WO2020132723A1 - Miniemulsões de frações bioativas de passiflora, composições compreendendo tais miniemulsões e formulações - Google Patents

Miniemulsões de frações bioativas de passiflora, composições compreendendo tais miniemulsões e formulações Download PDF

Info

Publication number
WO2020132723A1
WO2020132723A1 PCT/BR2019/000022 BR2019000022W WO2020132723A1 WO 2020132723 A1 WO2020132723 A1 WO 2020132723A1 BR 2019000022 W BR2019000022 W BR 2019000022W WO 2020132723 A1 WO2020132723 A1 WO 2020132723A1
Authority
WO
WIPO (PCT)
Prior art keywords
bioactive
extraction
emulsion
miniemulsion
fractions
Prior art date
Application number
PCT/BR2019/000022
Other languages
English (en)
French (fr)
Inventor
Philipe DOS SANTOS
Juliane VIGANO
Julian Martinez
Marcio LOPES
Original Assignee
Universidade Estadual De Campinas - Unicamp
Rubian Xtract Serviços Ltda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BR102018077523-5A external-priority patent/BR102018077523B1/pt
Application filed by Universidade Estadual De Campinas - Unicamp, Rubian Xtract Serviços Ltda filed Critical Universidade Estadual De Campinas - Unicamp
Publication of WO2020132723A1 publication Critical patent/WO2020132723A1/pt

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin

Definitions

  • the present invention relates to miniemulsions comprising one or more bioactive fractions of Passiflora (passion fruit) selected from hydrophilic, lipophilic obtained by supercritical extraction or concentrated hydrophilic bioactive fractions of Passiflora (passion fruit) obtained by pressurized liquid extraction with proof of the benefits of the enriched bioactive fractions isolated from the present invention, from miniemulsions as well as products comprising such miniemulsions with antioxidant properties that act in the prevention and correction of the different factors and mechanism responsible for skin aging.
  • the miniemulsion of the present invention can be used in cosmetics, nutraceuticals, nutracosmetics, drugs and food products.
  • Additional objects of the present invention are cosmetic formulations of facial cleansing lotion, facial moisturizing serum and easy moisturizer with sun protection.
  • the present invention has application in the field of medicinal or cosmetic preparations, with organic active ingredients.
  • Viganó et al., (2016b) and (2016a) developed on a laboratory scale a sequential extraction process to recover four fractions of bioactive compounds from passion fruit bagasse, a residue from the industrialization of this fruit.
  • the fractions were rich in tocotrienols, polyunsaturated fatty acids, carotenoids and phenolic compounds.
  • the extraction techniques employed were extraction with supercritical fluid (SFE) and extraction with pressurized liquid (PLE), both environmentally friendly technologies, as they do not harm the environment and produce extracts free of toxic solvents.
  • SFE supercritical fluid
  • PLE pressurized liquid
  • the works of these authors observed that the extracts have antioxidant capacity. This property was evaluated by the DPPH, FRAP and ORAC methods. Therefore, such extracts can be explored for the formulation of new products with antioxidant properties.
  • An emulsion consists of at least two immiscible liquids, one of which is dispersed in the form of small spherical droplets in the other (MCCLEMENTS, 2011).
  • a miniemulsion is defined as the category of emulsion in which the particles of the dispersed phase have a diameter in the range of 50 in 1 mha (SLOMKOWSKI et al., 2011).
  • the system may have the ability to increase the bioavailability of highly lipophilic substances, have a characteristic of high stability in terms of particle aggregation and gravitational separation (MCCLEMENTS, 2011).
  • Emulsion applications have been the subject of many studies in recent decades, such as obtaining carriers (LIVERSIDGE and CUNDY, 1995), inhibiting microbial growth (SPERANZA et al., 2015), inhibiting oral cells (ZHANG et al., 2014) and in the formulation of cosmetics (YUKUYAMA et al., 2016).
  • the active compounds in the cosmetic formula permeate the skin.
  • the penetration of the active compounds is determined by a number of factors, such as: the molecular size; the degree of ionization; lipophilicity; and the synergy between the base of the formula component and the skin (YUKUYAMA et al., 2016).
  • miniemulsions, containing bioactive substances in the oil and water phases seem to be one of the most suitable forms for the topical application of active compounds.
  • the main problem to be solved arose from the need for an antioxidant solution that acts in the prevention and correction of the different factors and mechanism responsible for skin aging, such as degradation by Metalloproteinases and decreased collagen / elastin production rate, and decreased cell turnover.
  • the antioxidant complex was obtained through the reconstruction and regrouping of different selective extracts in a stable antioxidant complex, in a synergistic way, and that potentiate the real and histological activity of cellular anti-aging, due to the presence of compounds with different characteristics and mechanism of action.
  • the technology differential is the obtaining of a reconstructed antioxidant complex with the natural bioactives present in the passion fruit seed, for the prevention and correction of the different factors and mechanism responsible for skin aging.
  • US 2016/074312 describes cosmetic, pharmaceutical, dermatological or nutraceutical compositions comprising passion fruit seed extract, in which the obtained extract is formulated to obtain the desired compositions, which can be in the form of oil in water or water in oil.
  • These seeds were chosen because they comprise polyphenols (such as piceatannol), phytosterols, linoleic acid, oleic acid and tocopherols, in addition to sugars and proteins.
  • the extract obtained is rich in sugars and proteins
  • US 2016/235794 describes a lipid extract obtained from passion fruit seeds, which can be incorporated into numerous cosmetic products, such as oil-in-water emulsions and water-in-oil emulsions, for anti-aging treatment, among others.
  • These seeds were chosen because they comprise polyphenols (such as piceatannol), phytosterols, linoleic acid, oleic acid and tocopherols, in addition to sugars and proteins.
  • the extract is a passion fruit seed oil concentrated in its non-saponifiable fraction, containing between 3 and 100% by weight of non-saponifiable matter in relation to the total weight of the extract.
  • the active ingredients can be formulated into emulsions for treating the skin, such as skin irritations.
  • the passion fruit seed extract was enriched with other phenolic substances and formulated in makeup with sun protection, such as concealers and foundations, in order to inhibit premature aging or photoaging.
  • This article does not address the bioactive agents responsible for the benefits to the skin. In addition, it deals with the production and study of the stability of specific commercial formulations, the present invention being developed with the intention of being a complete antioxidant input, covering different metabolic routes and a large scope of antioxidant compounds
  • the present invention differs from the four documents cited above in that it presents a stable emulsified complex with low polydispersity comprising lipophilic and hydrophilic bioactive fractions from the passion fruit residue, obtained through clean technologies.
  • Such formula includes: ethinol, retinyl esters, retinal, retinoic acid, retinoic acid salts, derivatives or analogues, as well as vitamin A, selected from the group consisting of a mixture with any of these, with a concentration of 0.001% to 5%; and piceatannol, salts, esters, amides, prodrugs and related substances, dermatologically acceptable and related, as well as in combinations with any of these, concentration between 0.0001% and 10%.
  • JP2016088912 describes obtaining an emulsion of the type Water / Oil / Water (W / O / W) for the protection of the active compound piceatannol from plant extracts, such as extracts of Passion Fruit seeds, Rhodomyrtus Tomentosa or Makiba Burashinoki.
  • JP2010030911 claims the use of the active compound piceatannol from passion fruit seed in cosmetics and products for oral consumption as a promoter of collagen production, in concentrations of 0.00005 to 5% (mass) of active compound
  • JP2007223919 invalidates the benefits of using glycosylated piceatannol in skin-care cosmetics, such as the benefits of: antioxidant, anti-inflammatory, whitening agent, tyrosinase inhibitor, cell renewal promoter (human keratinocytes) and anti-aging agent
  • the article by Uchida et al (2013) demonstrates that piceatannol, derived from the passion fruit seed, regulates the levels of glutathione (GSH) in keratinocytes, suppresses the UVB-induced generation of reactive oxygen species (ROS) and reduces the induction of MMP-1 in keratinocytes pretreated with piceatannol.
  • GSH glutathione
  • ROS reactive oxygen species
  • the present invention has the advantage over the documents mentioned above that it uses a cosmetic ingredient made with natural ingredients, comprising natural active compounds: Carotenoids; Tocois; Fatty Acids and Phenolic Compounds and do not use toxic organic solvents.
  • the present invention provides a miniemulsion comprising bioactive compounds of both hydrophilic and hydrophobic fractions selected from Carotenoids; Tocois; Fatty Acids and Phenolic Compounds obtained by supercritical extraction without toxic organic solvent from raw material belonging to the genus Passiflora.
  • An object of the present invention is an oil-in-water emulsion comprising a hydrophobic phase: aqueous phase ratio within the range of 1: 2 to 1: 6, 1% to 25% w / v of an emulsifier and 0.05 % to 2% w / v of a stabilizer.
  • the emulsion comprises a hydrophobic phase: aqueous phase ratio is 1: 3, the stabilizer is xanthan gum and a miniemulsion.
  • the raw material used in the present invention is Passiflora edulis
  • the aqueous phase comprises a hydrophilic bioactive fraction with piceatannol
  • the oil phase comprises a hydrophobic bioactive fraction with compounds belonging to the group of tocols.
  • cosmetic, nutraceutical, nutracosmetics, drugs and food products comprising from 1% to 3% by weight of the emulsion of the present invention, for application on the skin. The following is a brief description of the objects of the present invention.
  • Miniemulsion of bioactive fractions of Passiflora being an oil-in-water emulsion comprising: The. a hydrophobic phase: aqueous phase ratio within the range of 1: 2 to 1: 6;
  • B from 1% to 25% w / v of an emulsifier; and c. from 0.05% to 2% w / v of a stabilizer.
  • Miniemulsion whose raw material described above is preferably selected from seed or bagasse.
  • composition comprising the miniemulsion defined in any of the foregoing descriptions.
  • composition previously described as a cosmetic, nutraceutical, nutracosmetic, pharmaceutical and food composition.
  • Cosmetic formulation comprising: 1.00% miniemulsion of bioactive fractions of
  • Neolone TM PE - 0.70% Neolone TM PE
  • Citric Acid qsq to adjust the pH between 6.5 and 6.7, to be for use as a facial cleansing lotion.
  • Cosmetic formulation comprising:
  • Neolone ”PE - 0.50% of Neolone
  • Cosmetic formulation comprising:
  • FIG. 1 Flowchart of the laboratory unit with cells of two cells of 5 liters (C-1 and C-2).
  • V-1 to V-14 Shut-off valves
  • VB-A Automated back-pressure valve
  • GB-1 to GB-3 Back-pressure valves
  • VS Safety / relief valves
  • B C02 pump
  • TA Heat exchanger (heating)
  • TR Heat exchanger
  • IC-1 to IC-5 Temperature indicators and controller
  • 1-2 Temperature indicator
  • 1-1, 1-2 and 1-4 to 1-7 Pressure indicators
  • S-1 to S-3 1 liter separators
  • FC C02 filter
  • F Mass flow meter
  • Tank Lung tank for C02 recycling
  • Filter Column pressurized with adsorbent material for C02 filtration.
  • FIG. 5 Figure 2 - Flowchart of the pressurized fluid extraction unit (PLE); Vl to V-3: Block valves; VM: Micrometric valve; B - Liquid pump; BA: Heating bath; R: liquid solvent reservoir; 1-1 and 1-2: Pressure and temperature indicators, respectively; IC-1: Extraction cell jacket temperature controller;
  • PLE pressurized fluid extraction unit
  • Vl to V-3 Block valves
  • VM Micrometric valve
  • B Liquid pump
  • BA Heating bath
  • R liquid solvent reservoir
  • 1-1 and 1-2 Pressure and temperature indicators, respectively
  • IC-1 Extraction cell jacket temperature controller
  • FIG. 4 Extraction bed with pressurized liquid from defatted passion fruit bagasse and the diagram of an extraction bed showing the finite element volume (Dz).
  • Dz finite element volume
  • L the height of the extractor bed
  • Cf the concentration of solute (extract) in the solvent
  • U the speed of the fluid at the inlet and outlet of the extractor
  • i the speed within the porous particle bed (U / e).
  • Figure 7 Effect of the concentration of emulsifier and stabilizer on the average droplet diameter (d [3.2]) and the polydispersity index (PDI) of the emulsions with aqueous bioactive fractions of the bagasse and commercial oil from the passion fruit seed.
  • FIG. 10 Emulsions made with aqueous bioactive fraction and commercial seed oil (1U and 1H), SFE Global bioactive fraction (2U and 2H), SFE lipophilic bioactive fraction Phase 2 (3U e3H) and hydrophilic bioactive fraction SFE Phase 1 (4U and 4H) of passion fruit bagasse.
  • FIG. 11 Microphotographs of the emulsions prepared with global bioactive fraction of SFE (lipophilic phase) and concentrated hydrophilic bioactive fraction (phenolic bioactive fraction) of PLE (hydrophilic phase) obtained by (A) rotor-stator (sample 2U) and ( B) high pressure generator (sample 2H), after 30 days. (C) Fluorescence microscopy for the emulsion obtained according to the condition of the 2U sample, where the lipophilic phase was stained with Nile Red. Scale bar from (A) and (B) 10 pm and (C) 100 pm.
  • Figure 12 Synthesis of total collagen in human fibroblasts for the substances (a) aqueous bioactive fraction of passion fruit bagasse Lot 1; (b) bioactive fraction of passion fruit bagasse Lot 2; (c) SFE Phase 1 hydrophilic bioactive fraction of passion fruit bagasse and; Global SFE bioactive fraction of passion fruit bagasse.
  • Figure 13 Synthesis of total collagen in human fibroblasts for substances (a) Standard emulsion (Table 13: 5U); (b) Commercial product; (c) Emulsion with aqueous bioactive fraction of passion fruit bagasse Lot 1 (Table 13: 2U) e; (d) Emulsion with aqueous bioactive fraction of passion fruit bagasse Lot 2.
  • FIG. 16 Reaction kinetics of collagenase from Clostridium histolyticum (EnzChek® Gelatinase / Gollagenase Assay Kit, Molecular Probes) in different concentrations of inhibitors, aqueous bioactive fraction (A) and emulsion (Batch 1) of the bioactive fractions (B ) of the passion fruit bagasse. Concentration in pg of the compound per m ⁇ of reaction medium.
  • Different letters on the same graph represent a significant difference at the 5% level (p ⁇ 0.05).
  • FIG. 19 Colony forming units for the substances: (a) Standard emulsion (Table 13: 5U); (b) Commercial product; (c) Emulsion with concentrated hydrophilic (aqueous) bioactive fraction of passion fruit bagasse Lot 1 (Table 13: 2U) e; Emulsion with concentrated hydrophilic (aqueous) bioactive fraction of passion fruit bagasse Lot 2, compared to baseline control and B-Estradiol control (1 mM). Different letters on the same graph represent a significant difference at the 5% level (p ⁇ 0.05).
  • Figure 20 - shows the color, odor and appearance characteristics during three months of conducting the stability study for the cosmetic formulation of facial cleansing lotion.
  • Figure 21 - shows the pH values for the cosmetic formulation of easy to clean lotion. The data were obtained in triplicate and the results expressed as mean ⁇ standard deviation.
  • Figure 22 - presents the characteristics of color, odor and appearance during three months of conducting the stability study for the cosmetic formulation of facial moisturizing serum.
  • Figure 23 - shows the pH values for the cosmetic formulation of moisturizing serum. The results were expressed as mean ⁇ standard deviation
  • Figure 24 - shows the Viscosity values (mPas) for the cosmetic formulation of moisturizing serum. The data were obtained in triplicate and the results expressed as mean ⁇ standard deviation.
  • Figure 25 - presents the characteristic odor and appearance for the Facial moisturizing cosmetic formulation with Sun Protection during the 3 months of conducting the stability study.
  • Figure 26 - shows the pH values for the cosmetic formulation of Facial moisturizer with Sun Protection. The results were expressed as mean ⁇ standard deviation.
  • Figure 27 - shows the viscosity values (mPas) for the cosmetic formulation of Facial moisturizer with Sun Protection. The data were obtained in triplicate and the results expressed as mean ⁇ standard deviation.
  • the present invention relates to miniemulsions and microemulsions comprising one or more bioactive fractions of Passiflora (passion fruit) selected from hydrophilic, lipophilic fractions obtained by supercritical extraction or concentrated hydrophilic bioactive fractions of Passiflora (passion fruit) obtained by pressurized liquid extraction with evidence of the pressurized liquid extraction.
  • the miniemulsion of the present invention can be used in cosmetic products, nutraceuticals, nutracosmetics, drugs and food.
  • Additional objects of the present invention are cosmetic formulations of facial cleansing lotion, facial moisturizing serum and easy moisturizer with sun protection.
  • the emulsion of the present invention was evaluated against the ability to inhibit elastase and collagenase, collagen synthesis and cell colony formation.
  • the bioactive fractions of the dried passion fruit seed used in the miniemulsions were obtained by two extraction steps.
  • the first extractive step consisted of extracting the support compounds present in the seed, such as fatty acids and tocols (vitamin E), which can be obtained by different extraction techniques, preferably by extraction with supercritical fluids.
  • This bioactive fraction obtained was characterized against the fatty acid profile, tocopherol and tocotrienol profile, acidity, total carotenoids and antioxidant activity, and used as the lipophilic (oil) phase of the elaborated miniemulsion.
  • the second extractive stage the defatted passion fruit seed was subjected to different extraction methods, preferably with pressurized liquids and an ethanol / water mixture as an extractive solvent.
  • This bioactive ethanolic fraction was route-evaporated, characterized by the total phenolic content, amount of piceatannol, acidity, total sugars and antioxidant capacity, and used as the hydrophilic (aqueous) phase of the miniemulsions. Subsequently, it was found that the two bioactive fractions obtained had a high concentration of several bioactive compounds such as tocopherols, tocotrienols, carotenoids and phenolic compounds, especially the compound with high value piceatannol, in addition to high antioxidant activity and zero cellular toxicity
  • the present invention uses a clean and soft technology to obtain the extracts, in which it applies green solvents and GRAS (Generally Recognized as Safe), does not generate any environmental residue, and preserves the unique characteristics of the products obtained.
  • GRAS Generally Recognized as Safe
  • the raw material used in the present invention can be any plant selected from the genus Passiflora.
  • the plant is Passiflora edulis (passion fruit)
  • the emulsions of the present invention can be applied as an input or final product, for the benefit of the skin, in different concentrations for cosmetic, nutracosmetic, nutraceutical, pharmacological and food formulations.
  • the emulsions of the present invention have an average droplet size of 1-4 mpi and with extended kinetic stability, which was maintained after the incorporation of emulsions in cosmetic products in concentrations of 1 to 3%.
  • the emulsions of the present invention comprise two necessary components: an emulsifier and a stabilizer.
  • the joint action of these two components allows obtaining the emulsion with the correct droplet size and stable.
  • the stabilizer is a gum. Most preferably the stabilizer is xanthan gum.
  • Lipid content Approximately five grams of dried and ground vegetable matrix were weighed in a filter paper cartridge, the same being inserted in a Soxhlet extractor. The mass ratio between solvent and raw material was 1:30 and the extraction time was six hours. It was used as a hexane solvent (Synth, S ⁇ o Paulo, Brazil). At the end of six hours, the extract was collected and the residual solvent evaporated under vacuum in a rotary evaporator (MA120, Marconi, Piracicaba, Brazil). All experiments were performed in duplicate.
  • the particle bed was characterized by determining the average particle diameter, apparent density, actual density and porosity of the bed. The methodologies used are described below.
  • dmg is average particle diameter (mm); di is the opening of the i-th sieve (mm); di + 1 is the nominal sieve opening greater than the i-th sieve (mm); wi is mass retained in the i-th sieve; n is the total number of fractions.
  • bioactive compounds bioactive fractions
  • this vegetable matrix mass was subjected to a second extraction step, in order to remove all lipids from the matrix, under the conditions of 40 ° C and 34 MPa, in which it was called Step / Phase 2.
  • a third fraction bioactive was also obtained through supercritical extraction, however the process took place under a single temperature and pressure condition, 40 ° and 34 MPa, respectively, this bioactive fraction was called Global.
  • Bioactive fractions were obtained using a laboratory unit (Thar Technologies, model SFE-2X5LF-2-FMC, Pittsburgh, USA), as shown in the schematic diagram shown in Figure 1. All lipophilic bioactive fractions were stored in amber packaging, under refrigeration, and characterized chemically for later formulation of the oily or lipophilic phase, which make up the emulsions.
  • the supercritical extraction system used to implement the present invention, without however restricting its scope, consists of two extractors (C-1 and C-2), with a volume of 5 liters each. They are surrounded by heating blankets of 2000 W, and are intended to operate alternately, thus simulating a continuous process.
  • the system has a C02 pump with a pumping capacity of 300 g / min.
  • the C02 is cooled by heat exchange (heat exchanger - TR) with an ethylene glycol bath and water (Thermo Electron Corporation, model NESLAB RTE10, Newington, USA) at 271 K, then passes through a heat exchanger to heat the solvent and, later, on a flow meter (Siemens, model Sitrans FC Mass 6000, Kunststoff, Germany).
  • the raw material is packed in a nylon cell of the same dimensions as the extractor and inserted inside it.
  • the solvent / extract system passes through cyclone separators (S-1 to S-3) that are connected in series, which have different operating temperatures and pressures.
  • the entire pressure, flow and temperature control system is automated, with the exception of the blocking valves and the three separator valves.
  • the automatic valve (VB-A) is responsible for the pressure control of the system, while the pump controls the flow, and a system of thermocouples and manometers monitor the temperatures and pressures of the system, respectively. All of this equipment is connected to a computer that controls the parameters from the values defined by the user.
  • the unity The laboratory also has a column pressurized with adsorbent material and a lung tank for the filtration and storage of C02, these components are part of the solvent recycling system.
  • the equipment consists of an HPLC pump (PU-208, Jasco, Easton, USA) that operates in a flow range of 0.01-20 mL / min and a maximum pressure of 50 MPa; a 100 L stainless steel extraction cell with a metal filter at the outlet of the cell, where the plant material is placed; a thermostatic bath (BA) (Marconi, model MA126 / BD, S ⁇ o Paulo, Brazil) responsible for preheating the fluid before entering the cell; an electric heating jacket to coat the extraction cell and keep it at the process temperature; a manometer (Zurich, S ⁇ o Paulo, Brazil) for the indication of the pressure in the extraction cell; blocking valves (Vl and V-3) (Autoclave Engineers, Ohio, USA) to control the passage of fluid; temperature indicator and controller (IC-1); a micrometric valve (VM) used mainly for pressure control by regulating the flow of the solvent and a container for collecting the extract
  • Tocol quantification Quantification was performed by gas chromatography (CGC AGILENT 68650), with capillary chromatographic column DB-23 Agilent (50% cyanopropyl and methylpolysiloxan), and dimensions: length 60m, internal diameter: 0.25mm , and 0.25 pm film.
  • the operational conditions were: column flow of 1.00mL / min, linear speed of 24 cm / s; detector temperature of 280 ° C; injector temperature: 250 ° C; and an oven temperature ramp: 110 ° C for 5 minutes .; 110 to 215 ° C, with heating rate of 5 ° C / min, and 215 ° C for 24 min.
  • the total sugar content in the extracts was determined by the dinitrosalicylic acid method, described by Miller (1959).
  • the DNS reagent was prepared by mixing 1.4133 g of DNS with 2.64 g of NaOH, 1.1067 g of sodium metabisulfite and 1.01 ml of melted phenol at 50 ° C, in 200 ml of distilled water.
  • a solution of sodium and potassium tartrate was prepared, diluting 15.1 g of sodium and potassium tartrate tetrahydrate (KNaC4H406 4H20) in 1 liter of distilled water.
  • the concentration of the extracts was adjusted to 1 mg of solids per ml of solution, with the addition of distilled water.
  • a standard glucose curve was prepared, with concentrations ranging from 0.01 to 0.1 mg / ml. Then, the reaction was carried out in test tubes, mixing 1 ml of the extracts, distilled water (white) or the dilutions of the calibration curve, with 1 ml of the DNS reagent. The tubes were shaken for 10 seconds and heated for 5 minutes at 100 ° C in boiling water. After that, the tubes were cooled using an ice bath for 5 minutes. Finally, 16 ml of the tartrate solution was added to each tube and stirred. Finally, absorbance was measured at a wavelength of 540 nm on a UV-Vis spectrophotometer (Hach, DR / 4000U, Colorado, USA). The amount of sugar was expressed in mg of glucose equivalent per ml of concentrated hydrophilic extract.
  • titratable acidity Approximately between 10 ml of the concentrated extract (hydrophilic extract) was pipetted in a beaker with 100 ml of distilled water. Subsequently, the solution was titrated with sodium hydroxide at 0.1 M to pH 8.4, measured with the aid of a bench pH meter (Quimis Q400AS, S ⁇ o Paulo, Brazil). The results of titratable acidity were expressed in grams of acetic acid per ml of extract (%), according to the methodology 253 / IV of the Instituto Adolfo Lutz (I.A.L., 2005).
