WO2020130552A1 - Diamine compound, polyimide precursor using same, and polyimide film - Google Patents

Diamine compound, polyimide precursor using same, and polyimide film Download PDF

Info

Publication number
WO2020130552A1
WO2020130552A1 PCT/KR2019/017841 KR2019017841W WO2020130552A1 WO 2020130552 A1 WO2020130552 A1 WO 2020130552A1 KR 2019017841 W KR2019017841 W KR 2019017841W WO 2020130552 A1 WO2020130552 A1 WO 2020130552A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
compound
carbon atoms
polyimide
Prior art date
Application number
PCT/KR2019/017841
Other languages
French (fr)
Korean (ko)
Inventor
구기철
김경환
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190167742A external-priority patent/KR102577116B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/272,209 priority Critical patent/US11952343B2/en
Priority to JP2021504750A priority patent/JP7167414B2/en
Priority to CN201980051725.4A priority patent/CN112533899B/en
Publication of WO2020130552A1 publication Critical patent/WO2020130552A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/48Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1092Polysuccinimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a novel diamine and a polyimide precursor and polyimide film using the same.
  • polyimide (PI) resin is easy to synthesize, can make a thin film, and has the advantage of not requiring a crosslinker for curing.
  • PI polyimide
  • the polyimide (PI) film is prepared by filming the polyimide resin, and in general, the polyimide film is a solution of a polyamic acid derivative by solution polymerization of an aromatic dianhydride and an aromatic diamine or an aromatic diisocyanate. It is manufactured by a method of coating on a silicon wafer or glass and curing by heat treatment.
  • the aromatic polyimide resin exhibits poor processability and brown coloring due to intramolecular interaction and charge transfer complexation (CTC), and to overcome this, an aliphatic chain, a flexible linking group, and a fluorine linker to a monomer used in the production of polyimide Attempts have been made to introduce specialized functional groups. However, the introduction of these substituents caused a problem of deteriorating the mechanical properties, which are the strengths of polyimide.
  • CTC charge transfer complexation
  • the problem to be solved by the present invention is to provide a novel diamine capable of producing a polyimide with improved physical properties.
  • Another problem to be solved by the present invention is to provide a polyimide precursor for producing a polyimide film with improved physical properties.
  • Another problem to be solved by the present invention is to provide a polyimide film using the polyimide precursor.
  • the present invention is to provide a flexible device comprising the polyimide film and its manufacturing process.
  • At least one of Z 1 to Z 4 may be a carbon atom, and at least one of Z 5 to Z 8 may be a carbon atom.
  • n1 and n2 are each independently 0, or R 1 and R 2 are each independently an alkyl group having 1 to 5 carbon atoms or a haloalkyl group having 1 to 5 carbon atoms.
  • Z 1 to Z 4 may be all carbon atoms.
  • one of Z 1 to Z 4 may be a nitrogen atom or one of Z 5 to Z 8 may be a nitrogen atom.
  • one of Z 1 to Z 4 may be a nitrogen atom, and one of Z 5 to Z 8 may be a nitrogen atom.
  • X is a single bond, -O-, -CH 2 -, -C(CF 3 )-, -C(CH 3 ) 2 -or -SO 2 -is selected from Can.
  • the diamine of Chemical Formula 1 may be selected from compounds of Chemical Formulas 1-1 to 1-20.
  • the present invention is also a polyimide precursor obtained by polymerizing a polymerization component comprising at least one diamine and at least one acid dianhydride,
  • the diamine in the polymerization component includes the diamine represented by the formula (1).
  • the present invention provides a polyimide film prepared using the polyimide precursor.
  • a polyimide precursor composition comprising the polyimide precursor on a carrier substrate
  • It may be prepared by a method comprising the step of heating and curing the polyimide precursor composition.
  • a flexible device comprising the polyimide film as a substrate.
  • the present invention also relates to the present invention.
  • It provides a manufacturing process of a flexible device comprising the step of peeling the polyimide film formed with the device from the carrier substrate.
  • the manufacturing process may include an LTPS (low temperature polysilicon) process, an ITO process or an oxide process.
  • LTPS low temperature polysilicon
  • the present invention provides a method for preparing a diamine having the structure of Formula 1, the method comprising the following steps:
  • Z a to Z d are each independently a carbon atom or a nitrogen atom, but Z a to Z d are not nitrogen atoms at the same time, and R 1 , R 2 and R a are each independently an alkyl group having 1 to 10 carbon atoms.
  • the R'and R" may be independently selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluoroalkyl group having 1 to 10 carbon atoms.
  • the present invention discloses a novel diamine having a structure including an intramolecular imide group and further comprising an aromatic ring group connected by an ester group to both sides of the imide group, and the novel diamine is used as a polymerization component to produce polyimide.
  • the novel diamine is used as a polymerization component to produce polyimide.
  • All compounds or organic groups herein may be substituted or unsubstituted unless otherwise specified.
  • 'substituted' means that at least one hydrogen contained in the compound or organic group is a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group, a cycloalkyl group having 3 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, a hydroxyl group , Substituted with a substituent selected from the group consisting of alkoxy groups having 1 to 10 carbon atoms, carboxylic acid groups, aldehyde groups, epoxy groups, cyano groups, nitro groups, amino groups, sulfonic acid groups and derivatives thereof.
  • Aromatic polyimides are widely used in high-tech industries such as microelectronics, aerospace, insulating materials and refractory materials due to their excellent overall properties such as thermal oxidation stability, high mechanical strength, and excellent mechanical strength.
  • aromatic polyimides with strong absorbance in the ultraviolet-visible region exhibit strong coloration from pale yellow to dark brown, which limits wide application in the optoelectronics area, where transparency and colorless properties are the basic requirements.
  • the reason why the coloring appears in the aromatic polyimide resin is that it forms charge transfer complexes (CT-complexes) between the alternating electron donor and the electron acceptor in the polymer main chain and between the internal molecules.
  • CT-complexes charge transfer complexes
  • the present invention provides a diamine represented by the following formula (1) as a polymerization component capable of producing a polyimide with improved mechanical properties.
  • Z 1 to Z 8 are each independently a carbon atom or a nitrogen atom, but Z 1 to Z 8 are not nitrogen atoms at the same time,
  • R 1 , R 2 , R 3 , R 4 are each independently selected from an alkyl group having 1 to 10 carbon atoms, a haloalkyl group having 1 to 10 carbon atoms, an alkenyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 18 carbon atoms.
  • n 1 , n 2 , n 3 , n 4 are each independently an integer from 0 to 4,
  • a functional group selected from the group consisting of C( O)NH and combinations thereof, wherein R'and R" are each independently from a group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluoroalkyl group having 1 to 10 carbon atoms. Can be selected.
  • the diamine according to the present invention has a charge transfer complexing (CTC) effect through an increase in the interaction of intermolecular pi-pi electrons between diamine repeat units containing an imide group during polyimide polymerization including a diamine containing an intramolecular imide group.
  • CTC charge transfer complexing
  • the mechanical properties are improved and the intermolecular distance is increased, thereby increasing the probability of the polymerization reaction, thereby increasing the molecular weight.
  • the aromatic ring having an ester group substituted on both sides of the imide group has a more bonded structure, and the aromatic structures are continuously connected, the elevated CTC effect is reduced to increase the processability, and enables the intermolecular hydrogen bonding to mechanically
  • the properties can be further improved. That is, it is possible to suppress the CTC effect again by the ester group while improving the mechanical properties by increasing the CTC effect by increasing the imidation rate.
  • Z 1 to Z 4 may be all carbon atoms.
  • one of Z 1 to Z 4 may be a nitrogen atom or one of Z 5 to Z 8 may be a nitrogen atom, and according to another embodiment, one of Z 1 to Z 4 is a nitrogen atom, Z One of 5 to Z 8 may be a nitrogen atom.
  • n1 and n2 are each independently 0, or R 1 and R 2 are each independently an alkyl group having 1 to 5 carbon atoms or a haloalkyl group having 1 to 5 carbon atoms.
  • the diamine of Formula 1 may be prepared from the same reaction as in Scheme 1 below.
  • Z a to Z d are each independently a carbon atom or a nitrogen atom, but Z a to Z d are not nitrogen atoms at the same time,
  • R 1 , R 2 and R a are each independently selected from an alkyl group having 1 to 10 carbon atoms, a haloalkyl group having 1 to 10 carbon atoms, an alkenyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 18 carbon atoms, and n 1 , n 2 and n are integers from 0 to 4,
  • step (1) of Scheme 1 the compound of Formula i and the compound of Formula ii are reacted to obtain the compound of Formula iii.
  • the compound of Formula i and the compound of Formula ii may be used in a molar ratio of 1:0.3 to 1:1, such as a molar ratio of 1:0.3 to 1:0.7.
  • tetrahydrofuran THF
  • ethyl acetate EA
  • propylene oxide may be added as a catalyst to increase reactivity.
  • reaction time may be 1 to 5 hours, such as 1 to 3 hours.
  • step (2) of Scheme 1 the compound of Formula iii and the compound of Formula iv are reacted to obtain a compound of Formula v.
  • the compound of Formula iii and the compound of Formula iv may be used in a molar ratio of 1:0.3 to 1:1, such as a molar ratio of 1:0.3 to 1:0.7.
  • acetic acid, propionic acid or the like may be used to disperse the reaction compounds, and the reaction temperature may be raised to about 100° C. for 3 to 5 hours, such as 4 hours.
  • alcohols such as ethanol and isopropanol may be added to obtain a solid.
  • step (3) of scheme 1 the compound of formula 1 is finally obtained by reducing the compound of formula v.
  • step (3) may be carried out in a hydrogen atmosphere in the presence of a palladium/complex (Pd/C) catalyst for 12 to 18 hours, such as 16 hours.
  • Pd/C palladium/complex
  • N-methylpyrrolidone, tetrahydrofuran, etc. may be used as the dispersion medium.
  • the weight average molecular weight of the polyimide precursor prepared using the diamine having the above structure may exceed 50,000 g/mol to improve mechanical properties.
  • it may have a weight average molecular weight of 51,000 to 65,000 g/mol.
  • the molecular weight is 50,000 g/mol or less, the viscosity of the solution is lowered due to the decrease in polyimide reactivity, and the viscosity compared to the solid content is low, so it may not be easy to control the film thickness during the solution coating process and the final curing process.
  • the molecular weight is low, mechanical properties may be lowered, resulting in a problem that the film strength is lowered.
  • the diamine of Chemical Formula 1 may be a compound of Chemical Formulas 1-1 to 1-20.
  • a substituent including fluorine (F) for example, a substituent such as a fluoroalkyl group, can reduce packing within a polyimide structure or between chains, and a color source due to steric hindrance and electrical effects. It is possible to weaken the electrical interaction of the liver, thereby exhibiting high transparency in the visible region.
  • the polyimide precursor according to the present invention may include a diamine having the structure of Formula 2 as a polymerization component:
  • R 5 and R 6 are each independently a monovalent organic group having 1 to 20 carbon atoms, and h is an integer of 3 to 200.
  • the compound of Formula 2 may be a diamine compound of Formula 2-1.
  • R are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 24 carbon atoms,
  • the compound of Formula 2 may be included in 5 to 50% by weight relative to the total weight of the polymerization component, preferably 10 to 20% by weight relative to the total weight of the total polymerization component.
  • Tg is 390 in a composition higher than 50% by weight. It may be lower than °C and the heat resistance may be lowered.
  • the polyimide according to the present invention can maintain a Tg of 390° C. or higher even though it contains a silicone oligomer in an amount of 10% by weight or more based on the total polymerization component. Therefore, while maintaining the glass transition temperature above 390°C, the effect of reducing the residual stress due to the silicone oligomer structure can also be obtained.
  • the molecular weight of the silicone oligomer structure included in the diamine having the structure of Chemical Formula 2 may be 4000 g/mol or more, wherein the molecular weight means the weight average molecular weight, and the molecular weight calculation is performed using NMR analysis or an acid group titration method. A method of calculating the equivalent of a reactor such as water can be used.
  • the molecular weight of the silicone oligomer structure including the structure of Formula 2 is less than 4000 g/mol, heat resistance may be lowered, for example, the glass transition temperature (Tg) of the prepared polyimide may decrease, or the coefficient of thermal expansion may increase. It may increase excessively.
  • Tg glass transition temperature
  • the size of the silicon oligomer domains distributed in the polyimide matrix is nano-sized, for example, 1 nm to 50 nm, or 5 nm to 40 nm, or 10 nm to 30 nm, so that it has a continuous phase, thus maintaining heat resistance and mechanical properties. Residual stress can be minimized. In the case of not having such a continuous phase, there may be a residual stress reduction effect, but it is difficult to use in the process due to a significant decrease in heat resistance and mechanical properties.
  • the domain of the silicone oligomer means a region in which a polymer having a silicone oligomer structure is distributed, and its size refers to the diameter of a circle surrounding the region.
  • the part (domain) containing the silicone oligomer structure is connected in a continuous phase in the polyimide matrix, wherein the continuous phase means a shape in which nano-sized domains are uniformly distributed.
  • the present invention is a silicone oligomer having a high molecular weight, it can be uniformly distributed in the polyimide matrix without phase separation, so that haze characteristics are reduced to obtain a polyimide having more transparent characteristics, as well as a silicone oligomer structure. Because it exists as a continuous phase, the mechanical strength and stress relieving effect of polyimide can be improved more efficiently. From these properties, the composition according to the present invention can provide a flat polyimide film by reducing thermal and optical properties, as well as reducing the phenomenon of substrate warping after coating-curing.
  • the modulus strength of the polyimide can be appropriately improved, and stress caused by external force can also be relieved.
  • a polyimide containing a silicone oligomer structure may exhibit polarity, and phase separation may occur due to a polarity difference with a polyimide structure that does not include a siloxane structure, whereby the siloxane structure is unevenly distributed throughout the polyimide structure.
  • the polarity of the polyimide prepared therefrom may be more apparent, and the phase separation phenomenon between the polyimides may be more pronounced.
  • a large amount must be added in order to exhibit an effect such as stress relaxation, which may cause process problems such as Tg occurring at a low temperature. Due to this, the physical properties of the polyimide film may be deteriorated.
  • the present invention can be more evenly distributed without phase separation on the polyimide matrix by using the compound of Formula 2 having the siloxane structure having the high molecular weight.
  • a tetracarboxylic dianhydride may be used, for example, as the tetracarboxylic dianhydride, intramolecular aromatic, alicyclic, Alternatively, as an aliphatic tetravalent organic group, or a combination thereof, a tetracarboxylic dianhydride containing a tetravalent organic group in which an aliphatic, alicyclic or aromatic tetravalent organic group is connected to each other through a crosslinked structure can be used.
  • it may include an acid dianhydride having a monocyclic or polycyclic aromatic, monocyclic or polycyclic alicyclic group, or a structure in which two or more of them are connected by a single bond or a functional group.
  • the tetracarboxylic dianhydride may include a tetravalent organic group having the structures of Formulas 3a to 3e:
  • R 11 to R 17 are each independently a halogen atom selected from -F, -Cl, -Br, and -I, hydroxyl group (-OH), thiol group (-SH), nitro group (-NO 2 ), a cyano group, an alkyl group having 1 to 10 carbon atoms, a halogenoalkoxy having 1 to 4 carbon atoms, a halogenoalkyl having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms,
  • a1 is an integer from 0 to 2
  • a2 is an integer from 0 to 4
  • a3 is an integer from 0 to 8
  • a4 and a5 are each independently an integer from 0 to 3
  • a6 and a9 are each independently an integer from 0 to 3
  • a7 and a8 may be each independently an integer of 0 to 7
  • the tetracarboxylic dianhydride may include a tetravalent organic group selected from the group consisting of the following Chemical Formulas 4a to 4n.
  • One or more hydrogen atoms in the tetravalent organic groups of the formulas 4a to 4n are halogen atoms selected from -F, -Cl, -Br and -I, hydroxyl group (-OH), thiol group (-SH), nitro group ( -NO 2 ), a cyano group, an alkyl group having 1 to 10 carbon atoms, a halogenoalkoxy having 1 to 4 carbon atoms, a halogenoalkyl having 1 to 10 carbon atoms, and a substituent group having 6 to 20 carbon atoms.
  • the halogen atom may be fluoro (-F)
  • the halogenoalkyl group is a fluoroalkyl group having 1 to 10 carbon atoms containing a fluoro atom, fluoromethyl group, perfluoroethyl group, trifluoro It may be selected from methyl groups
  • the alkyl group may be selected from methyl groups, ethyl groups, propyl groups, isopropyl groups, t-butyl groups, pentyl groups, and hexyl groups
  • the aryl groups are selected from phenyl groups and naphthalenyl groups. It may be, and more preferably, it may be a substituent containing a fluoro atom such as a fluoro atom and a fluoroalkyl group.
  • the tetracarboxylic dianhydride has an aromatic ring or an aliphatic structure in which each ring structure is rigid, that is, a single ring structure, a structure in which each ring is bonded by a single bond, or each ring. It may be one containing a tetravalent organic group containing a heterocyclic structure directly connected.
  • one or more diamines may be further included in addition to the diamine of Chemical Formula 1, for example, a monocyclic or polycyclic aromatic divalent organic group having 6 to 24 carbon atoms, or 6 to 6 carbon atoms.
  • the monocyclic or polycyclic alicyclic divalent organic group of 18, or a diamine containing a divalent organic group structure selected from a divalent organic group including a structure in which two or more of them are connected by a single bond or a functional group may be included, Or, a heterocyclic ring structure in which a ring structure compound such as an aromatic or alicyclic compound is singly or fused is selected from a divalent organic group having a rigid structure such as a structure connected by a single bond.
  • a ring structure compound such as an aromatic or alicyclic compound is singly or fused is selected from a divalent organic group having a rigid structure such as a structure connected by a single bond.
  • the diamine may include a divalent organic group selected from the following formulas 5a to 5e.
  • R 21 to R 27 are each independently a halogen atom selected from -F, -Cl, -Br and -I, hydroxyl group (-OH), thiol group (-SH), nitro group (-NO 2 ), cyan It may be selected from the group consisting of a no-group, an alkyl group having 1 to 10 carbon atoms, a halogenoalkoxy having 1 to 4 carbon atoms, a halogenoalkyl having 1 to 10 carbon atoms, and an aryl group having 6 to 20 carbon atoms.
  • b1 is an integer from 0 to 4
  • b2 is an integer from 0 to 6
  • b3 is an integer from 0 to 3
  • b4 and b5 are each independently integers from 0 to 4
  • b7 and b8 are each independently 0 to It is an integer of 9
  • b6 and b9 are each independently an integer of 0-3.
  • the diamine may include a divalent organic group selected from the following formulas 6a to 6p.
  • the diamine may include a divalent organic group forming a rigid chain structure of an aromatic ring or an aliphatic structure, for example, a single ring structure, a structure in which each ring is bonded by a single bond, or Each ring may include a divalent organic group structure including a fused heterocyclic ring structure.
  • the acid dianhydride and diamine may be reacted in a molar ratio of 1:1.1 to 1.1:1.
  • the reaction molar ratio may be changed according to intended reactivity and fairness.
  • the molar ratio of the acid dianhydride and diamine may be 1:0.98 to 0.98:1, preferably 1:0.99 to 0.99:1.
  • the polymerization reaction of the acid dianhydride and the diamine-based compound can be carried out according to a conventional polymerization method of polyimide or its precursor, such as solution polymerization.
  • Organic solvents that can be used in the polyamic acid polymerization reaction include gamma-butyrolactone, 1,3-dimethyl-2-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone, and 4-hydroxy-4- Ketones such as methyl-2-pentanone; Aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene; Ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether , Glycol ethers such as dipropylene glycol diethyl ether and triethylene glycol monoethyl ether (cellosolve); Ethyl acetate, but
  • a solvent having a positive distribution coefficient of 25°C LogP may be used as the organic solvent for polymerizing the polymerization component.
  • Tg can be maintained at a high temperature of 390°C or higher even in a composition in which methylphenylsilicone oligomer is contained in an amount of 10 wt% or more.
  • the organic solvent having a positive partition coefficient as described above may reduce turbidity caused by phase separation due to a polarity difference between a flexible polyimide repeating structure and a polyimide structure including a siloxane structure such as a silicone oligomer.
  • two types of organic solvents have been used to solve the phase separation.
  • the whitening phenomenon can be reduced by using only the organic solvents described above, so that a more transparent polyimide film can be produced.
  • the polyimide can be evenly distributed, which makes it very suitable for solving problems caused by phase separation, thereby providing a polyimide in which haze characteristics are significantly improved.
  • the distribution coefficient value is positive, it means that the polarity of the solvent is hydrophobic.
  • the present invention can control the edge back phenomenon of the solution without using additives that control the surface tension of the material such as a leveling agent and the smoothness of the coating film by using a solvent in which Log P is positive as described above, which is an additive Since no additional additives such as are used, it is possible to remove quality and process problems such as the low-molecular substance content in the final product, as well as more efficiently to form a polyimide film having uniform properties. .
  • an edge back phenomenon may occur due to shrinkage of the coating layer during curing or under the condition of leaving the coating solution in a humidity condition.
  • the edge back phenomenon of such a coating solution may cause a variation in the thickness of the film, and thus, the film may be cut off due to a lack of bending resistance of the film, or a corner may be broken when cutting, resulting in poor process workability and reduced yield. Problems may arise.
  • the position of the foreign matter is determined based on the polarity of the foreign matter.
  • sporadic coating cracking or thickness change may occur, but when a hydrophobic solvent having a positive log P is used, even when fine foreign matter having polarity is introduced, the occurrence of thickness changes due to cracking of the coating is reduced or suppressed. Can be.
  • an edge back ratio defined by the following Equation 1 may be 0% to 0.1% or less.
  • Edge percentage (%) [(A-B)/A] ⁇ 100
  • A The area in the state where the polyimide precursor composition is completely coated on the substrate (100 mm ⁇ 100 mm),
  • the edge back phenomenon of the polyimide precursor composition and the film may occur within 30 minutes after coating the solution of the polyimide precursor composition, and in particular, the thickness of the edge may be increased by starting to roll from the edge.
  • the edge percentage of the coated resin composition solution after being left in a humidity condition is 0.1 % Or less, for example, at a temperature of 20 to 30°C, a humidity condition of 40% or more, more specifically, a humidity condition in the range of 40% to 80%, that is, 40%, 50%, 60%, 70% , 80% in each humidity condition, for example, even after standing for 10 to 50 minutes at a humidity condition of 50% may exhibit a very small edge percentage of less than 0.1%, preferably 0.05%, more preferably almost It can show an edge percentage close to 0%.
  • the edge percentage as described above is maintained even after curing, for example, after coating the polyimide precursor composition on the substrate for 10 minutes or more, for example, at a temperature of 20 to 30° C., a humidity condition of 40% or more, more specifically Is cured after being left for 10 to 50 minutes at a humidity condition in the range of 40% to 80%, that is, at a humidity condition of 40%, 50%, 60%, 70%, 80%, for example, at a humidity condition of 50%.
  • the polyimide film may have an edge percentage of 0.1% or less, that is, an edge back phenomenon may or may not occur even in a curing process by heat treatment, and specifically, an edge close to 0.05%, more preferably almost 0%. It can indicate the percentage.
  • the polyimide precursor composition according to the present invention can obtain a polyimide film having more uniform characteristics, thereby improving the yield of the manufacturing process.
  • the density of the solvent according to the present invention may be 1 g/cm 3 or less, as measured by the standard measurement method of ASTM D1475, and when the density has a value of 1 g/cm 3 or more, the relative viscosity may be increased, so the process Phase efficiency can be reduced.
  • the LogP is a positive solvent, for example, N,N-diethylacetamide (N,Ndiethylacetamide,DEAc), N,N-diethylformamide (N,N-diethylformamide, DEF),N-ethylpyrroli It may be one or more selected from money (N-ethylpyrrolidone, NEP), dimethyl propionamide (DMPA) and diethyl propionamide (DEPA).
  • NEP N-ethylpyrrolidone
  • DMPA dimethyl propionamide
  • DEPA diethyl propionamide
  • the solvent may have a boiling point of 300° C. or less, and more specifically, the distribution coefficient LogP value may be 0.01 to 3, or 0.01 to 2, or 0.1 to 2.
  • the distribution coefficient can be calculated using ACD/LogP module of ACD/Percepta platform of ACD/Labs, and ACD/LogP module uses a 2D structure of molecules to implement QSPR (Quantitative Structure-Property Relationship) method based algorithm. To use.
  • QSPR Quadratative Structure-Property Relationship
  • aromatic hydrocarbons such as xylene and toluene may be further used, and in order to promote the dissolution of the polymer, an alkali metal salt or an alkaline earth metal salt of about 50% by weight or less based on the total amount of the solvent may be further added to the solvent.
  • the method for reacting the tetracarboxylic dianhydride with diamine can be carried out according to a conventional polyimide precursor polymerization production method such as solution polymerization. Specifically, after diamine is dissolved in an organic solvent, it can be prepared by adding a tetracarboxylic dianhydride to the resulting mixed solution to polymerize it.
  • the polymerization reaction may be carried out under an inert gas or nitrogen stream, and may be performed under anhydrous conditions.
  • reaction temperature during the polymerization reaction may be carried out at -20 to 80 °C, preferably 0 to 80 °C. If the reaction temperature is too high, the reactivity becomes high and the molecular weight may increase, and the viscosity of the precursor composition increases, which may be disadvantageous in the process.
  • the polyamic acid solution prepared according to the above-described manufacturing method contains solids in an amount to allow the composition to have an appropriate viscosity in consideration of processability such as coatability during the film forming process.
  • the polyimide precursor composition containing the polyamic acid may be in the form of a solution dissolved in an organic solvent, and in the case of having such a form, for example, when a polyimide precursor is synthesized in an organic solvent, the solution is a reaction solution obtained. It may be itself, or the reaction solution may be diluted with another solvent. Moreover, when a polyimide precursor is obtained as a solid powder, this may be dissolved in an organic solvent to form a solution.
  • the content of the composition may be adjusted by adding an organic solvent such that the total polyimide precursor content is 8 to 25% by weight, preferably 10 to 25% by weight, more preferably 10 to 20% by weight % Or less.
  • the polyimide precursor composition may be adjusted to have a viscosity of 3,000 cP or more at a solid content concentration of 20% by weight or less, and the viscosity of the polyimide precursor composition is 10,000 cP or less, preferably 9,000 cP or less, more preferably It is preferable to adjust to have a viscosity of 8,000 cP or less.
  • the viscosity of the polyimide precursor composition exceeds 10,000 cP, the efficiency of defoaming decreases during processing of the polyimide film, and thus, not only the process efficiency, but also the prepared film has poor surface roughness due to the generation of bubbles, resulting in poor electrical, optical, and mechanical properties. It may degrade.
  • a transparent polyimide film can be prepared by imidizing the polyimide precursor obtained as a result of the polymerization reaction using a chemical or thermal imidization method.
  • the step of applying a polyimide precursor composition on a carrier substrate the step of applying a polyimide precursor composition on a carrier substrate
  • a polyimide film may be prepared by a method including heating and curing the polyimide precursor composition.
  • a glass, metal substrate, or plastic substrate may be used without particular limitation, and among them, excellent thermal and chemical stability during the imidation and curing process for the polyimide precursor, without additional release agent treatment, A glass substrate that can be easily separated without damage to the polyimide-based film formed after curing may be desirable.
  • the coating process may be performed according to a conventional coating method, specifically, spin coating method, bar coating method, roll coating method, air-knife method, gravure method, reverse roll method, kiss roll method, doctor blade method, Spraying, dipping or brushing may be used.
  • spin coating method bar coating method, roll coating method, air-knife method, gravure method, reverse roll method, kiss roll method, doctor blade method, Spraying, dipping or brushing may be used.
  • a continuous process is possible, and it may be more preferable to carry out by a casting method capable of increasing the imidation rate of polyimide.
  • the polyimide precursor composition may be applied on the substrate in a thickness range that allows the final produced polyimide film to have a suitable thickness for a display substrate.
  • a drying process for removing the solvent present in the polyimide precursor composition may be selectively performed prior to the curing process.
  • the drying process may be carried out according to a conventional method, and specifically, may be performed at a temperature of 140° C. or less, or 80° C. to 140° C. If the temperature of the drying process is less than 80°C, the drying process becomes longer, and if it exceeds 140°C, imidization proceeds rapidly, making it difficult to form a polyimide film of uniform thickness.
  • the polyimide precursor composition applied to the substrate is heat-treated on an IR oven, a hot air oven or a hot plate, wherein the heat treatment temperature may be in the range of 300 to 500°C, preferably 320 to 480°C, and the temperature It can also be carried out in a multi-stage heat treatment within the range.
  • the heat treatment process may be performed for 20 minutes to 70 minutes, and preferably 20 minutes to 60 minutes.
  • the residual stress immediately after curing of the polyimide film prepared as described above may be 40 MPa or less, and the residual stress change value after leaving the polyimide film at 25° C. and 50% humidity for 3 hours is 5 MPa or less. Can.
  • the yellowness of the polyimide film may be 15 or less, and preferably 13 or less. Further, the haze of the polyimide film may be 2 or less, and preferably 1 or less.
  • the transmittance at 450 nm of the polyimide film may be 75% or more
  • the transmittance at 550 nm may be 85% or more
  • the transmittance at 630 nm may be 90% or more.
  • the polyimide film may have high heat resistance, for example, a thermal decomposition temperature (Td_1%) in which mass loss is 1% may be 500°C or higher.
  • Td_1% thermal decomposition temperature
  • the polyimide film prepared as described above may have a modulus of 3 to 6 GPa. If the modulus (elastic modulus) is less than 3Gpa, the film has low stiffness and is easily fragile to external impact, and when the modulus exceeds 6 GPa, the stiffness of the coverlay film is excellent, but sufficient flexibility may not be obtained. have.
  • the elongation of the polyimide film is 90% or more, preferably 91% or more, and the tensile strength may be 130 MPa or more, preferably 138 MPa or more.
  • the polyimide film according to the present invention may have excellent thermal stability according to temperature change, for example, a thermal expansion coefficient of -10 after undergoing a heating and cooling process n+1 times in a temperature range of 100°C to 350°C. It may have a value of 100 ppm / °C, preferably, a value of -7 to 90 ppm / °C, more preferably 80 ppm / °C or less (where n is an integer greater than or equal to 0).
  • the polyimide film according to the present invention can exhibit optical isotropy by having a thickness direction retardation (R th ) of -150 nm to +150 nm, preferably -130 nm to +130 nm, thereby improving visibility. .
  • the polyimide film may have an adhesive strength with a carrier substrate of 5 gf/in or more, and preferably 10 gf/in or more.
  • It provides a manufacturing process of a flexible device comprising the step of peeling the polyimide film formed with the device from the carrier substrate.
  • the manufacturing process of the flexible device may include a low temperature polysilicon (LTPS) process, an ITO process, or an oxide process.
  • LTPS low temperature polysilicon
  • ITO indium tin oxide
  • oxide oxide
  • a flexible device including an LTPS layer can be obtained by peeling a carrier substrate and a polyimide film by laser peeling or the like.
  • the oxide thin film process may be heat treated at a lower temperature than the process using silicon, for example, the heat treatment temperature of the ITO TFT process may be 240°C ⁇ 50°C, and the heat treatment temperature of the oxide TFT process may be 350°C ⁇ 50°C.
  • the heat treatment temperature of the ITO TFT process may be 240°C ⁇ 50°C
  • the heat treatment temperature of the oxide TFT process may be 350°C ⁇ 50°C.
  • the compound of formula C (20 g, 63.9 mmol) and the compound of formula D (10.2 g, 32.0 mmol) were dispersed in glacial acetic acid (200 mL) and heated to 100°C. After 4 hours, after lowering the temperature to room temperature, ethanol was added to obtain a solid. The solid obtained after filtration was washed with water and ethanol to prepare a compound of Formula E (25.9 g, yield 88.8%).
  • the compound of Formula H was prepared in the same manner as the method of preparing the compound of Formula E, except that the compound of Formula G was used instead of Formula C.
  • the compound of Formula 1-2 was prepared in the same manner as the method of preparing the compound of Formula 1-1, except that the compound of Formula H was used instead of Formula E.
  • a compound of Formula 1-9 was prepared in the same manner as the method of preparing a compound of Formula 1-1, except that a compound of Formula J was used instead of Formula E.
  • a compound of formula K was prepared in the same manner as the method of preparing a compound of formula E, except that a compound of formula G instead of formula C and a compound of formula I instead of formula D were used.
  • the compound of Formula 1-10 was prepared in the same manner as the method of preparing the compound of Formula 1-1, except that the compound of Formula K was used instead of Formula E.
  • a compound of formula O was prepared in the same manner as the method of preparing a compound of formula E, except that a compound of formula M instead of formula C and a compound of formula N instead of formula D were used.
  • the compound of Formula 1-13 was prepared in the same manner as the method of preparing the compound of Formula 1-1, except that the compound of Formula O was used instead of Formula E.
  • a compound of formula R was prepared in the same manner as the method of preparing a compound of formula E, except that a compound of formula Q instead of formula C and a compound of formula N instead of formula D were used.
  • the compound of formula T was prepared in the same manner as the method of preparing the compound of formula E, except that the compound of formula M is used instead of the formula C and the compound of formula S is used instead of the formula D.
  • the compound of Formula 1-15 was prepared in the same manner as the method of preparing the compound of Formula 1-1, except that the compound of Formula T was used instead of Formula E.
  • the compound of formula U was prepared in the same manner as the method of preparing the compound of formula E, except that the compound of formula Q is used instead of the formula C and the compound of formula S is used instead of the formula D.
  • the compound of Formula 1-16 was prepared in the same manner as the method of preparing the compound of Formula 1-1, except that the compound of Formula U was used instead of Formula E.
  • DEAc Diethylacetamide
  • TFMB 2,2'-Bis (trifluoromethyl)benzidine
  • 6-FDA 4,4'-(Hexafluoroisopropylidene) diphthalic anhydride
  • DEAc Diethylacetamide
  • diamine of Formula 1-2 prepared in Preparation Example 2 was dissolved at the same temperature while maintaining the temperature of the reactor at 25°C.
  • a polyimide precursor solution was prepared by adding 0.0413 mol of 6-FDA (4,4'-(Hexafluoroisopropylidene)diphthalic anhydride) with DEAc 60g to the solution to which the formula 1-2 diamine was added and reacting for 48 hours.
  • DEAc Diethylacetamide
  • diamine of Formula 1-9 prepared in Preparation Example 3 was dissolved at the same temperature while maintaining the temperature of the reactor at 25°C.
  • a polyimide precursor solution was prepared by adding 0.0413 mol of 6-FDA (4,4'-(Hexafluoroisopropylidene)diphthalic anhydride) with DEAc 60g to the solution to which diamine was added to Formula 1-9 for 48 hours.
  • DEAc Diethylacetamide
  • diamine of Formula 1-10 prepared in Preparation Example 4 was dissolved at the same temperature while maintaining the temperature of the reactor at 25°C.
  • a polyimide precursor solution was prepared by adding 0.0413 mol of 6-FDA (4,4'-(Hexafluoroisopropylidene)diphthalic anhydride) with DEAc 60g to the solution to which the diamine 1-10 was added, and reacting for 48 hours.
  • Viscosity was measured using Viscotek's TDA302.
  • the molecular weight was measured using GPCmax VE2001 from Viscotek.
  • Each polyimide precursor solution prepared in Examples 1 to 4 and Comparative Example 1 was spin coated on a glass substrate.
  • the glass substrate coated with the polyimide precursor solution was placed in an oven and heated at a rate of 5° C./min.
  • the curing process was performed by maintaining 30 minutes at 80° C., 30 minutes at 250° C., and 30 to 40 minutes at 400° C.
  • a polyimide film was prepared. Table 1 shows the physical properties of each film.
  • a film of length 5 mm X 50 mm and a thickness of 10 um was stretched at a speed of 10 mm/min on a tensile tester (Instron manufactured by Instron 3342) to measure modulus (GPa), tensile strength (MPa), and elongation (%).
  • the polyimide precursor solution containing the diamine according to the present invention may have a viscosity of 3000 cps or more at a solid content concentration of 20 wt% or less, and a higher molecular weight than Comparative Example 1 using TFMB It can be seen that a polyamic acid having a was prepared. In addition, it can be seen that the polyimide film prepared from the polyamic acid having such a high molecular weight has improved mechanical strength compared to the polyimide film of Comparative Example 1.

