WO2017183796A1 - Electronic device having infrared optical device and method for controlling infrared optical device - Google Patents

Electronic device having infrared optical device and method for controlling infrared optical device Download PDF

Info

Publication number
WO2017183796A1
WO2017183796A1 PCT/KR2016/014974 KR2016014974W WO2017183796A1 WO 2017183796 A1 WO2017183796 A1 WO 2017183796A1 KR 2016014974 W KR2016014974 W KR 2016014974W WO 2017183796 A1 WO2017183796 A1 WO 2017183796A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
light
focusing
subject
mode
Prior art date
Application number
PCT/KR2016/014974
Other languages
French (fr)
Korean (ko)
Inventor
김종태
김영수
Original Assignee
(주)파트론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)파트론 filed Critical (주)파트론
Publication of WO2017183796A1 publication Critical patent/WO2017183796A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • G01J3/108Arrangements of light sources specially adapted for spectrometry or colorimetry for measurement in the infrared range
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/18Focusing aids
    • G03B13/20Rangefinders coupled with focusing arrangements, e.g. adjustment of rangefinder automatically focusing camera
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation

Definitions

  • the present invention relates to an electronic device equipped with an infrared optical device and a method for controlling the infrared optical device, and more particularly, to an electronic device equipped with an infrared optical device used for iris recognition and a control method thereof.
  • Recent smart devices including smart phones, tablet computers and wearable devices, are being used to perform functions that contain more sensitive information or require security. As a result, higher levels of security are being employed in these smart devices.
  • security means using a password or a pattern of a specific shape have been used.
  • security means using fingerprint recognition have been widely used.
  • Security means using a biometric signal of the user, such as a fingerprint has the advantage that the security is higher than that of the conventional.
  • iris recognition is a method of contacting the surface of the fingerprint directly to the sensor surface, so it is not possible to recognize when wearing gloves or foreign material on the fingerprint, but iris recognition is a non-contact method of wearing glasses or contact lenses There is an advantage that can be recognized in.
  • an infrared light emitting unit and an infrared light receiving unit should be mounted.
  • mounting such a separate device for iris recognition is a factor in raising the price, and it is a factor that hinders the reduction of light and small size of smart devices.
  • security means using iris recognition have not been widely used.
  • An object of the present invention is to provide an electronic device equipped with an infrared optical device capable of assisting a focusing function of a camera module in a low light environment by using an infrared optical device for iris recognition.
  • Another object of the present invention is to provide an electronic device equipped with an infrared optical device capable of minimizing power consumption while assisting a focusing function of a camera module using an infrared optical device for iris recognition.
  • An electronic device equipped with an infrared optical device of the present invention for solving the above problems is an infrared light emitting unit for emitting light in the infrared band, an infrared light receiving unit for detecting light in the wavelength band of the light emitted by the infrared light emitting unit, the infrared
  • a camera module including a signal processing unit for processing a signal generated by a light receiving unit, an image sensor for detecting light in a visible light band, a lens, and a focusing module for moving the lens in an optical axis direction and focusing the infrared light according to a selected operation mode And a controller for controlling the infrared light receiving unit and the camera module.
  • the infrared light emitting unit irradiates light to the iris, and the infrared light receiving unit detects light reflected from the iris.
  • the image of the iris is taken and the selected operating mode is infrared focused.
  • the infrared light emitting unit irradiates light onto the subject
  • the infrared light receiving unit detects the light reflected from the subject
  • the signal processing unit calculates the position of the subject and according to the calculated result, the focusing module This works.
  • the operation mode is selected by the control unit, if the selected operation mode is the iris recognition mode, the infrared light emitting unit irradiates the iris of the infrared band light, The infrared light receiver detects the light reflected by the iris to take an image of the iris, and when the selected operation mode is an infrared focusing mode, the infrared light emitter irradiates an infrared band of light onto the subject, and the infrared light receiver emits the subject. Sensing the light reflected by the signal processing unit, the signal processing unit calculates the position of the subject, and the focusing module of the camera module operates according to the calculated result.
  • An electronic device equipped with an infrared optical device may assist the focusing function of a camera module in a low light environment by using an infrared optical device for iris recognition.
  • an electronic device equipped with an infrared optical device may minimize power consumption while assisting a focusing function of a camera module by using an infrared optical device for iris recognition.
  • FIG. 1 schematically shows an appearance of an electronic device equipped with an infrared optical device of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing the configuration of an infrared optical device and a camera module according to an embodiment of the present invention.
  • FIG. 3 is a block diagram schematically showing an infrared optical device and a camera module of the present invention.
  • FIG. 4 is a cross-sectional view showing that the infrared optical device and the camera module of the present invention operate in an iris recognition mode.
  • FIG. 5 is a cross-sectional view showing that the infrared optical device and the camera module of the present invention operate in an infrared focusing mode.
  • FIG. 6 schematically shows an activation region of an infrared light receiving unit when the infrared optical device of the present invention operates in an iris recognition mode and when operating in an infrared focusing mode.
  • FIG. 7 is a cross-sectional view schematically illustrating a configuration of an infrared optical device, a camera module, and an illumination intensity sensing unit according to another exemplary embodiment of the present disclosure.
  • FIG. 8 is a cross-sectional view schematically showing the configuration of an infrared optical device and a camera module according to another embodiment of the present invention.
  • FIG. 1 schematically shows an appearance of an electronic device equipped with an infrared optical device of the present invention.
  • an infrared optical device 100 and a camera module 200 may be mounted together in an electronic device.
  • the electronic device may be, for example, a cellular phone terminal including a smartphone, a tablet computer, a laptop computer, a PDA device, a media player, a navigation device, a game play device, an electronic device wearable on a wrist, a headphone device, a handsfree device, or the like. This can be
  • the infrared optical device 100 and the camera module 200 may be installed on the front side of the electronic device.
  • the front of the electronic device generally refers to a part facing the user's face when the user uses the electronic device.
  • the display device is located in front of the electronic device.
  • the infrared optical device 100 and the camera module 200 may be specifically positioned around the display 20 device.
  • the infrared optical device 100 and the camera module 200 may be installed so that at least some portions thereof are exposed to the outside. Exposing to the outside includes not only partially exposing to the outside, but also optically exposed by being covered with a light transmitting part through which light of a specific wavelength can pass.
  • the infrared light emitting unit 110, the infrared light receiving unit 120, and the camera module 200 may be exposed to the outside through the front surface of the electronic device.
  • FIG. 2 is a cross-sectional view schematically showing the configuration of an infrared optical device and a camera module according to an embodiment of the present invention. 2, the infrared optical device 100 and the camera module 200 of the present invention will be described.
  • the infrared optical device 100 includes an infrared light emitting unit 110 and an infrared light receiving unit 120.
  • the infrared optical device 100 may be used for a plurality of purposes according to the selected operation mode.
  • the infrared optical apparatus 100 may be used for iris recognition in the iris recognition mode, or may be used for position detection of a subject in the infrared focusing mode.
  • the operation of the infrared optical device 100 according to the operation mode will be described in detail below.
  • the infrared light emitting unit 110 emits light in the infrared band.
  • the infrared light emitting unit 110 may be, for example, a light emitting diode (LED), an organic light emitting diode (OLED), or a lamp.
  • the infrared light emitting unit 110 receives power from the power supply 111 and emits light.
  • the power supply 111 may adjust power supplied to the infrared light emitter 110, and the power of light emitted from the infrared light emitter 110 may be adjusted according to the received power.
  • the infrared light receiver 120 may be an image sensor in which a plurality of imaging devices that receive light emitted from the outside and convert the light into an electrical signal are arranged.
  • the imaging device may be a photo diode (PD).
  • the plurality of pixels constituting the infrared light receiving unit 120 may be formed of image sensors arranged adjacent to each other in two perpendicular or diagonal directions.
  • the infrared light receiver 120 detects light in a wavelength band of light emitted from the infrared light emitter 110.
  • the infrared light receiver 120 may selectively receive light having a predetermined specific wavelength band.
  • an optical filter 125 selectively transmitting only light having a specific wavelength band may be positioned above the infrared light receiver 120.
  • the infrared light receiver 120 preferably receives light having a wavelength band corresponding to the light emitted from the infrared light emitter 110.
  • the optical filter 125 may be an optical filter having an infrared wavelength band as a pass band.
  • the infrared light receiver 120 mainly detects that the light emitted from the infrared light emitter 110 is reflected on an object, but does not receive only the light reflected by the infrared light emitter 110.
  • the infrared light receiver 120 may simultaneously emit light emitted from the infrared light emitter 110 and other light having the same wavelength band. However, it is preferable that the infrared light receiver 120 mainly detects the light reflected by the infrared light emitter 110.
  • An infrared lens 123 may be positioned above the infrared light receiver 120.
  • the infrared lens 123 refracts the light irradiated onto the infrared light receiving unit 120.
  • the light irradiated onto the infrared light receiver 120 by the infrared lens 123 may be refracted and collected, and the focus may be focused on the infrared light receiver 120.
  • a light blocking wall 130 may be installed between the infrared light emitting unit 110 and the infrared light receiving unit 120.
  • the light blocking wall 130 is a structure for preventing the light emitted from the infrared light emitting unit 110 from flowing directly into the infrared light receiving unit 120 without reaching the object.
  • the light shielding wall 130 is formed to a suitable height, and is preferably formed of a light shielding resin material or the like.
  • the light blocking wall 130 may be formed of, for example, a black plastic resin material.
  • the signal processor 300 is an element that receives and processes an electric signal converted by the infrared light receiver 120 to receive light.
  • the signal processor 300 may be formed in the same package as the light receiver 200 and the light emitter 100, or may be formed as a separate package.
  • the signal processor 300 may analyze the iris pattern photographed in the iris recognition mode to analyze the unique pattern of the iris, and calculate the position of the subject in the infrared focusing mode.
  • the camera module 200 is an imaging device capable of capturing an image of a subject.
  • the camera module 200 may be a conventional camera module 200 that detects light in the visible light band and captures an image.
  • the camera module 200 is disposed in the same direction as the infrared light emitting unit 110 and the infrared light receiving unit 120 described above, and captures an image in substantially the same direction as the infrared light receiving unit 120.
  • the camera module 200 includes an image sensor 210, a lens 220, and a focusing module 230.
  • the image sensor 210 is a device that detects light in the visible light band and converts it into an electrical signal.
  • An optical filter 215 may be disposed on the image sensor 210 to selectively allow light in the visible light band to enter the image sensor 210.
  • the optical filter 215 may block light in the infrared band with an infrared cutoff filter.
  • the image sensor 210 may be a device composed of a plurality of pixels.
  • the lens 220 refracts the light irradiated onto the image sensor 210.
  • the light irradiated onto the image sensor 210 may be refracted and collected by the lens 220, and the subject may be focused on the image sensor 210.
  • the lens 220 may be coupled to the focusing module 230 to move and focus in the optical axis direction. According to the position of the subject to be photographed by the camera module 200, the position in the optical axis direction of the lens 220 may be changed and may be focused.
  • the focusing module 230 may be an actuator capable of moving the lens barrel 221 in which the lens 220 is installed in the optical axis direction.
  • the focusing module 230 may be, for example, an actuator driven by a voice coil motor method.
  • the focusing module 230 may focus in various ways.
  • the focusing module 230 may focus by moving the lens barrel 221 according to the image data of the subject detected by the image sensor 210.
  • the focusing module 230 may use a phase difference AF method or a contrast AF method.
  • a hybrid AF method may be used in which the phase difference AF method and the contrast AF method are mixed.
  • a dual pixel AF method of dividing one pixel of the image pickup device of the image sensor 210 into two may operate as a phase difference sensor.
  • the above-described focusing methods are capable of relatively accurate focusing, the accuracy of focusing is deteriorated when the image of the subject is not accurately detected due to low illumination.
  • the illumination is secured by emitting light such as red at the focusing stage, but emitting light may cause a rejection when the subject is a person, a red-eye phenomenon may occur, and color distortion may occur.
  • accurate focusing may be possible by selecting the operating mode as the infrared focusing mode. This will be described in more detail below.
  • the controller 400 is an element for selecting and controlling a mode in which the above-described infrared optical device 100 and / or the camera module 200 operate.
  • the controller 400 may be formed in the same package as the infrared optical apparatus 100 and the camera module 200, or may be formed as a separate package.
  • the controller 400 determines an operation mode by itself or receives an input signal for determining an operation mode from the outside.
  • the controller 400 may control operations of the infrared optical device 100 and / or the camera module 200 according to the determined operation mode. Control of the operation of the infrared optical device 100 and / or the camera module 200 by the controller 400 will be described in detail below.
  • FIG. 3 is a block diagram schematically showing an infrared optical device and a camera module of the present invention.
  • 4 is a cross-sectional view showing that the infrared optical device and the camera module of the present invention operate in an iris recognition mode.
  • 5 is a cross-sectional view showing that the infrared optical device and the camera module of the present invention operate in an infrared focusing mode.
  • the controller 400 may determine an operation mode.
  • the operation mode determined by the controller 400 includes an iris recognition mode and an infrared focusing module.
  • the controller 400 may directly determine the operation mode or may receive and determine a selection signal from the outside.
  • the operation mode can be selected by various criteria. For example, when the electronic device is in a locked state and the user of the electronic device tries to release the lock, the iris recognition mode may be selected as the operation mode.
  • the operating mode when the camera module 200 of the electronic device is photographing or preparing to photograph, the operating mode may be an infrared focusing mode.
  • a focusing mode may be selected to assist focusing.
  • the failure of the camera module 200 to focus or unsatisfactory means that, for example, when sufficient contrast is not detected in the image acquired by the image sensor or a clear image capable of detecting a phase is not obtained. Can be.
  • the infrared optical device 100 may operate in an iris recognition mode.
  • the infrared optical device 100 captures an image of the iris.
  • the infrared light emitting unit 110 emits light to irradiate light in the infrared band to the iris.
  • the emitted light is reflected by the iris and is incident on the infrared light receiver 120.
  • the infrared light receiver 120 detects incident light and captures an image of the iris.
  • the signal processor 300 analyzes the photographed image of the iris to analyze the unique pattern of the iris.
  • the camera module 200 focuses using the focusing module 230 of the camera module 200 itself when it is in a non-operating state or operates.
  • the infrared optical device 100 may operate in an infrared focusing mode.
  • the infrared optical device 100 detects the position of the subject.
  • the infrared light emitter 110 emits light to irradiate light in the infrared band to the subject.
  • the emitted light is reflected from the subject and incident on the infrared light receiver 120.
  • the infrared light receiver 120 detects incident light.
  • the signal processor 300 may calculate the position of the subject based on the data sensed by the infrared light receiver 120.
  • the signal processor 300 may calculate a distance from which the subject is separated from the infrared optical device 100 and / or the camera module 200.
  • the infrared optical apparatus 100 and the signal processor 300 may detect the position of the subject in various ways.
  • the position of the subject may be calculated by measuring a time when light is emitted from the infrared emitter 110 and reflected from the subject to be detected by the infrared receiver 120.
  • the position of the subject may be calculated using an angle emitted from the infrared light emitter 110 and reflected from the subject.
  • the focusing module 230 may operate according to a result calculated by the signal processor 300. In detail, when the subject is located at the position calculated by the signal processor 300, the focusing module 230 may be adjusted to focus so that the subject may be focused.
  • the operation of the focusing module 230 by the infrared optics device 100 can be used here in a primary or auxiliary way to focus.
  • the camera module 200 can focus quickly and accurately even in a low light environment. Since the light emitted from the infrared light emitting unit 110 is not sensed by the human eye, rejection does not occur even when the subject is a human.
  • the camera module 200 includes an infrared cutoff filter 215 so that the image is not distorted by the light emitted from the infrared light emitting unit 110.
  • the infrared optical device 100 for the infrared focusing mode may be used in combination with the iris recognition mode.
  • FIG. 6 schematically shows an activation region of an infrared light receiving unit when the infrared optical device of the present invention operates in an iris recognition mode and when operating in an infrared focusing mode.
  • the activation region 121 of the infrared light receiver 120 may vary according to an operation mode in which the infrared optical device 100 operates.
  • the infrared light receiver 120 includes a plurality of pixels.
  • the selected operation mode is the iris recognition mode
  • all or part 121 of the plurality of pixels 121 is activated to detect light.
  • all or some of the pixels 121 may be all pixels that the infrared light receiver 120 may detect light or pixels that the light receiver 120 typically uses to sense light.
  • an iris image having a certain level or higher resolution is required. Therefore, in the iris recognition mode, more pixels are activated than the infrared focusing mode to detect light.
  • the selected operation mode is an infrared focusing mode
  • only some of the pixels 122 activated in the iris recognition mode are activated to sense light.
  • the remaining pixels that are not selected are deactivated.
  • the power consumed by the infrared light receiver 120 may be minimized by activating only the pixels 122 of a predetermined region.
  • successive regions of some of the pixels activated in the iris recognition mode may be activated to have light.
  • a portion of the continuous area that is activated is a center area of the infrared light receiver 120 and corresponds to a portion where an image of a subject is mainly formed.
  • the infrared focusing mode only some selected pixels may be activated by binning the pixels activated in the iris recognition mode. Specifically, only some pixels spaced at regular intervals among the pixels activated in the iris recognition mode are activated.
  • the image obtained by this method may obtain an image having the same angle of view although the resolution is reduced than that obtained in the iris recognition mode. Infrared focusing may be possible even with such a relatively low pixel image. In this manner, power consumed by the infrared light receiver 120 may be minimized.
  • the power of the light emitted from the infrared light emitter 110 may also vary according to the selected operation mode.
  • the infrared light emitter 110 may emit a higher level of light in the iris recognition mode than in the infrared focusing mode. This is because in the iris recognition mode, sufficient light amount is required to obtain an accurate iris image.
  • the infrared focusing mode only the position of the subject needs to be sensed, so a large level of light is not required as in the iris recognition mode. Therefore, it is possible to minimize the power consumed by the infrared light emitting unit 110 by emitting a predetermined level of light.
  • the level at which the infrared light emitter 110 emits light may be adjusted by the power supply 111 supplying power to the infrared light emitter 110.
  • FIG. 7 an electronic device equipped with an infrared optical device according to another exemplary embodiment will be described with reference to FIG. 7.
  • the present embodiment will be described with reference to FIGS. 1 to 6, which are different from the above-described embodiment.
  • FIG. 7 is a cross-sectional view schematically illustrating a configuration of an infrared optical device, a camera module, and an illumination intensity sensing unit according to another exemplary embodiment of the present disclosure.
  • the electronic device of the present invention may further include an illuminance sensor 500.
  • the illuminance sensor 500 may measure illuminance around the electronic device. When the illuminance measured by the illuminance sensor 500 falls below a predetermined level, an infrared focusing mode may be selected.
  • the focusing module 230 of the camera module 200 may lose focusing accuracy when the illuminance falls below a predetermined level. For example, when the focusing module 230 uses the Contrast AF method, the boundary of the subject may not be clearly detected in a low light situation. In addition, even in the case of using a phase difference AF method, focusing accuracy may be deteriorated when an image to compare phases is not clearly detected.
  • an infrared focusing mode is automatically selected to assist the focusing of the camera module 200.
  • the infrared focusing mode may be selected and operated more quickly than the infrared focusing mode is selected after the focusing module 230 of the camera module 200 attempts to focus and fails.
  • FIG. 8 an electronic device equipped with an infrared optical device according to another exemplary embodiment will be described with reference to FIG. 8.
  • the present embodiment will be described with reference to FIGS. 1 to 6, which are different from the above-described embodiment.
  • FIG. 8 is a cross-sectional view schematically showing the configuration of an infrared optical device and a camera module according to another embodiment of the present invention.
  • the infrared light receiver 120 further includes an infrared focusing module 124 that performs a function similar to the focusing module 230 of the camera module 200.
  • the infrared focusing module 124 moves the infrared lens 123 in the optical axis direction to focus.
  • the infrared focusing module 124 may be, for example, an actuator driven by a voice coil motor method.
  • Infrared focusing module 124 may focus in various ways.
  • the infrared focusing module 124 may focus by moving the infrared lens 123 according to the image data of the iris or the subject detected by the infrared light receiver 120.
  • the infrared focusing module 124 may use a phase difference AF method or a contrast AF method.
  • a hybrid AF method may be used in which the phase difference AF method and the contrast AF method are mixed.
  • a dual pixel AF method may be used to divide one pixel of the image pickup device of the infrared light receiver 120 into two to operate as a phase difference sensor.
  • the infrared focusing module 124 may move the infrared lens 123 so that the focus of the iris is clearly formed on the infrared light receiver 120. Accordingly, a higher quality iris image can be obtained.
  • the infrared lens 123 may be moved by the infrared focusing module 124 so that the subject focuses on the infrared light receiver 120.
  • the signal processor 300 may indirectly calculate the position of the subject through the position in the optical axis direction of the infrared lens 123 while the subject is in focus.
  • the camera module 200 may focus by moving the focusing module 230 according to a result calculated by the signal processor 300.