  • pH determination The pH of the hydrophilic extract was measured with a bench pH meter (Quimis Q400AS, S ⁇ o Paulo, Brazil), at room temperature (25 ° C).
  • Piceatannol quantification was performed on HPLC (Thermo Scientic Ultimate 3000 series) equipped with a DAD detector (DAD-3000).
  • the mobile phase used was ultrapure water (Solution A) and acetonitrile (Solution B), both acidified with formic acid (1%) and filtered through a 0.22 mpi porosity nylon membrane.
  • the samples were diluted in a solution of 25% water and 75% ethanol.
  • the column used was a Kinetex 2.6m C18 100 x 3.0 mm (Phenomenex, California, USA).
  • Cytotoxicity tests were performed according to the procedures described in the BALB / C Cytotoxicity Test by OECD 129 and NORMA-0004 (Guidance document on using cytotoxicity tests to estimate starting doses for acute oral systematic toxicity tests) . Briefly, Balb / C 3T3 cells were seeded in 96-well plates at the confluence of 3000 cells per well, in a baseline DMEM medium containing 10% NBCS, and kept in a C02 incubator for 24 hours. After the adaptation period, the cells were exposed to 8 concentrations of passion fruit bagasse extracts in DMEM medium with reduction of animal serum (5% NBCS) for a period of 48 hours. One plate was reserved for testing positive control (SDS).
  • SDS positive control
  • the compound Dodecyl Sulfate Sodium (SDS) was used as a positive control in order to guarantee the acceptance parameters of the assay.
  • the IC50 value (g / ml) was calculated using the four-parameter logistic curve (Hill's curve) obtained from the dose-response curve. This value makes it possible to classify the relative cytotoxicity of the test compound.
  • the IC50 was then used to predict the LD50 value (Lethal Dose 50%), corresponding to the dose capable of killing 50% of individuals in a test population.
  • the extracts obtained in Phase 1 (tocols), in Phase 2 (fatty acids), overall yield obtained by extraction with supercritical C02 (Global), the phenolic extract obtained by extraction with pressurized liquid, and the commercial oil of passion fruit were analyzed .
  • Formulation 1 was taken with the first object of study, being formed by commercial seed oil and bioactive hydrophilic fraction of the bagasse defatted passion fruit.
  • Formulations 2 and 3 differ in that they contain a fraction of passion fruit lipophilic bioactive obtained in different process conditions, Global phase oil and Phase 2 bioactive fraction. With these treatments it will be possible to verify the effect of the oil phase on emulsions.
  • Formulation 4 which represents the formulation in which the project hypothesis is deposited, was compared with the other formulations.
  • hydrophilic bioactive fraction comprising a phenolic group rich in piceatannol in the water phase and a lipophilic bioactive fraction enriched in tocotrienols in the oil phase, both of which are preferably from the passion fruit bagasse.
  • Formulation 5 differs from the others in that it contains only water in the hydrophilic phase and oleic acid in the lipophilic phase.
  • a solution was prepared by dispersing the emulsifier in oil
  • aqueous phase was added to the oil phase and an emulsion was formed with the aid of a rotor-stator homogenizer (Ultra Turrax T18, IKA, Germany);
  • the tested variables were: emulsifier; amount of emulsifier; amount of stabilizer; ratios between the hydro and lipophilic phases (for an emulsifier), and type of processing, rotor-stator homogenizer, high pressure homogenizer and / or ultrasound.
  • Emulsions were characterized in terms of their physical and chemical aspects. For this, the analyzes listed below were performed:
  • Turbiscan Lab® Stability by light scattering: The emulsions were subjected to analysis in Turbiscan Lab® to check for possible instability phenomena inherent in the emulsified systems. This equipment allows to determine the occurrence of phenomena such as creaming, sedimentation, coalescence and, also, to evaluate the homogeneity of the samples.
  • the equipment consists in a near infrared light source (880 nm) and two detectors that act in synchronization. In this way, the transmission detector receives information about the light transmitted through the product and the backscattering detector measures the light reflected by the product.
  • Emulsion stability was measured using the TSI (Turbiscan Stability Index) parameter, which takes into account all processes that occur in the sample, as described by Kang et al., (2011).
  • Average droplet size the average droplet size, defined as d [3.2], the polydispersity index (PDI) and the droplet size distribution were determined by laser diffraction spectrometry (astersizer 2000, Malvern , UK). The analysis was performed at times 1 and 7 or 10 days.
  • Electron microscopy the microstructure of the emulsions was analyzed using an optical microscope (Axio Scope.Al, Carl Zeiss, Germany). The images were captured with the AxioVision Rei software. 4.8 (Cari Zeiss, Germany). The analysis was performed after 30 days of preparing the emulsions.
  • elastase inhibition was measured using the EnzCheck®Elastase kit (Molecular Probes Inc., USA). Sample aliquots (emulsion and extract) and buffer (control) were added to a 96-well plate. In this plate, aliquots of DQ-elastin substrate and active enzyme were added. The fluorescence intensity was measured in a fluorimeter, under excitation at 485 nm and emission at 515 nm, during predetermined intervals. The increase in fluorescence is proportional to the proteolytic activity. Therefore, the absence of fluorescence will be identified as a potential elastase inhibitor. The reactions were carried out in triplicate.
  • Equation 3 The percentage of inhibition will be calculated as shown in Equation 3, in which Fcontrole and Famostra are the fluorescence values at a given time, discounting the values of the respective blank, control and sample, in different concentrations, respectively.
  • min is the lower plateau of the curve; max is the upper plateau; Hill Slop is the slope of the linear part of the Hill curve; / C50 is the concentration at which 50% of the enzymes are inactivated; and [C] is the concentration of the inhibitor.
  • collagenase enzyme inhibition was measured using the EnzCheck® Gelatinase / Collagenase kit (Molecular Probes Inc., USA). An aliquot of the sample (emulsion and extract) and buffer (control) was added to a 96-well plate. In this plate, aliquots of type IV substrate of DQ-gelatin or DQ-collagen and active enzyme were added. The remaining details of the analysis were performed according to what was previously described for the analysis of elastase enzyme activity.
  • the cells were treated with the test substances, in 3 non-cytotoxic concentrations obtained in the cell viability test and maintained in culture for a period of 5 days. This incubation period allows the cells to divide and form separate colonies, which allows their counting and subsequent evaluation of the clonogenic potential of the cells. After the treatment period, the cells were fixed (4% paraformaldehyde) and stained with violet crystal. Colonies were counted by visual assessment. The colony-forming ability was expressed in colony count observed for each treatment.
  • the bioactive fractions were obtained by supercritical extraction from the passion fruit bagasse in two distinct phases, based on the results obtained by Viganó et al, (2016b) .
  • the first stage aimed at obtaining a hydrophilic bioactive fraction enriched with tocols, in the conditions of 60 ° C and 17 MPa, and a second stage with the objective of degreasing the plant matrix and obtaining a lipophilic bioactive fraction with a mixture of water and ethanol. at high pressures.
  • the conditions of the supercritical C02 were adjusted to a high density of the solvent, 40 ° C and 34 MPa, in which high solvation capacity of fatty acids is obtained.
  • Figure 3 shows the extraction kinetics for both stages, Stage / Stage 1 and Stage / Stage 2.
  • the determining factor in the overall yield is the S / F value, that is, the amount of solvent used per unit of raw material, since the greater the mass of solvent used for the same amount of matrix , the higher the yield, since more solvent was used in the process.
  • the S / F values for the first supercritical extraction stage were fixed based on the extraction kinetics obtained by Viganó et al., (2016b), in which it was decided to use the S / F value that represented the end of the stage constant period extraction (CER).
  • CER constant period extraction
  • the S / F value was determined as the amount necessary to degrease the vegetable matrix. It is noted that this value was lower than the studies found in the literature, since the amount of lipids in the matrix is lower.
  • Table 3 presents results of overall yield for the two extraction stages with supercritical C02, as well as the yield for a single condition, called global extraction, and for the extraction stage with pressurized fluid (PLE).
  • Table 3 Yields of enriched bioactive fractions obtained for each stage of extraction from passion fruit bagasse.
  • the overall yield in this extraction stage was approximately 38%, which is higher than the values found in the literature (VIGAN ⁇ et al., 2016a).
  • the bioactive hydro alcoholic fraction was rotated, under vacuum (760 Hg) at 40 ° C, for the separation of ethanol.
  • the scale increase promoted for the realization of the present invention was a determining factor in the difference in the chemical characteristics of the hydrophilic extract, for example, the yield of the piceatannol compound was 2.2 mg / g of degreasing bagasse, while Viganó et al., (2016a), obtained 17.2 mg / g.
  • Viganó et al., (2016a) obtained 17.2 mg / g.
  • the scale-up carried out in this invention was based on the factor S / F, ratio between mass of solvent (S) and mass of plant matrix (F), in which, physically, it is linked to the extract / compound solubility factor in the solvent used , not taking into account other factors that influence the mass transfer process, such as the residence time of the solvent inside the extractor.
  • Figure 4 shows the bed of plant matrix submitted to the extractive process on a 100 ml scale.
  • Table 4 shows the comparison of the yields of the SFE extraction (40 ° C, 34 MPa, C02) and the PLE extraction (70 ° C, 10 MPa, Ethanol / Water), specifically, the total phenolic yield and the piceatannol compound, for both lots, Lot 1 and Lot 2.
  • the lipophilic bioactive fractions obtained through extraction with supercritical C02 were characterized against the fatty acid profile, amount of tocopherols and tocotrienols, total carotenoids, acidity index and antioxidant capacity (ORAC).
  • the results obtained for the fatty acid content were compared to a commercial passion fruit seed oil, as shown in the data shown in Table 5. It is observed that the predominant fatty acid, in all samples of passion fruit oil, was the acid linoleic, ranging from approximately 61 to 66% (g / g). Other fatty acids with relevant values were oleic acid, from 16 to 18% (g / g), followed by palmitic acid, from 11 to 14% (g / g).
  • Table 5 also shows the values for monounsaturated fatty acids (MUFA), polyunsaturated (PUFA) and saturated fatty acids (SFA).
  • PUFAs represent about 65 to 67%, due to the high concentration of linoleic acid (w-6), followed by monounsaturated acids (MUFA), represented mainly by oleic acid (w-9).
  • MUFA and PUFA monounsaturated acids
  • Table 6 Profile of tocopherols and tocotrienols (mg / 100g) for bioactive fractions obtained by extraction with supercritical C02 from the passion fruit bagasse, for the commercial oil of the passion fruit seed.
  • Table 6 presents the profiles of tocopherols and tocotrienols obtained for different bioactive fractions from supercritical extraction, as well as for commercial oil. Table 6 shows that the major tocols present in the bioactive fractions of passion fruit are d-tocotrienol, g-tocotrienol and a-tocotrienol, followed by HI-tocopherol and g-tocopherol, with values of approximately 106, 81, 59 , 45 and 41 mg / 100g, respectively.
  • the antioxidant capacity of the bioactive fractions enriched in tocotrienols and tocopherols were greater than the values obtained for the other stages of supercritical extraction, both the extract global as to the bioactive fraction of the second stage.
  • the capacity for absorption of oxygenated radicals (ORAC) for the first phase was higher than those found by Wu et al. (2004), for the lipophilic phase of different products of plant origin, such as fruits, seeds, cereals, dehydrated fruits and spices.
  • ORAC oxygenated radicals
  • the antioxidant capacity of the first stage was greater than the results obtained by Viganó et al. (2016b), which obtained values close to 200 gmol TE / g of lipophilic extract for different conditions of supercritical extraction. According to the results presented by Huang et al.
  • tocols especially d-tocopherol
  • the ORAC method has been reported as the most relevant for in vitro testing, due to the use of a biologically relevant radial (THAIPONG et al., 2006).
  • the method has critical points, such as the solubility of the lipophilic (oily) bioactive fraction.
  • Such behavior is associated with the selectivity of supercritical extraction in such specific process conditions (60 ° C and 17 MPa), since in this condition there is a high solubility of free fatty acids, such as oleic, linoleic, palmitic acid, among others, and low solubility of the other compounds of the extract, such as carotenoids and triacylglycerols (TEMELLI, 2009).
  • the solubility of these other compounds was increased, consequently, their obtaining increased, causing a dilution effect of free fatty acids, and a dilution of the acidity index of 15% to 1% (g oleic acid / g oil), for Phase 1 and Global, respectively.
  • Table 8 Characteristics of the concentrated hydrophilic bioactive fraction (step 3) obtained from the defatted passion fruit bagasse by extraction with pressurized fluids (Lot 1).
  • the concentrated hydrophilic bioactive fraction (step 3) of the passion fruit bagasse comprises high levels of total solids, represented by sugars and phenolic compounds.
  • phenolic compounds are glycosylated, that is, linked to glucose molecules, making them also quantified by the colorimetric method used to determine total sugars.
  • the extract contains high levels of phenolic compounds, and consequently high antioxidant capacity, which is reflected in the value of the ORAC antioxidant capacity.
  • OECD 423 referring to acute oral toxicity studies in animals, substances with initial doses between 2000 and 5000 mg / kg (Category 5 GHS) can be exempted from carrying out the acute oral toxicity test depending on the purpose of the product.
  • the limit dose 5000 mg / kg should only be performed under exceptional conditions, where there are specific regulatory justifications.
  • Table 10 presents the category and description of product safety on labels, according to the classification of the Globally Harmonized System of Classification and Labeling of Chemicals (Globally Harmonized System of Classification and Labeling of Chemicals - GHS), and adopted by the Economic and United Nations (UN).
  • Emulsification tests take place in three distinct stages.
  • the process conditions and the emulsifier were redefined, and new plans were carried out for the same phase composition of the emulsion.
  • the best condition of stability and droplet size was selected and reproduced for the emulsions with the bioactive lipophilic fractions, Stage / Stage 1, Stage / Stage 2 and Global, obtained by supercritical extraction.
  • Experiment number 9 showed the least instability, due to the high concentration of emulsifier and oil used in this formulation, which increased the viscosity, consequently promoting a barrier to coalescence, favoring the stability of the emulsion.
  • the high oil concentration favored stability because, according to the supplier, although the EasyNov® emulsifier is effective for oil in water (O / W) emulsions, it is recommended for water in oil (W / O) emulsions .
  • TSI stability index
  • the polydispersity index indicates the size of the droplet size dispersion, that is, the lower this value, the smaller the amplitude of the curve, indicating uniform emulsions. According to Gottling and Schwartzbach (2004), dispersed systems with PDI values less than 2 can indicate a uniform size distribution.
  • Figure 8 shows the droplet size distribution profile as a function of the stabilizer (A) and emulsifier (B) concentrations.
  • the droplet size distribution profile varied with the concentrations of emulsifier and stabilizer, and the decrease in the concentration of xanthan gum resulted in less polydispersity, tending to a uniform peak, or a modal distribution, around 3 pm.
  • the decrease in the concentration of emulsifier led to an increase in polydispersity and a displacement of the peaks, with the highest concentration occurring a dispersion with two distinct peaks (bimodal).
  • the droplet size depends on the concentration of emulsifier, that is, in the same fraction of dispersed phase, the size of the drops tends to decrease with the increase of the concentration of emulsifier.
  • Figure 9 presents the experimental results of the stability of the emulsions over 10 days of storage, at a controlled temperature of 20 ° C. It can be seen that most of the experimental conditions were stable over a period of 7 to 10 storage days, however the conditions E-9, E-8 and E-6 showed an increase in the stability index after the 7 day of storage.
  • the maximum value for TSI was 2.3 for the condition of high concentrations of emulsifier and stabilizer, and the minimum value was 0.3, for the condition of lower concentration of the components.
  • Such difference between the values of the experimental conditions does not necessarily reflect a greater or lesser stability, in fact, factors such as the high viscosity of the formulations and the presence of small air bubbles inside the samples, can cause such differences.
  • Table 13 Average droplet diameter, polydispersity index and stability for emulsions obtained with extracts of passion fruit bagasse.
  • FIG. 10 shows the emulsions made with commercial aqueous extract and commercial seed oil (1U and 1H), and with the SFE Global bioactive fraction (2U and 2H), the SFE Phase 2 bioactive fraction (3U and 3H) and the SFE bioactive fraction. 1 (4U and 4H) of passion fruit bagasse.
  • samples 2U and 2H were subjected to optical microscopy after 30 days of storage, as shown in Figure 11.
  • a fluorescence microscopy was performed in the 2U condition for confirmation of the type of emulsion obtained.
  • Figure 13 shows the results obtained for the synthesis of total collagen in human fibroblasts for the tested emulsions.
  • the emulsion comprising Global SFE bioactive fraction and concentrated hydrophilic bioactive fraction (PLE) Lot 2 show an increasing trend in collagen synthesis, when compared to baseline control, with concentrations between 1 and 0.01 pgm / ml.
  • PLE concentrated hydrophilic bioactive fraction
  • the functional properties of the skin depend on the quality and condition of the collagen present in the dermis. Some food components effectively promote the synthesis of collagen in the skin. However, other substances act as cofactors for prolyl hydroxylases and lysyl hydroxylase, which are the main enzymes responsible for collagen synthesis, and some substances induce the transforming growth factor b fator (TGF-b-), which stimulates the accumulation of type I mRNA of procollagen in human fibroblast cells (KOYA-MIYATA et al., 2004). According to Kim et al.
  • MMPs metalloproteinases
  • IC50 values obtained for the enriched fraction and for the emulsion were 9.14 and 22.1 pg / m ⁇ , respectively.
  • the collagenase inhibition values were determined for the concentrated hydrophilic bioactive fraction of the passion fruit bagasse (bioactive fraction at 25 pg / m ⁇ ), the emulsion of the bioactive fractions of the passion fruit bagasse (Emulsion 25 pg / gl), as well as for a standard inhibitor (10 mM inhibitor), 1, 10-phenanthroline monohydrate, and the commercial product, which contains hyaluronic acid and resveratrol, a polyphenol similar to piceatannol (Product 14 pg / m ⁇ ).
  • Figure 17 shows the inhibition values for the bioactive products / fractions of the present invention mentioned above.
  • Figure 19 shows the results obtained for the number of colony forming units of the following test substances: (a) Standard emulsion (Table 13: 5U); (b) Commercial product; (c) Emulsion with concentrated hydrophilic bioactive fraction of passion fruit bagasse Lot 1 (Table 13: 2U) e; Emulsion with hydrophilic bioactive fraction concentrate of passion fruit bagasse Lot 2, in comparison with the basal control and the B-Estradiol control (1 mM).
  • bioactive fractions of the present invention obtained through clean extraction techniques, extraction with supercritical fluids (SFE) and extraction with pressurized liquids (PLE), as well as compositions comprising said bioactive fractions and said emulsions have a high antioxidant capacity and high concentrations of bioactive compounds, such as piceatannol, tocols, fatty acids and carotenoids.
  • SFE supercritical fluids
  • PLE pressurized liquids
  • the extraction techniques used prove to be technically effective, however, specifically, the technique with pressurized fluids, more studies should be carried out in order to understand the phenomenological effects of the scale increase.
  • the emulsification process proved to be effective for obtaining stable emulsions with low polydispersity, however such data are insufficient to promote the increase in scale of this process.
  • miniemulsions comprising bioactive compounds from passion fruit bagasse were able to promote cell proliferation of human keratinocytes, inhibit the enzyme that degrades elastin (elastase) and maintain / promote collagen synthesis.
  • the proposed emulsions have scientific feasibility for application as an input in cosmetic products.
  • the present invention is unprecedented and advantageous in relation to the state of the art because it presents a stable emulsified complex with low polydispersity comprising bioactive lipophilic and hydrophilic fractions of the passion fruit residue, obtained through clean technologies.
  • the invention further demonstrates a means of stabilizing an emulsion containing both bioactive fractions of passion fruit, hydrophilic and lipid, producing a complex with a high capacity for protection and cellular renewal of the skin.
  • the present invention proposes the deconstruction of the plant matrix through extraction and reconstruction through the emulsification of bioactive fractions, instead of focusing only on the benefits of extracts isolated from the literature.
  • Additional objects of the present invention are cosmetic formulations of facial cleansing lotion, facial moisturizing serum and facial moisturizer with sun protection comprising the miniemulsion of bioactive fractions of Passiflora, obtained as described above, as an active ingredient associated with one or more vehicles ( excipients, adjuvants, carriers, etc.) and / or cosmetically acceptable ingredients.
  • the present invention relates to a facial cleansing lotion cosmetic formulation comprising:
  • Neolone TM PE - 0.70% Neolone TM PE
  • Citric Acid qsq to adjust the pH between 6.5 and 6.7.
  • This formulation has the following characteristics: transparent fluid lotion, slightly yellowish, with characteristic odor of the base, without fragrance.
  • the invention relates to a cosmetic formulation of facial moisturizing serum that comprises:
  • Neolone TM PE - 0.50% Neolone TM PE
  • the aforementioned formulation has as characteristics: bright translucent gel, yellow gold color, with characteristic odor of the base, without fragrance.
  • the invention also relates to a cosmetic formulation of easy moisturizer with sunscreen that comprises: 3.00% miniemulsion of Passionflower bioactive fractions;
  • the aforementioned formulation has the following characteristics: homogeneous emulsion, shiny, cream color, with characteristic odor of the base, without fragrance
  • Table 18 pH values for the cosmetic formulation of easy-to-clean lotion. Test conditions: 25 ° C, Gehaka pH meter, model PG1800.
  • Table 19 pH values for the cosmetic formulation of moisturizing serum. Test conditions: 25 ° C, Gehaka pH meter, model PG1800.
  • Table 20 Viscosity values (mPas): Test conditions: 25 ° C, Brookfield DV-III + Rheometer viscometer, Spindle TE, 15 rpm, 1 minute, with Helipath. 5 ° C TA 40 ° C
  • Table 21 pH values for the cosmetic formulation of facial moisturizer with sunscreen. Test conditions: 25 ° C, Gehaka pH meter, model PG1800.
  • Table 22 Viscosity Values (mPas) for the cosmetic formulation of an easy moisturizer with sunscreen: Test conditions: 25 ° C, Brookf ⁇ eld DV-III + Rheometer viscometer, Spindle TC, 5 rpm, 1 minute, with Helipath.
  • the cosmetic formulation of Facial Moisturizer with Sun Protection showed pH values between 6.72 and 7.45 and kept its characteristics of appearance, color and odor unchanged during the 3 months of study of stability.
  • the formulations maintained at RT and 40 ° C showed a slight color change, which does not compromise their stability.
  • the viscosity values were different for each sample storage temperature, varying between 11133-19867 mPas (5 ° C), 5800-34733 Pas (TA) and 27000-41000 mPas (40 ° C).
  • ASLAM, M. N .; LANSKY, E. P. and VARANI, J. Pomegranate as a cosmeceutical source Pomegranate fractions promote proliferation and procollagen synthesis and inhibit matrix metalloproteinase-1 production in human skin cells. Journal of Ethnopharmacology, v. 103, n. 3, p. 311-318, 2006.
  • SPILLER G. A. Dose response of almonds on coronary heart disease risk factors: blood lipids, oxidized low-density lipoproteins, lipoprotein (a), homocysteine, and pulmonary nitric oxide: a randomized, controlled, crossover trial. Circulation, v. 106, n. 11, p. 1327-32, 2002.
  • KRSTONOSIC V .
  • DOKIC L.
  • DOKIC DOKIC
  • P. and DAPCEVIC T. Effects of xanthan gum on physicochemical properties and stability of corn oil-in-water emulsions stabilized by polyoxyethylene (20) sorbitan monooleate. Food Hydrocolloids, v. 23, n. 8, p. 2212-2218, 2009.
  • PEPE S. Effect of dietary polyunsaturated fatty acids on age-related changes in cardiac mitochondrial membranes. Experimental Gerontology, v. 40, n. 5, p. 369- 376, 2005.
  • PIENTAWEERATCH S .
  • PANAPISAL V.
  • TANSIRIKONGKOL A. Antioxidant, anti-collagenase and anti-elastase activities of Phyllanthus emblica, Manilkara zapota and silymarin: an in vitro comparative study for anti-aging applications. Pharm Biol, vol. 54, n. 9, p. 1865-72, 2016.
  • PRONYK, C. and MAZZA, G. Design and scale-up of pressurized fluid extractors for food and bioproducts.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • Biotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Dermatology (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Cosmetics (AREA)