Abstract

Disclosed is a novel diamine having a structure of comprising an intramolecular imide group, and further comprising aromatic cyclic groups linked by an ester group to both sides of the imide group. When the novel diamine is used as a polymerizable component for preparing a polyimide, a polyimide film having remarkably improved mechanical and thermal properties while maintaining optical properties can be provided.

Description

디아민 화합물, 이를 이용한 폴리이미드 전구체 및 폴리이미드 필름Diamine compound, polyimide precursor and polyimide film using same
본 출원은 2018년 12월 18일자로 출원된 한국특허출원 10-2018-0163793호 및 2019년 12월 16일자로 출원된 한국특허출원 10-2019-0167742호에 기초한 우선권의 이익을 주장하며, 상기 특허문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2018-0163793 filed on December 18, 2018 and Korean Patent Application No. 10-2019-0167742 filed on December 16, 2019, above All contents disclosed in the patent document are included as part of the present specification.
본 발명은 신규 디아민 및 이를 이용한 폴리이미드 전구체 및 폴리이미드 필름에 관한 것이다.The present invention relates to a novel diamine and a polyimide precursor and polyimide film using the same.
최근 디스플레이 분야에서 제품의 경량화 및 소형화가 중요시 되고 있으며, 현재 사용되고 있는 유리 기판의 경우 무겁고 잘 깨지며 연속공정이 어렵다는 한계가 있기 때문에 유리 기판을 대체하여 가볍고 유연하며 연속공정이 가능한 장점을 갖는 플라스틱 기판을 핸드폰, 노트북, PDA 등에 적용하기 위한 연구가 활발히 진행되고 있다.In the display field, weight reduction and miniaturization of products are considered important, and currently used glass substrates are heavy, brittle, and have difficulty in continuous processing. As a substitute for glass substrates, plastic substrates that have the advantage of being lightweight, flexible, and capable of continuous processing Research is being actively conducted to apply the technology to cell phones, notebooks, PDAs, and the like.
특히, 폴리이미드(PI) 수지는 합성이 용이하고 박막형 필름을 만들 수 있으며 경화를 위한 가교기가 필요 없는 장점을 가지고 있어, 최근에 전자 제품의 경량 및 정밀화 현상으로 LCD, PDP 등 반도체 재료에 집적화 소재로 많이 적용되고 있으며, PI를 가볍고 유연한 성질을 지니는 플렉시블 디스플레이 기판(flexible plastic display board)에 사용하려는 많은 연구가 진행되고 있다.In particular, polyimide (PI) resin is easy to synthesize, can make a thin film, and has the advantage of not requiring a crosslinker for curing. Recently, it has been integrated into semiconductor materials such as LCD and PDP due to the light weight and precision of electronic products. As a result, many studies have been conducted to use PI for a flexible plastic display board having light and flexible properties.
상기 폴리이미드 수지를 필름화하여 제조한 것이 폴리이미드(PI) 필름이며, 일반적으로 폴리이미드 필름은 방향족 다이안하이드라이드와 방향족 디아민 또는 방향족 디이소시아네이트를 용액 중합하여 폴리아믹산 유도체 용액을 제조한 후, 이를 실리콘 웨이퍼나 유리 등에 코팅하고 열처리에 의해 경화시키는 방법으로 제조된다. The polyimide (PI) film is prepared by filming the polyimide resin, and in general, the polyimide film is a solution of a polyamic acid derivative by solution polymerization of an aromatic dianhydride and an aromatic diamine or an aromatic diisocyanate. It is manufactured by a method of coating on a silicon wafer or glass and curing by heat treatment.
고온 공정을 수반하는 플렉서블 디바이스는 고온에서의 내열성이 요구되는데, 특히 LTPS(low temperature polysilicon) 공정을 사용하는 OLED(organic light emitting diode) 디바이스의 경우 공정온도가 500℃에 근접하기도 한다. 그러나, 이러한 온도에서는 내열성이 우수한 폴리이미드라 하더라도 가수분해에 의한 열분해가 일어나기 쉽다. 따라서, 플렉시블 디바이스 제조를 위해서는 고온공정에서도 가수분해에 의한 열분해가 일어나지 않는 우수한 내화학성 및 저장안정성을 확보해야 한다.Flexible devices that involve high-temperature processes require heat resistance at high temperatures. In particular, in the case of organic light emitting diode (OLED) devices using a low temperature polysilicon (LTPS) process, the process temperature may approach 500°C. However, even at a temperature such as polyimide having excellent heat resistance, thermal decomposition by hydrolysis is likely to occur. Therefore, in order to manufacture a flexible device, it is necessary to secure excellent chemical resistance and storage stability in which thermal decomposition by hydrolysis does not occur even in a high temperature process.
또한, 방향족 폴리이미드 수지는 분자내 상호작용 및 전하 전이 복합화(CTC)로 인해 불량한 가공성 및 갈색의 착색 현상을 나타내며, 이의 극복을 위해 폴리이미드 제조에 사용되는 단량체에 지방족 사슬, 유연성의 결합기, 플루오르화된 기능기 등을 도입하는 시도들이 이루어지고 있다. 그러나, 이들 치환기의 도입으로 폴리이미드의 강점인 기계적 물성을 떨어뜨리는 문제가 발생되었다.In addition, the aromatic polyimide resin exhibits poor processability and brown coloring due to intramolecular interaction and charge transfer complexation (CTC), and to overcome this, an aliphatic chain, a flexible linking group, and a fluorine linker to a monomer used in the production of polyimide Attempts have been made to introduce specialized functional groups. However, the introduction of these substituents caused a problem of deteriorating the mechanical properties, which are the strengths of polyimide.
이에, 폴리이미드의 특성을 유지하면서 기계적 특성을 향상시킬 수 있는 기술의 개발이 필요하다.Accordingly, it is necessary to develop a technique capable of improving mechanical properties while maintaining the properties of polyimide.
본 발명이 해결하고자 하는 과제는 물성이 향상된 폴리이미드를 제조할 수 있는 신규 디아민을 제공하는 것이다. The problem to be solved by the present invention is to provide a novel diamine capable of producing a polyimide with improved physical properties.
본 발명이 해결하고자 하는 다른 과제는 물성이 개선된 폴리이미드 필름을 제조하기 위한 폴리이미드 전구체를 제공하는 것이다.Another problem to be solved by the present invention is to provide a polyimide precursor for producing a polyimide film with improved physical properties.
본 발명이 해결하고자 하는 다른 과제는 상기 폴리이미드 전구체를 이용하는 폴리이미드 필름을 제공하는 것이다.Another problem to be solved by the present invention is to provide a polyimide film using the polyimide precursor.
또한, 본 발명은, 상기 폴리이미드 필름을 포함하는 플렉서블 디바이스 및 그 제조공정을 제공하는 것이다.In addition, the present invention is to provide a flexible device comprising the polyimide film and its manufacturing process.
본 발명의 과제를 해결하기 위해, 하기 화학식 1로 표시되는 디아민을 제공한다. In order to solve the problems of the present invention, to provide a diamine represented by the formula (1).
[화학식 1][Formula 1]
Figure PCTKR2019017841-appb-img-000001
Figure PCTKR2019017841-appb-img-000001
상기 화학식 1에 있어서,In Chemical Formula 1,
Z 1 내지 Z 8은 각각 독립적으로 탄소원자 또는 질소원자이되, Z 1 내지 Z 8이 동시에 질소원자는 아니며, R 1, R 2, R 3, R 4는 각각 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 10의 할로알킬기, 탄소수 1 내지 10의 알케닐기, 및 탄소수 6 내지 18의 아릴기 중에서 선택되는 것이고, n 1, n 2, n 3, n 4는 각각 독립적으로 0 내지 4의 정수이고, X는 단일결합, O, S, S-S, C(=O), -C(=O)O-, CH(OH), S(=O) 2, Si(CH 3) 2, CR'R", C(=O)NH 및 이들의 조합으로 이루어진 군에서 선택된 관능기이며, 상기 R' 및 R"는 각각 독립적으로 수소원자, 탄소수 1 내지 10의 알킬기 및 탄소수 1 내지 10의 플루오로알킬기로 이루어진 군으로부터 선택될 수 있다.Z 1 to Z 8 are each independently a carbon atom or a nitrogen atom, Z 1 to Z 8 are not nitrogen atoms at the same time, R 1 , R 2 , R 3 , R 4 are each independently an alkyl group having 1 to 10 carbon atoms, carbon number 1 to 10 haloalkyl group, an alkenyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 18 carbon atoms, n 1 , n 2 , n 3 , n 4 are each independently an integer of 0 to 4, X is a single bond, O, S, SS, C(=O), -C(=O)O-, CH(OH), S(=O) 2 , Si(CH 3 ) 2 , CR'R", A functional group selected from the group consisting of C(=O)NH and combinations thereof, wherein R'and R" are each independently from a group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluoroalkyl group having 1 to 10 carbon atoms. Can be selected.
일 실시예에 따르면, 화학식 1에 있어서 Z 1 내지 Z 4 중 하나 이상은 반드시 탄소원자이고, Z 5 내지 Z 8 중 하나 이상은 반드시 탄소원자일 수 있다. According to an embodiment, in Formula 1, at least one of Z 1 to Z 4 may be a carbon atom, and at least one of Z 5 to Z 8 may be a carbon atom.
일 실시예에 따르면, 화학식 1에 있어서, n1 및 n2는 각각 독립적으로 0이거나, R 1 및 R 2 는 각각 독립적으로 탄소수 1 내지 5의 알킬기 또는 탄소수 1 내지 5의 할로알킬기일 수 있다. According to an embodiment, in Formula 1, n1 and n2 are each independently 0, or R 1 and R 2 are each independently an alkyl group having 1 to 5 carbon atoms or a haloalkyl group having 1 to 5 carbon atoms.
일 실시예에 따르면, 화학식 1에 있어서 Z 1 내지 Z 4 이 모두 탄소원자일 수 있다. According to an embodiment, in Formula 1, Z 1 to Z 4 may be all carbon atoms.
일 실시예에 따르면, 화학식 1에 있어서 Z 1 내지 Z 4 중 하나가 질소원자이거나 Z 5 내지 Z 8 중 하나가 질소원자일 수 있다. According to one embodiment, in Formula 1, one of Z 1 to Z 4 may be a nitrogen atom or one of Z 5 to Z 8 may be a nitrogen atom.
일 실시예에 따르면, 화학식 1에 있어서 Z 1 내지 Z 4 중 하나가 질소원자이고, Z 5 내지 Z 8 중 하나가 질소원자일 수 있다. According to one embodiment, in Formula 1, one of Z 1 to Z 4 may be a nitrogen atom, and one of Z 5 to Z 8 may be a nitrogen atom.
일 실시예에 따르면, 화학식 1에 있어서, X가 단일결합, -O-, -CH 2-, -C(CF 3)-, -C(CH 3) 2- 또는 -SO 2- 중에서 선택되는 것일 수 있다.According to an embodiment, in Chemical Formula 1, X is a single bond, -O-, -CH 2 -, -C(CF 3 )-, -C(CH 3 ) 2 -or -SO 2 -is selected from Can.
일 실시예에 따르면, 상기 화학식 1의 디아민은 하기 화학식 1-1 내지 1-20의 화합물 중에서 선택될 수 있다.According to an embodiment, the diamine of Chemical Formula 1 may be selected from compounds of Chemical Formulas 1-1 to 1-20.
Figure PCTKR2019017841-appb-img-000002
.
Figure PCTKR2019017841-appb-img-000002
.
본 발명은 또한, 1종 이상의 디아민 및 1종 이상의 산이무수물을 포함하는 중합성분을 중합시켜 얻어지는 폴리이미드 전구체로서,The present invention is also a polyimide precursor obtained by polymerizing a polymerization component comprising at least one diamine and at least one acid dianhydride,
상기 중합성분 중 디아민이 상기 화학식 1로 표시되는 디아민을 포함하는 것인 폴리이미드 전구체를 제공한다.It provides a polyimide precursor that the diamine in the polymerization component includes the diamine represented by the formula (1).
또한, 본 발명은 상기 폴리이미드 전구체를 이용하여 제조된 폴리이미드 필름을 제공한다.In addition, the present invention provides a polyimide film prepared using the polyimide precursor.
일 실시예에 따르면, 상기 폴리이미드 전구체를 포함하는 폴리이미드 전구체 조성물을 캐리어 기판 상에 도포하는 단계; 및According to one embodiment, applying a polyimide precursor composition comprising the polyimide precursor on a carrier substrate; And
상기 폴리이미드 전구체 조성물을 가열 및 경화하는 단계를 포함하는 방법으로 제조될 수 있다.It may be prepared by a method comprising the step of heating and curing the polyimide precursor composition.
본 발명의 다른 과제를 해결하기 위해, 상기 폴리이미드 필름을 기판으로 포함하는 플렉서블 디바이스를 제공한다.In order to solve another problem of the present invention, there is provided a flexible device comprising the polyimide film as a substrate.
본 발명은 또한,The present invention also
상기 폴리이미드 전구체를 포함하는 폴리이미드 전구체 조성물을 캐리어 기판 상에 도포하는 단계;Applying a polyimide precursor composition comprising the polyimide precursor on a carrier substrate;
상기 폴리이미드 전구체 조성물을 가열하여 폴리아믹산을 이미드화함으로써 폴리이미드 필름을 형성하는 단계; Heating the polyimide precursor composition to imidize polyamic acid to form a polyimide film;
상기 폴리이미드 필름 상에 소자를 형성하는 단계; 및Forming a device on the polyimide film; And
상기 소자가 형성된 폴리이미드 필름을 상기 캐리어 기판으로부터 박리하는 단계를 포함하는 플렉서블 디바이스의 제조공정을 제공한다.It provides a manufacturing process of a flexible device comprising the step of peeling the polyimide film formed with the device from the carrier substrate.
일 실시예에 따르면, 상기 제조공정이 LTPS(저온 폴리실리콘) 공정, ITO 공정 또는 Oxide 공정을 포함할 수 있다.According to an embodiment, the manufacturing process may include an LTPS (low temperature polysilicon) process, an ITO process or an oxide process.
추가로, 본 발명은 화학식 1의 구조를 갖는 디아민을 제조하는 방법을 제공하며, 상기 방법은 하기 단계들을 포함한다: Additionally, the present invention provides a method for preparing a diamine having the structure of Formula 1, the method comprising the following steps:
하기 화학식 i과 화학식 ii의 화합물을 반응시켜 화학식 iii의 화합물을 얻는 단계;Reacting a compound of formula (i) and formula (ii) to obtain a compound of formula (iii);
상기 화학식 iii의 화합물과 화학식 iv의 화합물을 반응시켜 화학식 v의 화합물을 얻는 단계; 및Reacting the compound of formula (iii) with the compound of formula (iv) to obtain a compound of formula (v); And
상기 화학식 v의 화합물을 환원시키는 단계;Reducing the compound of Formula v;
Figure PCTKR2019017841-appb-img-000003
(i)
Figure PCTKR2019017841-appb-img-000003
(i)
Figure PCTKR2019017841-appb-img-000004
(ii)
Figure PCTKR2019017841-appb-img-000004
(ii)
Figure PCTKR2019017841-appb-img-000005
(iii)
Figure PCTKR2019017841-appb-img-000005
(iii)
Figure PCTKR2019017841-appb-img-000006
(iv)
Figure PCTKR2019017841-appb-img-000006
(iv)
Figure PCTKR2019017841-appb-img-000007
(v)
Figure PCTKR2019017841-appb-img-000007
(v)
Figure PCTKR2019017841-appb-img-000008
(1)
Figure PCTKR2019017841-appb-img-000008
(One)
상기 화학식에 있어서, Z a 내지 Z d는 각각 독립적으로 탄소원자 또는 질소원자이되, Z a 내지 Z d가 동시에 질소원자는 아니며, R 1, R 2, R a는 각각 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 10의 할로알킬기, 탄소수 1 내지 10의 알케닐기, 및 탄소수 6 내지 18의 아릴기 중에서 선택되는 것이고, n 1, n 2 및 n은 0 내지 4의 정수이고, X는 단일결합, O, S, S-S, C(=O), -C(=O)O-, CH(OH), S(=O) 2, Si(CH 3) 2, CR'R", C(=O)NH 및 이들의 조합으로 이루어진 군에서 선택된 관능기이며, 상기 R' 및 R"는 각각 독립적으로 수소원자, 탄소수 1 내지 10의 알킬기 및 탄소수 1 내지 10의 플루오로알킬기로 이루어진 군으로부터 선택될 수 있다.In the above formula, Z a to Z d are each independently a carbon atom or a nitrogen atom, but Z a to Z d are not nitrogen atoms at the same time, and R 1 , R 2 and R a are each independently an alkyl group having 1 to 10 carbon atoms. , A haloalkyl group having 1 to 10 carbon atoms, an alkenyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 18 carbon atoms, n 1 , n 2 and n are integers from 0 to 4, X is a single bond, O, S, SS, C(=O), -C(=O)O-, CH(OH), S(=O) 2 , Si(CH 3 ) 2 , CR'R", C(=O) NH and combinations thereof. The R'and R" may be independently selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluoroalkyl group having 1 to 10 carbon atoms.
본 발명은 분자내 이미드기를 포함하고 상기 이미드기의 양쪽으로 에스테르기(ester)로 연결된 방향족 고리기를 더 포함하는 구조를 갖는 신규 디아민을 개시하며, 이러한 신규 디아민을 중합성분으로 폴리이미드의 제조에 사용하는 경우 광학적 특성을 유지하면서도 기계적, 열적 특성 또한 현저히 향상된 폴리이미드 필름을 제공할 수 있다.The present invention discloses a novel diamine having a structure including an intramolecular imide group and further comprising an aromatic ring group connected by an ester group to both sides of the imide group, and the novel diamine is used as a polymerization component to produce polyimide. When used, it is possible to provide a polyimide film that maintains optical properties while also significantly improving mechanical and thermal properties.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.The present invention can be applied to a variety of transformations and may have various embodiments, and specific embodiments will be illustrated in the drawings and described in detail in the detailed description. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all conversions, equivalents, and substitutes included in the spirit and scope of the present invention. In the description of the present invention, when it is determined that a detailed description of related known technologies may obscure the subject matter of the present invention, the detailed description will be omitted.
본 명세서에서 모든 화합물 또는 유기기는 특별한 언급이 없는 한 치환되거나 비치환된 것일 수 있다. 여기서, '치환된'이란 화합물 또는 유기기에 포함된 적어도 하나의 수소가 할로겐 원자, 탄소수 1 내지 10의 알킬기, 할로겐화알킬기, 탄소수 3 내지 30의 사이클로알킬기, 탄소수 6 내지 30의 아릴기, 하이드록시기, 탄소수 1 내지 10의 알콕시기, 카르복실산기, 알데히드기, 에폭시기, 시아노기, 니트로기, 아미노기, 술폰산기 및 이들의 유도체로 이루어진 군에서 선택되는 치환기로 대체된 것을 의미한다.All compounds or organic groups herein may be substituted or unsubstituted unless otherwise specified. Here,'substituted' means that at least one hydrogen contained in the compound or organic group is a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group, a cycloalkyl group having 3 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, a hydroxyl group , Substituted with a substituent selected from the group consisting of alkoxy groups having 1 to 10 carbon atoms, carboxylic acid groups, aldehyde groups, epoxy groups, cyano groups, nitro groups, amino groups, sulfonic acid groups and derivatives thereof.
방향족 폴리이미드는 열산화 안정성, 높은 기계적 강도, 우수한 기계적 강도와 같은 우수한 종합 특성으로 인해 마이크로 전자, 항공 우주, 절연 재료 및 내화 재료와 같은 첨단 산업에서 광범위하게 사용된다. 그러나, 자외선-가시광선 영역에서 강한 흡광도를 갖는 방향족 폴리이미드는 옅은 황색에서 진한 갈색의 강한 착색이 나타나는데 이는 투명성 및 무색 특성이 기본 요구 사항인 광전자 영역(optoelectronics area)에서의 광범위한 적용을 제한한다. 방향족 폴리이미드 수지에서 착색이 나타나는 이유는 고분자 주쇄에서 교대 전자 도너(dianhydride)와 전자 억셉터(diamine) 사이 및 내부 분자간 전하 전달 복합체(CT-complexes)를 형성하기 때문이다.Aromatic polyimides are widely used in high-tech industries such as microelectronics, aerospace, insulating materials and refractory materials due to their excellent overall properties such as thermal oxidation stability, high mechanical strength, and excellent mechanical strength. However, aromatic polyimides with strong absorbance in the ultraviolet-visible region exhibit strong coloration from pale yellow to dark brown, which limits wide application in the optoelectronics area, where transparency and colorless properties are the basic requirements. The reason why the coloring appears in the aromatic polyimide resin is that it forms charge transfer complexes (CT-complexes) between the alternating electron donor and the electron acceptor in the polymer main chain and between the internal molecules.
이러한 문제를 해결하기 위해, 높은 유리전이온도(Tg)를 가지며 광학적으로 투명한 PI 필름의 개발을 위해, 기능기 도입, 부피가 큰 펜던트 기, 플루오르화된 기능기 등을 고분자 주쇄로 도입하거나, 유연한 단위 (-S-, -O-, -CH 2- 등)를 도입하는 방법들이 연구되어 왔다. 그러나, 이들 치환기의 도입으로 폴리이미드의 강점인 기계적 물성을 떨어뜨리는 문제가 발생될 수 있다.To solve this problem, for the development of an optically transparent PI film having a high glass transition temperature (Tg), functional groups are introduced, bulky pendant groups, fluorinated functional groups, etc. are introduced into the polymer backbone, or flexible Methods of introducing units (-S-, -O-, -CH 2 -, etc.) have been studied. However, the introduction of these substituents may cause a problem of deteriorating the mechanical properties that are strengths of the polyimide.
이에, 본 발명은 기계적 물성이 향상된 폴리이미드를 제조할 수 있는 중합 성분로서, 하기 화학식 1로 표시되는 디아민을 제공한다.Thus, the present invention provides a diamine represented by the following formula (1) as a polymerization component capable of producing a polyimide with improved mechanical properties.
[화학식 1][Formula 1]
Figure PCTKR2019017841-appb-img-000009
Figure PCTKR2019017841-appb-img-000009
상기 화학식 1에 있어서,In Chemical Formula 1,
Z 1 내지 Z 8은 각각 독립적으로 탄소원자 또는 질소원자이되, Z 1 내지 Z 8이 동시에 질소원자는 아니며, Z 1 to Z 8 are each independently a carbon atom or a nitrogen atom, but Z 1 to Z 8 are not nitrogen atoms at the same time,
R 1, R 2, R 3, R 4는 각각 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 10의 할로알킬기, 탄소수 1 내지 10의 알케닐기, 및 탄소수 6 내지 18의 아릴기 중에서 선택되는 것이고, n 1, n 2, n 3, n 4는 각각 독립적으로 0 내지 4의 정수이고,R 1 , R 2 , R 3 , R 4 are each independently selected from an alkyl group having 1 to 10 carbon atoms, a haloalkyl group having 1 to 10 carbon atoms, an alkenyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 18 carbon atoms. , n 1 , n 2 , n 3 , n 4 are each independently an integer from 0 to 4,
X는 단일결합, O, S, S-S, C(=O), -C(=O)O-, CH(OH), S(=O) 2, Si(CH 3) 2, CR'R", C(=O)NH 및 이들의 조합으로 이루어진 군에서 선택된 관능기 이며, 상기 R' 및 R"는 각각 독립적으로 수소원자, 탄소수 1 내지 10의 알킬기 및 탄소수 1 내지 10의 플루오로알킬기로 이루어진 군으로부터 선택될 수 있다.X is a single bond, O, S, SS, C(=O), -C(=O)O-, CH(OH), S(=O) 2 , Si(CH 3 ) 2 , CR'R", A functional group selected from the group consisting of C(=O)NH and combinations thereof, wherein R'and R" are each independently from a group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluoroalkyl group having 1 to 10 carbon atoms. Can be selected.