Abstract

Disclosed is an electronic device having an infrared optical device. An electronic device having an infrared optical device, according to the present invention, comprises: an infrared ray emitting unit for emitting light in an infrared band; an infrared ray receiving unit for detecting light in the wavelength band of the light emitted by means of the infrared ray emitting unit; a signal processing unit for processing a signal generated by means of the infrared ray receiving unit; an image sensor for detecting light in a visible band; a camera module comprising a lens and a focusing module which moves the lens in an optical axis direction and focuses same; and a control unit for controlling the infrared ray emitting unit, infrared ray receiving unit and camera module in accordance with a selected operation mode, wherein, if a selected operation mode is an iris recognition mode, the infrared ray emitting unit irradiates light on the iris and the infrared ray receiving unit detects the light reflected off the iris and captures an image of the iris and, if a selected operation mode is an infrared focusing mode, the infrared ray emitting unit irradiates light on an object, the infrared ray receiving unit detects light reflected off the object, the signal processing unit calculates the location of the object and the focusing module operates in accordance with the calculation result.

Description

적외선 광학 장치를 탑재한 전자 장치 및 적외선 광학 장치의 제어 방법Control method of electronic device and infrared optical device equipped with infrared optical device
본 발명은 적외선 광학 장치를 탑재한 전자 장치 및 적외선 광학 장치의 제어 방법에 관한 것으로, 더욱 상세하게는 홍채 인식용으로 사용되는 적외선 광학 장치가 탑재된 전자 장치 및 그 제어 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic device equipped with an infrared optical device and a method for controlling the infrared optical device, and more particularly, to an electronic device equipped with an infrared optical device used for iris recognition and a control method thereof.
스마트폰, 태블릿 컴퓨터 및 웨어러블 디바이스 등을 포함하는 최근의 스마트 디바이스는 보다 민감한 정보를 포함하고 있거나 보안이 요구되는 기능을 수행하는데 사용되고 있다. 따라서 이러한 스마트 디바이스에는 보다 높은 수준의 보안 수단이 채용되는 추세이다.Recent smart devices, including smart phones, tablet computers and wearable devices, are being used to perform functions that contain more sensitive information or require security. As a result, higher levels of security are being employed in these smart devices.
종래에는 비밀번호나 특정 모양의 패턴을 이용한 보안 수단이 사용되었으나, 최근에는 지문 인식을 이용한 보안 수단이 널리 보급되고 있다. 지문 등 사용자의 생체 신호를 이용한 보안 수단은 종래의 그것보다 보안성이 높다는 장점이 있다.In the past, security means using a password or a pattern of a specific shape have been used. Recently, security means using fingerprint recognition have been widely used. Security means using a biometric signal of the user, such as a fingerprint has the advantage that the security is higher than that of the conventional.
홍채 인식을 이용한 보안 수단은 지문보다 더 많고 복잡한 고유 패턴을 가지고 있다. 또한, 홍채의 패턴은 지문의 패턴보다 위조되기 어려워 보안성이 높다는 장점이 있다. 또한, 지문 인식은 지문의 표면을 센서면에 직접 접촉하는 방식이라 장갑을 착용하고 있거나 지문에 이물이 묻은 경우 인식이 불가하다는 단점이 있지만, 홍채 인식은 비접촉 방식으로 안경이나 콘택트 렌즈를 착용한 상태에서도 인식이 가능하다는 장점이 있다.Security measures using iris recognition have more and more complex patterns than fingerprints. In addition, the pattern of the iris is difficult to be forged than the pattern of the fingerprint has the advantage of high security. In addition, fingerprint recognition is a method of contacting the surface of the fingerprint directly to the sensor surface, so it is not possible to recognize when wearing gloves or foreign material on the fingerprint, but iris recognition is a non-contact method of wearing glasses or contact lenses There is an advantage that can be recognized in.
이러한 홍채 인식을 위해서는 통상적으로 적외선 발광부와 적외선 수광부가 탑재되어야 한다. 그러나 홍채 인식을 위해 이러한 별도의 장치를 탑재하는 것은 단가 인상 요인이고, 스마트 디바이스의 경박단소화를 저해하는 요인이어서 현재까지 홍채 인식을 이용한 보안 수단은 널리 사용되지 않고 있다.In order to recognize the iris, an infrared light emitting unit and an infrared light receiving unit should be mounted. However, mounting such a separate device for iris recognition is a factor in raising the price, and it is a factor that hinders the reduction of light and small size of smart devices. Thus, security means using iris recognition have not been widely used.
본 발명이 해결하려는 과제는, 홍채 인식을 위한 적외선 광학 장치를 이용하여 저조도 환경에서 카메라 모듈의 포커싱 기능을 보조할 수 있는 적외선 광학 장치를 탑재한 전자 장치를 제공하는 것이다. An object of the present invention is to provide an electronic device equipped with an infrared optical device capable of assisting a focusing function of a camera module in a low light environment by using an infrared optical device for iris recognition.
본 발명이 해결하려는 다른 과제는, 홍채 인식을 위한 적외선 광학 장치를 이용하여 카메라 모듈의 포커싱 기능을 보조하면서 소비 전력을 최소화할 수 있는 적외선 광학 장치를 탑재한 전자 장치를 제공하는 것이다. Another object of the present invention is to provide an electronic device equipped with an infrared optical device capable of minimizing power consumption while assisting a focusing function of a camera module using an infrared optical device for iris recognition.
상기 과제를 해결하기 위한 본 발명의 적외선 광학 장치를 탑재한 전자 장치는, 적외선 대역의 빛을 방출하는 적외선 발광부, 상기 적외선 발광부가 방출하는 빛의 파장 대역의 빛을 감지하는 적외선 수광부, 상기 적외선 수광부가 발생한 신호를 처리하는 신호처리부, 가시광선 대역의 빛을 감지하는 이미지 센서, 렌즈 및 상기 렌즈를 광축 방향으로 이동시켜 초점을 맞추는 포커싱 모듈을 포함하는 카메라 모듈 및 선택된 동작 모드에 따라 상기 적외선 발광부, 상기 적외선 수광부 및 상기 카메라 모듈을 제어하는 제어부를 포함하고, 선택된 동작 모드가 홍채 인식 모드이면, 상기 적외선 발광부가 홍채에 빛을 조사하고, 상기 적외선 수광부가 상기 홍채에서 반사된 빛을 감지하여 상기 홍채의 이미지를 촬영하고, 선택된 동작 모드가 적외선 포커싱 모드이면, 상기 적외선 발광부가 상기 피사체에 빛을 조사하고, 상기 적외선 수광부가 상기 피사체에서 반사된 빛을 감지하고, 상기 신호처리부는 상기 피사체의 위치를 계산하고, 상기 계산한 결과에 따라 상기 포커싱 모듈이 동작한다.An electronic device equipped with an infrared optical device of the present invention for solving the above problems is an infrared light emitting unit for emitting light in the infrared band, an infrared light receiving unit for detecting light in the wavelength band of the light emitted by the infrared light emitting unit, the infrared A camera module including a signal processing unit for processing a signal generated by a light receiving unit, an image sensor for detecting light in a visible light band, a lens, and a focusing module for moving the lens in an optical axis direction and focusing the infrared light according to a selected operation mode And a controller for controlling the infrared light receiving unit and the camera module. When the selected operation mode is an iris recognition mode, the infrared light emitting unit irradiates light to the iris, and the infrared light receiving unit detects light reflected from the iris. The image of the iris is taken and the selected operating mode is infrared focused. In this case, the infrared light emitting unit irradiates light onto the subject, the infrared light receiving unit detects the light reflected from the subject, and the signal processing unit calculates the position of the subject and according to the calculated result, the focusing module This works.
또한, 상기 과제를 해결하기 위한 본 발명의 적외선 광학 장치의 제어 방법은, 제어부에서 동작 모드를 선택하고, 선택된 동작 모드가 홍채 인식 모드이면, 적외선 발광부에서 적외선 대역의 빛을 홍채에 조사하고, 적외선 수광부에서 상기 홍채에 반사된 빛을 감지하여 상기 홍채의 이미지를 촬영하고, 선택된 동작 모드가 적외선 포커싱 모드이면, 상기 적외선 발광부에서 적외선 대역의 빛을 피사체에 조사하고, 상기 적외선 수광부에서 상기 피사체에 반사된 빛을 감지하고, 신호처리부는 상기 피사체의 위치를 계산하고, 카메라 모듈의 포커싱 모듈은 상기 계산된 결과에 따라 동작한다.In addition, the control method of the infrared optical device of the present invention for solving the above problems, the operation mode is selected by the control unit, if the selected operation mode is the iris recognition mode, the infrared light emitting unit irradiates the iris of the infrared band light, The infrared light receiver detects the light reflected by the iris to take an image of the iris, and when the selected operation mode is an infrared focusing mode, the infrared light emitter irradiates an infrared band of light onto the subject, and the infrared light receiver emits the subject. Sensing the light reflected by the signal processing unit, the signal processing unit calculates the position of the subject, and the focusing module of the camera module operates according to the calculated result.
본 발명의 일 실시예에 따른 적외선 광학 장치를 탑재한 전자 장치는 홍채 인식을 위한 적외선 광학 장치를 이용하여 저조도 환경에서 카메라 모듈의 포커싱 기능을 보조할 수 있다.An electronic device equipped with an infrared optical device according to an embodiment of the present invention may assist the focusing function of a camera module in a low light environment by using an infrared optical device for iris recognition.
또한, 본 발명의 일 실시예에 따른 적외선 광학 장치를 탑재한 전자 장치는 홍채 인식을 위한 적외선 광학 장치를 이용하여 카메라 모듈의 포커싱 기능을 보조하면서 소비 전력을 최소화할 수 있다.In addition, an electronic device equipped with an infrared optical device according to an exemplary embodiment may minimize power consumption while assisting a focusing function of a camera module by using an infrared optical device for iris recognition.
도 1은 본 발명의 적외선 광학 장치가 탑재된 전자 장치의 외관을 개략적으로 도시한 것이다.1 schematically shows an appearance of an electronic device equipped with an infrared optical device of the present invention.
도 2는 본 발명의 일 실시예에 따른 적외선 광학 장치 및 카메라 모듈의 구성을 개략적으로 도시한 단면도이다.2 is a cross-sectional view schematically showing the configuration of an infrared optical device and a camera module according to an embodiment of the present invention.
