WO2020132752A1 - Modern plant for producing trioxides of antimony and arsenic, and metal lead - Google Patents

Modern plant for producing trioxides of antimony and arsenic, and metal lead Download PDF

Info

Publication number
WO2020132752A1
WO2020132752A1 PCT/CL2018/000045 CL2018000045W WO2020132752A1 WO 2020132752 A1 WO2020132752 A1 WO 2020132752A1 CL 2018000045 W CL2018000045 W CL 2018000045W WO 2020132752 A1 WO2020132752 A1 WO 2020132752A1
Authority
WO
WIPO (PCT)
Prior art keywords
antimony
lead
arsenic
phase
gases
Prior art date
Application number
PCT/CL2018/000045
Other languages
Spanish (es)
French (fr)
Inventor
Julio Domingo BUCHI GATICA
Original Assignee
Compañia Minera Pargo Minerals Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compañia Minera Pargo Minerals Spa filed Critical Compañia Minera Pargo Minerals Spa
Priority to PCT/CL2018/000045 priority Critical patent/WO2020132752A1/en
Publication of WO2020132752A1 publication Critical patent/WO2020132752A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • C22B1/04Blast roasting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/02Obtaining lead by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B30/00Obtaining antimony, arsenic or bismuth
    • C22B30/02Obtaining antimony
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B30/00Obtaining antimony, arsenic or bismuth
    • C22B30/04Obtaining arsenic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/08Dry methods smelting of sulfides or formation of mattes by sulfides; Roasting reaction methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/16Dry methods smelting of sulfides or formation of mattes with volatilisation or condensation of the metal being produced

Definitions

  • the present application considers a Plant for the Obtaining of Antimony Trioxide, Arsenic Trioxide and metallic Lead from a mineral, predominant in Antimonite or Stibine (Sb2S3) and of other sulfided minerals of Arsenic (As) and Lead (Pb) contained in the mineral, which chemically contain on average 30% Antimony, 4% Arsenic and 10% Lead.
  • the designed plant has a mineral treatment capacity to produce 300 t / month of Antimony Trioxide (Sb 2 0 3 ), 44 t / month of Arsenic Trioxide (AS2O3) and 89.7 t / month of Lead (Pb) metallic, considering a global metallurgical recovery of 90%, as well as being environmentally sustainable from the gaseous and solid waste generated point of view.
  • Sb 2 0 3 Antimony Trioxide
  • AS2O3 Arsenic Trioxide
  • Pb Lead
  • Antimony Trioxide from metallic sulphide minerals are based on the ease of oxidation between the elements present, arsenic, tin, antimony and lead, which decreases in the following order:
  • Antimony is partially oxidized as long as the concentrate or mineral contains arsenic and tin, and only when these two elements are oxidized, the oxidation of the antimony increases, while the oxidation of lead does not begin until all the antimony is oxidized.
  • Arsenic (As) and Tin (Sn) in the mineral rich in antimonite must be kept in mind before generating the complete oxidation of antimony (Sb).
  • Arsenic (As) its trioxide sublimes at 465 ° C, which facilitates its separation in melting or roasting pyrometallurgical processes. It should be borne in mind in the selection of the process for obtaining antimony trioxide (Sb) that the melting point of antimony (Sb) is 630 ° C and its trioxide
  • the need for air abundance is due to the fact that its oxidizing power decreases when mixed with the gaseous products of oxidation, reducing it by up to 50% of its value.
  • the roasting speed is accelerated, increasing the speed of release of the gaseous products and their replacement by pure air.
  • the speed and also the finish of the roasting are influenced by the size of the raw material.
  • the roasting speed has a maximum point, from the economic point of view, since when exceeding it, the losses of the material in the form of dust that carry the exhaust gases, do not compensate the increase in speed, since the recovery of these powders is expensive.
  • the factors that control roasting are: temperature and time.
  • the heat necessary to carry out the oxidative roasting is produced by the combustion of a fuel, either alone or mixed with the load, or using the heat caused by the exothermic reactions between the mineral and the oxygen in the air.
  • heating is carried out at high temperature with reducing reagents (coke) to originate a molten metal or an alloy or other product, but always in the state molten. (9.2. Pyrometallurgical extraction. Antimony Metallurgy Course, Antonio Ros Moreno, 2009).
  • Antimony trioxide is obtained from the antimonite mineral by roasting it in conventional ovens. Rotary roasting ovens are the most commonly used today. The antimonite beneficiation process mainly depends on the content of antimony and other minerals present.
  • the antimony trioxide is obtained by roasting the antimony sulfide, antimonite (Sb2S3), in conventional roasting ovens. Sulfur roasting is a Gas-Solid reaction process in a (special) furnace in which large amounts of air, sometimes enriched with oxygen, are brought into contact with the sulphide ore concentrates.
  • Antimony sulfide is oxidized to antimony (III) oxide (volatile in roasting) or to antimony (IV) oxide (nonvolatile).
  • Non-volatile antimony (IV) oxide Control of the furnace in the production of non-volatile antimony (IV) oxide is relatively simple, however the oxide does not separate from the residue, to the detriment of the trioxide obtaining efficiency.
  • Roasting has the advantage that S ⁇ 203 volatiles are selectively produced in 98% yield and separated from the gangue, which contains the precious metals in a recoverable form. However, it is difficult to control the oven and temperature.
  • the oxide forms between 290 and 340 ° C in an oxidizing atmosphere, and the reaction rate peaks at 500 ° C, at which antimony (IV) oxide begins to form.
  • the impurities that come to Present in the products are carried away by the gases of sulfur dioxide (SO2) or Antimony Trioxide (Sb 2 03), as the case may be.
  • SO2 sulfur dioxide
  • SB 2 03 Antimony Trioxide
  • antimony (IV) oxide forms:
  • antimony (IV) oxide can react with antimony (III) sulfide and fresh Cervantine, resulting in antimony (III) oxide when the reaction is gestated with low presence of Oxygen (0 2 )
  • the process should be designed so that antimony (III) oxide (Sb 2 0 3 ) is formed quickly and preferably.
  • the temperature must be high enough to guarantee adequate volatilization and the oxygen supply must be kept low to inhibit the formation of antimony (IV) oxide.
  • the temperature is too high, part of the charge melts on other sulphide grains, and prevents optimal oxidation.
  • the oxygen content in the gas phase must be kept low enough to prevent the formation of antimony (IV) oxide.
  • the temperature level is governed by the sulfur content in the mineral.
  • Low grade antimony sulfide minerals (Sb 2 S3) can be roasted between 850 and 1000 ° C.
  • the upper limit is the sulfide melting point (546 ° C); in practice, the temperature should not exceed 400 ° C.
  • the degree of oxidation is controlled by charcoal or coke powder, combined with the charge, admitting only the amount of air necessary to form carbon monoxide and antimony (III) oxide. Carbon monoxide inhibits oxidation to antimony (IV) oxide. Regardless, the formation of antimony (IV) oxide cannot be completely suppressed. In the first condensation, antimony (IV) oxide, lead (II) oxide and smoke powders are obtained. Antimony (III) oxide condenses second, and volatile arsenic (III) oxide last.
  • the oxygen concentration in the furnace is too low, partial oxidation can occur and give a mixture of oxide and molten sulfide at 485 ° C. If the oxygen concentration is too high, it can form arsenates and antimoniates of lead, copper and others. metals that pass into the slag. If the antimony oxide consists of very fine crystals, which adhere firmly to the fingers and do not agglomerate, it is considered to be of good quality. The oxide must be white, a reddish tint indicates the presence of antimony (III) sulfide. The yellowish tone is due to selenium and lead (II) oxides. The arsenic content should be in the order of 0.1%.
  • antimony according to the requirement of fluxes such as hematite, limestone and charcoal, these materials are fed into hoppers with the purpose of mixing in defined proportions. This mixture subsequently feeds a cyclone oven 81 cm in diameter and 130 cm high, where the antimony volatilization process begins with preheated air to obtain an intermediate product called impure antimony trioxide and whose antimony trioxide laws reach content.
  • the powders are recovered in bag filters and electrostatic filters, this material is pelletized with fluxes such as sodium carbonate (Na2CC> 3) and charcoal which is reduced in short drum rotary kilns, to obtain 99 metal antimony. to 99.2%.
  • the metal is refined in stationary type furnaces (reverberatory furnace), until purities of 99.5 or 99.6% are achieved, eliminating mainly arsenic and iron.
  • the oxidation of metallic antimony (regulus) depends on the market for antimony trioxide, which is carried out in an electric furnace to produce trioxide.
  • high purity antimony (Sb 2 C> 3) 99.5% Sb 2 C> 3).
  • This study shows the arrangement of the cyclone kiln and electric kiln of an antimony plant that treat antimony concentrates shown in the process described above, to produce antimony by oxidation / reduction, considering the grade of the mineral shown, 498 kg S0 are produced 2 / t mineral (174 m 3 S0 2 / t mineral).
  • Roasting is a preparatory operation for pyrometallurgical-type minerals. In its oxidizing form, it is used to transform metallic mineral sulphides into oxides and / or sulfates, by reaction with oxygen in the air at temperatures between 500 and 900 ° C, facilitating extraction by both methods.
  • the corresponding chemical-physical system is composed of: metal, sulfur and oxygen (Me-SO), and supports a maximum of five phases in equilibrium. When operating at constant temperature they are reduced to four. Three are combinations of the metal, its sulphide, its oxide and its sulfate, and the fourth is made up of a mixture of gases subjected to an external pressure of 1atm.
  • Roasting consists of changing the chemical composition of a metallic mineral by reaction at high temperature, but without changing its solid state, with the gaseous substances in the furnace's atmosphere.
  • Roasting like calcination, is an operation of a chemical nature but, unlike this, it is not intended to eliminate inert matter but only to transform it, its effects on the metallic concentration of ores are few.
  • Roasting is a preparation applicable to both pyrometallurgical and hydrometallurgical extraction, since its purposes are diverse depending on the nature of the mineral: oxides, sulfides, etc., and the gaseous reagent used: oxygen, carbon oxide, chlorides, being able to distinguish, depending on the latter, in three basic types: oxidizing, reducing, and chlorinating, of which the most characteristic is the first, carried out on sulphides in the presence of air, which corresponds to the strict concept of the term.
  • the oxidizing roasting can be carried out under the modality of death, or complete, and partial, and the latter can be sulfating or non-sulfating. In roasting to death, the sulfide is completely oxidized to facilitate its subsequent reduction by carbon.
  • the sulfur content is decreased to later be able to form a molten phase of sulphides or matte that concentrates the metal; in the sulfant, a part of the sulfur remains as sulfate, to make it soluble in aqueous media.
  • MeS (s) + 3/20 2 (g) MeO (s) + S0 2 (g); DH (T); AG (T)
  • the enthalpy variation of this reaction at temperature T can be made by adding the formation heats in standard conditions of oxide and sulfide, the sensible heat of the system between 298 ° K and T (K), given by its equivalent specific heat: (Cp), according to the equation:
  • roasting is an exothermic operation that requires, for its autogenous development, that the charge reaches the ignition temperature in its reaction zone.
  • the operation proceeds in countercurrent of mineral and gases in such a way that the metallic sulphide: MeS, accompanied by a gangue of other sulphides, generally pyrite and various silicates, gradually heats up as it moves through the reactor from its entrance through the upper part of the rear cylinder head and makes contact with the combustion and roasting gases that in the opposite direction run through the furnace from the front cylinder head to the rear cylinder, in this way the reaction zone until reaching the ignition point is reached at an intermediate point of the reactor , which causes the toasted ore (gangue) to move away from the reaction zone, cooling with the air that enters from the outside, through the discharge opening of this material.
  • T’f outlet of the solids, and Tf, of the gases are different.
  • DH (MeS MeO) AH (MeO + G) (298 Tf) + AHS0 2 (298 T'f) + q
  • the start or priming of the operation requires external input of heat, providing the reactor with the necessary elements for this purpose.
  • the temperatures are regulated so that they do not excessively exceed the ignition temperature or fall below it, graduating the air supply or recycling or extracting sensible heat.
  • the heat balance: q, of the operation varies with the nature of the sulfide, the richness of the ore, and its pyritic content, being able to recover to produce high pressure steam in the reactor itself or outside it.
  • the sulfides with the highest degree of sulfidation such as pyrite: FeS2
  • FeS2 pyrite
  • S sulfur
  • O oxygen
  • the currently most used method is the reduction of the sinter of lead oxide, which in turn is produced by sintering roasting of lead concentrates (galena), mixed with fine recycled sinter and lead sulfate, among others, in sintering.
  • the purpose of this stage is to remove the sulfur from the concentrate as Sulphurous Anhydride (SO2) and to form an appropriate solid mass to load in the reduction furnace.
  • SO2 Sulphurous Anhydride
  • Dwight-Lloyd proceeds at 800-850 ° C and the main reaction is the oxidation of the galena to Lead Oxide (PbO) with generation of Sulphurous anhydride (S0 2 ) according to:
  • the reaction is maintained at 800-850 ° C by diluting the charge with recirculated sinter fines since the melting point of Oxide and Lead (PbO) is 886 ° C and the
  • the sinter contains 40-50% Pb, 1-10% Zn, 1-2% S, 8-10% Si02, 5-8% CaO and 12-15% Fe203. This is crushed and harneanea to have a load of -37 + 1/4 "for the next stage of reduction with coal.
  • a patent published in 1985 describes a method of producing metallic lead, from lead-containing starting materials, by melting the starting materials under oxidation conditions and reducing the resulting oxidized melt, characterized by reducing the melt with agent reducing solid carbonaceous in the melt and ensuring that the carbonate-containing solid material is present in the melt along with the reducing agent.
  • this background describes an optimized process to obtain Lead, by oxidation of the mineral and then reduction with the help of carbonates, which must be added to the molten material.
  • a process for obtaining arsenic trioxide, of more than 98% purity is described.
  • the theoretical basis of this invention is based on the lower constant of the solubility product of antimony trioxide (Sb 2 C> 3 ) with respect to Arsenic trioxide (AS2O3), as well as the adequate adjustment of the solid-liquid ratio and the acidity of the medium; aspects that preferably favor the hydrolysis of the antimony oxychlorinated complexes, which causes their separation from the solution, the arsenic remaining in it.
  • the procedure object of the patent consists of diluting the alkaline solution, which contains arsenic and antimony, with acid with HCI of concentration 4.5 to 5.5 mol / L, until causing the separation of more than 94 % of the latter element, by filtration, this solid constituting an antimony concentrate.
  • the antimony trioxide crystals Sb 2 C> 3 are obtained.
  • FIG. 1 A more detailed description of the industrial plant (Fig. 1) is presented below, which will basically consist of the following two phases of a series of equipment that account for pyrometallurgical processes: First phase: Equipment and processes involved in the volatilization and formation of the Solid Mixture of Products of Interest.
  • This first phase consists of equipment for a controlled oxidizing roasting process, of sulphided minerals at temperatures between 480 and 520 ° C, in rotary kilns inclined longitudinally (between the rear and front cylinder heads of them) and lined internally with refractories , and lifters installed between the rear cylinder head and half its length, which allow the load to be lifted to the highest point of the furnace and so that it spreads in its vertical fall on the gas stream.
  • the supply of the mineral to the furnaces is continuous entering them through the upper part of the rear cylinder head of these, against the current of the combustion gases and the induced air that enter through the front cylinder head of these.
  • the heat required to reach the process operating temperature, between 480 and 520 ° C, in the kiln exhaust gases, is generated with a natural gas burner installed in the center of the front cylinder head of the kiln inserted in the Corresponding combustion chamber, allowing a quantity of heat that makes it possible to generate a temperature greater than 500 ° C at the entrance of the furnace, overheating the outgoing calcined material and ensuring the exit temperature of the furnace with the volatilized products of interest.
  • the mineral material that does not volatilize will remain inside the furnace, which is mainly made up of a mineral gangue and that will be continuously evacuated by the discharge of the furnace located in the lower area of its previous cylinder head, and whose runoff is generated as a result of the vertical inclination that the furnace presents between its rear cylinder head and the previous one.
  • the calcined gangue leaving the furnace is transported to cooling wells, three in total, in which the material is deposited for its subsequent cooling and removal to its final destination, dump or return to the place of origin, the deposit.
  • the three wells will rotate, fulfilling a specific function, either of reception, cooling or removal of the material.
  • the mineral generally has the following generic composition:
  • the received mineral will be treated in three identical lines of operation (Plant), as detailed in the flow diagram that is part of the drawings in Fig. 1.
  • This first phase consists of equipment for a controlled oxidizing roasting process of sulphided minerals at temperatures between 480 and 520 ° C, in rotary kilns (2) inclined longitudinally (between the rear and front cylinder heads of them) and lined internally with refractories, and lifters installed between the rear cylinder head and half its length, which allow the load to be lifted to the highest point of the furnace, so that it spreads in its vertical fall on the gas stream.
  • a sedimentation chamber is a container with an inlet on one side and an outlet located on the opposite side frontally or on top of it, generally of rectangular geometry its central part, where a gas stream is allowed to expand in such a way In this way, the velocity of the gas within it decreases considerably, allowing the action of gravity to settle the particles it carries.
  • the cross section of the equipment is much greater than that of the pipeline that approaches it so that the gas can expand and consequently slow down. Hoppers are used that collect the separated solid in the lower part of the same, from where it is removed by means of a drag chain to be sent to its next destination.
  • the dust collection system is completely well sealed to prevent air from entering through it, which can increase turbulence in the equipment and consequently re-incorporate the removed particles back into the stream.
  • baffle plates that of baffle plates or Howard's model and that of expansion chambers.
  • a sedimentation chamber is a container with an inlet on one side and an outlet located on the opposite side frontally or on top of it, generally of rectangular geometry its central part, where a gas stream is allowed to expand in such a way In this way, the velocity of the gas within it decreases considerably, allowing the action of gravity to settle the particles it carries.
  • the cross section of the equipment is much greater than that of the pipeline that approaches it so that the gas can expand and consequently slow down. Hoppers are used that collect the solid separated at the bottom of it, from where it is removed by means of a drag chain to be sent to its next destination.
  • the operation of the cyclone in this process is applied to those mineral particles that remain in the gas stream (preferably gangue) and that were not recovered in the previous process, with an approximate diameter of less than 20pm.
  • the cyclone is essentially a sedimentation chamber in which gravitational acceleration is replaced by centrifugal acceleration.
  • Cyclones are one of the least expensive means of dust collection, both from an operational and investment point of view. These are basically simple constructions that do not have moving parts, which facilitates maintenance operations; They can be made from a wide range of materials and can be designed for high temperatures (up to 1,000 ° C) and operating pressures. Cyclones are suitable for separating particles with diameters greater than 5 pm; although much smaller particles, in certain cases, can be separated. Cyclones have higher efficiencies than the gravitational sedimentation chamber, and lower efficiencies than pan filters, scrubbers, and electrostatic precipitators.
  • the centrifugal force generated by the gyrations of the gas within the cyclone can be much greater than the gravitational force, since the centrifugal force varies in magnitude depending on the speed of the gas's rotation and the radius of gyration.
  • increasing the speed of entry to the cyclone would imply an increase in the centrifugal force and, therefore, an increase in efficiency; however, very high input speeds generate the resuspension of particulate material from the internal walls of the cyclone, which decreases the efficiency of the cyclone; Additionally, increasing the input speed implies higher energy consumption.
  • the duct that constitutes the radiative cooling system must be dimensioned for high conduction velocity in order to avoid sedimentation of particles inside, which will be generated by solidification of the volatile products upon reaching their dew point due to the fact that their length a decrease in gas temperature of at least 250 ° C will be caused, a range in which the volatile compounds present (AS 2 O 3 , Sb 2 0 3 and PbO) condense.
  • the high speed required and downstream pressure drop in the gas handling system is compensated by the inclusion of a Booster extractor at the inlet of the radiative cooler.
  • the mixture of solid particles of the interesting products Antimony Trioxide (Sb 2 0 3 ), Trapped Arsenic Trioxide (AS 2 O 3 ) and Oxidized Lead (PbO), are removed from the sleeves by an intermittent vibration mechanism, as well as by the emission of pressurized air pulses, which cause them to come off.
  • the obtained product mixture is pneumatically transported to the feeding system of the next phase of the process.
  • the dust present in the gases is separated by passing this gaseous current through filtering tissues, which retain the solid particles present.
  • the operation basically consists of forcing the passage of the gas stream through the filter medium (tissue), whose mission is to retain the dust transported by the gas, accumulating on it and generating a layer that favors the efficiency of the filtration of the smaller particles.
  • the filter medium tissue
  • the pressure drop of the gas through it increases. Therefore, there comes a time when it is necessary to detach the accumulated dust layer to recover the functionality of the equipment, this action being carried out by means of pressurized air pulses in the opposite direction to the passage of gas.
  • Filter surfaces are bag-shaped or sleeves inserted into cells or filter compartments neatly in a number of 10 or more units.
  • the filter is made up of several cells in operation or sealed. It is a device that has high purification yields, even for very fine particles, whose usual yield values are from 99% to 99.9%, for sizes in the sub-micron range up to several hundred microns. Bearing in mind that they cannot operate in humid environments or near the dew point of the gas stream, such as treating adhesive or binder powders, since there is a risk of clogging of the fabric as the wet dust adheres to them after cleaning. Regarding its design, the most important data is the gas flow to be treated, marking the size of the equipment and, consequently, the investment cost.
  • the main design variable of the bag filter is the A / C ratio (actual gas flow and the collection surface) or filtration speed expressed in m / s, and the other important operating parameter is the total pressure drop in the equipment, which determines the energy need to supply gas through the equipment.
  • outgoing gases from the bag filter containing sulfur dioxide (SO2) will enter a packed Gas Cleaning Tower (7) (Gas Washers) where counter current spraying of lime milk 10% dilution on the gas that rises through the packaging material neutralizes S02, generating Plaster (CaS0 3 ) diluted in water, which is removed from the system for final disposal.
  • the clean gas leaving the tower is propelled by the effect of an extractor to the Chimney (8) for gas evacuation from the Plant.
  • Gas scrubbers are gas-liquid contact equipment, in which the liquid acts as a collector of polluting compounds in the gas stream. With the proper design, removal efficiencies of 99% are achieved.
  • the clean gas outgoing from the washing tower consisting mainly of combustion gases and water vapor, is transported and driven by the action of the Extractor that shares and supports the handling of gases from the operational cooling system to their evacuation through the Chimney. .
  • the unique chimney of the plant has the function of evacuating the clean gases from the process and that are emitted at the height that the establish environmental regulations, ensuring the minimum environmental impact on the environment and the surrounding community.
  • This Second Phase of the process is carried out in several teams, starting in a double chamber fixed furnace (reverberation type) with burners (Figs. 2 and 3), one for each chamber inclined towards the floor of the crucibles to avoid dragging of Fine powder (10) that characterizes the mixture of Antimony (Sb), Arsenic (As) and Lead (Pb) oxides, recovered in the Sleeve Filter (5) of the previous stage.
  • the temperature of the process in the oven is between 480 and 520 ° C, in order to generate volatilization of the products of interest, Antimony Trioxide (Sb 2 0 3 ) and Arsenic Trioxide ( AS 2 O 3 ) that are separated according to their different solidification temperatures in equipment other than the Gas Management system, as shown in Fig. 1 below, where Sb 2 C> 3 is recovered in a Radiative Cooling (CER) (12) that operates at the 350 ° C level and the AS 2 O 3 at the end of the system in the Sleeve Filter (FM) (14) at a temperature below 100 ° C.
  • CER Radiative Cooling
  • FM Sleeve Filter
  • this 2nd phase is performed in a dual - chamber furnace (Fig.2 and 3) in two sub-stages, which in Fig 1 are described, and we can detail it as follows:
  • a Radiative Expansion Chamber (12) (Fig. 3 and 4) is used, whose function is to recover the Condensed Antimony Trioxide from the gas flow.
  • the content of the mineral fed to the process has been conditioned to carry out the balance, complying with the following characteristics:
  • TMS dry metric tons
  • the feeder mineral of the process would be composed according to what is shown in Table 1, where the mass of each component is expressed in dry Kg per hour. In this way, taking one hour of production as the basis for calculation, the roaster is fed 1,309.2 kg / h of ore, with 7% humidity. It is considered that 100% of the gangue present in the mineral corresponds to silica (S1O2)
  • Table 1 Composition of the feeder mineral of the process, by elements and mineralogical species.
  • Fig. 1 shows the diagrams of the process and equipment (Plant) for obtaining antimony trioxide, divided into two phases.
  • the first one the volatilization of oxides, cooling and cleaning of oxidation gases are carried out.
  • the second phase divided into two sub-stages per production batch corresponds to the separation of antimony, arsenic and lead oxides, reduction of the latter liquid lead oxide (Pb) and cleaning of reduction gases.
  • the final products of the process are, arsenic trioxide, Pb in ingots and antimony trioxide, as the main product.
  • the chemical reactions of interest that are carried out in the first phase of the process are:
  • the probability of each one occurring is conditioned by various factors, such as: temperature and pressure, among others.
  • the mass balance of the process is carried out in the main equipment, where the aforementioned chemical reactions are carried out and the energy balance is carried out in the same way.
  • Mass balance in the toaster As mentioned above, the feed to the toaster corresponds to 5,219.6 kg / hr of ore that is brought to a temperature between 480 and 520 ° C, by means of a natural gas or diesel oil burner, depending on the facilities of the region where the technology in question is installed. Heat losses in the main equipment are considered close to 10% and the efficiency of the fuel used is assumed to be close to 98%.
  • Table 2 shows the mass of the main roaster output products, considering the three roasting lines as one.
  • the oxidation of the galena (PbS) is carried out by blowing the necessary air downstream of the toaster, to guarantee its oxidation outside this equipment, thus avoiding losses of this oxide in the expansion chamber and in the cyclone.
  • the fuel flow required for roasting is 278.8 l / h and the air required for combustion is 2,755.8 Nm 3 / h.
  • the air for oxidation of the mineral in the roaster is 865.0 Nm 3 / h.
  • Arsenic and Antimony and Galena volatilized are assimilated to Air, in terms of the volume occupied. In this case, the mass to volatilize is 608 kg / h. Volatile flux is calculated under normal conditions.
  • Galena oxidation as specified above, galena oxidation is performed outside the roaster as indicated in Fig. 1 and the chemical reactions associated with such oxidation are numbers (3) and (4), listed previously. The corresponding material balance indicates that the air flow required for this purpose is 123.1 Nm 3 / h.
  • the gases resulting from the first stage of the process, reaction and combustion gases, are directed to a washing tower, in which 10% w / w lime milk is contacted, to generate conditioned gases to comply with the corresponding regulations. and be eliminated into the environment through a fireplace.
  • Table 4 shows the flow of gases sent to the washing tower, generated in the first stage of the process.
  • Abatement of Sulfur Dioxide (SO2) in the washing tower is as follows:
  • Table 4 Flow of inlet gases to the Washing Tower.
  • the second phase of the process is carried out in two cycled sub-phases for each charge introduced into one of the furnace chambers, where it will accumulate, the sufficient amount of PbO that generates the adequate volume of Pb metallic to be continuously molded.
  • the time required in the first sub phase is estimated at two days to start the second sub phase.
  • the first of these which is carried out at a temperature between 480 and 520 ° C, in a fixed reverberatory type furnace with burners in the vault, corresponds to the volatilization of the Arsenic and Antimony trioxides that made up the mixture of oxides together with PbO and recovered in the first stage bag filters.
  • Lead oxide which does not volatilize, remains in the reactor and accumulates to be reduced with coke in the second mineral charge sub-stage.
  • Sb 2 0 3 one of the final products of the process, is captured in a Radiative Cooling Chamber because its condensation occurs between 350 and 400 ° C, and reaches 418.0 kg / hr, which corresponds to a monthly production of 300 tons.
  • Table 5 Exit gases from the first ore-charging sub-phase reactor.
  • the lead oxide retained in the reactor is reduced with Coke Coal, according to the following chemical reactions.
  • the Pb product of said reduction is 115.7 kg / h, so it will be necessary to accumulate the metal inside the oven, to achieve an adequate bleeding height. It is estimated that after 2 days of accumulation, the optimal height of approximately 40.8 cm is generated, considering that the dimensions of each crucible in the furnace is 1.2 m 2 (0.6 x 2.0 m 2 ) of basal area and that the density of Pb is 11, 35 gr / cm 3 .
  • the gases generated in the Lead oxide reduction process are negligible compared to those required to maintain the furnace temperature between 480 and 520 ° C and the Lead oxide that accumulates inside, along with carrying out the volatilization of Antimony and Arsenic trioxides, even more so if the only contribution of gas is due to the formation of carbon dioxide (CO2), at a rate of 6.36 Nm / h during this process, representing 0.2% of the total gas outgoing from the oven.
  • CO2 carbon dioxide
  • the volatile gas mixture generated in the roasting process (in a First Phase of the Obtaining process) undergoes different cooling processes to obtain a solidified mixture of it at the end of the gas handling system (Sb203, AS2O3 and PbO) .
  • the oxidation of Lead Sulfide (PbS) to Lead Oxide (PbO) is induced by injecting air into the gas handling system, through a controlled valve installed at the inlet of one of the components of the cooling system.
  • the condensed mixture at the end of this system is made up of Antimony Trioxides (Sb) and Arsenic (As) and Lead oxide (Pb) and is recovered in a Bag Filter that operates below 100 ° C.
  • the outgoing gases from the bag filter containing sulfur dioxide (SO2) enter a packed gas scrubber where by countercurrent spraying of 10% dilution lime milk onto the Gas that rises through the packaging material neutralizes the sulfur dioxide (SO2) generating Plaster (CaS04) diluted in water, which is removed from the system for final disposal.
  • SO2 sulfur dioxide
  • CaS04 Plaster
  • the non-volatile material of the mineral, the calcined mineral gangue is removed from the furnace, it is transported, together with the powders dragged by the outgoing gases from said equipment and recovered from the gas handling system, to cooling wells, three in total in that the material is deposited for its subsequent cooling and removal to its final destination, dump or return to the place of origin, the deposit.
  • the three wells will rotate, fulfilling a specific function of receiving, cooling or removing the material once it has cooled.
  • the solidified mixture of oxides obtained at the end of the first phase of the process undergoes a second phase with a fixed double chamber oven similar to a reverberation, which inhibit dust entrainment and maintain the oven temperature between 480 and 520 ° C, where by taking advantage of the physical properties inherent in the products to be obtained, they are separated and obtained as commercial products.
  • the process at this stage is subdivided into two production batch operations, as follows:
  • Fig. 1 shows with a block diagram the Plant for obtaining antimony trioxide, arsenic trioxide and metallic lead.
  • Antimonite mineral feeding system which is characterized by being made up of sulfur minerals predominantly Antimony, Arsenic and Lead, whose average contents fluctuate between 20-30% Antimony (Sb), 2-4% Arsenic ( As) and 5-10% of Lead (Pb), which is fed from the storage field to the feed hoppers of the Toasters through a transport circuit consisting of three conveyor belts, to raise the mineral load from the level from the storage field to the horizontal belt feeding mailbox that distributes the mineral to the feeding hoppers to each Toaster, from where it is continuously extracted by means of a channel-type endless screw being transferred to a second screw perpendicular to the previous one, tubular that deposits the load inside the toaster adequately away from its rear end and on the refractory lining and the lifters inside the Toaster.
  • the air to generate the oxidation of Antimony and Arsenic is induced by the draft exerted by an induced draft fan, located upstream in the Gas Management system (between the Bag Filter and the Gas Washing Tower) towards the interior of the toaster, which is why the burner head wall (above) will consist of an adequate number and size of holes, distributed symmetrically in relation to its horizontal axis, each one having a controlled valve for the regulation of the quantity of air to infiltrate in benefit of the adequate oxidation of trioxides in formation.
  • Arsenic and Antimony, and Galena leave the Toaster at a temperature between 480 and 520 ° C, enter an Expansion or Sedimentation Chamber for gases whose function is to reduce the initial velocity of gases (less than 3 m / s) and recovering most of the particles carried by the gas stream, eliminating the largest ones (greater than 20 pm), as well as reducing the temperature of the outgoing gases.
  • Said chamber consists of a lower section of inclined walls that discharge the recovered material to a channel-type endless screw, which collects the gangue dust particles decanted in said chamber and which also collects the gangue particles. separated from the gas flow in the cyclone that precedes it.
  • the Expansion Chamber allows a moderate decrease in the temperature of the gases.
  • the dimensioning of such equipment is closely linked to the knowledge of the nature of the motion of a particle that moves within a fluid, which conforms to the model proposed by Stokes known as Stokes' law.
  • the outgoing gases flow from the Expansion Chamber goes to a second cleaning operation in a Cyclone, equipment that removes the particulate material still present in the gas stream, based on the principle of inertial impaction, as the gaseous flow loaded with particles enters tangentially into the upper cylindrical zone, taking advantage of the increased speed in its circulation and the centrifugal force generated by the rotation of gases and solid particles, the latter, due to their The heavier the weight, they will come out through the Cyclone underflow and the particle-free gases through the overflow. Given the high speed reached by the gases in the process, greater than 20 m / s, the effect of heat losses due to radiation is low, which is why it is estimated that the temperature of the gases when leaving this equipment does not present large variations .
  • the Expansion Chamber and Cyclone assembly generates a temperature decrease of around 150 ° C.
  • the products of interest are Arsenic Trioxide (AS2O3), Antimony Trioxide (Sb2C> 3) already formed and volatilized in roasting and Lead (Pb) in the form of PbS, and that are present in the outgoing gases at 350 ° C of stage 3, said gases will be subjected to a Radiative Cooling process, which is described below.
  • this Galena gases must be oxidized and condensed as lead oxide (PbO), for which the air required for oxidation is induced by the action of the Induced Draft Fan through a controlled opening valve installed at the inlet of this cooling system.
  • PbO lead oxide
  • Said cooling system is made up of parallel coils made up of a series of inverted U's joined together (each one constituting a branch of the system).
  • the gas entering the equipment circulates inside it to cool down from 350 ° to less than 100 ° C, dissipating the latent heat of the gases through the walls of the coils that make up the equipment, releasing this heat through convection phenomena and mainly radiation, into the atmospheric air that surrounds it and circulates around it.
  • the duct that constitutes this cooling system must be dimensioned for a high conduction speed in order to avoid the sedimentation of particles that condense as the temperature decrease advances and the solidification of the volatile products of interest.
  • the heat dissipation capacity according to the pipe size that according to the coil defines the length required for the decrease in the temperature of the gases pursued, which in this case is around 250 ° C.
  • the mixture of solid products consisting of Antimony Trioxides (Sb20 3 ) and Arsenic (AS2O3) powders and Pb oxide (PbO), is removed from the FM by means of a rotary valve, which discharges onto a conveyor chain (harrow) to feeding the material hopper the pneumatic transport system that moves the oxide mixture to the feed hopper 2 to Phase (Separation of Commercial Products).
  • VTI induced draft fan
  • equipment causing the movement of the generated gases in the processes that make up the 1st phase, ie from the Rotary Kiln (Toaster) to the outlet of the baghouse and subsequently boost the outgoing gases from this equipment to a single Gas Cleaning Tower (TL) and cause the evacuation of the pollutant-free gases to the single chimney of the plant.
  • VTI induced draft fan
  • the gases generated by the formation and oxidation of the products of interest contain Sulphurous Anhydride (SO2), which must be neutralized and removed from the gas stream, an operation that is carried out in a Washing Tower, in which apply lime milk as a neutralizer, allowing the transformation of SO2 to Hydrated Gypsum (CaS0 4 * 2H 2 0), a compound that is collected in the liquid retention tank of said Tower.
  • SO2 Sulphurous Anhydride
  • Hydrated Gypsum CaS0 4 * 2H 2 0
  • the 10% dilution lime slurry descends on the gas that rises through the packaging material, thus causing the neutralization of the S0 2 contained in it.
  • These teams are based on the phenomenon of gas absorption in liquid, for which their operation depends on achieving intimate contact between them. To achieve such contact, the gas and / or liquid exposure surfaces must be maximized, which in packed towers occurs by dividing the liquid into an infinity of thin films of the same, low speed, through the type of packaging, in this
  • the clean gas outgoing from the washing tower consisting mainly of combustion gases and water vapor, is driven by the action of a VTI towards its evacuation through the single chimney that will emit the total of clean gases generated by the process, both of its Phase 1 and Phase 2 through at the level that establishes environmental regulations in force, ensuring minimal environmental impact on the environment and the surrounding community.
  • a double reaction chamber fixed oven receives the mixture of solid products from its feed hopper, in which it is carried out at a temperature between 480 and 520 ° C, volatilization of Antimony trioxide (Sb 2 0 3) and arsenic (As 2 0 3) constituting the mixture of oxides generated in the 1 Phase (Sleeve Filter) and retention of the Pb oxide (PbO) that does not volatilize in it, in order to separate the volatilized products according to their different condensation temperatures in different equipment upstream in the Gas Management system of this Phase 2.
  • the mixture of solid products transferred from the 1st to the Phase are fed into the Fixed Furnace (reverberation type) whose crucible has been divided into two equal chambers separated by an interior longitudinal wall, being joined together at the gas phase level, which they take advantage of the heat generated by two burners installed on their rear walls, from each chamber, which with an inclination of 20% and a flame of adequate length, point towards the floor of the corresponding crucible, countercurrent to the flow of gases leaving the furnace, a condition that counteract the possible drag of fine dust that characterizes the fed solids mixture.
  • a vertical deflector plate is installed inside the oven, installed at a suitable distance from the oven's gas evacuation opening.
  • this 2nd phase must be performed in cyclized form dividing operation the oven into two sub-stages, as described below:
  • the powders recovered in this equipment are reincorporated into the furnace through a transport system consisting of a refrigerated conveyor screw, which discharges into a hoist elevator which lifts the recycled load to be deposited in a second conveyor screw, which transfers the material to recycle to the oven feed hopper.
  • the gases containing the Antimony and Arsenic trioxides are sent to the following process.
  • the section 1 to the expansion chamber Radiative (1 of 4) (Fig.3 and 4) is used for recovering these particles, which are incorporated to the recirculation system of powders extracted from the first Cyclone, to be reincorporated into the Kiln.
  • the next three remaining sections of the Radiative Expansion Chamber are used for the recovery of the solidified Antimony Trioxide (Sb 2 0 3 ), which is one of the marketable products of the plant, bearing in mind that the temperature in the gases has already decreased. under the 370 ° C to enter the section 2, temperature from which the antimony trioxide (Sb 2 0 3) and solidify begins to condense into very fine particles (powders).
  • a cyclone is added to the Radiation Expansion Chamber, which allows the recovery of the solids of the product not captured in the Radiation Expansion Chamber.
  • the product recovered by the Radiative Expansion Chamber and the Second Cyclone are discharged onto a refrigerated transport screw, which reduces the temperature of the material to an approximate temperature of 60 ° C, and which in turn discharges the Antimony Trioxide (Sb 2 0 3 ) commercial to the packaging plant of said product.
  • the non-condensed gases in this process are transferred to the following process (Radiative Cooling), to be subsequently recovered.
  • Said cooling system is made up of parallel coils made up of inverted U strings, joined together (each constituting a branch of the system).
  • the gas entering the equipment circulates inside it to cool from 300 ° C to less than 100 ° C, dissipating the latent heat of the gases through the walls of the coils that make up the equipment, releasing this heat through convection phenomena and mainly radiation, into the atmospheric air that surrounds it and circulates around it.
  • the duct that constitutes this cooling system must be dimensioned for a high conduction speed in order to avoid the sedimentation of condensing particles as the temperature decreases and the solidification of Antimony Trioxide (As 2 is generated. 0 3 ).
  • the solid discharge of the Bag Filter, marketable Arsenic Trioxide (As 2 0 3 ) is emptied by a rotary valve on a conveyor screw to discharge the commercial AS2O3 to the packaging plant of said product.
  • Figs. 2 and 3 correspond to an elevation view of the Double Chamber Oven, a cross section and a plan view of the double chamber oven, in section, respectively.
  • each one of the chambers operates consecutively carrying out the following two sub-stages, each sub-stage can be performed simultaneously and out of phase in each chamber: a) Sub-Stage of Volatilization of Trioxides of Sb and As and accumulation of PbO at inside the furnace, with a controlled oxygen-free atmosphere to maintain the chemical characteristics of Sb 2 03 and As 2 0 3 volatilized and to ensure its recovery in terms of quality respectively. Once the optimum volume of PbO that is compatible with the capacity of the furnace is completed, the next sub-stage is developed.
  • the described conceptualization allows conceiving the consecutive realization of the two productive load sub-stages, in a single furnace unit with divided crucible chambers and shared gas chamber, a fact that contributes to reducing the process in question to a line of operation and consequently to reduce fuel consumption and maintenance costs.
  • Suspended vault built in refractory material of straight brick, 12 "x 6" x 3 ", of high Alumina type HA 45 ISO 10081-1.
  • Figs. 4 and 5 correspond to a schematic and cross-sectional view of the Radiative Expansion Chamber (CER), respectively.
  • CER Radiative Expansion Chamber
  • the Cyclone (CL2) has the function of supporting and maximizing the recovery of the commercial product (Sb 2 0 3 ) already solidified in the corresponding sections of the CER (in the range of 370 and 300 ° C).
  • the product recovered in the 3 final sections of the CER and in the CL2 is discharged onto a refrigerated stainless steel conveyor screw that reduces the temperature of the recovered material from around 330 to 60 ° C, which in turn feeds said commercial product. to the corresponding packaging plant. 5.Inlet pipeline for gases from Cyclone 1 to the CER.
  • Deflector plates (Howard Model), which make it difficult for the gas and particles to travel, causing a lower displacement speed and, therefore, a longer residence time for gases and solid particles inside. .

