WO2020130440A1 - Three-dimensional distance measuring camera - Google Patents

Three-dimensional distance measuring camera Download PDF

Info

Publication number
WO2020130440A1
WO2020130440A1 PCT/KR2019/017173 KR2019017173W WO2020130440A1 WO 2020130440 A1 WO2020130440 A1 WO 2020130440A1 KR 2019017173 W KR2019017173 W KR 2019017173W WO 2020130440 A1 WO2020130440 A1 WO 2020130440A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
acquisition section
image acquisition
noise
light source
Prior art date
Application number
PCT/KR2019/017173
Other languages
French (fr)
Korean (ko)
Inventor
손현성
Original Assignee
㈜미래컴퍼니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ㈜미래컴퍼니 filed Critical ㈜미래컴퍼니
Publication of WO2020130440A1 publication Critical patent/WO2020130440A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/587Control of the dynamic range involving two or more exposures acquired sequentially, e.g. using the combination of odd and even image fields
    • H04N25/589Control of the dynamic range involving two or more exposures acquired sequentially, e.g. using the combination of odd and even image fields with different integration times, e.g. short and long exposures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise

Definitions

  • the present invention relates to a three-dimensional distance measuring camera using a light source. More specifically, the present invention relates to an active ambient light noise reduction method of a 3D distance measuring camera using a light source capable of minimizing the distance error due to ambient light such as sunlight.
  • a 3D distance measuring camera is a camera that irradiates light onto an object and senses the reflected light signal to calculate the distance. Due to its characteristics, signals caused by unsynchronized ambient light (noise), such as sunlight, in addition to the light source irradiated on the subject, There is a problem that an error occurs in the distance calculation by reaching the sensor surface.
  • unsynchronized ambient light such as sunlight
  • the distance from an object in front is sensed using a light source in the camera module to perform cleaning without collision with an object, but various external Since the cleaning is performed under the condition, an incorrect distance calculation may occur due to the ambient light noise, which may cause a problem that cannot accurately guide the route.
  • An object of the present invention is to provide a 3D distance measuring camera using a light source capable of minimizing the distance error due to ambient light such as sunlight.
  • the present invention for solving this technical problem is a three-dimensional distance measuring camera including a light source for irradiating light on a subject, an image sensor for recognizing light reflected from the subject, and a control IC for controlling the operation of the light source and the image sensor.
  • the control IC controls the image sensor to acquire at least one image information without irradiation of the light source in the first image acquisition section, and in the second image acquisition section after the first image acquisition section, the image sensor The exposure time is controlled to be different from the exposure time in the first image acquisition section.
  • control IC senses noise information from image information acquired by the image sensor without irradiating the light source.
  • the exposure time of the image sensor in the second image acquisition section is the first. 1 Control so that it is shorter than the exposure time in the image acquisition section.
  • the exposure time of the image sensor in the second image acquisition section is the first. 1 Control so that it is longer than the exposure time in the image acquisition section.
  • control IC In the three-dimensional distance measuring camera according to the present invention, the control IC generates at least one frame signal for light source irradiation in the image acquisition section and allows the image sensor to synchronize with the frame signal.
  • the first image acquisition section between the first image acquisition section and the second image acquisition section, at least one of noise information, image information, or distance measurement information sensed in the first image acquisition section is external. It further includes a section output to the device.
  • the control IC when the control IC detects noise even in the second image acquisition section, the exposure time of the image sensor in the subsequent image acquisition section gradually increases until no noise is detected. Control it to be short.
  • the control IC when the control IC detects noise even in the second image acquisition section, the exposure time of the image sensor in the subsequent image acquisition section is gradually increased until noise is detected. Control it to be long.
  • the image obtained to calculate the distance information that is, an image capable of inferring the intensity of ambient light, including sunlight, etc.
  • the image for distance measurement that is, an image for noise determination is additionally acquired and analyzed to perform sunlight According to the intensity of the ambient light including the light, it is possible to actively respond to various environments by varying the exposure time.
  • the distance can be increased by increasing the exposure time, and in environments where there is a lot of ambient light including sunlight, the exposure time is shortened to reduce the ambient light including sunlight. There is an effect that can minimize the distance error caused by.
  • FIG. 1A is an exploded perspective view of a 3D distance measuring camera according to an embodiment of the present invention
  • 1B is a view showing a cross section of a 3D distance measuring camera according to an embodiment of the present invention
  • FIG. 2 is a view showing an active ambient light noise reduction method of a 3D distance measuring camera according to an embodiment of the present invention
  • ambient light noise is present through an image for distance measurement obtained when the light source is turned on and a noise determination image obtained when the light source is turned off. It is a drawing showing the case,
  • the ambient light noise is present through the image for distance measurement and the noise determination image obtained when the light source is turned off (OFF). It is a drawing showing a case where it is not
  • FIG. 5 is a view showing the relationship between the size and exposure time of a noise component included in an image for noise determination obtained in a state in which the light source is turned off in an embodiment of the present invention.
  • first or second may be used to describe various components, but the components should not be limited by the terms. The above terms are only for the purpose of distinguishing one component from other components, for example, without departing from the scope of rights according to the concept of the present invention, the first component may be referred to as the second component and similarly the second component The component may also be referred to as the first component.
  • FIG. 1A is an exploded perspective view of a 3D distance measuring camera according to an embodiment of the present invention
  • FIG. 1B is a view showing a cross section of a 3D distance measuring camera according to an embodiment of the present invention
  • the camera module includes a light source board 1 on which components such as a light source 8 are mounted, a heat sink 2 emitting heat generated from the light source board 1, and a lens module 5 Lens base 6, a control board 7 having a control IC 4 for overall control of the operation of the camera module and other coupling members 3-1, 3-2, 3-3, 3-4 ).
  • an image sensor 100 for condensing external light reflected from a subject may be provided under the lens module 5, and the image sensor 100 includes a CCD (Charge Coupled Device), which is an electronic coupling element. ) Or Complementary Metal Oxide Semiconductor (CMOS), which is a complementary metal oxide semiconductor, may be applied, but is not limited thereto.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • FIG. 2 shows a signal applied to each device to implement an active ambient light noise reduction method of a camera using a light source according to an embodiment of the present invention.
  • the image sensor 100 for condensing light reflected from the subject are synchronized with each other, when the light source is generated (On), the image sensor 100 is also exposed (On) mode Works.
  • the image sensor 100 is also exposed (On) mode Works.
  • the number of subject image information required for distance measurement with a subject may vary depending on the type of various products on which the camera module is mounted. In the present invention, as an example, a total of 5 frame signals are used to subject images. The case of securing information and noise information will be described as an example.
  • the section that transmits the calculated distance information and the measured noise information from the acquired image information and image information to the final product equipped with the camera module (noise determination and distance calculation/ Video output section), it is possible to implement active noise reduction technology.
  • the control IC 4 applies a driving pulse as shown in FIG. 2 to the light source 8 and the image sensor 100, respectively.
  • each driving pulse is synchronized, and whenever one driving pulse is applied, light by the light source 8 is irradiated to the subject, and the irradiated light is reflected from the subject and is reflected in the image sensor 100 in the camera module again. ).
  • one image frame information for the incident subject is input to the control IC 4 through the image sensor 100.
  • the driving pulse is repeatedly applied on/off, and sequentially, from the first to the fourth image frames, the light source is applied (On) and the image information reflected by the applied light source is reflected through the image sensor (100). (4).
  • the control IC 4 After securing the subject image information using the light source, the control IC 4 does not apply a driving pulse to the light source (Off) and exposes only the image sensor 100 (On) to dummy frame information of external noise light. ).
  • the control IC 4 outputs the secured image information to the final product along with the calculated distance information, and at the same time, the presence or absence of external noise light.
  • the section for determining (first noise determination and distance calculation/image output section) is executed.
  • control IC 4 senses external noise light
  • the control IC 4 drives the pulse so that the width of the driving pulse in the second image acquisition section is narrower than the width of the driving pulse in the first image acquisition section. Is applied. If the external noise light is also detected in the second image acquisition section, then the width of the driving pulse applied in the third image acquisition section is applied to be narrower.
  • the control IC 4 can finally obtain the object image information without external noise light, thereby calculating more accurate distance information to the object and transmitting it to the final product.
  • control IC 4 controls the width of the driving pulse to be narrow to obtain the subject image information without external noise light, it is gradually controlled so that the width of the driving pulse is wide again to make the intensity of the subject exposed by the light source stronger. Through this, it is possible to reduce the distance measurement error through more accurate image information reflected from the subject.
  • Controlling the width of the above-described driving pulse means that digitally controlling the time when the power is applied to the light source 8 and the time when the image sensor 100 is exposed (On).
  • 3 and 4 show an image image actually measured when the active driving pulse according to FIG. 2 is applied to each device in one embodiment of the present invention.
  • the video image corresponds to the video image according to the driving pulse of the first frame of FIG. 2, (b) the video image is the second frame, (c) the video image is the third frame , (d) The image image corresponds to the fourth frame, and (e) the image image corresponds to the image image according to the driving pulse of the dummy frame.
  • the image images from (a) to (d) show image image information received by the image sensor 100 when the light source 8 is sequentially turned on. And (e) the image image is obtained by exposing (On) only the image sensor 100 in a state in which the light source 8 is turned off, and in this case, it is determined that there is noise due to external light in the image (e).
  • the control IC 4 is then driven in the second image acquisition section.
  • the width of the pulse is reduced and the exposure time of the image sensor 100 is reduced. If noise is also detected in the dummy frame of the second image acquisition section, the width of the driving pulse in the third image acquisition section is further reduced, and as shown in FIG. 4, the image sensor 100 until no more noise is detected. ) Will continuously reduce the exposure (On) time. In addition, if noise is no longer detected in the dummy frame as shown in FIG.
  • control IC 4 applies the driving pulse width in the subsequent image acquisition section wider than the pulse width in the previous section to expose the image sensor 100. (On) can be longer. By doing this, a stronger light source can be irradiated to the subject, and the distance measurement precision can be improved by sensing a more accurate image of the subject.
  • the 3D distance measuring camera according to the present invention adopts a noise reduction method capable of actively responding to ambient noise situations, and an image sensor according to whether the control IC 4 is noise sensed through a dummy frame.
  • a noise reduction method capable of actively responding to ambient noise situations
  • an image sensor according to whether the control IC 4 is noise sensed through a dummy frame.
  • FIG. 5 shows the relationship between the size of the noise component and the exposure time included in the image information obtained only by exposure of the image sensor 100 in a state where the light source 8 is turned off in an embodiment of the present invention. It is a drawing. For the first time, when the exposure time is 2 ms, it is measured that there is noise 525, and then, when the exposure time is reduced to 0.2 ms, which is reduced to 1.8 ms, the size of the measured noise component is reduced to 440 to about 85. Afterwards, it can be seen that the noise level continuously decreases as the exposure time is continuously reduced.
  • the image obtained to calculate the distance information that is, an image capable of inferring the intensity of ambient light, including sunlight, etc.
  • the image for distance measurement that is, an image for noise determination is additionally acquired and analyzed to perform sunlight According to the intensity of the ambient light including the light, it is possible to actively respond to various environments by varying the exposure time.
  • the distance can be increased by increasing the exposure time, and in environments where there is a lot of ambient light including sunlight, the exposure time is shortened to reduce the ambient light including sunlight. There is an effect that can minimize the distance error caused by.