도 3은 본 발명의 적외선 광학 장치와 카메라 모듈을 개략적으로 나타낸 블록도이다.3 is a block diagram schematically showing an infrared optical device and a camera module of the present invention.
도 4는 본 발명의 적외선 광학 장치와 카메라 모듈이 홍채 인식 모드로 동작하는 것을 나타낸 단면도이다.4 is a cross-sectional view showing that the infrared optical device and the camera module of the present invention operate in an iris recognition mode.
도 5는 본 발명의 적외선 광학 장치와 카메라 모듈이 적외선 포커싱 모드로 동작하는 것을 나타낸 단면도이다.5 is a cross-sectional view showing that the infrared optical device and the camera module of the present invention operate in an infrared focusing mode.
도 6은 본 발명의 적외선 광학 장치가 홍채 인식 모드로 동작하는 경우와 적외선 포커싱 모드로 동작하는 경우의 적외선 수광부의 활성화 영역을 모식적으로 도시한 것이다.FIG. 6 schematically shows an activation region of an infrared light receiving unit when the infrared optical device of the present invention operates in an iris recognition mode and when operating in an infrared focusing mode.
도 7은 본 발명의 다른 일 실시예에 따른 적외선 광학 장치, 카메라 모듈 및 조도감지부의 구성을 개략적으로 도시한 단면도이다. FIG. 7 is a cross-sectional view schematically illustrating a configuration of an infrared optical device, a camera module, and an illumination intensity sensing unit according to another exemplary embodiment of the present disclosure.
도 8은 본 발명의 다른 일 실시예에 따른 적외선 광학 장치, 카메라 모듈의 구성을 개략적으로 도시한 단면도이다. 8 is a cross-sectional view schematically showing the configuration of an infrared optical device and a camera module according to another embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 본 발명을 설명하는데 있어서, 해당 분야에 이미 공지된 기술 또는 구성에 대한 구체적인 설명을 부가하는 것이 본 발명의 요지를 불분명하게 할 수 있다고 판단되는 경우에는 상세한 설명에서 이를 일부 생략하도록 한다. 또한, 본 명세서에서 사용되는 용어들은 본 발명의 실시예들을 적절히 표현하기 위해 사용된 용어들로서, 이는 해당 분야의 관련된 사람 또는 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Hereinafter, with reference to the accompanying drawings will be described embodiments of the present invention; In describing the present invention, if it is determined that adding specific descriptions of techniques or configurations already known in the art may make the gist of the present invention unclear, some of them will be omitted from the detailed description. In addition, terms used in the present specification are terms used to properly express the embodiments of the present invention, which may vary according to related persons or customs in the art. Therefore, the definitions of the terms should be made based on the contents throughout the specification.
이하, 첨부한 도 1 내지 도 6을 참조하여, 본 발명의 일 실시예에 따른 적외선 광학 장치를 탑재한 전자 장치에 대해 설명한다.Hereinafter, an electronic device equipped with an infrared optical device according to an exemplary embodiment will be described with reference to FIGS. 1 to 6.
도 1은 본 발명의 적외선 광학 장치가 탑재된 전자 장치의 외관을 개략적으로 도시한 것이다.1 schematically shows an appearance of an electronic device equipped with an infrared optical device of the present invention.
도 1을 참조하면, 전자 장치에 적외선 광학 장치(100)와 카메라 모듈(200)이 함께 탑재될 수 있다. 도 1에는 적외선 광학 장치(100)와 카메라 모듈(200)이 스마트폰에 탑재된 것이 도시되어 있지만, 이에 한정되는 것은 아니다. 여기서 전자 장치는 예를 들어, 스마트폰 등을 포함하는 셀룰러 전화 단말기, 태블릿 컴퓨터, 랩탑 컴퓨터, PDA 장치, 미디어 플레이어, 내비게이션 장치, 게임 플레이 장치, 손목 등에 착용가능한 전자 장치, 헤드폰 장치, 핸즈프리 장치 등이 될 수 있다.Referring to FIG. 1, an infrared optical device 100 and a camera module 200 may be mounted together in an electronic device. 1 illustrates that the infrared optical device 100 and the camera module 200 are mounted on a smartphone, but the present invention is not limited thereto. The electronic device may be, for example, a cellular phone terminal including a smartphone, a tablet computer, a laptop computer, a PDA device, a media player, a navigation device, a game play device, an electronic device wearable on a wrist, a headphone device, a handsfree device, or the like. This can be
적외선 광학 장치(100)와 카메라 모듈(200)은 전자 장치의 전면 측에 설치될 수 있다. 전자 장치의 전면이란 통상적으로 사용자가 전자 장치를 사용할 때 사용자의 안면과 마주보게 되는 부분을 의미한다. 통상적으로 전자 장치의 전면에는 디스플레이 장치가 위치하게 된다. 도 1에 도시된 것과 같이, 적외선 광학 장치(100)와 카메라 모듈(200)은 구체적으로 디스플레이(20) 장치의 주변에 위치할 수 있다.The infrared optical device 100 and the camera module 200 may be installed on the front side of the electronic device. The front of the electronic device generally refers to a part facing the user's face when the user uses the electronic device. Typically, the display device is located in front of the electronic device. As shown in FIG. 1, the infrared optical device 100 and the camera module 200 may be specifically positioned around the display 20 device.
적외선 광학 장치(100)와 카메라 모듈(200)은 적어도 일부 부분이 외부로 노출되도록 설치될 수 있다. 외부로 노출된다는 것은 일부가 그대로 외부로 노출되는 것뿐만 아니라 특정 파장의 광이 투과할 수 있는 투광부로 덮여있어 광학적으로 노출되는 것을 포함한다. 구체적으로, 전자 장치의 전면을 통해 적외선 발광부(110), 적외선 수광부(120) 및 카메라 모듈(200)이 외부로 노출될 수 있다.The infrared optical device 100 and the camera module 200 may be installed so that at least some portions thereof are exposed to the outside. Exposing to the outside includes not only partially exposing to the outside, but also optically exposed by being covered with a light transmitting part through which light of a specific wavelength can pass. In detail, the infrared light emitting unit 110, the infrared light receiving unit 120, and the camera module 200 may be exposed to the outside through the front surface of the electronic device.
도 2는 본 발명의 일 실시예에 따른 적외선 광학 장치 및 카메라 모듈의 구성을 개략적으로 도시한 단면도이다. 도 2를 참조하여, 본 발명의 적외선 광학 장치(100) 및 카메라 모듈(200)에 대해서 설명하도록 한다.2 is a cross-sectional view schematically showing the configuration of an infrared optical device and a camera module according to an embodiment of the present invention. 2, the infrared optical device 100 and the camera module 200 of the present invention will be described.
적외선 광학 장치(100)는 적외선 발광부(110) 및 적외선 수광부(120)를 포함한다. 적외선 광학 장치(100)는 선택된 동작 모드에 따라 복수의 목적으로 사용될 수 있다. 예를 들어, 적외선 광학 장치(100)는 홍채 인식 모드에서 홍채 인식용으로 사용될 수 있고, 적외선 포커싱 모드에서 피사체의 위치 감지용으로 사용될 수도 있다. 동작 모드에 따른 적외선 광학 장치(100)의 동작에 관해서는 아래에서 상세하게 설명하도록 한다.The infrared optical device 100 includes an infrared light emitting unit 110 and an infrared light receiving unit 120. The infrared optical device 100 may be used for a plurality of purposes according to the selected operation mode. For example, the infrared optical apparatus 100 may be used for iris recognition in the iris recognition mode, or may be used for position detection of a subject in the infrared focusing mode. The operation of the infrared optical device 100 according to the operation mode will be described in detail below.
적외선 발광부(110)는 적외선 대역의 빛을 방출한다. 적외선 발광부(110)는 예를 들어 발광 다이오드(LED), 유기 발광다이오드(OLED), 또는 램프일 수 있다. 적외선 발광부(110)는 전력 공급부(111)로부터 전력을 공급받아 빛을 방출한다. 전력 공급부(111)는 적외선 발광부(110)에 공급하는 전력을 조절할 수 있고, 적외선 발광부(110)는 공급받는 전력에 따라 방출하는 빛의 파워가 조절될 수 있다.The infrared light emitting unit 110 emits light in the infrared band. The infrared light emitting unit 110 may be, for example, a light emitting diode (LED), an organic light emitting diode (OLED), or a lamp. The infrared light emitting unit 110 receives power from the power supply 111 and emits light. The power supply 111 may adjust power supplied to the infrared light emitter 110, and the power of light emitted from the infrared light emitter 110 may be adjusted according to the received power.
적외선 수광부(120)는 외부에서 조사된 빛을 받아 전기 신호로 변환하는 복수의 촬상 소자가 배열된 이미지 센서일 수 있다. 여기서 촬상 소자는 포토 다이오드(PD: Photo Diode)일 수 있다. 적외선 수광부(120)를 이루는 복수의 픽셀들은 수직하는 두 방향 또는 대각 방향으로 인접하게 배열된 이미지 센서로 형성될 수 있다. 적외선 수광부(120)는 적외선 발광부(110)가 방출하는 빛의 파장 대역의 빛을 감지한다.The infrared light receiver 120 may be an image sensor in which a plurality of imaging devices that receive light emitted from the outside and convert the light into an electrical signal are arranged. The imaging device may be a photo diode (PD). The plurality of pixels constituting the infrared light receiving unit 120 may be formed of image sensors arranged adjacent to each other in two perpendicular or diagonal directions. The infrared light receiver 120 detects light in a wavelength band of light emitted from the infrared light emitter 110.
적외선 수광부(120)는 미리 정해진 특정 파장 대역의 빛을 선택적으로 수광할 수 있다. 이를 위해 상기 특정 파장 대역의 빛만 선택적으로 투과시키는 광학 필터(125)가 적외선 수광부(120) 상부에 위치할 수 있다. 적외선 수광부(120)는 적외선 발광부(110)가 방출하는 빛에 해당하는 파장 대역의 빛을 수광하는 것이 바람직하다. 따라서 광학 필터(125)는 적외선 파장 대역을 통과 대역으로 하는 광학 필터일 수 있다.The infrared light receiver 120 may selectively receive light having a predetermined specific wavelength band. To this end, an optical filter 125 selectively transmitting only light having a specific wavelength band may be positioned above the infrared light receiver 120. The infrared light receiver 120 preferably receives light having a wavelength band corresponding to the light emitted from the infrared light emitter 110. Accordingly, the optical filter 125 may be an optical filter having an infrared wavelength band as a pass band.