Abstract

The present application relates to a modern plant that includes a method for obtaining commercial antimony trioxide (Sb2O3), arsenic trioxide (As2O3) and metal lead (Pb) from a mineral containing predominantly antimonite. The first step begins with a process of oxidative roasting of the sulfide mineral in rotary ovens at a controlled temperature of 480-520°C, to oxidise antimony trioxide and arsenic trioxide and consequently volatilise same. In this step of the method, the air is regulated to ensure the adequate oxidation of antimony and arsenic until the trioxides thereof are formed, preventing the formation of cervantite (Sb2O4). The second step of the in-plant method is carried out in a fixed double-chamber oven, to cause the volatilisation of the products of interest, antimony trioxide and arsenic trioxide, which separate according to their different condensation temperatures. The temperature of the gases reduces from 450°C to 350°C, separating the antimony trioxide first, while the arsenic trioxide remains volatile and subsequently solidifies at a gas temperature of 300°C to 90°C. Given the condition that lead oxide does not volatilise at the temperature of the initial process, this compound remains solid inside the oven, being recovered as liquid lead, following reduction with carbon.

Description

Planta moderna de producción de Trióxidos de Antimonio, Arsénico, y Plomo metálico" Modern plant for the production of Antimony Trioxides, Arsenic, and Metal Lead "
MEMORIA DESCRIPTIVA DESCRIPTIVE MEMORY
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La presente solicitud considera una Planta para la Obtención de Trióxido de Antimonio, Trióxido de Arsénico y Plomo metálico a partir de un mineral, predominante en Antimonita o Estibina (Sb2S3) y de otros minerales sulfurados de Arsénico(As) y Plomo(Pb) contenidos en el mineral, que químicamente contienen en promedio 30% de Antimonio, 4% de Arsénico y 10% de Plomo. La planta diseñada tiene una capacidad de tratamiento del mineral para producir 300 t/mes de Trióxido de Antimonio (Sb203), 44 t/mes de Trióxido de Arsénico (AS2O3) y 89,7 t/mes de Plomo (Pb )metálico, considerando una recuperación metalúrgica global de 90 %, además siendo ambientalmente sustentable desde el punto de vista gaseoso y de residuos sólidos generados. The present application considers a Plant for the Obtaining of Antimony Trioxide, Arsenic Trioxide and metallic Lead from a mineral, predominant in Antimonite or Stibine (Sb2S3) and of other sulfided minerals of Arsenic (As) and Lead (Pb) contained in the mineral, which chemically contain on average 30% Antimony, 4% Arsenic and 10% Lead. The designed plant has a mineral treatment capacity to produce 300 t / month of Antimony Trioxide (Sb 2 0 3 ), 44 t / month of Arsenic Trioxide (AS2O3) and 89.7 t / month of Lead (Pb) metallic, considering a global metallurgical recovery of 90%, as well as being environmentally sustainable from the gaseous and solid waste generated point of view.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Los procesos de Obtención de Trióxido de Antimonio a partir de minerales sulfurados metálicos se basan en la facilidad de oxidación entre los elementos presentes, arsénico, estaño, antimonio y plomo la que decrece en el siguiente orden: The processes for obtaining Antimony Trioxide from metallic sulphide minerals are based on the ease of oxidation between the elements present, arsenic, tin, antimony and lead, which decreases in the following order:
Arsénico(As) >Estaño (Sn)>Antimonio (Sb) >Plomo (Pb) . Arsenic (As)> Tin (Sn)> Antimony (Sb)> Lead (Pb).
El antimonio es parcialmente oxidado mientras el concentrado o mineral contenga arsénico y estaño, y solo cuando estos dos elementos estén oxidados, la oxidación del antimonio se incrementa, en tanto la oxidación de plomo no comienza hasta que todo el antimonio esté oxidado. De esta manera, la presencia importante de Arsénico (As) y Estaño (Sn) en el mineral rico en antimonita, se debe tener presente previo a generar la oxidación completa del antimonio (Sb). En el caso del Arsénico (As) , su trióxido se sublima a los 465°C hecho que facilita su separación en procesos pirometalúrgicos de fusión o tostación. Debe tenerse presente en la selección del proceso de obtención del trióxido de antimonio (Sb) que el punto de fusión del antimonio (Sb) es 630°C y de su trióxidoAntimony is partially oxidized as long as the concentrate or mineral contains arsenic and tin, and only when these two elements are oxidized, the oxidation of the antimony increases, while the oxidation of lead does not begin until all the antimony is oxidized. In this way, the significant presence of Arsenic (As) and Tin (Sn) in the mineral rich in antimonite, must be kept in mind before generating the complete oxidation of antimony (Sb). In the case of Arsenic (As), its trioxide sublimes at 465 ° C, which facilitates its separation in melting or roasting pyrometallurgical processes. It should be borne in mind in the selection of the process for obtaining antimony trioxide (Sb) that the melting point of antimony (Sb) is 630 ° C and its trioxide
656°C y de la Antimonita 525°C, por lo cual la oxidación de antimonio (Sb) metálico fundido es factible de realizar por oxidación directa del baño líquido o en gotas suspendidas, en una atmósfera oxidante en un proceso de fusión en horno ciclón.656 ° C and Antimonite 525 ° C, whereby the oxidation of molten metallic antimony (Sb) is feasible by direct oxidation of the liquid bath or in suspended drops, in an oxidizing atmosphere in a cyclone furnace melting process .
Existen procesos pirometalúrgicos conocidos de obtención del trióxido partir de mineral sulfuroso de Antimonio (Sb) o concentrado del mismo, siendo el método más tradicional el de fusión con hierro metálico, para provocar la reducción a antimonio (Sb) metálico; como también tratar dichos minerales de baja ley de antimonio (Sb) por tostación volatilización con la subsecuente reducción carbotérmica del óxido producido. There are known pyrometallurgical processes for obtaining trioxide from sulfuric mineral Antimony (Sb) or its concentrate, the most traditional method being that of fusion with metallic iron, to cause reduction to metallic antimony (Sb); as well as treating said low antimony (Sb) minerals by roasting volatilization with the subsequent carbothermal reduction of the oxide produced.
Algunas veces se tuesta la estibina (Sb2S3) nativa en atmósfera oxidante con aire precalentado para quitarle el azufre y generar el óxido blanco (trióxido), el cual puede reducirse después con carbón (coque), para obtener antimonio (Sb) metálico. La tostación se realiza para transformar los sulfuros en óxidos, los cuales son más fáciles de reducir. La oxidación precisa una temperatura lo suficientemente alta para producir la necesaria afinidad entre el oxigeno y el compuesto a oxidar. La temperatura más baja utilizada en el proceso es de 600 °C. Normalmente la temperatura oscila, según el tipo de materia prima y del horno, de 750 a 950 °C. Para que la oxidación se realice uniformemente es preciso la existencia de una abundancia de aire, en contacto con la materia a oxidar. La necesidad de la abundancia de aire es debida a que el poder oxidante de este disminuye cuando se mezcla con los productos gaseosos de la oxidación reduciéndose hasta en un 50% de su valor. La velocidad de tostación se acelera, aumentando la velocidad de desprendimiento de los productos gaseosos y su sustitución por aire puro. La velocidad y también el acabado del tostado están influenciados por el tamaño del material crudo. La velocidad de tostación tiene un punto máximo, desde el punto de vista económico, ya que al sobrepasarlo, las pérdidas del material en forma de polvo que llevan los gases de escape, no compensan el aumento de velocidad, pues la recuperación de estos polvos es costosa. Los factores que controlan la tostación son: la temperatura y el tiempo. El calor necesario para realizar la tostación oxidante lo produce la combustión de un combustible, bien solo o mezclado con la carga, o utilizando el calor originado por las reacciones exotérmicas entre el mineral y el oxígeno del aire. Sometimes native stibine (Sb2S3) is roasted in an oxidizing atmosphere with preheated air to remove sulfur and generate white oxide (trioxide), which can then be reduced with carbon (coke), to obtain metallic antimony (Sb). Roasting is done to transform sulfides into oxides, which are easier to reduce. Oxidation requires a temperature high enough to produce the necessary affinity between oxygen and the compound to be oxidized. The lowest temperature used in the process is 600 ° C. Normally, the temperature varies, depending on the type of raw material and the furnace, from 750 to 950 ° C. For the oxidation to be carried out uniformly, it is necessary to have an abundance of air, in contact with the matter to be oxidized. The need for air abundance is due to the fact that its oxidizing power decreases when mixed with the gaseous products of oxidation, reducing it by up to 50% of its value. The roasting speed is accelerated, increasing the speed of release of the gaseous products and their replacement by pure air. The speed and also the finish of the roasting are influenced by the size of the raw material. The roasting speed has a maximum point, from the economic point of view, since when exceeding it, the losses of the material in the form of dust that carry the exhaust gases, do not compensate the increase in speed, since the recovery of these powders is expensive. The factors that control roasting are: temperature and time. The heat necessary to carry out the oxidative roasting is produced by the combustion of a fuel, either alone or mixed with the load, or using the heat caused by the exothermic reactions between the mineral and the oxygen in the air.
Mediante el tostado del sulfuro de antimonio se obtiene óxido de antimonio (lli y IV), Sb203 y Sb204 respectivamente, según las reacciones: 2Sb2S3 + 9O2 2Sb2Ü3 + 6SO2 1 Sb2S3 + 50å— Sb204 + 3SO2† By roasting the antimony sulfide, antimony oxide (lli and IV), Sb 2 0 3 and Sb 2 04 respectively, is obtained, according to the reactions: 2Sb 2 S 3 + 9O2 2Sb 2 Ü 3 + 6SO2 1 Sb 2 S 3 + 50å— Sb 2 0 4 + 3SO2 †
A partir del óxido obtenido por la operación previa de tostación oxidante a la que se ha sometido la mena, se realiza el calentamiento a elevada temperatura con reactivos reductores (coke) para originar un metal fundido o una aleación u otro producto, pero siempre al estado fundido. ( 9.2. Extracción por vía pirometalúrgica. Curso Metalurgia del Antimonio, Antonio Ros Moreno, 2009). From the oxide obtained by the previous oxidative roasting operation to which the ore has been subjected, heating is carried out at high temperature with reducing reagents (coke) to originate a molten metal or an alloy or other product, but always in the state molten. (9.2. Pyrometallurgical extraction. Antimony Metallurgy Course, Antonio Ros Moreno, 2009).
De este antecedente se puede deducir claramente la necesidad de emplear altas temperaturas, por sobre los 600 °C para obtener trióxido de antimonio y además la importancia de suministrar también una importante entrada de oxígeno en el sistema, para aumentar y mejorar la producción de trióxido de antimonio cuando estamos en presencia de Plomo y Arsénico en los minerales considerados como materia prima del proceso. Es deseable contar con un proceso controlado, de bajo costo (energético) que permita la obtención de trióxido de antimonio (Sb) comercial. From this background it can be clearly deduced the need to use high temperatures, above 600 ° C to obtain antimony trioxide and also the importance of also supplying an important input of oxygen in the system, to increase and improve the production of antimony when we are in the presence of Lead and Arsenic in the minerals considered as raw material of the process. It is desirable to have a controlled, low-cost (energy) process that allows obtaining commercial antimony trioxide (Sb).
El trióxido de antimonio se obtiene a partir del mineral de antimonita mediante su tostación en hornos convencionales. En la actualidad los hornos de tostación rotatorios son los más comúnmente empleados. El proceso de beneficio de la antimonita depende principalmente del contenido de antimonio y otros minerales presentes. La obtención del trióxido de antimonio se realiza por medio de la tostación del sulfuro de antimonio, antimonita (Sb2S3), en hornos de tostación convencionales. La tostación de sulfuros es un proceso de reacción Gas-Sólido en un horno (especial) en el que se pone en contacto aire en grandes cantidades, a veces enriquecido con oxígeno, con los concentrados de mineral de sulfuro. El sulfuro de antimonio se oxida a óxido de antimonio (III) (volátil en la tostación) o a óxido de antimonio (IV) (no volátil). El control del horno en la producción del óxido de antimonio (IV) no volátil es relativamente sencillo, sin embargo el óxido no se separa del residuo, en perjuicio de la eficiencia de obtención de trióxido. La tostación tiene la ventaja de que los volátiles de SÓ203 se producen de forma selectiva con 98% de rendimiento y se separan de la ganga, que contiene los metales preciosos en una forma recuperable. Sin embargo, es difícil controlar el horno y la temperatura. El óxido se forma entre 290 y 340°C en una atmósfera oxidante, y la velocidad de reacción alcanza su máximo a 500°C, en la que comienza a formarse el óxido de antimonio (IV). Las impurezas que llegan a presentarse en los productos son arrastrados por los gases de anhídrido sulfuroso ( SO2) o Trióxido de Antimonio (Sb203), según sea el caso. La reacción básica es: Antimony trioxide is obtained from the antimonite mineral by roasting it in conventional ovens. Rotary roasting ovens are the most commonly used today. The antimonite beneficiation process mainly depends on the content of antimony and other minerals present. The antimony trioxide is obtained by roasting the antimony sulfide, antimonite (Sb2S3), in conventional roasting ovens. Sulfur roasting is a Gas-Solid reaction process in a (special) furnace in which large amounts of air, sometimes enriched with oxygen, are brought into contact with the sulphide ore concentrates. Antimony sulfide is oxidized to antimony (III) oxide (volatile in roasting) or to antimony (IV) oxide (nonvolatile). Control of the furnace in the production of non-volatile antimony (IV) oxide is relatively simple, however the oxide does not separate from the residue, to the detriment of the trioxide obtaining efficiency. Roasting has the advantage that SÓ203 volatiles are selectively produced in 98% yield and separated from the gangue, which contains the precious metals in a recoverable form. However, it is difficult to control the oven and temperature. The oxide forms between 290 and 340 ° C in an oxidizing atmosphere, and the reaction rate peaks at 500 ° C, at which antimony (IV) oxide begins to form. The impurities that come to Present in the products are carried away by the gases of sulfur dioxide (SO2) or Antimony Trioxide (Sb 2 03), as the case may be. The basic reaction is:
2 Sb2S3 + 9 02 2Sb2C>3 + 6 S02 Si hay demasiado oxígeno, se forma el óxido de antimonio (IV): 2 Sb 2 S 3 + 9 0 2 2Sb 2 C> 3 + 6 S0 2 If there is too much oxygen, antimony (IV) oxide forms:
Sb2S3 + 5 02— Sb204 + 3 S02 Sb 2 S 3 + 5 0 2 - Sb 2 0 4 + 3 S0 2
Por encima de 560°C, la velocidad de reacción disminuye considerablemente. Durante la tostación, el óxido de antimonio (IV) puede reaccionar con el sulfuro de antimonio (III) y con Cervantina fresca resultando óxido de antimonio (III) al gestarse la reacción con baja presencia de Oxigeno (02) Above 560 ° C, the reaction rate decreases considerably. During roasting, antimony (IV) oxide can react with antimony (III) sulfide and fresh Cervantine, resulting in antimony (III) oxide when the reaction is gestated with low presence of Oxygen (0 2 )
Sb2S3 + 9 Sb204 10 Sb2Ü3 + 3 S02 Sb 2 S 3 + 9 Sb 2 0 4 10 Sb 2 Ü 3 + 3 S0 2
Por lo tanto, el proceso debe diseñarse de manera que se forme rápida y preferentemente óxido de antimonio (III) (Sb203). La temperatura debe ser suficientemente alta como para garantizar la volatilización adecuada y, el suministro de oxígeno debe mantenerse bajo para inhibir la formación de óxido de antimonio (IV). Cuando la temperatura es demasiado elevada, parte de la carga se funde sobre otros granos de sulfuro, y evita una oxidación óptima. Durante la condensación del óxido de antimonio (III), el contenido de oxígeno en la fase gaseosa debe mantenerse lo suficientemente baja para evitar la formación de óxido de antimonio (IV). El nivel de la temperatura se rige por el contenido de azufre en el mineral. Los minerales de baja ley de sulfuro de antimonio (Sb2S3) pueden ser tostados entre 850 y 1000°C. Si se tuestan minerales ricos en sulfuro de antimonio ( Sb2S3), el límite superior es el punto de fusión del sulfuro (546°C); en la práctica, la temperatura no debe superar a los 400°C. El grado de oxidación es controlado por carbón vegetal o polvo de coque, combinado con la carga, admitiendo sólo la cantidad de aire necesaria para formar monóxido de carbono y óxido de antimonio (III). El monóxido de carbono inhibe la oxidación a óxido de antimonio (IV). A pesar de todo, la formación de óxido de antimonio (IV) no puede ser suprimida por completo. En la primera condensación se obtiene óxido de antimonio (IV), óxido de plomo (II) y polvos del humo. El óxido de antimonio (III) se condensa en segundo lugar, y el volátil óxido de arsénico (III) en último lugar. Si la concentración de oxígeno en el horno es demasiado baja, se puede producir una oxidación parcial y dar una mezcla de óxido y sulfuro fundido a 485 °C. Si la concentración de oxígeno es demasiado alta, puede formar arseniatos y antimoniatos de plomo, cobre y otros metales que pasan a la escoria. Si el óxido de antimonio consiste en cristales muy finos, que se adhieren con firmeza a los dedos y no se aglomeran, se considera de buena calidad. El óxido debe ser de color blanco, un tinte rojizo indica la presencia de sulfuro de antimonio (III). El tono amarillento se debe a óxidos de selenio y plomo (II). El contenido de arsénico debe estar en el orden de 0.1 %.( Estudio del comportamiento de antimonita durante su tostación a Sb2C>3 (trióxido de antimonio) en hornos de resistencia eléctrica y microondas, T.J. Ornelas, H.J.A. Hernández, M.M. Márquez, y M.A. ortiz Depto. de Explotación de Minas y Metalurgia de la Facultad de Ingeniería Universidad Nacional Autónoma de México Cd. Universitaria, 2012.) Therefore, the process should be designed so that antimony (III) oxide (Sb 2 0 3 ) is formed quickly and preferably. The temperature must be high enough to guarantee adequate volatilization and the oxygen supply must be kept low to inhibit the formation of antimony (IV) oxide. When the temperature is too high, part of the charge melts on other sulphide grains, and prevents optimal oxidation. During condensation of antimony (III) oxide, the oxygen content in the gas phase must be kept low enough to prevent the formation of antimony (IV) oxide. The temperature level is governed by the sulfur content in the mineral. Low grade antimony sulfide minerals (Sb 2 S3) can be roasted between 850 and 1000 ° C. If minerals rich in antimony sulfide (Sb 2 S3) are roasted, the upper limit is the sulfide melting point (546 ° C); in practice, the temperature should not exceed 400 ° C. The degree of oxidation is controlled by charcoal or coke powder, combined with the charge, admitting only the amount of air necessary to form carbon monoxide and antimony (III) oxide. Carbon monoxide inhibits oxidation to antimony (IV) oxide. Regardless, the formation of antimony (IV) oxide cannot be completely suppressed. In the first condensation, antimony (IV) oxide, lead (II) oxide and smoke powders are obtained. Antimony (III) oxide condenses second, and volatile arsenic (III) oxide last. If the oxygen concentration in the furnace is too low, partial oxidation can occur and give a mixture of oxide and molten sulfide at 485 ° C. If the oxygen concentration is too high, it can form arsenates and antimoniates of lead, copper and others. metals that pass into the slag. If the antimony oxide consists of very fine crystals, which adhere firmly to the fingers and do not agglomerate, it is considered to be of good quality. The oxide must be white, a reddish tint indicates the presence of antimony (III) sulfide. The yellowish tone is due to selenium and lead (II) oxides. The arsenic content should be in the order of 0.1%. (Study of the behavior of antimonite during roasting at Sb2C> 3 (antimony trioxide) in electric resistance and microwave ovens, TJ Ornelas, HJA Hernández, MM Márquez, and MA ortiz Dept. of Mining Exploitation and Metallurgy of the Faculty of Engineering Universidad Nacional Autónoma de México Cd. Universitaria, 2012.)
De este antecedente se puede deducir claramente la necesidad de controlar el oxígeno y la temperatura para obtener trióxido de antimonio y además evitar la formación de Oxido de Antimonio IV(Sb204). Lograr tener un proceso controlado en cantidad de oxígeno y temperaturas adecuadas es deseable para obtener trióxido de antimonio (Sb) de la calidad comercial y a un bajo costo. From this background, it is possible to clearly deduce the need to control oxygen and temperature to obtain antimony trioxide and also avoid the formation of Antimony Oxide IV (Sb204). Achieving a controlled process in oxygen quantity and adequate temperatures is desirable to obtain commercial grade antimony trioxide (Sb) at a low cost.
La reducción de antimonita (SÓ2S3) con carbón en presencia de óxido de calcio fue investigada en el rango de temperatura de 700 a 850°C. Las pruebas experimentales se realizaron a escala de laboratorio en un aparato termo-gravimétrico para determinar la factibilidad técnica del proceso de reducción y estudiar su cinética. En este trabajo se entregan antecedentes relevantes para el presente estudio como son la descripción de procesos actuales de producción de Antimonio metálico en países de Sudamérica:The reduction of antimonite (SÓ2S3) with carbon in the presence of calcium oxide was investigated in the temperature range of 700 to 850 ° C. The experimental tests were carried out on a laboratory scale in a thermogravimetric apparatus to determine the technical feasibility of the reduction process and study its kinetics. This paper provides relevant background information for the present study, such as the description of current processes for the production of metallic antimony in South American countries:
La producción de antimonio, de acuerdo al requerimiento de fundentes como hematita, caliza y carbón vegetal, estos materiales son alimentados a tolvas con el propósito de realizar la mezcla en proporciones definidas. Esta mezcla posteriormente alimenta a un horno ciclón de 81 cm de diámetro y 130 cm de alto .donde se inicia el proceso de volatilización de antimonio con aire precalentado para obtener un producto intermedio denominado trióxido de antimonio impuro y cuyas leyes de trióxido de antimonio alcanzan contenidos máximos del 80% de óxido de antimonio (III) Sb2C>3. Los polvos son recuperados en filtros de mangas y filtros electrostáticos, éste material se pelletiza con fundentes como el carbonato de sodio (Na2CC>3) y carbón vegetal el cual se reduce en hornos rotatorios de tambor corto, para la obtención de antimonio metálico de 99 a 99.2%. Posteriormente el metal es refinado en hornos de tipo estacionario (horno reverbero), hasta lograr purezas del 99,5 o 99,6% eliminando arsénico y hierro principalmente. La oxidación del antimonio metálico (régulo), depende del mercado del trióxido de antimonio, el cual se lleva a cabo en un horno eléctrico para producir trióxido de antimonio (Sb2C>3) de alta pureza (99.5% Sb2C>3). En este estudio se muestra la disposición del horno ciclón y horno eléctrico de una planta de antimonio que tratan concentrados de antimonio mostrados en el proceso descrito anteriormente, para producir antimonio por oxidación/reducción, considerando la ley del mineral mostrado, se producen 498 kg S02/t mineral (174 m3 S02/t mineral). Tomando en cuenta el anterior criterio, las plantas metalúrgicas pequeñas que producen antimonio no pueden implementar el proceso exigido para el cuidado del medio ambiente debido a que sus instalaciones no cuentan con unidades que posibiliten la recuperación o mitigación de gases contaminantes con Anhídrido Sulfuroso(S02) y principalmente no pueden acceder a esa tecnología por la inviabilidad económica, por consiguiente, ellas siguen recurriendo a procesos convencionales como la tostación de los minerales de antimonio y reducción en hornos rotativos logrando bajas recuperaciones de antimonio metálico y con incidencia en la contaminación ambiental con Anhídrido Sulfuroso(S02).( REDUCCIÓN CARBOTÉRMICA DE SULFURO DE ANTIMONIO EN PRESENCIA DE ÓXIDO DE CALCIO (Tesis de Grado Magíster en Ingeniería Metalúrgica, U de C), 2011 ) The production of antimony, according to the requirement of fluxes such as hematite, limestone and charcoal, these materials are fed into hoppers with the purpose of mixing in defined proportions. This mixture subsequently feeds a cyclone oven 81 cm in diameter and 130 cm high, where the antimony volatilization process begins with preheated air to obtain an intermediate product called impure antimony trioxide and whose antimony trioxide laws reach content. maximum 80% antimony (III) oxide Sb2C> 3. The powders are recovered in bag filters and electrostatic filters, this material is pelletized with fluxes such as sodium carbonate (Na2CC> 3) and charcoal which is reduced in short drum rotary kilns, to obtain 99 metal antimony. to 99.2%. Subsequently, the metal is refined in stationary type furnaces (reverberatory furnace), until purities of 99.5 or 99.6% are achieved, eliminating mainly arsenic and iron. The oxidation of metallic antimony (regulus) depends on the market for antimony trioxide, which is carried out in an electric furnace to produce trioxide. high purity antimony (Sb 2 C> 3) (99.5% Sb 2 C> 3). This study shows the arrangement of the cyclone kiln and electric kiln of an antimony plant that treat antimony concentrates shown in the process described above, to produce antimony by oxidation / reduction, considering the grade of the mineral shown, 498 kg S0 are produced 2 / t mineral (174 m 3 S0 2 / t mineral). Taking into account the previous criterion, the small metallurgical plants that produce antimony cannot implement the required process for the care of the environment because their facilities do not have units that allow the recovery or mitigation of polluting gases with Sulfurous Anhydride (S0 2 ) and mainly they cannot access this technology due to economic infeasibility, therefore, they continue to resort to conventional processes such as roasting of antimony minerals and reduction in rotary kilns, achieving low recoveries of metal antimony and with an incidence on environmental contamination with Sulfurous Anhydride (S02). (CARBOTHERMAL REDUCTION OF ANTIMONY SULFIDE IN THE PRESENCE OF CALCIUM OXIDE (Master's Thesis in Metallurgical Engineering, U of C), 2011)
De este antecedente se puede deducir claramente que muchas plantas generan Antimonio metálico, por procesos de tostación que incluyen procesos de Oxido- reducción, pero no consideran los gases contaminantes como Anhídrido Sulfuroso (S02) produciendo un impacto ambiental negativo. Es deseable entonces contar con una planta que se preocupe en forma integral del proceso, eliminando finalmente gases que no sean nocivos para la población y su entorno. From this background it can be clearly deduced that many plants generate metallic antimony, by roasting processes that include Oxido-reduction processes, but do not consider polluting gases as Sulfurous Anhydride (S0 2 ) producing a negative environmental impact. It is therefore desirable to have a plant that is fully concerned with the process, finally eliminating gases that are not harmful to the population and their environment.