Abstract

The present invention relates to a three-dimensional distance measuring camera comprising: a light source for emitting light at an object; an image sensor for recognizing light reflected from the object; and a control IC for controlling operations of the light source and the image sensor, wherein the control IC performs control so that the image sensor acquires at least one piece of image information in a first image acquisition section without emission from the light source, and performs control so that the exposure time of the image sensor in a second image acquisition section after the first image acquisition section is different from the exposure time in the first image acquisition section. According to the present invention, a distance error caused by ambient light such as sunlight can be minimized in a photographing process of a camera using a light source, such as a three-dimensional distance measuring camera.

Description

3차원 거리측정 카메라3D distance measuring camera
본 발명은 광원을 이용한 3차원 거리측정 카메라에 관한 것이다. 보다 구체적으로, 본 발명은 태양광 등과 같은 주변광에 의한 거리 오차를 최소화할 수 있는 광원을 이용한 3차원 거리측정 카메라의 능동형 주변광 노이즈 감쇄 방법에 관한 것이다.The present invention relates to a three-dimensional distance measuring camera using a light source. More specifically, the present invention relates to an active ambient light noise reduction method of a 3D distance measuring camera using a light source capable of minimizing the distance error due to ambient light such as sunlight.
3차원 거리측정 카메라는 물체에 광을 조사하고 반사된 광신호를 센싱하여 거리를 계산하는 카메라로서 그 특성상 피사체에 조사된 광원 이외에 태양광 등과 같은 동기 되지 않은 주변광(노이즈)에 기인한 신호가 센서면에 도달하여 거리 계산에 오차가 발생하는 문제가 있다.A 3D distance measuring camera is a camera that irradiates light onto an object and senses the reflected light signal to calculate the distance. Due to its characteristics, signals caused by unsynchronized ambient light (noise), such as sunlight, in addition to the light source irradiated on the subject, There is a problem that an error occurs in the distance calculation by reaching the sensor surface.
실 예로서, 3차원 거리측정 카메라가 탑재되어 있는 로봇청소기의 경우, 카메라 모듈에 있는 광원을 이용하여 전방에 있는 물체와의 거리를 센싱하여 물체와의 충돌 없이 청소를 수행하도록 되어 있지만, 다양한 외부조건에서 청소를 하기 때문에 주변의 광 노이즈로 인해 잘못된 거리계산을 함으로써 정확한 경로 안내를 할 수 없는 문제점이 발생할 수 있다.As an example, in the case of a robot cleaner equipped with a 3D distance measuring camera, the distance from an object in front is sensed using a light source in the camera module to perform cleaning without collision with an object, but various external Since the cleaning is performed under the condition, an incorrect distance calculation may occur due to the ambient light noise, which may cause a problem that cannot accurately guide the route.
이와 같은 광 노이즈를 없애기 위한 종래 기술의 하나로, 실생활 환경에서 찾기 힘든 파장대인 940nm 대의 광원을 사용하여 광 노이즈를 줄이는 기술이 알려져 있다.As one of the prior arts for eliminating such optical noise, a technique for reducing optical noise using a light source having a wavelength range of 940 nm, which is difficult to find in a real life environment, is known.
그러나 일반적으로 알려진 바와 같이 태양광은 가시광선뿐만 아니라 적외선, 자외선을 포함하는 매우 광범위한 파장 대역에 분포하고 있기 때문에, 특정 파장 대역의 광원을 사용한다고 하여도 태양광 등과 같은 주변광에 기인하는 오차 발생을 방지할 수 없다는 문제점이 있다.However, as is generally known, since sunlight is distributed over a wide range of wavelengths including infrared rays and ultraviolet rays, as well as visible rays, errors due to ambient light such as sunlight may occur even when a light source of a specific wavelength band is used. There is a problem that can not be prevented.
이러한 문제는 특히, 태양광이 강한 실외 환경에서 크게 강화되어, 광원을 이용한 3차원 거리측정 카메라의 품질을 저하시키는 주요 요인으로 작용하게 된다.In particular, these problems are greatly strengthened in an outdoor environment in which sunlight is strong, and thus serve as a major factor deteriorating the quality of a 3D distance measuring camera using a light source.
[선행기술문헌][Advanced technical literature]
대한민국 공개특허공보 제10-2016-0054156호(공개일자: 2016년 05월 16일, 명칭: 거리 측정 장치)Republic of Korea Patent Publication No. 10-2016-0054156 (published date: May 16, 2016, name: distance measuring device)
대한민국 공개특허공보 제10-2017-0051752호(공개일자: 2017년 05월 12일, 명칭: TOF 카메라 제어방법)Republic of Korea Patent Publication No. 10-2017-0051752 (published date: May 12, 2017, name: TOF camera control method)
본 발명은 태양광 등과 같은 주변광에 의한 거리 오차를 최소화할 수 있는 광원을 이용한 3차원 거리측정 카메라를 제공하는 것을 기술적 과제로 한다.An object of the present invention is to provide a 3D distance measuring camera using a light source capable of minimizing the distance error due to ambient light such as sunlight.
이러한 기술적 과제를 해결하기 위한 본 발명은 피사체에 광을 조사하는 광원, 피사체에서 반사된 광을 인식하는 이미지센서 및 상기 광원과 상기 이미지센서의 동작을 제어하는 제어IC를 포함하는 3차원 거리측정 카메라에 있어서, 상기 제어IC는 제1 영상획득 구간에서 상기 광원의 조사 없이 상기 이미지센서가 적어도 하나의 영상정보를 획득하도록 제어하고, 상기 제1 영상획득 구간 이후의 제2 영상획득 구간에서는 상기 이미지센서의 노출시간이 상기 제1 영상획득 구간에서의 노출시간과 다르게 되도록 제어한다.The present invention for solving this technical problem is a three-dimensional distance measuring camera including a light source for irradiating light on a subject, an image sensor for recognizing light reflected from the subject, and a control IC for controlling the operation of the light source and the image sensor. In the above, the control IC controls the image sensor to acquire at least one image information without irradiation of the light source in the first image acquisition section, and in the second image acquisition section after the first image acquisition section, the image sensor The exposure time is controlled to be different from the exposure time in the first image acquisition section.
본 발명에 따른 3차원 거리측정 카메라에 있어서, 상기 제어 IC는 상기 광원의 조사 없이 상기 이미지센서가 획득하는 영상정보에서 노이즈 정보를 센싱한다.In the three-dimensional distance measuring camera according to the present invention, the control IC senses noise information from image information acquired by the image sensor without irradiating the light source.
본 발명에 따른 3차원 거리측정 카메라에 있어서, 상기 제어 IC는 상기 제1 영상획득 구간에서 획득된 영상정보에 노이즈가 있을 경우, 상기 제2 영상획득 구간에서의 상기 이미지센서의 노출시간이 상기 제1 영상획득 구간에서의 노출시간 보다 짧게 되도록 제어한다.In the three-dimensional distance measuring camera according to the present invention, when the control IC has noise in the image information obtained in the first image acquisition section, the exposure time of the image sensor in the second image acquisition section is the first. 1 Control so that it is shorter than the exposure time in the image acquisition section.