본 발명에 따른 디아민은, 분자내 이미드기를 포함하는 디아민을 포함하여 폴리이미드 중합시 이미드기를 포함하는 디아민 반복단위의 분자간 파이-파이 전자의 상호작용 증가를 통해 전하 전이 복합화(CTC) 효과가 상승되고, 이로 인해 기계적 물성이 향상되고 분자간 거리가 가까워져 중합 반응 확률이 증가하여 분자량이 증가할 수 있다. 또한, 상기 이미드기의 양쪽에 에스테르기가 치환된 방향족 고리가 더 결합된 구조를 가져 방향족 구조가 연속적으로 연결됨에 따라, 상기 상승된 CTC 효과가 감소되어 가공성이 증가되며, 분자간 수소결합을 가능케 하여 기계적 특성이 더욱 향상될 수 있다. 즉, 이미드화율 증가에 의한 CTC 효과 상승으로 기계적 물성의 향상과 함께, 에스테르기에 의해 상기 CTC 효과를 다시 억제할 수 있다. The diamine according to the present invention has a charge transfer complexing (CTC) effect through an increase in the interaction of intermolecular pi-pi electrons between diamine repeat units containing an imide group during polyimide polymerization including a diamine containing an intramolecular imide group. As a result, the mechanical properties are improved and the intermolecular distance is increased, thereby increasing the probability of the polymerization reaction, thereby increasing the molecular weight. In addition, as the aromatic ring having an ester group substituted on both sides of the imide group has a more bonded structure, and the aromatic structures are continuously connected, the elevated CTC effect is reduced to increase the processability, and enables the intermolecular hydrogen bonding to mechanically The properties can be further improved. That is, it is possible to suppress the CTC effect again by the ester group while improving the mechanical properties by increasing the CTC effect by increasing the imidation rate.
일 실시예에 따르면, 화학식 1에 있어서 Z 1 내지 Z 4가 모두 탄소원자일 수 있다.According to an embodiment, in Formula 1, Z 1 to Z 4 may be all carbon atoms.
다른 실시예에 따르면, Z 1 내지 Z 4 중 하나가 질소원자이거나 Z 5 내지 Z 8 중 하나가 질소원자일 수 있고, 또 다른 실시예에 따르면, Z 1 내지 Z 4 중 하나가 질소원자이고, Z 5 내지 Z 8 중 하나가 질소원자일 수 있다.According to another embodiment, one of Z 1 to Z 4 may be a nitrogen atom or one of Z 5 to Z 8 may be a nitrogen atom, and according to another embodiment, one of Z 1 to Z 4 is a nitrogen atom, Z One of 5 to Z 8 may be a nitrogen atom.
일 실시예에 따르면, 화학식 1에 있어서, n1 및 n2는 각각 독립적으로 0이거나, R 1 및 R 2 는 각각 독립적으로 탄소수 1 내지 5의 알킬기 또는 탄소수 1 내지 5의 할로알킬기일 수 있다.According to an embodiment, in Formula 1, n1 and n2 are each independently 0, or R 1 and R 2 are each independently an alkyl group having 1 to 5 carbon atoms or a haloalkyl group having 1 to 5 carbon atoms.
일 실시예에 따르면, 상기 화학식 1의 디아민은 하기 반응식 1과 같은 반응으로부터 제조될 수 있다.According to one embodiment, the diamine of Formula 1 may be prepared from the same reaction as in Scheme 1 below.
[반응식 1] [Scheme 1]
Figure PCTKR2019017841-appb-img-000010
Figure PCTKR2019017841-appb-img-000010
상기 식에 있어서, Z a 내지 Z d는 각각 독립적으로 탄소원자 또는 질소원자이되, Z a 내지 Z d가 동시에 질소원자는 아니며, In the above formula, Z a to Z d are each independently a carbon atom or a nitrogen atom, but Z a to Z d are not nitrogen atoms at the same time,
R 1, R 2 및 R a는 각각 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 10의 할로알킬기, 탄소수 1 내지 10의 알케닐기, 및 탄소수 6 내지 18의 아릴기 중에서 선택되는 것이고, n 1, n 2 및 n은 0 내지 4의 정수이고,R 1 , R 2 and R a are each independently selected from an alkyl group having 1 to 10 carbon atoms, a haloalkyl group having 1 to 10 carbon atoms, an alkenyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 18 carbon atoms, and n 1 , n 2 and n are integers from 0 to 4,
X의 정의는 상기 화학식 1과 동일한 것이다.The definition of X is the same as in Chemical Formula 1.
상기 반응식 1의 단계 (1)에서, 화학식 i의 화합물 및 화학식 ii의 화합물을 반응시켜 화학식 iii의 화합물을 수득한다.In step (1) of Scheme 1, the compound of Formula i and the compound of Formula ii are reacted to obtain the compound of Formula iii.
이때, 화학식 i의 화합물 및 화학식 ii의 화합물은 1:0.3 내지 1:1의 몰비, 예컨대 1:0.3 내지 1:0.7의 몰비로 사용될 수 있다.In this case, the compound of Formula i and the compound of Formula ii may be used in a molar ratio of 1:0.3 to 1:1, such as a molar ratio of 1:0.3 to 1:0.7.
상기 단계 (1)의 반응은 유기 용매로서 테트라하이드로퓨란(THF), 에틸 아세티이트(EA) 등을 사용할 수 있으며, 반응성 증가를 위해 촉매로서 프로필렌옥사드를 첨가할 수 있다.In the reaction of step (1), tetrahydrofuran (THF), ethyl acetate (EA), or the like may be used as an organic solvent, and propylene oxide may be added as a catalyst to increase reactivity.
또한, 상기 반응은 고반응성으로 인한 격렬한 반응을 줄이기 위해 0℃에서 수행되는 것이 유리하며, 반응 시간은 1 내지 5시간, 예컨대 1 내지 3시간일 수 있다.In addition, the reaction is advantageously performed at 0°C to reduce the violent reaction due to high reactivity, and the reaction time may be 1 to 5 hours, such as 1 to 3 hours.
상기 반응식 1의 단계 (2)에서는, 상기 화학식 iii의 화합물 및 화학식 iv의 화합물을 반응시켜 화학식 v의 화합물을 수득한다.In step (2) of Scheme 1, the compound of Formula iii and the compound of Formula iv are reacted to obtain a compound of Formula v.
이때, 화학식 iii의 화합물 및 화학식 iv의 화합물은 1:0.3 내지 1:1의 몰비, 예컨대 1:0.3 내지 1:0.7의 몰비로 사용될 수 있다.At this time, the compound of Formula iii and the compound of Formula iv may be used in a molar ratio of 1:0.3 to 1:1, such as a molar ratio of 1:0.3 to 1:0.7.
상기 단계 (2)의 반응은 반응 화합물들을 분산시기 위해 아세트산, 프로피온산 등이 사용될 수 있고, 반응 온도를 약 100℃까지 승온시켜 3 내지 5시간, 예컨대 4시간 동안 반응시킬 수 있다.In the reaction of step (2), acetic acid, propionic acid or the like may be used to disperse the reaction compounds, and the reaction temperature may be raised to about 100° C. for 3 to 5 hours, such as 4 hours.
이어서, 반응 온도를 상온으로 낮춘 후, 고형물 수득을 위해 에탄올, 이소프로판올 등의 알코올을 첨가할 수 있다.Subsequently, after lowering the reaction temperature to room temperature, alcohols such as ethanol and isopropanol may be added to obtain a solid.
상기 반응식 1의 단계 (3)에서는 상기 화학식 v의 화합물을 환원시킴으로써 화학식 1의 화합물을 최종적으로 수득한다.In step (3) of scheme 1, the compound of formula 1 is finally obtained by reducing the compound of formula v.
상기 단계 (3)의 환원 반응은 수소 분위기하에 팔라듐/착콜(Pd/C) 촉매의 존재하에 12 내지 18시간, 예컨대 16시간 동안 수행될 수 있다. 이때, 분산매로는 N-메틸피롤리든, 테트라하이드로퓨란 등이 사용될 수 있다.The reduction reaction of step (3) may be carried out in a hydrogen atmosphere in the presence of a palladium/complex (Pd/C) catalyst for 12 to 18 hours, such as 16 hours. At this time, N-methylpyrrolidone, tetrahydrofuran, etc. may be used as the dispersion medium.
일 실시예에 따르면, 상기 구조를 갖는 디아민을 사용하여 제조된 폴리이미드 전구체의 중량평균분자량은 50,000 g/mol을 초과하여 기계적 물성을 향상시킬 수 있다. 예컨대, 51,000 내지 65,000 g/mol의 중량평균분자량을 가질 수 있다. 분자량이 50,000 g/mol 이하인 경우 폴리이미드 반응성 저하로 인한 용액의 점도 저하가 발생하여 고형분 대비 점도가 낮아 용액 코팅 공정 및 최종 경화 공정시 필름 두께의 제어가 용이하지 않을 수 있다. 또한 분자량이 낮으면 기계적인 물성이 저하되어 필름 강도가 낮아지는 문제가 발생할 수 있다.According to one embodiment, the weight average molecular weight of the polyimide precursor prepared using the diamine having the above structure may exceed 50,000 g/mol to improve mechanical properties. For example, it may have a weight average molecular weight of 51,000 to 65,000 g/mol. When the molecular weight is 50,000 g/mol or less, the viscosity of the solution is lowered due to the decrease in polyimide reactivity, and the viscosity compared to the solid content is low, so it may not be easy to control the film thickness during the solution coating process and the final curing process. In addition, if the molecular weight is low, mechanical properties may be lowered, resulting in a problem that the film strength is lowered.
일 실시예에 따르면, 에스테르기로 연결된 방향족 고리에 질소원자를 포함함으로써, CTC 효과를 감소시켜 광학적 특성을 보다 향상시킬 수 있다.According to one embodiment, by including a nitrogen atom in the aromatic ring connected to the ester group, it is possible to reduce the CTC effect to further improve the optical properties.
일 실시예에 따르면, 상기 화학식 1의 디아민은 하기 화학식 1-1 내지 1-20의 화합물일 수 있다.According to an embodiment, the diamine of Chemical Formula 1 may be a compound of Chemical Formulas 1-1 to 1-20.
Figure PCTKR2019017841-appb-img-000011
.
Figure PCTKR2019017841-appb-img-000011
.
상기 화학식 1에 있어서, 불소(F)를 포함하는 치환기, 예를 들면, 플루오로알킬기와 같은 치환기는, 폴리이미드 구조내 또는 사슬간 packing을 감소시킬 수 있으며, 입체장애 및 전기적 효과로 인해 발색원 간의 전기적인 상호작용을 약화시켜 가시광 영역에서 높은 투명성을 나타내게 할 수 있다. In Chemical Formula 1, a substituent including fluorine (F), for example, a substituent such as a fluoroalkyl group, can reduce packing within a polyimide structure or between chains, and a color source due to steric hindrance and electrical effects. It is possible to weaken the electrical interaction of the liver, thereby exhibiting high transparency in the visible region.
본 발명에 따른 폴리이미드 전구체는, 중합성분으로서 하기 화학식 2의 구조를 갖는 디아민을 포함할 수 있다:The polyimide precursor according to the present invention may include a diamine having the structure of Formula 2 as a polymerization component:
[화학식 2][Formula 2]
Figure PCTKR2019017841-appb-img-000012
Figure PCTKR2019017841-appb-img-000012
상기 화학식 2에 있어서,In Chemical Formula 2,
R 5 및 R 6는 각각 독립적으로 탄소수 1 ~ 20 의 1 가의 유기기이고, 그리고 h 는 3~ 200 의 정수이다.R 5 and R 6 are each independently a monovalent organic group having 1 to 20 carbon atoms, and h is an integer of 3 to 200.
보다 구체적으로, 상기 화학식 2의 화합물은 하기 화학식 2-1의 디아민 화합물일 수 있다.More specifically, the compound of Formula 2 may be a diamine compound of Formula 2-1.
[화학식 2-1][Formula 2-1]
Figure PCTKR2019017841-appb-img-000013
Figure PCTKR2019017841-appb-img-000013
상기 화학식 2-1에 있어서,In Chemical Formula 2-1,
R은 각각 독립적으로 탄소수 1~10의 알킬기 또는 탄소수 6~24의 아릴기이고,R are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 24 carbon atoms,
p 및 q는 몰분율로서 p+q=100 일 때 p는 70~90, q는 10~30 이다. p and q are mole fractions, when p+q=100, p is 70 to 90, and q is 10 to 30.
상기 화학식 2의 화합물은 상기 중합성분의 총 중량에 대해 5 내지 50 중량% 로 포함될 수 있으며, 바람직하게는 전체 중합성분 총 중량에 대해 10 내지 20 중량%로 포함할 수 있다. The compound of Formula 2 may be included in 5 to 50% by weight relative to the total weight of the polymerization component, preferably 10 to 20% by weight relative to the total weight of the total polymerization component.
상기 화학식 2의 구조를 포함하는 중합성분이 총 중량에 대해 과도하게 첨가되면, 폴리이미드의 모듈러스(modulus)와 같은 기계적 특성이 저하될 수 있고, 막 강도가 감소함으로써, 공정 상에서 필름이 찢어지는 등의 물리적 손상이 발생할 수 있다. 또한, 화학식 2의 구조를 갖는 디아민이 과도하게 첨가되는 경우, 상기 실록산 구조를 갖는 고분자로부터 유래되는 Tg가 나타날 수 있으며, 이로부터, 350℃이하의 낮은 공정온도에서 Tg가 나타나게 되어, 350℃이상의 무기막 증착 공정시 고분자의 유동현상으로 인해 필름표면에 주름이 발생하게 되어 무기막이 갈라지는 현상이 발생할 수 있다.When the polymerization component including the structure of Formula 2 is excessively added with respect to the total weight, mechanical properties such as modulus of the polyimide may be deteriorated, and film strength may be reduced, resulting in tearing of the film in the process. Physical damage may occur. In addition, when the diamine having the structure of Formula 2 is excessively added, Tg derived from the polymer having the siloxane structure may appear, and from this, Tg appears at a low process temperature of 350°C or less, During the inorganic film deposition process, wrinkles may occur on the film surface due to the flow phenomenon of the polymer, and the inorganic film may be cracked.
일반적으로, 상기 화학식 2와 같은 실리콘 올리고머 구조를 포함하는 디아민을 중합성분 중에 10 중량% 이상으로 포함하는 폴리이미드의 경우 잔류응력의 저감효과가 높아질 수 있고, 50 중량% 보다 높은 조성에서는 Tg가 390℃보다 낮아져 내열성이 저하될 수 있다.In general, in the case of a polyimide containing 10% by weight or more of a diamine containing a silicone oligomer structure as shown in Chemical Formula 2, the effect of reducing the residual stress may be increased, and Tg is 390 in a composition higher than 50% by weight. It may be lower than ℃ and the heat resistance may be lowered.
반면, 본 발명에 따른 폴리이미드는 전체 중합성분에 대해 10 중량% 이상으로 실리콘 올리고머를 포함함에도 불구하고 Tg를 390℃이상으로 유지할 수 있다. 따라서, 유리전이온도를 390℃이상으로 유지하면서, 실리콘 올리고머 구조에 의한 잔류응력의 감소효과 또한 함께 얻을 수 있다.On the other hand, the polyimide according to the present invention can maintain a Tg of 390° C. or higher even though it contains a silicone oligomer in an amount of 10% by weight or more based on the total polymerization component. Therefore, while maintaining the glass transition temperature above 390°C, the effect of reducing the residual stress due to the silicone oligomer structure can also be obtained.
상기 화학식 2의 구조를 갖는 디아민에 포함된 실리콘 올리고머 구조의 분자량은 4000 g/mol 이상일 수 있으며, 여기서 분자량은 중량평균 분자량을 의미하며, 분자량 계산은 NMR분석 또는 산염기 적정법을 사용하여 아민 또는 이무수물과 같은 반응기의 당량을 계산하는 방식을 사용할 수 있다.The molecular weight of the silicone oligomer structure included in the diamine having the structure of Chemical Formula 2 may be 4000 g/mol or more, wherein the molecular weight means the weight average molecular weight, and the molecular weight calculation is performed using NMR analysis or an acid group titration method. A method of calculating the equivalent of a reactor such as water can be used.
상기 화학식 2의 구조를 포함하는 실리콘 올리고머 구조의 분자량이 4000 g/mol 미만인 경우에는 내열성이 저하될 수 있으며, 예를 들면, 제조된 폴리이미드의 유리전이온도(Tg)가 저하되거나, 열팽창계수가 과도하게 증가할 수 있다.When the molecular weight of the silicone oligomer structure including the structure of Formula 2 is less than 4000 g/mol, heat resistance may be lowered, for example, the glass transition temperature (Tg) of the prepared polyimide may decrease, or the coefficient of thermal expansion may increase. It may increase excessively.
본 발명에 따르면, 폴리이미드 매트릭스 내에 분포되어 있는 실리콘 올리고머 도메인의 크기가 나노사이즈, 예를 들어 1nm~50nm, 또는 5nm~40nm, 또는 10nm~30nm로서 연속상을 가지므로 내열성과 기계적 물성을 유지하면서 잔류 응력을 최소화할 수 있다. 이와 같은 연속상을 가지지 않는 경우에는 잔류 응력 감소효과는 있을 수 있지만 내열성과 기계적 물성이 현저히 감소하여 공정에 이용하기가 곤란하다.According to the present invention, the size of the silicon oligomer domains distributed in the polyimide matrix is nano-sized, for example, 1 nm to 50 nm, or 5 nm to 40 nm, or 10 nm to 30 nm, so that it has a continuous phase, thus maintaining heat resistance and mechanical properties. Residual stress can be minimized. In the case of not having such a continuous phase, there may be a residual stress reduction effect, but it is difficult to use in the process due to a significant decrease in heat resistance and mechanical properties.
여기서 실리콘 올리고머의 도메인은 실리콘 올리고머 구조를 갖는 폴리머가 분포하는 영역을 의미하며, 그 크기는 해당 영역을 둘러싸는 원의 직경을 지칭하는 것으로 한다. Here, the domain of the silicone oligomer means a region in which a polymer having a silicone oligomer structure is distributed, and its size refers to the diameter of a circle surrounding the region.
실리콘 올리고머 구조를 포함하는 부분(도메인)이 폴리이미드 매트릭스 내에 연속상으로 연결되어 있는 것이 바람직한데, 여기서 연속상이라는 것은 나노사이즈의 도메인이 균일하게 분포하고 있는 형상을 의미한다.It is preferable that the part (domain) containing the silicone oligomer structure is connected in a continuous phase in the polyimide matrix, wherein the continuous phase means a shape in which nano-sized domains are uniformly distributed.
따라서, 본 발명은 고분자량을 갖는 실리콘 올리고머 임에도 불구하고, 폴리이미드 매트릭스 내에서 상분리 없이 균일하게 분포될 수 있어 헤이즈 특성이 저하되어 보다 투명한 특성을 갖는 폴리이미드를 얻을 수 있을 뿐만 아니라, 실리콘 올리고머 구조가 연속상으로 존재함으로 폴리이미드의 기계적 강도 및 스트레스 완화 효과를 보다 효율적으로 향상시켜 줄 수 있다. 이러한 특성으로부터, 본 발명에 따른 조성물은 열적 특성 및 광학적 특성뿐만 아니라, 코팅-경화 후 기판이 휘어지는 현상이 감소하여 평평한 폴리이미드 필름을 제공할 수 있다.Therefore, although the present invention is a silicone oligomer having a high molecular weight, it can be uniformly distributed in the polyimide matrix without phase separation, so that haze characteristics are reduced to obtain a polyimide having more transparent characteristics, as well as a silicone oligomer structure. Because it exists as a continuous phase, the mechanical strength and stress relieving effect of polyimide can be improved more efficiently. From these properties, the composition according to the present invention can provide a flat polyimide film by reducing thermal and optical properties, as well as reducing the phenomenon of substrate warping after coating-curing.
본 발명은 실리콘 올리고머 구조를 폴리이미드 구조에 삽입함으로써, 폴리이미드의 모듈러스 강도를 적절히 향상시킬 수 있고 외력에 의한 스트레스 또한 완화시켜 줄 수 있다. 이때, 실리콘 올리고머 구조를 포함하는 폴리이미드는 극성을 나타낼 수 있으며, 실록산 구조를 포함하지 않는 폴리이미드 구조와 극성 차이로 인한 상분리가 발생할 수 있으며, 이로 인해 실록산 구조가 폴리이미드 구조 전반에 불균일하게 분포될 수 있다. 이 경우에는 실록산 구조에 의한 폴리이미드의 강도 향상 및 스트레스 완화 효과와 같은 물성 향상효과를 나타내기 어려울 뿐만 아니라, 상분리로 인해 헤이즈가 증가하여 필름의 투명성이 저하될 수 있다. 특히, 실록산 구조를 포함하는 디아민이 고분자량을 갖는 경우에 이로부터 제조된 폴리이미드는 그 극성이 더욱 극명하게 나타나, 폴리이미드 간의 상분리 현상이 보다 극명하게 나타날 수 있다. 이때, 저분자량의 구조를 갖는 실록산 디아민을 사용할 경우에는 스트레스 완화 등의 효과를 나타내기 위해서는 많은 양을 첨가하여야 하며, 이는 낮은 온도에서 Tg가 발생하는 등의 공정상의 문제가 발생시킬 수 있고, 이로 인해 폴리이미드 필름의 물리적 특성이 저하될 수 있다. 이에, 고분자량의 실록산 디아민을 첨가하는 경우에는 relaxation segment가 분자 내에 크게 형성될 수 있으며, 따라서 저분자량을 첨가하는 것에 비해 적은 함량으로도 효과적으로 스트레스 완화 효과를 나타낼 수 있다. 따라서, 본 발명은 상기 고분자량을 갖는 실록산 구조를 갖는 화학식 2의 화합물을 사용함으로써, 폴리이미드 매트릭스상에 상 분리 없이 보다 고르게 분포될 수 있다.In the present invention, by inserting the silicone oligomer structure into the polyimide structure, the modulus strength of the polyimide can be appropriately improved, and stress caused by external force can also be relieved. At this time, a polyimide containing a silicone oligomer structure may exhibit polarity, and phase separation may occur due to a polarity difference with a polyimide structure that does not include a siloxane structure, whereby the siloxane structure is unevenly distributed throughout the polyimide structure. Can be. In this case, it is difficult to exhibit a property improvement effect such as strength improvement and stress relaxation effect of the polyimide by the siloxane structure, and haze increases due to phase separation, so that the transparency of the film may be deteriorated. In particular, when the diamine containing the siloxane structure has a high molecular weight, the polarity of the polyimide prepared therefrom may be more apparent, and the phase separation phenomenon between the polyimides may be more pronounced. At this time, when using a siloxane diamine having a low molecular weight structure, a large amount must be added in order to exhibit an effect such as stress relaxation, which may cause process problems such as Tg occurring at a low temperature. Due to this, the physical properties of the polyimide film may be deteriorated. Accordingly, when a high molecular weight siloxane diamine is added, a relaxation segment may be largely formed in the molecule, and thus a stress relaxation effect can be effectively exhibited even in a small amount compared to the addition of a low molecular weight. Therefore, the present invention can be more evenly distributed without phase separation on the polyimide matrix by using the compound of Formula 2 having the siloxane structure having the high molecular weight.
일 실시예에 따르면, 상기 폴리이미드 전구체를 중합하기 위해 사용되는 산이무수물은 테트라카르복실산 이무수물이 사용될 수 있으며, 예를 들면, 상기 테트라카르복실산 이무수물로서, 분자내 방향족, 지환족, 또는 지방족의 4가 유기기, 또는 이들의 조합기로서, 지방족, 지환족 또는 방향족의 4가 유기기가 가교구조를 통해 서로 연결된 4가 유기기를 포함하는 테트라카르복실산 이무수물을 사용할 수 있다. 바람직하게는 일환식 또는 다환식 방향족, 일환식 또는 다환식 지환족, 또는 이들 중 둘 이상이 단일결합 또는 관능기로 연결된 구조를 갖는 산이무수물을 포함할 수 있다. 또는, 방향족, 지환족 등의 고리구조가 단독, 또는 접합(fused)된 복소환 고리 구조, 또는 단일결합으로 연결된 구조와 같은 강직(rigid)한 구조를 갖는 4가 유기기를 포함하는 테트라카르복실산 이무수물을 포함할 수 있다.According to an embodiment, as the acid dianhydride used to polymerize the polyimide precursor, a tetracarboxylic dianhydride may be used, for example, as the tetracarboxylic dianhydride, intramolecular aromatic, alicyclic, Alternatively, as an aliphatic tetravalent organic group, or a combination thereof, a tetracarboxylic dianhydride containing a tetravalent organic group in which an aliphatic, alicyclic or aromatic tetravalent organic group is connected to each other through a crosslinked structure can be used. Preferably, it may include an acid dianhydride having a monocyclic or polycyclic aromatic, monocyclic or polycyclic alicyclic group, or a structure in which two or more of them are connected by a single bond or a functional group. Or, a tetracarboxylic acid containing a tetravalent organic group having a rigid structure, such as a heterocyclic ring structure in which a ring structure such as aromatic or cycloaliphatic is single or fused, or a structure connected by a single bond. It may contain dianhydride.