La tostación es una operación preparatoria de los minerales de tipo pirometalúrgico. En su forma oxidante se utiliza para transformar los sulfuros metálicos minerales en óxidos y/o sulfatos, por reacción con el oxígeno del aire a temperaturas entre 500 y 900 °C, facilitando la extracción por ambos métodos. El sistema químico-físico correspondiente está compuesto de: metal, azufre y oxígeno (Me-S-O), y admite un máximo de cinco fases en equilibrio. Al operar a temperatura constante se reducen a cuatro. Tres son combinaciones del metal, su sulfuro, su óxido y su sulfato y la cuarta está constituida por una mezcla de gases sometidos a una presión externa de 1atm. Cuando coexisten con el gas solo dos fases condensadas, el sistema, en condiciones isotermas, tiene un grado de libertad y las líneas de equilibrio son representables en el plano de coordenadas de dos dimensiones. El estudio gráfico del equilibrio de estos sistemas ternarios con una restricción se realiza mediante el diagrama isotérmico de Kellogg- Ingraham. La operación industrial se realiza en presencia del aire atmosférico y a temperaturas entre 500 y 900 °C, que siendo superiores a la de ignición o autocebado de la reacción no superan el punto de reblandecimiento de la carga. Las reacciones son exotérmicas utilizándose parte del calor generado para precalentar la carga y el aire, recuperándose el sobrante fuera del reactor, normalmente en generación de vapor. Los gases ricos en dióxido de azufre (SO2) se utilizan en la producción de ácido sulfúrico. El más importante es el equilibrio MeS-MeO y también MeS-MeS04, para los cuales, tomando como función del equilibrio la presión parcial de: dióxido de azufre (SO2), y como variable la presión parcial de oxigeno (O2). Roasting is a preparatory operation for pyrometallurgical-type minerals. In its oxidizing form, it is used to transform metallic mineral sulphides into oxides and / or sulfates, by reaction with oxygen in the air at temperatures between 500 and 900 ° C, facilitating extraction by both methods. The corresponding chemical-physical system is composed of: metal, sulfur and oxygen (Me-SO), and supports a maximum of five phases in equilibrium. When operating at constant temperature they are reduced to four. Three are combinations of the metal, its sulphide, its oxide and its sulfate, and the fourth is made up of a mixture of gases subjected to an external pressure of 1atm. When only two condensed phases coexist with the gas, the system, under isothermal conditions, has a degree of freedom and the equilibrium lines are representable in the two-dimensional coordinate plane. The graphic study of the equilibrium of these ternary systems with a restriction is carried out using the Kellogg- isothermal diagram. Ingraham. The industrial operation is carried out in the presence of atmospheric air and at temperatures between 500 and 900 ° C, which, being higher than that of ignition or self-priming of the reaction, do not exceed the softening point of the load. The reactions are exothermic, using part of the heat generated to preheat the charge and the air, recovering the surplus outside the reactor, normally in steam generation. Gases rich in sulfur dioxide (SO2) are used in the production of sulfuric acid. The most important is the balance MeS-MeO and also MeS-MeS0 4 , for which, taking as a function of balance the partial pressure of: sulfur dioxide (SO2), and as a variable the partial pressure of oxygen (O2).
La tostación consiste en el cambio de la composición química de un mineral metálico por reacción a alta temperatura, pero sin cambio de su estado sólido, con las sustancias gaseosas de la atmósfera del horno. La tostación, como la calcinación, es una operación de naturaleza química pero, a diferencia de ésta, no se plantea eliminar materia inerte sino tan sólo transformarla, sus efectos sobre la concentración metálica de la menas son escasos. La tostación es una preparación aplicable tanto a la extracción pirometalúrgica como la hidrometalúrgica, ya que sus fines son diversos en dependencia de la naturaleza del mineral: óxidos, sulfuras, etc., y del reactivo gaseoso utilizado: oxígeno, oxido de carbono, cloruros, pudiéndose distinguir, según sea éste, en tres tipos básicos: oxidante, reductora, y clorurante, de las cuales la más característica es la primera, realizada sobre sulfuras en presencia de aire, que corresponde con el concepto estricto del término. La tostación oxidante puede realizarse bajo la modalidad de a muerte, o completa, y parcial, y ésta última ser sulfatante o no sulfatante. En la tostación a muerte el sulfuro se oxida completamente para facilitar su posterior reducción por carbón. En la parcial no sulfatante se disminuye el contenido de azufre para después poder formar una fase fundida de sulfuras o mata que concentre el metal; en la sulfatante, queda una parte del azufre como sulfato, para hacerlo soluble en los medios acuosos. Roasting consists of changing the chemical composition of a metallic mineral by reaction at high temperature, but without changing its solid state, with the gaseous substances in the furnace's atmosphere. Roasting, like calcination, is an operation of a chemical nature but, unlike this, it is not intended to eliminate inert matter but only to transform it, its effects on the metallic concentration of ores are few. Roasting is a preparation applicable to both pyrometallurgical and hydrometallurgical extraction, since its purposes are diverse depending on the nature of the mineral: oxides, sulfides, etc., and the gaseous reagent used: oxygen, carbon oxide, chlorides, being able to distinguish, depending on the latter, in three basic types: oxidizing, reducing, and chlorinating, of which the most characteristic is the first, carried out on sulphides in the presence of air, which corresponds to the strict concept of the term. The oxidizing roasting can be carried out under the modality of death, or complete, and partial, and the latter can be sulfating or non-sulfating. In roasting to death, the sulfide is completely oxidized to facilitate its subsequent reduction by carbon. In the non-sulphating partial, the sulfur content is decreased to later be able to form a molten phase of sulphides or matte that concentrates the metal; in the sulfant, a part of the sulfur remains as sulfate, to make it soluble in aqueous media.
Modelo químico-físico de la tostación oxidante. El modelo de la tostación oxidante de un sulfuro metálico, a la temperatura: T (K), puede expresarse mediante la reacción química física siguiente: Chemical-physical model of oxidative roasting. The oxidative roasting pattern of a metal sulfide, at the temperature: T (K), can be expressed by the following physical chemical reaction:
MeS(s) + 3/202(g) = MeO(s) + S02(g); DH(T); AG(T) MeS (s) + 3/20 2 (g) = MeO (s) + S0 2 (g); DH (T); AG (T)
Como en los casos precedentemente estudiados, la variación de entalpia de esta reacción a la temperatura T, puede efectuarse sumando los calores de formación en condiciones estándar del óxido y sulfuro, el calor sensible del sistema entre 298°K y T(K), dado por su calor específico equivalente: (Cp), según la ecuación: As in the cases previously studied, the enthalpy variation of this reaction at temperature T can be made by adding the formation heats in standard conditions of oxide and sulfide, the sensible heat of the system between 298 ° K and T (K), given by its equivalent specific heat: (Cp), according to the equation:
DH = DH° + íT 298(Cp)S dT y si llamamos: K al cociente: PS02/P02 3/2, se verifica: DH = DH ° + í T 298 (Cp) S dT and if we call: K to the quotient: PS0 2 / P0 2 3/2 , it is verified:
AG(T)=RT InK/Keq Siendo Keq la constante de equilibrio para la temperatura: T (K). AG (T) = RT InK / Keq Keq being the equilibrium constant for temperature: T (K).
La expresión anterior nos da el potencial de tostación del reactor a temperatura T y presiones parciales P02 Y PS02 cualesquiera. El análisis de las condiciones de tostación oxidante se realiza con ayuda del diagrama isotérmico de áreas de estabilidad, de Kellog-lngraham del sistema (Me-S-O). Para tostar a muerte sin formar sulfatos debe trabajarse de forma que la recta de equilibrio entre MeO y MeS0 , que se desplaza paralelamente a si misma alejándose del origen de coordenadas al aumentar la temperatura, no corte a la línea de composición del gas a presión atmosférica. La tostación oxidante parcial no sulfatante se controla regulando la cantidad de aire de acceso al reactor y el tiempo de residencia de la carga en este. The above expression gives us the roasting potential of the reactor at temperature T and any partial pressure P0 2 and PS0 2 . The analysis of the oxidative roasting conditions is carried out with the help of the isothermal diagram of areas of stability, Kellog-Ingraham system (Me-SO). To toast to death without forming sulfates, work must be done so that the equilibrium line between MeO and MeS0, which moves parallel to itself away from the origin of coordinates with increasing temperature, does not cross the line of composition of the gas at atmospheric pressure . Non-sulfating partial oxidative roasting is controlled by regulating the amount of access air to the reactor and the residence time of the charge in it.
Modelo tecnológico de la tostación. Technological model of roasting.
A diferencia del secado y calcinación, la tostación es una operación exotérmica que requiere, para su desarrollo autógeno, que la carga alcance en su zona de reacción la temperatura de ignición. La operación procede en contracorriente de mineral y gases de tal forma que el sulfuro metálico: MeS, acompañado de ganga de otros sulfuros, generalmente pirita y silicatos varios, se calienta paulatinamente a medida que se desplaza por el reactor desde su ingreso por la parte superior de la culata posterior y toma contacto con los gases de combustión y tostación que en sentido contrario recorren el horno desde la culata anterior a la posterior, de esta manera la zona de reacción hasta alcanzar el punto de ignición se alcanza en un punto intermedio del reactor, lo que provoca que el mineral (ganga) tostado se aleje de la zona de reacción enfriándose con el aire que ingresa procedente del exterior, a través de la abertura de descarga de este material. Unlike drying and calcination, roasting is an exothermic operation that requires, for its autogenous development, that the charge reaches the ignition temperature in its reaction zone. The operation proceeds in countercurrent of mineral and gases in such a way that the metallic sulphide: MeS, accompanied by a gangue of other sulphides, generally pyrite and various silicates, gradually heats up as it moves through the reactor from its entrance through the upper part of the rear cylinder head and makes contact with the combustion and roasting gases that in the opposite direction run through the furnace from the front cylinder head to the rear cylinder, in this way the reaction zone until reaching the ignition point is reached at an intermediate point of the reactor , which causes the toasted ore (gangue) to move away from the reaction zone, cooling with the air that enters from the outside, through the discharge opening of this material.
La temperatura: T’f, de salida de los sólidos, y Tf, de los gases son diferentes. The temperature: T’f, outlet of the solids, and Tf, of the gases are different.
DH (MeS MeO) = AH(MeO+G)(298 Tf)+ AHS02(298 T’f) +q El inicio o cebado de la operación necesita aporte externo de calor dotándose al reactor de los elementos necesarios para tal fin. Las temperaturas se regulan para que no superen excesivamente la temperatura de ignición ni bajen de esta, graduando la aportación de aire o bien reciclando o extrayendo calor sensible. El saldo de calor: q, de la operación varia con la naturaleza del sulfuro, la riqueza de la mena, y su contenido pirítico, pudiendo recuperarse para producir vapor de alta presión en el propio reactor o fuera de él. En el diagrama del balance térmico (Sankey) que a continuación se muestra, de la operación puede apreciarse que el calor útil o entalpia de tostación, aparece aquí como entrada dada la exotermicidad de la operación. Desde un punto de vista térmico el reactor funciona como generador de calor empleado en la producción de vapor. DH (MeS MeO) = AH (MeO + G) (298 Tf) + AHS0 2 (298 T'f) + q The start or priming of the operation requires external input of heat, providing the reactor with the necessary elements for this purpose. The temperatures are regulated so that they do not excessively exceed the ignition temperature or fall below it, graduating the air supply or recycling or extracting sensible heat. The heat balance: q, of the operation varies with the nature of the sulfide, the richness of the ore, and its pyritic content, being able to recover to produce high pressure steam in the reactor itself or outside it. In the diagram of the thermal balance (Sankey) shown below, it can be seen from the operation that the useful heat or roasting enthalpy appears here as input given the exothermicity of the operation. From a thermal point of view, the reactor works as a heat generator used in the production of steam.
Energía Energía Perdidas Calor Sensible Energía PerdidaEnergy Energy Lost Sensitive Heat Energy Lost
Química del transferida a _j_ Térmicas -)- de Gases
Figure imgf000010_0001
por ineficiencias combustible *" ^ la Carga de Combustión
Chemistry transferred to _j_ Termicas -) - de Gases
Figure imgf000010_0001
due to fuel inefficiencies * "^ the Combustion Charge
Térmica Thermal
Cinética de la tostación oxidante. Kinetics of oxidative roasting.
Los sulfuros con mayor grado de sulfuración, como por ejemplo la pirita: FeS2 se calcinan perdiendo un átomo de azufre que se desprende como vapor desde el interior de los granos, y el átomo estable de azufre se elimina por difusión en contracorriente de azufre(S) y oxigeno(O), el primero hacia el exterior y el segundo hacia el interior de la partícula; el mecanismo puede explicarse considerando que ambos átomos, de similares características físicas, se sustituyen mutuamente en la red cristalina, según la reacción: MeS + O = MeO + S (Diagramas de Tostación Kelloogg-lngrahamk-1. José María Palacios de Liñán. 11/ Octubre 2011). The sulfides with the highest degree of sulfidation, such as pyrite: FeS2, are calcined, losing a sulfur atom that is released as steam from inside the grains, and the stable sulfur atom is removed by countercurrent diffusion of sulfur (S ) and oxygen (O), the first towards the exterior and the second towards the interior of the particle; the mechanism can be explained considering that both atoms, of similar physical characteristics, substitute each other in the crystal lattice, according to the reaction: MeS + O = MeO + S (Kelloogg-Ingrahamk-1 Roasting Diagrams. José María Palacios de Liñán. 11 / October 2011).
De este antecedente se refuerza claramente la importancia de controlar muy bien la temperatura del proceso y los aportes de oxígeno a la cámara de tostación del mineral. This background clearly reinforces the importance of very well controlling the process temperature and the oxygen contributions to the mineral roasting chamber.
Fundición de Concentrados de Plomo. El método más empleado actualmente es la reducción del sinter de óxido de plomo, el cual a su vez se produce por tostación sinterizante de concentrados de plomo (galena), mezclados con finos reciclados de sinter y sulfato de plomo, entre otros, en máquinas de sinterización. El propósito de esta etapa es remover el azufre del concentrado como Anhídrido Sulfuroso (SO2) y formar una masa sólida apropiada para cargar en el horno de reducción. La sinterización del concentrado de plomo en las máquinas de sinter (máquinasLead Concentrate Foundry. The currently most used method is the reduction of the sinter of lead oxide, which in turn is produced by sintering roasting of lead concentrates (galena), mixed with fine recycled sinter and lead sulfate, among others, in sintering. The purpose of this stage is to remove the sulfur from the concentrate as Sulphurous Anhydride (SO2) and to form an appropriate solid mass to load in the reduction furnace. Sintering of lead concentrate in sinter machines (machines
Dwight-Lloyd) procede a 800-850°C y la reacción principal es la de oxidación de la galena a Oxido de Plomo (PbO) con generación de anhídrido Sulfuroso(S02) según:Dwight-Lloyd) proceeds at 800-850 ° C and the main reaction is the oxidation of the galena to Lead Oxide (PbO) with generation of Sulphurous anhydride (S0 2 ) according to:
La reacción se mantiene a 800-850°C diluyendo la carga con finos de sinter recirculados ya que el punto de fusión del Oxido e Plomo (PbO) es de 886°C y delThe reaction is maintained at 800-850 ° C by diluting the charge with recirculated sinter fines since the melting point of Oxide and Lead (PbO) is 886 ° C and the
Sulfuro de Plomo (PbS) de 1119°C. Lead Sulfide (PbS) at 1119 ° C.
El sinter contiene de 40-50% Pb, 1-10% Zn, 1-2% S, 8-10% Si02, 5-8% CaO y 12-15% Fe203. Este se chanca y harnea para tener una carga de -37+1/4” para la etapa siguiente de reducción con carbón. The sinter contains 40-50% Pb, 1-10% Zn, 1-2% S, 8-10% Si02, 5-8% CaO and 12-15% Fe203. This is crushed and harneanea to have a load of -37 + 1/4 "for the next stage of reduction with coal.
La reducción del óxido de plomo II (PbO) con carbón (coke) es un proceso termodinámicamente muy simple y puede efectuase incluso a temperaturas entre 400- 450°C. Sin embargo, por la presencia importante de cinc (Zn) y otros componentes (CaO, S1O2 y Fe203) se debe tener una escoria fluida lo que requiere operar sobre 1000°C. Debido a los problemas que presenta el cinc, se desarrolló un proceso más universal para estos concentrados (Imperial SmeltingProcess, ISP) el que permite producir tanto plomo como cinc.(Metalurgia del Plomo , Seba Rivano Villagra .Scribd, Marzo 19, 2013) The reduction of lead oxide II (PbO) with carbon (coke) is a thermodynamically very simple process and can be carried out even at temperatures between 400-450 ° C. However, due to the significant presence of zinc (Zn) and other components (CaO, S1O2 and Fe203), it is necessary to have a fluid slag, which requires operating at 1000 ° C. Due to the problems that zinc presents, a more universal process was developed for these concentrates (Imperial Smelting Process, ISP) which allows the production of both lead and zinc. (Lead Metallurgy, Seba Rivano Villagra .Scribd, March 19, 2013)
De este antecedente se desprende que para obtener Oxido de Plomo (PbO) desde derivados sulfurados se debe trabajar a temperaturas por sobre los 800°C y para el proceso de obtención del plomo metálico se deben emplear temperaturas mucho mayores, cercanas a los 1000°C .dependiendo de los componentes de la escoria que acompañen al producto a reducir. From this background it follows that in order to obtain Lead Oxide (PbO) from sulfur derivatives, it is necessary to work at temperatures above 800 ° C and for the process of obtaining metallic lead, much higher temperatures must be used, close to 1000 ° C .depending on the components of the slag that accompany the product to be reduced.
En una patente publicada en 1985 se describe un método para producir plomo metálico, a partir de materiales de partida que contienen plomo, fundiendo los materiales de partida en condiciones de oxidación y reduciendo la masa fundida oxidada resultante, caracterizado por reducir la masa fundida con agente de reducción carbonoso sólido, en la masa fundida y asegurar que el material sólido que contiene carbonato esté presente en el fundido junto con el agente reductor. (ES8602957, 16-11- 1985, Prodn. of metallic lead from lead-contg starting materials , BOLIDEN AB ). A patent published in 1985 describes a method of producing metallic lead, from lead-containing starting materials, by melting the starting materials under oxidation conditions and reducing the resulting oxidized melt, characterized by reducing the melt with agent reducing solid carbonaceous in the melt and ensuring that the carbonate-containing solid material is present in the melt along with the reducing agent. (ES8602957, 11-16-1985, Prodn. Of metallic lead from lead-contg starting materials, BOLIDEN AB).
Básicamente este antecedente describe un proceso optimizado para obtener Plomo, por oxidación del mineral y después reducción con la ayuda de carbonatos, que deben ser agregados al material fundido. En una patente publicada en 1995 se describe un procedimiento para la obtención de trióxido de arsénico, de más de un 98% de pureza. El fundamento teórico de esta invención está basado en la menor constante del producto de solubilidad del trióxido de antimonio (Sb2C>3) con respecto al trióxido de Arsénico (AS2O3), así como el ajuste adecuado de la relación sólido-líquido y la acidez del medio; aspectos que favorecen preferentemente la hidrólisis de los complejos oxiclorurados de antimonio, lo cual provoca su separación de la disolución, permaneciendo el arsénico en la misma. Basically this background describes an optimized process to obtain Lead, by oxidation of the mineral and then reduction with the help of carbonates, which must be added to the molten material. In a patent published in 1995, a process for obtaining arsenic trioxide, of more than 98% purity, is described. The theoretical basis of this invention is based on the lower constant of the solubility product of antimony trioxide (Sb 2 C> 3 ) with respect to Arsenic trioxide (AS2O3), as well as the adequate adjustment of the solid-liquid ratio and the acidity of the medium; aspects that preferably favor the hydrolysis of the antimony oxychlorinated complexes, which causes their separation from the solution, the arsenic remaining in it.
La lixiviación de desechos arsenicales con disolución de NaOH permite concentrar los metales preciosos en el residuo sólido y origina un nuevo residual: una disolución alcalina rica en arsénico y antimonio, a partir de la cual se separa el antimonio al favorecer preferentemente el desplazamiento de los equilibrios de formación del trióxido de antimonio (III), obteniendo de esta forma una disolución con una alta relación Arsénico(As):Antimonio(Sb) a partir de la cual cristaliza el trióxido de Arsénico (AS203) The leaching of arsenic wastes with NaOH solution makes it possible to concentrate the precious metals in the solid residue and originates a new residual: an alkaline solution rich in arsenic and antimony, from which the antimony is separated by preferentially favoring the displacement of the equilibria of antimony (III) trioxide formation, obtaining in this way a solution with a high ratio of Arsenic (As): Antimony (Sb) from which Arsenic trioxide (AS 2 0 3 ) crystallizes
El procedimiento objeto de la patente, consiste en diluir con agua y acidular, con HCI de concentración 4,5 a 5,5 mol/L, la disolución alcalina, que contiene el arsénico y el antimonio, hasta provocar la separación de más del 94 % de éste último elemento, por filtración , constituyendo este sólido un concentrado de antimonio. Al evaporar el agua del filtrado se obtienen los cristales de trióxido de antimonio (Sb2C>3) .(CU22289, 31-01- 1995, Procedure for obtaining arsenic trioxide from alkaline liquors with a high antimony-content, UNIV LA HABANA, Bustamente Sánchez María de la Libertad) The procedure object of the patent consists of diluting the alkaline solution, which contains arsenic and antimony, with acid with HCI of concentration 4.5 to 5.5 mol / L, until causing the separation of more than 94 % of the latter element, by filtration, this solid constituting an antimony concentrate. By evaporating the water from the filtrate, the antimony trioxide crystals (Sb 2 C> 3) are obtained. (CU22289, 31-01-1995, Procedure for obtaining arsenic trioxide from alkaline liquors with a high antimony-content, UNIV LA HABANA, Bustely Sánchez María de la Libertad)
De este antecedente se desprende lo difícil que resulta la separación de trióxido de antimonio (Sb203) de trióxido de Arsénico (As2Ü3), incluso con lixiviación de los minerales que los contienen. Por lo tanto es relevante contar con un procedimiento que permita obtener Trióxido de antimonio (Sb203) y Trióxido de Arsénico (As203) de calidad Comercial. From this background it is clear how difficult it is to separate antimony trioxide (Sb 2 03) from arsenic trioxide (As 2 Ü3), even with leaching of the minerals that contain them. Therefore, it is relevant to have a procedure that allows to obtain Antimony Trioxide (Sb 2 0 3 ) and Arsenic Trioxide (As 2 0 3 ) of Commercial quality.
DESCRIPCION DE LA INVENCION DESCRIPTION OF THE INVENTION
Un descripción más detallada de la planta industrial (Fig.1)se presenta a continuación, el cual se constituirá básicamente de las siguientes dos fases de una serie de equipos que dan cuenta de los procesos pirometalúrgicos: Primera fase: Equipos y procesos involucrados en la volatilización y formación de la Mezcla solida de los Productos de Interés. A more detailed description of the industrial plant (Fig. 1) is presented below, which will basically consist of the following two phases of a series of equipment that account for pyrometallurgical processes: First phase: Equipment and processes involved in the volatilization and formation of the Solid Mixture of Products of Interest.
Esta primera fase consiste en equipos para un proceso de Tostación oxidante controlada, de los minerales sulfurados a temperaturas entre los 480 y 520°C, en hornos rotatorios inclinados en sentido longitudinal (entre la culata posterior y anterior de ellos) y revestidos interiormente con refractarios, y alzadores instalados entre la culata posterior y la mitad de su longitud, los que permiten levantar la carga hasta el punto más alto del horno y para que se esparza en su caída vertical sobre la corriente gaseosa. La alimentación del mineral a los hornos es continua ingresando a ellos por la parte superior de la culata posterior de estos, en contra corriente a los gases de combustión y al aire inducido que ingresan por la culata anterior de estos .La Cantidad de aire ,que debe ser regulada para asegurar la adecuada oxidación de Antimonio (Sb) y Arsénico (As) hasta la formación de sus trióxidos, y la consecuente volatilización de los mismos, como también asegurar la volatilización directa de la Galena (PbS) alimentada y evitar la formación de Cervantina (Sb204). Estos productos volátiles evacuarán del horno junto con los gases de combustión y el anhídrido sulfuroso (SO2) formado a partir de la oxidación de los sulfuros de Antimonio (Sb) y Arsénico (As), en conjunto con las partículas de ganga mineral arrastradas por la corriente gaseosa. This first phase consists of equipment for a controlled oxidizing roasting process, of sulphided minerals at temperatures between 480 and 520 ° C, in rotary kilns inclined longitudinally (between the rear and front cylinder heads of them) and lined internally with refractories , and lifters installed between the rear cylinder head and half its length, which allow the load to be lifted to the highest point of the furnace and so that it spreads in its vertical fall on the gas stream. The supply of the mineral to the furnaces is continuous entering them through the upper part of the rear cylinder head of these, against the current of the combustion gases and the induced air that enter through the front cylinder head of these. it must be regulated to ensure the adequate oxidation of Antimony (Sb) and Arsenic (As) until the formation of its trioxides, and the consequent volatilization thereof, as well as to ensure the direct volatilization of the fed Galena (PbS) and avoid the formation de Cervantina (Sb 2 0 4 ). These volatile products will evacuate from the furnace together with the combustion gases and the sulfur dioxide (SO2) formed from the oxidation of the Antimony (Sb) and Arsenic (As) sulfides, together with the mineral gangue particles carried by the gas stream.