본 발명에 따른 3차원 거리측정 카메라에 있어서, 상기 제어 IC는 상기 제1 영상획득 구간에서 획득된 영상정보에 노이즈가 없을 경우, 상기 제2 영상획득 구간에서의 상기 이미지센서의 노출시간이 상기 제1 영상획득 구간에서의 노출시간 보다 길게 되도록 제어한다.In the three-dimensional distance measuring camera according to the present invention, when the control IC has no noise in the image information obtained in the first image acquisition section, the exposure time of the image sensor in the second image acquisition section is the first. 1 Control so that it is longer than the exposure time in the image acquisition section.
본 발명에 따른 3차원 거리측정 카메라에 있어서, 상기 제어IC는 상기 영상획득 구간에서 광원 조사를 위한 적어도 하나의 프레임 신호를 생성하고 상기 이미지센서가 상기 프레임 신호에 동기화 되도록 한다.In the three-dimensional distance measuring camera according to the present invention, the control IC generates at least one frame signal for light source irradiation in the image acquisition section and allows the image sensor to synchronize with the frame signal.
본 발명에 따른 3차원 거리측정 카메라에 있어서, 상기 제1 영상획득 구간 및 상기 제2 영상획득 구간 사이에는 상기 제1 영상획득 구간에서 센싱한 노이즈 정보, 영상정보 또는 거리측정 정보 중 적어도 하나를 외부장치로 출력하는 구간을 더 포함한다.In the 3D distance measuring camera according to the present invention, between the first image acquisition section and the second image acquisition section, at least one of noise information, image information, or distance measurement information sensed in the first image acquisition section is external. It further includes a section output to the device.
본 발명에 따른 3차원 거리측정 카메라에 있어서, 상기 제어 IC는 상기 제2 영상획득 구간에서도 노이즈가 검출될 경우 노이즈가 검출되지 않을 때까지 지속적으로 이후 영상획득 구간의 이미지센서의 노출시간이 점차적으로 짧게 되도록 제어한다.In the three-dimensional distance measuring camera according to the present invention, when the control IC detects noise even in the second image acquisition section, the exposure time of the image sensor in the subsequent image acquisition section gradually increases until no noise is detected. Control it to be short.
본 발명에 따른 3차원 거리측정 카메라에 있어서, 상기 제어 IC는 상기 제2 영상획득 구간에서도 노이즈가 검출되지 않을 경우 노이즈가 검출될 때까지 지속적으로 이후 영상획득 구간의 이미지센서의 노출시간이 점차적으로 길게 되도록 제어한다.In the three-dimensional distance measuring camera according to the present invention, when the control IC detects noise even in the second image acquisition section, the exposure time of the image sensor in the subsequent image acquisition section is gradually increased until noise is detected. Control it to be long.
본 발명에 따르면, 태양광 등과 같은 주변광에 의한 거리 오차를 최소화할 수 있는 광원을 이용한 3차원 거리측정 카메라가 제공되는 효과가 있다.According to the present invention, there is an effect of providing a 3D distance measuring camera using a light source capable of minimizing the distance error due to ambient light such as sunlight.
또한, 거리정보를 계산하기 위해 획득한 영상, 즉, 거리 측정용 이미지 이외에 태양광 등을 포함하는 주변광의 세기를 유추할 수 있는 영상, 즉, 노이즈 판단용 이미지를 추가로 획득 및 분석하여 태양광 등을 포함하는 주변광의 세기에 따라 능동적으로 노출시간을 가변하여 보다 다양한 환경에 대응할 수 있는 효과가 있다.In addition, the image obtained to calculate the distance information, that is, an image capable of inferring the intensity of ambient light, including sunlight, etc., in addition to the image for distance measurement, that is, an image for noise determination is additionally acquired and analyzed to perform sunlight According to the intensity of the ambient light including the light, it is possible to actively respond to various environments by varying the exposure time.
또한, 태양광 등을 포함하는 주변광이 없는 환경에서는 노출시간을 길게 하여 거리정밀도를 높일 수 있으며 태양광을 포함하는 주변광이 많은 환경에서는 노출시간을 짧게 하여 태양광 등을 포함하는 주변광에 의한 거리오차는 최소화시킬 수 있는 효과가 있다.In addition, in environments where there is no ambient light including sunlight, the distance can be increased by increasing the exposure time, and in environments where there is a lot of ambient light including sunlight, the exposure time is shortened to reduce the ambient light including sunlight. There is an effect that can minimize the distance error caused by.
도 1a는 본 발명의 일 실시 예에 따른 3차원 거리측정 카메라의 분해사시도이고,1A is an exploded perspective view of a 3D distance measuring camera according to an embodiment of the present invention,
도 1b는 본 발명의 일 실시 예에 따른 3차원 거리측정 카메라의 단면을 나타낸 도면이고, 1B is a view showing a cross section of a 3D distance measuring camera according to an embodiment of the present invention,
도 2는 본 발명의 일 실시 예에 따른 3차원 거리측정 카메라의 능동형 주변광 노이즈 감쇄 방법을 나타낸 도면이고, 2 is a view showing an active ambient light noise reduction method of a 3D distance measuring camera according to an embodiment of the present invention,
도 3은 본 발명의 일 실시 예에 있어서, 광원을 온(ON)시킨 상태에서 획득한 거리 측정용 이미지와 광원을 오프(OFF)시킨 상태에서 획득한 노이즈 판단용 이미지를 통해 주변광 노이즈가 존재하는 경우를 나타낸 도면이고,3 is, in one embodiment of the present invention, ambient light noise is present through an image for distance measurement obtained when the light source is turned on and a noise determination image obtained when the light source is turned off. It is a drawing showing the case,
도 4는 본 발명의 일 실시 예에 있어서, 광원을 온(ON)시킨 상태에서 획득한 거리 측정용 이미지와 광원을 오프(OFF)시킨 상태에서 획득한 노이즈 판단용 이미지를 통해 주변광 노이즈가 존재하지 않는 경우를 나타낸 도면이고,4 is, in one embodiment of the present invention, the ambient light noise is present through the image for distance measurement and the noise determination image obtained when the light source is turned off (OFF). It is a drawing showing a case where it is not
도 5는 본 발명의 일 실시 예에 있어서, 광원을 오프(OFF)시킨 상태에서 획득한 노이즈 판단용 이미지에 포함된 노이즈 성분의 크기와 노출시간의 관계를 나타낸 도면이다.5 is a view showing the relationship between the size and exposure time of a noise component included in an image for noise determination obtained in a state in which the light source is turned off in an embodiment of the present invention.
본 명세서에 개시된 본 발명의 개념에 따른 실시 예들에 대해서 특정한 구조적 또는 기능적 설명은 단지 본 발명의 개념에 따른 실시 예들을 설명하기 위한 목적으로 예시된 것으로서, 본 발명의 개념에 따른 실시 예들은 다양한 형태들로 실시될 수 있으며 본 명세서에 설명된 실시 예들에 한정되지 않는다.Specific structural or functional descriptions of the embodiments according to the concept of the present invention disclosed in the present specification are exemplified for the purpose of explaining the embodiments according to the concept of the present invention, and the embodiments according to the concept of the present invention are in various forms It can be implemented with and is not limited to the embodiments described herein.
본 발명의 개념에 따른 실시 예들은 다양한 변경들을 가할 수 있고 여러 가지 형태들을 가질 수 있으므로 실시 예들을 도면에 예시하고 본 명세서에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시 예들을 특정한 개시 형태들에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물, 또는 대체물을 포함한다.Embodiments according to the concept of the present invention can be applied to various changes and can have various forms, so the embodiments will be illustrated in the drawings and described in detail herein. However, this is not intended to limit the embodiments according to the concept of the present invention to specific disclosure forms, and includes all changes, equivalents, or substitutes included in the spirit and scope of the present invention.
제1 또는 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만, 예컨대 본 발명의 개념에 따른 권리 범위로부터 벗어나지 않은 채, 제1 구성 요소는 제2 구성 요소로 명명될 수 있고 유사하게 제2 구성 요소는 제1 구성 요소로도 명명될 수 있다.Terms such as first or second may be used to describe various components, but the components should not be limited by the terms. The above terms are only for the purpose of distinguishing one component from other components, for example, without departing from the scope of rights according to the concept of the present invention, the first component may be referred to as the second component and similarly the second component The component may also be referred to as the first component.
어떤 구성 요소가 다른 구성 요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성 요소에 직접 연결되어 있거나 접속되어 있을 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성 요소가 다른 구성 요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성 요소간의 관계를 설명하는 다른 표현들, 즉 "~사이에" 와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.When a component is said to be "connected" to or "connected" to another component, it should be understood that other components may be directly connected or connected to the other component, but may exist in the middle. will be. On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it should be understood that no other component exists in the middle. Other expressions describing the relationship between the components, such as "between" and "immediately between" or "adjacent to" and "directly neighboring to," should be interpreted similarly.
본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로서, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 본 명세서에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in this specification are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this specification, terms such as “include” or “have” are intended to indicate that a feature, number, step, operation, component, part, or combination thereof described herein exists, one or more other features. It should be understood that the existence or addition possibilities of fields or numbers, steps, actions, components, parts or combinations thereof are not excluded in advance.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 나타낸다. 일반적으로 사용되는 사전에 정의된 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by a person skilled in the art to which the present invention pertains. Terms, such as those defined in the commonly used dictionary, should be interpreted as having meanings consistent with meanings in the context of related technologies, and are not to be interpreted as ideal or excessively formal meanings unless explicitly defined herein. .
이하에서는, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1a는 본 발명의 일 실시 예에 따른 3차원 거리측정 카메라의 분해사시도이고, 도 1b는 본 발명의 일 실시 예에 따른 3차원 거리측정 카메라의 단면을 나타낸 도면이다1A is an exploded perspective view of a 3D distance measuring camera according to an embodiment of the present invention, and FIG. 1B is a view showing a cross section of a 3D distance measuring camera according to an embodiment of the present invention
도 1a를 참조하면, 카메라 모듈은 광원(8) 등의 부품이 실장되는 광원보드(1), 광원보드(1)에서 발생하는 열을 방출하는 히트 싱크(2), 렌즈모듈(5)이 결합되는 렌즈베이스(6), 카메라모듈의 동작을 전반적으로 제어하는 제어IC(4)를 구비하는 제어보드(7) 및 기타 결합부재들(3-1, 3-2, 3-3, 3-4)을 포함한다.Referring to FIG. 1A, the camera module includes a light source board 1 on which components such as a light source 8 are mounted, a heat sink 2 emitting heat generated from the light source board 1, and a lens module 5 Lens base 6, a control board 7 having a control IC 4 for overall control of the operation of the camera module and other coupling members 3-1, 3-2, 3-3, 3-4 ).
도 1b를 참조하면, 렌즈모듈(5) 하부에는 피사체로부터 반사된 외부광을 집광하기 위한 이미지센서(100)가 구비될 수 있으며, 이러한 이미지 센서(100)로는 전자결합소자인 CCD(Charge Coupled Device) 또는 상보성 금속산화물 반도체인 CMOS(Complementary Metal Oxide Semiconductor)가 적용될 수 있으나, 이에 한정되지는 않는다.Referring to FIG. 1B, an image sensor 100 for condensing external light reflected from a subject may be provided under the lens module 5, and the image sensor 100 includes a CCD (Charge Coupled Device), which is an electronic coupling element. ) Or Complementary Metal Oxide Semiconductor (CMOS), which is a complementary metal oxide semiconductor, may be applied, but is not limited thereto.
도 2는 본 발명의 일 실시 예에 따른 광원을 이용한 카메라의 능동형 주변광 노이즈 감쇄 방법을 구현하기 위해 각 소자에 인가되는 신호를 나타낸 것이다.2 shows a signal applied to each device to implement an active ambient light noise reduction method of a camera using a light source according to an embodiment of the present invention.