적외선 수광부(120)는 적외선 발광부(110)가 방출한 빛이 객체에 반사된 것을 감지하는 것이 주된 목적이나, 오로지 적외선 발광부(110)가 방출하여 반사된 빛만을 수광하는 것은 아니다. 적외선 수광부(120)는 적외선 발광부(110)가 방출한 빛과 이와 동일한 파장 대역을 가지는 다른 빛을 동시에 감자할 수 있다. 그러나 적외선 수광부(120)는 적외선 발광부(110)가 방출하여 반사된 빛을 주로 감지하는 것이 바람직하다.The infrared light receiver 120 mainly detects that the light emitted from the infrared light emitter 110 is reflected on an object, but does not receive only the light reflected by the infrared light emitter 110. The infrared light receiver 120 may simultaneously emit light emitted from the infrared light emitter 110 and other light having the same wavelength band. However, it is preferable that the infrared light receiver 120 mainly detects the light reflected by the infrared light emitter 110.
적외선 수광부(120)의 상부에는 적외선 렌즈(123)가 위치할 수 있다. 적외선 렌즈(123)는 적외선 수광부(120)에 조사되는 광을 굴절시킨다. 적외선 렌즈(123)에 의해 적외선 수광부(120)에 조사되는 광은 굴절되어 집광될 수 있고, 적외선 수광부(120)에 초점이 맞춰질 수 있다.An infrared lens 123 may be positioned above the infrared light receiver 120. The infrared lens 123 refracts the light irradiated onto the infrared light receiving unit 120. The light irradiated onto the infrared light receiver 120 by the infrared lens 123 may be refracted and collected, and the focus may be focused on the infrared light receiver 120.
적외선 발광부(110)와 적외선 수광부(120) 사이에는 차광벽(130)이 설치될 수 있다. 차광벽(130)은 적외선 발광부(110)에서 방출된 빛이 객체에 도달하지 않고 바로 적외선 수광부(120)로 유입되는 것을 방지하기 위한 구조물이다. 차광벽(130)은 적당한 높이로 형성되고, 차광성 수지재 등으로 형성되는 것이 바람직하다. 차광벽(130)은 예를 들어, 흑색 계열의 플라스틱 수지재로 형성될 수 있다.A light blocking wall 130 may be installed between the infrared light emitting unit 110 and the infrared light receiving unit 120. The light blocking wall 130 is a structure for preventing the light emitted from the infrared light emitting unit 110 from flowing directly into the infrared light receiving unit 120 without reaching the object. The light shielding wall 130 is formed to a suitable height, and is preferably formed of a light shielding resin material or the like. The light blocking wall 130 may be formed of, for example, a black plastic resin material.
신호처리부(300)는 적외선 수광부(120)가 빛을 수광하여 변환한 전기 신호를 수신하여 처리하는 소자이다. 신호처리부(300)는 수광부(200) 및 발광부(100)와 동일한 패키지로 형성될 수도 있고, 별도의 다른 패키지로 형성될 수도 있다. 신호처리부(300)는 홍채 인식 모드에서 촬영된 홍채 이미지를 분석하여 홍채의 고유 패턴을 분석할 수 있고, 적외선 포커싱 모드에서는 피사체의 위치를 계산할 수 있다.The signal processor 300 is an element that receives and processes an electric signal converted by the infrared light receiver 120 to receive light. The signal processor 300 may be formed in the same package as the light receiver 200 and the light emitter 100, or may be formed as a separate package. The signal processor 300 may analyze the iris pattern photographed in the iris recognition mode to analyze the unique pattern of the iris, and calculate the position of the subject in the infrared focusing mode.
카메라 모듈(200)은 피사체의 이미지를 촬상할 수 있는 촬상 장치이다. 카메라 모듈(200)은 가시광선 대역의 광을 감지하여 이미지를 촬상하는 통상의 카메라 모듈(200)일 수 있다. 여기서, 카메라 모듈(200)은 상술한 적외선 발광부(110) 및 적외선 수광부(120)와 동일한 방향으로 배치되어, 적외선 수광부(120)와 실질적으로 동일한 방향의 이미지를 촬영한다.The camera module 200 is an imaging device capable of capturing an image of a subject. The camera module 200 may be a conventional camera module 200 that detects light in the visible light band and captures an image. Here, the camera module 200 is disposed in the same direction as the infrared light emitting unit 110 and the infrared light receiving unit 120 described above, and captures an image in substantially the same direction as the infrared light receiving unit 120.
카메라 모듈(200)은 이미지 센서(210), 렌즈(220) 및 포커싱 모듈(230)을 포함한다. 이미지 센서(210)는 가시광선 대역의 빛을 감지하여 전기 신호로 변환하는 소자이다. 이미지 센서(210)에 가시광선 대역의 빛이 선택적으로 입사되게 하기 위해서 이미지 센서(210)의 상부에 광학 필터(215)가 배치될 수 있다. 광학 필터(215)는 적외선 컷오프 필터로 적외선 대역의 광을 차단하는 것일 수 있다. 이미지 센서(210)는 복수의 픽셀들로 구성된 소자일 수 있다.The camera module 200 includes an image sensor 210, a lens 220, and a focusing module 230. The image sensor 210 is a device that detects light in the visible light band and converts it into an electrical signal. An optical filter 215 may be disposed on the image sensor 210 to selectively allow light in the visible light band to enter the image sensor 210. The optical filter 215 may block light in the infrared band with an infrared cutoff filter. The image sensor 210 may be a device composed of a plurality of pixels.
렌즈(220)는 이미지 센서(210)에 조사되는 광을 굴절시킨다. 렌즈(220)에 의해 이미지 센서(210)에 조사되는 광이 굴절되어 집광될 수 있고, 이미지 센서(210)에 피사체의 초점이 맞춰질 수 있다.The lens 220 refracts the light irradiated onto the image sensor 210. The light irradiated onto the image sensor 210 may be refracted and collected by the lens 220, and the subject may be focused on the image sensor 210.
렌즈(220)는 포커싱 모듈(230)에 결합되어 광축 방향으로 이동하며 초점을 맞출 수 있다. 카메라 모듈(200)이 촬영하려는 피사체의 위치에 따라 렌즈(220)의 광축 방향의 위치가 변경되며 초점이 맞춰질 수 있다. 포커싱 모듈(230)은 렌즈(220)가 설치된 렌즈 배럴(221)을 광축 방향으로 이동시킬 수 있는 액츄에이터일 수 있다. 포커싱 모듈(230)은 예를 들어, 보이스 코일 모터(Voice coil motor) 방식으로 구동되는 액츄에이터일 수 있다.The lens 220 may be coupled to the focusing module 230 to move and focus in the optical axis direction. According to the position of the subject to be photographed by the camera module 200, the position in the optical axis direction of the lens 220 may be changed and may be focused. The focusing module 230 may be an actuator capable of moving the lens barrel 221 in which the lens 220 is installed in the optical axis direction. The focusing module 230 may be, for example, an actuator driven by a voice coil motor method.
포커싱 모듈(230)은 다양한 방식으로 초점을 맞출 수 있다. 포커싱 모듈(230)은 이미지 센서(210)에서 감지된 피사체의 이미지 데이터에 따라 렌즈 배럴(221)을 이동시키는 것에 의해 초점을 맞출 수 있다. 구체적으로, 포커싱 모듈(230)은 위상차AF 방식, 콘트라스트AF 방식이 사용될 수 있다. 또한, 위상차AF 방식과 콘트라스트AF 방식을 혼합한 하이브리드AF 방식이 사용될 수도 있다. 또한, 이미지 센서(210)의 촬상소자 하나의 픽셀을 둘로 나눠 위상차 센서처럼 작동시키는 듀얼픽셀AF 방식이 사용될 수 도 있다.The focusing module 230 may focus in various ways. The focusing module 230 may focus by moving the lens barrel 221 according to the image data of the subject detected by the image sensor 210. In detail, the focusing module 230 may use a phase difference AF method or a contrast AF method. In addition, a hybrid AF method may be used in which the phase difference AF method and the contrast AF method are mixed. In addition, a dual pixel AF method of dividing one pixel of the image pickup device of the image sensor 210 into two may operate as a phase difference sensor.
상술한 포커싱 방식들은 비교적 정확한 포커싱이 가능하지만 조도가 낮아 피사체의 이미지가 정확하게 감지되지 못한 상태에서는 포커싱의 정확도가 떨어지는 문제가 있다. 종래에는 이러한 문제점을 해결하기 위해서 포커싱 단계에서 적색 등의 빛을 방출하여 조도를 확보하였으나 이러한 빛을 방출하는 것은 피사체가 사람인 경우 거부감을 줄 수 있고, 적목현상이 발생할 수 있고, 색상 왜곡이 발생할 수 있다는 단점이 있다. 따라서 이러한 경우, 동작 모드를 적외선 포커싱 모드로 선택하여 정확한 포커싱이 가능할 수 있다. 이에 대해서는 아래에서 더욱 상세하게 설명하도록 한다.Although the above-described focusing methods are capable of relatively accurate focusing, the accuracy of focusing is deteriorated when the image of the subject is not accurately detected due to low illumination. Conventionally, in order to solve such a problem, the illumination is secured by emitting light such as red at the focusing stage, but emitting light may cause a rejection when the subject is a person, a red-eye phenomenon may occur, and color distortion may occur. There is a disadvantage. Therefore, in this case, accurate focusing may be possible by selecting the operating mode as the infrared focusing mode. This will be described in more detail below.
제어부(400)는 상술한 적외선 광학 장치(100) 및/또는 카메라 모듈(200)이 동작하는 모드를 선택하고 제어하는 소자이다. 제어부(400)는 적외선 광학 장치(100) 및 카메라 모듈(200)과 동일한 패키지로 형성될 수도 있고, 별도의 다른 패키지로 형성될 수도 있다. 제어부(400)는 스스로 동작 모드를 판단하거나 외부에서 동작 모드를 결정하는 입력 신호를 입력받아 판단한다. 제어부(400)는 판단한 동작 모드에 따라 적외선 광학 장치(100) 및/또는 카메라 모듈(200)의 동작을 제어할 수 있다. 제어부(400)가 적외선 광학 장치(100) 및/또는 카메라 모듈(200)의 동작을 제어하는 것은 아래에서 상세하게 설명하도록 한다.The controller 400 is an element for selecting and controlling a mode in which the above-described infrared optical device 100 and / or the camera module 200 operate. The controller 400 may be formed in the same package as the infrared optical apparatus 100 and the camera module 200, or may be formed as a separate package. The controller 400 determines an operation mode by itself or receives an input signal for determining an operation mode from the outside. The controller 400 may control operations of the infrared optical device 100 and / or the camera module 200 according to the determined operation mode. Control of the operation of the infrared optical device 100 and / or the camera module 200 by the controller 400 will be described in detail below.
도 3은 본 발명의 적외선 광학 장치와 카메라 모듈을 개략적으로 나타낸 블록도이다. 도 4는 본 발명의 적외선 광학 장치와 카메라 모듈이 홍채 인식 모드로 동작하는 것을 나타낸 단면도이다. 도 5는 본 발명의 적외선 광학 장치와 카메라 모듈이 적외선 포커싱 모드로 동작하는 것을 나타낸 단면도이다.3 is a block diagram schematically showing an infrared optical device and a camera module of the present invention. 4 is a cross-sectional view showing that the infrared optical device and the camera module of the present invention operate in an iris recognition mode. 5 is a cross-sectional view showing that the infrared optical device and the camera module of the present invention operate in an infrared focusing mode.
도 3을 참조하면, 제어부(400)는 동작 모드를 판단할 수 있다. 제어부(400)가 판단하는 동작 모드는 홍채 인식 모드와 적외선 포커싱 모듈을 포함한다. 제어부(400)는 동작 모드를 직접 판단할 수도 있고 외부에서 선택 신호를 입력받아 판단할 수도 있다.Referring to FIG. 3, the controller 400 may determine an operation mode. The operation mode determined by the controller 400 includes an iris recognition mode and an infrared focusing module. The controller 400 may directly determine the operation mode or may receive and determine a selection signal from the outside.