예를 들면, 상기 테트라카르복실산 이무수물은 하기 화학식 3a 내지 3e의 구조를 갖는 4가 유기기를 포함하는 것일 수 있다:For example, the tetracarboxylic dianhydride may include a tetravalent organic group having the structures of Formulas 3a to 3e:
[화학식 3a][Formula 3a]
Figure PCTKR2019017841-appb-img-000014
Figure PCTKR2019017841-appb-img-000014
[화학식 3b][Formula 3b]
Figure PCTKR2019017841-appb-img-000015
Figure PCTKR2019017841-appb-img-000015
[화학식 3c][Formula 3c]
Figure PCTKR2019017841-appb-img-000016
Figure PCTKR2019017841-appb-img-000016
[화학식 3d][Formula 3d]
Figure PCTKR2019017841-appb-img-000017
Figure PCTKR2019017841-appb-img-000017
[화학식 3e][Formula 3e]
Figure PCTKR2019017841-appb-img-000018
Figure PCTKR2019017841-appb-img-000018
상기 화학식 3a 내지 3e에서, R 11 내지 R 17 은 각각 독립적으로 -F, -Cl, -Br 및 -I로부터 선택되는 할로겐 원자, 하이드록실기(-OH), 티올기(-SH), 니트로기(-NO 2), 시아노기, 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 4의 할로게노알콕시, 탄소수 1 내지 10의 할로게노알킬, 탄소수 6 내지 20의 아릴기에서 선택되는 것일 수 있고,In Formulas 3a to 3e, R 11 to R 17 are each independently a halogen atom selected from -F, -Cl, -Br, and -I, hydroxyl group (-OH), thiol group (-SH), nitro group (-NO 2 ), a cyano group, an alkyl group having 1 to 10 carbon atoms, a halogenoalkoxy having 1 to 4 carbon atoms, a halogenoalkyl having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms,
a1은 0 내지 2의 정수, a2는 0 내지 4의 정수, a3는 0 내지 8의 정수, a4 및 a5는 각각 독립적으로 0 내지 3의 정수, a6 및 a9는 각각 독립적으로 0 내지 3의 정수, 그리고 a7 및 a8은 각각 독립적으로 0 내지 7의 정수일 수 있으며,a1 is an integer from 0 to 2, a2 is an integer from 0 to 4, a3 is an integer from 0 to 8, a4 and a5 are each independently an integer from 0 to 3, a6 and a9 are each independently an integer from 0 to 3, And a7 and a8 may be each independently an integer of 0 to 7,
A 11 및 A 12는 각각 독립적으로 단일결합, -O-, -CR'R"-(이때, R' 및 R"은 각각 독립적으로 수소원자, 탄소수 1 내지 10의 알킬기(예를 들면, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 펜틸기 등) 및 탄소수 1 내지 10의 할로알킬기(예를 들면, 트리플루오로메틸기 등)로 이루어진 군으로부터 선택되는 것임), -C(=O)-, -C(=O)O-, -C(=O)NH-, -S-, -SO-, -SO 2-, -O[CH 2CH 2O]y-(y는 1 내지 44의 정수임), -NH(C=O)NH-, -NH(C=O)O-, 탄소수 6 내지 18의 일환식 또는 다환식의 시클로알킬렌기(예를 들면, 시클로헥실렌기 등), 탄소수 6 내지 18의 일환식 또는 다환식의 아릴렌기(예를 들면, 페닐렌기, 나프탈렌기, 플루오레닐렌기등), 및 이들의 조합으로 이루어진 군에서 선택될 수 있으며,A 11 and A 12 are each independently a single bond, -O-, -CR'R"- (where R'and R" are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms (for example, a methyl group, Ethyl groups, propyl groups, isopropyl groups, n-butyl groups, tert-butyl groups, pentyl groups, etc.) and haloalkyl groups having 1 to 10 carbon atoms (for example, those selected from trifluoromethyl groups, etc.) , -C(=O)-, -C(=O)O-, -C(=O)NH-, -S-, -SO-, -SO 2 -, -O[CH 2 CH 2 O]y -(y is an integer from 1 to 44), -NH(C=O)NH-, -NH(C=O)O-, monocyclic or polycyclic cycloalkylene group having 6 to 18 carbon atoms (for example, A cyclohexylene group, etc.), a monocyclic or polycyclic arylene group having 6 to 18 carbon atoms (for example, a phenylene group, a naphthalene group, a fluorenylene group, etc.), and combinations thereof. ,
또는, 상기 테트라카르복실산 이무수물은 하기 화학식 4a 내지 4n으로 이루어진 군으로부터 선택되는 4가 유기기를 포함하는 것일 수 있다.Alternatively, the tetracarboxylic dianhydride may include a tetravalent organic group selected from the group consisting of the following Chemical Formulas 4a to 4n.
Figure PCTKR2019017841-appb-img-000019
Figure PCTKR2019017841-appb-img-000019
상기 화학식 4a 내지 4n의 4가 유기기내 1 이상의 수소원자는 -F, -Cl, -Br 및 -I로부터 선택되는 할로겐 원자, 하이드록실기(-OH), 티올기(-SH), 니트로기(-NO 2), 시아노기, 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 4의 할로게노알콕시, 탄소수 1 내지 10의 할로게노알킬, 탄소수 6 내지 20의 아릴기에서 선택되는 치환체로 치환될 수 있다. 예를 들면, 상기 할로겐 원자는 플루오로(-F)일 수 있으며, 할로게노알킬기는 플루오로 원자를 포함하는 탄소수 1 내지 10의 플루오로알킬기로서, 플루오로메틸기, 퍼플루오로에틸기, 트리플루오로메틸기 등에서 선택되는 것일 수 있으며, 상기 알킬기는 메틸기, 에틸기, 프로필기, 이소프로필기, t-부틸기, 펜틸기, 헥실기에서 선택되는 것일 수 있고, 상기 아릴기는 페닐기, 나프탈레닐기에서 선택되는 것 일 수 있으며, 보다 바람직하게는 플루오로원자 및 플로오로알킬기 등의 플루오로 원자를 포함하는 치환기일 수 있다.One or more hydrogen atoms in the tetravalent organic groups of the formulas 4a to 4n are halogen atoms selected from -F, -Cl, -Br and -I, hydroxyl group (-OH), thiol group (-SH), nitro group ( -NO 2 ), a cyano group, an alkyl group having 1 to 10 carbon atoms, a halogenoalkoxy having 1 to 4 carbon atoms, a halogenoalkyl having 1 to 10 carbon atoms, and a substituent group having 6 to 20 carbon atoms. For example, the halogen atom may be fluoro (-F), the halogenoalkyl group is a fluoroalkyl group having 1 to 10 carbon atoms containing a fluoro atom, fluoromethyl group, perfluoroethyl group, trifluoro It may be selected from methyl groups, and the alkyl group may be selected from methyl groups, ethyl groups, propyl groups, isopropyl groups, t-butyl groups, pentyl groups, and hexyl groups, and the aryl groups are selected from phenyl groups and naphthalenyl groups. It may be, and more preferably, it may be a substituent containing a fluoro atom such as a fluoro atom and a fluoroalkyl group.
또는, 상기 테트라카르복실산 이무수물은, 방향족 고리 또는 지방족 구조가 각각의 고리구조가 강직(rigid)한 구조, 즉, 단일 고리 구조, 각각의 고리가 단일결합으로 결합된 구조 또는 각각의 고리가 직접적으로 연결된 복소환 구조를 포함하는 4가 유기기를 포함하는 것 일 수 있다.Alternatively, the tetracarboxylic dianhydride has an aromatic ring or an aliphatic structure in which each ring structure is rigid, that is, a single ring structure, a structure in which each ring is bonded by a single bond, or each ring. It may be one containing a tetravalent organic group containing a heterocyclic structure directly connected.
일 실시예에 따르면, 폴리이미드 전구체 중합시 상기 화학식 1의 디아민 이외에 1종 이상의 디아민이 더 포함될 수 있으며, 예를 들면, 탄소수 6 내지 24의 일환식 또는 다환식 방향족 2가 유기기, 탄소수 6 내지 18의 일환식 또는 다환식 지환족 2가 유기기, 또는 이들 중 둘 이상이 단일결합이나 관능기로 연결된 구조를 포함하는 2가 유기기 선택되는 2가 유기기 구조를 포함하는 디아민을 포함할 수 있으며, 또는, 방향족, 지환족 등의 고리구조 화합물이 단독, 또는 접합(fused)된 복소환 고리 구조, 또는 단일결합으로 연결된 구조와 같은 강직(rigid)한 구조를 갖는 2가 유기기로부터 선택되는 것 일 수 있다.According to one embodiment, when polymerizing the polyimide precursor, one or more diamines may be further included in addition to the diamine of Chemical Formula 1, for example, a monocyclic or polycyclic aromatic divalent organic group having 6 to 24 carbon atoms, or 6 to 6 carbon atoms. The monocyclic or polycyclic alicyclic divalent organic group of 18, or a diamine containing a divalent organic group structure selected from a divalent organic group including a structure in which two or more of them are connected by a single bond or a functional group may be included, Or, a heterocyclic ring structure in which a ring structure compound such as an aromatic or alicyclic compound is singly or fused is selected from a divalent organic group having a rigid structure such as a structure connected by a single bond. Can be
예를 들면, 상기 디아민은, 하기 화학식 5a 내지 5e 로부터 선택되는 2가 유기기를 포함하는 것일 수 있다.For example, the diamine may include a divalent organic group selected from the following formulas 5a to 5e.
[화학식 5a][Formula 5a]
Figure PCTKR2019017841-appb-img-000020
Figure PCTKR2019017841-appb-img-000020
[화학식 5b][Formula 5b]
Figure PCTKR2019017841-appb-img-000021
Figure PCTKR2019017841-appb-img-000021
[화학식 5c][Formula 5c]
Figure PCTKR2019017841-appb-img-000022
Figure PCTKR2019017841-appb-img-000022
[화학식 5d][Formula 5d]
Figure PCTKR2019017841-appb-img-000023
Figure PCTKR2019017841-appb-img-000023
[화학식 5e][Formula 5e]
Figure PCTKR2019017841-appb-img-000024
Figure PCTKR2019017841-appb-img-000024
상기 화학식 5a 내지 5e에서,In the above formulas 5a to 5e,
R 21 내지 R 27은 각각 독립적으로 -F, -Cl, -Br 및 -I로부터 선택되는 할로겐 원자, 하이드록실기(-OH), 티올기(-SH), 니트로기(-NO 2), 시아노기, 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 4의 할로게노알콕시, 탄소수 1 내지 10의 할로게노알킬, 탄소수 6 내지 20의 아릴기로 이루어진 군에서 선택될 수 있다. R 21 to R 27 are each independently a halogen atom selected from -F, -Cl, -Br and -I, hydroxyl group (-OH), thiol group (-SH), nitro group (-NO 2 ), cyan It may be selected from the group consisting of a no-group, an alkyl group having 1 to 10 carbon atoms, a halogenoalkoxy having 1 to 4 carbon atoms, a halogenoalkyl having 1 to 10 carbon atoms, and an aryl group having 6 to 20 carbon atoms.
또, A 21 및 A 22는 각각 독립적으로 단일결합, -O-, -CR'R"-(이때, R' 및 R"은 각각 독립적으로 수소원자, 탄소수 1 내지 10의 알킬기(예를 들면, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 펜틸기 등) 및 탄소수 1 내지 10의 할로알킬기(예를 들면, 트리플루오로메틸기 등)로 이루어진 군으로부터 선택되는 것임), -C(=O)-, -C(=O)O-, -C(=O)NH-, -S-, -SO-, -SO 2-, -O[CH 2CH 2O]y-(y는 1 내지 44의 정수임), -NH(C=O)NH-, -NH(C=O)O-, 탄소수 6 내지 18의 일환식 또는 다환식의 시클로알킬렌기(예를 들면, 시클로헥실렌기 등), 탄소수 6 내지 18의 일환식 또는 다환식의 아릴렌기(예를 들면, 페닐렌기, 나프탈렌기, 플루오레닐렌기등), 및 이들의 조합으로 이루어진 군에서 선택될 수 있으며,In addition, A 21 and A 22 are each independently a single bond, -O-, -CR'R"- (where R'and R" are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms (for example, Methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, pentyl group, etc.) and haloalkyl group having 1 to 10 carbon atoms (for example, trifluoromethyl group, etc.) Will be), -C(=O)-, -C(=O)O-, -C(=O)NH-, -S-, -SO-, -SO 2 -, -O[CH 2 CH 2 O ]y-(y is an integer from 1 to 44), -NH(C=O)NH-, -NH(C=O)O-, monocyclic or polycyclic cycloalkylene group having 6 to 18 carbon atoms (for example For example, a cyclohexylene group, etc., a monocyclic or polycyclic arylene group having 6 to 18 carbon atoms (e.g., a phenylene group, a naphthalene group, a fluorenylene group, etc.), and combinations thereof Can,
b1은 0 내지 4의 정수이고, b2는 0 내지 6의 정수이며, b3은 0 내지 3의 정수이고, b4 및 b5는 각각 독립적으로 0 내지 4의 정수이고, b7 및 b8은 각각 독립적으로 0 내지 9의 정수이고, b6 및 b9는 각각 독립적으로 0 내지 3의 정수이다.b1 is an integer from 0 to 4, b2 is an integer from 0 to 6, b3 is an integer from 0 to 3, b4 and b5 are each independently integers from 0 to 4, b7 and b8 are each independently 0 to It is an integer of 9, and b6 and b9 are each independently an integer of 0-3.
예를 들면, 상기 디아민은 하기 화학식 6a 내지 6p 로부터 선택되는 2가 유기기를 포함하는 것일 수 있다.For example, the diamine may include a divalent organic group selected from the following formulas 6a to 6p.
Figure PCTKR2019017841-appb-img-000025
Figure PCTKR2019017841-appb-img-000025
또는, 상기 디아민은 방향족 고리 또는 지방족 구조가 강직(rigid)한 사슬구조를 형성하는 2가 유기기를 포함하는 것일 수 있으며, 예를 들면, 단일 고리 구조, 각각의 고리가 단일결합으로 결합된 구조 또는 각각의 고리가 직접적으로 접합(fused)된 복소환 고리 구조를 포함하는 2가 유기기 구조를 포함할 수 있다.Alternatively, the diamine may include a divalent organic group forming a rigid chain structure of an aromatic ring or an aliphatic structure, for example, a single ring structure, a structure in which each ring is bonded by a single bond, or Each ring may include a divalent organic group structure including a fused heterocyclic ring structure.
본 발명의 일 실시예에 따르면, 산이무수물 및 디아민은 1:1.1~1.1:1 몰비로 반응될 수 있다. 상기 반응 몰비는 의도하는 반응성 및 공정성에 따라 변화될 수 있다. According to an embodiment of the present invention, the acid dianhydride and diamine may be reacted in a molar ratio of 1:1.1 to 1.1:1. The reaction molar ratio may be changed according to intended reactivity and fairness.
본 발명의 일 실시예에 따르면, 상기 산이무수물 및 디아민의 몰비는 1:0.98 내지 0.98:1, 바람직하게는 1:0.99 내지 0.99:1일 수 있다.According to an embodiment of the present invention, the molar ratio of the acid dianhydride and diamine may be 1:0.98 to 0.98:1, preferably 1:0.99 to 0.99:1.
산이무수물과 다이아민계 화합물의 중합 반응은, 용액 중합 등 통상의 폴리이미드 또는 그 전구체의 중합 방법에 따라 실시될 수 있다.The polymerization reaction of the acid dianhydride and the diamine-based compound can be carried out according to a conventional polymerization method of polyimide or its precursor, such as solution polymerization.
폴리아믹산 중합반응시 사용가능한 유기용매로는, 감마-부티로락톤, 1,3-디메틸-2-이미다졸리디논, 메틸에틸케톤, 시클로헥사논, 시클로펜타논, 4-하이드록시-4-메틸-2-펜타논 등의 케톤류; 톨루엔, 크실렌, 테트라메틸벤젠 등의 방향족 탄화수소류; 에틸렌글리콜모노에틸에테르, 에틸렌글리콜모노메틸에테르, 에틸렌글리콜모노부틸에테르, 디에틸렌글리콜모노에틸에테르, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노에틸에테르, 디프로필렌글리콜디에틸에테르, 트리에틸렌글리콜모노에틸에테르 등의 글리콜에테르류(셀로솔브); 아세트산에틸, 아세트산부틸, 에틸렌글리콜모노에틸에테르아세테이트, 에틸렌글리콜모노부틸에테르아세테이트, 디에틸렌글리콜모노에틸에테르아세테이트, 디프로필렌글리콜모노메틸에테르아세테이트, 에탄올, 프로판올, 에틸렌글리콜, 프로필렌글리콜, 카르비톨, 디메틸프로피온아마이드(dimethylpropionamide, DMPA), 디에틸프로피온아마이드(diethylpropionamide, DEPA), 디메틸아세트아미드(DMAc), N,N-디에틸아세트아미드, 디메틸포름아미드(DMF), 디에틸포름아미드(DEF), N-메틸피롤리돈(NMP), N-에틸피롤리돈(NEP), N,N-디메틸메톡시아세트아미드, 디메틸술폭사이드, 피리딘, 디메틸술폰, 헥사메틸포스포르아미드, 테트라메틸우레아, N-메틸카프로락탐, 테트라히드로퓨란, m-디옥산, P-디옥산, 1,2-디메톡시에탄, 비스(2-메톡시에틸)에테르, 1,2-비스(2-메톡시에톡시)에탄, 비스[2-(2-메톡시에톡시)]에테르, 에크아마이드(Equamide)M100, 에크아마이드(Equamide)B100 등일 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.Organic solvents that can be used in the polyamic acid polymerization reaction include gamma-butyrolactone, 1,3-dimethyl-2-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone, and 4-hydroxy-4- Ketones such as methyl-2-pentanone; Aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene; Ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether , Glycol ethers such as dipropylene glycol diethyl ether and triethylene glycol monoethyl ether (cellosolve); Ethyl acetate, butyl acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, dipropylene glycol monomethyl ether acetate, ethanol, propanol, ethylene glycol, propylene glycol, carbitol, dimethyl Dimethylpropionamide (DMPA), diethylpropionamide (DEPA), dimethylacetamide (DMAc), N,N-diethylacetamide, dimethylformamide (DMF), diethylformamide (DEF), N -Methylpyrrolidone (NMP), N-ethylpyrrolidone (NEP), N,N-dimethylmethoxyacetamide, dimethylsulfoxide, pyridine, dimethylsulfone, hexamethylphosphoramide, tetramethylurea, N- Methylcaprolactam, tetrahydrofuran, m-dioxane, P-dioxane, 1,2-dimethoxyethane, bis(2-methoxyethyl)ether, 1,2-bis(2-methoxyethoxy)ethane , Bis[2-(2-methoxyethoxy)]ether, Equamide M100, Equamide B100, and the like, or a mixture of two or more of them may be used.
일 실시예에 따르면, 상기 중합성분을 중합하는 유기용매로서 25℃분배계수 LogP가 양수인 용매를 사용할 수 있다. LogP가 양수인 유기용매를 사용함에 따라 메틸페닐실리콘 올리고머가 10 중량% 이상으로 포함되는 조성에서도 Tg를 390℃이상의 높은 온도로 유지할 수 있다.According to one embodiment, as the organic solvent for polymerizing the polymerization component, a solvent having a positive distribution coefficient of 25°C LogP may be used. By using an organic solvent in which LogP is a positive number, Tg can be maintained at a high temperature of 390°C or higher even in a composition in which methylphenylsilicone oligomer is contained in an amount of 10 wt% or more.
또한, 상기와 같은 분배계수가 양수인 유기용매는 플렉서블(flexible)한 폴리이미드 반복구조와 실리콘 올리고머와 같은 실록산 구조를 포함하는 폴리이미드 구조의 극성 차이로 인한 상분리로 인해 발생되는 백탁현상을 감소시킬 수 있다. 종래에는 이러한 상분리를 해결하기 위해 2종의 유기용매를 사용하였으나, 상기와 같은 유기용매를 사용하는 것 만으로도 백탁현상을 감소시킬 수 있어, 보다 투명한 폴리이미드 필름을 제조할 수 있다.In addition, the organic solvent having a positive partition coefficient as described above may reduce turbidity caused by phase separation due to a polarity difference between a flexible polyimide repeating structure and a polyimide structure including a siloxane structure such as a silicone oligomer. have. Conventionally, two types of organic solvents have been used to solve the phase separation. However, the whitening phenomenon can be reduced by using only the organic solvents described above, so that a more transparent polyimide film can be produced.
상기한 문제를 해결하기 위해 극성 용매와 비극성 용매를 혼합하여 사용하는 방법도 있으나, 극성 용매의 경우 휘발성이 높은 경향이 있으며, 따라서 제조공정상에서 미리 휘발되는 등의 문제가 발생할 수 있으며, 이 때문에 공정의 재현성이 저하되는 등의 문제가 발생할 수 있을 뿐만 아니라, 상분리 문제를 완전히 개선하지 못할 수 있어, 제조된 폴리이미드 필름의 헤이즈(Haze)가 높아져 투명도가 저하될 수 있다. In order to solve the above problem, there is a method of mixing and using a polar solvent and a non-polar solvent, but in the case of a polar solvent, there is a tendency of high volatility, and thus problems such as volatilization in advance in the manufacturing process may occur. Not only may problems such as deterioration of reproducibility, but the phase separation problem may not be completely improved, the haze of the prepared polyimide film may be increased, and transparency may be lowered.
보다 구체적으로는 용매의 분자가 양쪽친매성을 갖는 구조를 포함하는 용매를 사용함으로써, 극성 용매를 사용함에 따른 공정상의 문제를 해결할 수 있을 뿐만 아니라, 양쪽친매성을 갖는 분자구조로 인해 1종류의 용매만을 사용하더라도 폴리이미드를 고르게 분포시킬 수 있어 상분리로 인한 문제를 해결하는데 매우 적합하며, 이로 인해 헤이즈(Haze) 특성이 현저히 개선된 폴리이미드를 제공할 수 있다.More specifically, by using a solvent containing a structure in which the molecules of the solvent have an amphiphilic structure, it is possible to solve a process problem due to the use of a polar solvent, as well as one type due to the molecular structure having an amphiphilic property. Even if only a solvent is used, the polyimide can be evenly distributed, which makes it very suitable for solving problems caused by phase separation, thereby providing a polyimide in which haze characteristics are significantly improved.
상기 분배계수 값이 양수인 경우에는 용매의 극성이 소수성임을 의미하는데, 본 발명자들의 연구에 따르면 분배계수 값이 양수인 특정 용매를 사용하여 폴리이미드 전구체 조성물을 제조하면, 에지백 현상이 개선되는 것을 알 수 있었다. 또한, 본 발명은 상기와 같이 Log P가 양수인 용매를 사용함으로써, 레벨링제와 같은 소재의 표면장력 및 도막의 평활성을 조절하는 첨가제를 사용하지 않고도 용액의 에지백 현상을 제어할 수 있으며, 이는 첨가제 등의 부가적인 첨가제를 사용하지 않으므로 최종 생성물에 저분자 물질이 함유되는 등의 품질 및 공정상의 문제를 제거할 수 있을 뿐만 아니라 보다 효율적으로 균일한 특성을 갖는 폴리이미드 필름을 형성할 수 있는 효과가 있다.When the distribution coefficient value is positive, it means that the polarity of the solvent is hydrophobic. According to the research of the present inventors, it can be seen that when the polyimide precursor composition is prepared using a specific solvent having a positive distribution coefficient value, the edge back phenomenon is improved. there was. In addition, the present invention can control the edge back phenomenon of the solution without using additives that control the surface tension of the material such as a leveling agent and the smoothness of the coating film by using a solvent in which Log P is positive as described above, which is an additive Since no additional additives such as are used, it is possible to remove quality and process problems such as the low-molecular substance content in the final product, as well as more efficiently to form a polyimide film having uniform properties. .
예를 들면, 폴리이미드 전구체 조성물을 유리기판에 코팅하는 공정에 있어서, 경화시 또는 습도조건의 코팅액의 방치조건에서 코팅층의 수축으로 인한 에지백 현상이 발생할 수 있다. 이러한 코팅 용액의 에지백 현상은 필름의 두께의 편차를 초래할 수 있어, 이에 의한 필름의 내굴곡성의 부족으로 필름이 끊어지거나 컷팅시 모서리가 부스러지는 현상이 나타나 공정상의 작업성이 나쁘고 수율이 저하되는 문제가 발생할 수 있다.For example, in the process of coating the polyimide precursor composition on the glass substrate, an edge back phenomenon may occur due to shrinkage of the coating layer during curing or under the condition of leaving the coating solution in a humidity condition. The edge back phenomenon of such a coating solution may cause a variation in the thickness of the film, and thus, the film may be cut off due to a lack of bending resistance of the film, or a corner may be broken when cutting, resulting in poor process workability and reduced yield. Problems may arise.