카메라 모듈에서 광을 발생시키기 위한 광원(8)과 피사체에서 반사된 광을 집광하기 위한 이미지 센서(100)는 서로 동기화되어 있어 광원 발생(On) 시 이미지 센서(100)도 노출(On) 모드로 동작한다. 두 펄스 신호를 동기화함으로써 광원(8)에서 발생한 광이 피사체에 반사되어 이미지 센서(100)로 입사되게 되고 이를 통해 피사체의 영상을 확보할 수 있게 된다. 카메라 모듈이 탑재되는 다양한 제품의 종류에 따라 피사체와의 거리측정을 위해 필요한 피사체 영상정보의 개수가 달라질 수 있으며, 본 발명에서는 하나의 실시 예로서 총 5개의 프레임(frame) 신호를 활용하여 피사체 영상정보와 노이즈 정보를 확보하는 경우를 예로서 설명한다. 피사체 영상정보와 노이즈 정보를 확보하는 영상획득 구간 이후에는 확보된 영상정보와 영상정보로부터 연산된 거리정보 및 측정된 노이즈 정보를 카메라 모듈이 탑재된 최종제품에 전송하는 구간(노이즈 판단 및 거리연산/영상출력 구간)을 둠으로써 능동형 노이즈 저감기술을 구현할 수 있다.Since the light source 8 for generating light in the camera module and the image sensor 100 for condensing light reflected from the subject are synchronized with each other, when the light source is generated (On), the image sensor 100 is also exposed (On) mode Works. By synchronizing the two pulse signals, light generated from the light source 8 is reflected to the subject and is incident on the image sensor 100, thereby securing an image of the subject. The number of subject image information required for distance measurement with a subject may vary depending on the type of various products on which the camera module is mounted. In the present invention, as an example, a total of 5 frame signals are used to subject images. The case of securing information and noise information will be described as an example. After the image acquisition section that secures the subject image information and noise information, the section that transmits the calculated distance information and the measured noise information from the acquired image information and image information to the final product equipped with the camera module (noise determination and distance calculation/ Video output section), it is possible to implement active noise reduction technology.
이하에서는 도 1a, 도 1b 및 도 2를 참조하여 본 발명에 따른 능동형 노이즈 저감기술을 보다 구체적으로 설명하고자 한다.Hereinafter, an active noise reduction technique according to the present invention will be described in more detail with reference to FIGS. 1A, 1B, and 2.
외부 전원 신호가 인가(On)되면 제어IC(4)에서는 광원(8) 및 이미지 센서(100)에 각각 도 2와 같은 구동펄스를 인가한다. 상술한 바와 같이, 각 구동펄스는 동기화되어 있으며 하나의 구동펄스가 인가될 때 마다 광원(8)에 의한 광이 피사체에 조사되고 조사된 광은 피사체에서 반사되어 다시 카메라 모듈에 있는 이미지 센서(100)에 입사되게 된다. 그리고 입사된 피사체에 대한 하나의 영상 프레임 정보는 이미지 센서(100)를 통해 제어IC(4)에 입력되게 된다. 구동펄스는 On/Off를 반복하며 인가되고, 순차적으로 처음부터 네 번째까지의 영상 프레임은 광원이 인가(On)되고 인가된 광원이 피사체에 반사된 영상정보가 이미지 센서(100)를 통해 제어IC(4)에 입력되게 된다. 광원을 이용하여 피사체 영상정보를 확보한 이후에는 제어IC(4)가 광원에 구동펄스를 인가하지 않고(Off) 이미지 센서(100)만을 노출(On)시켜 외부 노이즈 광의 정보를 더미 프레임(dummy frame)을 통해 얻게 된다. 구동펄스를 통해 피사체의 영상정보와 외부 노이즈 광의 정보를 얻는 제1 영상획득 구간이 종료되면 제어IC(4)가 확보된 영상정보를 연산된 거리정보와 함께 최종제품에 출력하며 동시에 외부 노이즈 광의 유무를 판단하는 구간(제1 노이즈 판단 및 거리연산/영상출력 구간)을 실행한다. 이 때 만약 제어IC(4)가 외부 노이즈 광을 센싱하면, 이후 제2 영상획득 구간에서의 구동펄스의 폭이 제1 영상획득 구간에서의 구동펄스 폭보다 좁게 되도록 제어IC(4)가 구동펄스를 인가한다. 만약 제2 영상획득 구간에서도 동일하게 외부 노이즈 광이 검출된다면 이후 제3 영상획득 구간에서 인가되는 구동펄스의 폭이 더 좁게 되도록 인가한다. 제어IC(4)가 이러한 과정을 반복함으로써 최종적으로 외부 노이즈 광이 없는 피사체 영상정보를 확보할 수 있고 이를 통해 보다 정확한 피사체와의 거리정보를 연산하여 최종제품에 전달할 수 있게 된다.When the external power signal is applied (On), the control IC 4 applies a driving pulse as shown in FIG. 2 to the light source 8 and the image sensor 100, respectively. As described above, each driving pulse is synchronized, and whenever one driving pulse is applied, light by the light source 8 is irradiated to the subject, and the irradiated light is reflected from the subject and is reflected in the image sensor 100 in the camera module again. ). In addition, one image frame information for the incident subject is input to the control IC 4 through the image sensor 100. The driving pulse is repeatedly applied on/off, and sequentially, from the first to the fourth image frames, the light source is applied (On) and the image information reflected by the applied light source is reflected through the image sensor (100). (4). After securing the subject image information using the light source, the control IC 4 does not apply a driving pulse to the light source (Off) and exposes only the image sensor 100 (On) to dummy frame information of external noise light. ). When the first image acquisition section, which obtains the image information of the subject and the external noise light through the driving pulse, ends, the control IC 4 outputs the secured image information to the final product along with the calculated distance information, and at the same time, the presence or absence of external noise light. The section for determining (first noise determination and distance calculation/image output section) is executed. At this time, if the control IC 4 senses external noise light, then the control IC 4 drives the pulse so that the width of the driving pulse in the second image acquisition section is narrower than the width of the driving pulse in the first image acquisition section. Is applied. If the external noise light is also detected in the second image acquisition section, then the width of the driving pulse applied in the third image acquisition section is applied to be narrower. By repeating this process, the control IC 4 can finally obtain the object image information without external noise light, thereby calculating more accurate distance information to the object and transmitting it to the final product.
제어IC(4)가 구동펄스의 폭이 좁게 되도록 제어하여 외부 노이즈 광이 없는 피사체 영상정보를 확보한 이후에는 다시 구동펄스의 폭이 넓게 되도록 점차 제어하여 피사체가 광원에 의해 노출되는 강도를 강하게 만들고 이를 통해 피사체에서 반사되는 보다 정확한 영상정보를 통해 거리측정 오차를 줄일 수 있게 된다.After the control IC 4 controls the width of the driving pulse to be narrow to obtain the subject image information without external noise light, it is gradually controlled so that the width of the driving pulse is wide again to make the intensity of the subject exposed by the light source stronger. Through this, it is possible to reduce the distance measurement error through more accurate image information reflected from the subject.
위에서 언급한 구동펄스의 폭을 제어한다는 것은 광원(8)에 전원이 인가(On)되는 시간과 이미지 센서(100)가 노출(On)되는 시간을 디지털(digital)적으로 제어한다는 것을 의미한다.Controlling the width of the above-described driving pulse means that digitally controlling the time when the power is applied to the light source 8 and the time when the image sensor 100 is exposed (On).
위에서 언급한 방법을 통해 외부 노이즈 광의 유무 또는 세기에 따라 능동적으로 노이즈를 저감시킨 영상정보를 최종제품에 제공할 수 있으며, 최종제품에서는 능동적으로 노이즈가 저감된 영상정보를 활용하여 다양한 기준에 따라 제품의 성능을 제고시킬 수 있게 된다.Through the above-mentioned method, it is possible to provide the final product with image information that has actively reduced noise depending on the presence or intensity of external noise light. It is possible to improve the performance of the.
도 3과 도 4는 본 발명의 일 실시 예에 있어서, 도 2에 따른 능동형 구동펄스를 각 소자에 인가하였을 때 실제 측정되는 영상이미지를 보여주는 것이다.3 and 4 show an image image actually measured when the active driving pulse according to FIG. 2 is applied to each device in one embodiment of the present invention.
도 3과 도 4에 있어서, (a) 영상이미지는 도 2의 제1 frame의 구동펄스에 따른 영상이미지에 대응하며, (b) 영상이미지는 제2 frame, (c) 영상이미지는 제3 frame, (d) 영상이미지는 제4 frame, 그리고 (e) 영상이미지는 더미 frame의 구동펄스에 따른 영상이미지에 각각 대응된다.3 and 4, (a) the video image corresponds to the video image according to the driving pulse of the first frame of FIG. 2, (b) the video image is the second frame, (c) the video image is the third frame , (d) The image image corresponds to the fourth frame, and (e) the image image corresponds to the image image according to the driving pulse of the dummy frame.
도 3에 있어서, (a)부터 (d)까지의 영상이미지는, 광원(8)을 순차적으로 온(On) 시켰을 때 이미지센서(100)가 각각 받아들인 영상이미지 정보를 보여주는 것이다. 그리고 (e) 영상이미지는 광원(8)을 오프(Off) 시킨 상태에서 이미지센서(100)만을 노출(On) 시켜 얻은 것이며, 이 때 (e) 영상에서는 외광 등에 의한 노이즈가 있는 것으로 판별되었다.In FIG. 3, the image images from (a) to (d) show image image information received by the image sensor 100 when the light source 8 is sequentially turned on. And (e) the image image is obtained by exposing (On) only the image sensor 100 in a state in which the light source 8 is turned off, and in this case, it is determined that there is noise due to external light in the image (e).
도 3의 경우에 대해 도 2에 따른 능동형 노이즈 제거방법으로 해결하는 방법을 설명하면, 제1 영상획득 구간에서 외광 등에 의한 노이즈가 검출되었기 때문에 제어IC(4)는 이후 제2 영상획득 구간에서 구동펄스의 폭을 줄이며 이미지센서(100)의 노출(On) 시간을 줄이게 된다. 만약 제2 영상획득 구간의 더미 frame에서도 노이즈가 검출되면 이후 제3 영상획득 구간에서의 구동펄스 폭을 더 줄이게 되며, 도 4에서 보여지는 것처럼, 더 이상 노이즈가 검출되지 않을 때까지 이미지센서(100)의 노출(On) 시간을 지속적으로 줄여나가게 된다. 그리고 도 4에서 처럼 만약 더미 frame에서 더 이상 노이즈가 검출되지 않는다면 제어IC(4)는 이후 영상획득 구간에서의 구동펄스 폭을 이전 구간에서의 펄스 폭 보다 넓혀 인가를 하여 이미지센서(100)가 노출(On) 되는 시간을 더 길게 할 수 있다. 이렇게 함으로써 피사체에 보다 강한 광원을 조사할 수 있고 보다 정확한 피사체의 영상이미지를 센싱하여 거리측정 정밀도를 제고할 수 있게 된다.Referring to the case of FIG. 3, a method of solving with the active noise removal method according to FIG. 2, since noise due to external light or the like was detected in the first image acquisition section, the control IC 4 is then driven in the second image acquisition section. The width of the pulse is reduced and the exposure time of the image sensor 100 is reduced. If noise is also detected in the dummy frame of the second image acquisition section, the width of the driving pulse in the third image acquisition section is further reduced, and as shown in FIG. 4, the image sensor 100 until no more noise is detected. ) Will continuously reduce the exposure (On) time. In addition, if noise is no longer detected in the dummy frame as shown in FIG. 4, the control IC 4 applies the driving pulse width in the subsequent image acquisition section wider than the pulse width in the previous section to expose the image sensor 100. (On) can be longer. By doing this, a stronger light source can be irradiated to the subject, and the distance measurement precision can be improved by sensing a more accurate image of the subject.
상술한 바와 같이 본 발명에 따른 3차원 거리측정 카메라는 주변 노이즈 상황에 능동적으로 대응이 가능한 노이즈 저감 방식을 채택하고 있으며, 제어IC(4)가 더미 frame을 통해 센싱된 노이즈의 여부에 따라 이미지센서(100)의 노출(On) 시간을 가변적으로 제어하고 노이즈 정보와 영상정보 및 거리정보 등을 로봇청소기와 같은 최종제품에 제공함으로써 제품 성능을 제고시킬 수 있다.As described above, the 3D distance measuring camera according to the present invention adopts a noise reduction method capable of actively responding to ambient noise situations, and an image sensor according to whether the control IC 4 is noise sensed through a dummy frame. By controlling the exposure time of (100) variably and providing noise information, image information, and distance information to a final product such as a robot cleaner, product performance can be improved.
도 5는 본 발명의 일 실시 예에 있어서, 광원(8)을 오프(OFF)시킨 상태에서 이미지센서(100)의 노출만으로 획득한 영상정보에 포함된 노이즈 성분의 크기와 노출시간의 관계를 나타낸 도면이다. 처음으로, 노출시간이 2ms일 경우 노이즈(525)가 있는 것으로 측정되었고 이후 노출시간을 0.2ms 줄인 1.8ms로 하여 노출시킬 경우 측정된 노이즈 성분의 크기가 440으로 약 85만큼 감소한 것을 확인할 수 있다. 이후 지속적으로 노출(On) 시간을 줄임에 따라 지속적으로 노이즈 크기가 감소하는 것을 확인할 수 있다.FIG. 5 shows the relationship between the size of the noise component and the exposure time included in the image information obtained only by exposure of the image sensor 100 in a state where the light source 8 is turned off in an embodiment of the present invention. It is a drawing. For the first time, when the exposure time is 2 ms, it is measured that there is noise 525, and then, when the exposure time is reduced to 0.2 ms, which is reduced to 1.8 ms, the size of the measured noise component is reduced to 440 to about 85. Afterwards, it can be seen that the noise level continuously decreases as the exposure time is continuously reduced.
이상에서 상세히 설명한 바와 같이 본 발명에 따르면, 태양광 등과 같은 주변광에 의한 거리 오차를 최소화할 수 있는 광원을 이용한 3차원 거리측정 카메라가 제공되는 효과가 있다.As described in detail above, according to the present invention, there is an effect of providing a 3D distance measuring camera using a light source capable of minimizing a distance error due to ambient light such as sunlight.
또한, 거리정보를 계산하기 위해 획득한 영상, 즉, 거리 측정용 이미지 이외에 태양광 등을 포함하는 주변광의 세기를 유추할 수 있는 영상, 즉, 노이즈 판단용 이미지를 추가로 획득 및 분석하여 태양광 등을 포함하는 주변광의 세기에 따라 능동적으로 노출시간을 가변하여 보다 다양한 환경에 대응할 수 있는 효과가 있다.In addition, the image obtained to calculate the distance information, that is, an image capable of inferring the intensity of ambient light, including sunlight, etc., in addition to the image for distance measurement, that is, an image for noise determination is additionally acquired and analyzed to perform sunlight According to the intensity of the ambient light including the light, it is possible to actively respond to various environments by varying the exposure time.
또한, 태양광 등을 포함하는 주변광이 없는 환경에서는 노출시간을 길게 하여 거리정밀도를 높일 수 있으며 태양광을 포함하는 주변광이 많은 환경에서는 노출시간을 짧게 하여 태양광 등을 포함하는 주변광에 의한 거리오차는 최소화시킬 수 있는 효과가 있다.In addition, in environments where there is no ambient light including sunlight, the distance can be increased by increasing the exposure time, and in environments where there is a lot of ambient light including sunlight, the exposure time is shortened to reduce the ambient light including sunlight. There is an effect that can minimize the distance error caused by.
[도면 부호의 설명][Description of drawing symbols]
1: 광원보드1: Light board
2: 히트 싱크2: Heat sink
3-1, 3-2, 3-3, 3-4: 결합부재들3-1, 3-2, 3-3, 3-4: Coupling members
4: 제어IC4: Control IC
5: 렌즈모듈5: Lens module
6: 렌즈베이스6: Lens base
7: 제어보드7: Control board
8: 광원8: Light source
100: 이미지센서100: image sensor

Claims (8)

  1. 피사체에 광을 조사하는 광원;A light source irradiating light to the subject;
    피사체에서 반사된 광을 인식하는 이미지센서; 및An image sensor that recognizes light reflected from the subject; And
    상기 광원과 상기 이미지센서의 동작을 제어하는 제어IC를 포함하는 3차원 거리측정 카메라에 있어서, In the three-dimensional distance measuring camera including a control IC for controlling the operation of the light source and the image sensor,
    상기 제어IC는 제1 영상획득 구간에서 상기 광원의 조사 없이 상기 이미지센서가 적어도 하나의 영상정보를 획득하도록 제어하고, 상기 제1 영상획득 구간 이후의 제2 영상획득 구간에서는 상기 이미지센서의 노출시간이 상기 제1 영상획득 구간에서의 노출시간과 다르게 되도록 제어하는, 3차원 거리측정 카메라.The control IC controls the image sensor to acquire at least one image information without irradiation of the light source in the first image acquisition section, and the exposure time of the image sensor in the second image acquisition section after the first image acquisition section The 3D distance measuring camera is controlled to be different from the exposure time in the first image acquisition section.
  2. 제1항에 있어서,According to claim 1,
    상기 제어 IC는 상기 광원의 조사 없이 상기 이미지센서가 획득하는 영상정보에서 노이즈 정보를 센싱하는, 3차원 거리측정 카메라.The control IC senses noise information from image information acquired by the image sensor without irradiating the light source.
  3. 제2항에 있어서,According to claim 2,
    상기 제어 IC는 상기 제1 영상획득 구간에서 획득된 영상정보에 노이즈가 있을 경우, 상기 제2 영상획득 구간에서의 상기 이미지센서의 노출시간이 상기 제1 영상획득 구간에서의 노출시간 보다 짧게 되도록 제어하는, 3차원 거리측정 카메라.The control IC controls the exposure time of the image sensor in the second image acquisition section to be shorter than the exposure time in the first image acquisition section when there is noise in the image information acquired in the first image acquisition section. 3D distance measuring camera.
  4. 제2항에 있어서,According to claim 2,
    상기 제어 IC는 상기 제1 영상획득 구간에서 획득된 영상정보에 노이즈가 없을 경우, 상기 제2 영상획득 구간에서의 상기 이미지센서의 노출시간이 상기 제1 영상획득 구간에서의 노출시간 보다 길게 되도록 제어하는, 3차원 거리측정 카메라.When there is no noise in the image information acquired in the first image acquisition section, the control IC controls the exposure time of the image sensor in the second image acquisition section to be longer than the exposure time in the first image acquisition section. 3D distance measuring camera.
  5. 제1항에 있어서,According to claim 1,
    상기 제어IC는 상기 영상획득 구간에서 광원 조사를 위한 적어도 하나의 프레임 신호를 생성하고 상기 이미지센서가 상기 프레임 신호에 동기화 되도록 하는, 3차원 거리측정 카메라.The control IC generates at least one frame signal for irradiating a light source in the image acquisition section and allows the image sensor to be synchronized with the frame signal, a three-dimensional distance measuring camera.
  6. 제1항에 있어서,According to claim 1,
    상기 제1 영상획득 구간 및 상기 제2 영상획득 구간 사이에는 상기 제1 영상획득 구간에서 센싱한 노이즈 정보, 영상정보 또는 거리측정 정보 중 적어도 하나를 외부장치로 출력하는 구간을 더 포함하는, 3차원 거리측정 카메라.Between the first image acquisition section and the second image acquisition section further comprises a section for outputting at least one of the noise information, image information or distance measurement information sensed in the first image acquisition section to an external device, 3D Distance measuring camera.
  7. 제3항에 있어서,According to claim 3,
    상기 제어 IC는 상기 제2 영상획득 구간에서도 노이즈가 검출될 경우 노이즈가 검출되지 않을 때까지 지속적으로 이후 영상획득 구간의 이미지센서의 노출시간이 점차적으로 짧게 되도록 제어하는, 3차원 거리측정 카메라.The control IC continuously controls the exposure time of the image sensor in the image acquisition section to be gradually shortened until noise is not detected when noise is detected even in the second image acquisition section.
  8. 제4항에 있어서,According to claim 4,
    상기 제어 IC는 상기 제2 영상획득 구간에서도 노이즈가 검출되지 않을 경우 노이즈가 검출될 때까지 지속적으로 이후 영상획득 구간의 이미지센서의 노출시간이 점차적으로 길게 되도록 제어하는, 3차원 거리측정 카메라.If the control IC is no noise is detected even in the second image acquisition section, the 3D distance measurement camera continuously controls the exposure time of the image sensor in the subsequent image acquisition section to gradually increase until noise is detected.
PCT/KR2019/017173 2018-12-20 2019-12-06 Three-dimensional distance measuring camera WO2020130440A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0166504 2018-12-20
KR1020180166504A KR102165091B1 (en) 2018-12-20 2018-12-20 3 dimensional distance measuring camera

Publications (1)

Publication Number Publication Date
WO2020130440A1 true WO2020130440A1 (en) 2020-06-25

Family

ID=71102850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017173 WO2020130440A1 (en) 2018-12-20 2019-12-06 Three-dimensional distance measuring camera

Country Status (2)

Country Link
KR (1) KR102165091B1 (en)
WO (1) WO2020130440A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112218070A (en) * 2020-10-10 2021-01-12 Oppo(重庆)智能科技有限公司 Stray light detection method and device, storage medium and electronic equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220055916A (en) * 2020-10-27 2022-05-04 엘지이노텍 주식회사 Distance measurement camera device
KR20230169720A (en) * 2022-06-09 2023-12-18 한화비전 주식회사 Apparatus for acquiring an image

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214743A (en) * 2004-01-28 2005-08-11 Denso Corp Distance image data generation device, generation method and program
KR20120103319A (en) * 2011-03-10 2012-09-19 엄두간 Light sensor for detecting surface angle and sensing method using the same
WO2015107869A1 (en) * 2014-01-14 2015-07-23 パナソニックIpマネジメント株式会社 Distance image generation device and distance image generation method
WO2017141957A1 (en) * 2016-02-17 2017-08-24 パナソニックIpマネジメント株式会社 Distance measuring device
KR101887945B1 (en) * 2017-08-10 2018-08-13 성균관대학교산학협력단 Method and apparatus for determining of exposure time of 3D camera

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102144539B1 (en) 2014-11-05 2020-08-18 주식회사 히타치엘지 데이터 스토리지 코리아 Apparatus for measuring distance
KR20170051752A (en) 2015-10-30 2017-05-12 현대위아 주식회사 Control method of tof camera

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214743A (en) * 2004-01-28 2005-08-11 Denso Corp Distance image data generation device, generation method and program
KR20120103319A (en) * 2011-03-10 2012-09-19 엄두간 Light sensor for detecting surface angle and sensing method using the same
WO2015107869A1 (en) * 2014-01-14 2015-07-23 パナソニックIpマネジメント株式会社 Distance image generation device and distance image generation method
WO2017141957A1 (en) * 2016-02-17 2017-08-24 パナソニックIpマネジメント株式会社 Distance measuring device
KR101887945B1 (en) * 2017-08-10 2018-08-13 성균관대학교산학협력단 Method and apparatus for determining of exposure time of 3D camera

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112218070A (en) * 2020-10-10 2021-01-12 Oppo(重庆)智能科技有限公司 Stray light detection method and device, storage medium and electronic equipment
CN112218070B (en) * 2020-10-10 2023-06-02 Oppo(重庆)智能科技有限公司 Stray light detection method and device, storage medium and electronic equipment

Also Published As

Publication number Publication date
KR102165091B1 (en) 2020-10-13
KR20200077208A (en) 2020-06-30

Similar Documents

Publication Publication Date Title
WO2020130440A1 (en) Three-dimensional distance measuring camera
WO2014051196A1 (en) Scanner for oral cavity
WO2020130598A1 (en) Three-dimensional intraoral scanner and intraoral scanning method using same
WO2020235948A1 (en) Three-dimensional intraoral scanner
JPS62223634A (en) Color deciding device
WO2021230612A1 (en) Oral x-ray device having alignment function
EP1186928A3 (en) Optical distance measurement device with parallel processing
JP4315545B2 (en) 3D image detection system and 3D image detection apparatus
WO2015099211A1 (en) 3d camera module
US7217943B2 (en) Film scanner
US6714732B2 (en) Phase difference detection method, phase difference detection apparatus, range finding apparatus and imaging apparatus
WO2020067745A1 (en) Camera device
WO2022154160A1 (en) Camera module
WO2015076513A1 (en) Apparatus for inspecting transmittance of printed pattern for ir sensor
WO2017217745A1 (en) Night vision display device
WO2020045932A1 (en) Image processing apparatus and image processing method
WO2021059699A1 (en) Distance measurement device, distance measurement device control method, and electronic device
WO2017183796A1 (en) Electronic device having infrared optical device and method for controlling infrared optical device
ITTO20010319A1 (en) PROCEDURE AND EQUIPMENT FOR THE DETECTION OR RECOGNITION OF AN OBJECT.
WO2023191429A1 (en) Interchangeable camera lens control device and camera comprising same
GB1595838A (en) Automatic focusing apparatus
WO2021125651A1 (en) Device and method for controlling operation of light source
WO2018088582A1 (en) Pig volume estimation system and method therefor
WO2021137329A1 (en) Optical device
CN103648364A (en) Imaging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898129

Country of ref document: EP

Kind code of ref document: A1