El calor requerido para alcanzar la temperatura de operación de proceso, entre los 480 y 520°C, en los gases de salida del horno, se genera con un quemador a gas natural instalado al centro de la culata anterior del horno insertado en la pre-cámara de combustión correspondiente, permitiendo una cantidad de calor que posibilite generar una temperatura mayor a los 500°C en la entrada del horno sobrecalentando el material calcinado saliente y asegurar la temperatura de salida del horno con los productos de interés volatilizados. El material del mineral que no volatiliza ira quedando al interior del horno, el que está constituido mayoritariamente por ganga mineral y que se evacuará continuamente por la descarga del horno ubicada en la zona inferior de su culata anterior, y cuyo escurrimiento se genera a raíz de la inclinación vertical que presenta el horno entre su culata posterior y la anterior. La ganga calcinada saliente del horno es transportada a pozos de enfriamiento, tres en total, en que el material es depositado para su posterior enfriamiento y retiro a su lugar de destino definitivo, botadero o devolución al lugar de origen, el yacimiento. Los tres pozos, irán rotativamente cumpliendo una función específica ya sea de recepción, de enfriamiento o de retiro del material. Composición mineralógica del mineral a procesar, se ha tomado en consideración los análisis de las características de minerales que generalmente se procesan para la obtención de trióxido de antimonio en Sudamérica, para ello se han estudiado los antecedentes publicados por variadas empresas mineras: The heat required to reach the process operating temperature, between 480 and 520 ° C, in the kiln exhaust gases, is generated with a natural gas burner installed in the center of the front cylinder head of the kiln inserted in the Corresponding combustion chamber, allowing a quantity of heat that makes it possible to generate a temperature greater than 500 ° C at the entrance of the furnace, overheating the outgoing calcined material and ensuring the exit temperature of the furnace with the volatilized products of interest. The mineral material that does not volatilize will remain inside the furnace, which is mainly made up of a mineral gangue and that will be continuously evacuated by the discharge of the furnace located in the lower area of its previous cylinder head, and whose runoff is generated as a result of the vertical inclination that the furnace presents between its rear cylinder head and the previous one. The calcined gangue leaving the furnace is transported to cooling wells, three in total, in which the material is deposited for its subsequent cooling and removal to its final destination, dump or return to the place of origin, the deposit. The three wells will rotate, fulfilling a specific function, either of reception, cooling or removal of the material. Mineralogical composition of the mineral to be processed, the analysis of the characteristics of minerals that are generally processed to obtain antimony trioxide in South America has been taken into account, for this purpose, the antecedents published by various mining companies have been studied:
El mineral generalmente tiene la siguiente composición genérica: The mineral generally has the following generic composition:
• Antimonita > 50% • Antimonite> 50%
• Galena (PbS)< 0,15% • Galena (PbS) <0.15%
• Arsenopirita< 2% • Arsenopyrite <2%
• Sílice (S1O2) constituye mayormente la ganga • Silica (S1O2) is mainly the gangue
• Trazas de mercurio • Traces of mercury
De estudios en específico, se tienen los antecedentes iniciales de las características del mineral. From specific studies, there is an initial history of the characteristics of the mineral.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
El mineral recibido será tratado en tres líneas idénticas de operación (Planta), así como se detalla en el diagrama de flujo que forma parte de los dibujos en la Fig. 1. The received mineral will be treated in three identical lines of operation (Plant), as detailed in the flow diagram that is part of the drawings in Fig. 1.
Primera Fase: Equipos para la Volatilización y formación de la Mezcla de los Productos de Interés. First Phase: Equipment for the Volatilization and formation of the Mix of the Products of Interest.
Esta primera fase consiste en equipos para un proceso de Tostación oxidante controlada de los minerales sulfurados a temperaturas entre los 480 y 520°C, en hornos rotatorios (2) inclinados en sentido longitudinal (entre la culata posterior y anterior de ellos) y revestidos interiormente con refractarios, y alzadores instalados entre la culata posterior y la mitad de su longitud, los que permiten levantar la carga hasta el punto más alto del horno , para que se esparza en su caída vertical sobre la corriente gaseosa. This first phase consists of equipment for a controlled oxidizing roasting process of sulphided minerals at temperatures between 480 and 520 ° C, in rotary kilns (2) inclined longitudinally (between the rear and front cylinder heads of them) and lined internally with refractories, and lifters installed between the rear cylinder head and half its length, which allow the load to be lifted to the highest point of the furnace, so that it spreads in its vertical fall on the gas stream.
Una vez que los gases de combustión, anhídrido sulfuroso y volátiles abandonan el horno a temperaturas entre los 480 y 520°C, ingresan a una Cámara de Expansión (3) o de Sedimentación de gases cuya función es reducir la velocidad inicial de las partículas arrastradas por la corriente gaseosa, eliminando de las mismas las partículas de mayor tamaño (> 50 pm) y además las abrasivas, como también disminuir la temperatura de los gases salientes. Dicha cámara cuenta con una sección inferior de paredes inclinadas que confluyen a una cadena de arrastre, que recupera las partículas de polvos decantadas en ella. La cámara se diseña para provocar una disminución de temperatura de 100°C. En base al criterio de separación, para la recolección de partículas se utiliza la fuerza gravitacional como principio de funcionamiento permitiendo la sedimentación de material particulado en tamaños de 20 a 50 pm o mayores. Once the combustion gases, sulfur dioxide and volatile gases leave the furnace at temperatures between 480 and 520 ° C, they enter an Expansion Chamber (3) or Gas Sedimentation whose function is to reduce the initial velocity of the entrained particles by the gas stream, eliminating the larger particles (> 50 pm) and abrasives, as well as lowering the temperature of the outgoing gases. This chamber has a lower section of sloping walls that converge to a drag chain, which recovers the dust particles settled in it. The chamber is designed to cause a temperature drop of 100 ° C. Based on the separation criteria, for the collection of particles, the gravitational force is used as the principle of operation, allowing sedimentation of particulate material in sizes from 20 to 50 pm or larger.
El dimensionamiento de un equipo que permita este objetivo está estrechamente ligado al conocimiento de la naturaleza del movimiento de una partícula que se mueve en el seno de un fluido. El modelo aceptado es el propuesto por Stokes conocido como la ley de Stokes The sizing of equipment that enables this objective is closely linked to the knowledge of the nature of the movement of a particle that moves within a fluid. The accepted model is the one proposed by Stokes known as Stokes' law
En esencia una cámara de sedimentación es un recipiente con una entrada en un lado y una salida situada al lado contrario frontalmente o en la parte superior de la misma, generalmente de geometría rectangular su parte central, donde se permite a una corriente gaseosa expandirse de tal forma, que la velocidad del gas dentro de la misma disminuye considerablemente permitiendo que la acción de la gravedad sedimente las partículas que esta arrastra. La sección transversal del equipo es mucho mayor que la del ducto que se aproxima a él para que pueda expandirse el gas y consecuentemente se produzca la ralentización del mismo. Se emplean tolvas que recolectan el sólido separado en la parte inferior del mismo, desde donde es retirado por medio de una cadena de arrastre para ser enviadas a su destino siguiente. Debe tenerse en cuenta que el sistema de recolección de polvos esté completamente bien sellado para prevenir que entre aire a través de él, el que puede aumentar la turbulencia en el equipo y consiguientemente reincorporar las partículas eliminadas nuevamente a la corriente. Existen dos tipos fundamentales de modelos constructivos: el de placas deflectoras o modelo de Howard y el de cámaras de expansión. In essence, a sedimentation chamber is a container with an inlet on one side and an outlet located on the opposite side frontally or on top of it, generally of rectangular geometry its central part, where a gas stream is allowed to expand in such a way In this way, the velocity of the gas within it decreases considerably, allowing the action of gravity to settle the particles it carries. The cross section of the equipment is much greater than that of the pipeline that approaches it so that the gas can expand and consequently slow down. Hoppers are used that collect the separated solid in the lower part of the same, from where it is removed by means of a drag chain to be sent to its next destination. It should be noted that the dust collection system is completely well sealed to prevent air from entering through it, which can increase turbulence in the equipment and consequently re-incorporate the removed particles back into the stream. There are two fundamental types of construction models: that of baffle plates or Howard's model and that of expansion chambers.
En esencia una cámara de sedimentación es un recipiente con una entrada en un lado y una salida situada al lado contrario frontalmente o en la parte superior de la misma, generalmente de geometría rectangular su parte central, donde se permite a una corriente gaseosa expandirse de tal forma, que la velocidad del gas dentro de la misma disminuye considerablemente permitiendo que la acción de la gravedad sedimente las partículas que esta arrastra. La sección transversal del equipo es mucho mayor que la del ducto que se aproxima a él para que pueda expandirse el gas y consecuentemente se produzca la ralentización del mismo. Se emplean tolvas que recolectan el sólido separado en la parte inferior del mismo, desde donde es retirado por medio de una cadena de arrastre para ser enviadas a su destino siguiente. Existen dos tipos de modelos constructivos: el de placas deflectoras o modelo de Howard y el de cámaras de expansión. In essence, a sedimentation chamber is a container with an inlet on one side and an outlet located on the opposite side frontally or on top of it, generally of rectangular geometry its central part, where a gas stream is allowed to expand in such a way In this way, the velocity of the gas within it decreases considerably, allowing the action of gravity to settle the particles it carries. The cross section of the equipment is much greater than that of the pipeline that approaches it so that the gas can expand and consequently slow down. Hoppers are used that collect the solid separated at the bottom of it, from where it is removed by means of a drag chain to be sent to its next destination. There are two types of construction models: that of baffle plates or Howard's model and that of expansion chambers.
La operación del ciclón en este proceso se aplica para aquellas partículas de mineral que permanecen en la corriente gaseosa (preferentemente ganga) y que no fueron recuperadas en el proceso anterior, de diámetro aproximado menor a 20pm. The operation of the cyclone in this process is applied to those mineral particles that remain in the gas stream (preferably gangue) and that were not recovered in the previous process, with an approximate diameter of less than 20pm.
El ciclón es esencialmente una cámara de sedimentación en que la aceleración gravitacional se sustituye con la aceleración centrifuga. Los ciclones constituyen uno de los medios menos costosos de recolección de polvo, tanto desde el punto de vista de operación como inversión. Estos son básicamente construcciones simples que no cuentan con partes móviles, lo cual facilita las operaciones de mantenimiento; pueden ser hechos de una amplia gama de materiales y pueden ser diseñados para altas temperaturas (que ascienden incluso a los 1.000 °C) y presiones de operación. Los ciclones son adecuados para separar partículas con diámetros mayores de 5 pm; aunque partículas muchos más pequeñas, en ciertos casos, pueden ser separadas. Los ciclones presentan eficiencias mayores que la cámara de sedimentación gravitacional, y eficiencias menores que los filtros de talegas, lavadores y precipitadores electrostáticos. La fuerza centrífuga generada por los giros del gas dentro del ciclón puede ser mucho mayor que la fuerza gravitacional, ya que la fuerza centrífuga varía en magnitud dependiendo de la velocidad de giro del gas y del radio de giro. Teóricamente el aumento de la velocidad de entrada al ciclón implicaría un aumento de la fuerza centrífuga y, por lo tanto, un aumento de la eficiencia; sin embargo, velocidades de entrada muy altas generan la resuspensión de material particulado de las paredes internas del ciclón, lo cual disminuye la eficiencia del ciclón; adicionalmente, aumentar la velocidad de entrada implica mayor consumo de energía. The cyclone is essentially a sedimentation chamber in which gravitational acceleration is replaced by centrifugal acceleration. Cyclones are one of the least expensive means of dust collection, both from an operational and investment point of view. These are basically simple constructions that do not have moving parts, which facilitates maintenance operations; They can be made from a wide range of materials and can be designed for high temperatures (up to 1,000 ° C) and operating pressures. Cyclones are suitable for separating particles with diameters greater than 5 pm; although much smaller particles, in certain cases, can be separated. Cyclones have higher efficiencies than the gravitational sedimentation chamber, and lower efficiencies than pan filters, scrubbers, and electrostatic precipitators. The centrifugal force generated by the gyrations of the gas within the cyclone can be much greater than the gravitational force, since the centrifugal force varies in magnitude depending on the speed of the gas's rotation and the radius of gyration. Theoretically, increasing the speed of entry to the cyclone would imply an increase in the centrifugal force and, therefore, an increase in efficiency; however, very high input speeds generate the resuspension of particulate material from the internal walls of the cyclone, which decreases the efficiency of the cyclone; Additionally, increasing the input speed implies higher energy consumption.
Conforme a la selección del ciclón (Alta eficiencia) se espera lograr en él la recuperación total de partículas sólidas aún presentes a la entrada de este equipo, de esta manera se espera que los gases salientes del ciclón a 350 °C estén limpios de partículas sólidas de ganga de la primera etapa. According to the selection of the cyclone (High efficiency), it is expected to achieve full recovery of solid particles still present at the entrance of this equipment, thus it is expected that the outgoing gases from the cyclone at 350 ° C are clean of solid particles bargain of the first stage.
Dada la temperatura alcanzada en los gases a la salida del ciclón, 350°C, ellos ingresarán a un sistema de Enfriamiento Radiativo (4) semejante a un serpentín constituido por columnas verticales unidas entre sí, por cuyo interior circula el gas disipando su calor latente al contactar las paredes del equipo, sistema que se refrigera liberando hacia la atmosfera que lo rodea una significativa cantidad de calor por radiación y convección. El ducto que constituye el sistema de enfriamiento radiativo debe ser dimensionado para alta velocidad de conducción a fin de evitar la sedimentación de partículas en su interior, que se generarán por solidificación de los productos volátiles al alcanzar su punto de condensación debido a que en su longitud se provocará una disminución de temperatura de gases de al menos 250 °C, rango en el cual los compuestos volátiles presentes (AS2O3, Sb203 y PbO) condensan. La alta velocidad requerida y perdidas de carga aguas abajo en el sistema de manejo de gases se compensa con la inclusión de un extractor tipo Booster a la entrada del enfriador radiativo. Para asegurar que la Galena volatilizada se oxide y solidifique como óxido de Plomo (PbO) en los pasos siguientes, se inducirá aire a través de una válvula de abertura controlada instalada a la entrada del sistema de enfriamiento radiativo. Los gases salientes del Enfriador Radiativo conteniendo las partículas condesadas de los óxidos de Arsénico (As), Antimonio (Sb) y Plomo (Pb) volatilizados en la tostación, ingresan a un Filtro de Mangas (5) donde serán recuperadas al ser atrapadas por las telas filtrantes instaladas en su interior, telas que sólo dejan pasar los gases a tratar y a evacuar de la planta. La mezcla de partículas sólidas de los productos interesantes, Trióxido de Antimonio (Sb203), Trióxido de Arsénico (AS2O3) y Plomo oxidado (PbO) atrapados, son retiradas de las mangas por mecanismo de vibración intermitente, como también por la emisión de pulsos de aire a presión, que provoquen el desprendimiento de ellas. La mezcla de productos obtenida es transportada neumáticamente hasta el sistema de alimentación de la siguiente fase del proceso. Given the temperature reached in the gases at the cyclone outlet, 350 ° C, they will enter a radiative cooling system (4) similar to a coil consisting of vertical columns joined to each other, through which the gas circulates dissipating its latent heat by contacting the walls of the equipment, a system that cools releasing into the surrounding atmosphere a significant amount of heat by radiation and convection. The duct that constitutes the radiative cooling system must be dimensioned for high conduction velocity in order to avoid sedimentation of particles inside, which will be generated by solidification of the volatile products upon reaching their dew point due to the fact that their length a decrease in gas temperature of at least 250 ° C will be caused, a range in which the volatile compounds present (AS 2 O 3 , Sb 2 0 3 and PbO) condense. The high speed required and downstream pressure drop in the gas handling system is compensated by the inclusion of a Booster extractor at the inlet of the radiative cooler. To ensure that the volatilized Galena oxidizes and solidifies as Lead Oxide (PbO) in the following steps, air will be induced through a controlled opening valve installed at the inlet of the radiative cooling system. The outgoing gases of the Radiative Cooler containing the condensed particles of the oxides of Arsenic (As), Antimony (Sb) and Lead (Pb) volatilized in the roasting, enter a Bag Filter (5) where they will be recovered when trapped by the filter fabrics installed inside, fabrics that only allow the gases to be treated to pass and evacuate from the plant. The mixture of solid particles of the interesting products, Antimony Trioxide (Sb 2 0 3 ), Trapped Arsenic Trioxide (AS 2 O 3 ) and Oxidized Lead (PbO), are removed from the sleeves by an intermittent vibration mechanism, as well as by the emission of pressurized air pulses, which cause them to come off. The obtained product mixture is pneumatically transported to the feeding system of the next phase of the process.
En el filtro de manga (5) se lleva a cabo la separación del polvo presente en los gases haciendo pasar esta corriente gaseosa a través de tejidos filtrantes, que retienen las partículas sólidas presentes. La operación consiste básicamente en forzar el paso de la corriente de gas a través del medio filtrante (tejido), el cual tiene como misión retener el polvo transportado por el gas acumulándose sobre él y generando una capa que favorece la eficacia de la filtración de las partículas de menor tamaño. A medida que el filtro se carga de partículas exteriormente la pérdida de carga del gas a través del mismo va aumentando. Llega por tanto un momento en que es necesario despegar la capa de polvo acumulada para recuperar la funcionalidad del equipo, siendo ésta acción realizada mediante pulsos de aire a presión en sentido contrario al paso del gas. Las superficies filtrantes tienen forma de bolsa o mangas insertadas en celdas o compartimientos del filtro ordenadamente en un número de 10 o más unidades. El filtro está constituido por varias celdas en operación o estancas. Es un equipo que presenta altos rendimientos de depuración, incluso para partículas muy finas, cuyos valores usuales de rendimiento son de 99 % al 99,9 %, para tamaños comprendidos en el rango de sub-micrónes hasta varios cientos de mieras. Teniéndose presente que no pueden operar en ambientes húmedos o cerca del punto de rocío de la corriente gaseosa, como tratar polvos adhesivos o aglomerantes, pues existe el riesgo de colmatación de la tela al quedarse el polvo húmedo adherido a ellas tras la limpieza. En cuanto a su diseño el dato más importante es el caudal de gas a tratar, marcando el tamaño del equipo y en consecuencia el coste de inversión. La principal variable de diseño del filtro de mangas es la relación A/C (caudal real de gas y la superficie de captación) o velocidad de filtración expresada en m/s, y el otro parámetro operativo importante es la pérdida de carga total en el equipo, que determina la necesidad energética de impulsión del gas a través del equipo. Para entregar gases de combustión limpios al ambiente, los gases salientes del filtro de mangas que contienen anhídrido sulfuroso (SO2) ingresarán a una Torre de Lavado de Gases (7) (Lavadores de Gases) empacada donde la aspersión en contra corriente de lechada de cal al 10% de dilución sobre el gas que asciende a través del material de empaque neutraliza al S02 generando Yeso (CaS03) diluido en agua, que se retira del sistema para su disposición final. El gas limpio saliente de la torre es impulsado por efecto de un extractor a la Chimenea (8) de evacuación de gases de la Planta. In the bag filter (5), the dust present in the gases is separated by passing this gaseous current through filtering tissues, which retain the solid particles present. The operation basically consists of forcing the passage of the gas stream through the filter medium (tissue), whose mission is to retain the dust transported by the gas, accumulating on it and generating a layer that favors the efficiency of the filtration of the smaller particles. As the filter is loaded with particles externally, the pressure drop of the gas through it increases. Therefore, there comes a time when it is necessary to detach the accumulated dust layer to recover the functionality of the equipment, this action being carried out by means of pressurized air pulses in the opposite direction to the passage of gas. Filter surfaces are bag-shaped or sleeves inserted into cells or filter compartments neatly in a number of 10 or more units. The filter is made up of several cells in operation or sealed. It is a device that has high purification yields, even for very fine particles, whose usual yield values are from 99% to 99.9%, for sizes in the sub-micron range up to several hundred microns. Bearing in mind that they cannot operate in humid environments or near the dew point of the gas stream, such as treating adhesive or binder powders, since there is a risk of clogging of the fabric as the wet dust adheres to them after cleaning. Regarding its design, the most important data is the gas flow to be treated, marking the size of the equipment and, consequently, the investment cost. The main design variable of the bag filter is the A / C ratio (actual gas flow and the collection surface) or filtration speed expressed in m / s, and the other important operating parameter is the total pressure drop in the equipment, which determines the energy need to supply gas through the equipment. To deliver clean flue gases to the environment, outgoing gases from the bag filter containing sulfur dioxide (SO2) will enter a packed Gas Cleaning Tower (7) (Gas Washers) where counter current spraying of lime milk 10% dilution on the gas that rises through the packaging material neutralizes S02, generating Plaster (CaS0 3 ) diluted in water, which is removed from the system for final disposal. The clean gas leaving the tower is propelled by the effect of an extractor to the Chimney (8) for gas evacuation from the Plant.
Los lavadores de gases son equipos de contacto gas-líquido, en los cuales el líquido actúa como colector de compuestos contaminantes en la corriente gaseosa. Con el diseño adecuado, se logran eficiencias de remoción de un 99%. Gas scrubbers are gas-liquid contact equipment, in which the liquid acts as a collector of polluting compounds in the gas stream. With the proper design, removal efficiencies of 99% are achieved.
Estos equipos se basan en el fenómeno de absorción del gas en el líquido, por lo que su funcionamiento depende de que se logre un íntimo contacto entre ambos. Para lograr tal contacto, se debe maximizar las superficies de exposición del gas y/o del líquido, lo que en torres empacadas ocurre al dividir el líquido en una infinidad de películas delgadas del mismo, de baja velocidad, a través del empaque. These teams are based on the phenomenon of gas absorption in the liquid, so its operation depends on achieving intimate contact between the two. To achieve such contact, the exposure surfaces of the gas and / or liquid must be maximized, which in packed towers occurs by dividing the liquid into an infinity of thin films of the same, at low speed, through the packaging.
El gas limpio saliente de la torre de lavado constituido principalmente por gases de combustión y vapor de agua son transportados e impulsados por la acción del Extractor que comparte y apoya el manejo de gases desde el sistema de enfriamiento operativo hasta la evacuación de estos por la Chimenea. La Chimenea única de la planta tiene como función evacuar los gases limpios del proceso y que se emitan a la altura que la normativa ambiental establezca, asegurando el mínimo impacto ambiental sobre el medio y la Comunidad aledaña. The clean gas outgoing from the washing tower, consisting mainly of combustion gases and water vapor, is transported and driven by the action of the Extractor that shares and supports the handling of gases from the operational cooling system to their evacuation through the Chimney. . The unique chimney of the plant has the function of evacuating the clean gases from the process and that are emitted at the height that the establish environmental regulations, ensuring the minimum environmental impact on the environment and the surrounding community.
Segunda Fase: Equipos para la Separación de Productos Comerciales (Fig.1 ) Second Phase: Equipment for the Separation of Commercial Products (Fig. 1)
Esta Segunda Fase del proceso se lleva a efecto en varios equipos, comenzando en un horno fijo (tipo reverbero) de doble cámara con quemadores ( Fig. 2 y 3), uno por cada cámara inclinados hacia el piso de los crisoles para evitar arrastre de polvo fino (10) que caracteriza a la mezcla de óxidos de Antimonio (Sb), Arsénico (As) y plomo (Pb), recuperados en el Filtro de Mangas (5) de la etapa anterior. A igual que en la etapa anterior la temperatura del proceso en el horno es entre los 480 y 520°C, con el fin de generar la volatilización de los productos de interés, Trióxido de Antimonio (Sb203) y Trióxido de Arsénico (AS2O3) que se separan conforme a sus diferentes temperaturas de solidificación en equipos distintos del sistema de Manejo de Gases, tal como se muestra en la Fig.1 a continuación, donde el Sb2C>3 se recupera en una Cámara de Enfriamiento Radiativa (CER) (12) que opera a nivel de 350°C y el AS2O3 al final del sistema en el Filtro de Mangas (FM) (14) a temperatura menor a 100°C. Dada la condición de que el óxido de Plomo (PbO) no volatiliza a la temperatura de proceso indicada, este compuesto se mantiene sólido al interior del horno. Para la recuperación del plomo (Pb) como producto comercial desde el interior del horno, se debe efectuar un proceso de reducción con carbón coque que lo transforme a Pb metálico líquido a la temperatura del proceso, entre los 480 y 520°C. This Second Phase of the process is carried out in several teams, starting in a double chamber fixed furnace (reverberation type) with burners (Figs. 2 and 3), one for each chamber inclined towards the floor of the crucibles to avoid dragging of Fine powder (10) that characterizes the mixture of Antimony (Sb), Arsenic (As) and Lead (Pb) oxides, recovered in the Sleeve Filter (5) of the previous stage. As in the previous stage, the temperature of the process in the oven is between 480 and 520 ° C, in order to generate volatilization of the products of interest, Antimony Trioxide (Sb 2 0 3 ) and Arsenic Trioxide ( AS 2 O 3 ) that are separated according to their different solidification temperatures in equipment other than the Gas Management system, as shown in Fig. 1 below, where Sb 2 C> 3 is recovered in a Radiative Cooling (CER) (12) that operates at the 350 ° C level and the AS 2 O 3 at the end of the system in the Sleeve Filter (FM) (14) at a temperature below 100 ° C. Given the condition that Lead oxide (PbO) does not volatilize at the indicated process temperature, this compound remains solid inside the furnace. For the recovery of lead (Pb) as a commercial product from inside the furnace, a reduction process must be carried out with coal coke that transforms it into liquid metallic Pb at the process temperature, between 480 and 520 ° C.