Abstract

A presente invenção se refere a miniemulsões compreendendo uma ou mais frações bioativas de Passiflora (maracujá) selecionadas dentre hidrofilicas, lipofílicas obtidas por extração supercrítica ou frações hidrofilicas concentradas de Passiflora (maracujá) obtidas por extração liquido pressurizado de Passiflora (maracujá) com comprovação dos benefícios das frações bioativas enriquecidas isoladas da presente invenção, das miniemulsões bem como de produtos compreendo tais miniemulsões com propriedade antioxidante que atua na prevenção e correção dos diferentes fatores e mecanismo responsáveis pelo envelhecimento da pele. A miniemulsão da presente invenção pode ser usada em produtos cosméticos, nutracêuticos, nutracosméticos, fármacos e alimentícios. São objetos adicionais da presente invenção formulações cosméticas de loção de limpeza facial, sérum hidratante facial e hidratante facial com proteção solar.

Description

MINIEMULSÕES DE FRAÇÕES BIOATIVAS DE PASSIFLORA, COMPOSIÇÕES COMPREENDENDO TAIS MINIEMULSÕES E FORMULAÇÕES
CAMPO DA INVENÇÃO
[1] A presente invenção se refere a miniemulsões compreendendo uma ou mais frações bioativas de Passiflora (maracujá) selecionadas dentre hidrofílicas , lipofilicas obtidas por extração supercrítica ou frações bioativas hidrofílicas concentradas de Passiflora (maracujá) obtidas por extração liquido pressurizado com comprovação dos benefícios das frações bioativas enriquecidas isoladas da presente invenção, das miniemulsões bem como de produtos compreendo tais miniemulsões com propriedade antioxidante que atua na prevenção e correção dos diferentes fatores e mecanismo responsáveis pelo envelhecimento da pele. A miniemulsão da presente invenção pode ser usada em produtos cosméticos, nutracêuticos, nutracosméticos, fármacos e alimentícios .
[2] São objetos adicionais da presente invenção formulações cosméticas de loção de limpeza facial, sérum hidratante facial e hidratante facil com proteção solar.
[3] A presente invenção tem aplicação no campo de preparações medicinais ou cosméticas, com ingredientes ativos orgânicos.
FUNDAMENTOS DA INVENÇÃO
[4] Os compostos fitoquímicos têm conquistado nos últimos anos importante parcela do mercado de cosméticos e fármacos. Estima-se que esta classe de compostos alcance uma comercialização anual no valor de US$ 4,63 bilhões em 2020, com taxa de crescimento anual de 7,2%, entre 2015 e 2020. Os principais fatores que condicionam este mercado são os problemas de saúde como: doenças cardiovasculares; câncer; e diabetes do tipo dois. Paralelamente, o envelhecimento da população e o aumento da conscientização sobre saúde e bem estar também contribuem para o crescimento desse mercado (REUTERS, 2015)
[5] Viganó et al., (2016b) e (2016a) desenvolveram em escala laboratorial um processo sequencial de extração para recuperar quatro frações de compostos bioativos a partir de bagaço de maracujá, um resíduo da industrialização deste fruto. As frações se apresentaram ricas em tocotrienóis , ácidos graxos polinsaturados, carotenoides e compostos fenólicos. As técnicas de extração empregadas foram extração com fluido supercrítico (SFE) e extração com líquido pressurizado (PLE), ambas tecnologias ambientalmente corretas, pois não agridem o meio ambiente e produzem extratos livres de solventes tóxicos. Os trabalhos destes autores observaram que os extratos possuem capacidade antioxidante . Essa propriedade foi avaliada pelos métodos DPPH, FRAP e ORAC . Portanto, tais extratos podem ser explorados para a formulação de novos produtos com propriedades antioxidantes .
[6] Contudo, os caminhos tecnológicos para viabilizar a disponibilização dos extratos precisam ser desenvolvidos, tendo em vista o atendimento das necessidades inerentes das formulações, como estabilidade e biodisponibilidade . Uma possível forma para contornar essas limitações é o desenvolvimento de sistemas emulsionados.
[7] Uma emulsão constitui-se em pelo menos dois líquidos imiscíveis, sendo que um dos líquidos está disperso na forma de pequenas gotículas esféricas no outro (MCCLEMENTS, 2011). Uma miniemulsão é definida como a categoria de emulsão em que as partículas da fase dispersa têm um diâmetro na faixa de 50 n a 1 mha (SLOMKOWSKI et al., 2011) . Dependendo da faixa de diâmetro das gotículas da emulsão, o sistema pode apresentar a habilidade de aumentar a biodisponibilidade de substâncias altamente lipofílicas, ter característica de alta estabilidade quanto à agregação de partículas e separação gravitacional (MCCLEMENTS, 2011). As aplicações de emulsões têm sido alvo de muitos estudos nas últimas décadas, como na obtenção de carreadores (LIVERSIDGE e CUNDY, 1995), na inibição de crescimento microbiano (SPERANZA et al., 2015), na inibição de células tu orais (ZHANG et al., 2014) e na formulação de cosméticos (YUKUYAMA et al., 2016).
[8] Especificamente para aplicações cosméticas, é necessário que os compostos ativos da fórmula do cosmético permeiem a pele. A penetração dos compostos ativos é determinada por uma série de fatores, como: o tamanho molecular; o grau de ionização; a lipofilicidade ; e a sinergia entre a base do componente da fórmula e a pele (YUKUYAMA et al., 2016). Considerando-se a composição estrutural da pele e suas propriedades de barreira, as miniemulsões , contendo bioativos nas fases óleo e água, parecem ser uma das formas mais adequadas para a aplicação tópica de compostos ativos.
[9] O principal problema a ser solucionado surgiu da necessidade de uma solução antioxidante que atue na prevenção e correção dos diferentes fatores e mecanismo responsáveis pelo envelhecimento da pele, tais como degradação por Metaloproteinases e diminuição da taxa de produção do colágeno/elastina, e diminuição da renovação celular. 0 complexo antioxidante foi obtido através da reconstrução e reagrupamento de diferentes extratos seletivos em um complexo antioxidante estável, de um modo sinérgico, e que potencializem a atividade real e histológica de antienvelhecimento celular, devido a presença de compostos com diferentes caracteristicas e mecanismo de atuação.
[10] O diferencial da tecnologia é a obtenção de um complexo antioxidante reconstruído com os bioatívos naturais presentes na semente do maracujá, para a prevenção e correção dos diferentes fatores e mecanismo responsáveis pelo envelhecimento da pele.
ESTADO DA TÉCNICA
[11] A busca por documentos que descrevessem todos ou pelo menos alguns aspectos da invenção apontou diversos resultados, enumerados e analisados abaixo.
[12] O documento US 2016/074312 descreve composições cosméticas, farmacêuticas, dermatológicas ou nutracêuticas compreendendo extrato de sementes de maracujá, em que o extrato obtido é formulado para a obtenção das composições desejadas, as quais podem estar na forma de óleo em água ou água em óleo.
[13] As referidas sementes foram escolhidas por compreenderem polifenois (tal como o piceatannol ) , fitoesterois, ácido linoleico, ácido oleico e tocoferois, além de açúcares e proteínas. Em uma modalidade preferida, o extrato obtido é rico em açúcares e proteínas
[14] Esse documento descreve um processo lento para obtenção do complexo e que requer diversas etapas. Além disso, foi avaliado somente o extrato hidrofilico contendo alguns marcadores, (açucares e peptideos), os quais são diferentes dos marcadores da presente invenção. A presente invenção avaliou os benefícios de um complexo emulsionado, estável e de baixa polidispersidade, contendo compostos ativos (extratos) em ambas as fases, hidro e lipofílica. Além disso, foram elaborados exemplos de aplicação para o complexo emulsionado
[15] O documento US 2016/235794 descreve um extrato lipídico obtido a partir de sementes de maracujá, o qual pode ser incorporado em inúmeros produtos cosméticos, tais como emulsões óleo em água e emulsões água em óleo, para tratamento antienvelhecimento, dentre outros.
[16] As referidas sementes foram escolhidas por compreenderem polifenois (tal como o piceatannol ) , fitoesterois, ácido linoleico, ácido oleico e tocoferois, além de açúcares e proteínas.
[17] Em uma modalidade preferida, o extrato é um óleo de sementes de maracujá concentrado em sua fração não saponificável , contendo entre 3 e 100 % em peso de matéria não saponificável em relação ao peso total do extrato.
[18] O documento US 2008/118449 descreve formulações cosméticas compreendendo piceatannol (polifenol de ocorrência natural, presente, por exemplo, nas sementes de maracujá) e retinol. Apesar de mencionar um dos marcadores da presente invenção, o piceatannol, esse documento não utiliza extratos naturais nem menciona a fonte do marcador.
[19] Os ingredientes ativos podem ser formulados em emulsões para o tratamento da pele, tal como irritações cutâneas . [20] No artigo publicado em Brazilian Journal of Pharmaceutical Science 2017 ; 53 ( 1 ) : el6116 o extrato de sementes de maracujá foi enriquecido com outras substâncias fenólicas e formulado em maquiagens com proteção solar, tal como corretivos e bases, de modo a inibir o envelhecimento prematuro ou fotoenvelhecimento .
[21] Os extratos foram obtidos por meio da extração sob refluxo utilizando água metanólica 40% e foram diretamente incorporados nas formulações propostas (ou seja, não houve obtenção de miniemulsões ) .
[22] O referido artigo não aborda os bioativos responsáveis pelos benefícios à pele. Além disso, trata da produção e do estudo da estabilidade de formulações comerciais específicas, sendo a presente invenção foi desenvolvida com o intuito de ser um insumo antioxidante completo, abrangendo diferentes rotas metabólicas e um grande escopo de compostos antioxidante
[23] A presente invenção difere dos quatro documentos citados acima por apresentar um complexo emulsionado estável com baixa polidispersidade compreendendo frações bioativas lipofílicos e hidrofílicos do resíduo do maracujá, obtidos através de tecnologias limpas.
[24] Ela ainda demonstra um meio de estabilizar uma emulsão contendo ambas as frações bioativas do maracujá, aquoso e lipídico, produzindo um complexo com alta capacidade de proteção e renovação celular da pele. Além disso, a presente invenção propõe a desconstrução da matriz vegetal através da extração e a reconstrução através da emulsificação dos extratos, ao invés de focar somente nos benefícios dos extratos isolados. [25] O documento JP2008162937 descreve a composição de um cosmético skin-care para diminuir os efeitos do maléficos do retinol na pele. Tal formula inclui: etinol, retinyl esters, retinal, retinoic acid, retinoic acid salts, derivados ou análogos, bem vitamina A, selecionada a partir do grupo que consiste em mistura com qualquer um destes, com concentração de 0,001% a 5%; e piceatannol, sais, ésteres, amidas, pró-fármacos e substâncias relacionadas, dermatologicamente aceitáveis e relacionadas, bem como em combinações com qualquer uma destas, concentração entre 0,0001% e 10%.
[26] O documento JP2016088912 descreve a obtenção de uma emulsão do tipo Água/Óleo/Água (W/O/W) para a proteção do composto ativo piceatannol proveniente de extratos vegetais, tais como extratos de Passion Fruit seeds, Rhodomyrtus Tomentosa ou Makiba Burashinoki.
[27] O documento JP2010030911 reivindica o uso do composto ativo piceatannol proveniente da semente de maracujá em cosméticos e produtos de consumo oral como promotor da produção de colágeno, em concentrações de 0,00005 a 5 % (massa) de composto ativo
[28] O documento JP2007223919 invidica os benefícios da utilização do piceatannol glicosilado em cosméticos skin-care, como por exemplo, os benefícios de: antioxidante, anti-inflamatório, agente de clareamento, inibidor de tirosinase, promotor de renovação celular ( queratinócitos humanos) e agente anti-envelhecimento
[29] O artigo de Matsui et al (2010) aborda o potencial do uso do piceatannol proveniente da semente do maracujá como inibidor da síntese de melanina e como promotor da síntese de colágeno em células de fibroblastos humanos
[30] O artigo de Uchida et al (2013) demonstra que o piceatannol, proveniente da semente do maracujá, regula os níveis de glutationa (GSH) em queratinócitos , suprime a geração induzida por UVB de espécies reativas de oxigénio (ROS) e a reduz a indução de MMP-1 em queratinócitos pré- tratados com piceatannol.
[31] O artigo de Yokozawa et al (2007) demonstra o benefício do uso do piceatannol com agente de inibição de melanogênese .
[32] O artigo de Matencio et al (2016) demonstra a encapsulação do composto ativo piceatannol em matrizes de ciclodextrina .
[33] O artigo de Zhang et al (2014) demonstra a encapsulação, a estabilidade e o aumento da disponibilidade do estilbeno em nanoemulsões .
[34] O artigo de Wang et al (2016) demonstra a encapsulação do composto resveratrol, análogo ao piceatannol, e do alfa-tocoferol em emulsões do tipo óleo em água .
[35] A presente invenção tem como vantagem em relação aos documentos mencionados acima o fato de usar um insumo cosmético elaborado com ingredientes naturais, compreendendo compostos ativos naturais: Carotenoides ; Tocois; Ácidos Graxos e Compostos Fenólicos e não utilizar solventes orgânicos tóxicos.
[36] O estado da arte estava limitado a obtenção e utilização dos compostos isolados não aproveitando a sinergia desses compostos inicialmente presente na semente do fruto. Além disso, o atual invento utiliza uma tecnologia limpa e branda para a obtenção dos extratos, na qual aplica solventes verdes e GRAS (Generally Recognized as Safe) , não gera nenhum resíduo ambiental, e preserva as características únicas dos extratos obtidos.
BREVE DESCRIÇÃO DA INVENÇÃO
[37] Em um primeiro aspecto, a presente invenção proporciona uma miniemulsão compreendendo compostos bioativos tanto de frações hidrofílica e hidrofóbicas selecionados dentre Carotenoides ; Tocois; Ácidos Graxos e Compostos Fenólicos obtidos por extração supercrítica sem solvente orgânico tóxico a partir de matéria-prima pertencente ao gênero Passiflora. É um objeto da presente invenção uma emulsão óleo em água compreendendo uma razão fase hidrofóbica : fase aquosa dentro da faixa que vai de 1:2 a 1:6, de 1% a 25% p/v de um emulsificante e de 0,05% a 2% p/v de um estabilizante . Em uma modalidade preferencial, a emulsão compreende uma razão fase hidrofóbíca : fase aquosa é 1:3, o estabilizante é goma xantana e é u a miniemulsão. Especificamente, a matéria-prima utilizada na presente invenção é Passiflora edulis, a fase aquosa compreende uma fração bioativa hidrofílica com piceatannol e a fase oleosa compreende uma fração bioativa hidrofóbica com compostos pertencentes ao grupo dos tocóis. É um adicional objeto da presente invenção produtos cosméticos, nutracêuticos , nutracosméticos , fármacos e alimentícios compreendendo de 1% a 3% em peso da emulsão da presente invenção, para aplicação na pele. A seguir é descrita a breve descrição dos objetos da presente invenção.
[38] Miniemulsão de frações bioativas de Passiflora ser uma emulsão óleo em água compreendendo: a. uma razão fase hidrofóbica : fase aquosa dentro da faixa de 1:2 a 1:6;
b. de 1% a 25% p/v de um emulsifícante; e c. de 0,05% a 2% p/v de um estabilizante .
[39] Miniemulsão cuja matéria-prima pertencente ao gênero Passiflora ser preferencialmente Passiflora edulis.
[40] Miniemulsão cuja matéria-prima acima descrita ser preferencialmente selecionada dentre semente ou bagaço.
[41] Miniemulsão descrita anteríormente em que a razâo fase hidrofóbica : fase aquosa ser 1:3.
[42] Miniemulsão descrita anteriormente em que a fração bioativa hidrofilica (fase aquosa) compreender piceatannol .
[43] Miniemulsão descrita anteriormente em que a fração bioativa lipofilica (fase oleosa) compreender compostos pertencentes ao grupo dos tocóis.
[44] Miniemulsão descrita anteriormente em que os compostos pertencentes ao grupo dos tocóis compreender a- tocoferol, b-tocoferol, g-tocoferol, d-tocoferol, a- tocotrienol, g-tocotrieno, d-tocotrienoi e combinações dos mesmos .
[45] Miniemulsão descrita anteriormente em que a fração bioativa hidrofóbica ser obtida por meio da extração supercrítica .
[46] Miniemulsão descrita anteriormente em que a fração bioativa hidrofóbica ser obtida por meio da extração supercritica com dióxido de carbono como solvente.
[47] Miniemulsão descrita anteriormente em que a fração bioativa hidrofóbica ser obtida por meio da extração supercritica com dióxido de carbono como solvente preferencialmente a 60 °C e 17 MPa (Etapa 1) .
[48] Miniemulsão descrita anterior ente em que a fração bioativa lipofilica ser obtida por meio da extração supercritica (SFE) com dióxido de carbono como solvente, e sequencialmente a obtenção da fração bioativa hidrofílica.
[49] Miniemulsão descrita anteriormente em que a fração bioativa lipofilica ser obtida por meio da extração supercritica (SFE) com dióxido de carbono como solvente, sequencialmente, preferencialmente a 40°C e 34 MPa (Etapa 2) ·
[50] Miniemulsão descrita anteriormente em que fração bioativa obtida por meio da extração supercritica (SFE) ser em uma única etapa (global) com dióxido de carbono como solvente preferencialmente a 40°C e 34 MPa.
[51] Miniemulsão descrita anteriormente em que fração bioativa hidrofílica concentrada ser obtida por meio da extração com líquido pressurizado (PLE) preferencialmente com uma mistura de solvente selecionado dentre etanol e água, sequencialmente, após a obtenção das frações bioativas lipofílicas .
[52] Miniemulsão descrita anteriormente em que a fração bioativa hidrofílica concentrada ser obtida por meio da extração com líquido pressurizado preferencialmente a 70 °C e 10 MPa.
[53] Composição compreendendo a miniemulsão definida em qualquer uma das descrições anteriores.
[54] Composição anteriormente descrita por ser uma composição cosmética, nutracêutica, nutracosmética , farmacêutica e alimentícia.
[55] Formulação cosmética que compreende: 1,00% de miniemulsão de frações bioativas de
Passiflora÷
83,5% de água purificada;
- 0,05% de Edeta© BD;
- 1,50% de Carbopol® Aqua SF-1 Polymer;
- 0,30% de Aculyn 22;
- 2,52% de Sodium Laureth Sulfate;
- 0,18% de Sodium Hydroxide;
- 2,00% de Glucam E-20;
- 3, 60% de Disodium Cocoamphodiacetate;
- 0,50% de Coco-Glucoside ;
- 1, 60% de Cocamidopropyl Betaine;
- 3,00% de PEG-40 Hydrogenated Castor Oil;
- 0,70% de Neolone™ PE;
- Citric Acid, qsq para ajustar o pH entre 6,5 e 6,7, para ser para uso como loção de limpeza facial.
[56] Formulação cosmética que compreende:
3,00% de iniemulsão de frações bioativas de
Passiflora;
- 26,70 de glicerina;
- 39,17% de água purificada;
- 0,50% de Trietanolamina;
- 0,30% de Pe ulen TR-1;
- 29,83% de Dow Corning 7-3101;
- 0,50% de Neolone” PE;
para ser para uso como sérum hidratante facial.
[57] Formulação cosmética que compreende:
3,00% de miniemulsão de frações bioativas de
Passiflora; - 3,00 de Procetil AWS;
- 5,00 Glyceryl Stearate;
- 5,00 Stearic Acid;
- 2,00 Montanov 82;
- 1,00 Montanov 202;
- 1,00 Stearyl Alcohol;
- 2,50 Zinc Oxide;
- 15,00 Capric/Caprylic Triglyceride;
- 0,25 Jaguar HP-105
- 3,00 Glycerina
- 58,70 Água Purificada
- 0,55 Neolone PE
para ser para uso como hidratante facial cora proteção solar. BREVE DESCRIÇÃO DAS FIGURAS
[58] Figura 1 - Fluxograma da unidade laboratorial com células de duas células de 5 litros (C-l e C-2) . V-l a V-14: Válvulas de bloqueio; VB-A: Válvula back-pressure automatizada; VB-1 a VB-3: Válvulas back-pressure; VS: Válvulas de segurança/alivio; B: Bomba de C02; TA: Trocador de calor (aquecimento) ; TR: Trocador de calor
(resfriamento); IC-1 a IC-5: Indicadores e controlador de temperatura; 1-2: Indicador de temperatura; 1-1, 1-2 e 1-4 a 1-7: Indicadores de pressão; S-l a S-3: Separadores de 1 litro; FC: Filtro de C02 ; F: Medidor de vazão mássica; Tanque: Tanque pulmão para reciclo de C02 ; Filtro: Coluna pressurizada com material adsorvente para filtração do C02.
[59] Figura 2 - Fluxograma da unidade de extração com fluido pressurizado (PLE) ; V-l a V- 3: Válvulas de bloqueio; VM: Válvula micrométrica ; B - Bomba de liquido; BA: Banho de aquecimento; R: reservatório de solvente liquido; 1-1 e 1-2: Indicadores de pressão e temperatura, respectivamente ; IC-1: Controlador de temperatura da camisa da célula de extração;
[60] Figura 3 - Cinética de extração do bagaço de maracujá com C02 supercritico em duas etapas distintas (Fase 1: 60° C e 17 MPa (VIGANÓ et al., 2016b); Fase 2: 40° C e 34 MPa) . Vazão de C02 : 280 g/min.
[61] Figura 4 - Leito de extração com liquido pressurizado do bagaço de maracujá desengordurado e o diagrama de um leito de extração demonstrando o volume de elemento finito (Dz) . Onde z é a posição axial ao longo do extrator, L é a altura do leito de extrator, Cf é a concentração de soluto (extrato) no solvente, U é velocidade do fluido na entrada e na saída do extrator e u é a velocidade dentro do leito de partículas poroso {U/e) .
[62] Figura 5 - Processo de emulsificação e as emulsões obtidas para a primeira fase dos ensaios de emulsificação, com Easynov© com emulsificante e a aplicação de ultrassom.
[63] Figura 6 - Processo de emulsificação e as emulsões obtidas para a segunda fase dos ensaios de emulsificação, com Montanov L© como emulsificante e goma xantana como estabilizante . Imagens após 7 dias de estocagem a 20 ° C .
[64] Figura 7 -Efeito da concentração de emulsificante e estabilizante no diâmetro médio de gotícula (d[3,2]) e o índice de polidispersidade (PDI) das emulsões com frações bioativas aquosa do bagaço e óleo comercial da semente do maracujá. Eixo horizontal: primeiro número concentração de emulsificante % (g/ml FL) , segundo número concentração de estabilizante (%, g/ml FH) .
[65] Figura 8 -Efeito da concentração de estabilizante (A) , com concentração de emulsificante fixada em 10 %, e o efeito da concentração de emulsificante (B) , com concentração de estabilizante fixada em 1 %, sobre a distribuição do tamanho de goticula.
[66] Figura 9 - Estabilidade cinética das emulsões representada pelos valores de TSI (Turbiscan Stability Index) , avaliada durante 10 dias de armazenamento.
[67] Figura 10 - Emulsões elaboradas com fração bioativa aquosa e o óleo comercial da semente ( 1U e 1H) , fração bioativa SFE Global (2U e 2H) , fração bioativa lipofilica SFE Fase 2 (3U e3H) e fração bioativa hidrofilica SFE Fase 1 (4U e 4H) do bagaço de maracujá.
[68] Figura 11 - Microfotografias das emulsões preparadas com fração bioativa global de SFE (fase lipofilica) e fração bioativa hidrofilica concentrada (fração bioativa fenólico) de PLE (fase hidrofilica) obtidos por (A) rotor-estator (amostra 2U) e (B) ho ogeneizador a alta pressão (amostra 2H) , após 30 dias. (C) Microscopia de fluorescência para a emulsão obtida conforme a condição da amostra 2U, onde a fase lipofilica foi corada com Vermelho do Nilo. Barra de escala de (A) e (B) 10 pm e (C) 100 pm.
[69] Figura 12 - Síntese de colágeno total em fibroblastos humanos para as substâncias (a) fração bioativa aquoso do bagaço de maracujá Lote 1; (b) fração bioativa do bagaço de maracujá Lote 2; (c) fração bioativa hidrofilica SFE Fase 1 do bagaço de maracujá e; fração bioativa SFE Global do bagaço de maracujá. [70] Figura 13 - Síntese de colágeno total em fibroblastos humanos para as substâncias (a) Emulsão padrão (Tabela 13: 5U) ; (b) Produto comercial; (c) Emulsão com fração bioativa aquosa do bagaço de maracujá Lote 1 (Tabela 13: 2U) e; (d) Emulsão com fração bioativa aquoso do bagaço de maracujá Lote 2.
[71] Figura 14 - Cinética de reação da Elastase proveniente do pâncreas suíno (EnzChek® Elastase Assay Kit, Molecular Probes) em diferentes concentrações dos inibidores, fração bioativa aquosa (A) e emulsão (Lote 1) das frações bioativas (B) do bagaço de maracujá.
[72] Figura 15 - Curva de dose-resposta para diferentes inibidores da elastase, a fração bioativa hidrofílica concentrada (aquoso concentrado) (PLE) e a emulsão .
[73] Figura 16 - Cinética de reação da colagenase proveniente de Clostridium histolyticum (EnzChek® Gelatinase/Gollagenase Assay Kit, Molecular Probes) em diferentes concentrações dos inibidores, fração bioativa aquosa (A) e emulsão (Lote 1) das frações bioativas (B) do bagaço de maracujá. Concentração em pg do composto por mΐ de meio de reação.
[74] Figura 17 - Inibição da enzima colagenase para a fração bioativa hidrofílica (25 pg/mΐ), a emulsão das frações bioativas do bagaço de maracujá (Emulsão a 25 pg/pl), inibidor padrão (Inibidor a 10 mM) , e o produto comercial (Produto 14 pg/mΐ) .
[75] Figura 18 - Unidades formadores de colónia para as substâncias: (a) fração bioativa SFE Global, (b) fração bioativa hidrofílica SFE Fase 1 do bagaço de maracujá, (c) fração bioativa hidrofilica concentrada (aquosa) do bagaço de maracujá Lote 1 e (d) fração bioativa hidrofílica concentrada (aquosa) do bagaço de maracujá Lote 2, em comparação com o controle basal e o controle b-Estradiol (1 mM) . Letras diferentes no mesmo gráfico representam diferença significativa ao nível de 5 % (p < 0,05) .
[76] Figura 19 - Unidades formadores de colónia para as substâncias: (a) Emulsão padrão (Tabela 13 : 5U) ; (b) Produto comercial; (c) Emulsão com fração bioativa hidrofílica concentrada (aquosa) do bagaço de maracujá Lote 1 (Tabela 13: 2U) e; Emulsão com fração bioativa hidrofílica concentrada (aquosa) do bagaço de maracujá Lote 2, em comparação com o controle basal e o controle B-Estradiol (1 mM) . Letras diferentes no mesmo gráfico representam diferença significativa ao nível de 5 % (p < 0,05).
[77] Figura 20 - apresenta as características cor, odor e aparência durante três meses de condução do estudo de estabilidade para a formulação cosmética de loção de Limpeza facial .
[78] Figura 21 - mostra os valores de pH para a formulação cosmética de loção de limpeza fácil. Os dados foram obtidos em triplicata e os resultados expressos como média ± desvio padrão.
[79] Figura 22 - apresenta as características cor, odor e aparência durante três meses de condução do estudo de estabilidade para a formulação cosmética de sérum hidratante facial .
[80] Figura 23 - mostra os valores de pH para a formulação cosmética de sérum hidratante. Os resultados foram expressos como média ± desvio padrão [81] Figura 24 - mostra os valores de Viscosidade (mPas) para a formulação cosmética de sérum hidratante. Os dados foram obtidos em triplicata e os resultados expressos como média ± desvio padrão.
[82] Figura 25 - apresenta as caracteristicas odor e aparência para a formulação cosmética hidratante Facial com Proteção Solar durante os 3 meses de condução do estudo de estabilidade.
[83] Figura 26 - mostra os valores de pH para a formulação cosmética de hidratante Facial com Proteção Solar. Os resultados foram expressos como média ± desvio padrão .
[84] Figura 27 - mostra os valores de viscosidade (mPas) para a formulação cosmética de hidratante Facial com Proteção Solar. Os dados foram obtidos em triplicata e os resultados expressos como média ± desvio padrão.
DESCRIÇÃO DETALHADA DA INVENÇÃO
[85] A presente invenção se refere a miniemulsões e microemulsões compreendendo uma ou mais frações bioativas de Passiflora (maracujá) selecionadas dentre hidrofílicas , lipofílicas obtidas por extração supercrítica ou frações bioativas hidrofilicas concentradas de Passiflora (maracujá) obtidas por extração líquido pressurizado com comprovação dos benefícios das frações bioativas enriquecidas isoladas da presente invenção, das miniemulsões bem como de produtos compreendo tais miniemulsões com propriedade antioxidante que atua na prevenção e correção dos diferentes fatores e mecanismo responsáveis pelo envelhecimento da pele. A miniemulsão da presente invenção pode ser usada em produtos cosméticos, nutracêuticos , nutracosméticos, fármacos e alimentícios .
[86] São objetos adicionais da presente invenção formulações cosméticas de loção de limpeza facial, sé rum hidratante facial e hidratante facil com proteção solar.
[87] A emulsão da presente invenção foi avaliada frente a capacidade de inibição da elastase e colagenase, síntese de colágeno e formação de colónia celular.