또한, 기판상에 도포된 폴리이미드 전구체 조성물에 극성을 갖는 미세 이물질이 유입되는 경우, Log P가 음수인 극성의 용매를 포함하는 폴리이미드 전구체 조성물에서는 상기 이물질이 갖는 극성에 의해 이물질의 위치를 기준으로 산발적인 코팅의 균열 또는 두께변화가 일어날 수 있으나, Log P가 양수인 소수성의 용매를 사용하는 경우에는 극성을 갖는 미세 이물질이 유입되는 경우에도 코팅의 균열로 인한 두께변화 등의 발생이 감소 또는 억제될 수 있다.In addition, when a fine foreign matter having polarity is introduced into the polyimide precursor composition applied on the substrate, in the polyimide precursor composition including a polar polar solvent having a negative log P, the position of the foreign matter is determined based on the polarity of the foreign matter. As a result, sporadic coating cracking or thickness change may occur, but when a hydrophobic solvent having a positive log P is used, even when fine foreign matter having polarity is introduced, the occurrence of thickness changes due to cracking of the coating is reduced or suppressed. Can be.
구체적으로, Log P가 양수인 용매를 포함하는 폴리이미드 전구체 조성물은, 하기 식 1로 정의되는 에지백율(edge back ratio)이 0% 내지 0.1% 이하일 수 있다.Specifically, in the polyimide precursor composition including a solvent in which Log P is a positive number, an edge back ratio defined by the following Equation 1 may be 0% to 0.1% or less.
[식 1][Equation 1]
에지백율(%) = [(A-B)/A]Х100Edge percentage (%) = [(A-B)/A]Х100
상기 식 1에 있어서,In the above formula 1,
A: 기판 (100mmΥ100mm) 상에 폴리이미드 전구체 조성물이 완전히 코팅된 상태에서의 면적이고,A: The area in the state where the polyimide precursor composition is completely coated on the substrate (100 mm Υ 100 mm),
B: 폴리이미드 전구체 조성물 또는 PI 필름이 코팅된 기판의 가장자리 끝단 에서부터 에지백 현상이 발생한 후의 면적이다.B: This is the area after the edge back phenomenon occurs from the edge end of the polyimide precursor composition or the PI film coated substrate.
이러한 폴리이미드 전구체 조성물 및 필름의 에지백(edge back) 현상은 폴리이미드 전구체 조성물 용액을 코팅한 후 30분 이내에 발생될 수 있으며, 특히, 가장자리부터 말려 들어가기 시작함으로써 가장자리의 두께를 두껍게 만들 수 있다.The edge back phenomenon of the polyimide precursor composition and the film may occur within 30 minutes after coating the solution of the polyimide precursor composition, and in particular, the thickness of the edge may be increased by starting to roll from the edge.
본 발명에 따른 폴리이미드 전구체 조성물을 기판에 코팅한 후 10분 이상, 예를 들면 10분 이상, 예를 들면 40분 이상의 시간 동안 습도조건에서 방치한 후의 상기 코팅된 수지 조성물 용액의 에지백율이 0.1% 이하일 수 있으며, 예를 들면, 20 ~ 30℃의 온도에서, 40% 이상의 습도조건, 보다 구체적으로는 40% 내지 80% 범위의 습도조건, 즉, 40%, 50%, 60%, 70%, 80% 각각의 습도 조건에서, 예를 들면, 50%의 습도조건에서 10 내지 50분간 방치된 이후에도 0.1% 이하의 매우 작은 에지백율을 나타낼 수 있으며, 바람직하게는 0.05%, 보다 바람직하게는 거의 0%에 가까운 에지백율을 나타낼 수 있다.After coating the polyimide precursor composition according to the present invention on a substrate for 10 minutes or more, for example, 10 minutes or more, for example, 40 minutes or more, the edge percentage of the coated resin composition solution after being left in a humidity condition is 0.1 % Or less, for example, at a temperature of 20 to 30°C, a humidity condition of 40% or more, more specifically, a humidity condition in the range of 40% to 80%, that is, 40%, 50%, 60%, 70% , 80% in each humidity condition, for example, even after standing for 10 to 50 minutes at a humidity condition of 50% may exhibit a very small edge percentage of less than 0.1%, preferably 0.05%, more preferably almost It can show an edge percentage close to 0%.
상기와 같은 에지백율은 경화 이후에도 유지되는 것이며, 예를 들면, 폴리이미드 전구체 조성물을 기판에 코팅한 후 10분 이상, 예를 들면 20 ~ 30℃의 온도에서, 40% 이상의 습도조건, 보다 구체적으로는 40% 내지 80% 범위의 습도조건, 즉, 40%, 50%, 60%, 70%, 80% 각각의 습도 조건에서, 예를 들면 50%의 습도조건에서 10 내지 50분간 방치한 후 경화된 폴리이미드 필름의 에지백율이 0.1% 이하일 수 있으며, 즉, 열처리에 의한 경화 공정에서도 에지백 현상이 거의 일어나지 않거나 없을 수 있으며, 구체적으로는, 0.05%, 보다 바람직하게는 거의 0%에 가까운 에지백율을 나타낼 수 있다.The edge percentage as described above is maintained even after curing, for example, after coating the polyimide precursor composition on the substrate for 10 minutes or more, for example, at a temperature of 20 to 30° C., a humidity condition of 40% or more, more specifically Is cured after being left for 10 to 50 minutes at a humidity condition in the range of 40% to 80%, that is, at a humidity condition of 40%, 50%, 60%, 70%, 80%, for example, at a humidity condition of 50%. The polyimide film may have an edge percentage of 0.1% or less, that is, an edge back phenomenon may or may not occur even in a curing process by heat treatment, and specifically, an edge close to 0.05%, more preferably almost 0%. It can indicate the percentage.
본 발명에 따른 폴리이미드 전구체 조성물은 이러한 에지백(edge back) 현상을 해결함으로써, 보다 균일한 특성을 갖는 폴리이미드 필름을 수득할 수 있어 제조공정의 수율을 보다 향상시킬 수 있다.By solving the edge back phenomenon, the polyimide precursor composition according to the present invention can obtain a polyimide film having more uniform characteristics, thereby improving the yield of the manufacturing process.
또한, 본 발명에 따른 용매의 밀도는 ASTM D1475의 표준측정방법으로 측정하였을 때, 1 g/cm 3 이하일 수 있으며, 밀도가 1 g/cm 3 이상의 값을 갖는 경우에는 상대점도가 높아질 수 있어 공정상 효율성이 감소할 수 있다.In addition, the density of the solvent according to the present invention may be 1 g/cm 3 or less, as measured by the standard measurement method of ASTM D1475, and when the density has a value of 1 g/cm 3 or more, the relative viscosity may be increased, so the process Phase efficiency can be reduced.
상기 LogP가 양수인 용매는, 예를 들면, N,N-디에틸아세트아마이드(N,Ndiethylacetamide,DEAc), N,N-디에틸포름아마이드(N,N-diethylformamide, DEF),N-에틸피롤리돈(N-ethylpyrrolidone, NEP), 디메틸프로피온아마이드(DMPA) 및 디에틸프로피온아마이드(DEPA) 중에서 선택되는 하나 이상일 수 있다.The LogP is a positive solvent, for example, N,N-diethylacetamide (N,Ndiethylacetamide,DEAc), N,N-diethylformamide (N,N-diethylformamide, DEF),N-ethylpyrroli It may be one or more selected from money (N-ethylpyrrolidone, NEP), dimethyl propionamide (DMPA) and diethyl propionamide (DEPA).
상기 용매는 비점이 300℃이하일 수 있으며, 보다 구체적으로 분배계수 LogP 값은 0.01 내지 3, 또는 0.01 내지 2, 또는 0.1 내지 2 일 수 있다.The solvent may have a boiling point of 300° C. or less, and more specifically, the distribution coefficient LogP value may be 0.01 to 3, or 0.01 to 2, or 0.1 to 2.
상기 분배계수는 ACD/Labs 사의 ACD/Percepta platform의 ACD/LogP module을 사용하여 계산될 수 있으며, ACD/LogP module은 분자의 2D 구조를 이용하여 QSPR(Quantitative Structure-Property Relationship) 방법론 기반의 알고리즘을 이용한다.The distribution coefficient can be calculated using ACD/LogP module of ACD/Percepta platform of ACD/Labs, and ACD/LogP module uses a 2D structure of molecules to implement QSPR (Quantitative Structure-Property Relationship) method based algorithm. To use.
또한, 크실렌, 톨루엔과 같은 방향족 탄화수소를 더 사용할 수도 있으며, 또한 폴리머의 용해를 촉진시키기 위해서 상기 용매에 상기 용매 총량에 대하여 약 50 중량% 이하의 알칼리 금속염 또는 알칼리토류 금속염을 더 첨가할 수도 있다.In addition, aromatic hydrocarbons such as xylene and toluene may be further used, and in order to promote the dissolution of the polymer, an alkali metal salt or an alkaline earth metal salt of about 50% by weight or less based on the total amount of the solvent may be further added to the solvent.
또한, 폴리아믹산 또는 폴리이미드를 합성하는 경우 과잉의 폴리아미노기 또는 산무수물기를 불활성화하기위해서, 분자 말단을 디카본산무수물 또는 모노아민을 반응시켜, 폴리이미드의 말단을 봉지하는 말단 봉지제를더 첨가할 수 있다.In addition, in the case of synthesizing polyamic acid or polyimide, in order to inactivate excess polyamino group or acid anhydride group, a molecular terminal is reacted with dicarboxylic acid anhydride or monoamine to further add a terminal sealant to seal the polyimide end. You can.
상기 테트라카르복실산 이무수물을 디아민과 반응시키는 방법은 용액 중합 등 통상의 폴리이미드 전구체 중합 제조방법에 따라 실시할 수 있으며. 구체적으로는, 디아민을 유기 용매 중에 용해시킨 후, 결과로 수득된 혼합용액에 테트라카르복실산 이무수물을 첨가하여 중합반응시킴으로써 제조될 수 있다.The method for reacting the tetracarboxylic dianhydride with diamine can be carried out according to a conventional polyimide precursor polymerization production method such as solution polymerization. Specifically, after diamine is dissolved in an organic solvent, it can be prepared by adding a tetracarboxylic dianhydride to the resulting mixed solution to polymerize it.
상기 중합반응은 비활성 기체 또는 질소 기류 하에 실시될 수 있으며, 무수조건에서 실행될 수 있다.The polymerization reaction may be carried out under an inert gas or nitrogen stream, and may be performed under anhydrous conditions.
또한, 상기 중합반응시 반응온도는 -20 내지 80℃, 바람직하게는 0 내지 80℃에서 실시될 수 있다. 반응온도가 너무 높을 경우 반응성이 높아져 분자량이 커질 수 있으며, 전구체 조성물의 점도가 상승함으로써 공정상으로 불리할 수 있다.In addition, the reaction temperature during the polymerization reaction may be carried out at -20 to 80 ℃, preferably 0 to 80 ℃. If the reaction temperature is too high, the reactivity becomes high and the molecular weight may increase, and the viscosity of the precursor composition increases, which may be disadvantageous in the process.
상기한 제조방법에 따라 제조된 폴리아믹산 용액에 필름 형성 공정시의 도포성 등의 공정성을 고려하여 상기 조성물이 적절한 점도를 갖도록 하는 양으로 고형분을 포함하는 것이 바람직하다. It is preferable that the polyamic acid solution prepared according to the above-described manufacturing method contains solids in an amount to allow the composition to have an appropriate viscosity in consideration of processability such as coatability during the film forming process.
상기 폴리아믹산을 포함하는 폴리이미드 전구체 조성물은 유기용매 중에 용해된 용액의 형태일 수 있으며, 이러한 형태를 갖는 경우, 예를 들어 폴리이미드 전구체를 유기용매 중에서 합성한 경우에는, 용액은 얻어지는 반응용액 그 자체이어도 되고, 또는 이 반응 용액을 다른 용매로 희석한 것이어도 된다. 또, 폴리이미드 전구체를 고형 분말로서 얻은 경우에는, 이것을 유기 용매에 용해시켜 용액으로 한 것이어도 된다.The polyimide precursor composition containing the polyamic acid may be in the form of a solution dissolved in an organic solvent, and in the case of having such a form, for example, when a polyimide precursor is synthesized in an organic solvent, the solution is a reaction solution obtained. It may be itself, or the reaction solution may be diluted with another solvent. Moreover, when a polyimide precursor is obtained as a solid powder, this may be dissolved in an organic solvent to form a solution.
일 실시예에 따르면, 전체 폴리이미드 전구체의 함량이 8 내지 25 중량%가 되도록 유기용매를 첨가하여 조성물의 함량을 조절할 수 있으며, 바람직하게는 10 내지 25 중량%, 보다 바람직하게는 10 내지 20 중량% 이하로 조절할 수 있다.According to one embodiment, the content of the composition may be adjusted by adding an organic solvent such that the total polyimide precursor content is 8 to 25% by weight, preferably 10 to 25% by weight, more preferably 10 to 20% by weight % Or less.
또는, 상기 폴리이미드 전구체 조성물은 20 중량% 이하의 고형분 농도에서 3,000cP 이상의 점도를 갖도록 조절하는 것일 수 있으며, 상기 폴리이미드 전구체 조성물의 점도는 10,000cP 이하, 바람직하게는 9,000cP 이하, 보다 바람직하게는 8,000cP 이하의 점도를 갖도록 조절하는 것이 바람직하다. 폴리이미드 전구체 조성물의 점도가 10,000cP를 초과할 경우 폴리이미드 필름 가공시 탈포의 효율성이 저하됨으로써, 공정상의 효율뿐만 아니라, 제조된 필름은 기포 발생으로 표면조도가 좋지 않아 전기적, 광학적, 기계적 특성이 저하될 수 있다. Alternatively, the polyimide precursor composition may be adjusted to have a viscosity of 3,000 cP or more at a solid content concentration of 20% by weight or less, and the viscosity of the polyimide precursor composition is 10,000 cP or less, preferably 9,000 cP or less, more preferably It is preferable to adjust to have a viscosity of 8,000 cP or less. When the viscosity of the polyimide precursor composition exceeds 10,000 cP, the efficiency of defoaming decreases during processing of the polyimide film, and thus, not only the process efficiency, but also the prepared film has poor surface roughness due to the generation of bubbles, resulting in poor electrical, optical, and mechanical properties. It may degrade.
이어서 상기 중합반응의 결과로 수득된 폴리이미드 전구체를 화학적 또는 열적 이미드화 방법을 이용해 이미드화 시킴으로써 투명 폴리이미드 필름을 제조할 수 있다. Subsequently, a transparent polyimide film can be prepared by imidizing the polyimide precursor obtained as a result of the polymerization reaction using a chemical or thermal imidization method.
일 실시예에 따르면, 폴리이미드 전구체 조성물을 캐리어 기판 상에 도포하는 단계; 및According to one embodiment, the step of applying a polyimide precursor composition on a carrier substrate; And
상기 폴리이미드 전구체 조성물을 가열 및 경화하는 단계를 포함하는 방법으로 폴리이미드 필름을 제조할 수 있다.A polyimide film may be prepared by a method including heating and curing the polyimide precursor composition.
이때, 상기 캐리어 기판으로는 유리, 금속기판 또는 플라스틱 기판 등이 특별한 제한 없이 사용될 수 있으며, 이 중에서도 폴리이미드 전구체에 대한 이미드화 및 경화공정 중 열 및 화학적 안정성이 우수하고, 별도의 이형제 처리 없이도, 경화 후 형성된 폴리이미드계 필름에 대해 손상 없이 용이하게 분리될 수 있는 유리 기판이 바람직할 수 있다.At this time, as the carrier substrate, a glass, metal substrate, or plastic substrate may be used without particular limitation, and among them, excellent thermal and chemical stability during the imidation and curing process for the polyimide precursor, without additional release agent treatment, A glass substrate that can be easily separated without damage to the polyimide-based film formed after curing may be desirable.
또, 상기 도포 공정은 통상의 도포 방법에 따라 실시될 수 있으며, 구체적으로는 스핀코팅법, 바코팅법, 롤코팅법, 에어-나이프법, 그라비아법, 리버스 롤법, 키스 롤법, 닥터 블레이드법, 스프레이법, 침지법 또는 솔질법 등이 이용될 수 있다. 이중에서도 연속 공정이 가능하며, 폴리이미드의 이미드화율을 증가시킬 수 있는 캐스팅법에 의해 실시되는 것이 보다 바람직할 수 있다.In addition, the coating process may be performed according to a conventional coating method, specifically, spin coating method, bar coating method, roll coating method, air-knife method, gravure method, reverse roll method, kiss roll method, doctor blade method, Spraying, dipping or brushing may be used. Among them, a continuous process is possible, and it may be more preferable to carry out by a casting method capable of increasing the imidation rate of polyimide.
또, 상기 폴리이미드 전구체 조성물은 최종 제조되는 폴리이미드 필름이 디스플레이 기판용으로 적합한 두께를 갖도록 하는 두께 범위로 기판 위에 도포될 수 있다.In addition, the polyimide precursor composition may be applied on the substrate in a thickness range that allows the final produced polyimide film to have a suitable thickness for a display substrate.
구체적으로는 10 내지 30㎛의 두께가 되도록 하는 양으로 도포될 수 있다. 상기 폴리이미드 전구체 조성물 도포 후, 경화 공정에 앞서 폴리이미드 전구체 조성물 내에 존재하는 용매를 제거하기 위한 건조공정이 선택적으로 더 실시될 수 있다.Specifically, it may be applied in an amount to make the thickness of 10 to 30㎛. After application of the polyimide precursor composition, a drying process for removing the solvent present in the polyimide precursor composition may be selectively performed prior to the curing process.
상기 건조공정은 통상의 방법에 따라 실시될 수 있으며, 구체적으로 140℃이하, 혹은 80℃내지 140℃의 온도에서 실시될 수 있다. 건조 공정의 실시 온도가 80℃미만이면 건조 공정이 길어지고, 140℃를 초과할 경우 이미드화가 급격히 진행되어 균일한 두께의 폴리이미드 필름 형성이 어렵다.The drying process may be carried out according to a conventional method, and specifically, may be performed at a temperature of 140° C. or less, or 80° C. to 140° C. If the temperature of the drying process is less than 80°C, the drying process becomes longer, and if it exceeds 140°C, imidization proceeds rapidly, making it difficult to form a polyimide film of uniform thickness.
이어서, 상기 기판에 도포된 폴리이미드 전구체 조성물은 IR오븐, 열풍오븐이나 핫 플레이트 위에서 열처리되며, 이때, 상기 열처리 온도는 300 내지 500℃, 바람직하게는 320 내지 480℃온도범위일 수 있으며, 상기 온도범위 내에서 다단계 가열처리로 진행될 수도 있다. 상기 열처리 공정은 20분 내지 70분 동안 진행될 수 있으며, 바람직하게는 20분 내지 60분 정도의 시간 동안 진행될 수 있다.Subsequently, the polyimide precursor composition applied to the substrate is heat-treated on an IR oven, a hot air oven or a hot plate, wherein the heat treatment temperature may be in the range of 300 to 500°C, preferably 320 to 480°C, and the temperature It can also be carried out in a multi-stage heat treatment within the range. The heat treatment process may be performed for 20 minutes to 70 minutes, and preferably 20 minutes to 60 minutes.
상기와 같이 제조된 폴리이미드 필름의 경화 직후 잔류응력은 40 MPa 이하일 수 있으며, 상기 폴리이미드 필름을 상기 폴리이미드 필름을 25℃ 50% 습도 조건에서 3시간 방치한 후의 잔류응력 변화값이 5 MPa 이하일 수 있다. The residual stress immediately after curing of the polyimide film prepared as described above may be 40 MPa or less, and the residual stress change value after leaving the polyimide film at 25° C. and 50% humidity for 3 hours is 5 MPa or less. Can.
상기 폴리이미드 필름의 황색도는 15 이하일 수 있으며, 바람직하게는 13 이하일 수 있다. 또한, 상기 폴리이미드 필름의 헤이즈(Haze)는 2 이하일 수 있고, 바람직하게는 1 이하일 수 있다.The yellowness of the polyimide film may be 15 or less, and preferably 13 or less. Further, the haze of the polyimide film may be 2 or less, and preferably 1 or less.
또한, 상기 폴리이미드 필름의 450 nm에서의 투과도는 75% 이상일 수 있으며, 550 nm에서의 투과도는 85% 이상 일 수 있고, 630 nm에서의 투과도는 90% 이상일 수 있다.In addition, the transmittance at 450 nm of the polyimide film may be 75% or more, the transmittance at 550 nm may be 85% or more, and the transmittance at 630 nm may be 90% or more.
상기 폴리이미드 필름은 내열성이 높을 수 있으며, 예를 들면, 질량감소가 1% 일어나는 열분해온도(Td_1%)가 500℃이상일 수 있다. The polyimide film may have high heat resistance, for example, a thermal decomposition temperature (Td_1%) in which mass loss is 1% may be 500°C or higher.
상기와 같이 제조된 폴리이미드 필름은 모듈러스가 3 내지 6 GPa일 수 있다. 상기 모듈러스(탄성율)이 3Gpa 미만이면, 필름의 강성이 낮아 외부 충격에 쉽게 깨지기 쉽고, 상기 탄성율이 6 GPa을 초과하면, 커버레이 필름의 강성은 우수하지만 충분한 유연성을 확보할 수 없는 문제가 발생할 수 있다.The polyimide film prepared as described above may have a modulus of 3 to 6 GPa. If the modulus (elastic modulus) is less than 3Gpa, the film has low stiffness and is easily fragile to external impact, and when the modulus exceeds 6 GPa, the stiffness of the coverlay film is excellent, but sufficient flexibility may not be obtained. have.
또한, 상기 폴리이미드 필름의 연신율은 90% 이상이며, 바람직하게는 91% 이상이며, 인장강도가 130 MPa 이상, 바람직하게는 138 MPa 이상일 수 있다.In addition, the elongation of the polyimide film is 90% or more, preferably 91% or more, and the tensile strength may be 130 MPa or more, preferably 138 MPa or more.
또한, 본 발명에 따른 폴리이미드 필름은 온도변화에 따른 열안정성이 우수할 수 있으며, 예를 들면, 100℃내지 350℃온도범위에서 가열 및 냉각 공정을 n+1회 거친 후의 열팽창계수가 -10 내지 100 ppm/℃의 값을 가질 수 있으며, 바람직하게는 -7 내지 90 ppm/℃의 값, 보다 바람직하게는 80 ppm/℃이하일 수 있다(이때, n은 0이상의 정수).In addition, the polyimide film according to the present invention may have excellent thermal stability according to temperature change, for example, a thermal expansion coefficient of -10 after undergoing a heating and cooling process n+1 times in a temperature range of 100°C to 350°C. It may have a value of 100 ppm / ℃, preferably, a value of -7 to 90 ppm / ℃, more preferably 80 ppm / ℃ or less (where n is an integer greater than or equal to 0).
또한, 본 발명에 따른 폴리이미드 필름은 두께방향 위상차(R th)가 -150nm 내지 +150nm의 값, 바람직하게는 -130nm 내지 +130nm을 가짐으로써 광학적 등방성을 나타낼 수 있어 시감성이 향상될 수 있다.In addition, the polyimide film according to the present invention can exhibit optical isotropy by having a thickness direction retardation (R th ) of -150 nm to +150 nm, preferably -130 nm to +130 nm, thereby improving visibility. .
일 실시예에 따르면, 상기 폴리이미드 필름은 캐리어 기판과의 접착력이 5 gf/in 이상일 수 있으며, 바람직하게는 10 gf/in 이상일 수 있다.According to one embodiment, the polyimide film may have an adhesive strength with a carrier substrate of 5 gf/in or more, and preferably 10 gf/in or more.
또한, 본 발명은, In addition, the present invention,
상기 폴리이미드 전구체 조성물을 캐리어 기판상에 도포하는 단계;Applying the polyimide precursor composition on a carrier substrate;
상기 폴리이미드 전구체 조성물을 가열하여 폴리아믹산을 이미드화함으로써 폴리이미드 필름을 형성하는 단계; Heating the polyimide precursor composition to imidize polyamic acid to form a polyimide film;
상기 폴리이미드 필름 상에 소자를 형성하는 단계; 및Forming a device on the polyimide film; And
상기 소자가 형성된 폴리이미드 필름을 상기 캐리어 기판으로부터 박리하는 단계를 포함하는 플렉서블 디바이스의 제조공정을 제공한다.It provides a manufacturing process of a flexible device comprising the step of peeling the polyimide film formed with the device from the carrier substrate.