Por las razones expuestas y por las diferentes condiciones de atmosfera que requieren los productos para su recuperación comercial, esta 2a fase se realiza, en un horno de doble cámara (Fig.2 y 3) en dos sub-etapas, que en la Fig. 1 se describen, y que podemos detallar como sigue: For these reasons and different atmosphere conditions required for products for commercial recovery, this 2nd phase is performed in a dual - chamber furnace (Fig.2 and 3) in two sub-stages, which in Fig 1 are described, and we can detail it as follows:
Sub- Etapa de Volatilización de Trióxidos de Sb y As y acumulación de PbO al interior del horno, con atmosfera controlada para mantener las características químicas del Sb203 y AS2O3 volatilizados y asegurar su recuperación en términos de calidad en el CER y FM respectivamente. Una vez completado el volumen óptimo de PbO que es compatible con la capacidad del horno se desarrolla la siguiente sub-etapa. Sub-Stage of Volatilization of Sb and As Trioxides and accumulation of PbO inside the furnace, with a controlled atmosphere to maintain the chemical characteristics of the Sb 2 0 3 and A S2 O 3 volatilized and ensure its recovery in terms of quality in the CER and FM respectively. Once the optimal volume of PbO that is compatible with the capacity of the furnace is completed, the next sub-stage is carried out.
Sub- Etapa de Reducción de PbO y Obtención de Pb Líquido, efectuando la reducción del PbO acumulado en la sub-etapa anterior en la cámara del horno correspondiente, con un reductor, carbón coque, que es adicionado al crisol para producir la reducción del óxido a Pb metálico, el que entre los 480 y 520°C se licúa y puede ser extraído desde el horno, hacia su sistema de moldeo de generación de lingotes comercializables. Sub-Stage of PbO Reduction and Obtaining Liquid Pb, reducing the accumulated PbO in the previous sub-stage in the corresponding furnace chamber, with a reducer, carbon coke, which is added to the crucible to produce the reduction of the oxide to metallic Pb, which between 480 and 520 ° C liquefies and can be extracted from the furnace, towards its ingot generation molding system marketable.
En la conformación de equipos del sistema de manejo de gases en esta fase se emplea una Cámara de Expansión Radiativa (12) (Fig.3 y 4) cuya función es recuperar el Trióxido de Antimonio Condensado del flujo de gases. In the formation of equipment for the gas handling system in this phase, a Radiative Expansion Chamber (12) (Fig. 3 and 4) is used, whose function is to recover the Condensed Antimony Trioxide from the gas flow.
Balance de masa del proceso Process mass balance
En este caso en particular, se ha condicionado para llevar a cabo el balance, el contenido del mineral alimentado al proceso, cumpliendo con las siguientes características: In this particular case, the content of the mineral fed to the process has been conditioned to carry out the balance, complying with the following characteristics:
• Antimonio, 30%. • Antimony, 30%.
• Plomo, 10%. • Lead, 10%.
• Arsénico, 4%. • Arsenic, 4%.
• Humedad del mineral, 7%. • Mineral humidity, 7%.
Partiendo de un mineral con estas características, se generan 300 toneladas métricas secas (TMS) mensuales de trióxido de antimonio, con una eficiencia en cada una de las etapas del proceso de un 95%. Concillando las características de los minerales de antimonio de la Región y las condiciones de mineralogía y producción de trióxido, el mineral alimentador del proceso, estaría compuesto de acuerdo a lo mostrado en la Tabla 1 , donde la masa de cada componente se expresa en Kg secos por hora. De este modo, tomando como base de cálculo una hora de producción, se alimenta al tostador con 1.309,2 kg/h de mineral, con un 7% de humedad. Se considera que el 100% de la ganga presente en el mineral, corresponde a sílice (S1O2) Starting from a mineral with these characteristics, 300 dry metric tons (TMS) of antimony trioxide are generated monthly, with an efficiency in each of the process stages of 95%. Conciling the characteristics of the region's antimony minerals and the conditions of mineralogy and trioxide production, the feeder mineral of the process would be composed according to what is shown in Table 1, where the mass of each component is expressed in dry Kg per hour. In this way, taking one hour of production as the basis for calculation, the roaster is fed 1,309.2 kg / h of ore, with 7% humidity. It is considered that 100% of the gangue present in the mineral corresponds to silica (S1O2)
Tabla 1 : Composición del mineral alimentador del proceso, por elementos y especies mineralógicas.
Figure imgf000021_0001
Table 1: Composition of the feeder mineral of the process, by elements and mineralogical species.
Figure imgf000021_0001
La Fig. 1 muestra los diagramas del proceso y equipos (Planta) de obtención de trióxido de antimonio, dividido en dos fases. En la primera se realiza la volatilización de óxidos, enfriamiento y limpieza de gases de oxidación. La segunda fase dividida en dos subetapas por lote de producción, corresponde a la separación de óxidos de antimonio, arsénico y plomo, reducción de este último óxido a plomo (Pb) líquido y limpieza de gases de reducción. Los productos finales del proceso son, trióxido de arsénico, Pb en lingotes y trióxido de antimonio, como producto principal. Las reacciones químicas de interés que se llevan a cabo en la primera fase del proceso, son: Fig. 1 shows the diagrams of the process and equipment (Plant) for obtaining antimony trioxide, divided into two phases. In the first one, the volatilization of oxides, cooling and cleaning of oxidation gases are carried out. The second phase divided into two sub-stages per production batch, corresponds to the separation of antimony, arsenic and lead oxides, reduction of the latter liquid lead oxide (Pb) and cleaning of reduction gases. The final products of the process are, arsenic trioxide, Pb in ingots and antimony trioxide, as the main product. The chemical reactions of interest that are carried out in the first phase of the process are:
2Sb2S2+902 2Sb202+6S02 (1) 2Sb 2 S 2 +90 2 2Sb 2 0 2 + 6S0 2 (1)
9Sb204+Sb2S2 b202+3S02 (2) 9Sb 2 0 4 + Sb 2 S 2 b 2 0 2 + 3S0 2 (2)
Sb22Pb9S42+6302 ^ ^Sb20^+9Pb0+42S02 (3) Sb 22 Pb 9 S 42 +630 2 ^ ^ Sb 2 0 ^ + 9Pb0 + 42S0 2 (3)
2PbS+302 2Pb0+2S02 (4) 2PbS + 30 2 2Pb0 + 2S0 2 (4)
2FeAsS+502 Fe202+As202+2S02 (5) 2FeAsS + 50 2 Fe 2 0 2 + As 2 0 2 + 2S0 2 (5)
2As2S2+902 2As20z+eS02 (6) 2As 2 S 2 +90 2 2As 2 0z + eS0 2 (6)
2As2S2+902— >AS40Q+6S02 (7) 2As 2 S 2 +90 2 -> AS 4 0Q + 6S0 2 (7)
AS4S4+102— >2AS202+4S02 (8) AS 4 S 4 +10 2 -> 2AS 2 0 2 + 4S0 2 (8)
AS4S4 +702®AS40I¡+4S02 (9) AS4S 4 + 70 2 ®AS 4 0 I ¡+ 4S0 2 (9)
Como en todo proceso que involucra reacciones químicas, la probabilidad de que ocurra cada una de ellas está condicionada a diversos factores, tales como: temperatura y presión, entre otras. Sin embargo para realizar el balance de masa se consideran principalmente las reacciones antes listadas. El Balance de masa del proceso, se realiza en los equipos principales, donde se llevan a cabo las reacciones químicas antes señaladas y del mismo modo se procede con el balance de energía. Balance de masa en el tostador. Tal como se mencionó anteriormente, la alimentación al tostador corresponde a 5.219,6 kg/hr de mineral que es llevado a una temperatura entre los 480 y 520°C, mediante un quemador de gas natural o petróleo diesel, dependiendo de las facilidades de la región en que se instale la tecnología en cuestión. Las pérdidas de calor en los equipos principales, se consideran cercanas al 10% y la eficiencia del combustible utilizado, se asume cercana al 98%. As in any process involving chemical reactions, the probability of each one occurring is conditioned by various factors, such as: temperature and pressure, among others. However, to perform the mass balance, the reactions listed above are mainly considered. The mass balance of the process is carried out in the main equipment, where the aforementioned chemical reactions are carried out and the energy balance is carried out in the same way. Mass balance in the toaster. As mentioned above, the feed to the toaster corresponds to 5,219.6 kg / hr of ore that is brought to a temperature between 480 and 520 ° C, by means of a natural gas or diesel oil burner, depending on the facilities of the region where the technology in question is installed. Heat losses in the main equipment are considered close to 10% and the efficiency of the fuel used is assumed to be close to 98%.
La Tabla 2 muestra la masa de los principales productos de salida del tostador, considerando las tres líneas de tostación como una sola. La oxidación de la galena (PbS) se realiza insuflando el aire necesario aguas abajo del tostador, para garantizar la oxidación del mismo fuera de este equipo, evitando de esta manera, las pérdidas de este óxido en la cámara de expansión y en el ciclón. Table 2 shows the mass of the main roaster output products, considering the three roasting lines as one. The oxidation of the galena (PbS) is carried out by blowing the necessary air downstream of the toaster, to guarantee its oxidation outside this equipment, thus avoiding losses of this oxide in the expansion chamber and in the cyclone.
Tabla 2: Productos de salida del tostador. Table 2: Toaster output products.
Figure imgf000022_0003
Figure imgf000022_0004
Figure imgf000022_0001
Figure imgf000022_0002
Figure imgf000023_0001
Figure imgf000022_0003
Figure imgf000022_0004
Figure imgf000022_0001
Figure imgf000022_0002
Figure imgf000023_0001
El detalle de otras entradas y salidas de flujos del tostador, están especificadas en el balance global del proceso, correspondiente. Para realizar el cálculo del flujo de sustancias volátiles que salen a la cámara de expansión, se considera que el óxido de fierro y (Fe203) y el óxido de arsénico (As4C>6), serán arrastrados con la ganga y enviados a los pozos de enfriamiento. The detail of other inlets and outlets of the roaster flows are specified in the corresponding global balance of the process. To calculate the flow of volatile substances that leave the expansion chamber, it is considered that iron oxide y (Fe 2 03) and arsenic oxide (As 4 C> 6 ), will be dragged with the gangue and sent to the cooling wells.
Sumando las masas de la galena y los óxidos de antimonio y arsénico, y asumiendo que esa masa total se comporta como Dióxido de Azufre (SO2), se calcula el flujo de salida hacia la cámara de expansión, en condiciones normales. De este modo, la sumatoria de gases y polvos volátiles saliendo hacia la cámara de expansión, sería un total de 4587,3 Nm3/h. La tabla 3 muestra el detalle de los flujos a la entrada de la cámara de expansión. Adding the masses of the galena and the antimony and arsenic oxides, and assuming that this total mass behaves like Sulfur Dioxide (SO 2 ), the outflow towards the expansion chamber is calculated, under normal conditions. In this way, the sum of volatile gases and dusts leaving towards the expansion chamber, would be a total of 4587.3 Nm 3 / h. Table 3 shows the detail of the flows at the entrance to the expansion chamber.
Tabla 3 Flujo de gases y volátiles a la cámara de expansión. Table 3 Gas and volatiles flow to the expansion chamber.
Figure imgf000023_0002
Figure imgf000023_0002
El flujo de combustible necesario para la tostación (petróleo diesel), es de 278,8 l/h y el aire requerido para la combustión es 2.755,8 Nm3/h. Por otro lado, el aire para oxidación del mineral en el tostador es de 865,0 Nm3/h. Para realizar el cálculo del flujo de trióxidos Arsénico y Antimonio y Galena volatilizados en esta etapa, se asimilan a Aire, en términos del volumen ocupado. En tal caso, la masa a volatilizar es de 608 kg/h. Se calcula el flujo de volátiles en condiciones normales. Oxidación de la Galena, tal como se especifica antes, la oxidación de la galena se realiza fuera del tostador tal como se indica en la Fig. 1 y las reacciones químicas asociadas a dicha oxidación son las número (3) y (4), listadas con anterioridad. El balance de materiales correspondiente, nos indica que el flujo de aire necesario para tal efecto, es 123,1 Nm3/h. The fuel flow required for roasting (diesel oil) is 278.8 l / h and the air required for combustion is 2,755.8 Nm 3 / h. On the other hand, the air for oxidation of the mineral in the roaster is 865.0 Nm 3 / h. To calculate the flow of trioxides Arsenic and Antimony and Galena volatilized in this stage, they are assimilated to Air, in terms of the volume occupied. In this case, the mass to volatilize is 608 kg / h. Volatile flux is calculated under normal conditions. Galena oxidation, as specified above, galena oxidation is performed outside the roaster as indicated in Fig. 1 and the chemical reactions associated with such oxidation are numbers (3) and (4), listed previously. The corresponding material balance indicates that the air flow required for this purpose is 123.1 Nm 3 / h.
Balance de masa en la Torre de lavado Limpieza de gases Mass balance in the washing tower Gas cleaning
Los gases producto de la primera etapa del proceso, gases de reacción y combustión, son dirigidos a una Torre de lavado, en la cual se contactan con lechada de cal al 10% p/p, para generar gases acondicionados para cumplir con la normativa correspondiente y ser eliminados al ambiente mediante chimenea. La Tabla 4, muestra el flujo de gases enviados a la torre de lavado, generados en la primera etapa del proceso. Abatimiento de Dióxido de Azufre (SO2) en la torre de lavado La reacción química correspondiente al abatimiento de Dióxido de Azufre (SO2) en la torre de lavado es la siguiente: The gases resulting from the first stage of the process, reaction and combustion gases, are directed to a washing tower, in which 10% w / w lime milk is contacted, to generate conditioned gases to comply with the corresponding regulations. and be eliminated into the environment through a fireplace. Table 4 shows the flow of gases sent to the washing tower, generated in the first stage of the process. Abatement of Sulfur Dioxide (SO2) in the washing tower The chemical reaction corresponding to the abatement of Sulfur Dioxide (SO2) in the washing tower is as follows:
S02(g)+Ca(0H)2(s)®CaS0z*MH20s +12 H20(l) (10) S0 2 (g) + Ca (0H) 2 (s) ®CaS0 z * MH 2 0s +12 H 2 0 (l) (10)
Para abatir los 252,9 Nm3/h de dióxido de azufre que entra a la torre, se requerirán 834, 1 kg/h de Cal y se producirán 1.454 kg/h de yeso CaSOz*\2H2Oy 101 ,4kg/h de agua líquida. To knock down the 252.9 Nm 3 / h of sulfur dioxide entering the tower, 834.1 kg / h of Cal will be required and 1,454 kg / h of CaSO z * \ 2H 2 Oy 101, 4kg / h of liquid water.
Tabla 4: Flujo de gases de entrada a Torre de Lavado. Table 4: Flow of inlet gases to the Washing Tower.
Figure imgf000024_0001
Balance de masa en la segunda fase
Figure imgf000024_0001
Mass balance in the second phase
Tal como se mencionó con anterioridad, la segunda fase del proceso se lleva a cabo en dos sub-fases cicladas por cada carga introducida a una de las cámaras del horno, donde se acumulará, la cantidad suficiente de PbO que genera el volumen adecuado de Pb metálico para ser moldeado en forma continua. Dadas las dimensiones de los crisoles del horno de doble cámara, se estima en dos días el tiempo de requerido en la primera sub fase, para iniciar la segunda sub fase. La primera de ellas, que se realiza una temperatura entre los 480 y 520°C, en un horno fijo de tipo reverbero con quemadores en la bóveda, corresponde a la volatilización de los trióxidos de Arsénico y Antimonio que conformaban la mezcla de óxidos junto con el PbO y recuperada en los filtros de mangas de la primera etapa. El óxido de plomo que no volatiliza, queda en el reactor y sé acumula para ser reducido con coque en la segunda sub-etapa carga de mineral. El Sb203, uno de los productos finales del proceso, es capturado en una Cámara de Enfriamiento Radiativa debido a que su condensación se produce entre los 350 y 400 °C, y alcanza los 418,0 kg/hr, que corresponde a una producción mensual de 300 toneladas. As mentioned above, the second phase of the process is carried out in two cycled sub-phases for each charge introduced into one of the furnace chambers, where it will accumulate, the sufficient amount of PbO that generates the adequate volume of Pb metallic to be continuously molded. Given the dimensions of the crucibles of the double chamber furnace, the time required in the first sub phase is estimated at two days to start the second sub phase. The first of these, which is carried out at a temperature between 480 and 520 ° C, in a fixed reverberatory type furnace with burners in the vault, corresponds to the volatilization of the Arsenic and Antimony trioxides that made up the mixture of oxides together with PbO and recovered in the first stage bag filters. Lead oxide, which does not volatilize, remains in the reactor and accumulates to be reduced with coke in the second mineral charge sub-stage. Sb 2 0 3 , one of the final products of the process, is captured in a Radiative Cooling Chamber because its condensation occurs between 350 and 400 ° C, and reaches 418.0 kg / hr, which corresponds to a monthly production of 300 tons.
El AS2O3, 61 ,1 kg/h, pasa hasta el filtro de mangas, donde es captado, debido a que su condensación se produce bajo los 280°C. La producción mensual de este producto es de 44 toneladas. El combustible requerido, petróleo diesel, para elevar la temperatura hasta 500 °C, es de 287,8 Nm3/hr y el aire necesario para tal efecto es de 2.840,6 NrrvVh. Los gases de salida, producto de la combustión del gas natural en el reactor están resumidos en la Tabla 5. AS2O3, 61, 1 kg / h, passes to the bag filter, where it is captured, because its condensation occurs below 280 ° C. The monthly production of this product is 44 tons. The required fuel, diesel oil, to raise the temperature to 500 ° C, is 287.8 Nm 3 / hr and the air required for this purpose is 2,840.6 NrrvVh. The exhaust gases, product of the combustion of natural gas in the reactor are summarized in Table 5.
Tabla 5: Gases de salida reactor primera sub-fase carga de mineral. Table 5: Exit gases from the first ore-charging sub-phase reactor.
Figure imgf000025_0001
Para realizar el cálculo del flujo de trióxidos volatilizados en esta sub-fase, se considera que el óxido de plomo queda retenido al interior del reactor y que tanto el Trióxido de antimonio como el trióxido de arsénico, se comportan como Aire en términos del volumen ocupado. En tal caso, la masa a volatilizar es de 479,1 kg/h. Se calcula el flujo de volátiles en condiciones normales. De este modo, los polvos volátiles saliendo del reactor alcanzan los 372,8 Nm3/h y la sumatoria de gases y polvos volátiles saliendo de la primera sub-fase carga de mineral, será un total 454,5 de Nm3/h.
Figure imgf000025_0001
To calculate the flow of volatilized trioxides in this sub-phase, it is considered that lead oxide is retained inside the reactor and that both antimony trioxide and arsenic trioxide behave as Air in terms of the volume occupied . In this case, the mass to volatilize is 479.1 kg / h. Volatile flux is calculated under normal conditions. In this way, the volatile powders leaving the reactor reach 372.8 Nm 3 / h and the sum of gases and volatile powders leaving the first mineral charge sub-phase will total 454.5 Nm 3 / h.
Reducción del óxido de plomo Lead oxide reduction
El óxido de plomo retenido en el reactor, es reducido con Carbón Coque, de acuerdo a las siguientes reacciones químicas. The lead oxide retained in the reactor is reduced with Coke Coal, according to the following chemical reactions.
2Pb0+C 2Pb+C02 (11) 2Pb0 + C 2Pb + C0 2 (11)
PbO+C Pb+CO (12) PbO + C Pb + CO (12)
Pb0+C0 Pb+C02 (13) Pb0 + C0 Pb + C0 2 (13)
De este modo, para reducir 124,6 kg/h de PbO, la cantidad de coque requerida es de 3,4 kg/h. Thus, to reduce 124.6 kg / h of PbO, the amount of coke required is 3.4 kg / h.
El Pb producto de dicha reducción es de 115,7 kg/h, por lo que será necesaria la acumulación del metal al interior del horno, para lograr una adecuada altura de sangrado. Se estima que al cabo de 2 días de acumulación, se genera la altura óptima de aproximadamente 40,8 cm, considerando que las dimensiones de cada crisol en el horno es de 1 ,2 m2 ( 0,6 x 2,0 m2) de área basal y que la densidad del Pb es de 11 ,35 gr/cm3. Los gases generados en el proceso de reducción de óxido de Plomo son despreciables frente a los requeridos para mantener la temperatura del horno entre los 480 y 520°C y del óxido de Plomo que se acumula al interior, junto con llevar a cabo la volatilización de los trióxidos de Antimonio y Arsénico, más aún si el único aporte de gas se debe a la formación de dióxido de carbono (CO2), a razón de 6,36 Nm /h durante este proceso, representando el 0,2% del gas total saliente del horno. Los antecedentes encontrados respaldan que el proceso y el horno recomendados para realizar la transformación de antimonita a Trióxido de Sb es una tostación oxidante pero controlada en hornos rotatorios, de manera que aseguren sólo la generación de trióxidos de Sb y As volátiles a la temperatura del proceso (entre los 480 y 520°C) y que la Galena (PbS) no oxidada se volatilice e incorpore a los gases salientes del horno, productos de la combustión y de anhídrido sulfuroso (SO2) resultante de la oxidación de los sulfuras de Antimonio(Sb) y Arsénico(As). The Pb product of said reduction is 115.7 kg / h, so it will be necessary to accumulate the metal inside the oven, to achieve an adequate bleeding height. It is estimated that after 2 days of accumulation, the optimal height of approximately 40.8 cm is generated, considering that the dimensions of each crucible in the furnace is 1.2 m 2 (0.6 x 2.0 m 2 ) of basal area and that the density of Pb is 11, 35 gr / cm 3 . The gases generated in the Lead oxide reduction process are negligible compared to those required to maintain the furnace temperature between 480 and 520 ° C and the Lead oxide that accumulates inside, along with carrying out the volatilization of Antimony and Arsenic trioxides, even more so if the only contribution of gas is due to the formation of carbon dioxide (CO2), at a rate of 6.36 Nm / h during this process, representing 0.2% of the total gas outgoing from the oven. The background found supports that the recommended process and furnace for the transformation of antimonite to Sb Trioxide is an oxidative but controlled roasting in rotary kilns, so that they only ensure the generation of volatile Sb and As trioxides at the process temperature. (between 480 and 520 ° C) and that the non-oxidized Galena (PbS) volatilizes and incorporates into the gases leaving the furnace, products of combustion and sulphurous anhydride (SO2) resulting from the oxidation of Antimony sulphides ( Sb) and Arsenic (As).
La mezcla de gases volátiles generada en el proceso de tostación (en una Primera Fase del proceso de Obtención) se somete a distintos procesos de enfriamiento para obtener al final del sistema de manejo de gases una mezcla solidificada de ella (Sb203, AS2O3 y PbO). The volatile gas mixture generated in the roasting process (in a First Phase of the Obtaining process) undergoes different cooling processes to obtain a solidified mixture of it at the end of the gas handling system (Sb203, AS2O3 and PbO) .
La oxidación de Sulfuro de Plomo (PbS) a Oxido de Plomo (PbO) se induce con la inyección de aire al sistema de manejo de gases, a través de una válvula controlada instalada a la entrada de uno de los componentes del sistema de enfriamiento. The oxidation of Lead Sulfide (PbS) to Lead Oxide (PbO) is induced by injecting air into the gas handling system, through a controlled valve installed at the inlet of one of the components of the cooling system.
De esta manera, la mezcla condesada al final de este sistema esta constituida por Trióxidos de Antimonio (Sb) y Arsénico (As) y oxido de Plomo (Pb) y se recupera en un Filtro de Mangas que opera bajo los 100°C. In this way, the condensed mixture at the end of this system is made up of Antimony Trioxides (Sb) and Arsenic (As) and Lead oxide (Pb) and is recovered in a Bag Filter that operates below 100 ° C.
Para entregar gases de combustión limpios al ambiente, los gases salientes del filtro de mangas que contienen anhídrido sulfuroso (SO2) ingresan a una torre de lavado de gases empacada donde por la aspersión en contra corriente de lechada de cal al 10% de dilución sobre el gas que asciende a través del material de empaque neutraliza al anhídrido sulfuroso (SO2) generando Yeso (CaS04) diluido en agua, que se retira del sistema para su disposición final. To deliver clean flue gases to the environment, the outgoing gases from the bag filter containing sulfur dioxide (SO2) enter a packed gas scrubber where by countercurrent spraying of 10% dilution lime milk onto the Gas that rises through the packaging material neutralizes the sulfur dioxide (SO2) generating Plaster (CaS04) diluted in water, which is removed from the system for final disposal.
El material no volátil del mineral, la ganga mineral calcinada es retirada del horno, es transportada, junto con los polvos arrastrados por los gases saliente de dicho equipo y se recuperan del sistema de manejos de gases, a pozos de enfriamiento, tres en total en que el material es depositado para su posterior enfriamiento y retiro a su lugar de destino definitivo, botadero o devolución al lugar de origen, el yacimiento. Los tres pozos, irán rotativamente cumpliendo una función específica, de recepción, enfriamiento o retiro del material una vez enfriado. The non-volatile material of the mineral, the calcined mineral gangue is removed from the furnace, it is transported, together with the powders dragged by the outgoing gases from said equipment and recovered from the gas handling system, to cooling wells, three in total in that the material is deposited for its subsequent cooling and removal to its final destination, dump or return to the place of origin, the deposit. The three wells will rotate, fulfilling a specific function of receiving, cooling or removing the material once it has cooled.
Conforme a los antecedentes mencionados y orientados a la metalurgia del plomo, se respalda que con el fin de efectuar la separación en productos comerciales (trióxidos de WO 2020/132752 PCT/CL20,*, 000045In accordance with the aforementioned background and oriented to lead metallurgy, it is supported that in order to carry out the separation in commercial products (trioxides of WO 2020/132752 PCT / CL20, *, 000045
Antimonio y Arsénico) y generación de Plomo metálico, la mezcla solidificada de óxidos obtenidos al final de la primera fase del proceso, se somete a una segunda fase con horno de doble cámara fijo similar a un reverbero, que inhiben el arrastre de polvo y mantienen la temperatura del horno entre los 480 y 520°C, donde al aprovechar las propiedades físicas inherentes a los productos a obtener, se provoca su separación y obtención como productos comerciales. Para ello, el proceso en esta etapa se subdivide en dos operaciones lotes de producción, como son las siguientes: Antimony and Arsenic) and generation of metallic Lead, the solidified mixture of oxides obtained at the end of the first phase of the process, undergoes a second phase with a fixed double chamber oven similar to a reverberation, which inhibit dust entrainment and maintain the oven temperature between 480 and 520 ° C, where by taking advantage of the physical properties inherent in the products to be obtained, they are separated and obtained as commercial products. To do this, the process at this stage is subdivided into two production batch operations, as follows:
Volatilización de Trióxidos de Antimonio (Sb) y Arsénico (As) y condensación separada de ellos, en el sistema de manejo de gases, dada su diferente temperatura de solidificación, retirando en primer lugar el Trióxido de Antimonio (Sb203) en Cámara de Enfriamiento Radiativo, que opera entre los 350 y 300°C y posteriormente el Trióxido 'de Arsénico(As203) en un Filtro de Mangas bajo los 100°C, entre tanto el Plomo oxidado (PbO) se acumula dentro del horno para su posterior tratamiento en el siguiente Lote de Producción. Reducción del Oxido de Plomo (PbO) acumulado al final de cada ciclo de carga introducida a una de las cámaras del horno, para ello se agrega carbón coque u otro combustible similar sobre este material a fin de inducir su transformación a Plomo (Pb) metálico, líquido a la temperatura de proceso (entre los 480 y 520°C), hecho que una vez concretado el Plomo (Pb) líquido obtenido es extraído del horno para su moldeo. Volatilization of Antimony (Sb) and Arsenic (As) Trioxides and separate condensation of them, in the gas handling system, given their different solidification temperature, first removing the Antimony Trioxide (Sb203) in the Radiative Cooling Chamber , which operates between 350 and 300 ° C and subsequently the Arsenic Trioxide ' (As203) in a Bag Filter below 100 ° C, meanwhile the Oxidized Lead (PbO) accumulates inside the furnace for its subsequent treatment in the Next Production Lot. Reduction of the Lead Oxide (PbO) accumulated at the end of each charge cycle introduced into one of the furnace chambers, for this, coking coal or other similar fuel is added on this material in order to induce its transformation to metallic Lead (Pb) , liquid at the process temperature (between 480 and 520 ° C), a fact that once the liquid Lead (Pb) obtained is specified, it is extracted from the oven for molding.
La Fig. 1 muestra con un diagrama de bloques la Planta para la obtención de trióxido de antimonio, trióxido de arsénico y plomo metálico. Fig. 1 shows with a block diagram the Plant for obtaining antimony trioxide, arsenic trioxide and metallic lead.
Primera fase de Volatilización y Formación de Mezcla de Óxidos (1-9). First phase of Volatilization and Formation of Oxide Mixture (1-9).
1. Sistema de alimentación de mineral de antimonita el que se caracteriza por estar constituido por minerales sulfurados predominantemente de Antimonio, Arsénico y Plomo, cuyos contenidos promedios fluctúan entre un 20-30% de Antimonio (Sb), 2-4% de Arsénico (As) y 5-10% de Plomo (Pb), el que se alimenta desde la cancha de almacenamiento a las tolvas de alimentación de los Tostadores mediante un circuito de transporte constituido por tres correas transportadoras, para elevar la carga de mineral desde el nivel de cancha de almacenamiento hasta el buzón de alimentación de la correa horizontal que distribuye el mineral a las tolvas de alimentación a cada Tostador, desde donde es extraído en forma continua mediante un tornillo sin fin tipo canal siendo traspasado a un segundo tomillo perpendicular al anterior, tubular que deposita la carga en el interior del tostador alejado adecuadamente de su extremo posterior y sobre el revestimiento refractario y los alzadores de levante del interior del Tostador. 1. Antimonite mineral feeding system, which is characterized by being made up of sulfur minerals predominantly Antimony, Arsenic and Lead, whose average contents fluctuate between 20-30% Antimony (Sb), 2-4% Arsenic ( As) and 5-10% of Lead (Pb), which is fed from the storage field to the feed hoppers of the Toasters through a transport circuit consisting of three conveyor belts, to raise the mineral load from the level from the storage field to the horizontal belt feeding mailbox that distributes the mineral to the feeding hoppers to each Toaster, from where it is continuously extracted by means of a channel-type endless screw being transferred to a second screw perpendicular to the previous one, tubular that deposits the load inside the toaster adequately away from its rear end and on the refractory lining and the lifters inside the Toaster.
Tostación oxidante regulada en Homo Rotatorio (Tostador), a temperatura controlada entre los 480 y 520°C del mineral sulfurado, con el objeto de generar trióxidos del Antimonio y Arsénico y en consecuencia su volatilización junto con la galena presente (PbS). El material calcinado que no volatiliza mayoritariamente ganga mineral, es retirado del proceso por lo que debe escurrir hacia el exterior del Tostador, razón por la cual dicho equipo presenta una inclinación en sentido longitudinal de 2%, desde el cabezal posterior hasta el anterior, lugar donde se instala el quemador de combustión, el que genera los gases que permiten mantener la temperatura entre los 480 y 520°C al interior del Tostador, y que circulan en contra corriente al desplazamiento del mineral alimentado. En beneficio de la transmisión del calor de los gases hacia el mineral y facilitar la volatilización de los productos de interés en el horno rotatorio, dispone de alzadores de carga insertados en el primer tercio de longitud del horno desde el extremo posterior por donde ingresa el mineral, elementos que permiten remover y levantar dicho material hasta un punto interior alto, cayendo desde ahí y esparciéndose sobre la corriente gaseosa. El aire para generar la oxidación del Antimonio y Arsénico es inducido por el tiraje que ejerce un ventilador de tiro inducido, ubicado aguas arriba en el sistema de Manejo de Gases (entre el Filtro de Mangas y la Torre de Lavado de Gases) hacia el interior del tostador, razón por la cual el muro del cabezal del quemador (anterior) constará de un número y tamaño adecuado de orificios, distribuidos simétricamente en relación a su eje horizontal, contando cada uno de ellos con una válvula controlada para la regulación de la cantidad de aire a infiltrar en beneficio de la adecuada oxidación de trióxidos en formación. Regulated oxidizing roasting in Rotary Homo (Toaster), at a controlled temperature between 480 and 520 ° C of the sulphided mineral, in order to generate trioxides of Antimony and Arsenic and consequently its volatilization together with the present galena (PbS). The calcined material that does not volatilize mostly mineral gangue, is removed from the process so it must drain out of the Toaster, which is why this equipment has a longitudinal inclination of 2%, from the rear head to the previous one, instead where the combustion burner is installed, which generates the gases that allow maintaining the temperature between 480 and 520 ° C inside the Toaster, and that circulate against the movement of the fed mineral. In order to transfer the heat from the gases to the mineral and facilitate the volatilization of the products of interest in the rotary kiln, it has load lifters inserted in the first third of the length of the kiln from the rear end where the mineral enters , elements that allow the material to be removed and lifted to a high interior point, falling from there and spreading over the gas stream. The air to generate the oxidation of Antimony and Arsenic is induced by the draft exerted by an induced draft fan, located upstream in the Gas Management system (between the Bag Filter and the Gas Washing Tower) towards the interior of the toaster, which is why the burner head wall (above) will consist of an adequate number and size of holes, distributed symmetrically in relation to its horizontal axis, each one having a controlled valve for the regulation of the quantity of air to infiltrate in benefit of the adequate oxidation of trioxides in formation.
Una vez que los gases de combustión, anhídrido sulfuroso y volátiles (Trióxidos deOnce the combustion gases, sulfur dioxide and volatiles (Trioxides of
Arsénico y Antimonio, y Galena) abandonan el Tostador a una temperatura entre los 480 y 520°C, ingresan a una Cámara de Expansión o de Sedimentación de gases cuya función es reducir la velocidad inicial de los gases (menor a 3 m/s) y recuperar la mayor parte de las partículas arrastradas por la corriente gaseosa, eliminando de ellas las de mayor tamaño (mayor a 20 pm), como también disminuir la temperatura de los gases salientes. Dicha cámara consta con una sección inferior de paredes inclinadas que descargan el material recuperado a un tornillo sin fin tipo canal, que colecciona las partículas de polvos de ganga decantadas en dicha cámara y que también colecta las partículas de ganga separadas del flujo de gases en el ciclón que la precede. Por su forma y diseño, la Cámara de Expansión permite la disminución moderada de la temperatura de los gases. El dimensionamiento de un equipo de este tipo está estrechamente ligado al conocimiento de la naturaleza del movimiento de una partícula que se mueve en el seno de un fluido, el cual se ajusta al modelo propuesto por Stokes conocido como la ley de Stokes. Arsenic and Antimony, and Galena) leave the Toaster at a temperature between 480 and 520 ° C, enter an Expansion or Sedimentation Chamber for gases whose function is to reduce the initial velocity of gases (less than 3 m / s) and recovering most of the particles carried by the gas stream, eliminating the largest ones (greater than 20 pm), as well as reducing the temperature of the outgoing gases. Said chamber consists of a lower section of inclined walls that discharge the recovered material to a channel-type endless screw, which collects the gangue dust particles decanted in said chamber and which also collects the gangue particles. separated from the gas flow in the cyclone that precedes it. Due to its shape and design, the Expansion Chamber allows a moderate decrease in the temperature of the gases. The dimensioning of such equipment is closely linked to the knowledge of the nature of the motion of a particle that moves within a fluid, which conforms to the model proposed by Stokes known as Stokes' law.
Para asegurar la máxima recuperación de las partículas de polvo de ganga arrastradas, el flujo de gases salientes de la Cámara de Expansión pasa a una segunda operación de limpieza en un Ciclón, equipo que remueve el material particulado aún presente en la corriente gaseosa, basándose en el principio de impactación inercial, al entrar el flujo gaseoso cargado en partículas en forma tangencial a la zona cilindrica superior, aprovechando el aumento de velocidad en su circulación y la fuerza centrífuga generada por la rotación de gases y partículas sólidas, estas últimas, por su mayor peso, saldrán por el underflow del Ciclón y los gases libre de partículas por el overflow. Dada la alta velocidad alcanzada por los gases en el proceso, mayor a 20 m/s, el efecto de pérdidas de calor por radiación es reducido, por lo cual se estima que la temperatura de los gases al salir de este equipo no presenta grandes variaciones. To ensure maximum recovery of entrained gangue dust particles, the outgoing gases flow from the Expansion Chamber goes to a second cleaning operation in a Cyclone, equipment that removes the particulate material still present in the gas stream, based on the principle of inertial impaction, as the gaseous flow loaded with particles enters tangentially into the upper cylindrical zone, taking advantage of the increased speed in its circulation and the centrifugal force generated by the rotation of gases and solid particles, the latter, due to their The heavier the weight, they will come out through the Cyclone underflow and the particle-free gases through the overflow. Given the high speed reached by the gases in the process, greater than 20 m / s, the effect of heat losses due to radiation is low, which is why it is estimated that the temperature of the gases when leaving this equipment does not present large variations .
Conforme a lo detallado en los párrafos anteriores el conjunto de Cámara de Expansión y Ciclón genera una disminución de temperatura de alrededor de 150°C. Considerando que los productos de interés son Trióxido de Arsénico (AS2O3), Trióxido de Antimonio (Sb2C>3) ya formados y volatilizados en la tostación y Plomo (Pb) en forma de PbS, y que están presentes en los gases salientes a 350°C de la etapa 3, dichos gases serán sometidos a un proceso de Enfriamiento Radiativo, que se describe a continuación. No obstante, debido a la concepción del proceso de obtención de Plomo Metálico en la 2a fase, la Galena presente en los gases debe ser oxidada y condensada como óxido de Plomo (PbO), para lo cual el aire requerido para su oxidación es inducido por la acción que ejerce el Ventilador de Tiro Inducido a través de una válvula de abertura controlada instalada a la entrada de este sistema de enfriamiento. As detailed in the previous paragraphs, the Expansion Chamber and Cyclone assembly generates a temperature decrease of around 150 ° C. Considering that the products of interest are Arsenic Trioxide (AS2O3), Antimony Trioxide (Sb2C> 3) already formed and volatilized in roasting and Lead (Pb) in the form of PbS, and that are present in the outgoing gases at 350 ° C of stage 3, said gases will be subjected to a Radiative Cooling process, which is described below. However, due to the conception of the process for obtaining metallic lead in the 2nd stage, this Galena gases must be oxidized and condensed as lead oxide (PbO), for which the air required for oxidation is induced by the action of the Induced Draft Fan through a controlled opening valve installed at the inlet of this cooling system.
Dicho sistema de Enfriamiento está constituido por serpentines en paralelo conformados por una seguidilla de U invertidas unidas entre sí (constituyendo cada uno de ellos una rama del sistema). El gas entrante al equipo circula por su interior para enfriarse de 350° a menos de 100°C, disipando el calor latente de los gases a través de las paredes de los serpentines que conforman dicho equipo, liberando este calor mediante fenómenos de convección y principalmente de radiación, hacia el aire atmosférico que lo rodea y que circula por su alrededor.Said cooling system is made up of parallel coils made up of a series of inverted U's joined together (each one constituting a branch of the system). The gas entering the equipment circulates inside it to cool down from 350 ° to less than 100 ° C, dissipating the latent heat of the gases through the walls of the coils that make up the equipment, releasing this heat through convection phenomena and mainly radiation, into the atmospheric air that surrounds it and circulates around it.
Por otra parte, el ducto que constituye este sistema de enfriamiento debe ser dimensionado para una alta velocidad de conducción a fin de evitar la sedimentación de partículas que condesan en la medida que la disminución de temperatura avance y se genere la solidificación de los productos volátiles de interés. La capacidad de disipación de calor según el tamaño de cañería que conforme el serpentín define el largo requerido para la disminución de la temperatura de los gases perseguida, que en este caso es de alrededor de 250 °C.On the other hand, the duct that constitutes this cooling system must be dimensioned for a high conduction speed in order to avoid the sedimentation of particles that condense as the temperature decrease advances and the solidification of the volatile products of interest. The heat dissipation capacity according to the pipe size that according to the coil defines the length required for the decrease in the temperature of the gases pursued, which in this case is around 250 ° C.
5. Producto de la disminución de temperatura (menor a 100°C) generada en los gases en el proceso anterior (Enfriamiento Radiativo), el Trióxidos de Antimonio y Arsénico y Óxido de Plomo han sido solidificados en tamaño muy fino (polvos con 95% bajo 3pm), los que son transportados junto con los gases a un Filtro de Mangas (FM), donde podrán ser separados de la corriente gaseosa. La separación de los polvos se genera al hacer pasar la corriente gaseosa por tejidos filtrantes, denominadas mangas, que retienen las partículas sólidas presentes y el gas libre de partículas continúa en su proceso de limpieza, para su posterior evacuación por la Chimenea de la planta. La mezcla de productos sólidos constituida por polvos de Trióxidos de Antimonio (Sb203) y Arsénico (AS2O3) y óxido de Pb (PbO), es retirada desde el FM mediante una válvula rotatoria, la que descarga sobre una cadena transportadora (rastra) para alimentar la Tolva receptora del sistema de transporte neumático que traslada la mezcla de óxidos hasta la tolva de alimentación de la 2a Fase (Separación de los Productos Comerciales). 5. Product of the temperature decrease (less than 100 ° C) generated in the gases in the previous process (Radiative Cooling), the Antimony and Arsenic Trioxides and Lead Oxide have been solidified in very fine size (powders with 95% below 3pm), which are transported together with the gases to a Sleeve Filter (FM), where they can be separated from the gas stream. The separation of the powders is generated by passing the gaseous current through filtering fabrics, called sleeves, which retain the solid particles present and the particle-free gas continues in its cleaning process, for its later evacuation through the chimney of the plant. The mixture of solid products consisting of Antimony Trioxides (Sb20 3 ) and Arsenic (AS2O3) powders and Pb oxide (PbO), is removed from the FM by means of a rotary valve, which discharges onto a conveyor chain (harrow) to feeding the material hopper the pneumatic transport system that moves the oxide mixture to the feed hopper 2 to Phase (Separation of Commercial Products).
6. Ventilador de Tiro Inducido (VTI), equipo que provoca el movimiento de los gases generado en los procesos que conforman la 1a fase, es decir, desde el Horno Rotatorio (Tostador) hasta la salida del Filtro de Mangas, y posteriormente impulsar los gases salientes de este equipo hacia una Torre de Lavado (TL) única de gases y provocar la evacuación de los gases libres de contaminantes hacia la Chimenea única de la planta. Por cada línea de operación de procesos de la 1a fase requerida, ella debe contar con su respectivo (VTI) el que debe ser capaz de generar la succión (presión negativa) necesaria para el traslado de los gases generados en el Tostador, hasta terminar su procesamiento en el Filtro de Mangas, venciendo las pérdidas de carga que genera su traslado. 7. Los gases generados por la formación y oxidación de los productos de interés contienen Anhídrido Sulfuroso (SO2), el cual debe ser neutralizado y retirado de la corriente gaseosa, operación que se lleva a cabo en una Torre de Lavado, en la cual se aplica lechada de cal como neutralizante permitiendo la transformación del SO2 a Yeso Hidratado (CaS04 *2H20), compuesto que es colectado en el estanque de retención de líquidos de dicha Torre. Por un sistema de aspersión en contra corriente, la lechada de cal al 10% de dilución desciende sobre el gas que asciende a través del material de empaque, provocando así la neutralización del S02 contenido en él. Estos equipos se basan en el fenómeno de absorción de gas en líquido, por lo cual su funcionamiento depende de lograr un íntimo contacto entre ellos. Para alcanzar tal contacto, se debe maximizar las superficies de exposición del gas y/o del líquido, lo que en torres empacadas ocurre al dividir el líquido en una infinidad de películas delgadas del mismo, de baja velocidad, a través del tipo de empaque, en este caso anillos Rasching de una pulgada (1”). 6. induced draft fan (VTI), equipment causing the movement of the generated gases in the processes that make up the 1st phase, ie from the Rotary Kiln (Toaster) to the outlet of the baghouse and subsequently boost the outgoing gases from this equipment to a single Gas Cleaning Tower (TL) and cause the evacuation of the pollutant-free gases to the single chimney of the plant. For each line of operation processes 1 to required phase, it must have its respective (VTI) which should be able to generate suction (negative pressure) necessary for the transfer of the gases generated in the toaster, to finish its processing in the Bag Filter, overcoming the load losses generated by its transfer. 7. The gases generated by the formation and oxidation of the products of interest contain Sulphurous Anhydride (SO2), which must be neutralized and removed from the gas stream, an operation that is carried out in a Washing Tower, in which apply lime milk as a neutralizer, allowing the transformation of SO2 to Hydrated Gypsum (CaS0 4 * 2H 2 0), a compound that is collected in the liquid retention tank of said Tower. By a counter current spraying system, the 10% dilution lime slurry descends on the gas that rises through the packaging material, thus causing the neutralization of the S0 2 contained in it. These teams are based on the phenomenon of gas absorption in liquid, for which their operation depends on achieving intimate contact between them. To achieve such contact, the gas and / or liquid exposure surfaces must be maximized, which in packed towers occurs by dividing the liquid into an infinity of thin films of the same, low speed, through the type of packaging, in this case one inch (1 ”) Rasching rings.
8. El gas limpio saliente de la torre de lavado constituido principalmente por gases de combustión y de vapor de agua es impulsado por la acción de un VTI hacia su evacuación a través de la Chimenea única que emitirá el total de los gases limpios que genera el proceso, tanto de su 1a Fase como de la 2a Fase, a la altura que la normativa ambiental vigente establece, asegurando el mínimo impacto ambiental sobre el medio y la Comunidad aledaña. 8. The clean gas outgoing from the washing tower, consisting mainly of combustion gases and water vapor, is driven by the action of a VTI towards its evacuation through the single chimney that will emit the total of clean gases generated by the process, both of its Phase 1 and Phase 2 through at the level that establishes environmental regulations in force, ensuring minimal environmental impact on the environment and the surrounding community.
9. Como todo proceso a alta temperatura (entre los 480 y 520°C), la parte del mineral que no volatiliza, como se detallaba en 2, se traslada desde el cabezal posterior al anterior del Tostador constituyéndose en ganga mineral la que se extrae continuamente por la descarga del Horno ubicada en la zona inferior de su cabezal anterior. Dicha ganga calcinada junto con los polvos recuperados de los gases en 3 (Cámara de Expansión y Ciclón) serán transportados a pozos de enfriamiento y retiro a su lugar de destino final. 9. Like all high-temperature processes (between 480 and 520 ° C), the part of the mineral that does not volatilize, as detailed in 2, is transferred from the posterior head to the previous head of the Toaster, constituting a mineral gangue that is extracted continuously by the discharge of the Furnace located in the lower area of its previous head. Said calcined gangue together with the powders recovered from the gases in 3 (Expansion Chamber and Cyclone) will be transported to cooling wells and removal to their final destination.
Segunda Fase de Separación Productos Comerciales(10-18) Second Phase of Separation of Commercial Products (10-18)
10. Un Horno fijo de doble cámara de reacción (Fig.2 y 3)recibe la mezcla de productos sólidos desde su tolva de alimentación, en el cual se lie va a cabo a una temperatura entre los 480 y 520°C, la volatilización de los Trióxidos de Antimonio (Sb203) y Arsénico (As 203) que constituyen la mezcla de óxidos generada en la 1a Fase (Filtro de Mangas) y retención del óxido de Pb (PbO) que no volatiliza en él, con el objeto de separar los productos volatilizados conforme a sus diferentes temperaturas de condensación en equipos distintos aguas arriba en el sistema de Manejo de Gases de esta 2a Fase. La mezcla de productos sólidos trasladados desde la 1a Fase son alimentados en el Horno Fijo (tipo reverbero) cuyo crisol ha sido dividido en dos cámaras iguales separadas por un muro longitudinal interior, estando unidas entre sí a nivel de la fase gaseosa, las que aprovechan el calor generado por dos quemadores instalados en sus muros posteriores, de cada cámara, que con inclinación de 20% y llama de largo adecuada, apuntan hacia el piso del crisol correspondiente, en contracorriente al flujo de gases salientes del horno, condición que contrarresta el posible arrastre de polvo fino que caracteriza la mezcla de sólidos alimentada. Con la misma intención, se dispone al interior del horno de una plancha deflectora vertical, instalada a una distancia adecuada frente a la abertura de evacuación de gases del horno. 10. A double reaction chamber fixed oven (Fig. 2 and 3) receives the mixture of solid products from its feed hopper, in which it is carried out at a temperature between 480 and 520 ° C, volatilization of Antimony trioxide (Sb 2 0 3) and arsenic (As 2 0 3) constituting the mixture of oxides generated in the 1 Phase (Sleeve Filter) and retention of the Pb oxide (PbO) that does not volatilize in it, in order to separate the volatilized products according to their different condensation temperatures in different equipment upstream in the Gas Management system of this Phase 2. The mixture of solid products transferred from the 1st to the Phase are fed into the Fixed Furnace (reverberation type) whose crucible has been divided into two equal chambers separated by an interior longitudinal wall, being joined together at the gas phase level, which they take advantage of the heat generated by two burners installed on their rear walls, from each chamber, which with an inclination of 20% and a flame of adequate length, point towards the floor of the corresponding crucible, countercurrent to the flow of gases leaving the furnace, a condition that counteract the possible drag of fine dust that characterizes the fed solids mixture. With the same intention, a vertical deflector plate is installed inside the oven, installed at a suitable distance from the oven's gas evacuation opening.
Debido a las diferentes condiciones requeridas por los productos para su recuperación comercial, esta 2a fase debe ser realizada en forma ciclada dividiendo la operación del horno en dos sub-etapas, como se describen a continuación: You due to different conditions required by the products for commercial recovery, this 2nd phase must be performed in cyclized form dividing operation the oven into two sub-stages, as described below:
Sub- Etapa de Volatilización de Trióxidos de Antimonio (Sb) y Arsénico(As) y acumulación de Oxido de Plomo (PbO) al interior del horno, con atmosfera controlada, libre de oxígeno para mantener las características químicas del Trióxido de Antimonio (Sb203) y Trióxido de Arsénico (AS2O3) volatilizados- y asegurar su recuperación en términos de calidad respectivamente. Una vez completado el volumen óptimo de Oxido de Plomo (PbO) que es compatible con la capacidad del horno se desarrolla la siguiente sub-etapa. Sub-Stage of Volatilization of Antimony (Sb) and Arsenic (As) Trioxides and accumulation of Lead Oxide (PbO) inside the furnace, with controlled atmosphere, free of oxygen to maintain the chemical characteristics of Antimony Trioxide (Sb203) and volatilized Arsenic Trioxide (AS2O3) - and ensure their recovery in terms of quality respectively. Once the optimal volume of Lead Oxide (PbO) that is compatible with the capacity of the furnace is completed, the next sub-stage is carried out.
Sub- Etapa de Reducción de Oxido de Plomo (PbO) y moldeo de Plomo (Pb) Líquido, efectuando reducción del Oxido de Plomo (PbO) acumulado en la subetapa anterior, con un reductor que será adicionado al horno para producir la transformación del óxido a Plomo (Pb) metálico, el que a temperatura entre los 480 y 520°C se licúa y puede ser extraído desde el horno hacia un sistema de moldeo, para la formación de lingotes comercializables. Sub-Stage of Reduction of Lead Oxide (PbO) and molding of Liquid Lead (PbO), reducing the Lead Oxide (PbO) accumulated in the previous sub-stage, with a reducer that will be added to the furnace to produce the transformation of the oxide a lead (Pb) metal, which temperature between 480 and 520 ° C lic ú ay can be extracted from the furnace to a molding system for forming ingots marketable.