[88] As frações bioativas da semente seca de maracujá utilizadas nas miniemulsões foram obtidas por duas etapas de extração. A primeira etapa extrativa consistiu na extração dos compostos apoiares presentes na semente, como os ácidos graxos e tocóis (vitamina E) , que pode ser obtido por diferentes técnicas de extração, preferencialmente pela extração com fluidos supercríticos . Essa fração bioativa obtida foi caracterizada frente ao perfil de ácidos graxos, perfil de tocoferol e tocotrienol, acidez, carotenoides totais e atividade antioxidante, e utilizado como a fase lipofílica (óleo) da miniemulsão elaborada. A segunda etapa extrativa, a semente desengordurada do maracujá foi submetida a diferentes métodos de extração, preferencialmente com líquidos pressurizados e uma mistura etanol/água como solvente extrativo. Essa fração bioativa etanólica foi rota-evaporado, caracterizada frente ao teor de fenólicos totais, quantidade de piceatannol, acidez, açucares totais e capacidade antioxidante, e utilizado como a fase hidrofílica (aquosa) das miniemulsões. Posteriormente, verificou-se que as duas frações bioativas obtidas apresentavam alta concentração de diversos compostos bioativos como, tocoferóis, tocotrienóis , carotenoides e compostos fenólicos, especialmente o composto com alto valor técnico, o piceatannol, além da alta atividade antioxidante e nula toxicidade celular
[89] A presente invenção utiliza uma tecnologia limpa e branda para a obtenção dos extratos, na qual aplica solventes verdes e GRAS (Generally Recognized as Safe) , não gera nenhum resíduo ambiental, e preserva as caracteristicas únicas dos produtos obtidos. As frações bioativas das fases oleosa e aquosa obtidas no processo extrativo de duas etapas estão divulgadas nas publicações em Food Research International 85 (2016) 51-58, The Journal of Supercritical Fluids, Volume 110, 2016, Pages 1-10, e no pedido de patente brasileiro BR 10 2016 014976 2
[90] A matéria prima utilizada na presente invenção pode ser qualquer planta selecionada do gênero Passiflora. Preferencialmente a planta é Passiflora edulis (maracuj á )
[91] As emulsões da presente invenção podem ser aplicadas como insumo ou produto final, para o benefício da pele, em diferentes concentrações para formulações cosméticas, nutracosméticas, nutracêuticas , farmacológicas e alimentícias.
[92] As emulsões da presente invenção possuem tamanho médio de gotícula de 1-4 mpi e com estabilidade cinética prolongada, a qual foi mantida após a incorporação das emulsões em produtos cosméticos em concentrações de 1 a 3 %.
[93] As emulsões da presente invenção compreendem dois componentes necessários: um emulsificante e um estabilizante . A ação conjunta desses dois componentes permite a obtenção da emulsão com tamanho de gotícula correto e estável.
[94] Um técnico no assunto saberá reconhecer um emulsificante disponível no estado da técnica para aplica- lo na presente invenção. 0 mesmo raciocínio é válido para o estabilizante . Preferencialmente o estabilizante é uma goma. Mais preferencialmente o estabilizante é goma xantana.
EXEMPLOS
Caracterização da matriz vegetal / matéria-prima
[95] Após o recebimento do bagaço do maracujá, o mesmo foi submetido ao processo de secagem em estuda de circulação de ar forçada (Fanem, 320-SE, São Paulo, Brasil) a 60°C, durante 36 horas, conforme metodologia de Viganó et al., (2016b). Posteriormente o bagaço de maracujá desidratado foi moído em um moinho de facas, e armazenado, ao abrigo da luz, a -18° C até o momento das extrações.
[96] Determinação do Teor de Umidade : O conteúdo de umidade foi determinado de acordo com a metodologia AOAC (1998), método 931.04 (Association of Official Analytical Chemists), através de medida gravimétrica em estufa de circulação de ar forçada (Fanem, modelo 320 SE, São Paulo, Brasil) a 105 °C até atingir peso constante. Aproxi ada ente cinco gramas de amostras, colocadas em cadinhos de porcelana, foram deixadas na estufa a 105 °C. Após 3 horas as amostras foram colocadas em dessecador até atingirem a temperatura ambiente, sendo então pesadas. Essa operação foi repetida até as amostras apresentarem peso constante.
[97] Conteúdo de Lipídios: Aproximadamente cinco gramas de matriz vegetal seca e moída foram pesadas em um cartucho de papel filtro, sendo o mesmo inserido em um extrator tipo Soxhlet. A razão mássica entre solvente e matéria-prima foi de 1:30 e o tempo de extração foi de seis horas. Foi utilizado como solvente hexano (Synth, São Paulo, Brasil) . Ao final de seis horas, o extrato foi recolhido e o solvente residual evaporado sob vácuo em um evaporador rotativo (MA120, Marconi, Piracicaba, Brasil) . Todos os experimentos foram realizados em duplicata.
Caracterização do leito de partícula
[98] O leito de partícula foi caracterizado através da determinação do diâmetro médio de partícula, da massa específica aparente, massa específica real e da porosidade do leito. As metodologias utilizadas são descritas a seguir.
[99] O diâmetro médio das partículas foi determinado através do modelo proposto por A.S.A.E. (1998), conforme a Equação 1
Figure imgf000024_0001
[100] onde: dmg é diâmetro médio das partículas (mm) ; di é a abertura da i-ésima peneira (mm) ; di+1 é a abertura nominal da peneira maior que a i-ésima peneira (mm) ; wi é massa retida na i-ésima peneira; n é o número total de frações .
[101] A massa específica aparente (pa) do leito de partículas foi obtida pela relação entre a massa de amostra utilizada nas extrações pelo volume do leito, incluindo assim apenas os poros do leito e não os poros do interior das partículas .
[102] A massa específica real (pr) oi obtida pelo método de picnometria com gás hélio na Central Analítica da Unicamp. O equipamento utilizado foi o Picnô etro automático Quantachro e Ultrapyc modelo 1200e.
[103] A porosidade do leito de extração foi determinada através da massa especifica real e aparente das amostras, incluindo os poros do leito e do interior das partículas, através da Equação (2).
ra
Figure imgf000025_0001
Obtenção dos compostos bioativos: frações bioativas
[104] As frações bioativas da Passiflora foram obtidas como descrito previamente por Viganó et al., (2016b) e por Viganó et al., (2016a). O bagaço de maracujá foi submetido ao processo de extração supercrítica (SFE Supercritical Fluid Extraction) , utilizando dióxido de carbono (C02) como solvente, em duas etapas distintas. Primeiramente , extraiu-se a fase rica em tocóis tocoferóis e tocotrienóis , denominada Etapa/Fase 1, em condições de 60°C e 17 MPa, conforme determinadas por Viganó et al., (2016b) . Em seguida, tal massa de matriz vegetal foi submetida a uma segunda etapa de extração, com o intuito de remover todos os lipídios da matriz, nas condições de 40°C e 34 MPa, na qual foi denominada Etapa/Fase 2. Uma terceira fração bíoativa também foi obtida através de extração supercrítica, porém o processo ocorreu em uma única condição de temperatura e pressão, 40° e 34 MPa, respectivamente , essa fração bioativa foi denominada como Global. As frações bioativas foram obtidas utilizado uma unidade laboratorial (Thar Technologies, modelo SFE-2X5LF-2-FMC, Pittsburgh, EUA) , conforme o diagrama esquemático apresentado na Figura 1. Todas as frações bioativas lipofilicas foram armazenados em embalagem âmbar, sob refrigeração, e caracterizados quimicamente para posterior formulação da fase oleosa, ou lipofilica, que compõem as emulsões.
[105] O sistema de extração supercritica, usada para concretização da presente invenção, sem entretanto restringir o escopo da mesma, consiste de dois extratores (C-l e C-2), com volume de 5 litros cada. Eles são envoltos por mantas de aquecimento de 2000 W, e têm o objetivo de operar alternadamente, simulando desta maneira um processo continuo. O sistema possui uma bomba de C02 com capacidade de bombeamento de 300 g/min. O C02 é resfriado por troca térmica (trocador de calor - TR) com banho de etileno glicol e água (Thermo Electron Corporation, modelo NESLAB RTE10, Newington, EUA) a 271 K, em seguida passa por um trocador de calor para aquecer o solvente e, posteriormente, em um medidor de vazão (Siemens, modelo Sitrans F C Mass 6000, Munique, Alemanha) . A matéria-prima encontra-se empacotada em célula de nylon de mesmas dimensões do extrator e inserida no seu interior. Após a passagem pelo extrator o sistema solvente/extrato passa por separadores tipo ciclone (S-l a S-3) que estão conectados em série, os quais possuem diferentes temperaturas e pressões de operação.
[106] Todo o sistema de controle de pressão, vazão e temperatura é automatizado, com exceção das válvulas de bloqueio e as três válvulas dos separadores. A válvula automática (VB-A) é responsável pelo controle de pressão do sistema, enquanto a bomba controla a vazão, e um sistema de termopares e manómetros monitoram as temperaturas e pressões do sistema, respectivamente . Todos estes equipamentos estão conectados a um computador que controla os parâmetros a partir dos valores definidos pelo usuário. A unidade laboratorial ainda conta com uma coluna pressuriza com material adsorvente e um tanque pulmão para a filtração e estocagem do C02, esses componentes são partes do sistema de reciclo do solvente.
[107] Posteriormente, o bagaço desengordurado foi submetido ao processo de extração com líquidos pressurizados (PLE - Pressurized Fluid Extraction) para obtenção dos compostos fenólico, conforme a Figura 2, que demonstra o diagrama esquemático da unidade de PLE, utilizada nesses experimentos. Nesta etapa uma mistura de etanol e água foi empregada com solvente, em concentrações de 75 e 25 % (massa/massa), respectivamente . As condições de pressão e temperatura foram de 10 MPa e 70°C, respectivamente, conforme determinado por Viganó et al . , (2016a). O extrato hidroalcoólico foi então submetido ao processo de rotaevaporação (MA120, Marconi, Piracicaba, Brasil) para a remoção do etanol, sob vácuo a 40° C. A fração bioativa hidrofílica concentrada, no qual foi denominado como concentrado, foi devidamente armazenado para a futura utilização como fase aquosa, ou hidrofílica, das emulsões.
[108] O equipamento é composto por uma bomba HPLC (PU-208, Jasco, Easton, EUA) que opera em uma faixa de vazão de 0,01-20 mL/min e pressão máxima de 50 MPa; uma célula de extração de aço inoxidável de 100 L com filtro metálico na saída da célula, onde é colocado o material vegetal; um banho termostático (BA) (Marconi, modelo MA126/BD, São Paulo, Brasil) responsável pelo preaquecimento do fluido antes de entrar na célula; uma camisa de aquecimento elétrico para revestir a célula de extração e mantê- la na temperatura do processo; um manómetro (Zurich, São Paulo, Brasil) para a indicação da pressão na célula de extração; válvulas de bloqueio (V-l e V-3) (Autoclave Engineers, Ohio, EUA) para controlar a passagem do fluido; indicador e controlador de temperatura (IC-1); uma válvula micrométrica (VM) usada principalmente para o controle da pressão mediante a regulagem da vazão do solvente e um recipiente para coleta do extrato
Caracterização das frações bioativas
[109] 0 conhecimento das concentrações dos compostos alvos, contidos nos extratos, é de fundamental importância para a etapa de formulação das emulsões. Em razão disso, os extratos foram submetidos às seguintes análises:
[110] Rendimento global de extração: As frações enriquecidas com bioativos provenientes de SFE e PLE foram analisados quanto ao rendimento global, isto é, a massa de extrato seco dividida pela quantidade de matéria prima usada para a extração;
[111] Quantificação de tocóis: A quantificação foi realizada por cromatografia gasosa (CGC AGILENT 68650), com coluna cromatográfica capilar DB-23 Agilent (50% cyanopropil e methylpolysiloxan) , e dimensões de: comprimento de 60m, diâmetro interno: 0,25mm, e filme de 0,25 pm. As condições operacionais foram: fluxo da coluna de 1, 00mL/min, velocidade linear de 24 cm/s; temperatura do detector de 280°C; temperatura do injetor: 250°C; e uma rampa de temperatura do forno: 110°C por 5 minutos.; 110 a 215°C, com taxa de aquecimento de 5°C/min, e 215°C por 24 min. Foi utilizado hélio com gás de arraste, hexano para a diluição das amostras, e injetou-se um volume de 1,0 pL . A metodologia proposta está de acordo com o método oficial A.O.C.S. (2009) ; [112] Obtenção do perfil de ácidos graxos: foi realizada por cromatografia gasosa de acordo com o método descrito de quantificação de tocóis e a metodologia da A.O.C.S. (2009);
[113] Quantificação dos carotenoides totais: Os extratos lipofilicos, bem como o óleo comercial da semente de maracujá, foram diluídos em éter etílico e a absorbância foi medida em um comprimento de onda de 450 nm com a utilização de uma cubeta de quartzo, em espectrofotômetro (Hach, DR/4000U, Colorado, EUA) . Uma curva padrão utilizando b-caroteno ( Sigma-Aldrich St. Louis, EUA) foi construída (1 a 9 pg/ml) e os resultados foram expresso em miligrama de carotenoides totais por grama de extrato lipofílico (VIGANÓ et al. , 2016b) .
[114] Quantificação do índice de acidez: Aproximadamente 2 g de amostra foram pesadas em frasco Erlenmeyer de 125 ml. Adicionou-se 25 ml de solução de éter etílico- álcool (2:1) (Synth, São Paulo, Brasil) neutra e duas gotas do indicador fenolftaleína a amostra. Titulou-se com solução de hidróxido de sódio 0, 1 M até o aparecimento da coloração rósea. 0 índice de acidez foi expresso em ácido oleico equivalente por grama de extrato lipofílico (%). Conforme a metodologia 325/IV do Instituto Adolfo Lutz (I .A.L. , 2005) .
[115] Determinação de sólidos totais: A determinação de sólidos totais foi realizada através da secagem de 5 ml de extrato, em cadinhos de porcelana, a 60°C em uma estufa com circulação de ar forçada (Fanem, 320-SE, São Paulo, Brazil) . Pesou-se os cadinhos até atingirem massa constante. Os dados de sólidos totais foram utilizados para a determinação do rendimento global das extrações com líquidos pressurizados.
[116] Quantificação de compostos fenólicos totais: O conteúdo de compostos fenólicos totais foi determinado por espectrofotometria utilizando o método de Folin-Ciocalteau, conforme a metodologia proposta por Singleton et al. (1999) com modificações. Primeiramente, a concentração de sólidos totais nas amostras foi ajustada para 1 mg de sólido por ml de solução, com a adição de água destilada. Posterior ente , a reação foi efetuada e tubos de ensaios, onde 500 mΐ de extrato e 500 mΐ de reagente de Folin- Ciocalteau (Dinâmica, SP, Brasil) foram misturados. Após 3 minutos, 500 mΐ de solução de carbonato de sódio saturada (Synth, São Paulo, Brasil) e 3,5 ml de água destilada foram adicionadas, os tubos foram agitados por 10 segundos e deixados por 2 horas sob o abrigo da luz, a temperatura ambiente (25° C) . Por fim, a absorbância foi medida em um comprimento de onda de 760 nm com a utilização de uma cubeta de quartzo, em espectrofotômetro UV-Vis (Hach, DR/4000U, Colorado, EUA) . A curva de calibração foi construída (0,01 a 0,075 mg/ml) com ácido gálico ( Sigma-Aldrich St. Louis, MO, EUA) e os resultados foram expressos em miligramas de equivalentes de ácido gálico (AGE) por grama de matriz vegetal desidratada (mg AGE/g MP) , ou por ml de extrato concentrado (mg AGE /ml) .
[117] Quantificação de açucares redutores: O teor de açúcar total nos extratos foi determinado pelo método do ácido dinitrosalicílico, descrito por Miller (1959). Primeiramente, o reagente DNS foi preparado misturando 1,4133 g de DNS com 2,64 g de NaOH, 1,1067 g de metabissulfito de sódio e 1,01 ml de fenol derretido a 50° C, em 200 ml de água destilada. Em seguida, preparou-se uma solução de tartarato de sódio e potássio, diluindo 15,1 g de tartarato de sódio e potássio tetrahidrato (KNaC4H406 4H20) em 1 litro de água destilada. A concentração dos extratos foi ajustada em 1 mg de sólidos por ml de solução, com a adição de água destilada. Uma curva padrão de glicose foi preparada, com concentrações variando de 0,01 a 0,1 mg/ml. Em seguida, a reação foi realizada em tubos de ensaio, misturando 1 ml dos extratos, água destilada (branco) ou as diluições da curva de calibração, com 1 ml do reagente DNS. Os tubos foram agitados por 10 segundos e aquecidos durante 5 minutos a 100° C em água fervente. Depois disso, os tubos foram refrigerados usando um banho de gelo, durante 5 minutos. Por fim, adicionaram-se a cada tubo 16 ml da solução de tartarato e agitou-se. Finalmente, a absorbância foi medida em comprimento de onda de 540 nm em um espectrofotômetro UV-Vis (Hach, DR/4000U, Colorado, EUA) . A quantidade de açucares foi expressa em mg equivalente de glicose por ml de extrato hidrofilico concentrado.
[118] Determinação da acidez titulável: Aproximada ente 10 ml do extrato concentrado (extrato hidrofilico) foram pipetados em um béquer com 100 ml de água destilada. Posteriormente, a solução foi titulada com hidróxido de sódio à 0, 1 M até pH 8,4, medido com o auxilio de um pHmetro de bancada (Quimis Q400AS, São Paulo, Brasil) . Os resultados de acidez titulável foram expressos em gramas de ácido acético por ml de extrato (%), conforme a metodologia 253/IV do Instituto Adolfo Lutz (I.A.L., 2005).
[119] Determinação de pH : O pH do extrato hidrofilico foi medido com pHmetro de bancada (Quimis Q400AS, São Paulo, Brasil), a temperatura ambiente (25° C) .
[120] Quantificação de piceatannol: A quantificação de piceatannol foi realizada em HPLC (Thermo Scientic série Ultimate 3000) equipado com detector DAD (DAD-3000) . A fase móvel usada foi água ultrapura (Solução A) e acetonitrila (Solução B) , ambas acidificadas com ácido fórmico (1%) e filtradas com membrana de nylon de porosidade 0,22 mpi. As amostras foram diluídas em uma solução de 25 % água e 75 % etanol. A coluna utilizada foi uma Kinetex 2,6m C18 100 x 3,0 mm (Phenomenex, Califórnia, EUA).
[121] Citotoxicidade : Os ensaios de citotoxicidade foram realizadas de acordo com os procedimentos descritos no Ensaio de Citotoxicidade BALB/C por OECD 129 e na NORMA-0004 (Guidance document on using cytotoxicity tests to estimate starting doses for acute oral systematic toxicity tests). Resumidamente, células Balb/C 3T3 foram semeadas em placas de 96 poços na confluência de 3000 células por poço, em meio basal DMEM contendo 10% NBCS, e mantidas em incubadora de C02 por 24 horas. Após o período de adaptação, as células foram expostas a 8 concentrações dos extratos do bagaço de maracujá em meio DMEM com redução de soro animal (5% NBCS) por período de 48 horas. Uma placa foi reservada para testar o controle positivo (SDS) . O composto Dodecil Sulfato de Sódio (SDS) foi utilizado como controle positivo a fim de garantir os parâmetros de aceitação do ensaio. O valor de IC50 ( g/ml) foi calculado por meio da curva logística de quatro parâmetros (Curva de Hill) obtida a partir da curva dose- resposta. Este valor possibilita a classificação da citotoxicidade relativa do composto teste. O IC50 foi então utilizado para predizer o valor de DL50 (Dose Letal 50%), correspondente à dose capaz de matar 50% dos indivíduos de uma população em teste. Foram analisados os extratos obtidos na Fase 1 (tocóis) , na Fase 2 (ácidos graxos), rendimento global obtidos por extração com C02 supercrítico (Global), o extrato fenólico obtido por extração com liquido pressurizado, e o óleo comercial da semente de maracujá.
[122] Análise de espécies reativas ao oxigénio - ORAC (Oxygen Radical Absorbance Capacity) : As frações enriquecidas com bioativos também foram analisados quanto à capacidade antioxidante via ensaios ORAC. Tais ensaios foram realizados de acordo com o reportado por Prior et al. (2003) e Dávalos et al. (2004) . As amostras ou padrão (Trolox) , fluoresceína em tampão de fosfato e AAPH ( 2 , 2-azobis ( 2- amidinopropano) diidroclorido) , foram adicionados em icroplacas escuras. A perda da fluorescência foi lida sob excitação a 485 nm e emissão a 520 nm. Uma curva analítica foi obtida usando Trolox.
Formulação das emulsões
[123] Primeiramente, estudos prévios foram realizados com o óleo comercial da semente de maracujá e o extrato fenólico obtido via líquidos pressurizados, para a avaliação do tipo de emulsificante, do processo e suas condições, e o uso de estabilizante, uma vez que a quantidade de frações bioativas obtidas por SFE é limitada. Posterior ente, os extratos provenientes das extrações com C02 supercrítico foram usados para compor a fase óleo da emulsão. Ao mesmo tempo, o extrato rico em compostos fenólicos, proveniente das extrações com fluidos pressurizados , foram usados para compor a fase água. Foram produzidas emulsões do tipo água/óleo na proporção volumétrica de 3:1, usando Easynov (Puteaux, França) e Montanov L® como surfactantes . A quantidade de extrato em cada uma das fases foi determinada com base no ensaio de citotoxicidade, de acordo com o método descrito acima.
[124] Com a finalidade de comparar o desempenho dos ingredientes da emulsão, algumas formulações foram realizadas, como mostra a Tabela 1. A Formulação 1 foi tomada com primeiro objeto de estudo, sendo formada por óleo comercial da semente e fração bioativa hidrofílica do bagaço desengordurado do maracujá. As Formulações 2 e 3 se diferenciam por conterem fração de bioativos lipofilicos de maracujá obtidos em diferentes condições de processo, óleo da fase Global e a fração bioativa da Fase 2. Com esses tratamentos será possível verificar o efeito da fase óleo nas emulsões. A Formulação 4, que representa a formulação na qual a hipótese do projeto está depositada, foi comparada com as demais formulações. Ela é composta por fração bioativa hidrofílica compreendendo grupo fenólico rico em piceatannol na fase água e fração bioativa lipofílica enriquecida em tocotrienóis na fase óleo, ambos provenientes preferencialmente do bagaço do maracujá. A Formulação 5, por sua vez, se diferencia das demais por conter apenas água na fase hidrofílica e ácido oleico na fase lipofílica.
Tabela 1 - Componentes das fases da emulsão.
Figure imgf000034_0001
Figure imgf000035_0001
[125] Para cada experimento, cerca de 100 ml de emulsão foram produzidas, de acordo com as seguintes etapas:
1) Uma solução foi preparada pela dispersão do emulsificante em óleo;
2) Uma solução foi preparada pela dispersão do estabilizante em água destilada;
3) Uma certa quantidade da solução de estabilizante foi dispersa em extrato hidrofílico do bagaço de maracujá;
4) A fase aquosa foi adicionada à fase óleo e uma emulsão foi formada com auxílio de um homogeneizador do tipo rotor-estator (Ultra Turrax T18, IKA, Alemanha);
5) Posteriormente, parte das emulsões foram submetidas a uma sonda de ultrassom (Grupo Unique, modelo DES500, Campinas, Brasil) ou tratadas em um homogeneizador a alta pressão (Panda 2K NS1001L, Niro Soavi, Itália) , e a outra parte não passaram por outros processos de homogeneização .
6) As emulsões produzidas foram resfriadas com o auxilio de um becker encamisado acoplado ao um banho de refrigeração, ajustado a 15° C, sob agitação mecânica de 200 rpm durante 10 minutos.
7) Por fim, as emulsões foram armazenadas a 20° C em incubadora (BOD) durante 30 dias. Aliquotas foram coletadas durante esse período para a análise de tamanho de gotícula, microscopia óptica, estabilidade cinética, síntese de colágeno, ensaios de formação de colónia celular e capacidade de ativação/inibição das enzimas colagenase e elastase .
[126] As variáveis testadas foram: emulsificante ; quantidade de emulsificante; quantidade de estabilizante; razões entre as fases hidro e lipofílica (para um emulsificante) , e tipo de processamento, homogeneizador rotor-estator , homogeneizador a alta pressão e/ou ultrassom.
Caracterização das emulsões
[127] As emulsões foram caracterizadas quanto aos seus aspectos físicos e químicos. Para isso, foram realizadas as análises relacionadas abaixo:
[128] Estabilidade por dispersão de luz (Turbiscan Lab®) : As emulsões foram submetidas a análise em Turbiscan Lab® para a verificação de possíveis fenômenos de instabilidade inerentes aos sistemas emulsionados. Este equipamento permite determinar a ocorrência de fenômenos tais como cremeação, sedimentação, coalescência e, também, avaliar a homogeneidade das amostras. 0 equipamento consiste em uma fonte de luz infravermelho próximo (880 nm) e de dois detectores que agem de forma sincronizada. Desta forma, o detector de transmissão recebe informações da luz transmitida através do produto e o detector backscattering mede a luz refletida pelo produto. Para cada experimento, aproximadamente 20 ml de emulsão foram dispostas em tubos de vidros próprios para a análise, posteriormente foram analisadas no dia 1, 7, e/ou 10 a uma temperatura de 25°C. A estabilidade das emulsões foi mensurada através do parâmetro TSI (Turbiscan Stability Index) , que leva em consideração todos os processos que ocorrem na amostra, conforme descrito por Kang et al., (2011).
[129] Tamanho médio de gotícula: o tamanho médio das goticulas, defino como d[3,2], o indice de polidispersidade (PDI) e a distribuição do tamanho de gotícula foram determinadas por espectrometria de difração a laser ( astersizer 2000, Malvern, UK) . A análise foi realizada nos tempos 1 e 7 ou 10 dias.
[130] Microscopia eletrónica: a microestrutura das emulsões foi analisada em microscópio ótico (Axio Scope.Al, Cari Zeiss, Germany) . As imagens foram capturadas com o software AxioVision Rei. 4.8 (Cari Zeiss, Germany) . A análise foi realizada após 30 dias de preparo das emulsões.
[131] Análise de síntese de colágenos totais: o método utilizado para este estudo foi baseado na detecção de colágeno humano pelo método de Sirius Red/Fast Green (Houghton et al., 1996). Este método é uma forma relativamente simples para determinar a quantidade total de proteínas de colágeno e não-colágenas em culturas celulares. O Sirius Red liga-se a todos os tipos de colágeno, enquanto o Fast Green liga-se às demais proteínas não-colágenas . Após marcação das proteínas com os corantes Sirius Red/Fast Green foi realizada a quantificação relativa do colágeno por espectrofotometria . As doses da substância teste (3 concentrações não tóxicas) utilizadas no ensaio de quantificação relativa de colágenos foram determinadas a partir de um ensaio inicial de viabilidade celular. Nos ensaios foram utilizadas culturas primárias de fibroblastos humanos normais, sendo todos os experimentos realizados em duplicadas biológicas (3 ensaios independentes). Os tempos, de incubação dos ensaios de viabilidade celular e síntese de colágenos, foram de 48 horas e 72 horas, respectivamente .
[132] Análise da capacidade da produção de efeito antienvelhecimento via ensaio de atividade da enzima elastase: a inibição da elastase foi medida por meio do uso do kit EnzCheck®Elastase (Molecular Probes Inc., USA). Alíquotas das amostras (emulsão e extrato) e tampão (controle) foram adicionadas a uma placa de 96 poços. Nesta placa, foram adicionadas alíquotas de substrato DQ-elastina e enzima ativa. A intensidade da fluorescência foi medida em fluorímetro, sob excitação a 485 nm e emissão a 515 nm, durante intervalos pré-determinados. 0 aumento da fluorescência é proporcional à atividade proteolítica . Portanto, a ausência de fluorescência será identificada como potencial inibidor da elastase. As reações foram realizadas em triplicata. O percentual de inibição será calculado como mostra a Equação 3, em que Fcontrole e Famostra são os valores de fluorescência em um determinado tempo, descontado os valores do respectivo branco, do controle e da amostra, em diferentes concentrações, respectivamente. [133] Com o objetivo de determinar a concentração na qual 50 % da elastase é inibida, os dados experimentas de inibição (%) e concentração dos inibidores (pg/ l) foram ajustados ao modelo de Hill, conforme a Equação (4)
Figure imgf000039_0001
[ 134] onde: min é o platô inferior da curva; max é o platô superior; Hill Slop é a inclinação da parte linear da curva de Hill; /C50 é a concentração na qual 50 % das enzimas são inativadas; e [C] é a concentração do inibidor.
[135] Análise da capacidade de produção de efeito antienvelhecimento via ensaio de atividade da enzima colagenase: a inibição da enzima colagenase foi medida por meio do uso do kit EnzCheck®Gelatinase/Collagenase (Molecular Probes Inc., USA) . Uma alíquota da amostra (emulsão e extrato) e tampão (controle) foi adicionada a uma placa de 96 poços. Nesta placa, foram adicionadas alíquotas de substrato tipo IV de DQ-gelatina ou DQ-colágeno e enzima ativa. Os demais detalhes da análise foram realizados de acordo com o descrito anteriormente para a análise de atividade da enzima elastase.
[136] Estudo de formação de colónia celular in vitro: inicialmente foi realizado um teste de viabilidade celular para que seja determinada a maior dose não citotóxica. Em todos os experimentos, as células foram tratadas com 3 concentrações distintas da substância teste. Para tanto, até o presente momento foram realizados testes somente com as amostras de miniemulsões . A partir da maior dose não citotóxica foram definidas 3 doses, variando 10 vezes entre cada uma das concentrações (Ex: 1, 0,1 e 0,01 mg/ml). Todos os tratamentos e réplicas técnicas foram realizados em triplicatas. Os métodos utilizados no presente estudo foram realizados conforme descrito: Para determinar a capacidade de proliferação de queratinócitos humanos, as células HaCaT foram cultivadas em baixa densidade (33 células/cm2) . Após 48 horas, as células foram tratadas com as substâncias testes, em 3 concentrações não citotóxicas obtidas no teste de viabilidade celular e mantidas em cultivo por um período de 5 dias. Este período de incubação permite que as células se dividam e formem colónias separadas entre si, o que permite sua contagem e posterior avaliação do potencial clonogênico das células. Após o período de tratamento, as células foram fixadas (4% paraformaldeído ) e coradas com cristal de violeta. As colónias foram contadas por avaliação visual. A capacidade de formação de colónia foi expressa em contagem de colónias observadas para cada tratamento .
Resultados obtidos
[137] Nesta Seção serão apresentados os resultados da caracterização da matéria-prima, os resultados dos processos extrativos, bem como, a composição química dos mesmos. Por fim, serão apresentados e discutidos os resultados de emulsificação das frações bioativas e os ensaios de síntese de colágeno, inibição de elastase e colagenase e a formação de colónia celular.
Caracterização da matéria-prima
[138] Um aspecto fundamental em processos extrativos é a manutenção da qualidade e das caracteristicas fisico-químicas da matéria-prima. Como, o intuito desse projeto é a utilização de um resíduo agroindustrial , a caracterização do mesmo se justifica. Assim sendo, a Tabela 2 apresenta a caracterização da matriz vegetal, materia- prima utilizada preferencialmente como exemplo de concretização da presente invenção, sem no entnato restringir o escopo, o bagaço de maracujá, desidratado e moído .
Tabela 2 - Caracterização da matriz vegetal e a comparação com trabalhos publicados na literatura.
Figure imgf000041_0001
[139] O bagaço de maracujá utilizado na presente invenção apresentou grande quantidade de casca, tal fato impactou em um menor teor de lipídios totais quando comparado a outros trabalhos encontrados na literatura para a mesma matéria-prima. Outro aspecto importante é a quantidade de água na matriz desidratada, na qual pode interferir negativamente no processo extrativo. Os valores obtidos para tal parâmetro foram maiores que os trabalhos de Viganó et al., (2016b) e Barrales et al., (2015), porém estão dentro do limite aceitável para a extração com fluído supercrítico (MEIRELES, 2008) .
Obtenção das frações bioativas enriquecidas tanto lipofílica quanto hidrofilica que compreende compostos fenólicos
[140] Para concretização da presente invenção, sem, no entanto, restringir o escopo, as frações bioativas foram obtidas por extração supercrítica a partir do bagaço do maracujá em duas fases distintas, com base nos resultados obtidos por Viganó et al, (2016b) . A primeira etapa objetivou a obtenção de uma fração bioativa hidrofilica enriquecida com tocóis, nas condições de 60°C e 17 MPa, e uma segunda etapa com o objetivo de desengordurar a matriz vegetal e obtenção de uma fração bioativa lipofílica com uma mistura água e etanol a alta pressões. Assim, na segunda etapa as condições do C02 supercrítico foram ajustadas em uma alta densidade do solvente, 40°C e 34 MPa, no qual obtêm-se alta capacidade de solvatação de ácidos graxos . A Figura 3 demonstra as cinéticas de extração para ambas as etapas, Etapa/Fase 1 e Etapa/Fase 2.
[141] Observa-se na Figura 3 que os valores da razão entre massa de solvente (S) e massa de alimentação, ou a quantidade de matriz vegetal a ser extraída (F) , foram de 32 kg/kg (S/F) para a Fase 1 e 60 kg/kg (S/F) para a Fase 2, com rendimentos de 2,6 % (kg/kg) e 14 % (kg/kg), respectivamente . Viganó et al., (2016b), estudaram a extração com C02 supercrítico de bagaço de maracujá e obtiveram valores de S/F de 150 para de obtenção de tocóis e 400 para a fase de extração dos ácidos graxos e carotenoides (desengordurado), com rendimentos de 6,56 e 23,55 % para a Etapa/Fase 1 e Etapa/Fase2, respectivamente . Barrales et al . , (2015), estudou a extração com C02 supercritico do bagaço de maracujá proveniente da indústria de sucos e obtiveram um rendimento global de 18,5 %, utilizando um valor de S/F de 210 kg/kg, a 26 MPa e 40° C. Nota-se que os valores de rendimento global obtidos por este projeto foram inferiores aos encontrados na literatura, nos quais utilizaram equipamentos em escala laboratorial, com volumes de extrator entre 10 e 300 ml. Acredita-se que tal diferença está ligada ao aumento de escala realizado por esse projeto, uma vez que foi utilizado um equipamento laboratorial em escala piloto, extratores de 5 litros e separadores de 1 litro. Outro fator que influenciou essa diferença no rendimento foram as caracteristicas do material proveniente da indústria. O material utilizado no presente projeto apresentava maior teor de cascas e polpa da fruta, refletindo, com dito anteriormente, no rendimento de lipídios, consequentemente, no rendimento global da extração supercritica .
[142] Porém, o fator determinante no rendimento global é o valor de S/F, ou seja, a quantidade de solvente utilizado por unidade de matéria-prima, uma vez que quanto maior a massa de solvente utilizada para a mesma quantidade de matriz, maior será o rendimento, já que mais solvente foi utilizado no processo. Fixou-se os valores de S/F para a primeira etapa de extração supercritica com base nas cinéticas de extração obtidas por Viganó et al., (2016b), no qual decidiu-se utilizar valor de S/F que representasse o final da etapa de extração do período constante (CER) . Porém para a segunda etapa, o valor de S/F foi determinando como sendo o valor necessário para desengordurar a matriz vegetal. Nota-se que tal valor foi menor que os trabalhos encontrados na literatura, uma vez a quantidade de lipídios na matriz é menor. A Tabela 3 apresenta resultados de rendimento global para as duas etapas de extração com C02 supercrítico, bem como o rendimento para uma única condição, chamado de extração global, e para a etapa de extração com fluído pressurizado (PLE).
Tabela 3 - Rendimentos de frações bioativas enriquecidas obtidas para cada etapa de extração a partir do bagaço de maracujá.
Figure imgf000044_0001
*Rendimento (%) calculado com base na concentração de sólidos obtidos (g) por massa de matéria-prima desengordurada (g) ; **Rendimento expresso em mg de ácido gálico equivalente por g de matriz desengordurada; * * *Rendimento em mg por g de matriz desengordurada. Sendo PLE: Extração com fluido pressurizado com etanol e água.
[143] Após as duas etapas de extração supercrítica o material remanescente no interior do extrator foi coletado, pesado e armazenado para posterior extração com liquido pressurizado. Nesta etapa (3) utilizou-se com solvente uma mistura entre etanol e água em condições ótimas previamente determinadas por Viganó et al., (2016a), 70° C, 10 MPa, uma razão de concentração de água em etanol de 25 % (g de água/g de solvente total) e um S/F de 300 kg/kg. Com base nos resultados cinéticos de Viganó et al., (2016a), a razão S/F utilizado no presente trabalho foi fixado em 60 kg/kg, no qual corresponde ao final da etapa de extração do período constante (CER) , no qual aproximadamente 60 % do composto bioativo (piceatannol ) é extraído. O rendimento global nesta etapa de extração foi de aproximadamente 38 %, valor este superior aos valores encontrados na literatura (VIGANÓ et al., 2016a). Ao final dessa etapa (3), a fração bioativa hidro alcóolica foi rotaevaporado, sob vácuo (760 Hg) a 40°C, para a separação do etanol. A fração bioativa final em meio aquoso (3), identificada como fração bioativa hidrofílica concentrada, foi devidamente caracterizado e utilizado em todos ensaios de emulsificação do presente projeto .
[144] Pode-se observar que, o valor apresentado na Tabela 3 de rendimento de fenólicos totais foi inferior ao citado por Viganó et al., (2016a), 55 mg AGE/g de bagaço de maracujá desengordurado. Tal diferença está associada a dois fatores principais, a qualidade da matriz vegetal e a escala do processo extrativo. A qualidade da matriz vegetal se refere as variáveis ligadas a produção da fruta, como clima, estresse hídrico, adubação, época da colheita, entre outros, e por se tratar de resíduo da indústria de sucos, a eficiência de separação entre a polpa e semente, uma vez que quando menor essa separação, maior a quantidade de polpa, consequentemente maior a quantidade de açucares na matriz vegetal e maior rendimento de açucares totais no extrato hidrofílico. Assim sendo, a padronização da matriz vegetal é de extrema importante para a eficiência do processo extrativo dos compostos bioativos .
[145] Por sua vez, o aumento de escala promovido para concretização da presente invenção foi um fator determinante na diferença das caracteristicas químicas do extrato hidrofílico, por exemplo, o rendimento do composto piceatannol foi de 2,2 mg/g de bagaço desengordurando, enquanto Viganó et al., (2016a), obteve 17,2 mg/g. Tal pesquisa executou o processo extrativo em vasos de pressão de 10 ml, porém neste trabalho utilizou-se escalas dez vezes maior (100 l) . O aumento de escala realizado nesta invenção baseou-se no fator S/F, razão entre massa de solvente (S) e massa de matriz vegetal (F) , no qual, fisicamente, está ligado ao fator solubilidade do extrato/composto no solvente utilizado, não levando em conta outros fatores que influenciam o processo de transferência de massa, como o tempo de residência do solvente dentro do extrator. Com o intuito de demostrar a influência do aumento de escala no processo extrativo com liquido pressurizado, a Figura 4 apresenta o leito de matriz vegetal submetido ao processo extrativo em uma escala de 100 ml.
[146] Pode-se observar, na Figura 4, a diferença de coloração do bagaço de desengordurado de maracujá, em relação a posição no leito de extração (z) nos ensaios com liquido pressurizado. Tal diferença fica evidente quando as primeiras camadas de matriz vegetal da entrada (z = 0) são comparadas as últimas camadas na saída do extrator (z L) . Tal comportamento pode estar relacionado ao tempo de residência do solvente dentro do extrator, ou seja, com a velocidade dentro do leito poroso de partículas (U/e) , uma vez que esse fator controla a transferência de massa no interior da partícula ( PRONYK e MAZZA, 2009) . De acordo com Anekpankul et al., (2007) a taxa de extração da raiz de noni (Morinda citrifolia) com água pressurizada é controlada pela transferência de massa no interior da partícula, para vazões acima de 2,4 ml/ in. Por outro lado, ainda segundo os autores, abaixo desse valor a taxa de extração é controlada pela resistência a transferência de massa no filme ao redor da partícula de matriz vegetal, ou seja, uma resistência externa. Viganó et al . , (2016a), realizou extração de piceatannol do bagaço de maracujá em um vaso de extração de 10 ml, com vazão fixada em 3,52 ml/min, enquanto o presente trabalhou utilizou uma vazão de 23,5 ml/min. Assim sendo, nota-se que, uma grande diferença entre os trabalhos, tornando o estudo de aumento de escala necessário para o melhoramento do rendimento de piceatannol.
[147] A influência da qualidade da matriz vegetal/matéria-prima e do processo de secagem foram analisadas frente a extração do composto alvo piceatannol. Para tanto, foi adquirido bagaço de maracujá contendo pequenas quantidades de cascas, arilo e polpa, ou seja, o bagaço formando basicamente por semente de maracujá. Tal lote de matéria-prima, chamado de Bagaço de Maracujá Lote 2, foi desidratado por liofilização, afim de diminuir a degradação dos composto bioativos. Posterior ente, o material seco foi submetido ao processo de extração com fluido supercritico para a retirada dos compostos apoiares - fração de bioativos hidrofóbicos e, em seguida, procedeu- se a extração com líquidos pressurizados, para a extração dos compostos fenólicos, especificamente o piceatannol. A Tabela 4 apresenta a comparação dos rendimentos da extração SFE (40°C, 34 MPa, C02 ) e da extração PLE (70°C, 10 MPa, Etanol/Água) , especificamente, o rendimento de fenólicos totais e o composto piceatannol, para ambos os lotes, Lote 1 e Lote 2.
Tabela 4 - Rendimentos de bioativos obtidos para cada etapa de extração do bagaço de maracujá, bem como para os diferentes lotes.
Figure imgf000048_0001
*Rendimento expresso em mg de ácido gálico equivalente por g de matriz desengordurada; **Rendimento em mg por g de matriz desengordurada.
[148] Pode-se observar que todos os rendimentos, das duas etapas de extração, foram superiores para a matriz vegetal com maior conteúdo de sementes, especialmente para a quantidade de fração bioativa lipofílica, rendimento da SFE, de 15,7 para 21,8 %, e para o piceatannol, de 2,2 para 5,2 mg/g, um aumento de aproximadamente 230 % na obtenção desse composto. Esse comportamento pode estar associado a dois fatores, a qualidade da matriz vegetal, e/ou devido as condições brandas do processo de secagem, uma vez que o Lote 1 foi desidratado em estufa com circulação de ar a 60° C e o Lote 2 por liofilização . Acredita-se que qualidade da matriz vegetal seja fator determinante no comportamento dos rendimentos, uma vez que a casca, arilo e a polpa do fruto apresentam pequenas quantidades de compostos apoiares, tais como ácidos graxos e tocóis, e o composto piceatannol. Matsui et al. (2010), demonstraram que os extratos obtidos da casca e da polpa do maracujá apresentam efeitos não significativos no aumento da síntese de colágeno e na diminuição da síntese de melanina ou, especificamente, efeitos negativos, como a diminuição da síntese de colágeno para o extrato proveniente da casca do fruto em concentrações superiores a 50 pg/ml .
Caracterização das frações bioativas lipofílica e hidrofílica
[149] As frações bioativas lipofílicas obtidas através da extração com C02 supercrítico foram caracterizadas frente ao perfil de ácidos graxos, quantidade de tocoferóis e tocotrienóis, carotenoides totais, índice de acidez e a capacidade antioxidante (ORAC) . Os resultados obtidos para o conteúdo de ácidos graxos foram comparados a um óleo comercial de semente de maracujá, conforme demonstra os dados expostos na Tabela 5. Observa-se que o ácido graxo predominante, em todas as amostras de óleo de maracujá, foi o ácido linoleico, variando de aproximadamente 61 a 66 % (g/g). Outros ácidos graxos com valores relevantes foram o ácido oleico, de 16 a 18 % (g/g) , seguindo do ácido palmítico, de 11 a 14 % (g/g) . Observa-se, ainda na Tabela 5, os valores para os ácidos graxos monoinsaturado (MUFA) , poli-insaturados (PUFA) e ácidos graxos saturados (SFA) . Os PUFA representam cerca de 65 a 67%, devido à alta concentração de ácido linoleico (w- 6), seguido pelos ácidos monoinsaturado (MUFA) , representado principalmente pelo ácido oleico (w-9) . Assim, o óleo de maracujá obtido por extração supercrítica é rico em ácidos graxos insaturados (MUFA e PUFA) . De acordo com Yehuda et al. (2002), Youdim et al. (2000), Pepe (2005) e Jenkins et al. (2002) os ácidos linoleico (18:2n-6) e linolênico (18:3n-3) são essenciais para a manutenção da integridade da membrana e divisão celular no organismo, sendo seu uso recomendado.
Tabela 5 - Perfil de ácidos graxos (% g/g) para as frações bioativas lipofilicas obtidas por extração com C02 supercritico do bagaço de maracujá, para o óleo comercial da semente do maracujá e a comparação com trabalhos publicados.
Figure imgf000051_0001
Figure imgf000052_0001
n.d. - Não detectado pelo método analítico; MUFA - Ácidos graxos monoinsaturado; PUFA - Ácidos graxos poli- insaturados; SFA - Ácidos graxos saturados; *Declarado pela empresa fornecedora; Condições de extração supercrítica : Viganó et al., (2016b) - 17 MPa, 60°C e S/F de 160 kg/kg; Barrales et al . , (2015) - 26 MPa, 40°C e S/F 210 kg/kg.
[150] Nota-se, ainda na Tabela 5, que o perfil de todas as etapas de extração supercrítica tiveram valores próximos aos determinados por outros trabalhos científicos, tais como Viganó et al . (2016b), e Barrales et al. (2015). Além disso, o perfil de ácidos graxos também foi determinado para um óleo comercial de semente de maracujá, obtido pelo processo de prensagem a frio. De maneira geral, notou-se perfis semelhantes de ácidos graxos, monoinsaturados , poli- insaturados e saturados para óleos provenientes de extração supercrítica e o óleo comercial. Apesar dessa semelhança, os extratos obtidos por extração supercrítica apresentaram altos teores de tocoferóis e tocotrienóis, carotenoides totais e maior capacidade antioxidante que o óleo comercial.
Tabela 6 - Perfil dos tocoferóis e tocotrienóis (mg/100g) para as frações bioativas obtidas por extração com C02 supercrítico do bagaço de maracujá, para o óleo comercial da semente do maracujá.
Figure imgf000053_0001
Valores expressos em mg do respectivo componente por 100 g de óleo (extrato-fração bioativa) ; Comercial - Óleo comercial da semente de maracujá; [151] A Tabela 6 apresenta os perfis de tocoferóis e tocotrienóis obtidos para oa diferentes frações bioativas provenientes de extração supercritica, bem como para o óleo comercial. Observa-se, na Tabela 6, que os tocóis majoritários presentes nas frações bioativas de maracujá são d-tocotrienol , g-tocotrienol e a-tocotrienol , seguidos do OÍ- tocoferol e g- tocoferol, com valores de aproximadamente 106, 81, 59, 45 e 41 mg/100g, respectiva ente . A maior concentração de tocóis totais foi obtido no processo de extração supercritica nas condições de 60°C e 17 MPa, ou seja, para a primeira fase de extração, com um total de 350 mg de tocóis por 100 g de extrato. Para as demais frações bioativas esse valor foi de aproximadamente 3 vezes menor, variando de 86 a 95 mg/100g de extrato. Por sua vez, o óleo comercial apresentou os menores valores de tocóis totais, sendo que a-tocoferol, b-tocoferol e a-tocotrienol não foram detectados. Porém, somente o a-tocoferol atende os requisitos humanos de vitamina E, pois, os diferentes tocóis são mal reconhecidos pela proteina transportadora de a- tocoferol (a-TTP) (HOSOMI et al., 1997). Apesar disso, essencialmente, os quatro tocoferóis e tocotrienóis, tem a mesma capacidade antioxidante (TRABER e ATKINSON, 2007). Essa afirmação fica evidente quando comparamos a capacidade antioxidante ORAC dos diferentes extratos obtidos, nas diferentes etapas de extração, conforma demonstra a Tabela 7.
Tabela 7 - Comparação entre a capacidade antioxidante, quantidade de carotenoides totais e indice de acidez das diferentes frações bioativas obtidas por extração supercritica e o óleo comercial.
Figure imgf000055_0001
[152] A concentração de carotenoides para as frações bioativas da segunda etapa de extração e para o experimento de rendimento global (Global) foram superiores ao valor da primeira fase (tocóis), e aproximadamente 90 vezes maior que a concentração de carotenoides obtida para o óleo comercial da semente do maracujá. Além disso, a concentração de carotenoides foi de 20 vezes maior que os resultados obtidos por Viganó et al. (2016b). De acordo com os autores, os carotenoides majoritários são o b-caroteno e a b- criptoxantina, com concentrações de 16.77 ± 0.88 e 6.29 pg/g de extrato, respectivamente . Outro fator importante que deve ser destacado é a seletividade do solvente supercritico , nota-se que em condições de menor poder de solvatação, ou seja, menor densidade (Fase 1, 60° C e 17 MPa) , a extração de carotenoides foi menor que nas condições de alta densidade (Global, 40° C e 34 MPa) .
[153] Nota-se ainda que a capacidade antioxidante das frações bioativas enriquecidas em tocotrienóis e tocoferóis foram maiores que os valores obtidos para as demais etapas de extração supercrítica, tanto o extrato global quanto a fração bioativa da segunda etapa. A capacidade de absorção de radicais oxigenados (ORAC) para a primeira fase apresentou valor superior aos encontrados por Wu et al. (2004), para a fase lipofílica de diferentes produtos de origem vegetal, tais como frutas, sementes, cereais, frutas desidratadas e especiarias. Além disso, a capacidade antioxidante da primeira etapa foi maior que os resultados obtidos por Viganó et al . (2016b), no qual obtiveram valores próximos a 200 gmol TE/g de extrato lipofilico para diferentes condições de extração supercritica . De acordo com os resultados apresentados por Huang et al. (2002), os tocóis, principalmente o d-tocoferol apresentam capacidade de absorção de radicais oxigenados próximos ao padrão utilizado na análise de ORAC, o Trolox. De maneira geral, o método ORAC tem sido relatado com o mais relevante para teste in vitro, devido ao uso de um radial biologicamente relevante (THAIPONG et al., 2006). Contudo, o método apresenta pontos criticos, como por exemplo a solubilidade da fração bioativa lipofílica (oleosa) .
[154] Por se tratar de uma composição compreendendo ácidos graxos livres, triacílgliceróis , tocoferóis e tocotrienóis , fitoesteróis , carotenoides, entre outros compostos. Assim sendo, uma característica fundamental na qualidade das frações bioativas obtidas por SFE é o índice de acidez. Pode-se notar na Tabela 7 que, as frações bioativas obtidas na Fase 1 da SFE apresentaram altos valores do índice de acidez em comparação com as demais frações bioativas e o óleo comercial da semente de maracujá. Tal comportamento está associado a seletividade da extração supercritica em tais condições específicas de processo (60° C e 17 MPa) , uma vez que nesta condição têm-se um alta solubilidade dos ácidos graxos livres, tais como ácido oleico, linoleico, palmitico, entre outros, e baixa solubilidade dos demais compostos do extrato, como carotenoides e triacilgliceróis (TEMELLI, 2009) . Quando as condições de processo foram alteradas (40° C e 34 MPa), a solubilidade desses demais compostos foi elevada, consequentemente, sua obtenção aumentada, causando um efeito de diluição dos ácidos graxos livres, e uma diluição do indice de acidez de 15 % para 1 % (g ácido oleíco/g óleo), para a Fase 1 e o Global, respectiva ente .
[155] Além da caracterização da fração bioativa lipofílica, foi realizado a determinação das características da fração bioativa hidrofílica concentrada (3) obtido através da extração com líquido pressurizado (PLE) para o Lote 1 de matriz vegetal. A Tabela 8 apresenta os resultados obtidos para as análises de sólidos, açucares e fenólicos totais, valor da capacidade antioxidante, ORAC, a concentração do composto piceatannol, pH e acidez titulável da fração bioativa hidrofílica concentrada.
Tabela 8 - Características da fração bioativa hidrofílica concentrada (etapa 3) obtida a partir do bagaço de maracujá desengordurado por extração com fluidos pressurizados (Lote 1).
Figure imgf000057_0001
Figure imgf000058_0001
[156] Pode-se notar na Tabela 8 que a fração bioativa hidrofílica concentrada (etapa 3) do bagaço de maracujá compreende altos teores de sólidos totais, representados por açucares e compostos fenólicos. Cada salientar que, a alguns compostos fenólicos são glicosilados , ou seja, ligados a moléculas de glicose, fazendo com que também sejam quantificados pelo método colorimétrico utilizado para determinação de açucares totais. Apesar da grande concentração de açucares, pode-se dizer que o extrato contém altos teores de compostos fenólicos, e consequentemente alta capacidade antioxidante , na qual é refletida no valor da capacidade antioxidante ORAC.
[157] Os valores apresentados na Tabela 7 também foram expressos em forma de rendimento, ou seja, por unidade de massa de bagaço de maracujá. Os valores de rendimento para sólidos, açucares e fenólicos totais, foram de 38,4 ± 0,01 % (m/m), 215, 4± 7,80 mg G/g e 21,3 ± 0,33 mg AGE/g, respectivamente . O rendimento global de sólidos está acima do reportado pela literatura, aproximadamente 38 % (m/m) , porém o rendimento de fenólicos totais foi inferior ao citado por Viganó et al. (2016a), no qual obtive valor de 55 mg AGE/g de bagaço de maracujá desengordurado. Tais diferenças estão associadas a dois fatores principais, a qualidade da matriz vegetal e a escala do processo extrativo, conforme discutido anteriormente .
Ensaios de Citotoxicidade
[158] As frações bioativas obtidas em todas as etapas de extração, fração bioativa lípofilica da Etapa/Fase 1 (compreendendo tocóis), fração bioativa lípofilica da Etapa/Fase 2 (compreendendo ácidos graxos) , fração bioativa lípofilica global e o extrato hidrofílico comercial do bagaço ( EHC - Lote 1), bem como o óleo comercial da semente de maracujá foram submetidos ao teste de citotoxícidade , pelo método descrito pela OECD 129 (OECD, 2010) . Os resultados dos ensaios são apresentados na Tabela 9. Pode-se observar que apenas a ração bioativa da Etapa/Fase 2 de extração supercrítica apresentou resposta tóxica aos ensaios celulares, com valores de IC50 e a dose inicial para estudos de LD50 foram de 61,3 pg/ml e 488,7 mg/kg, respectivamente . As demais frações bioativas, Fase 1 e global da extração supercrítica, o óleo comercial da semente de maracujá e o extrato hidrofílico concentrado do bagaço de maracujá não apresentaram valor detectáveis IC50 e LD50.
Tabela 9 - Resultados referentes aos ensaios de citotoxicidade obtidos as frações bioativas da presente invenção, óleo comercial e extrato hidrofílico comercial (EHC) do bagaço de maracujá e o óleo comercial da semente de maracuj á .
Figure imgf000059_0001
1 pH da maior concentração; 2Dose inicial para o teste de LD50.
[159] De acordo com a norma OECD 423 (OECD, 2001), referente a estudos de toxicidade oral aguda em animais, substâncias que apresentem doses iniciais entre 2000 e 5000 mg/kg (Categoria 5 GHS) podem ser dispensadas da realização do teste de toxicidade oral aguda dependendo da finalidade do produto. A dose limite 5000 mg/kg somente deverá ser executada em condições excepcionais , onde houver justificativas regulatórias especificas. Porém, a rotulagem de produtos contendo descrição informativa quanto ao potencial de toxicidade oral aguda e sua categoria é necessária. A Tabela 10 apresenta a categoria e a descrição de segurança de produtos em rótulos, segundo a classificação do Sistema Globalmente Harmonizado de Classificação e Rotulagem de Produtos Químicos (Globally Harmonized System of Classification and Labelling of Chemicals - GHS) , e adotado pelo Conselho Económico e Social das Nações Unidas (UN) .
Tabela 10 - Classificação de substâncias químicas segundo o potencial de toxicidade oral aguda de acordo com UM-GHS ( EPA, 2004)
Figure imgf000060_0001
1Se categoria.
[160] Contudo, essa classificação e rotulagem é realizada mediante resultados obtidos em estudos de toxicidade oral aguda em animais. A fração bioativa lipofilica obtida na Etapa/Fase 2 da extração supercritica obteve o valor preditivo de doses iniciais para estudo de toxicidade oral aguda LD50 de 488,7 mg/kg. Conclui-se que, a substância teste poderia ser classificada nas categorias 4, de acordo com a classificação de UM-GSH (EPA, 2004). Por outro lado, para os demais produtos (fração bioativa, óleo comercial e extrato hidrofílico comercial EHC) não foi possível determinar um valor preditivo de doses iniciais para estudo de toxicidade oral aguda LD50. Portanto, conclui-se que, não há necessidade de realizar estudos de toxicidade oral aguda em animais pois provavelmente a substância teste seria classificada como "sem categoria (S.C.)", de acordo com a classificação de UM-GSH (EPA, 2004) . Assim sendo, por não apresentarem toxicidade, em todos os ensaios de emulsificação, a fração bioativa hidrofílica concentrada e as frações bioativas lipofílicas (Etapa/Fase 1 e Global) do bagaço de maracujá foram utilizados de forma integra, sem previa diluição, levando em consideração, para a manutenção dos limites dos valores de LD50, a diluição dos extratos com o uso de emulsificantes e soluções estabilizadores no processo de emulsificação .
Ensaios de emulsificação
[161] Os ensaios de emulsificação ocorrem em três etapas distintas. Primeiramente, a hipótese inicial de utilização do emulsificante Easynov© (INCI Name: Octyldodecanol & octyldodecyl xyloside & PEG -30 dipolyhydroxystearate ) e a aplicação do ultrassom foi devidamente testada, para emulsões entre fração bioativa hidrofilica concentrada - etapa 3 (Lote 1) e óleo comercial da semente de maracujá. Posteriormente, com os resultados da fase anterior, as condições de processo e o emulsificante foram redefinidas, e novos planejamentos foram executados para a mesma composição de fases da emulsão. Por fim, a melhor condição de estabilidade e tamanho de goticula foi selecionada e reproduzida para das emulsões com as frações bioativas lipofilicas, Etapa/Fase 1, Etapa/Fase 2 e Global, obtidos por extração supercritica .
[162] Na primeira etapa dos ensaios de emulsificação foram testadas diferentes concentrações do emulsificante Easynov® (EM) e razões entre a fase hidrofilica (FH), fração bioativa hidrofilica concentrada - obtida pela etapa 3, e a fase lipofilica (FL), composta pelo óleo comercial da semente de maracujá. Além disso, a hipótese do uso do ultrassom no processo de emulsificação também foi avaliada como forma de ampliação de escopo sem entretanto restringir. Os resultados de TSI obtidos nesta etapa estão apresentados na Tabela 11. Ά Figura 5, além de demonstrar as emulsões obtidas para cada formulação testada nesta etapa, demonstra o processo de emulsificação .
Tabela 11 - Resultados experimentais de TSI para diferentes concentrações das fases hidro e lipofilicas, e quantidade de emulsificante testadas para emulsões O/W.
Figure imgf000062_0001
Figure imgf000063_0001
n° - número do experimento, correlacionado com a Figura 5; 1FL - Fase lipofílica; 2FH - Fase hidrofílica; 3TSI - índice de estabilidade das emulsões em 24 horas.
[163] Observa-se que os valores de TSI expostos na Tabela 11 variam entre 4,5 e 6,7 para o período de 24 horas de ensaio. Os valores refletem diretamente a estabilidade das emulsões, sendo que quanto maior a magnitude de TSI maior sua instabilidade, ou ainda, quanto maior o TSI maior a separação de fases na emulsão, seja coalescência, floculação, cremeação ou sedimentação. Pode-se observar na Figura 7 que as formulações testadas e o processo aplicado para emulsionar óleo e extrato hidrofílico de maracujá não foram adequados, pois todas as emulsões foram cineticamente instáveis. O experimento número 9 foi o que apresentou menor instabilidade, devido à alta concentração de emulsificante e de óleo utilizados nesta formulação, o que aumentou a viscosidade, consequentemente promoveu uma barreira à coalescência, favorecendo a estabilidade da emulsão. Além disso, a alta concentração de óleo favoreceu a estabilidade pois, segundo o fornecedor, apesar do emulsificante EasyNov® ser efetivo para emulsões óleo em água (O/W) , o mesmo é reco entado para emulsões água em óleo (W/O) . Assim, decidiu- se que o emulsificante seria trocado para o Montanov L© (C14- 22 alcohols & C12-20 alkyl glucoside) , da mesma empresa fornecedora, no qual é recomendado para emulsões do tipo óleo em água (O/W) .
[164] Outro fator que favoreceu a instabilidade das emulsões foi a aplicação de ondas ultrassónicas. Diversos trabalhos, encontrados na literatura, observaram que a aplicação de ondas ultrassónicas, principalmente o excesso das mesmas, pode acarretar em um aumento no diâmetro das goticulas da emulsão, consequentemente, eleva a possiblidade da emulsão coalescer e ocorrer a separação de fases. Essa instabilidade é tipicamente atribuída aos efeitos das forças de Bjerknes (LEIGHTON, 1994) que impulsionam as goticulas de emulsão para os nós do campo acústico, onde a proximidade das goticulas resulta em aumento da coalescência (PATIL e GOGATE, 2018) . Portanto, a hipótese inicial do uso do ultrassom para a diminuição do tamanho de gota foi descartada .
[165] O segundo processo de emulsificação proposto foi testado, fixando a composição de ambas as fases, aquosa e oleosa, em uma razão de 3:1 de fase hidrofilica (FH) para fase lipofílica (FL), e variando a quantidade de emulsificante (EM) em relação a fase lipofílica (FL) . Além disso, com base em uma recomendação de um dos pareceristas da FAPESP, a hipótese sobre o uso de um estabilizante na emulsão foi testada. O estabilizante escolhido para esta etapa foi a goma xantana. Diversos trabalhos demonstraram as vantagens da adição de goma de xantana nas propriedades físico- químicas das emulsões, como no tamanho das goticulas, na viscosidade e na estabilidade das mesmas (HEMAR et al., 2001; KRSTONOSIC et al . , 2009; SUN et al . , 2007; YE et al . , 2004) . A Tabela 12 apresenta as concentrações das formulações testadas para essa etapa de emulsificação, bem como os resultados de estabilidade (TSI) cinética, sendo que a quantidade de estabilizante (ES) foi determinada com base na quantidade da fase hidrofilica (FH)
Tabela 12 - Resultados experimentais de TSI para diferentes concentrações das fases hidro e lipofilicas, e quantidade de emulsificante testadas para emulsões O/W.
Figure imgf000065_0001
n° - número do experimento, correlacionado com a Figura 7; 1EM - Concentração de emulsificante; 2ES - Concentração de estabilizante; 3TSI - índice de estabilidade das emulsões em 7 dias .
[166] Observe-se que o índice de estabilidade (TSI) das emulsões aumentou com o acréscimo da quantidade de emulsificante, de 35,1 para 13,4 com 5 e 20 % em gramas de emulsificante por mililitro de fase lipofílica, respectivamente . A adição de estabilizante, goma xantana, também promoveu uma melhora na estabilidade cinética das emulsões, sendo que os valores de TSI variam de 19,3 a 0,3. O valor de TSI para as emulsões com estabilizante foi aproximadamente dez vezes menor do que os das emulsões sem goma xantana, na mesma quantidade de emulsificante (20 I) . Além disso, observa-se que as estabilidades das emulsões também dependeram da quantidade de goma adicionada, sendo que a adição de pequenas concentrações não foi possível promover estabilidade ao longo de sete dias de análise. O processo de emulsificação, bem como, as imagens das emulsões obtidas para esta etapa são apresentadas na Figura 7. Observou-se, de maneira geral, que adição de goma xantana foi benéfica a estabilidade das emulsões. De acordo com Hayati et al. (2009), as dispersões com polissacarídeos conferem uma fase contínua suficientemente espessa que dificulta a tendência dos óleos dispersos de migrarem, ou seja, reduz a mobilidade das gotículas e a frequência de colisão, e como resultado, a coalescência ou floculação das gotículas de emulsão pode ser retardada. Segundo McClements (2015), além do aumento da viscosidade da fase contínua, os estabilizantes podem até mesmo provocar a gelificação da fase contínua, assim prevenindo a agregação das gotículas.
[167] Com base nos resultados desta etapa, foi possível elaborar um novo planejamento para o processo de emulsificação da fração bioativa hidrofílica do bagaço e o óleo comercial da semente de maracujá. Nesta etapa foram avaliadas as seguintes variáveis: concentração de emulsificante na fase lipofílica (FL) , expressa em gramas de emulsificante (EM) por ml de óleo (%, g/ml), e concentração de goma xantana (ES) na fase hidrofílica (FH) , expressa em gramas de solução de goma xantana a 2 % (g/ml) por ml de fração bioativa hidrofílica aquosa (%, g/ml) . Os experimentos foram conduzidos com razão entre as fases hidro e lipofílica fixada em 3/1. O processo de emulsificação foi idêntico ao proposto na Figura 7. A Figura 7 (A) e (B), apresentam os resultados de diâmetro médio ( d [ 3 , 2 ] ) e o índice de polidispersidade (PDI) das emulsões no dia 1 e após 10 dias de armazenamento.
[168] Pode-se notar na Figura 7, que o aumento na concentração de emulsificante proporcionou uma diminuição no tamanho da goticula da emulsão, para os três níveis de concentração de estabilizante . Os menores diâmetros de goticula foram obtidos nas condições experimentas de 10 e 20 % emulsif icante em relação a fase lipofílica, e nas menores concentrações de estabilizante, 0,5 a 1 % em relação a fase hidrofilica. Além disso, o aumento na concentração de estabilizante, goma xantana, promoveu um aumento no diâmetro da goticula, para os três níveis de concentração de emulsificante . Tal comportamento pode estar relacionado ao aumento da viscosidade da emulsão com o acréscimo da quantidade de goma xantana, na qual pode interferir significativamente na taxa de cisalhamento durante o processo de emulsificação .
[169] Nota-se, ainda na Figura 7, que o tamanho da goticula aumentou com o tempo de armazenamento para todas as condições testadas, sendo que as médias se diferenciaram estatisticamente a nível de 95% de confiança (p < 0,05). Porém, as menores diferenças entre o dia 1 e 10 foram observadas nas baixas concentrações de emulsificante e concentrações de intermediárias para altas de estabilizante. A polidispersidade (PDI), por sua vez, diminuiu com o aumento das concentrações de emulsificante e estabilizante, porém na condição de maior concentração, devido à alta viscosidade, o processo de emulsificante gerou emulsões com uma grande distribuição de tamanho de gotículas. Além disso, a dispersão do tamanho de gotículas aumentou com ao longo do tempo de armazenamento. O índice de polidispersidade indica o tamanho da dispersão do tamanho de gotículas, ou seja, quanto menor este valor, menor a amplitude da curva, indicando emulsões uniformes. Segundo Gottlieb e Schwartzbach (2004), sistemas dispersos com valores de PDI menores que 2 podem indicar uma distribuição de tamanho uniforme. A Figura 8 demonstra o perfil de distribuição do tamanho de gotícula em função das concentrações de estabilizante (A) e de emulsificante (B) .
[170] Observa-se que o perfil de distribuição do tamanho de gotícula variou com as concentrações de emulsificante e estabilizante, sendo que a diminuição na concentração de goma xantana acarretou em uma menor polidispersidade, tendendo a um pico uniforme, ou uma distribuição modal, por volta de 3 pm. Porém, a diminuição da concentração de emulsificante levou a um aumento na polidispersidade e um deslocamento dos picos, sendo que na maior concentração ocorreu o surgimento de uma dispersão com dois picos distintos (bimodal) . Segundo Márquez et al. (2010) , o tamanho da gotícula depende da concentração de emulsificante, ou seja, em uma mesma fração de fase dispersa, o tamanho das gotas tende a diminuir com o acréscimo da concentração de emulsificante . Porém, o aumento do mesmo pode acarretar um aumento na viscosidade, dificultado o escoamento e, consequentemente, diminuindo a eficiência de emulsificação . De acordo com Doucet et al. (2005), o equipamento rotor-estator são comumente usados em fluidos altamente viscosos, porém observou-se que uma diferença no escoamento desses fluidos no interior do vaso. Ainda, segundo os autores, em regiões próximas ao rotor-estator observou- se alta turbulência e taxa de císalha ento, circundado por regiões onde a viscosidade é alta e o movimento do fluido torna-se laminar, até a região próxima a parede do vaso onde o fluido está quase estagnado.
[171] Além do tamanho de goticula e da polidispersidade, outro fator importante é estabilidade cinética das emulsões, ou seja, a avaliação da separação de fases das emulsões elaboradas. Desde modo, a Figura 9 apresenta os resultados experimentais da estabilidade das emulsões ao longo de 10 dias de armazenamento, em uma temperatura controlada de 20° C. Pode-se verificar que a maioria das condições experimentais foram estáveis durante um período de 7 a 10 dias de armazenamento, porém as condições E-9, E-8 e E-6 apresentaram um aumento no índice de estabilidade após o 7 dia de armazenamento. O valor máximo para TSI foi de 2,3 para a condição de altas concentrações de emulsificante e estabilizante, e o valor mínimo foi de 0,3, para a condição de menor concentração dos componentes. Tal diferença entre os valores das condições experimentais não refletem necessariamente uma maior ou menor estabilidade, na verdade, fatores como, a alta viscosidade das formulações e a presença de pequenas bolhas de ar no interior das amostras, podem acarretar em tais diferenças.
[172] Para uma melhor interpretação dos valores de TSI, os dados de polidispersidade e diâmetro médio de goticula, bem como a aparência física das emulsões, devem ser levadas em consideração. Assim sendo, tendo como base os valores de tais respostas, pode-se dizer que a condição experimental com concentração de emulsificante de 10 % (g/ l FL) e a concentração de estabilizante de 0,5 % (g/ml FH), comparando com as demais condições, obteve menores valores de diâmetro de gotícula, polidispersidade e TSI, utilizando menor quantidades de componentes na formulação ( estabilizante e emulsificante) . Logo, tal condição experimental foi tomada com base para a formulação das demais emulsões com as frações bioativasobtidas por SFE (Etapa/Fase 1, Etapa/Fase 2 e Global), bem como duas emulsões modelo, uma contendo óleo comercial e extrato hidrofilico do bagaço de maracujá (Comercial - EHC) e, outra contendo somente ácido oleico e água (Branco/Controle) .
[173] Além disso, a hipótese do uso de um homogeneizador a alta pressão para a diminuição do tamanho de gotícula e da polidispersidade foi testada e, os resultados comparados com os obtidos para o método utilizando rotor-estator . A Tabela 13 demonstra os resultados do tamanho de gotícula (d[3,2]) e a polidispersidade (PDI) para ambos os métodos (H: homogeneizador a alta pressão e U: rotor- estator) , bem como para os diferentes extratos lipofílicos obtidos via SFE, em dois diferentes dias de armazenamento.
Tabela 13 - Diâmetro médio de gotícula, índice de polidispersidade e estabilidade para emulsões obtidas com extratos do bagaço de maracujá.
Figure imgf000070_0001
Figure imgf000071_0001
n° - número do experimento, correlacionado com a Figura 10; *Homogeneizador a alta pressão com três passes a 50 MPa ; iTurbiscan Stability Index avaliada por 7 dias de armazenamento a 20° C.
[174] O tamanho médio de gotícula das emulsões obtidos por rotor-estator (1U a 5U) , com e sem as frações bioativas de SFE, apresentaram valores em torno de 2,8 pm e polidispersidade de 1,7, porém as emulsões formuladas com a fração bioativa lipofilica da Etapa/Fase 1 da extração com fluido supercritico (SFE) apresentaram goticulas com tamanhos de 8,2 pm, apesar das mesmas condições de concentração das fases e processamento. Tal comportamento pode estar relacionado com a alta viscosidade da fração bioativa obtida nesta etapa de extração, na qual dificultou o escoamento e, consequentemente, diminui a eficiência o processo de emulsificação . Por sua vez, as amostras submetidas ao homogeneizador a alta pressão, posteriormente ao rotor-estator, apresentaram, de maneira geral, um tamanho de goticula maior que as demais amostras, tal aumento foi de 50 % em relação as amostras elaboradas utilizando somente o rotor-estator. Além disso, os índices de estabilidade dessas emulsões foram maiores que as demais, ou seja, o processo de homogeneização a alta pressão provocou um aumento da instabilidade do sistema disperso, consequentemente, um aumento na taxa de coalescência das goticulas e, por fim, a separação das fases. A Figura 10 apresenta as emulsões elaboradas com extrato aquoso comercial e o óleo comercial da semente (1U e 1H) , e com a fração bioativa SFE Global ( 2U e 2H) , fração bioativa SFE Fase 2 (3U e3H) e fração bioativa SFE Fase 1 (4U e 4H) do bagaço de maracujá.
[175] Nota-se, ainda na Figura 10, que a alteração da coloração das amostras submetidas ao processo de homogeneização a alta pressão em comparação com as amostras submetidas somente ao rotor-estator (Ultra Turaxx) . Pode-se associar essa mudança na cor com o fato de que o processo a alta pressão gera maior cisalhamento da amostra, maior força de atrito entre as superfícies do equipamento e a amostra e, consequentemente, parte dessa energia é transformada em calor, causando um aquecimento, e por consequência, uma degradação dos compostos presentes nas amostras (FLOURY et al., 2000). Possivelmente, o aumento no tamanho da gotícula, da polidispersidade e da instabilidade também estão associados a este comportamento. Para confirmar os efeitos de separação de fases e aumento do tamanho de gotícula, as amostras 2U e 2H foram submetidas a microscopia óptica após 30 dias de armazenamento, conforme demostra a Figura 11. Além disso, uma microscopia de fluorescência foi realizada na condição 2U para a confirmação do tipo de emulsão obtida.
[176] Pode-se observar, na Figura 11, que as emulsões obtidas utilizando o rotor-estator (A) apresentaram gotículas menores e menos polidispersas que as emulsões submetidas ao homogeneizador a alta pressão (B) , confirmando os dados obtidos através de espectrometria de difração a laser. Além disso, pode-se observa na Figura 11 (C) que as emulsões obtidas nesta pesquisa, utilizando o emulsificante Montanov L® e goma xantana como estabilizante, foram emulsões do tipo óleo em água, ou seja, a fase contínua é representada pela fração bioativa compreendendo compostosfenólicos e a fase dispersa (gotículas) é representada pela fração bioativa do bagaço de maracujá obtido via extração supercrítica . Baseado nos resultados apresentados, o uso do homogeneizador a alta pressão foi descartado, e a formulação 2U, fração bioativaglobal (SFE) e fração bioativa hidrofílica concentrada (PLE) do bagaço de maracujá, bem como o método de emulsificação, foram selecionadas para as futuras etapas do projeto. Cabe salientar que, até o presente momento, gotículas com tamanhos próximos a 1 pm, ou seja, próximos do conceito de miniemulsões , foram obtidas nas condições experimentais com concentração de emulsificante de 10 % (g/ ml FL) e concentração de estabilizante de 0,5 % (g/ml FH) , utilizando somente rotor-estator, com valores de 2,8 pm. Tal comportamento está associado diretamente ao equipamento utilizado no processo de emulsificação (rotor- estator) . Assim sendo, com o intuito otimizar o tamanho de gotícula para valores próximos 1 pm e padronizar as emulsões, na fase seguinte desta pesquisa (PIPE Fase 2), será proposto o uso de um sistema rotor-estator com fluxo perpendicular, no qual força a passagem da amostra no sistema de dispersão, evitando a formação de região com baixa taxa de cisalha ento .
Síntese de colágeno
[177] Primeiramente, nesta etapa, foi avaliada a viabilidade celular, em culturas de células 3T3, para determinar a maior concentração não tóxica das frações bioativas da presente invenção e das emulsões a serem utilizadas nos ensaios de síntese de colágeno. Os resultados dessa etapa demonstraram que as frações bioativas hidrofílicas, provenientes do Lote 1 e Lote 2, e as frações bioativas lipofílicas, fração bioativa SFE Fase 1 e fração bioativa Global, não apresentaram toxicidade celular nas concentrações testadas, sendo que nos ensaios de síntese de colágeno, foram utilizadas concentrações de 1000, 100 e 10 pg/ml para as frações bioativas hidrofílicas e fração bioativa SFE Global e, 100, 10 e 1 pg/ml para a fração bioativa SFE Etapa/Fase 1. Assim sendo, foi possível avaliar a síntese de colágeno utilizando células de fibroblastos humanos. A Figura 12 demonstra os resultados obtidos para os produtos testados.
[178] Observa-se, na Figura 12, que os produtos do bagaço de maracujá não alteraram significativamente a síntese de colágeno de fibroblastos humanos, ao nível de 5 %. Nota- se, especificamente na Figura 12 (c) e (d), que as frações bioativas lipofílicas da SFE apresentaram uma tendência de queda na síntese de colágeno, porém não significativa. Outro ponto a ser destacado é para o extrato aquoso do bagaço do maracujá Lote 2, Figura 12 (b) , onde observou-se uma tendência de aumento da produção do colágeno, apesar de não significativa ao nível de 5 ¾ . De maneira geral, os produtos do bagaço de maracujá apresentaram comportamento de manutenção/promoção da síntese de colágeno, sendo possível seu uso em produtos cosméticos.
[179] As emulsões com a fração bioativa lipofílica de SFE (Fase Global) e com o extrato aquoso do bagaço de maracujá, tanto do Lote 1 (c) , quanto do Lote 2 (d), foram testadas para este ensaio. Além disso, foram submetidos a tais testes duas amostras controle, uma emulsão com água e ácido oleico (a) e um produto comercial (Sérum) de uma das empresas lideres do mercado (b) , no qual contem ácido hialurónico e resveratrol, um polifenol similar ao piceatannol (MATSUI et al., 2010), largamente conhecido pelas suas propriedades de antienvelhecimento . A Figura 13 apresenta os resultados obtidos para a síntese de colágeno total em fibroblastos humanos para as emulsões testadas.
[180] A emulsão compreendendo fração bioativa SFE Global e fração bioativa hidrofílica concentrada (PLE) Lote 2 apresentam uma tendência de aumento na síntese de colágeno, quando comparada com o controle basal, com concentrações entre 1 e 0,01 pgm/ml . Além disso, nota-se, de maneira geral, que as emulsões obtidas com as frações bioativas do bagaço do maracujá, a emulsão controle e o produto comercial não diminuíram e/ou inibiram a produção do colágeno. Segundo Matsui et al. (2010), essa proteína é produzida em células de fibroblasto e é de fundamental importância, pois aproximadamente 70% da derme consiste em colágeno e, exibe diferentes funções no organismo, incluindo proliferação e diferenciação celular. As propriedades funcionais da pele dependem de a qualidade e condição do colágeno presente na derme. Alguns componentes de alimentos promovem efetivamente a síntese de colágeno na pele. Porém, outras substâncias atuam como cofatores da prolil hidroxilases e lisil hidroxilase, que são as principais enzimas responsáveis pela síntese de colágeno, e algumas substâncias induzem o fator transformador de crescimento bΐ (TGF- bΐ), que estimula a acumulação de tipo I mRNA de procolágeno em células de fibroblastos humanos (KOYA-MIYATA et al., 2004) . Segundo Kim et al. (2008), o piceatannol, composto ativo presente na fração bioativa hidrofílica e fração bioativa hidrofílica concentrada do bagaço de maracujá da presente invenção e nas ditas emulsões da presente invenção apresentou-se como um inibidor do caminho JAKl/STAT-l, que induz a expressão do Gene MMP-1 em fibroblastos dérmicos humanos cultivados. Esses estudos nos levam a acreditar que o aumento induzido e a manutenção de níveis de colágeno pela fração bioativa enriquecida em piceatannol (Lote 2) pode interferir na inibição de metaloproteínase da matriz (MMPs) ou pela atividade dos polifenóis presentes nos extratos aquosos e nas emulsões.
Inibição das metaloproteinases (MMPs): Elastase e Colagenase
[181] Os ensaios de inibição da enzima Elastase proveniente de pâncreas suíno (EnzChek© Elastase Assay Kit, Molecular Probes) foram realizados para a emulsão (2U, Lote 1 - Tabela 13) compreendendo fração bioativa global da extração supercrítica como fase lipofílica e, a fração bioativa hidrofílica concentrada via extração com liquido pressurizados do bagaço de maracujá Lote 1. Além disso, essa mesma fração bioativa também foi testada com inibidor. A Figura 14 demonstra a cinética de emissão de fluorescência da reação com a Elastase em diferentes concentrações dos inibidores, extrato aquoso (A) e emulsão das frações bioativas (B) do bagaço de maracujá.
Concentração em pg do composto por mΐ de meio de reação
[182] Pode-se observar, na Figura 14, tanto para a cinética de reação com fração bioativa quanto para a emulsão da presente invenção, um comportamento característico de uma reação enzi ática, especialmente para os controles e, as menores concentrações de inibidores (A) e (B) . Nota-se ainda que, para a fração bioativa hidrofílica concentrada do bagaço de maracujá, concentrações abaixo de 2,5 pg de extrato por mΐ de meio reacional conduziram as taxas de geração de produto (fluorescência) próximas as taxas da reação controle, indicado que para em tais condições não foi possível a inibição completa da elastase. O mesmo comportamento foi observado para as reações com a emulsão como inibidor, porém em concentrações mais altas, por exemplo, abaixo 7 pg de emulsão por pl de meio reacional. Concentrações a partir de 50 e 57 pg/pl para a dita fração bioativa e emulsão, respectivamente, foram capazes de reduzir a emissão de fluorescência no meio de reação, indicando que a presença dos compostos nessas concentrações inibiu a capacidade de catalise da elastase na reação de degradação da elastina. Com base nos dados de fluorescência, os valores de inibição da elastase foram determinados para as diferentes concentrações de inibidores, conforme demonstra a Figura 15.
[183] Observa-se, Figura 15, que o aumento da concentração da emulsão (Lote 1) e da fração bioativa hidrofílica concentrada aquosa do bagaço do maracujá (Lote 1) casou um aumento na inibição (%) da atividade da Elastase. A completa inibição da enzima ocorreu em concentrações diferentes para a emulsão e o extrato aquoso, com valores de 90 e 50 pg/pl, respectivamente. Tal comportamento, possivelmente, está associado ao efeito de diluição no preparo das emulsões, uma vez que houve a necessidade da adição da solução aquoso de goma xantana para promover a estabilidade. Além disso, com o objetivo de determinar a concentração na qual 50 % da elastase é inibida [ IC50), os dados experimentas de inibição (%) e concentração dos inibidores (pg/ml) foram ajustados ao modelo de Hill, conforme a Equação (4), descrita na seção 4.1.6. A Tabela 14 demonstra os valores dos parâmetros da Curva de Hiil, bem como os valores de IC50 e o coeficiente de determinação do modelo (r2) .
Tabela 14 - Valores dos parâmetros da Curva de Hiil ajustados aos dados de dose- resposta para diferentes concentrações de inibidores.
Figure imgf000078_0001
1 Fração bioativa hidrofílica concentrada (aquosa) do bagaço desengordurado do maracujá Lote 1 obtido por extração com liquido pressurizado; 2 Emulsão produzida com fração bioativa hidrofílica concentrada (aquosa) e fração bioativa lipofílica global obtida por extração supercrítica (34 MPa e 40°C) .
[184] Os valores de IC50 obtidos para a fração enriquecida e para a emulsão foram de 9,14 e 22,1 pg/mΐ, respectivamente . Pientaweeratch et al. (2016), avaliaram extratos etanólicos de três diferentes frutos, Sarandi ou Emblica mirobalam (Phyllanthus emblica) , Sapoti ou Sapota (Manilkara zapota) e Cardo-mariano (Silybum marianum) na inibição da elastase e, obtiveram valores de IC50 de aproximadamente 387, 35 e 38 pg/ml, respectivamente.
Posteriormente, foram realizados os ensaios para a determinação da inibição da enzima metaloproteinase colagenase (EnzChek® Gelatinase/Gollagenase Assay Kit, Molecular Probes), para a emulsão (2U, Lote 1 - Tabela 13) compreendendo a fração bioativa global global da extração supercrítica como fase lipofílica e, a fração bioativa hidrofilica concentrada obtida via extração com liquido pressurizados do bagaço de maracujá Lote 1. Além disso, essa mesma fração bioativa também foi testado com inibido. A Figura 16 demonstra a cinética de emissão de fluorescência da reação com a colagenase em diferentes concentrações dos inibidores, fração bioativa hidrofilica concentrada (A) e emulsão das frações bioativas (B) do bagaço de maracujá.
[185] Observa-se na Figura 16 que, especifica ente para os controles, um comportamento caracterí stico de uma reação enzimática, porém para as concentrações de inibidores (A) e (B) nota-se que não houve comportamento semelhante, uma vez que todas as concentrações testadas levaram a redução total da fluorescência da reação enzimática, indicando que em todas as condições de concentrações testadas tanto a fração bioativa hidrofilica concentrada do bagaço de maracujá , quanto a emulsão das frações bioativas do bagaço de maracujá foram capazes de inibir a ação de degradação do substrato colágeno pela metaloproteinase colagenase. Assim sendo, não foi possível determinar os valores dos parâmetros da Curva de Hiil e os valores de IC50. Porém, com base nos dados de fluorescência, os valores de inibição da colagenase foram determinados para a fração bioativa hidrofilica concentrada do bagaço de maracujá (fração bioativa a 25 pg/mΐ) , a emulsão das frações bioativas do bagaço de maracujá (Emulsão a 25 pg/gl), bem como para um inibidor padrão (Inibidor a 10 mM) , 1 , 10-phenanthroline monohydrate, e o produto comercial, no qual contem ácido hialurônico e resveratrol, um polifenol similar ao piceatannol (Produto 14 pg/mΐ) . A Figura 17 apresenta os valores de inibição para os produtos/frações bioativas da presente invenção acima citados .
[186] Pode-se notar na Figura 17 que a emulsão com frações bioativas do bagaço de maracujá, bem como a fração bioativa hidrofilica concentrada foram capazes de inibir a enzima que degrada o colágeno em 100 %, em quanto que o produto comercial obteve valores de inibição de aproximadamente 20 %, ou seja, uma diferença de 4 vezes na capacidade inibitória. As metaloproteinases (MMPs) elastase e colagenase são diretamente responsáveis pela degradação da elastina e do colágeno tipo I, II e III, nas quais são componentes fundamentais para a manutenção e qualidade das fibras dermo-epidérmicas (CHANVORACHOTE et al., 2009). A degradação dessas fibras estruturais resulta na diminuição da integridade e elasticidade contribuindo para a formação de rugas e o envelhecimento da pele. Assim sendo, nota-se a potencial aplicação da fração bioativa hidrofilica concentrada e da emulsão com insumo cosmético. Ensaios de Formação de Colónia Celular
[187] A capacidade proliferativa de queratinócitos humanos foi avaliada, primeiramente, para as frações bioativas obtidos por extração supercritica, fração bioativa Global e fração bioativa hidrofilica Etapa/Fase 1, e as frações bioativas hidrofilicas concentradas obtida com liquido pressurizado (etanol e água) do bagaço de maracujá, Lote 1 e Lote 2. Os resultados obtidos nesses testes são apresentados na Figura 18. [188] Pode-se observar na Figura 18 que as frações bioativas lipofilicas do bagaço de maracujá, fração bioativa Global e fração bioativa hidrofílica Etapa/Fase 1, promoveram a reprodução celular de queratinócitos humanos em comparação ao controle basal e ao composto b-Estradiol, ao nivel de 5 % . Além disso, observa-se que as frações bioativas hidrofilicas concentradas Lote 1 e Lote 2 provenientes do bagaço desengordurado do maracujá não promoveram a formação de colónia em comparação ao controle basal de forma significativa, ao nível de 5 % . Resultados semelhantes foram encontrados por ASLAM et al. (2006), no qual demonstram que os extratos lipofilicos da semente de romã (Púnica granatum) promoveram a formação de colónia de células de queratinócitos humanos, porém os extratos aquosos da casca, da polpa e da semente não estimularam a capacidade de proliferação das células e, em certas concentrações, diminuíram e/ou inativaram as células de queratinócitos humanos.
[189] A capacidade proliferativa de queratinócitos humanos também foi testada para quatro (4) emulsões diferentes, emulsões compreendendo fração bioativa SFE Global e fração bioativa hidrofílica concentrada Lote 1 (2U - Tabela 13) e Lote 2, a emulsão padrão (5U - Tabela 13) contendo somente água, ácido oleico, emulsificante e estabilizante, e um produto comercial conhecido pelos apelos de antienvelhecimento . A Figura 19 demonstra os resultados obtidos para a quantidade de unidades formadores de colónia das seguintes substâncias teste: (a) Emulsão padrão (Tabela 13 : 5U) ; (b) Produto comercial; (c) Emulsão com fração bioativa hidrofílica concentrada do bagaço de maracujá Lote 1 (Tabela 13: 2U) e; Emulsão com fração bioativa hidrofílica concentrada do bagaço de maracujá Lote 2, em comparação com o controle basal e o controle B-Estradiol (1 mM) .
[190] Pode-se observar na Figura 19 que a emulsão composta por substâncias padrão (a) , água destilada e ácido oleico, em diferentes concentrações não aprestou diferença significativa na formação ou proliferação celular de queratinócitos humanos. O mesmo comportamento foi observado para o produto comercial (b) contendo ácido hialurônico e resveratrol. Além disso, pode-se notar, Figura 19 (c) e (d), que as emulsões compreendendo as frações bioativas do bagaço de maracujá, Lote 1 e Lote 2, em diferentes concentrações, foram capazes de promover a formação de colónia celular, ou seja, a presença dos compostos bioativos, provenientes das frações bioativas obtidas por SFE e PLE na emulsão, aumentaram a proliferam de células de queratinócitos humanos .
[191] Hou et al. (2012), avaliaram aplicação tópica de hesperidina, um polifenol encontrado no extrato da casca da laranja, em camundongos e verificarem que o composto estimulou a proliferação e diferenciação de corpos lamelares na epiderme, bem como a ativação de PPAR-a e PPAR-y, receptores ativados por proliferador de peroxíssoma (Peroxisome proliferator-activated receptor) , um grupo de proteínas receptoras nucleares que funcionam como fatores de transcrição que regulam a expressão dos genes. Os PPARs desempenham um papel essencial na regulação da diferenciação celular e desenvolvimento de queratinócitos. Polifenóis do chá verde, especialmente o epigalocatequina-3-galato (EGCG) , foram testados, por Hsu et al . (2003), em queratinócitos humanos primários. Os autores verificaram que os polifenóis estimularam a proliferação e diferenciação de queratinócitos . Em queratinócitos idosos, com taxas reduzidas de atividade celular, os autores demonstram que o tratamento com polifenóis de chá verde renovou a síntese de DNA e a ativação da succinato desidrogenase .
[192] Além dos efeitos benéficos dos polifenóis (hidrofílicos ) na proliferação de queratinócitos humanos, pode-se citar as propriedades de compostos lipofílicos, com os percursores da Vitamina A, os carotenoides . Diversos autores demonstraram a capacidade de promover a proliferação de queratinócitos na presença de ácido retinoico (forma oxidada da Vitamina A) , na qual modula a expressão de genes envolvidos na diferenciação celular e na proliferação por meio de receptores nucleares (BABAMIRI e NASSAB, 2010; BELLEMÈRE et al . , 2009; FUJISHITA et al., 2006) . Assim sendo, tais resultados demonstram uma perspectiva positiva para o uso desse insumo em produtos cosméticos, uma vez que as emulsões utilizam compostos hidro e lipofílicos em sua composição, com efeitos positivos na proliferação celular, indicando que a sua utilização poderá trazer benefícios como aumento da taxa renovação das células da epiderme, a diminuição da descamação e o aumento da espessura epidérmica ( LORENCINI et al . , 2014).
[193] De maneira geral, com base nos resultados obtidos, pode- se concluir que as frações bioativas da presente invenção obtidas através das técnicas limpas de extração, extração com fluidos supercríticos (SFE) e extração com líquidos pressurizados (PLE) , assim como composições compreendendo as ditas frações bioativas e as ditas emulsões apresentam alta capacidade antioxidante e concentrações elevadas de compostos bioativos, como piceatannol, tocóis, ácidos graxos e carotenoides . Além disso, as técnicas de extrações empregadas demonstram-se tecnicamente eficazes, porém, especificamente, a técnica com fluidos pressurizados, mais estudos deverão ser realizados com o intuito de compreender os efeitos fenomenológicos do aumento de escala. Do mesmo modo, o processo de emulsificação demonstrou-se eficaz para a obtenção de emulsões estáveis e com baixa polidispersidade , porém tais dados são insuficientes para promover o aumento de escala deste processo. Por fim, demonstrou-se que as miniemulsões compreendendo compostos bioativos do bagaço de maracujá foram capazes de promover a proliferação celular de queratinócitos humanos, inibir a enzima que degrada a elastina (elastase) e manter/promover a síntese de colágeno. Assim sendo baseado nessas afirmações, as emulsões propostas apresentam viabilidade científica para a aplicação como insumo em produtos cosméticos.
[194] A presente invenção é inédita e vantajosa em relação ao estado da técnica por apresentar um complexo emulsionado estável com baixa polidispersidade compreendendo frações bioativas lipofílicos e hidrofílicos do resíduo do maracujá, obtidos através de tecnologias limpas.
[195] A invenção ainda demonstra um meio de estabilizar uma emulsão contendo ambas as frações bioativas do maracujá, hidrofílico e lipídico, produzindo um complexo com alta capacidade de proteção e renovação celular da pele. Além disso, a presente invenção propõe a desconstrução da matriz vegetal através da extração e a reconstrução através da emulsificação das frações bioativas, ao invés de focar somente nos benefícios de extratos isoladas da literatura.
FORMULAÇÕES COSMÉTICAS
[196] São objetos adicionais da presente invenção formulações cosméticas de loção de limpeza facial, sérum hidratante facial e hidratante facial com proteção solar compreendendo a miniemulsão de frações bioativas de Passiflora, obtida conforme descrito anteriormente, como ingrediente ativo associado a um ou ais veículos (excipientes, adjuvantes, carreadores, etc.) e/ou ingredientes cosmeticamente aceitáveis.
[197] Consequentemente, a presente invenção refere- se a uma formulação cosmética de loção de limpeza facial que compreende :
1,00% de miniemulsão de frações bioativas de Passiflora;
- 83,5% de água purificada;
- 0,05% de Edeta® BD;
- 1,50% de Carbopol® Aqua SF-1 Poly er;
- 0,30% de Aculyn 22;
- 2,52% de Sodium Laureth Sulfate;
- 0,18% de Sodium Hydroxide;
- 2,00% de Glucarrf E-20;
- 3,60% de Disodium Cocoamphodiacetate;
- 0,50% de Coco-Glucoside;
- 1,60% de Cocamidopropyl Betaine;
- 3,00% de PEG-40 Hydrogenated Castor Oil;
- 0,70% de Neolone PE;
- Citric Acid, qsq para ajustar o pH entre 6,5 e 6,7.
[198] A referida formulação tem como características : loção fluida transparente, levemente amarelada, com odor caracteristico da base, sem fragrância.
Tabela 15 - Formulação cosmética de loção de limpeza facial.
Figure imgf000086_0001
[199] Adicionalmente, a invenção refere-se a uma formulação cosmética de sérum hidratante facial que compreende :
3, 00% de miniemulsão de frações bioativas de
Passiflora;
26,70 de glicerina;
- 39,17% de água purificada;
- 0,50% de Trietanolamina;
- 0,30% de Pemulen TR-1;
- 29,83% de Dow Corning 7-3101;
- 0,50% de Neolone PE;
[200] A referida formulação tem como características : gel translúcido brilhante, cor amarelo ouro, com odor caracteristico da base, sem fragrância.
Tabela 16 - Formulação cosmética de sérum hidratante facial .
Figure imgf000087_0001
[201] A invenção refere-se, ainda, a uma formulação cosmética de hidratante fácil com protetor solar que compreende : 3,00% de miniemulsão de frações bioativas de Passiflora;
3,00 de Procetil AWS;
- 5,00 Glyceryl Stearate;
- 5,00 Stearic Acid;
- 2,00 Montanov 82;
- 1,00 Montanov 202;
- 1,00 Stearyl Alcohol;
- 2,50 Zinc Oxide;
- 15,00 Capric/Caprylic Triglyceride ;
- 0,25 Jaguar HP-105
- 3,00 Glycerina
- 58,70 Água Purificada
- 0,55 Neolone PE
[202] A referida formulação tem como caracteristicas : emulsão homogénea, brilhante, cor creme, com odor caracteristico da base, sem fragrância
Tabela 17 - Formulação cosmética de hidratante facial com protetor solar.
Figure imgf000088_0001
Figure imgf000089_0001
Resultados dos testes de estabilidade para as formulações cosméticas
[203] 0 estudo foi conduzido com base no Guia de Estabilidade de Produtos Cosméticos da ANVISA. As amostras foram mantidas durante três meses nas temperaturas 5°C, ambiente (TA) e 40°C. Os dados das variáveis quantitativas (pH e viscosidade) e qualitativas (cor, odor e aparência) foram coletados nos tempos: inicial (logo após a produção), 2 semanas, 1 mês, 2 meses e 3 meses.
Formulações analisadas :
[204] Formulação cosmética de loção de Limpeza Facial - LLFR221117, lote 281117, acondicionado em frasco plástico transparente com tampa flip-top. As caracteristicas cor, odor e aparência mantiveram-se inalteradas durante os três meses de condução do estudo de estabilidade à 5°C, TA e 40°C, conforme apresentado na Figura 20.
Tabela 18 - Valores de pH para a formulação cosmética de loção de limpeza fácil. Condições do ensaio: 25°C, pHmetro Gehaka, modelo PG1800.
50 C TA 40 ° C
Inicial 6, 66
2 semanas 6, 60+0, 00 6, 59±0 , 01 6, 59+0,01 1 mês 6, 53+0, 00 6,49+0, 01 6, 6±0 , 01 2 meses 6,51+0,00 6,48+0, 01 6, 45+0,01
3 meses 6, 51±0, 006 6, 45±0, 00 6, 40±0, 01
[205] Os dados foram obtidos em triplicata e os resultados expressos como média ± desvio padrão, conforme apresentados na Tabela 18 e Figura 21.
[206] Formulação cosmética de sérum Hidratante Facial - SHFR291117, lote 291117, acondicionado em frasco plástico transparente de boca larga com tampa de rosca. As caracteristicas odor e aparência mantiveram-se inalteradas durante os 3 meses de condução do estudo de estabilidade à 5°C, TA e 40°C. As amostras mantidas em TA e 40°C apresentaram leve alteração de cor, conforme apresentados na Figura 22.
Tabela 19 - Valores de pH para a formulação cosmética de sérum hidratante. Condições do ensaio: 25°C, pHmetro Gehaka, modelo PG1800.
5°C TA 40 ° C
Inicial 7,30
2 semanas 7, 08±0, 02 7, 00±0, 02 6, 87±0 , 04 1 mês 6, 78±0, 02 6, 71±0, 02 6, 60+0, 03
2 meses 7, 17±0, 03 7, 06±0, 02 6,86+0,02
3 meses 6, 90±0 , 05 6, 68±0, 03 6, 43+0, 02
[207] Foram preparadas dispersões à 10% (p/p) em água destilada, em triplicata, para obtenção dos dados. Os resultados foram expressos como média ± desvio padrão, conforme apresentados na Tabela 19 e Figura 23.
Tabela 20 - Valores de Viscosidade (mPas) : Condições do ensaio: 25°C, viscosimetro Brookfield DV-III + Rheometer, Spindle TE, 15 rpm, 1 minuto, com Helipath . 5°C TA 40 °C
Inicial 1400010
2 semanas 17667+334 172221385 173331334 1 mês 1733331334 173331577 175561193
2 meses 184441509 172221385 180001577
3 meses 175561770 168891192 185551385
[208] Os dados foram obtidos em triplicata e os resultados expressos como média 1 desvio padrão, conforme apresentados na Tabela 20 e Figura 24.
[209] Formulação cosmética hidratante Facial com Proteção Solar - HFPSR051217, lote 121217, acondicionado em bisnaga branca opaca com tampa flip- top. As caracteristicas odor e aparência mantiveram-se inalteradas durante os 3 meses de condução do estudo de estabilidade à 5°C, TA e 40°C. As amostras mantidas em TA e 40°C apresentaram leve alteração de cor a partir do primeiro mês de condução do estudo de estabilidade, conforme apresentado na Figura 25. A amostra mantida em TA apresentou menor viscosidade, quando comparada com as demais amostras.
Tabela 21 - Valores de pH para a formulação cosmética de hidratante facial com protetor solar. Condições do ensaio: 25°C, pHmetro Gehaka, modelo PG1800.
50 C TA 40 ° C
Inicial 7,0810, 03
2 semanas 6,7210, 15 6, 9310,03 6, 9810,01 1 mês 7.3210.10 7,4110,03 7,3810,01
2 meses 7,3310,09 7,4310,03 7,3710,02
3 meses 7.3410.10 7,4510, 04 7, 3510, 02
[211] Foram preparadas dispersões à 10% (p/p) em água destilada, em triplicata, para obtenção dos dados. Os resultados foram expressos como média ± desvio padrão, conforme apresentados na Tabela 21 e Figura 26.
Tabela 22 - Valores de Viscosidade (mPas) para a formulação cosmética de hidratante fácil com protetor solar: Condições do ensaio: 25°C, viscosímetro Brookfíeld DV-III + Rheometer, Spindle TC, 5 rpm, 1 minuto, com Helipath .
5°C TA 40 ° C
Inicial 347331902
2 semanas 19867+283 86001200 27000+1114 1 mês 173331693 780010 311131702
2 meses 160001600 69331231 40200+1039
3 meses 111331115 5800+0 41000+872
[212] Os dados foram obtidos em triplicata e os resultados expressos como média 1 desvio padrão, conforme apresentado na Tabela 22 e Figura 27.
Conclusões dos testes para as formulações cosméticas
[213] A formulação cosmética de Loção de Limpeza Facial apresentou valores de pH entre 6,39 e 6,66 e manteve suas caracteristicas de aparência, cor e odor inalteradas durante os 3 meses de estudo de estabilidade.
[214] Já a formulação cosmética de Séru Hidratante Facial apresentou valores de pH entre 6,41 e 7,30, valores de viscosidade entre 14000 e 19000 mPas e manteve suas caracteristicas de aparência, cor e odor inalteradas durante os 3 meses de estudo de estabilidade. As formulações mantidas em TA e 40°C apresentaram leve alteração de cor, o que não compromete suas estabilidades.
[215] Por fim, a formulação cosmética de Hidratante Facial com Proteção Solar apresentou valores de pH entre 6,72 e 7,45 e manteve suas caracteristicas de aparência, cor e odor inalteradas durante os 3 meses de estudo de estabilidade. As formulações mantidas em TA e 40°C apresentaram leve alteração de cor, o que não compromete suas estabilidades. Os valores de viscosidade foram distintos para cada temperatura de armazenamento das amostras, variando entre 11133-19867 mPas (5°C), 5800-34733 Pas (TA) e 27000-41000 mPas (40°C) .
BIBLIOGRAFIA
[1] A.O.A.C. Official methods of analysis of AOAC International . Association of Official Analytical Chemists . Arlington 1998.
[2] A.O.C.S. Official methods and recommended practices of the American Oil Chemists' Society. American Oil Chemists' Society. Champaign, USA: AOCS press. 5 th 2009.
[3] A.S.A.E. Method of Determining and Expressing Fineness of Feed Materials by Sieving. American Society of Agricultural Enqineers Standards . S319.3: 447-550 p. 1998.
[4] ANEKPANKUL, T.; GOTO, M.; SASAKI, M.; PAVASANT, P. e SHOTIPRUK, A.
[5] Extraction of anti-cancer damnacanthal fro roots of Morinda citrifolia by subcritical water. Separation and Purification Technology, v. 55, n. 3, p. 343-349, 2007.
[6] ASLAM, M. N.; LANSKY, E. P. e VARANI, J. Pomegranate as a cosmeceutical source: Pomegranate fractions promote proliferation and procollagen synthesis and inhibit matrix metalloproteinase-1 production in human skin cells. Journal of Ethnopharmacology , v. 103, n. 3, p. 311-318, 2006.
[7] BABAMIRI, K. e NASSAB, R. Cosmeceuticals : The Evidence Behind the Retinoids.
[8] Aesthetic Surgery Journal, v. 30, n. 1, p. 74-77,
2010. [9] BARRALES , F . M . ; REZENDE, C. A . e MARTÍNEZ , J. Supercritical C02 extraction of passion fruit (Passiflora edulis sp . ) seed oil assisted by ultrasound. The Journal of Supercritical Fluids , v. 104, p. 183-192, 2015.
[10] BELLEMÈRE, G . ; STAMATAS , G. N.; BRUÈRE, V.; BERTIN, C.; ISSACHAR, N. e ODDOS, T. Antiaging Action of Retinol : From Molecular to Clinicai. Skin Pharmacology and Physiology, v. 22, n. 4, p. 200-209, 2009.
[11] CHANVORACHOTE, P.; PONGRAKHANANON , V.; LUANPITPONG, S.; CHANVORACHOTE, B.; WANNACHAIYASIT, S. e NIMMANNIT, U. Type I pro- collagen promoting and anti- collagenase activities of Phyllanthus emblica extract in mouse fibroblasts. J Cosmet Sei, v. 60, n. 4, p. 395-403, 2009.
[12] DÁVALOS, A. ; GÓMEZ-CORDOVÉS , C. e
BARTOLOMÉ, B. Extending Applicability of the Oxygen Radical Absorbance Capacity (ORAC-Fluorescein) Assay.
[13] Journal of Agricultural and Food Chemistry, v. 52, n. 1, p. 48-54, 2004.
[14] DOUCET , L.; ASCANIO, G. e TANGUY , P. A. Hydrodynamics Characterization of Rotor-Stator Mixer with Viscous Fluids. Chemical Engineering Research and Design, v. 83, n. 10, p. 1186-1195, 2005.
[15] EPA, U. S. E. P. A. Chemical Hazard Classification And Labeling : Comparison Of Opp Requirements And The GHS 2004.
[16] FLOURY, J.; DESRUMAUX, A. e LARDIÈRES , J. Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in- water emulsions. Innovative Food Science & Emerging Technologies, v. 1, n. 2, p. 127- 134, 2000.
[17] FUJISHITA, K . ; KOIZUMI, S. e INOUE, K . Upregulation of P2Y2 receptors by retinoids in normal human epidermal keratinocytes . Purinergic Signalling, v. 2, n. 3, p . 491, 2006.
[18] GOTTLIEB, N . e SCHWARTZBACH, C. Development of an internai mixing two-fluid nozzle by systematic variation of internai parts. 2004.
[19] HAYATI , I. N . ; CHE MAN, Y . B . ; TAN, C. P. e NOR AINI, I. Droplet characterization and stability of soybean oil/palm kernel olein 0/W emulsions with the presence of selected polysaccharides . Food Hydrocolloids , v. 23, n. 2, p . 233-243, 2009.
[20] HEMAR, Y . ; TAMEHANA, M . ; UNRO, P. A . e SINGH, H. Influence of xanthan gum on the formation and stability of sodium caseinate oil-in-water emulsions. Food Hydrocolloids, v. 15, n. 4, p. 513-519, 2001.
[21] HOSOMI, A. ; ARITA, M . ; SATO, Y . ; KIYOSE, C . ; UEDA, T . ; IGARASHI , O.; ARAI , H . e INOUE, K . Affinity for a- tocopherol transfer protein as a determinant of the biological activities of vita in E analogs. FEBS Letters, v. 409, n . 1, p . 105-108, 1997.
[22] HOU, M. ; MAN, M . ; MAN, W. ; HU, W.; HUPE, M . ; PARK, K . ; CRUMRINE , D . ; ELIAS , P. M. e MAN, M.-Q. Topical hesperidin improves epidermal permeability barrier function and epidermal differentiation in normal murine skin. Experimental Dermatology, v. 21, n. 5, p. 337-340, 2012.
[23] HSU, S . ; BOLLAG, W. B . ; LEWIS, J.; HUANG, Q . ; SINGH, B . ; SHARAWY, M . ; YAMAMOTO, T . e SCHUSTER, G. Green tea polyphenols induce differentiation and proliferation in epidermal keratinocytes . J Pharmacol Exp Ther, v. 306, n. 1, p . 29-34, 2003.
[24] HUANG, D . ; OU, B . ; HAMPSCH-WOODILL , M . ; FLANAGAN, J. A. e DEEMER, E. K. Development and Validation of Oxygen Radical Absorbance Capacity Assay for Lipophilic Antioxidants Using Randomly Methylated b-Cyclodextrin as the Solubility Enhancer. Journal of Agricultural and Food Chemistry, v. 50, n. 7, p. 1815-1821, 2002.
[25] I.A.L. Métodos físico-químicos para análise de alimentos. Instituto Adolfo Lutz. Brasília 2005.
[26] JENKINS , D. J.; KENDALL, C. W.; MARCHIE, A.; PARKER, T. L.; CONNELLY , P. W.; QIAN, W.; HAIGHT , J. 3.; FAULKNER, D.; VIDGEN, E.; LAPSLEY, K. G. e
[27] SPILLER, G. A. Dose response of almonds on coronary heart disease risk factors: blood lipids, oxidized low-density lipoproteins , lipoprotein (a) , homocysteine, and pulmonary nitric oxide: a randomized, controlled, crossover trial. Circulation, v. 106, n. 11, p. 1327- 32, 2002.
[28] KANG, W.; XU, B.; WANG, Y.; LI, Y.; SHAN, X.; AN, F. e LIU, J. Stability mechanism of W/O crude oil emulsion stabilized by polymer and surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects , v. 384, n. 1, p. 555-560, 2011.
[29] KIM, S.; KIM, Y.; LEE, Y. e CHUNG, J. H. Ceramide accelerates ultraviolet-induced MMP-1 expression through JAK1/STAT-1 pathway in cultured human dermal fibroblasts. J Lipid Res , v. 49, n. 12, p. 2571-81, 2008.
[30] KOYA-MIYATA, S.; OKAMOTO, I.; USHIO, S.; IWAKI, K.; IKEDA, M. e KURIMOTO, M. Identification of a collagen production-promoting factor from an extract of royal jelly and its possible mechanism. Biosci Biotechnol Biochem, v. 68, n. 4, p. 767-73, 2004.
[31] KRSTONOSIC, V.; DOKIC, L . ; DOKIC, P. e DAPCEVIC, T. Effects of xanthan gum on physicochemical properties and stability of corn oil-in-water emulsions stabilized by polyoxyethylene (20) sorbitan monooleate. Food Hydrocolloids , v. 23, n. 8, p. 2212-2218, 2009.
[32] LEIGHTON, T . G . 4 - The Forced Bubble. In: (Ed. ) . The Acoustic Bubble: Academic Press, 1994. p.287-438. ISBN 978-0-12-441920-9.
[33] LIVERSIDGE, G . G . e CUNDY, K . C. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs : I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. International journal of pharmaceutics , v. 125, n. 1, p. 91-97, 1995.
[34] LORENCINI, M . ; BROHEM, C. A. ; DIEAMANT , G . C . ; ZANCHIN, N . I. T . e MAIBACH, H . I. Active ingredients against human epidermal aging. Ageing Research Reviews , v. 15, n. Supplement C, p. 100-115, 2014.
[35] MÁRQUEZ, A . L . ; MEDRANO, A. ; PANIZZOLO, L . A . e WAGNER, J. R. Effect of calcium salts and surfactant concentration on the stability of water-in-oil (w/o) emulsions prepared with polyglycerol polyricinoleate . Journal of colloid and interface Science , v. 341, h. 1, r. 101-108, 2010.
[36] MATSUI, U . ; SUGIYAMA, K.; KAMEI, M . ; TAKAHASHI , T./ SUZUKI, T.;
[37] KATAGATA, U. e ITO, T. Extract of Passion Fruit (Passiflora edulis) Seed Containing High Amounts of Piceatannol Inhibits Melanogenesis and Promotes Collagen Synthesis. Journal of Agricultural and Food Chemistry, v.
58, n . 20, p. 11112-11118, 2010.
[38] MCCLEMENTS, D. J. Edible nanoemulsions : fabrication, properties, and functional performance. Soft Matter, v. 7, n. 6, p. 2297-2316, 2011.
[39] MCCLEMENTS, D. J. Food emulsions : principies, practices , and techniques. CRC press, 2015. ISBN 1498726690.
[40] MEIRELES, M. A. A. Extraction of bioactive compounds from Latin American plants. In: (Ed.) .
Supercritical fluid extraction of nutraceuticals and bioactive compounds: CRC Press—Taylor & Francis Group, Boca Raton, 2008. p.243-274.
[41] MILLER, G. L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, v. 31, n. 3, p. 426-428, 1959.
[42] OECD . OECD GUIDELINE FOR TESTING OF CHEMICALS: Acute Oral
[43] Toxicity - Acute Toxic Class Method. No 423
2001.
[44] OECD. Guidance Document On Using Cytotoxicity Tests To Esti ate Starting Doses For Acute Oral Systemic Toxicity Tests N°129. Series on Testing and Assessment. ENV/JM/MONO 20. 2010
[45] PATIL, L. e GOGATE, P. R. Ultrasound assisted synthesis of stable oil in milk emulsion: Study of operating parameters and scale-up aspects . Ultrasonics Sonochemistry , v. 40, n. Part A, p. 135-146, 2018.
[46] PEPE, S. Effect of dietary polyunsaturated fatty acids on age-related changes in cardiac mitochondrial membranes. Experimental Gerontology, v. 40, n. 5, p. 369- 376, 2005.
[47] PIENTAWEERATCH, S.; PANAPISAL, V. e TANSIRIKONGKOL, A. Antioxidant, anti-collagenase and anti- elastase activities of Phyllanthus emblica, Manilkara zapota and silymarin: an in vitro comparative study for anti-aging applications . Pharm Biol, v. 54, n. 9, p. 1865-72, 2016.
[48] PRIOR, R . L . ; HOANG, H . ; GU, L . ; WU, X.; BACCHIOCCA, M . ; HO ARD, L . ; HAMPSCH-WOODILL, M . ; HUANG, D . ; OU, B. e JACOB, R. Assays for Hydrophilic and Lipophilic Antioxidant Capacity (oxygen radical absorbance capacity (ORACFL) ) of Plasma and Other Biological and Food Samples. Journal of Agricultural and Food Chemistry, v. 51, n. 11, p. 3273-3279, 2003.
[49] PRONYK, C. e MAZZA, G. Design and scale-up of pressurized fluid extractors for food and bioproducts.
Journal of Food Engineering, v. 95, n. 2, p. 215-226, 2009.
[50] REUTERS. Research and Markets: Phytonutrients Market 2015: Carotenoids, Phytosterols , Flavonoids, Phenolic Compounds, and Vitamin - Global Trends and Forecast to 2020. 2015.
[51] SINGLETON , V. L.; ORTHOFER, R. e LAMUELA- RAVENTÓS, R. M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In: LESTER, P. (Ed. ) . Methods in Enzymology:
Academic Press, v. Volume 299, 1999. p.152-178. ISBN 0076- 6879.
[52] SLOMKOWSKI, S.; ALEMÁN, J. V.; GILBERT , R. G.; HESS, M.; HORIE , K.; JONES, R. G.; KUBISA, P.; MEISEL, I . ; MORMANN, W. e PENCZEK, S. Terminology of poly ers and polymerization processes in dispersed systems (IUPAC Recommendations 2011) . Pure and Applied Chemistry, v. 83, n.
12, p. 2229-2259, 2011.
[53] SPERANZA, P.; RIBEIRO, A . P. B . ; CUNHA, R .
L.; MACEDO, J. A. e MACEDO, G. A. Influence of e ulsion droplet size on antimicrobial activity of interesterified
Amazonian oils. LWT-Food Science and Technology, v. 60, n.
1, p . 207-212, 2015.
[54] SUN, C . ; GUNASEKARAN, S. e RICHARDS , . P. Effect of xanthan gum on physicochemical properties of whey protein isolate stabilized oil-in-water emulsions. Food Hydrocolloids , v. 21, n. 4, p. 555-564, 2007.
[55] TEMELLI, F. Perspectives on supercritical fluid processing of fats and oils. The Journal of Supercritical Fluids, v. 47, n. 3, p. 583-590, 2009.
[56] THAIPONG, K.; BOONPRAKOB, U.; CROSBY, K.; CISNEROS-ZEVALLOS, L. e HAWKINS BYRNE, D. Comparison of ABTS , DPPH, FRAP, and ORAC assays for estimating antioxidant activity frora guava fruit extracts. Journal of Food Composition and Analysis, v. 19, n. 6, p. 669-675, 2006.
[57] TRABER, M. G. e ATKINSON, J. Vitamin E, antioxidant and nothing more. Free Radical Biology and Medicine, v. 43, n. 1, p. 4-15, 2007.
[58] VIGANÓ, J . ; AGUIAR, A. C.; MORAES, D. R.;
JARA, J. L. P.; EBERLIN, M. N . ; CAZARIN, C. B. B.; MARÓSTICA,
M. R. e MARTÍNEZ, J. Sequential high pressure extractions applied to recover piceatannol and scirpusin B from passion fruit bagasse. Food Research International, v. 85, p. 51-58, 2016a.
[59] VIGANÓ, J.; COUTINHO, J. P.; SOUZA, D. S . ;
BARONI, N. A. F.; GODOY, H. T.; MACEDO, J. A. e MARTÍNEZ, J. Exploring the selectivity of supercritical C02 to obtain nonpolar fractions of passion fruit bagasse extracts. The Journal of Supercritical Fluids, v. 110, p. 1-10, 2016b.
[60] WU, X.; BEECHER, G. R.; HOLDEN, J. M.; HAYTOWITZ, D. B.; GEBHARDT , S. E. e PRIOR, R. L. Lipophilic and Hydrophilic Antioxidant Capacities of Common Foods in the United States. Journal of Agricultural and Food Chemistry, v. 52, n. 12, p. 4026- 4037, 2004.
[61] YE, A.; HEMAR, Y. e SINGH, H. Enhancement of coalescence by xanthan addition to oil-in-water emulsions formed with extensively hydrolysed whey proteins. Food Hydrocolloids , v. 18, n. 5, p. 737-746, 2004.
[62] YEHUDA, S.; RABINOVITZ, S.; L. CARASSO, R. e
I. MOSTOFSKY, D. The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiology of Aging , v. 23, n. 5, p. 843-853, 2002.
[63] YOUDIM, K. A.; MARTIN, A. e JOSEPH, J. A. Essential fatty acids and the brain: possible health implications . International Journal of Developmental Neuroscience, v. 18, n. 4, p. 383-399, 2000.
[64] YUKUYAMA, M. N.; GHISLENI, D. D. M.; PINTO,
T. J. A. e BOU-CHACRA, N. A. Nanoemulsion : process selection and application in cosmetics - a review. International Journal of Cosmetic Science, v. 38, n. 1, p. 13-24, 2016.
[65] ZHANG, T.; ZHANG, Q.; CHEN, J.; FANG, K.; DOU,
J. e GU, N. The controllable preparation of porous PLGA microspheres by the oil/water emulsion method and its application in 3D culture of ovarian câncer cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects , v. 452, p. 115-124, 2014.

Claims

REIVINDICAÇÕES
1. Miniemulsão de frações bioativas de Passiflora caracterizada por ser uma emulsão óleo em água compreendendo:
a. uma razão fase hidrofóbica : fase aquosa dentro da faixa de 1:2 a 1:6;
b. de 1% a 25% p/v de um emulsificante ; e c. de 0,05% a 2% p/v de um estabílizante .
2. Miniemulsão, de acordo com a reivindicação 1, caracterizada pela matéria-prima pertencente ao gênero Passiflora .
3. Miniemulsão, de acordo com qualquer uma das reivindicações anteriores, caracterizada pela parte da planta a ser utilizada como materia-prima ser preferencialmente selecionada dentre semente ou bagaço,
4. Miniemulsão, de acordo com urna ou roais reivindicações 1-3, caracterizada pela razão fase hidrofóbica : fase aquosa ser preferencialmente 1:3.
5. Miniemulsão, de acordo com uma ou a is reivindicações 1-3, caracterizada pela fração bioativa lipofílica (fase oleosa) compreender compostos pertencentes ao grupo dos tocóis e carotenoides .
6. Miniemulsão, de acordo com uma ou ais reivindicação 1-4, caracterizada pela fração bioativa hidrofilica (fase aquosa) compreender piceatannol.
7. Miniemulsão, de acordo com a reivindicação 6, caracterizada pelos compostos pertencentes ao grupo dos tocóis compreender a-tocoferol, b-tccoferol, y- tocoferol, d-tocoferol, a-tocotrienol , g-tocotrieno , 5- tocotrienol e combinações dos mesmos.
8. Míniemulsão, de acordo com a reivindicação 5, caracterizada pela fração bioativa hidrofóbica se obtida por meio da extração com fluido supercrí tico .
9. Míniemulsão, de acordo com a reivindicação 5, caracterizada pela fração bioativa hidrofóbica ser obtida por meio da extração com fluido supercrítico com dióxido de carbono.
10. Míniemulsão, de acordo com a reivindicação 9, caracterizada pela fração bioativa hidrofóbica ser obtida por meio da extração supercritica com dióxido de carbono como solvente preferencialmente a 60°C e 17 MPa (Etapa 1) .
11. Míniemulsão, de acordo com a reivindicação 5, caracterizada pela fração bioativa lipofílica ser obtida por meio da extração supercritica (SFE) com dióxido de carbono como solvente, sequencialmente a obtenção da fração bioativa hidrofílica.
12. Míniemulsão, de acordo com a reivindicação 11, caracterizada pela fração bioativa lipofílica sei: obtida por meio da extração supercritica (SFE) com dióxido de carbono como solvente, sequencialmente, preferencialmente a 40°C e 34 MPa (Etapa 2) .
13. Míniemulsão, de acordo com qualquer uma das reivindicações 1-4, caracterizada peia fração bioativa obtida por meio da extração supercritica (SFE) ser em uma única etapa (global) com dióxido de carbono como solvente preferencialmente a 40°C e 34 MPa.
14. Míniemulsão, de acordo com a reivindicação 6, caracterizada pela fração bioativa hidrofílica concentrada ser obtida por meio da extração com líquido pressurizado (PLE) preferencialmente com uma mistura de solvente selecionado dentre etanol e áqr.a, sequencialmente, após a obtenção das frações bioativas lipofilicas .
15. Miniemulsão, de acordo com a reivindicação 14, caracterizada pela fração bioativa hidrofí lica concentrada ser obtida por meio da extração com liquido pressurizado preferencialmente a 70°C e 10 MPa .
16. Composição caracterizada por compreender: a miniemulsão definida em qualquer uma das reivindicações 1 a 6.
17. Composição, de acordo com a reivindicação 1, caracterizada por ser uma composição cosmética, nutracêutica, nutracosmética, farmacêutica e alimentícia .
18. Formulação cosmética caracterizada por compreender a miniemulsão de frações bioativas de Passiflora , definida conforme reivindicações anteriores, associada a um ou mais veículos ( excipientes , adjuvantes, carreadores, etc.) e/ou ingredientes cosmeticamente aceitáveis.
19. Formulação cosmética caracterizada por compreender :
1,00% de miniemulsão de frações bioativas de
Passiflora-r
- 83,5% de água purificada;
- 0,05% de Edeta® BD;
- 1,50% de Carbopol® Aqua SF-1 Polymer;
- 0,30% de Aculyn 22;
- 2,52% de Sodium Laureth Sulfate; - 0,18% de Sodium Hydroxide;
- 2,00% de Glucam E-20;
- 3, 60% de Disodium Cocoamphodiacetate;
- 0,50% de Coco-Glucoside;
- 1,60% de Cocamidopropyl Betaine;
- 3,00% de PEG-40 Hydrogenated Castor Oil;
- 0,70% de Neolone PE;
- Citric Acid, qsq para ajustar o pH entre 6,5 e 6,7, para ser para uso como loção de limpeza facial.
20. Formulação cosmética caracterizada por compreender :
3,00% de miniemulsão de frações bioativas de
Passiflora ;
- 26,70 de glicerina;
- 39,17% de água purificada;
- 0,50% de Trietanolamina ;
- 0,30% de Pemulen TR-1;
- 29,83% de Dow Corning 7-3101;
- 0,50% de Neolone PE;
para ser para uso como sérum hidratante facial.
21. Formulação cosmética caracterizada por compreender :
3,00% de miniemulsão de frações bioativas de
Passiflora;
- 3,00 de Procetil AWS;
- 5,00 Glyceryl Stearate;
- 5,00 Stearic Acid;
- 2,00 Montanov 82;
- 1,00 Montanov 202; - 1,00 Stearyl Alcohol;
- 2,50 Zinc Oxide;
- 15,00 Capric/Caprylic Triglyceride ;
- 0,25 Jaguar HP-105
- 3,00 Glycerina
- 58,70 Água Purificada
- 0,55 Neolone” PE
para ser para uso como hidratante facial com proteção solar.
PCT/BR2019/000022 2018-12-28 2019-06-28 Miniemulsões de frações bioativas de passiflora, composições compreendendo tais miniemulsões e formulações WO2020132723A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR1020180775235 2018-12-28
BR102018077523-5A BR102018077523B1 (pt) 2018-12-28 Miniemulsões de frações bioativas de passiflora e suas formulações

Publications (1)

Publication Number Publication Date
WO2020132723A1 true WO2020132723A1 (pt) 2020-07-02

Family

ID=71125662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2019/000022 WO2020132723A1 (pt) 2018-12-28 2019-06-28 Miniemulsões de frações bioativas de passiflora, composições compreendendo tais miniemulsões e formulações

Country Status (1)

Country Link
WO (1) WO2020132723A1 (pt)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116138438A (zh) * 2023-04-19 2023-05-23 益欣汇盛科技(北京)有限公司 一种水包油亚微乳体系及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0508914A (pt) * 2004-03-17 2007-08-14 Arnold C Takemoto desintoxicação de tecidos e suplementos para a saúde e processos de obtenção e de utilização dos mesmos
EP2832344A1 (en) * 2012-03-28 2015-02-04 FUJI-FILM Corporation Composition, and external preparation for the skin or functional food each containing said composition
BR102016014976A2 (pt) * 2016-06-24 2018-02-27 Universidade Estadual De Campinas - Unicamp Processo de extração sequencial de compostos bioativos do bagaço de maracujá e uso dos referidos compostos bioativos
EP3461479A1 (en) * 2017-09-27 2019-04-03 Julie Blivet Nutraceutical and pharmaceutical compositions, and uses thereof for preserving cognitive functions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0508914A (pt) * 2004-03-17 2007-08-14 Arnold C Takemoto desintoxicação de tecidos e suplementos para a saúde e processos de obtenção e de utilização dos mesmos
EP2832344A1 (en) * 2012-03-28 2015-02-04 FUJI-FILM Corporation Composition, and external preparation for the skin or functional food each containing said composition
BR102016014976A2 (pt) * 2016-06-24 2018-02-27 Universidade Estadual De Campinas - Unicamp Processo de extração sequencial de compostos bioativos do bagaço de maracujá e uso dos referidos compostos bioativos
EP3461479A1 (en) * 2017-09-27 2019-04-03 Julie Blivet Nutraceutical and pharmaceutical compositions, and uses thereof for preserving cognitive functions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DE SANTANA, FERNANDA CARVALHO ET AL.: "Optimization of the antioxidant polyphenolic compounds extraction of yellow passion fruit seeds (Passiflora edulis Sims) by response surface methodology", JOURNAL OF FOOD SCIENCE AND TECHNOLOGY, vol. 54, no. 11, 2017, pages 3552 - 3561, XP036333626 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116138438A (zh) * 2023-04-19 2023-05-23 益欣汇盛科技(北京)有限公司 一种水包油亚微乳体系及其制备方法与应用

Also Published As

Publication number Publication date
BR102018077523A2 (pt) 2020-07-07

Similar Documents

Publication Publication Date Title
Dini et al. The new challenge of green cosmetics: Natural food ingredients for cosmetic formulations
Stanisic et al. New sustainable process for hesperidin isolation and anti-ageing effects of hesperidin nanocrystals
Jadoon et al. Anti-aging potential of phytoextract loaded-pharmaceutical creams for human skin cell longetivity
Panya et al. Interactions between α-tocopherol and rosmarinic acid and its alkyl esters in emulsions: synergistic, additive, or antagonistic effect?
Chermahini et al. Cosmeceutical value of herbal extracts as natural ingredients and novel technologies in anti-aging
Rodrigues et al. Cosmetics
CA2770162A1 (en) Skin clarifying complex, use of said complex, cosmestic or pharmaceutical composition comprising said complex and method for application thereof
Thawabteh et al. Skin pigmentation types, causes and treatment—a review
Simitzis Agro-industrial by-products and their bioactive compounds—An ally against oxidative stress and skin aging
Gitea et al. Evaluation of the Phytochemistry–Therapeutic Activity Relationship for Grape Seeds Oil
Nunes et al. Potential therapeutic of olive oil industry by‐products in skin health: a review
Tasneem et al. Development of Phytocosmeceutical microemulgel containing flaxseed extract and its in vitro and in vivo characterization
Silva et al. Antioxidant and anti-tyrosinase activities of quercetin-loaded olive oil nanoemulsion as potential formulation for skin hyperpigmentation
Filipiuc et al. The Skin and Natural Cannabinoids–Topical and Transdermal Applications
WO2020132723A1 (pt) Miniemulsões de frações bioativas de passiflora, composições compreendendo tais miniemulsões e formulações
Figueiredo et al. Biosynthesis of silver nanoparticles of Tribulus terrestris food supplement and evaluated antioxidant activity and collagenase, elastase and tyrosinase enzyme inhibition: In vitro and in silico approaches
Schreiner et al. Saponin-based natural nanoemulsions as alpha-tocopherol delivery systems for dermal applications
BR102018077523B1 (pt) Miniemulsões de frações bioativas de passiflora e suas formulações
Şahin et al. Development, characterization of naringenin-loaded promising microemulsion formulations, and demonstration of anti-aging efficacy by in vitro enzyme activity and gene expression
JP2009269851A (ja) プロスタグランジンe2産生抑制剤及びその利用
JP2008201694A (ja) 皮膚外用剤
JP2009292742A (ja) 保湿剤、抗老化剤、抗酸化剤及び皮膚外用剤
JP6930847B2 (ja) 化粧料又は皮膚外用剤
JP5025201B2 (ja) 保湿剤、抗老化剤、美白剤、抗炎症剤、及び抗酸化剤
JP5383001B2 (ja) 皮膚外用剤、保湿剤、抗老化剤、抗酸化剤、抗炎症剤、美白剤、及び痩身剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902974

Country of ref document: EP

Kind code of ref document: A1