载。
在图2A、图2B、图2C、图2D、图2E、图3A、图3B、图3C、图4A和图4B所示实施例以及其他内容的基础上,图5A和图5B示例性示出了本申请实施例提供的天线装置1的又几种可能的架构示意图。
图5A以对图2C所示的天线装置1进行改进为例进行示意,与图2C的区别之处在于,图5A中输出端口s1连接N1个辐射单元阵列,图5A中以N1为2进行示例,输出端口s1连接辐射单元阵列111和辐射单元阵列711。输出端口s4连接N2个辐射单元阵列,图5A中以N2为2进行示例,输出端口s4连接辐射单元阵列112和辐射单元阵列712。
如图5A所示,输出端口s1可以通过功分器811分出N1个端口,之后功分器811的N1个端口可以与N1个辐射单元阵列一一对应连接。具体来说,功分器811的N1个端口中的一个端口与N1个辐射单元阵列中的一个辐射单元阵列连接,N1个辐射单元阵列中的一个辐射单元阵列与功分器811的N1个端口中的一个端口连接。
通过功分器811的作用,可以将输出端口s1发出的信号的功率分配给功分器811连接的N1个辐射单元阵列。通过功分器可以在射频端口数量不增加的情况下,支持更多数量的辐射单元阵列,由于射频端口数量较少因此该方案可以降低成本,又由于可以增加辐射单元阵列的数量,因此可以提高天线装置性能。
又一种可能的实施方式中,天线装置1还包括可以包括一个或多个移相器。比如天线装置还包括第一移相器,第一电桥通过第一移相器与N1个辐射单元阵列中的辐射单元阵列连接。通过第一移相器可以对第一电桥输出的信号的相位进行更改,如此可以提高天线装置在实际应用场景中的可调整性。
再比如,天线装置还包括第二移相器,第二电桥通过第二移相器与N2个辐射单元阵列中的辐射单元阵列连接。通过第二移相器可以对第二电桥输出的信号的相位进行更改,如此可以提高天线装置在实际应用场景中的可调整性。
本申请实施例中,天线装置中的功分器可以和移相器结合使用。举个例子,如图5A所示,N1个辐射单元阵列中至少有一个辐射单元阵列与功分器811之间通过移相器连接,比如图5A中的辐射单元阵列111通过移相器821与功分器811之间连接。由于可以通过移相器调整辐射单元阵列发出的信号的相位,因此N1个辐射单元阵列的波束赋型能力(也可以称为波束扫描能力)可以得到提升。
类似的,如图5A所示,输出端口s4可以通过功分器812分出N2个端口,之后功分器812的N2个端口可以与N2个辐射单元阵列一一对应连接。具体来说,功分器812的N2个端口中的一个端口与N2个辐射单元阵列中的一个辐射单元阵列连接,N2个辐射单元阵列中的一个辐射单元阵列与功分器812的N2个端口中的一个端口连接。通过功分器812的作用,可以将输出端口s4发出的信号的功率分配给功分器812连接的N2个辐射单元阵列。又一种可能的实施方式中,N2个辐射单元阵列中至少有一个辐射单元阵列与功分器812之间通过移相器连接,比如图5A中的辐射单元阵列712通过移相器822与功分器812之间连接。
值得说明的是,本申请实施例提到的第一功分器可以为功分器811,第二功分器可以为功分器812,第一移相器可以为移相器821,第二移相器可以为移相器822。
与图5A相比,图5B中以天线装置1包括两个电路单元13为例进行示意,每个电路单元13的内容可以参见图5A中的描述,不再赘述。
值得说明的是,图5A和图5B所示的接入网设备是在图2C所示的接入网设备的架构上进行的改进(图2C所示的接入网设备的天线装置包括三个安装面),图5A和图5B所示的架构也可以在图2A所示的接入网设备的架构上进行改进(图2A所示的接入网设备的天线装置包括两个安装面),这种情况下图5A和图5B所示的天线装置1所提供的方案也可以适用,比如,图5A和图5B所示的天线装置1中可以不设置安装面123,以及安装于安装面123上的辐射单元阵列。其余内容与前述内容类似,不再赘述。
本申请实施例提供的天线装置1可以包括多个电路单元,多个电路中的每个电路单元可以为图5A中所示的电路单元13。另外,图5A和图5B所示的方案也可以与前述图2E、图3A、图3B、图4A或图4B所示的内容结合使用。比如,天线装置1可以包括多个电路单元,该多个电路单元中的至少一个 电路单元的结构形式可以为图5A中所示的电路单元13的结构形式,该多个电路单元中的至少一个电路单元的结构形式可以为图2C中所示的电路单元13的结构形式。再比如,天线装置1可以包括一个或多个电路单元,天线装置1中的一个电路单元为图5A或图2C所示的电路单元13,该天线装置1还可以包括图4A或图4B中所示的N5个辐射单元阵列,该N5个辐射单元阵列可以与一个射频端口连接。
一种可能的实施方式中,当射频端口数量小于辐射单元阵列总数量,这种情况下,可以引入功分器,天线装置中直接与射频端口连接的电桥(该电桥可以称为第1级电桥)的数量可以等于射频端口数量的一半。
天线装置中直接与射频端口连接的电桥的一个输出端口可以连接功分器或者可以直接连接辐射单元阵列所连接的天线端口。功分器输出端口数量可以不小于2,功分器的至少一个输出端口可以连接移相器(也可以称为可调移相器),移相器的输出端口可以直接连接辐射单元阵列所连接的天线端口。
天线装置中直接与射频端口连接的电桥可以称为第1级电桥,与第1级电桥的输出端口连接的电桥可以称为第2级电桥,天线装置1的电路单元13中包括的第2级电桥的数量可以为第1级电桥的数量的一半。第2级电桥的两个输出端口可以分别与两个侧安装面(比如安装面123和安装面122)上的两个辐射单元阵列连接。
基于上述内容,图6示例性示出了本申请实施例适用的一种通信系统的结构示意图,该通信系统中包括设置于抱杆上的三个天线装置,每个天线装置的结构都可以为上述天线装置1(天线装置1的结构形式参见前述图2C、图2D、图2E、图3A、图3B、图4A、图5A或图5B所示的实施例)。如图6所示,每个天线装置可以使一个安装面上的辐射单元阵列处于工作状态,其它安装面未处于工作状态(比如天线装置1的正安装面(安装面121)上的辐射单元阵列处于工作状态,两个侧安装面(安装面122和安装面123)上的辐射单元阵列未处于工作状态)),这种情况下,每个天线装置的处于工作状态的安装面上的辐射单元阵列可以分配到该辐射单元阵列所连接的射频端口上发出的信号的功率,从而可以提高功率利用率,减少功率浪费。
另一方面,当部署多个天线装置的情况下,该多个天线装置可以实现多扇区协作,当基站存在多个扇区,有些扇区用户较多,有些扇区用户较少,甚至没有用户,通过本申请实施例提供的方案可以将用户较少甚至没有用户的扇区功率发射到用户较多的扇区,以此提升用户较多的扇区的信号强度,进而可以提高用户感知速率和覆盖性能。
本申请实施例提供天线装置可以实现单站一天线一小区,一个小区3的辐射信号360°全覆盖,有利于降低通信系统的成本。本申请实施例提供天线装置可以实现单站一天线三小区,比如天线装置1包括三个安装面。每个安装面上设置的辐射单元阵列的辐射信号覆盖一个小区(一个小区比如为一个120°扇形区域),该方案有利于降低通信系统的成本。
除了上述几种组网形式以外,还可以使实现单站一天线一小区、单站一天线三小区、单站三天线六小区或者单站三天线九小区等组网形式。例如,三个天线中的每个天线装置1可以覆盖三个小区3,则可以实现单站三天线九小区的组网形式,本申请对此不作限制。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (17)

  1. 一种天线装置,其特征在于,包括第一安装面、第二安装面、多个辐射单元阵列和第一电路单元,所述第一电路单元包括第一电桥、第二电桥和第三电桥;
    所述第一电桥的第一输入端口与第一射频端口连接,所述第一电桥的第二输入端口与第二射频端口连接;所述第一电桥的第一输出端口与所述多个辐射单元阵列中设于所述第一安装面的N1个辐射单元阵列连接的天线端口连接,所述N1为正整数;所述第一电桥的第二输出端口与所述第三电桥的第五输入端口连接;
    所述第二电桥的第三输入端口与第三射频端口连接,所述第二电桥的第四输入端口与第四射频端口连接;所述第二电桥的第三输出端口与所述多个辐射单元阵列中设于所述第一安装面的N2个辐射单元阵列连接的天线端口连接,所述N2为正整数,所述N2个辐射单元阵列中的每个辐射单元阵列与所述N1个辐射单元阵列中的每个辐射单元阵列不同;所述第二电桥的第四输出端口与所述第三电桥的第六输入端口连接;
    所述第三电桥的第五输出端口与设于所述第二安装面的N3个辐射单元阵列连接的天线端口连接,所述N3为正整数,所述第一安装面和所述第二安装面在背离所述N1个辐射单元阵列的一侧的夹角为第一夹角,所述第一夹角的角度小于180°。
  2. 如权利要求1所述的天线装置,其特征在于,所述天线装置还包括第三安装面;
    所述第三电桥的第六输出端口与设于所述第三安装面的N4个辐射单元阵列连接的天线端口连接,所述N4为正整数。
  3. 如权利要求1或2所述的天线装置,其特征在于,所述天线装置还包括第四电桥,所述第三电桥通过所述第四电桥与所述N3个辐射单元阵列连接。
  4. 如权利要求3所述的天线装置,其特征在于,所述天线装置还包括第二电路单元,所述第四电桥的第八输入端口与所述第二电路单元的第九输出端口连接。
  5. 如权利要求3或4所述的天线装置,其特征在于,所述天线装置还包括第三安装面;
    所述第四电桥的第八输出端口与设于所述第三安装面的N4个辐射单元阵列连接的天线端口连接,所述N4为正整数。
  6. 如权利要求2-5任一项所述的天线装置,其特征在于,所述第三安装面和所述第二安装面位于所述第一安装面相对的两侧。
  7. 如权利要求1-6任一项所述的天线装置,其特征在于,所述天线装置还包括第一功分器,所述第一电桥通过所述第一功分器与所述N1个辐射单元阵列连接。
  8. 如权利要求1-7任一项所述的天线装置,其特征在于,所述天线装置还包括第一移相器,所述第一电桥通过所述第一移相器与所述N1个辐射单元阵列中的辐射单元阵列连接。
  9. 如权利要求1-8任一项所述的天线装置,其特征在于,所述天线装置还包括第一微带线,所述第一电桥通过所述第一微带线与所述N1个辐射单元阵列连接。
  10. 如权利要求9所述的天线装置,其特征在于,所述第一微带线用于将所述第一电桥的所述第一输出端口输出的信号的相位延迟第一预设值。
  11. 如权利要求10所述的天线装置,其特征在于,所述第一预设值是根据所述第一电桥的所述第一输出端口输出的信号的相位与所述N3个辐射单元阵列接收到的信号的相位之间的相位差确定的。
  12. 如权利要求1-11任一项所述的天线装置,其特征在于,所述天线装置还包括第二功分器,所述第二电桥通过所述第二功分器与所述N2个辐射单元阵列连接。
  13. 如权利要求1-12任一项所述的天线装置,其特征在于,所述天线装置还包括第二移相器,所述第二电桥通过所述第二移相器与所述N2个辐射单元阵列中的辐射单元阵列连接。
  14. 如权利要求1-13任一项所述的天线装置,其特征在于,所述天线装置还包括第二微带线,所述第二电桥通过所述第二微带线与所述N2个辐射单元阵列连接。
  15. 如权利要求14所述的天线装置,其特征在于,所述第二微带线用于将所述第二电桥的所述第三输出端口输出的信号的相位延迟第二预设角度。
  16. 如权利要求15所述的天线装置,其特征在于,所述第二预设角度是根据所述第二电桥的所述第三输出端口输出的信号的相位与所述N3个辐射单元阵列接收到的信号的相位之间的相位差确定的。
  17. 一种通信设备,其特征在于,包括如权利要求1~16任一项所述的天线装置。
PCT/CN2023/101701 2022-06-29 2023-06-21 一种天线装置和通信设备 WO2024001903A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210757634.6A CN117353053A (zh) 2022-06-29 2022-06-29 一种天线装置和通信设备
CN202210757634.6 2022-06-29

Publications (2)

Publication Number Publication Date
WO2024001903A1 true WO2024001903A1 (zh) 2024-01-04
WO2024001903A9 WO2024001903A9 (zh) 2024-02-22

Family

ID=89361947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101701 WO2024001903A1 (zh) 2022-06-29 2023-06-21 一种天线装置和通信设备

Country Status (2)

Country Link
CN (1) CN117353053A (zh)
WO (1) WO2024001903A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1921341A (zh) * 2006-09-12 2007-02-28 京信通信技术(广州)有限公司 具有可变波束宽度的波束形成网络
CN102812645A (zh) * 2012-04-20 2012-12-05 华为技术有限公司 天线、基站及波束处理方法
CN205911443U (zh) * 2016-06-14 2017-01-25 摩比天线技术(深圳)有限公司 巴特勒矩阵网络及多波束天线
CN207098071U (zh) * 2017-07-21 2018-03-13 华南理工大学 一种多波束天线及其3X3Butler矩阵
WO2022120856A1 (zh) * 2020-12-11 2022-06-16 华为技术有限公司 一种基站天线及基站设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1921341A (zh) * 2006-09-12 2007-02-28 京信通信技术(广州)有限公司 具有可变波束宽度的波束形成网络
CN102812645A (zh) * 2012-04-20 2012-12-05 华为技术有限公司 天线、基站及波束处理方法
CN205911443U (zh) * 2016-06-14 2017-01-25 摩比天线技术(深圳)有限公司 巴特勒矩阵网络及多波束天线
CN207098071U (zh) * 2017-07-21 2018-03-13 华南理工大学 一种多波束天线及其3X3Butler矩阵
WO2022120856A1 (zh) * 2020-12-11 2022-06-16 华为技术有限公司 一种基站天线及基站设备

Also Published As

Publication number Publication date
WO2024001903A9 (zh) 2024-02-22
CN117353053A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
CN110391506B (zh) 一种天线系统、馈电网络重构方法及装置
CA2866294C (en) Antenna system
US11184066B2 (en) Communications apparatus, method and mobile communications system
WO2018001007A1 (zh) 一种用于5g系统的密集阵列天线
Black Holographic beam forming and MIMO
US5854611A (en) Power shared linear amplifier network
KR100746930B1 (ko) L자형 실내 안테나
ES2625877T3 (es) Dispositivo de red de alimentación, subsistema de alimentación de antenas y sistema de estación base
KR20160133450A (ko) 방사 벡터들의 가상 회전을 사용한 밀집된 안테나 어레이
CN103460508A (zh) 共形天线阵列
WO2012103831A9 (zh) 一种天线设备和系统
EP1995821B1 (en) Feed network device, antenna feeder subsystem, and base station system
WO2020020107A1 (zh) 一种基站天线、切换开关和基站设备
CN102306872B (zh) 电调天线对称多路功分移相器
WO2024001903A1 (zh) 一种天线装置和通信设备
WO2023088446A1 (zh) 一种天线及通信系统
US20200229003A1 (en) Access Point Device and Communication Method
US20230291099A1 (en) Antenna system
US20170149143A1 (en) A method, apparatus and system
WO2023051438A1 (zh) 一种天线单元、天线以及通信装置
US10986511B2 (en) Base station and operation method thereof and communication system
WO2024077500A1 (zh) 一种通信设备及基站
WO2024000212A1 (zh) 一种天线架构和提高天线增益的方法
WO2024032066A1 (zh) 一种天线系统
WO2022246773A1 (zh) 一种天线阵列、无线通信装置及通信终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830082

Country of ref document: EP

Kind code of ref document: A1