Sin embargo, teniendo presente que es más práctico y eficiente disponer de un proceso continuo en un mismo equipo, con las características señaladas anteriormente, es posible realizar las sub-etapas del proceso consecutivas, en una misma unidad y al mismo tiempo. De esta manera, la conformación del horno permite llevar a efecto el proceso de volatilización de los Trióxidos de Antimonio y Arsénico, en una de las cámaras y el proceso de reducción de óxido a Plomo (PbO) y extracción del Plomo Metálico en la cámara contigua, teniendo presente que la sub-etapa de reducción del óxido a Plomo (PbO) se efectúa con la aplicación directa del reductor sólido sobre el PbO y el Plomo generado y acumulado en la cámara respectiva, mientras que en la otra cámara se desarrolla en forma simultanea el proceso de volatilización la que requiere disponer de una atmósfera controlada en oxígeno, condición que es compatible con el requerimiento de la cámara en reducción. Una vez que la mezcla de los Óxidos de Arsénico y Antimonio es volatilizada en el horno, los gases son enviados a un Ciclón con el objeto de recuperar la presencia de partículas que pudieran haber sido arrastradas por los gases generados. Los polvos recuperados en este equipo son reincorporados al horno a través de un sistema de transporte constituido por un tornillo transportador refrigerado, que descarga en un elevador de capacho el cual levanta la carga reciclada para ser depositada en un segundo tornillo transportador, que traslada el material a reciclar hasta la tolva de alimentación del horno. Los gases que contienen los trióxidos de Antimonio y Arsénico son enviados al proceso siguiente. Considerando que la solidificación del Trióxido de Antimonio (Sb203) es inminente en el rango de 400 a 300°C,el conjunto de Cámara de Expansión Radiativa con placas deflectoras (Modelo Howard) y un segundo Ciclón es usado, dado que dicho conjunto cumple con los objetivos de generar una disminución de temperatura de los gases entre 450 y 300°C, al presentar la Cámara de Enfriamiento Radiativa (CER) en su interior un mayor recorrido para el gas, y por ende una mayor eficiencia en la recuperación de partículas sólidas de Trióxido de Antimonio (Sb203) que solidifican en su interior, disponiendo dicha cámara de placas deflectoras uniformemente distribuidas que dificultan el recorrido del gas y de las partículas, traduciéndose esto en una menor velocidad de desplazamiento y en consecuencia un mayor tiempo de residencia, apoyando dicha función con la presencia de un segundo Ciclón para la óptima recuperación del Trióxido de Antimonio (Sb203). Ante la posible presencia de partículas que no fueran recuperadas en el Primer Ciclón, la 1a Sección de la Cámara de Expansión Radiativa (1 de 4)(Fig.3 y 4) se utiliza para la recuperación de estas partículas, las cuales se incorporan al sistema de recirculación de polvos extraídos del primer Ciclón, para ser reincorporados al Horno. Las tres siguientes secciones restantes de la Cámara de Expansión Radiativa son utilizadas para la recuperación del Trióxido de Antimonio (Sb203) solidificado, que es uno de los productos comercializables de la planta, teniendo presente que la temperatura en los gases ya ha descendido bajo los 370°C al ingresar a la 2a Sección, temperatura a partir de la cual el Trióxido de Antimonio (Sb203) empieza a condensarse y a solidificar en partículas muy finas (polvos). Con el objetivo de maximizar la recuperación del producto, a continuación de la Cámara de Expansión Radiativa se incorpora un ciclón, que permite recuperar los sólidos del producto no capturados en la Cámara de Expansión Radiativa. However, bearing in mind that it is more practical and efficient to have a continuous process in the same equipment, with the characteristics indicated above, it is possible to carry out the consecutive sub-stages of the process, in a same unit and at the same time. In this way, the formation of the furnace allows the volatilization process of Antimony and Arsenic Trioxides to be carried out in one of the chambers and the process of reducing oxide to Lead (PbO) and extraction of the Metal Lead in the adjacent chamber. , bearing in mind that the sub-stage of reduction of oxide to Lead (PbO) is carried out with the direct application of the solid reducer on the PbO and the Lead generated and accumulated in the respective chamber, while in the other chamber it is developed in a The volatilization process simultaneously requires the availability of a controlled atmosphere in oxygen, a condition that is compatible with the requirement of the reducing chamber. Once the mixture of Arsenic and Antimony Oxides is volatilized in the furnace, the gases are sent to a Cyclone in order to recover the presence of particles that could have been carried away by the generated gases. The powders recovered in this equipment are reincorporated into the furnace through a transport system consisting of a refrigerated conveyor screw, which discharges into a hoist elevator which lifts the recycled load to be deposited in a second conveyor screw, which transfers the material to recycle to the oven feed hopper. The gases containing the Antimony and Arsenic trioxides are sent to the following process. Considering that the solidification of Antimony Trioxide (Sb 2 03) is imminent in the range of 400 to 300 ° C, the set of Radiative Expansion Chamber with baffle plates (Howard Model) and a second Cyclone is used, since said set complies with the objectives of generating a decrease in the temperature of gases between 450 and 300 ° C, by presenting the Radiative Cooling Chamber (CER) inside a greater path for the gas, and therefore greater efficiency in the recovery of solid particles of Antimony Trioxide (Sb 2 0 3 ) that solidify inside, said chamber having deflector plates uniformly distributed that make it difficult for the gas and particles to travel, resulting in a lower travel speed and consequently a greater residence time, supporting said function with the presence of a second Cyclone for optimal recovery of Antimony Trioxide (Sb203). Given the possible presence of particles that were not recovered in the first cyclone, the section 1 to the expansion chamber Radiative (1 of 4) (Fig.3 and 4) is used for recovering these particles, which are incorporated to the recirculation system of powders extracted from the first Cyclone, to be reincorporated into the Kiln. The next three remaining sections of the Radiative Expansion Chamber are used for the recovery of the solidified Antimony Trioxide (Sb 2 0 3 ), which is one of the marketable products of the plant, bearing in mind that the temperature in the gases has already decreased. under the 370 ° C to enter the section 2, temperature from which the antimony trioxide (Sb 2 0 3) and solidify begins to condense into very fine particles (powders). In order to maximize the recovery of the product, a cyclone is added to the Radiation Expansion Chamber, which allows the recovery of the solids of the product not captured in the Radiation Expansion Chamber.
El producto recuperado por la Cámara de Expansión Radiativa y el Segundo Ciclón son descargados sobre un tornillo transportador refrigerado, que reduce la temperatura del material a una temperatura aproximada de 60°C, y que a su vez descarga el Trióxido de Antimonio (Sb203) comercial a la Planta de envasado de dicho producto. Los gases no condensados en este proceso son trasladados al proceso siguiente (Enfriamiento Radiativo), para posteriormente ser recuperados. Los gases que abandonan el Segundo Ciclón a 300°C ingresan a unThe product recovered by the Radiative Expansion Chamber and the Second Cyclone are discharged onto a refrigerated transport screw, which reduces the temperature of the material to an approximate temperature of 60 ° C, and which in turn discharges the Antimony Trioxide (Sb 2 0 3 ) commercial to the packaging plant of said product. The non-condensed gases in this process are transferred to the following process (Radiative Cooling), to be subsequently recovered. The gases that leave the Second Cyclone at 300 ° C enter a
Enfriador Radiativo similar al descrito en 4 (de la 1a Fase) para reducir la temperatura a menos de 100°C, e inducir la solidificación del Trióxido de Arsénico (AS203) como producto comercializable. Dicho sistema de Enfriamiento está constituido por serpentines en paralelo conformados por seguidillas de U invertidas, unidas entre sí (constituyendo cada uno de ellos una rama del sistema). El gas entrante al equipo circula por su interior para enfriarse de 300°C a menos de 100°C, disipando el calor latente de los gases a través de las paredes de los serpentines que conforman dicho equipo, liberando este calor mediante fenómenos de convección y principalmente de radiación, hacia el aire atmosférico que lo rodea y que circula por su alrededor. Por otra parte, el ducto que constituye este sistema de enfriamiento debe ser dimensionado para una alta velocidad de conducción a fin de evitar la sedimentación de partículas que condesan en la medida que disminuye la temperatura y se genere la solidificación del Trióxido de Antimonio (As203). La capacidad de disipación de calor según el tamaño de cañería que conforme el serpentín definirá el largo requerido para la disminución de la temperatura de los gases perseguida, que en este caso es de alrededor de 200 °C. Radiative Cooler similar to that described in 4 (from 1st to Phase) to reduce the temperature to less than 100 ° C, and induce solidification of Arsenic Trioxide (AS 2 0 3 ) as a marketable product. Said cooling system is made up of parallel coils made up of inverted U strings, joined together (each constituting a branch of the system). The gas entering the equipment circulates inside it to cool from 300 ° C to less than 100 ° C, dissipating the latent heat of the gases through the walls of the coils that make up the equipment, releasing this heat through convection phenomena and mainly radiation, into the atmospheric air that surrounds it and circulates around it. On the other hand, the duct that constitutes this cooling system must be dimensioned for a high conduction speed in order to avoid the sedimentation of condensing particles as the temperature decreases and the solidification of Antimony Trioxide (As 2 is generated. 0 3 ). The heat dissipation capacity according to the pipe size that the coil will define the length required for the decrease in the temperature of the gases pursued, which in this case is around 200 ° C.
14. Los gases salientes del Enfriador Radiativo, equipo en el cual el Trióxidos de Arsénico a generar como producto comercial ha sido solidificado en tamaño muy fino, polvos con 95% bajo 3pm, son transportados a un Filtro de Mangas, para generar la separación del producto comercializable (AS2O3) de los gases de proceso. Lo anterior es logrado haciendo pasar la corriente gaseosa por tejidos filtrantes, denominadas mangas, que retienen las partículas sólidas presentes y el gas libre de partículas continúa en su proceso para ser evacuado por la Chimenea. La descarga sólida del Filtro de Mangas, Trióxido de Arsénico (As203) comercializable, es vaciado por una válvula rotatoria sobre un tornillo transportador para descargar el AS2O3 comercial a la Planta de envasado de dicho producto.14. The outgoing gases of the Radiative Cooler, equipment in which the Arsenic Trioxides to be generated as a commercial product have been solidified in a very fine size, powders with 95% under 3pm, are transported to a Bag Filter, to generate the separation of the tradable product (AS2O3) from process gases. This is accomplished by passing the gas stream through filter tissues, called sleeves, which retain the solid particles present and the particle-free gas continues in its process to be evacuated by the Chimney. The solid discharge of the Bag Filter, marketable Arsenic Trioxide (As 2 0 3 ), is emptied by a rotary valve on a conveyor screw to discharge the commercial AS2O3 to the packaging plant of said product.
15. Los Gases salientes del Filtro de Mangas limpios son impulsados por el Extractor de Gases (EG) hacia la Chimenea para su evacuación a la atmosfera. El extractor en este etapa debe ser capaz de generar la succión (presión negativa) necesaria para el traslado de los gases generados en el Horno Fijo, hasta terminar su procesamiento en el Filtro de Mangas, venciendo las pérdidas de carga que se producen en su traslado a través del proceso, tanto aguas arriba como aguas debajo a la ubicación del Extractor de Gases (EG) en la línea de operación. 15. The clean outgoing gases from the hose filter are propelled by the gas extractor (EG) towards the chimney for its evacuation into the atmosphere. The extractor in this stage must be able to generate the suction (negative pressure) necessary for the transfer of the gases generated in the Fixed Oven, until finishing its processing in the Bag Filter, overcoming the pressure losses that occur in its transfer Through the process, both upstream and downstream to the location of the Gas Extractor (EG) in the operation line.
16. Sistema de moldeo para la formación de lingotes comercializables de Plomo Metálico. 16. Molding system for the formation of marketable Metal Lead ingots.
17. Sistema de envasado de T rióxido de Antimonio. 17. Antimony T dioxide packaging system.
18. Sistema de envasado de T rióxido de Arsénico. 18. Arsenic Thioxide packaging system.
Las Fig.2 y 3 Corresponden a una vista en elevación del Horno Doble Cámara, un corte transversal y a una vista en planta de horno doble camara ,en corte, respectivamente. Figs. 2 and 3 correspond to an elevation view of the Double Chamber Oven, a cross section and a plan view of the double chamber oven, in section, respectively.
1 y 2. Cámaras componentes del Horno fijo, en el cual se genera la volatilización de los productos de interés, Trióxido de Antimonio (Sb203) y Trióxido de Arsénico (AS2O3) entre los 480 y 520°C, los que se separan conforme a sus diferentes temperaturas de condensación en equipos distintos del sistema de Manejo de Gases, aguas abajo de dicho Horno. No obstante, el PbO ingresado al horno que no volatiliza, se acumula en su interior para su posterior recuperación como producto comercial (Pb metálico). Cada una de las cámaras opera consecutivamente llevando a cabo las dos siguientes sub-etapas, pudiendo realizarse cada sub-etapa en forma simultánea y desfasada en cada cámara: a) Sub- Etapa de Volatilización de Trióxidos de Sb y As y acumulación de PbO al interior del horno, con atmósfera controlada libre de oxígeno para mantener las características químicas del Sb203 y As203 volatilizados y asegurar su recuperación en términos de calidad respectivamente. Una vez completado el volumen óptimo de PbO que es compatible con la capacidad del horno se desarrolla la siguiente subetapa. b) Sub- Etapa de Reducción de PbO y moldeo de Pb Líquido, efectuando la reducción del PbO acumulado al interior de la cámara correspondiente en la sub-etapa anterior, con un reductor, carbón coque chancado bajo Y·”, que es adicionado al horno para producir la reducción del óxido a Pb metálico, material que entre los 480 y 520°C se licúa y puede ser extraído desde el horno hacia un sistema de moldeo con formación de lingotes comercializables. 1 and 2. Component chambers of the fixed furnace, in which the volatilization of the products of interest is generated, Antimony Trioxide (Sb20 3 ) and Arsenic Trioxide (AS2O3) between 480 and 520 ° C, which are separated according at its different condensation temperatures in equipment other than the Gas Management system, downstream of said Furnace. However, the PbO entered the oven that does not volatilize, accumulates inside for subsequent recovery as a commercial product (metallic Pb). Each one of the chambers operates consecutively carrying out the following two sub-stages, each sub-stage can be performed simultaneously and out of phase in each chamber: a) Sub-Stage of Volatilization of Trioxides of Sb and As and accumulation of PbO at inside the furnace, with a controlled oxygen-free atmosphere to maintain the chemical characteristics of Sb 2 03 and As 2 0 3 volatilized and to ensure its recovery in terms of quality respectively. Once the optimum volume of PbO that is compatible with the capacity of the furnace is completed, the next sub-stage is developed. b) Sub-Stage of Reduction of PbO and molding of Liquid Pb, effecting the reduction of the accumulated PbO inside the corresponding chamber in the previous sub-stage, with a reducer, coking coal crushed under Y · ”, which is added to the furnace to produce the reduction of oxide to metallic Pb, material that between 480 and 520 ° C liquefies and can be extracted from the furnace to a molding system with the formation of marketable ingots.
La conceptualización descrita permite concebir la realización consecutiva de las dos sub-etapas carga productiva, en una sola unidad de horno con cámaras de crisol divididas y de cámara de gases compartidas, hecho que contribuye a reducir el proceso en cuestión a una línea de operación y en consecuencia a reducir el consumo de combustible y costos de mantención. The described conceptualization allows conceiving the consecutive realization of the two productive load sub-stages, in a single furnace unit with divided crucible chambers and shared gas chamber, a fact that contributes to reducing the process in question to a line of operation and consequently to reduce fuel consumption and maintenance costs.
3. Ducto de salida de gases (0,73· 0,73 m2) generados en el Horno entre los 480 y 520°C. 3. Gas outlet duct (0.73 · 0.73 m 2 ) generated in the Furnace between 480 and 520 ° C.
4. Plancha deflectora vertical de 1 ,4 m ancho y 0,73 m de alto y 1” de espesor, instalada a una distancia conveniente frente a la abertura de evacuación de gases del horno, cuyo objetivo es contrarrestar el arrastre de polvo fino que caracteriza la mezcla alimentada de óxidos de Sb, As y Pb, productos de interés a generar separadamente en forma comercial. 5. Dos quemadores instalados en su muro posterior del Horno, en cada cámara, inclinados hacia el piso del crisolen un 20%, cuya llama de 2,5 m de largo se desarrolla en contracorriente al flujo de gases salientes. 4. Vertical baffle plate, 1.4 m wide and 0.73 m high and 1 ”thick, installed at a convenient distance from the furnace gas evacuation opening, whose objective is to counteract the drag of fine dust that It characterizes the mixture fed with oxides of Sb, As and Pb, products of interest to be generated separately on a commercial basis. 5. Two burners installed in its rear wall of the Kiln, in each chamber, inclined towards the floor of the chrysolene by 20%, whose 2.5 m long flame develops countercurrent to the flow of outgoing gases.
6. Muro longitudinal divisor del crisol del horno, de 0,75 m altura y de 15” de espesor, que divide el crisol del Horno en dos cámaras iguales. Dichas cámaras están unidas por la fase gaseosa, para aprovechar el calor generado por los quemadores instalados en su muro posterior. 6. Longitudinal dividing wall of the furnace crucible, 0.75 m high and 15 ”thick, which divides the Furnace crucible into two equal chambers. These chambers are linked by the gas phase, to take advantage of the heat generated by the burners installed on its rear wall.
7. Piso del crisol del horno de 0,381 m de alto, construido en material refractario de ladrillo recto, 15”x6”x3”,de alta Alúmina tipo HA 45 ISO 10081-1. 7. 0.381 m high furnace crucible floor, built in straight brick refractory material, 15 ”x6” x3 ”, high Alumina type HA 45 ISO 10081-1.
8. Muros laterales (8), anterior y posterior (11), verticales sobre el piso y hasta la altura del crisol (0,75m alto), construidos en material refractario de ladrillo recto, 12”x 4-1/2” 3”, de alta Alúmina tipo HA 45 ISO 10081-1. 8. Side walls (8), front and rear (11), vertical above the floor and up to the height of the crucible (0.75m high), made of refractory material of straight brick, 12 "x 4-1 / 2" 3 ”, Of high Alumina type HA 45 ISO 10081-1.
9. Muros laterales (9), anterior y posterior (12), verticales de 0,75m sobre los muros 8 anteriores, construidos en material refractario de ladrillo recto, 9”x 4-1/2” 3”, de alta Alúmina tipo HA 45 ISO 10081-1. 9. Side walls (9), front and rear (12), vertical of 0.75m above the walls 8 above, built in refractory material of straight brick, 9 "x 4-1 / 2" 3 ", of high Alumina type HA 45 ISO 10081-1.
10. Bóveda suspendida, construida en material refractariode ladrillo recto, 12”x 6”x 3”, de alta Alúmina tipo HA 45 ISO 10081-1. 10. Suspended vault, built in refractory material of straight brick, 12 "x 6" x 3 ", of high Alumina type HA 45 ISO 10081-1.
Las Fig. 4 y 5 corresponden a una vista esquemática y en corte tranversal de la Cámara de Expansión Radiativa (CER) , respectivamente . Figs. 4 and 5 correspond to a schematic and cross-sectional view of the Radiative Expansion Chamber (CER), respectively.
1.Los gases salientes del Horno de doble Cámara, entre los 480 y 520°C, que posiblemente contengan polvos arrastrados de la mezcla de productos alimentada a él, entran en primer lugar a un Ciclón de alta eficiencia en recuperación de polvos, acción que es reforzada por la primera sección de la 1.The outgoing gases of the Double Chamber Furnace, between 480 and 520 ° C, which possibly contain dusts entrained from the product mixture fed to it, enter firstly to a Cyclone of high efficiency in dust recovery, action that is reinforced by the first section of the
CER, donde se recolectan aquellas partículas que no son capturadas en el Ciclón. Los polvos así recuperados, tanto en el Ciclón 1 como en la 1a sección de la CER se descargan en un tornillo transportador refrigerado común, que permite reincorporar dicho material a dicho horno. , 3 y 4.Las secciones 2, 3 y 4 de la CERestán orientadas a generar la condensación y recuperación en forma sólida del Trióxido de Antimonio (Sb203), teniendo presente que la temperatura de los gases ha descendido bajo los 370°C, temperatura a partir de la cual el Sb203 empieza a condensarse y solidificar en partículas finas (polvos). El Ciclón (CL2) tiene la función de apoyar y maximizar la recuperación del producto comercial (Sb203) ya solidificado en las secciones correspondientes de la CER (en el rango de los 370 y 300°C). El producto recuperado en las 3 secciones finales de la CER y en el CL2 se descargan sobre un tornillo transportador refrigerado de acero inoxidable que reduce la temperatura del material recuperado de alrededor de 330 a 60°C, el que a su vez alimenta dicho producto comercial a la Planta de envasado correspondiente. 5.Ducto de entrada de los gases provenientes del Ciclón 1 a la CER. CER, where those particles that are not captured in the Cyclone. The powders thus recovered, in the cyclone 1 and 1 to section CER discharged into a common screw conveyor cooled, allowing reincorporating said material to said furnace. , 3 and 4 Sections 2, 3 and 4 of the CER are aimed at generating the condensation and recovery in solid form of Antimony Trioxide (Sb 2 0 3 ), bearing in mind that the temperature of the gases has dropped below 370 ° C, temperature from which Sb20 3 begins to condense and solidify into fine particles (powders). The Cyclone (CL2) has the function of supporting and maximizing the recovery of the commercial product (Sb 2 0 3 ) already solidified in the corresponding sections of the CER (in the range of 370 and 300 ° C). The product recovered in the 3 final sections of the CER and in the CL2 is discharged onto a refrigerated stainless steel conveyor screw that reduces the temperature of the recovered material from around 330 to 60 ° C, which in turn feeds said commercial product. to the corresponding packaging plant. 5.Inlet pipeline for gases from Cyclone 1 to the CER.
6. Ducto de salida de los gases de la CER a Ciclón 2. 6. Exit duct for gases from the CER to Cyclone 2.
7, 8 y 9. Placas deflectoras (Modelo Howard), que dificultan el recorrido del gas y de las partículas para provocar una menor velocidad de desplazamiento y por ende, un mayor tiempo de residencia de los gases y de las partículas sólidas en su interior. 7, 8 and 9. Deflector plates (Howard Model), which make it difficult for the gas and particles to travel, causing a lower displacement speed and, therefore, a longer residence time for gases and solid particles inside. .
10. Espacio liberado para el traspaso de gases entre la 1a y 2a sección de la CER, ubicado desde la parte inferior de la primera placa deflectora (7) y la cúspide de la estructura divisora transversal (13) que separa físicamente el tramo final de descargas de las secciones 1a y 2a. 10. Space released for transfer of gas between 1 and 2 to the CER section located from the bottom of the first baffle plate (7) and the top of the transverse partition structure (13) physically separates the leg download end of sections 1 a and 2 a .
11. Espacio liberado para el traspaso de gases entre la 2a y 3a sección de la CER, ubicado sobre la parte superior de la segunda placa deflectora (8)y el techo de la CER. 11. Space released for transfer of gases between 2 and 3 to the CER section, located on top of the second baffle plate (8) and the roof of the CER.
12. Espacio liberado para el traspaso de gases entre la 3a y 4a sección de la CER, ubicado desde la parte inferior de la tercera placa deflectora (9) y sobre la descarga al tornillo transportador refrigerado 13. Estructura divisora transversal entre las descargas de la 1a y 2a sección de la CER, que recolectan en forma diferenciada los polvos arrastrados por los gases (1a sección) y del producto desde la 2a sección en adelante. 12. Space released for transfer of gas between 3 and 4 to the CER section located from the bottom of the third baffle plate (9) and the discharge screw conveyor cooled 13. transversal partition structure between the discharges of 2 to 1 and CER section, gathering in differentially powders entrained by the gases (section 1) and the product from 2 to section hereinafter.
14. Puerta de inspección (manhole) para intervenciones de mantención. 14. Inspection door (manhole) for maintenance interventions.
15. Abertura de descarga de polvos recuperados en 1a sección y del producto comercial en las secciones 2, 3 y 4. 15. discharge opening powders recovered in section 1 and the commercial product in sections 2, 3 and 4.
REFERENCIAS REFERENCES
1. Curso Metalurgia del Antimonio, Antonio Ros Moreno, 2009. 1. Antimony Metallurgy Course, Antonio Ros Moreno, 2009.
2. Estudio del comportamiento de antimonita durante su tostación a sb2o3 (trióxido de antimonio) en hornos de resistencia eléctrica y microondas, T.J. Ornelas, H.J.A. Hernández, M.M. Márquez, y M.A. ortiz Depto. de Explotación de Minas y Metalurgia de la Facultad de Ingeniería Universidad Nacional Autónoma de México Cd. Universitaria, 2012. 2. Study of the behavior of antimonite during its roasting to sb2o3 (antimony trioxide) in electric resistance and microwave ovens, T.J. Ornelas, H.J.A. Hernández, M.M. Márquez, and M.A. Ortiz Dept. of Mining Exploitation and Metallurgy of the Faculty of Engineering Universidad Nacional Autónoma de México Cd. Universitaria, 2012.
3. REDUCCIÓN CARBOTÉRMICA DE SULFURO DE ANTIMONIO EN 3. CARBOTHERMAL REDUCTION OF ANTIMONY SULFIDE IN
PRESENCIA DE ÓXIDO DE CALCIO (Tésis de Grado Magíster en Ingeniería Metalúrgica, UdeC), 2011 PRESENCE OF CALCIUM OXIDE (Master's Degree Thesis in Metallurgical Engineering, UdeC), 2011
4. Diagramas de Tostación Kelloogg-lngraham (k-1. José María Palacios de Liñán. 4. Kelloogg-Ingraham Roasting Diagrams (k-1. José María Palacios de Liñán.
11/ Octubre 2011. 11 / October 2011.
5. Metalurgia del Plomo , Seba RivanoVillagra .Scribd, Marzo 19, 2013. 5. Lead Metallurgy, Seba RivanoVillagra .Scribd, March 19, 2013.
6. ES8602957, 16-11-1985, Prodn. of metallic lead from lead-contg starting materials , BOLIDEN AB 6. ES8602957, 11-16-1985, Prodn. of metallic lead from lead-contg starting materials, BOLIDEN AB
7. CU22289, 31-01-1995, Procedure for obtaining arsenic trioxide from alkaline 7. CU22289, 01-31-1995, Procedure for obtaining arsenic trioxide from alkaline
liquors with a high antimony-content., UNIV LA HABANA, Bustamente Sánchez María de la Libertad. liquors with a high antimony-content., UNIV LA HABANA, Bustamente Sánchez María de la Libertad.