동작 모드는 다양한 기준에 의해 선택될 수 있다. 예를 들어, 전자 장치가 잠금 상태이고 전자 장치의 사용자가 잠금을 해제하려는 상태이면 동작 모드는 홍채 인식 모드가 선택될 수 있다. 또한, 전자 장치의 카메라 모듈(200)이 촬영 중이거나 촬영 준비 중이라면 동작 모드는 적외선 포커싱 모드가 선택될 수 있다. 또한, 경우에 따라서 전자 장치의 카메라 모듈(200)이 촬영 중이거나 촬영 준비 중이라고 하더라도 먼저 카메라 모듈(200)의 포커싱 모듈(230)을 동작시켜 초점을 맞추는 것을 시도하고 이것이 실패하거나 만족스럽지 않을 때는 적외선 포커싱 모드가 선택되어 포커싱을 보조할 수 있다. 여기서, 카메라 모듈(200)이 초점을 맞추는 것이 실패하거나 만족스럽지 않다는 것은 예를 들어, 이미지 센서가 획득한 이미지에서 충분한 콘트라스트가 감지되지 않거나 위상을 감지할 수 있는 명확한 이미지가 획득되지 않는 경우 등이 될 수 있다.The operation mode can be selected by various criteria. For example, when the electronic device is in a locked state and the user of the electronic device tries to release the lock, the iris recognition mode may be selected as the operation mode. In addition, when the camera module 200 of the electronic device is photographing or preparing to photograph, the operating mode may be an infrared focusing mode. In addition, in some cases, even when the camera module 200 of the electronic device is shooting or preparing to shoot, first attempts to focus by operating the focusing module 230 of the camera module 200, and when this fails or is not satisfactory, infrared rays are detected. A focusing mode may be selected to assist focusing. Here, the failure of the camera module 200 to focus or unsatisfactory means that, for example, when sufficient contrast is not detected in the image acquired by the image sensor or a clear image capable of detecting a phase is not obtained. Can be.
도 4를 참조하면, 적외선 광학 장치(100)는 홍채 인식 모드로 동작할 수 있다.Referring to FIG. 4, the infrared optical device 100 may operate in an iris recognition mode.
선택된 동작 모드가 홍채 인식 모드이면, 적외선 광학 장치(100)는 홍채의 이미지를 촬영한다. 구체적으로, 적외선 발광부(110)는 빛을 방출하여 홍채에 적외선 대역의 빛을 조사한다. 방출된 빛은 홍채에서 반사되어 적외선 수광부(120)에 입사한다. 적외선 수광부(120)는 입사된 빛을 감지하여 홍채의 이미지를 촬영한다. 신호처리부(300)는 촬영한 홍채의 이미지를 분석하여 홍채의 고유 패턴을 분석한다.If the selected operation mode is the iris recognition mode, the infrared optical device 100 captures an image of the iris. In detail, the infrared light emitting unit 110 emits light to irradiate light in the infrared band to the iris. The emitted light is reflected by the iris and is incident on the infrared light receiver 120. The infrared light receiver 120 detects incident light and captures an image of the iris. The signal processor 300 analyzes the photographed image of the iris to analyze the unique pattern of the iris.
선택된 동작 모드가 홍채 인식 모드이면, 카메라 모듈(200)은 동작하지 않는 상태이거나 동작하는 경우 카메라 모듈(200) 자체의 포커싱 모듈(230)을 이용하여 초점을 맞추게 된다.If the selected operation mode is the iris recognition mode, the camera module 200 focuses using the focusing module 230 of the camera module 200 itself when it is in a non-operating state or operates.
도 5를 참조하면, 적외선 광학 장치(100)는 적외선 포커싱 모드로 동작할 수 있다.Referring to FIG. 5, the infrared optical device 100 may operate in an infrared focusing mode.
선택된 동작 모드가 적외선 포커싱 모드이면, 적외선 광학 장치(100)는 피사체의 위치를 감지한다. 구체적으로, 적외선 발광부(110)는 빛을 방출하여 피사체에 적외선 대역의 빛을 조사한다. 방출된 빛은 피사체에서 반사되어 적외선 수광부(120)에 입사한다. 적외선 수광부(120)는 입사된 빛을 감지한다. 신호처리부(300)는 적외선 수광부(120)가 감지한 데이터에 기반하여 피사체의 위치를 계산할 수 있다. 구체적으로, 신호처리부(300)는 피사체가 적외선 광학 장치(100) 및/또는 카메라 모듈(200)에서 떨어진 거리를 계산할 수 있다.If the selected operation mode is an infrared focusing mode, the infrared optical device 100 detects the position of the subject. In detail, the infrared light emitter 110 emits light to irradiate light in the infrared band to the subject. The emitted light is reflected from the subject and incident on the infrared light receiver 120. The infrared light receiver 120 detects incident light. The signal processor 300 may calculate the position of the subject based on the data sensed by the infrared light receiver 120. In detail, the signal processor 300 may calculate a distance from which the subject is separated from the infrared optical device 100 and / or the camera module 200.
적외선 광학 장치(100)와 신호처리부(300)는 다양한 방법으로 피사체의 위치를 감지할 수 있다. 예를 들어, 적외선 발광부(110)에서 빛이 방출되어 피사체에서 반사되어 적외선 수광부(120)에 감지되는 시간을 측정하여 피사체의 위치를 계산할 수 있다. 또한, 적외선 발광부(110)에서 빛이 방출되어 피사체에서 반사되는 각도를 이용하여 피사체의 위치를 계산할 수 있다.The infrared optical apparatus 100 and the signal processor 300 may detect the position of the subject in various ways. For example, the position of the subject may be calculated by measuring a time when light is emitted from the infrared emitter 110 and reflected from the subject to be detected by the infrared receiver 120. In addition, the position of the subject may be calculated using an angle emitted from the infrared light emitter 110 and reflected from the subject.
카메라 모듈(200)에서는 신호처리부(300)가 계산한 결과에 따라 포커싱 모듈(230)이 동작할 수 있다. 구체적으로, 신호처리부(300)가 계산한 위치에 피사체가 있는 경우 초점이 맞을 수 있도록 포커싱 모듈(230)이 조절되어 초점을 맞출 수 있다. 여기서 적외선 광학 장치(100)에 의한 포커싱 모듈(230)의 동작은 초점을 맞추는데 주된 방식으로 또는 보조적인 방식으로 사용될 수 있다.In the camera module 200, the focusing module 230 may operate according to a result calculated by the signal processor 300. In detail, when the subject is located at the position calculated by the signal processor 300, the focusing module 230 may be adjusted to focus so that the subject may be focused. The operation of the focusing module 230 by the infrared optics device 100 can be used here in a primary or auxiliary way to focus.
상술한 적외선 포커싱 모드를 사용함에 따라 카메라 모듈(200)은 저조도 환경에서도 빠르고 정확하게 초점을 맞출 수 있다. 적외선 발광부(110)가 방출하는 빛은 인체의 눈에는 감지되지 않기 때문에 피사체가 사람인 경우에도 거부감이 발생하지 않는다. 또한, 카메라 모듈(200)은 적외선 컷오프 필터(215)를 내장하고 있어 적외선 발광부(110)가 방출하는 빛에 의해 이미지가 왜곡되지 않는다. 또한, 적외선 포커싱 모드를 위한 적외선 광학 장치(100)는 홍채 인식 모드와 겸용으로 사용될 수 있다는 장점이 있다.By using the above-described infrared focusing mode, the camera module 200 can focus quickly and accurately even in a low light environment. Since the light emitted from the infrared light emitting unit 110 is not sensed by the human eye, rejection does not occur even when the subject is a human. In addition, the camera module 200 includes an infrared cutoff filter 215 so that the image is not distorted by the light emitted from the infrared light emitting unit 110. In addition, the infrared optical device 100 for the infrared focusing mode may be used in combination with the iris recognition mode.
도 6은 본 발명의 적외선 광학 장치가 홍채 인식 모드로 동작하는 경우와 적외선 포커싱 모드로 동작하는 경우의 적외선 수광부의 활성화 영역을 모식적으로 도시한 것이다.FIG. 6 schematically shows an activation region of an infrared light receiving unit when the infrared optical device of the present invention operates in an iris recognition mode and when operating in an infrared focusing mode.
도 6을 참조하면, 적외선 광학 장치(100)가 동작하는 동작 모드에 따라 적외선 수광부(120)의 활성화 영역(121)이 달라질 수 있다.Referring to FIG. 6, the activation region 121 of the infrared light receiver 120 may vary according to an operation mode in which the infrared optical device 100 operates.
도 6(a)에 도시된 것과 같이, 적외선 수광부(120)는 복수의 픽셀들을 포함한다. 선택된 동작 모드가 홍채 인식 모드인 경우에는 복수의 픽셀들(121) 중 전부 또는 일부(121)가 활성화되어 빛을 감지한다. 여기서 전부 또는 일부의 픽셀들(121)이란 적외선 수광부(120)가 빛을 감지할 수 있는 모든 픽셀들 또는 수광부(120)가 통상적으로 빛을 감지하는데 사용되는 픽셀들일 수 있다. 홍채 인식 모드에서 홍채의 이미지를 촬영하고, 이로부터 홍채 고유의 패턴을 분석하기 위해서는 일정 수준 이상의 해상도를 가지는 홍채 이미지가 필요하다. 따라서 홍채 인식 모드에서는 적외선 포커싱 모드보다 상대적으로 많은 픽셀들이 활성화되어 빛을 감지한다.As shown in FIG. 6A, the infrared light receiver 120 includes a plurality of pixels. When the selected operation mode is the iris recognition mode, all or part 121 of the plurality of pixels 121 is activated to detect light. Herein, all or some of the pixels 121 may be all pixels that the infrared light receiver 120 may detect light or pixels that the light receiver 120 typically uses to sense light. In order to capture the image of the iris in the iris recognition mode and analyze the iris-specific pattern therefrom, an iris image having a certain level or higher resolution is required. Therefore, in the iris recognition mode, more pixels are activated than the infrared focusing mode to detect light.
도 6(b)에 도시된 것과 같이, 선택된 동작 모드가 적외선 포커싱 모드인 경우에는 홍채 인식 모드에서 활성화되는 픽셀들 중 일부(122)만 활성화되어 빛을 감지한다. 선택되지 않는 나머지 픽셀들은 비활성화된다. 필요한 일정 영역의 픽셀(122)만을 활성화시켜 적외선 수광부(120)가 소비하는 전력을 최소화할 수 있다.As illustrated in FIG. 6B, when the selected operation mode is an infrared focusing mode, only some of the pixels 122 activated in the iris recognition mode are activated to sense light. The remaining pixels that are not selected are deactivated. The power consumed by the infrared light receiver 120 may be minimized by activating only the pixels 122 of a predetermined region.
구체적으로, 적외선 포커싱 모드에서는 홍채 인식 모드에서 활성화되는 픽셀들 중 일부의 연속되는 영역이 활성화되어 빛을 가지할 수 있다. 활성화되는 일부의 연속되는 영역은 적외선 수광부(120)의 중심 영역으로 피사체의 상이 주로 맺히는 부분에 해당한다. 초점을 맞추는데 주로 사용되는 픽셀들만 선택적으로 활성화하여 전력을 효율적으로 사용할 수 있다.In detail, in the infrared focusing mode, successive regions of some of the pixels activated in the iris recognition mode may be activated to have light. A portion of the continuous area that is activated is a center area of the infrared light receiver 120 and corresponds to a portion where an image of a subject is mainly formed. By selectively activating only the pixels that are used mainly for focusing, power can be used efficiently.
또한, 적외선 포커싱 모드에서는 홍채 인식 모드에서 활성화되는 픽셀들을 구간화(binning)하여 선택된 일부의 픽셀들만 활성화할 수 있다. 구체적으로, 홍채 인식 모드에서 활성화되는 픽셀들 중 일정한 간격으로 이격된 일부의 픽셀들만 활성화하는 것이다. 이러한 방식에 의해서 획득하는 이미지는 해상도는 홍채 인식 모드에서 획득하는 이미지보다 감소하지만 동일한 화각의 이미지를 획득할 수 있다. 이러한 상대적으로 저화소의 이미지로도 적외선 포커싱이 가능할 수 있다. 이러한 방식에 의해서 적외선 수광부(120)가 소비하는 전력을 최소화할 수 있다.In addition, in the infrared focusing mode, only some selected pixels may be activated by binning the pixels activated in the iris recognition mode. Specifically, only some pixels spaced at regular intervals among the pixels activated in the iris recognition mode are activated. The image obtained by this method may obtain an image having the same angle of view although the resolution is reduced than that obtained in the iris recognition mode. Infrared focusing may be possible even with such a relatively low pixel image. In this manner, power consumed by the infrared light receiver 120 may be minimized.
적외선 발광부(110)가 방출하는 빛의 파워도 선택된 동작 모드에 따라 달라질 수 있다. 예를 들어, 적외선 발광부(110)는 적외선 포커싱 모드보다 홍채 인식 모드에서 더 높은 레벨의 빛을 방출할 수 있다. 이는 홍채 인식 모드에서는 정확한 홍채 이미지를 획득하기 위해 충분한 광량이 필요하기 때문이다. 반면에 적외선 포커싱 모드에서는 피사체의 위치만을 감지하면 되므로 홍채 인식 모드에서처럼 큰 레벨의 광량은 요구되지 않는다. 따라서 필요한 일정 레벨의 빛을 방출하여 적외선 발광부(110)가 소비하는 전력을 최소화할 수 있다. 적외선 발광부(110)가 빛을 방출하는 레벨은 적외선 발광부(110)에 전력을 공급하는 전력 공급부(111)에 의해 조절될 수 있다.The power of the light emitted from the infrared light emitter 110 may also vary according to the selected operation mode. For example, the infrared light emitter 110 may emit a higher level of light in the iris recognition mode than in the infrared focusing mode. This is because in the iris recognition mode, sufficient light amount is required to obtain an accurate iris image. On the other hand, in the infrared focusing mode, only the position of the subject needs to be sensed, so a large level of light is not required as in the iris recognition mode. Therefore, it is possible to minimize the power consumed by the infrared light emitting unit 110 by emitting a predetermined level of light. The level at which the infrared light emitter 110 emits light may be adjusted by the power supply 111 supplying power to the infrared light emitter 110.
이하, 첨부한 도 7을 참조하여, 본 발명의 다른 일 실시예에 따른 적외선 광학 장치를 탑재한 전자 장치에 대해 설명한다. 설명의 편의성을 위해서 본 실시예를 설명하는데 있어서 도 1 내지 도 6을 참조하여 상술한 실시예와 다른 점을 중심으로 설명하도록 한다.Hereinafter, an electronic device equipped with an infrared optical device according to another exemplary embodiment will be described with reference to FIG. 7. For convenience of description, the present embodiment will be described with reference to FIGS. 1 to 6, which are different from the above-described embodiment.
도 7은 본 발명의 다른 일 실시예에 따른 적외선 광학 장치, 카메라 모듈 및 조도감지부의 구성을 개략적으로 도시한 단면도이다. FIG. 7 is a cross-sectional view schematically illustrating a configuration of an infrared optical device, a camera module, and an illumination intensity sensing unit according to another exemplary embodiment of the present disclosure.
도 7을 참조하면, 본 발명의 전자 장치는 조도감지부(500)를 더 포함할 수 있다. 조도감지부(500)는 전자 장치 주변의 조도를 측정할 수 있다. 조도감지부(500)가 측정한 조도가 미리 정해진 레벨 이하로 떨어지면 적외선 포커싱 모드가 선택될 수 있다.Referring to FIG. 7, the electronic device of the present invention may further include an illuminance sensor 500. The illuminance sensor 500 may measure illuminance around the electronic device. When the illuminance measured by the illuminance sensor 500 falls below a predetermined level, an infrared focusing mode may be selected.
카메라 모듈(200)의 포커싱 모듈(230)은 조도가 일정 수준 이하로 떨어지면 포커싱 정확도가 떨어질 수 있다. 예를 들어, 포커싱 모듈(230)이 콘스라스트AF 방식을 이용할 경우 저조도 상황에서는 피사체의 경계가 명확하게 감지되지 않을 수 있기 때문이다. 또한, 위상차AF 방식을 이용하는 경우에도 위상을 비교할 이미지가 명확하게 감지되지 않는 경우 포커싱 정확도가 떨어질 수 있다The focusing module 230 of the camera module 200 may lose focusing accuracy when the illuminance falls below a predetermined level. For example, when the focusing module 230 uses the Contrast AF method, the boundary of the subject may not be clearly detected in a low light situation. In addition, even in the case of using a phase difference AF method, focusing accuracy may be deteriorated when an image to compare phases is not clearly detected.
따라서 주변의 조도가 일정 레벨 이하로 떨어지면 자동으로 적외선 포커싱 모드가 선택되어 카메라 모듈(200)의 포커싱을 보조할 수 있다. 이러한 방법에 의하면 카메라 모듈(200)의 포커싱 모듈(230)이 초점을 맞추는 것을 시도하여 실패한 이후에 적외선 포커싱 모드가 선택되는 것보다 신속하게 적외선 포커싱 모드가 선택되어 동작할 수 있다.Therefore, when the ambient illumination falls below a predetermined level, an infrared focusing mode is automatically selected to assist the focusing of the camera module 200. According to this method, the infrared focusing mode may be selected and operated more quickly than the infrared focusing mode is selected after the focusing module 230 of the camera module 200 attempts to focus and fails.
이하, 첨부한 도 8을 참조하여, 본 발명의 또 다른 일 실시예에 따른 적외선 광학 장치를 탑재한 전자 장치에 대해 설명한다. 설명의 편의성을 위해서 본 실시예를 설명하는데 있어서 도 1 내지 도 6을 참조하여 상술한 실시예와 다른 점을 중심으로 설명하도록 한다.Hereinafter, an electronic device equipped with an infrared optical device according to another exemplary embodiment will be described with reference to FIG. 8. For convenience of description, the present embodiment will be described with reference to FIGS. 1 to 6, which are different from the above-described embodiment.
도 8은 본 발명의 다른 일 실시예에 따른 적외선 광학 장치, 카메라 모듈의 구성을 개략적으로 도시한 단면도이다. 8 is a cross-sectional view schematically showing the configuration of an infrared optical device and a camera module according to another embodiment of the present invention.
도 8을 참조하면 적외선 수광부(120)에는 카메라 모듈(200)의 포커싱 모듈(230)과 유사한 기능을 수행하는 적외선 포커싱 모듈(124)이 더 포함된다. 적외선 포커싱 모듈(124)은 적외선 렌즈(123)를 광축 방향으로 이동시켜 초점을 맞춘다. 적외선 포커싱 모듈(124)은 예를 들어, 보이스 코일 모터(Voice coil motor) 방식으로 구동되는 액츄에이터일수 있다.Referring to FIG. 8, the infrared light receiver 120 further includes an infrared focusing module 124 that performs a function similar to the focusing module 230 of the camera module 200. The infrared focusing module 124 moves the infrared lens 123 in the optical axis direction to focus. The infrared focusing module 124 may be, for example, an actuator driven by a voice coil motor method.
적외선 포커싱 모듈(124)은 다양한 방식으로 초점을 맞출 수 있다. 적외선 포커싱 모듈(124)은 적외선 수광부(120)에서 감지된 홍채 또는 피사체의 이미지 데이터에 따라 적외선 렌즈(123)를 이동시키는 것에 의해 초점을 맞출 수 있다. 구체적으로, 적외선 포커싱 모듈(124)은 위상차AF 방식, 콘트라스트AF 방식이 사용될 수 있다. 또한, 위상차AF 방식과 콘트라스트AF 방식을 혼합한 하이브리드AF 방식이 사용될 수도 있다. 또한, 적외선 수광부(120)의 촬상소자 하나의 픽셀을 둘로 나눠 위상차 센서처럼 작동시키는 듀얼픽셀AF 방식이 사용될 수 도 있다.Infrared focusing module 124 may focus in various ways. The infrared focusing module 124 may focus by moving the infrared lens 123 according to the image data of the iris or the subject detected by the infrared light receiver 120. In detail, the infrared focusing module 124 may use a phase difference AF method or a contrast AF method. In addition, a hybrid AF method may be used in which the phase difference AF method and the contrast AF method are mixed. In addition, a dual pixel AF method may be used to divide one pixel of the image pickup device of the infrared light receiver 120 into two to operate as a phase difference sensor.
선택된 동작 모드가 홍채 인식 모드인 경우, 적외선 포커싱 모듈(124)에 의해 홍채의 초점이 적외선 수광부(120)에 명확하게 맺히도록 적외선 렌즈(123)를 이동시킬 수 있다. 이에 따라 더욱 고품질의 홍채 이미지를 획득할 수 있다.When the selected operation mode is the iris recognition mode, the infrared focusing module 124 may move the infrared lens 123 so that the focus of the iris is clearly formed on the infrared light receiver 120. Accordingly, a higher quality iris image can be obtained.
또한, 선택된 동작 모드가 적외선 포커싱 모드인 경우, 적외선 포커싱 모듈(124)에 의해 피사체의 초점이 적외선 수광부(120)에 맺히도록 적외선 렌즈(123)를 이동시킬 수 있다. 신호처리부(300)는 피사체의 초점이 맞춰진 상태에서 적외선 렌즈(123)의 광축 방향의 위치를 통해 피사체의 위치를 간접적으로 계산할 수 있다. 카메라 모듈(200)은 신호처리부(300)가 계산한 결과에 따라 포커싱 모듈(230)을 움직여서 초점을 맞출 수 있다.In addition, when the selected operation mode is the infrared focusing mode, the infrared lens 123 may be moved by the infrared focusing module 124 so that the subject focuses on the infrared light receiver 120. The signal processor 300 may indirectly calculate the position of the subject through the position in the optical axis direction of the infrared lens 123 while the subject is in focus. The camera module 200 may focus by moving the focusing module 230 according to a result calculated by the signal processor 300.
이상, 본 발명의 적외선 광학 장치를 탑재한 전자 장치 및 적외선 광학 장치의 제어 방법의 실시예들에 대해 설명하였다. 본 발명은 상술한 실시예 및 첨부한 도면에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자의 관점에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명의 범위는 본 명세서의 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.In the above, embodiments of the electronic device equipped with the infrared optical device of the present invention and the control method of the infrared optical device have been described. The present invention is not limited to the above-described embodiment and the accompanying drawings, and various modifications and variations will be possible in view of those skilled in the art to which the present invention pertains. Therefore, the scope of the present invention should be defined not only by the claims of the present specification but also by the equivalents of the claims.

Claims (12)

  1. 적외선 대역의 빛을 방출하는 적외선 발광부;An infrared light emitting unit emitting light of an infrared band;
    상기 적외선 발광부가 방출하는 빛의 파장 대역의 빛을 감지하는 적외선 수광부;An infrared light receiving unit configured to sense light in a wavelength band of light emitted from the infrared light emitting unit;
    상기 적외선 수광부가 발생한 신호를 처리하는 신호처리부;A signal processor for processing a signal generated by the infrared light receiver;
    가시광선 대역의 빛을 감지하는 이미지 센서, 렌즈 및 상기 렌즈를 광축 방향으로 이동시켜 초점을 맞추는 포커싱 모듈을 포함하는 카메라 모듈; 및A camera module including an image sensor for detecting light in a visible light band, a lens, and a focusing module for focusing the lens by moving the lens in an optical axis direction; And
    선택된 동작 모드에 따라 상기 적외선 발광부, 상기 적외선 수광부 및 상기 카메라 모듈을 제어하는 제어부를 포함하고,A control unit controlling the infrared light emitting unit, the infrared light receiving unit, and the camera module according to a selected operation mode;
    선택된 동작 모드가 홍채 인식 모드이면, 상기 적외선 발광부가 홍채에 빛을 조사하고, 상기 적외선 수광부가 상기 홍채에서 반사된 빛을 감지하여 상기 홍채의 이미지를 촬영하고,If the selected operation mode is an iris recognition mode, the infrared light emitting unit irradiates light on the iris, the infrared light receiving unit detects the light reflected from the iris to take an image of the iris,
    선택된 동작 모드가 적외선 포커싱 모드이면, 상기 적외선 발광부가 상기 피사체에 빛을 조사하고, 상기 적외선 수광부가 상기 피사체에서 반사된 빛을 감지하고, 상기 신호처리부는 상기 피사체의 위치를 계산하고, 상기 계산한 결과에 따라 상기 포커싱 모듈이 동작하는 적외선 광학 장치를 탑재한 전자 장치.If the selected operation mode is an infrared focusing mode, the infrared light emitting unit irradiates light onto the subject, the infrared light receiving unit senses light reflected from the subject, and the signal processing unit calculates the position of the subject, Electronic device equipped with an infrared optical device that operates the focusing module according to the result.
  2. 제1 항에 있어서,According to claim 1,
    주변의 조도를 측정하는 조도감지부를 더 포함하고,It further includes an illuminance detection unit for measuring the ambient illuminance,
    상기 조도감지부가 측정한 조도가 미리 정해진 레벨 이하로 떨어지면 적외선 포커싱 모드가 선택되는 적외선 광학 장치를 탑재한 전자 장치.And an infrared focusing mode selected when the illuminance measured by the illuminance sensor falls below a predetermined level.
  3. 제1 항에 있어서,According to claim 1,
    상기 카메라 모듈이 이미지 센서에서 감지된 상기 피사체의 이미지에 따라 상기 포커싱 모듈을 동작시켜 초점을 맞추는 것에 실패하면 적외선 포커싱 모드가 선택되는 적외선 광학 장치를 탑재한 전자 장치.And an infrared focusing mode is selected when the camera module fails to focus by operating the focusing module according to the image of the subject detected by an image sensor.
  4. 제1 항에 있어서,According to claim 1,
    상기 적외선 수광부는 복수의 픽셀들을 포함하고,The infrared light receiving unit includes a plurality of pixels,
    선택된 동작 모드가 홍채 인식 모드이면, 상기 적외선 수광부는 복수의 픽셀들 중 전부 또는 일부가 활성화되어 상기 홍채에서 반사된 빛을 감지하고,If the selected operation mode is an iris recognition mode, the infrared light receiver detects light reflected from the iris by all or part of a plurality of pixels being activated.
    선택된 동작 모드가 적외선 포커싱 모드이면, 상기 적외선 수광부는 상기 홍채 인식 모드에서 활성화되는 픽셀 중 일부가 활성화되어 상기 피사체에서 반사된 빛을 감지하는 적외선 광학 장치를 탑재한 전자 장치.And the infrared light receiving unit is equipped with an infrared optical device that detects light reflected from the subject by activating some of the pixels activated in the iris recognition mode when the selected operation mode is an infrared focusing mode.
  5. 제1 항에 있어서,According to claim 1,
    상기 신호처리부는 상기 적외선 발광부에서 빛이 방출되어 상기 피사체에서 반사되어 상기 적외선 수광부에 감지되는 시간을 측정하여 상기 피사체의 위치를 계산하는 적외선 광학 장치를 탑재한 전자 장치.The signal processor is equipped with an infrared optical device for calculating the position of the subject by measuring the time emitted from the infrared light emitter is reflected from the subject and detected by the infrared light receiver.
  6. 제1 항에 있어서,According to claim 1,
    상기 적외선 수광부를 덮는 적외선 렌즈 및 상기 적외선 렌즈를 광축 방향으로 이동시켜 초점을 맞추는 적외선 포커싱 모듈을 더 포함하고,And an infrared focusing module for focusing by moving the infrared lens covering the infrared light receiving unit and focusing the infrared lens in an optical axis direction.
    상기 신호처리부는 상기 적외선 수광부에서 감지된 상기 피사체의 이미지에 따라 상기 적외선 포커싱 모듈을 동작시켜 초점을 맞춰 상기 피사체의 위치를 계산하는 적외선 광학 장치를 탑재한 전자 장치.And the signal processor is configured to operate the infrared focusing module according to the image of the subject detected by the infrared light receiver to focus and calculate the position of the subject.
  7. 제어부에서 동작 모드를 선택하고,Select the operation mode on the controller,
    선택된 동작 모드가 홍채 인식 모드이면, 적외선 발광부에서 적외선 대역의 빛을 홍채에 조사하고, 적외선 수광부에서 상기 홍채에 반사된 빛을 감지하여 상기 홍채의 이미지를 촬영하고,If the selected operation mode is an iris recognition mode, the infrared light emitter irradiates light in the infrared band to the iris, and the infrared light receiver detects the light reflected by the iris to take an image of the iris,
    선택된 동작 모드가 적외선 포커싱 모드이면, 상기 적외선 발광부에서 적외선 대역의 빛을 피사체에 조사하고, 상기 적외선 수광부에서 상기 피사체에 반사된 빛을 감지하고, 신호처리부는 상기 피사체의 위치를 계산하고, 카메라 모듈의 포커싱 모듈은 상기 계산된 결과에 따라 동작하는 적외선 광학 장치의 제어 방법.If the selected operation mode is an infrared focusing mode, the infrared light emitter irradiates the light of the infrared band to the subject, the infrared light receiver detects the light reflected by the subject, and the signal processor calculates the position of the subject, and the camera The focusing module of the module operates according to the calculated result.
  8. 제7 항에 있어서,The method of claim 7, wherein
    조도감지부가 주변의 조도를 측정하여, 측정한 조도가 미리 정해진 레벨 이하이면,If the illuminance sensor measures the illuminance of the surroundings and the measured illuminance is below a predetermined level,
    상기 제어부는 동작 모드를 적외선 포커싱 모드로 선택하는 적외선 광학 장치의 제어 방법.And the control unit selects an operation mode as an infrared focusing mode.
  9. 제7 항에 있어서,The method of claim 7, wherein
    상기 포커싱 모듈이 상기 카메라 모듈의 이미지 센서에 감지된 상기 피사체의 이미지에 따라 상기 포커싱 모듈을 동작시켜 초점을 맞추는 것에 실패하면,If the focusing module fails to focus by operating the focusing module according to the image of the subject detected by the image sensor of the camera module,
    상기 제어부는 동작 모드를 적외선 포커싱 모드로 선택하는 적외선 광학 장치의 제어 방법.And the control unit selects an operation mode as an infrared focusing mode.
  10. 제7 항에 있어서,The method of claim 7, wherein
    선택된 동작 모드가 홍채 인식 모드이면, 상기 적외선 수광부에서 복수의 픽셀이 활성화되어 빛을 감지하고,If the selected operation mode is an iris recognition mode, a plurality of pixels are activated in the infrared light receiver to detect light,
    선택된 동작 모드가 적외선 포커싱 모드이면, 상기 적외선 수광부에서 상기 복수의 픽셀 중 일부만이 활성화되어 빛을 감지하는 적외선 광학 장치의 제어 방법.And if a selected operation mode is an infrared focusing mode, only a part of the plurality of pixels is activated in the infrared light receiver to sense light.
  11. 제7 항에 있어서,The method of claim 7, wherein
    상기 신호처리부는 상기 적외선 발광부에서 빛이 방출되어 상기 피사체에서 반사되어 상기 적외선 수광부에 감지되는 시간을 측정하여 상기 피사체의 위치를 계산하는 적외선 광학 장치의 제어 방법.And the signal processor calculates a position of the subject by measuring a time when light is emitted from the infrared emitter, reflected from the subject, and sensed by the infrared receiver.
  12. 제7 항에 있어서,The method of claim 7, wherein
    상기 신호처리부는 상기 적외선 수광부에서 감지된 상기 피사체의 이미지에 따라 적외선 포커싱 모듈을 동작시켜 초점을 맞춰 상기 피사체의 위치를 계산하는 적외선 광학 장치의 제어 방법.And the signal processor calculates the position of the subject by focusing by operating an infrared focusing module according to the image of the subject detected by the infrared light receiving unit.
PCT/KR2016/014974 2016-04-18 2016-12-21 Electronic device having infrared optical device and method for controlling infrared optical device WO2017183796A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0047110 2016-04-18
KR1020160047110A KR101790518B1 (en) 2016-04-18 2016-04-18 Electronic device with infrared optical apparatus and controlling method of infrared optical apparatus

Publications (1)

Publication Number Publication Date
WO2017183796A1 true WO2017183796A1 (en) 2017-10-26

Family

ID=60116453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014974 WO2017183796A1 (en) 2016-04-18 2016-12-21 Electronic device having infrared optical device and method for controlling infrared optical device

Country Status (2)

Country Link
KR (1) KR101790518B1 (en)
WO (1) WO2017183796A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109195246A (en) * 2018-07-25 2019-01-11 北京小米移动软件有限公司 Light emission control method, device and storage medium
CN109766861A (en) * 2019-01-17 2019-05-17 柳州阜民科技有限公司 Multifunctional bio feature detection device and electronic equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020028406A (en) * 2000-10-09 2002-04-17 정인수 Iris image acquisition device and iris recognition method with high recognition rates
KR20070013049A (en) * 2005-07-25 2007-01-30 주식회사 팬택앤큐리텔 Auto focusing apparatus of infrared communication photographing device
KR20120068655A (en) * 2010-12-19 2012-06-27 김인선 Method and camera device for capturing iris or subject of good quality with one bandpass filter passing both visible ray and near infra red ray
US20120293629A1 (en) * 2010-01-27 2012-11-22 Iris Id Iris scanning apparatus employing wide-angle camera, for identifying subject, and method thereof
KR20150117883A (en) * 2014-04-11 2015-10-21 에이오스 주식회사 iris recognition module and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020028406A (en) * 2000-10-09 2002-04-17 정인수 Iris image acquisition device and iris recognition method with high recognition rates
KR20070013049A (en) * 2005-07-25 2007-01-30 주식회사 팬택앤큐리텔 Auto focusing apparatus of infrared communication photographing device
US20120293629A1 (en) * 2010-01-27 2012-11-22 Iris Id Iris scanning apparatus employing wide-angle camera, for identifying subject, and method thereof
KR20120068655A (en) * 2010-12-19 2012-06-27 김인선 Method and camera device for capturing iris or subject of good quality with one bandpass filter passing both visible ray and near infra red ray
KR20150117883A (en) * 2014-04-11 2015-10-21 에이오스 주식회사 iris recognition module and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109195246A (en) * 2018-07-25 2019-01-11 北京小米移动软件有限公司 Light emission control method, device and storage medium
CN109195246B (en) * 2018-07-25 2021-01-29 北京小米移动软件有限公司 Light emission control method, light emission control device and storage medium
CN109766861A (en) * 2019-01-17 2019-05-17 柳州阜民科技有限公司 Multifunctional bio feature detection device and electronic equipment

Also Published As

Publication number Publication date
KR101790518B1 (en) 2017-11-20

Similar Documents

Publication Publication Date Title
US6992717B2 (en) Iris identifying apparatus
KR100919041B1 (en) Image capturing apparatus having distance measurement function
KR100859762B1 (en) Image capturing apparatus
KR100853163B1 (en) Image capturing apparatus
KR100917524B1 (en) Position detecting device
US7359564B2 (en) Method and system for cancellation of ambient light using light frequency
JP4172930B2 (en) Eye imaging device and entrance / exit management system
WO2020130598A1 (en) Three-dimensional intraoral scanner and intraoral scanning method using same
WO2017183796A1 (en) Electronic device having infrared optical device and method for controlling infrared optical device
WO2015130094A1 (en) Fingerprint input device using portable terminal having camera and external optical device for inputting fingerprint
WO2017183795A1 (en) Optical sensor device and optical sensing method
US9047500B2 (en) Integrated thin film imager for bright field, dark field, and frustrated total internal reflection imaging
WO2022124518A1 (en) System for acquiring iris image to enlarge iris recognition range
KR101898067B1 (en) Optical sensor module and optical sensing method
EP4044574A1 (en) Electronic device
CN104657702B (en) Eyeball arrangement for detecting, pupil method for detecting and iris discrimination method
WO2019164359A1 (en) Method for acquiring image corresponding to infrared rays by using camera module comprising lens capable of absorbing light in visible light band and electronic device implementing same
WO2021149503A1 (en) Electronic device
KR20180000158A (en) Electronic device having optical apparatus and optical sensing method of electronic device
JP2016173385A (en) Electronic apparatus and method for controlling electronic apparatus
US9906705B2 (en) Image pickup apparatus
KR101335915B1 (en) Apparatus for recognizing face
JP4637059B2 (en) Illumination device and imaging device
WO2017099351A1 (en) Optical sensor package
CN208128374U (en) There are detectors for a kind of optics human body

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899564

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16899564

Country of ref document: EP

Kind code of ref document: A1