특히, 상기 플렉서블 디바이스의 제조공정은 LTPS(low temperature polysilicon) 공정, ITO 공정 또는 Oxide 공정을 포함할 수 있다. In particular, the manufacturing process of the flexible device may include a low temperature polysilicon (LTPS) process, an ITO process, or an oxide process.
예를 들면, 폴리이미드 필름상에 SiO 2를 포함하는 차단층을 형성하는 단계;For example, forming a blocking layer containing SiO 2 on the polyimide film;
상기 차단층 상에 a-Si(amorphous silicon) 박막을 증착하는 단계;Depositing an a-Si (amorphous silicon) thin film on the blocking layer;
상기 증착된 a-Si 박막을 450±50℃의 온도에서 열처리하는 탈수소 어닐링 단계; 및A dehydrogen annealing step of heat-treating the deposited a-Si thin film at a temperature of 450±50°C; And
상기 a-Si 박막을 엑시머 레이저 등으로 결정화시키는 단계를 포함하는 LTPS 박막제조공정 이후, 레이저 박리 등으로 캐리어 기판과 폴리이미드 필름을 박리함으로써, LTPS층을 포함하는 플렉서블 디바이스를 얻을 수 있다.After the LTPS thin film manufacturing process including the step of crystallizing the a-Si thin film with an excimer laser, a flexible device including an LTPS layer can be obtained by peeling a carrier substrate and a polyimide film by laser peeling or the like.
산화물 박막 공정은 실리콘을 이용한 공정에 비해 낮은 온도에서 열처리될 수 있으며, 예를 들면, ITO TFT공정의 열처리 온도는 240℃±50℃일 수 있고, Oxide TFT공정의 열처리 온도는 350℃±50℃일 수 있다.The oxide thin film process may be heat treated at a lower temperature than the process using silicon, for example, the heat treatment temperature of the ITO TFT process may be 240°C±50°C, and the heat treatment temperature of the oxide TFT process may be 350°C±50°C. Can be
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art to which the present invention pertains can easily practice. However, the present invention can be implemented in many different forms and is not limited to the embodiments described herein.
<제조예 1> 화학식 1-1 화합물의 제조<Production Example 1> Preparation of compound of formula 1-1
Figure PCTKR2019017841-appb-img-000026
Figure PCTKR2019017841-appb-img-000026
질소 분위기에서 상기 화학식 A의 화합물(35.0g, 166.7 mmol)을 THF(270 mL)에 녹인 후 피리딘(pyr) (26.4g, 333.4 mmol)을 투입한 후 0℃로 냉각하였다. 상기 용액에 상기 화학식 B의 화합물(11.6g, 83.4 mmol)을 4등분 하여 10분 간격으로 투입하였다. 3시간 후에 헥산(270 mL)을 첨가하여 고체를 생성하였다. 여과 후 얻어진 고체를 헥산/에틸아세테이트(10/7)로 세척하여 상기 화학식 C의 화합물(23.8g, 수율 91.3%)을 제조하였다. After dissolving the compound of formula A (35.0 g, 166.7 mmol) in THF (270 mL) in a nitrogen atmosphere, pyridine (pyr) (26.4 g, 333.4 mmol) was added and then cooled to 0°C. The compound of Formula B (11.6 g, 83.4 mmol) was divided into four equal portions into the solution and added at 10 minute intervals. After 3 hours, hexane (270 mL) was added to produce a solid. The solid obtained after filtration was washed with hexane/ethyl acetate (10/7) to prepare a compound of Formula C (23.8 g, yield 91.3%).
MS[M+H] +=314MS[M+H] + =314
화학식 C의 화합물(20g, 63.9 mmol)과 화학식 D의 화합물(10.2g, 32.0mmol)을 빙초산(200mL)에 분산시키고 100℃까지 승온하였다. 4시간 후에 상온으로 온도를 낮춘 후 에탄올을 첨가하여 고체를 얻었다. 여과 후 얻은 고체를 물과 에탄올로 세척하여 화학식 E의 화합물(25.9g, 수율 88.8%)을 제조하였다.The compound of formula C (20 g, 63.9 mmol) and the compound of formula D (10.2 g, 32.0 mmol) were dispersed in glacial acetic acid (200 mL) and heated to 100°C. After 4 hours, after lowering the temperature to room temperature, ethanol was added to obtain a solid. The solid obtained after filtration was washed with water and ethanol to prepare a compound of Formula E (25.9 g, yield 88.8%).
MS[M+H] +=911MS[M+H] + =911
화학식 E(20g, 22.0 mmol)의 화합물을 N-메틸피롤리돈(NMP) (180mL)에 분산시킨 후 팔라듐/차콜(Pd/C) (0.60g)을 투입 후 수소 분위기에서 16시간 동안 교반하였다. 반응 종료 후에 여과하여 얻어진 여액에 물(180mL)을 가하여 고체를 생성하였다. 여과 후 수득한 고체를 NMP와 에틸아세테이트로 재결정하여 화학식 1-1의 화합물(14.8g, 수율 79.9%)을 제조하였다.After dispersing the compound of formula E (20g, 22.0 mmol) in N-methylpyrrolidone (NMP) (180 mL), palladium/charcoal (Pd/C) (0.60 g) was added and stirred in a hydrogen atmosphere for 16 hours. . After completion of the reaction, water (180 mL) was added to the filtrate obtained to produce a solid. The solid obtained after filtration was recrystallized from NMP and ethyl acetate to prepare a compound of Formula 1-1 (14.8 g, yield 79.9%).
MS[M+H] +=851MS[M+H] + =851
<제조예 2> 화학식 1-2 화합물의 제조<Production Example 2> Preparation of the compound of Formula 1-2
Figure PCTKR2019017841-appb-img-000027
Figure PCTKR2019017841-appb-img-000027
상기 제조예 1에 있어서, 화학식 B 대신에 화학식 F의 화합물을 사용한 것을 제외하고 상기 화학식 C의 화합물을 제조하는 방법과 동일한 방법으로 화학식 G의 화합물을 제조하였다. In Preparation Example 1, the compound of Formula G was prepared in the same manner as the method of preparing the compound of Formula C, except that the compound of Formula F was used instead of Formula B.
화학식 C 대신에 화학식 G의 화합물을 사용하는 것을 제외하고 화학식 E의 화합물을 제조하는 방법과 동일한 방법으로 상기 화학식 H의 화합물을 제조하였다. 마지막으로 상기 화학식 E 대신에 화학식 H의 화합물을 사용하는 것을 제외하고 상기 화학식 1-1의 화합물을 제조하는 방법과 동일한 방법으로 상기 화학식 1-2의 화합물을 제조하였다. The compound of Formula H was prepared in the same manner as the method of preparing the compound of Formula E, except that the compound of Formula G was used instead of Formula C. Finally, the compound of Formula 1-2 was prepared in the same manner as the method of preparing the compound of Formula 1-1, except that the compound of Formula H was used instead of Formula E.
MS[M+H] +=853MS[M+H] + =853
<제조예 3> 화학식 1-9 화합물의 제조<Production Example 3> Preparation of the compound of Formula 1-9
Figure PCTKR2019017841-appb-img-000028
Figure PCTKR2019017841-appb-img-000028
상기 제조예 1에 있어서, 화학식 D 대신에 화학식 I의 화합물을 사용한 것을 제외하고 화학식 E의 화합물을 제조하는 방법과 동일한 방법으로 화학식 J의 화합물을 제조하였다. In Preparation Example 1, the compound of Formula J was prepared in the same manner as the method of preparing the compound of Formula E, except that the compound of Formula I was used instead of Formula D.
화학식 E 대신에 화학식 J의 화합물을 사용하는 것을 제외하고 화학식 1-1의 화합물을 제조하는 방법과 동일한 방법으로 화학식 1-9의 화합물을 제조하였다. A compound of Formula 1-9 was prepared in the same manner as the method of preparing a compound of Formula 1-1, except that a compound of Formula J was used instead of Formula E.
MS[M+H] +=731MS[M+H] + =731
<제조예 4> 화학식 1-10 화합물의 제조<Production Example 4> Preparation of a compound of Formula 1-10
Figure PCTKR2019017841-appb-img-000029
Figure PCTKR2019017841-appb-img-000029
상기 제조예 1에 있어서, 화학식 B 대신에 화학식 F의 화합물을 사용한 것을 제외하고 화학식 C의 화합물을 제조하는 방법과 동일한 방법으로 화학식 G의 화합물을 제조하였다. In Preparation Example 1, the compound of Formula G was prepared in the same manner as the method of preparing the compound of Formula C, except that the compound of Formula F was used instead of Formula B.
화학식 C 대신에 화학식 G의 화합물, 화학식 D 대신에 화학식 I의 화합물을 사용하는 것을 제외하고 화학식 E의 화합물을 제조하는 방법과 동일한 방법으로 화학식 K의 화합물을 제조하였다. 마지막으로 화학식 E 대신에 화학식 K의 화합물을 사용하는 것을 제외하고 화학식 1-1의 화합물을 제조하는 방법과 동일한 방법으로 화학식 1-10의 화합물을 제조하였다. A compound of formula K was prepared in the same manner as the method of preparing a compound of formula E, except that a compound of formula G instead of formula C and a compound of formula I instead of formula D were used. Finally, the compound of Formula 1-10 was prepared in the same manner as the method of preparing the compound of Formula 1-1, except that the compound of Formula K was used instead of Formula E.
MS[M+H] +=733MS[M+H] + =733
<제조예 5> 화학식 1-13 화합물의 제조<Production Example 5> Preparation of the compound of Formula 1-13
Figure PCTKR2019017841-appb-img-000030
Figure PCTKR2019017841-appb-img-000030
상기 제조예 1에 있어서, 화학식 B 대신에 화학식 L의 화합물을 사용한 것을 제외하고 화학식 C의 화합물을 제조하는 방법과 동일한 방법으로 화학식 M의 화합물을 제조하였다. In Preparation Example 1, the compound of Formula M was prepared in the same manner as the method of preparing the compound of Formula C, except that the compound of Formula L was used instead of Formula B.
화학식 C 대신에 화학식 M의 화합물, 화학식 D 대신에 화학식 N의 화합물을 사용하는 것을 제외하고 화학식 E의 화합물을 제조하는 방법과 동일한 방법으로 화학식 O의 화합물을 제조하였다. A compound of formula O was prepared in the same manner as the method of preparing a compound of formula E, except that a compound of formula M instead of formula C and a compound of formula N instead of formula D were used.
마지막으로 화학식 E 대신에 화학식 O의 화합물을 사용하는 것을 제외하고 화학식 1-1의 화합물을 제조하는 방법과 동일한 방법으로 화학식 1-13의 화합물을 제조하였다. Finally, the compound of Formula 1-13 was prepared in the same manner as the method of preparing the compound of Formula 1-1, except that the compound of Formula O was used instead of Formula E.
MS[M+H] +=731MS[M+H] + =731
<제조예 6> 화학식 1-14 화합물의 제조<Production Example 6> Preparation of the compound of Formula 1-14
Figure PCTKR2019017841-appb-img-000031
Figure PCTKR2019017841-appb-img-000031
상기 제조예 1에 있어서, 화학식 B 대신에 화학식 P의 화합물을 사용한 것을 제외하고 화학식 C의 화합물을 제조하는 방법과 동일한 방법으로 화학식 Q의 화합물을 제조하였다. In Preparation Example 1, the compound of Formula Q was prepared in the same manner as the method of preparing the compound of Formula C, except that the compound of Formula P was used instead of Formula B.
화학식 C 대신에 화학식 Q의 화합물, 화학식 D 대신에 화학식 N의 화합물을 사용하는 것을 제외하고 화학식 E의 화합물을 제조하는 방법과 동일한 방법으로 화학식 R의 화합물을 제조하였다. A compound of formula R was prepared in the same manner as the method of preparing a compound of formula E, except that a compound of formula Q instead of formula C and a compound of formula N instead of formula D were used.
마지막으로 화학식 E 대신에 화학식 R의 화합물을 사용하는 것을 제외하고 화학식 1-1의 화합물을 제조하는 방법과 동일한 방법으로 화학식 1-14의 화합물을 제조하였다.Finally, the compound of Formula 1-14 was prepared in the same manner as the method of preparing the compound of Formula 1-1, except that the compound of Formula R was used instead of Formula E.
MS[M+H] +=733MS[M+H] + =733
<제조예 7> 화학식 1-15 화합물의 제조<Production Example 7> Preparation of the compound of Formula 1-15
Figure PCTKR2019017841-appb-img-000032
Figure PCTKR2019017841-appb-img-000032
상기 제조예 1에 있어서, 화학식 B 대신에 화학식 L의 화합물을 사용한 것을 제외하고 화학식 C의 화합물을 제조하는 방법과 동일한 방법으로 화학식 M의 화합물을 제조하였다. In Preparation Example 1, the compound of Formula M was prepared in the same manner as the method of preparing the compound of Formula C, except that the compound of Formula L was used instead of Formula B.
화학식 C 대신에 화학식 M의 화합물을, 화학식 D 대신에 화학식 S의 화합물을 사용하는 것을 제외하고 화학식 E의 화합물을 제조하는 방법과 동일한 방법으로 화학식 T의 화합물을 제조하였다. The compound of formula T was prepared in the same manner as the method of preparing the compound of formula E, except that the compound of formula M is used instead of the formula C and the compound of formula S is used instead of the formula D.
마지막으로 화학식 E 대신에 화학식 T의 화합물을 사용하는 것을 제외하고 화학식 1-1의 화합물을 제조하는 방법과 동일한 방법으로 화학식 1-15의 화합물을 제조하였다.Finally, the compound of Formula 1-15 was prepared in the same manner as the method of preparing the compound of Formula 1-1, except that the compound of Formula T was used instead of Formula E.
MS[M+H] +=867MS[M+H] + =867
<제조예 8> 화학식 1-16 화합물의 제조<Production Example 8> Preparation of the compound of Formula 1-16
Figure PCTKR2019017841-appb-img-000033
Figure PCTKR2019017841-appb-img-000033
상기 제조예 1에 있어서, 화학식 B 대신에 화학식 P의 화합물을 사용한 것을 제외하고 화학식 C의 화합물을 제조하는 방법과 동일한 방법으로 화학식 Q의 화합물을 제조하였다. In Preparation Example 1, the compound of Formula Q was prepared in the same manner as the method of preparing the compound of Formula C, except that the compound of Formula P was used instead of Formula B.
화학식 C 대신에 화학식 Q의 화합물을, 화학식 D 대신에 화학식 S의 화합물을 사용하는 것을 제외하고 화학식 E의 화합물을 제조하는 방법과 동일한 방법으로 화학식 U의 화합물을 제조하였다. The compound of formula U was prepared in the same manner as the method of preparing the compound of formula E, except that the compound of formula Q is used instead of the formula C and the compound of formula S is used instead of the formula D.
마지막으로 화학식 E 대신에 화학식 U의 화합물을 사용하는 것을 제외하고 화학식 1-1의 화합물을 제조하는 방법과 동일한 방법으로 화학식 1-16의 화합물을 제조하였다.Finally, the compound of Formula 1-16 was prepared in the same manner as the method of preparing the compound of Formula 1-1, except that the compound of Formula U was used instead of Formula E.
MS[M+H] +=869MS[M+H] + =869
<비교예 1> 6-FDA/ TFMB<Comparative Example 1> 6-FDA/ TFMB
질소 기류가 흐르는 반응기 내에 DEAc(Diethylacetamide) 130g을 채운 후, 반응기의 온도를 25℃로 유지한 상태에서 TFMB(2,2'-Bis(trifluoromethyl)benzidine) 0.0500 mol을 같은 온도에서 첨가하여 용해시켰다. TFMB 디아민이 첨가된 용액에 6-FDA(4,4'-(Hexafluoroisopropylidene)diphthalic anhydride) 0.0500mol을 DEAc 40g과 함께 첨가한 후 48시간 동안 반응시켜 폴리이미드 전구체 용액을 제조하였다.After filling 130 g of DEAc (Diethylacetamide) in a reactor in which a nitrogen stream flows, 0.0500 mol of TFMB (2,2'-Bis (trifluoromethyl)benzidine) was added at the same temperature and dissolved while maintaining the temperature of the reactor at 25°C. To the solution to which TFMB diamine was added, 0.0500 mol of 6-FDA (4,4'-(Hexafluoroisopropylidene) diphthalic anhydride) was added together with 40 g of DEAc, and reacted for 48 hours to prepare a polyimide precursor solution.
<실시예 1> 6-FDA/화학식 1-1의 디아민<Example 1> 6-FDA / diamine of formula 1-1
질소 기류가 흐르는 반응기 내에 DEAc(Diethylacetamide) 200g을 채운 후, 반응기의 온도를 25℃로 유지한 상태에서 제조예 1에서 제조된 화학식 1-1의 디아민 0.0413 mol을 같은 온도에서 첨가하여 용해시켰다. 화학식 1-1의 디아민이 첨가된 용액에 6-FDA(4,4'-(Hexafluoroisopropylidene)diphthalic anhydride) 0.0413mol을 DEAc 60g과 함께 첨가한 후 48시간 동안 반응시켜 폴리이미드 전구체 용액을 제조하였다.After filling 200 g of DEAc (Diethylacetamide) in a reactor in which a nitrogen stream flowed, 0.0413 mol of diamine of Formula 1-1 prepared in Preparation Example 1 was dissolved at the same temperature while maintaining the temperature of the reactor at 25°C. To the solution to which the diamine of Formula 1-1 was added, 0.0413 mol of 6-FDA (4,4'-(Hexafluoroisopropylidene)diphthalic anhydride) was added with 60 g of DEAc and reacted for 48 hours to prepare a polyimide precursor solution.
<실시예 2> 6-FDA/화학식 1-2<Example 2> 6-FDA/Formula 1-2
질소 기류가 흐르는 반응기 내에 DEAc(Diethylacetamide) 200g을 채운 후, 반응기의 온도를 25℃로 유지한 상태에서 제조예 2에서 제조된 화학식 1-2의 디아민 0.0413 mol을 같은 온도에서 첨가하여 용해시켰다. 화학식 1-2 디아민이 첨가된 용액에 6-FDA(4,4'-(Hexafluoroisopropylidene)diphthalic anhydride) 0.0413mol을 DEAc 60g과 함께 첨가한 후 48시간 동안 반응시켜 폴리이미드 전구체 용액을 제조하였다.After filling 200 g of DEAc (Diethylacetamide) in a reactor in which a nitrogen stream flowed, 0.0413 mol of diamine of Formula 1-2 prepared in Preparation Example 2 was dissolved at the same temperature while maintaining the temperature of the reactor at 25°C. A polyimide precursor solution was prepared by adding 0.0413 mol of 6-FDA (4,4'-(Hexafluoroisopropylidene)diphthalic anhydride) with DEAc 60g to the solution to which the formula 1-2 diamine was added and reacting for 48 hours.
<실시예 3> 6-FDA/화학식 1-9<Example 3> 6-FDA / Formula 1-9
질소 기류가 흐르는 반응기 내에 DEAc(Diethylacetamide) 180g을 채운 후, 반응기의 온도를 25℃로 유지한 상태에서 제조예 3에서 제조된 화학식 1-9의 디아민 0.0413 mol을 같은 온도에서 첨가하여 용해시켰다. 화학식 1-9 디아민이 첨가된 용액에 6-FDA(4,4'-(Hexafluoroisopropylidene)diphthalic anhydride) 0.0413mol을 DEAc 60g과 함께 첨가한 후 48시간 동안 반응시켜 폴리이미드 전구체 용액을 제조하였다.After filling 180 g of DEAc (Diethylacetamide) in a reactor in which a nitrogen stream flowed, 0.0413 mol of diamine of Formula 1-9 prepared in Preparation Example 3 was dissolved at the same temperature while maintaining the temperature of the reactor at 25°C. A polyimide precursor solution was prepared by adding 0.0413 mol of 6-FDA (4,4'-(Hexafluoroisopropylidene)diphthalic anhydride) with DEAc 60g to the solution to which diamine was added to Formula 1-9 for 48 hours.
<실시예 4> 6-FDA/화학식 1-10<Example 4> 6-FDA/Formula 1-10
질소 기류가 흐르는 반응기 내에 DEAc(Diethylacetamide) 180g을 채운 후, 반응기의 온도를 25℃로 유지한 상태에서 제조예 4 에서 제조된 화학식 1-10의 디아민 0.0413 mol을 같은 온도에서 첨가하여 용해시켰다. 화학식 1-10 디아민이 첨가된 용액에 6-FDA(4,4'-(Hexafluoroisopropylidene)diphthalic anhydride) 0.0413mol을 DEAc 60g과 함께 첨가한 후 48시간 동안 반응시켜 폴리이미드 전구체 용액을 제조하였다.After filling 180 g of DEAc (Diethylacetamide) in a reactor in which a nitrogen stream flowed, 0.0413 mol of diamine of Formula 1-10 prepared in Preparation Example 4 was dissolved at the same temperature while maintaining the temperature of the reactor at 25°C. A polyimide precursor solution was prepared by adding 0.0413 mol of 6-FDA (4,4'-(Hexafluoroisopropylidene)diphthalic anhydride) with DEAc 60g to the solution to which the diamine 1-10 was added, and reacting for 48 hours.
<실험예 1><Experimental Example 1>
실시예 1 내지 4 및 비교예 1에서 제조된 폴리이미드 전구체 용액의 점도 및 폴리아믹산의 분자량을 측정하여 하기 표 1에 나타내었다.The viscosity of the polyimide precursor solutions prepared in Examples 1 to 4 and Comparative Example 1 and the molecular weight of the polyamic acid are measured and are shown in Table 1 below.
<점도의 측정> <Measurement of viscosity>
점도는 Viscotek사 TDA302를 이용하여 측정하였다. Viscosity was measured using Viscotek's TDA302.
<분자량의 측정> <Measurement of molecular weight>
분자량은 Viscotek사 GPCmax VE2001을 이용하여 측정하였다. The molecular weight was measured using GPCmax VE2001 from Viscotek.
<실험예 2><Experimental Example 2>
실시예 1 내지 4 및 비교예 1 에서 제조된 각각의 폴리이미드 전구체 용액을 유리기판 상에 스핀 코팅하였다. 폴리이미드 전구체 용액이 도포된 유리 기판을 오븐에 넣고 5℃/min의 속도로 가열하였으며, 80℃에서 30분, 250℃에서 30분, 400℃에서 30~40분을 유지하여 경화 공정을 진행하여 폴리이미드 필름을 제조하였다. 각각의 필름에 대한 물성을 측정하여 하기 표 1에 나타내었다.Each polyimide precursor solution prepared in Examples 1 to 4 and Comparative Example 1 was spin coated on a glass substrate. The glass substrate coated with the polyimide precursor solution was placed in an oven and heated at a rate of 5° C./min.The curing process was performed by maintaining 30 minutes at 80° C., 30 minutes at 250° C., and 30 to 40 minutes at 400° C. A polyimide film was prepared. Table 1 shows the physical properties of each film.
<모듈러스(GPa), 인장강도(MPa), 연신율(%)><Modulus (GPa), tensile strength (MPa), elongation (%)>
길이 5mm X 50mm, 두께 10um의 필름을 인장시험기(주식회사 Instron제조: Instron 3342)에서 속도 10mm/min으로 인장하여 모듈러스(GPa), 인장강도(MPa), 연 신율(%)을 측정 하였다.A film of length 5 mm X 50 mm and a thickness of 10 um was stretched at a speed of 10 mm/min on a tensile tester (Instron manufactured by Instron 3342) to measure modulus (GPa), tensile strength (MPa), and elongation (%).
Figure PCTKR2019017841-appb-img-000034
Figure PCTKR2019017841-appb-img-000034
상기 표 1의 결과로부터 알 수 있듯이, 본 발명에 따른 디아민을 포함하는 폴리이미드 전구체 용액은 20 중량% 이하의 고형분 농도에서 3000cps 이상의 점도를 가질 수 있으며, TFMB를 사용하는 비교예 1에 비해 높은 분자량을 갖는 폴리아믹산이 제조된 것을 알 수 있다. 또한, 이러한 높은 분자량을 갖는 폴리아믹산으로부터 제조된 폴리이미드 필름은 비교예 1의 폴리이미드 필름에 비해 기계적 강도가 향상되었음을 알 수 있다.As can be seen from the results of Table 1, the polyimide precursor solution containing the diamine according to the present invention may have a viscosity of 3000 cps or more at a solid content concentration of 20 wt% or less, and a higher molecular weight than Comparative Example 1 using TFMB It can be seen that a polyamic acid having a was prepared. In addition, it can be seen that the polyimide film prepared from the polyamic acid having such a high molecular weight has improved mechanical strength compared to the polyimide film of Comparative Example 1.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. Since the specific parts of the present invention have been described in detail above, for those skilled in the art, this specific technique is only a preferred embodiment, and it is obvious that the scope of the present invention is not limited thereby. something to do. Therefore, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (15)

  1. 하기 화학식 1의 구조를 갖는 디아민:Diamine having the structure of Formula 1:
    [화학식 1][Formula 1]
    Figure PCTKR2019017841-appb-img-000035
    Figure PCTKR2019017841-appb-img-000035
    상기 화학식 1에 있어서,In Chemical Formula 1,
    Z 1 내지 Z 8은 각각 독립적으로 탄소원자 또는 질소원자이되, Z 1 내지 Z 8이 동시에 질소원자는 아니며, R 1, R 2, R 3, R 4는 각각 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 10의 할로알킬기, 탄소수 1 내지 10의 알케닐기, 및 탄소수 6 내지 18의 아릴기 중에서 선택되는 것이고, n 1, n 2, n 3, n 4는 각각 독립적으로 0 내지 4의 정수이고, X는 단일결합, O, S, S-S, C(=O), -C(=O)O-, CH(OH), S(=O) 2, Si(CH 3) 2, CR'R", C(=O)NH 및 이들의 조합으로 이루어진 군에서 선택된 관능기 이며, 상기 R' 및 R"는 각각 독립적으로 수소원자, 탄소수 1 내지 10의 알킬기 및 탄소수 1 내지 10의 플루오로알킬기로 이루어진 군으로부터 선택된다.Z 1 to Z 8 are each independently a carbon atom or a nitrogen atom, Z 1 to Z 8 are not nitrogen atoms at the same time, R 1 , R 2 , R 3 , R 4 are each independently an alkyl group having 1 to 10 carbon atoms, carbon number 1 to 10 haloalkyl group, an alkenyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 18 carbon atoms, n 1 , n 2 , n 3 , n 4 are each independently an integer of 0 to 4, X is a single bond, O, S, SS, C(=O), -C(=O)O-, CH(OH), S(=O) 2 , Si(CH 3 ) 2 , CR'R", A functional group selected from the group consisting of C(=O)NH and combinations thereof, wherein R'and R" are each independently from a group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluoroalkyl group having 1 to 10 carbon atoms. Is selected.
  2. 제1항에 있어서, According to claim 1,
    Z 1 내지 Z 4 중 하나 이상은 반드시 탄소원자이고, Z 5 내지 Z 8 중 하나 이상은 반드시 탄소원자인 디아민. At least one of Z 1 to Z 4 is a carbon atom, and at least one of Z 5 to Z 8 is a carbon atom.
  3. 제1항에 있어서, According to claim 1,
    n 1 및 n 2는 각각 독립적으로 0이거나, R 1 및 R 2 는 각각 독립적으로 탄소수 1 내지 5의 알킬기 또는 탄소수 1 내지 5의 할로알킬기인 것인 디아민. n 1 and n 2 are each independently 0, or R 1 and R 2 are each independently a C 1 to C 5 alkyl group or a C 1 to C 5 haloalkyl group.
  4. 제1항에 있어서, According to claim 1,
    Z 1 내지 Z 4 가 모두 탄소원자인 것인 디아민.Diamines in which Z 1 to Z 4 are all carbon atoms.
  5. 제1항에 있어서, According to claim 1,
    Z 1 내지 Z 4 중 하나가 질소원자이거나 Z 5 내지 Z 8 중 하나가 질소원자인 디아민. A diamine in which one of Z 1 to Z 4 is a nitrogen atom or one of Z 5 to Z 8 is a nitrogen atom.
  6. 제1항에 있어서, According to claim 1,
    Z 1 내지 Z 4 중 하나가 질소원자이고, Z 5 내지 Z 8 중 하나가 질소원자인 디아민.A diamine in which one of Z 1 to Z 4 is a nitrogen atom and one of Z 5 to Z 8 is a nitrogen atom.
  7. 제1항에 있어서,According to claim 1,
    X가 단일결합, -O-, -CH 2-, -C(CF 3)-, -C(CH 3) 2- 또는 -SO 2- 인 디아민.Diamine in which X is a single bond, -O-, -CH 2 -, -C(CF 3 )-, -C(CH 3 ) 2 -or -SO 2 -.
  8. 제1항에 있어서, According to claim 1,
    상기 화학식 1의 디아민이 하기 화학식 1-1 내지 1-20의 화합물 중에서 선택되는 것인 디아민:The diamine of the formula (1) is selected from compounds of the formulas 1-1 to 1-20:
    Figure PCTKR2019017841-appb-img-000036
    .
    Figure PCTKR2019017841-appb-img-000036
    .
  9. 1종 이상의 디아민 및 1종 이상의 산이무수물을 포함하는 중합성분을 중합시켜 얻어지는 폴리이미드 전구체로서,A polyimide precursor obtained by polymerizing a polymerization component comprising at least one diamine and at least one acid dianhydride,
    상기 디아민이 제1항 내지 제8항 중 어느 한 항의 디아민을 포함하는 것인 폴리이미드 전구체. A polyimide precursor in which the diamine comprises the diamine of any one of claims 1 to 8.
  10. 제9항에 따른 폴리이미드 전구체를 이용하여 제조된 폴리이미드 필름.A polyimide film prepared using the polyimide precursor according to claim 9.
  11. 제9항에 따른 상기 폴리이미드 전구체를 포함하는 폴리이미드 전구체 조성물을 캐리어 기판 상에 도포하는 단계; 및Applying a polyimide precursor composition comprising the polyimide precursor according to claim 9 on a carrier substrate; And
    상기 폴리이미드 전구체 조성물을 가열 및 경화하는 단계를 포함하는 방법으로 제조된 폴리이미드 필름.A polyimide film prepared by a method comprising heating and curing the polyimide precursor composition.
  12. 제10항에 따른 폴리이미드 필름을 기판으로 포함하는 플렉서블 디바이스.A flexible device comprising the polyimide film according to claim 10 as a substrate.
  13. 제9항의 폴리이미드 전구체를 포함하는 폴리이미드 전구체 조성물을 캐리어 기판 상에 도포하는 단계;Applying a polyimide precursor composition comprising the polyimide precursor of claim 9 on a carrier substrate;
    상기 폴리이미드 전구체 조성물을 가열하여 폴리아믹산을 이미드화함으로써 폴리이미드 필름을 형성하는 단계; Heating the polyimide precursor composition to imidize polyamic acid to form a polyimide film;
    상기 폴리이미드 필름 상에 소자를 형성하는 단계; 및Forming a device on the polyimide film; And
    상기 소자가 형성된 폴리이미드 필름을 상기 캐리어 기판으로부터 박리하는 단계를 포함하는 플렉서블 디바이스의 제조공정.And peeling the polyimide film on which the element is formed from the carrier substrate.
  14. 제13항에 있어서,The method of claim 13,
    상기 제조공정이 LTPS(저온 폴리실리콘) 공정, ITO 공정 또는 Oxide 공정을 포함하는 것인 플렉서블 디바이스의 제조공정.The manufacturing process of a flexible device, wherein the manufacturing process includes an LTPS (low temperature polysilicon) process, an ITO process or an oxide process.
  15. 하기 화학식 i과 화학식 ii의 화합물을 반응시켜 화학식 iii의 화합물을 얻는 단계;Reacting a compound of formula (i) and formula (ii) to obtain a compound of formula (iii);
    상기 화학식 iii의 화합물과 화학식 iv의 화합물을 반응시켜 화학식 v의 화합물을 얻는 단계; 및Reacting the compound of formula (iii) with the compound of formula (iv) to obtain a compound of formula (v); And
    상기 화학식 v의 화합물을 환원시켜 화학식 1의 구조를 갖는 디아민을 제조하는 방법:Method for preparing a diamine having the structure of Formula 1 by reducing the compound of Formula v:
    Figure PCTKR2019017841-appb-img-000037
    (i)
    Figure PCTKR2019017841-appb-img-000037
    (i)
    Figure PCTKR2019017841-appb-img-000038
    (ii)
    Figure PCTKR2019017841-appb-img-000038
    (ii)
    Figure PCTKR2019017841-appb-img-000039
    (iii)
    Figure PCTKR2019017841-appb-img-000039
    (iii)
    Figure PCTKR2019017841-appb-img-000040
    (iv)
    Figure PCTKR2019017841-appb-img-000040
    (iv)
    Figure PCTKR2019017841-appb-img-000041
    (v)
    Figure PCTKR2019017841-appb-img-000041
    (v)
    Figure PCTKR2019017841-appb-img-000042
    (1)
    Figure PCTKR2019017841-appb-img-000042
    (One)
    상기 화학식에 있어서,In the above formula,
    Z a 내지 Z d는 각각 독립적으로 탄소원자 또는 질소원자이되, Z a 내지 Z d가 동시에 질소원자는 아니며, R 1, R 2, R a는 각각 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 10의 할로알킬기, 탄소수 1 내지 10의 알케닐기, 및 탄소수 6 내지 18의 아릴기 중에서 선택되는 것이고, n 1, n 2 및 n은 각각 독립적으로 0 내지 4의 정수이고, X는 단일결합, O, S, S-S, C(=O), -C(=O)O-, CH(OH), S(=O) 2, Si(CH 3) 2, CR'R", C(=O)NH 및 이들의 조합으로 이루어진 군에서 선택된 관능기 이며, 상기 R' 및 R"는 각각 독립적으로 수소원자, 탄소수 1 내지 10의 알킬기 및 탄소수 1 내지 10의 플루오로알킬기로 이루어진 군으로부터 선택된다.Z a to Z d are each independently a carbon atom or a nitrogen atom, but Z a to Z d are not nitrogen atoms at the same time, and R 1 , R 2 and R a are each independently an alkyl group having 1 to 10 carbon atoms, and 1 to 10 carbon atoms. A haloalkyl group, an alkenyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 18 carbon atoms, n 1 , n 2 and n are each independently an integer of 0 to 4, X is a single bond, O, S, SS, C(=O), -C(=O)O-, CH(OH), S(=O) 2 , Si(CH 3 ) 2 , CR'R", C(=O)NH and It is a functional group selected from the group consisting of a combination of these, and R'and R" are each independently selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluoroalkyl group having 1 to 10 carbon atoms.
PCT/KR2019/017841 2018-12-18 2019-12-17 Diamine compound, polyimide precursor using same, and polyimide film WO2020130552A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/272,209 US11952343B2 (en) 2018-12-18 2019-12-17 Diamine compound, polyimide precursor using same, and polyimide film
JP2021504750A JP7167414B2 (en) 2018-12-18 2019-12-17 Diamine compound, polyimide precursor and polyimide film using the same
CN201980051725.4A CN112533899B (en) 2018-12-18 2019-12-17 Diamine compound, polyimide precursor using same, and polyimide film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180163793 2018-12-18
KR10-2018-0163793 2018-12-18
KR1020190167742A KR102577116B1 (en) 2018-12-18 2019-12-16 Diamine compound, polyimide precursor and polyimide film prepared by using same
KR10-2019-0167742 2019-12-16

Publications (1)

Publication Number Publication Date
WO2020130552A1 true WO2020130552A1 (en) 2020-06-25

Family

ID=71101515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017841 WO2020130552A1 (en) 2018-12-18 2019-12-17 Diamine compound, polyimide precursor using same, and polyimide film

Country Status (2)

Country Link
TW (1) TWI754196B (en)
WO (1) WO2020130552A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507176A (en) * 2020-11-16 2022-05-17 广东生益科技股份有限公司 Modified maleimide compound and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668757A (en) * 1984-03-26 1987-05-26 Gus Nichols Use of aromatic amines for setting epoxide resins
US5235005A (en) * 1988-07-05 1993-08-10 Shin-Etsu Chemical Co., Ltd. Polyimide resin composition and semiconductor device encapsulated therewith
JPH08283436A (en) * 1995-04-19 1996-10-29 Matsushita Electric Ind Co Ltd Prepreg and copper-clad laminate board
CN102432878A (en) * 2011-09-05 2012-05-02 东华大学 Humidity-sensitive polyimide, preparation and applications thereof
KR20160023531A (en) * 2013-06-26 2016-03-03 도레이 카부시키가이샤 Polyimide precursor, polyimide, flexible substrate prepared therewith, color filter and production method thereof, and flexible display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668757A (en) * 1984-03-26 1987-05-26 Gus Nichols Use of aromatic amines for setting epoxide resins
US5235005A (en) * 1988-07-05 1993-08-10 Shin-Etsu Chemical Co., Ltd. Polyimide resin composition and semiconductor device encapsulated therewith
JPH08283436A (en) * 1995-04-19 1996-10-29 Matsushita Electric Ind Co Ltd Prepreg and copper-clad laminate board
CN102432878A (en) * 2011-09-05 2012-05-02 东华大学 Humidity-sensitive polyimide, preparation and applications thereof
KR20160023531A (en) * 2013-06-26 2016-03-03 도레이 카부시키가이샤 Polyimide precursor, polyimide, flexible substrate prepared therewith, color filter and production method thereof, and flexible display device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAN, S. S. ET AL.: "Synthesis and characterization of new polyimides containing ethynylene linkages", EUROPEAN POLYMER JOURNAL, vol. 43, no. 4, 2007, pages 1541 - 1548, XP022008193, DOI: 10.1016/j.eurpolymj.2007.01.052 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507176A (en) * 2020-11-16 2022-05-17 广东生益科技股份有限公司 Modified maleimide compound and preparation method and application thereof

Also Published As

Publication number Publication date
TWI754196B (en) 2022-02-01
TW202033501A (en) 2020-09-16

Similar Documents

Publication Publication Date Title
WO2015183056A1 (en) Polyimide-based liquid and polyimide-based film produced using same
WO2017111299A1 (en) Polyamic acid composition with improved adhesive strength and polyimide film comprising same
WO2019054616A1 (en) Polyimide copolymer and polyimide film using same
WO2018038436A1 (en) Diamine compound and method for producing same
WO2017111300A1 (en) Polyamic acid solution to which diamine monomer having novel structure is applied, and polyimide film comprising same
WO2017209414A1 (en) High-strength transparent polyamidimide and method for preparing same
WO2017047917A1 (en) Modified polyimide and curable resin composition containing same
WO2019054612A1 (en) Polyimide precursor composition and polyimide film using same
WO2018080222A2 (en) Polyimide film forming composition and polyimide film produced by using same
WO2019235712A1 (en) Siloxane compound and polyimide precursor composition comprising same
WO2014104557A1 (en) Novel polyamideimide having low thermal expansion coefficient
WO2020159085A1 (en) Polyamide resin film, and resin laminate using same
WO2016140559A1 (en) Composition for polyimide film for flexible substrate of optoelectronic device
WO2020138645A1 (en) Polyamic acid composition and transparent polyimide film using same
WO2019103274A1 (en) Polyimide film for display substrate
WO2020141713A1 (en) Method for preparing polyamic acid composition containing novel dicarbonyl compound, polyamic acid composition, method for manufacturing polyamide-imide film using same, and polyamide-imide film produced by same manufacturing method
WO2021060752A1 (en) Polyimide-based film having excellent surface evenness and method for producing same
WO2020159193A1 (en) Polyimide precursor composition and polyimide film, substrate for display device, and optical device, each manufactured therefrom
WO2018021747A1 (en) Polyimide precursor solution and method for producing same
WO2020130552A1 (en) Diamine compound, polyimide precursor using same, and polyimide film
WO2020159086A1 (en) Polyamide resin film and resin laminate using same
WO2020105933A1 (en) Liquid crystal alignment agent composition, method for preparing liquid crystal alignment film by using same, and liquid crystal alignment film and liquid crystal display device which use same
WO2020159035A1 (en) Polyimide film, flexible substrate using same, and flexible display comprising flexible substrate
WO2020130261A1 (en) Crosslinking agent compound, photosensitive composition including same, and photosensitive material using same
WO2022045737A1 (en) Positive photosensitive resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898355

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504750

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898355

Country of ref document: EP

Kind code of ref document: A1