Claims

REIVINDICACIONES
1. Planta moderna para la obtención de Trióxido de Antimonio (Sb203), Trióxido de Arsénico (As203) y Plomo (Pb) metálico, a partir de un mineral predominante en Antimonita, CARACTERIZADO por equipos dispuestos para un método dividido en dos fases: a. Fase de tostación oxidante controlada, en hornos donde los gases se someten a distintos procesos de enfriamiento para obtener al final una mezcla solidificada formada por Trióxido de Antimonio (Sb203), trióxido de Arsénico (As203) y oxido de Plomo (PbO). b. Fase de separación de la mezcla sólida en un horno fijo de doble cámara por volatilización y recuperación a diferentes temperaturas de solidificación y posterior obtención de Plomo metálico por reducción del óxido de Plomo. 1. Modern plant to obtain Antimony Trioxide (Sb 2 0 3 ), Arsenic Trioxide (As 2 0 3 ) and Lead (Pb) metallic, from a predominant mineral in Antimonite, CHARACTERIZED by teams prepared for a method divided into two phases: a. Controlled oxidative roasting phase, in ovens where the gases undergo different cooling processes to finally obtain a solidified mixture formed by Antimony Trioxide (Sb 2 0 3 ), Arsenic trioxide (As 2 0 3 ) and Lead oxide (PbO). b. Phase of separation of the solid mixture in a fixed double chamber furnace by volatilization and recovery at different solidification temperatures and subsequent obtaining of metallic Lead by reduction of Lead oxide.
2. La planta para la obtención de los Óxidos de acuerdo con la reivindicación 1 , CARACTERIZADO porque la primera fase (a) de tostación oxidante controlada se efectúa en hornos rotatorios con un ventilador de tiro inducido para generar la oxidación del Antimonio y Arsénico a una temperatura entre los 480 y 520°C 2. The plant for obtaining the Oxides according to claim 1, CHARACTERIZED because the first phase (a) of controlled oxidative roasting is carried out in rotary kilns with an induced draft fan to generate the oxidation of Antimony and Arsenic to a temperature between 480 and 520 ° C
3. La planta para la obtención de Oxido de Plomo de acuerdo con la reivindicación 1, CARACTERIZADO porque en la primera fase (a) la oxidación de Sulfuro de Plomo (PbS) a oxido de Plomo (PbO) se induce por la inyección de aire al sistema de manejo de gases a la entrada de uno de los equipos del sistema de Enfriamiento Radiativo. 3. The plant for obtaining Lead Oxide according to claim 1, CHARACTERIZED because in the first phase (a) the oxidation of Lead Sulfide (PbS) to Lead oxide (PbO) is induced by the injection of air to the gas handling system at the entrance of one of the Radiation Cooling system equipment.
4. La planta para la obtención de acuerdo con la reivindicación 1 , CARACTERIZADO porque en la primera fase (a) la mezcla de interés es condesada al final del sistema de enfriamiento de la primera fase y está constituida por Trióxido de Antimonio, Trióxido Arsénico y Oxido de Plomo que se recuperan en un Filtro de Mangas que opera bajo los 100°C. 4. The plant for obtaining according to claim 1, CHARACTERIZED because in the first phase (a) the mixture of interest is condensed at the end of the cooling system of the first phase and consists of Antimony Trioxide, Arsenic Trioxide and Lead oxide that is recovered in a Sleeve Filter that operates below 100 ° C.
5. La planta para la obtención de acuerdo con la reivindicación 1 , CARACTERIZADO porque la segunda fase (b) de volatilización y separación de la mezcla se efectúa en hornos fijos que trabajan a una temperatura entre los 480 y 520°C, cuyos crisoles tiene dos cámaras de reacción iguales separadas por un muro y unidas entre sí a nivel de la fase gaseosa. 5. The plant for obtaining according to claim 1, CHARACTERIZED because the second phase (b) of volatilization and separation of the mixture is carried out in fixed furnaces that work at a temperature between 480 and 520 ° C, whose crucibles have two equal reaction chambers separated by a wall and joined together at the gas phase level.
6. La planta para la obtención de acuerdo con la reivindicación 1 , CARACTERIZADO porque en la segunda fase (b) el trióxido de Antimonio ( Sb203) se recupera en una Cámara de Enfriamiento Radiativa que opera a temperaturas cercanas a los 350°C. 6. The plant for obtaining according to claim 1, CHARACTERIZED because in the second phase (b) the Antimony trioxide (Sb 2 0 3 ) is recovered in a Radiative Cooling Chamber that operates at temperatures close to 350 ° C.
7. La planta para la obtención de acuerdo con la reivindicación 1 , CARACTERIZADO porque en la segunda fase (b) el trióxido de Arsénico (AS2O3) se recupera al final del sistema en un Filtro de Mangas (FM) a temperaturas menores a los 100°C. 7. The plant for obtaining according to claim 1, CHARACTERIZED because in the second phase (b) the Arsenic trioxide (AS2O3) is recovered at the end of the system in a Bag Filter (FM) at temperatures below 100 ° C.
8. La planta para la obtención de acuerdo con la reivindicación 1 , CARACTERIZADO porque en la segunda fase (b) el plomo (Pb) se recupera como producto comercial desde el interior del horno de doble cámara, por un proceso de reducción con carbón coque que transforma el Óxido de Plomo (PbO) a Plomo metálico líquido a la temperatura del proceso, entre los 480 y 520°C. 8. The plant for obtaining according to claim 1, CHARACTERIZED because in the second phase (b) the lead (Pb) is recovered as a commercial product from the interior of the double chamber furnace, by a process of reduction with coking coal. that transforms Lead Oxide (PbO) to Liquid metallic Lead at the process temperature, between 480 and 520 ° C.
9. La planta para la obtención de acuerdo con la reivindicación 1 a 4, CARACTERIZADO porque en la primera fase se eliminan los gases de Anhidro sulfuroso (SO2) ,se entregan gases de combustión limpios al ambiente, los gases salientes del filtro de mangas ingresan a una torre de lavado de gases y por aspersión en contra corriente se limpian con Hidróxido de Calcio al 10% de dilución. 9. The plant for obtaining according to claims 1 to 4, CHARACTERIZED because in the first phase the Anhydrous sulphurous gases (SO2) are eliminated, clean combustion gases are delivered to the environment, the outgoing gases from the bag filter enter They are cleaned in a gas scrubbing tower and by counter-current spraying with 10% dilution of Calcium Hydroxide.
PCT/CL2018/000045 2018-12-27 2018-12-27 Modern plant for producing trioxides of antimony and arsenic, and metal lead WO2020132752A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2018/000045 WO2020132752A1 (en) 2018-12-27 2018-12-27 Modern plant for producing trioxides of antimony and arsenic, and metal lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2018/000045 WO2020132752A1 (en) 2018-12-27 2018-12-27 Modern plant for producing trioxides of antimony and arsenic, and metal lead

Publications (1)

Publication Number Publication Date
WO2020132752A1 true WO2020132752A1 (en) 2020-07-02

Family

ID=71125625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2018/000045 WO2020132752A1 (en) 2018-12-27 2018-12-27 Modern plant for producing trioxides of antimony and arsenic, and metal lead

Country Status (1)

Country Link
WO (1) WO2020132752A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2295039A (en) * 1939-12-26 1942-09-08 American Ore Reduction Corp Method of reducing ores
ES8602957A1 (en) * 1984-02-07 1985-11-16 Boliden Ab A method for producing metallic lead by direct lead-smelting.
ES2117028T3 (en) * 1991-04-12 1998-08-01 Metallgesellschaft Ag PROCEDURE FOR THE TREATMENT OF MINERAL WITH VALUE OF RECOVERABLE METALS INCLUDING ARSENIC-CONTAINING COMPONENTS.
CN105296764A (en) * 2015-12-02 2016-02-03 郴州市金贵银业股份有限公司 Method for synchronously pre-removing arsenic and antimony from lead anode mud
EP2682487B1 (en) * 2011-09-05 2016-07-13 Leiyang Yanxin Non-ferrous Metals Co., Ltd Comprehensive recovery method for complex material containing arsenic and valuable metal slags

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2295039A (en) * 1939-12-26 1942-09-08 American Ore Reduction Corp Method of reducing ores
ES8602957A1 (en) * 1984-02-07 1985-11-16 Boliden Ab A method for producing metallic lead by direct lead-smelting.
ES2117028T3 (en) * 1991-04-12 1998-08-01 Metallgesellschaft Ag PROCEDURE FOR THE TREATMENT OF MINERAL WITH VALUE OF RECOVERABLE METALS INCLUDING ARSENIC-CONTAINING COMPONENTS.
EP2682487B1 (en) * 2011-09-05 2016-07-13 Leiyang Yanxin Non-ferrous Metals Co., Ltd Comprehensive recovery method for complex material containing arsenic and valuable metal slags
CN105296764A (en) * 2015-12-02 2016-02-03 郴州市金贵银业股份有限公司 Method for synchronously pre-removing arsenic and antimony from lead anode mud

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
ANDERSON, C., THE METALLURGY OF ANTIMONY. CHEMIE DER ERDE, vol. 72, 2012, pages 3 - 8, XP028405395, Retrieved from the Internet <URL:http://dx.doi.org/10.1016/j.chemer.2012.04.001> *
CHAMBI, L.: "REDUCCION CARBOTERMICA DE SULFURO DE ANTIMONIO EN PRESENCIA DE OXIDO DE CALCIO", TESIS PRESENTADA A LA DIRECCIÓN DE POSTGRADO DE LA UNIVERSIDAD DE CONCEPCION COMO UN REQUISITO PARCIAL PARA OPTAR EL GRADO: MAGISTER EN INGENIERIA METALÚRGICA UNIVERSIDAD DE CONCEPCION, October 2011 (2011-10-01), Retrieved from the Internet <URL:http://repositorio.udec.cl/bitstream/handle/11594/1518/Tesis_Reduccion_Carbotermica_de_Sulfuro.Image.Marked.pdf?sequence=1&isAllowed=y> [retrieved on 20190722] *
DAVIS, D.R. ET AL., ANTIMONY IN SOUTH AFRICA .[EN LINEA] JOURNAL OF THE SOUTH AFRICAN INSTITUTE OF MINING AND METALLURGY, vol. 86, no. 6, June 1986 (1986-06-01), pages 173 - 193, Retrieved from the Internet <URL:https://www.saimm.co.za/Journal/v086n06p173.pdf> [retrieved on 20190722] *
DUPONT, D. ET AL.: "Antimony Recovery from End-of-Life Products and Industrial Process Residues: A Critical Review", JOURNAL OF SUSTAINABLE METALLURGY, vol. 2, no. 1, March 2016 (2016-03-01), pages 79 - 103, XP055723275 *
GARCIA, V.: "Estudio preliminar de laboratorio para el tratamiento de un concentrado de cobre alto en arsenico mediante tostacion sulfatante. [en linea] Informe de Memoria de Titulo para optar al Título de Ingeniero Civil Metalúrgico", UNIVERSIDAD DE CONCEPCIÓN FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA METALURGICA, August 2017 (2017-08-01), Retrieved from the Internet <URL:http://repositorio.udec.cl/bitstream/handle/l1594/2893/Tesis_Estudio_Preliminar_de_laboratorio.pdf?sequenced=1&isAllowed=y> [retrieved on 20190724] *
PADILLA, R. ET AL.: "Kinetics of stibnite (sb2s3) oxidation at roasting temperatures", J. MIN. METALL. SECT. B-METALL, vol. 50, no. 2, 2014, pages 127 - 132, XP055723272 *
PROCESO DE TOSTACIÓN PARA SULFUROS, 13 May 2015 (2015-05-13), Retrieved from the Internet <URL:https://es.slideshare.net/berthinggutierrezbrenis/en-tostacion-de-sulfuros-a6> [retrieved on 20190718] *
TAN, C ET AL.: "Separation of arsenic and antimony from dust with high content of arsenic by a selective sulfidation roasting process using sulfur", TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, vol. 28, no. 5, 22 May 2018 (2018-05-22), pages 1027 - 1035, XP085404975, Retrieved from the Internet <URL:https://doi.org/10.1016/S1003-6326(18)64740-5> DOI: 10.1016/S1003-6326(18)64740-5 *
THORNTON, !. ET AL., LEAD THE FACTS, December 2001 (2001-12-01), London, UK, Retrieved from the Internet <URL:https://www.ila-lead.org/UserFiles/File/factbook/leadTheFacts.pdf> [retrieved on 20190724] *

Similar Documents

Publication Publication Date Title
Sinclair The extractive metallurgy of zinc
Davenport et al. Flash smelting: analysis, control and optimization
RU2079562C1 (en) Method to process polymetallic ores and concentrates bearing noble metals, arsenic, carbon and sulfur
US6482373B1 (en) Process for treating ore having recoverable metal values including arsenic containing components
RU2692135C1 (en) Processing method of gold-containing antimony concentrate and line for its implementation
CN101528953B (en) Method for removing lead from cement kiln
CS273308B2 (en) Method of oxides or with silicion bound metals winning from liquid slag
ES2909077T3 (en) Integrated hydrometallurgical and pyrometallurgical method for ore processing
WO2020132751A1 (en) Method for obtaining antimony trioxide (sb2o3), arsenic trioxide (as2o3) and lead (pb)
AU2016310436B2 (en) Processes for preparing various metals and derivatives thereof from copper- and sulfur-containing material
NO135480B (en)
CA2395988C (en) Process for treating precious metal ores
Taylor et al. Pyrometallurgical processing technologies for treating high arsenic copper concentrates
ES2726718T3 (en) Method for partial roasting of concentrates bearing copper and / or gold
WO2020132752A1 (en) Modern plant for producing trioxides of antimony and arsenic, and metal lead
EA037686B1 (en) Method and apparatus for treating a leaching residue of a sulfur-containing metal concentrate
JPS6247931B2 (en)
SE444578B (en) PROCEDURE FOR THE RECOVERY OF METAL CONTENTS FROM COMPLEX SULFIDIC METAL RAW MATERIALS
Adham et al. A comparison of roasting technologies for arsenic removal from copper concentrates
US4421552A (en) Dead roast-oxide flash reduction process for copper concentrates
RU2308495C1 (en) Method for processing of concentrates containing precious metals and sulfides
RU2309187C2 (en) Method of processing auriferous arseno-pyrite ores and concentrates
US2735759A (en) Process of smelting copper sulfide ores
Beisheim et al. Innovations in Pyrometallurgical Pre & Post Copper Flash Smelter Removal of Arsenic
RU2654407C1 (en) Method for processing sulfide concentrates containing noble metals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE