WO2020130388A1 - 공기 흐름 제어를 통한 호흡기 분화 촉진을 위한 미세 유체 칩 - Google Patents

공기 흐름 제어를 통한 호흡기 분화 촉진을 위한 미세 유체 칩 Download PDF

Info

Publication number
WO2020130388A1
WO2020130388A1 PCT/KR2019/016305 KR2019016305W WO2020130388A1 WO 2020130388 A1 WO2020130388 A1 WO 2020130388A1 KR 2019016305 W KR2019016305 W KR 2019016305W WO 2020130388 A1 WO2020130388 A1 WO 2020130388A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
flow channel
microfluidic chip
space
fluid passages
Prior art date
Application number
PCT/KR2019/016305
Other languages
English (en)
French (fr)
Inventor
김도현
김성원
황세환
임미현
박정아
Original Assignee
가톨릭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190063591A external-priority patent/KR102230589B1/ko
Application filed by 가톨릭대학교 산학협력단 filed Critical 가톨릭대학교 산학협력단
Publication of WO2020130388A1 publication Critical patent/WO2020130388A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • C12M3/06Tissue, human, animal or plant cell, or virus culture apparatus with filtration, ultrafiltration, inverse osmosis or dialysis means

Definitions

  • the present invention relates to a microfluidic chip for promoting respiratory differentiation through air flow control, and in particular, to a multi-layered cell chip, specifically, a multi-layered cell chip designed to make respiratory-specific tissues, and cilia in cells of an actual respiratory tissue.
  • a microfluidic chip capable of promoting the formation of tissues having such cilia movement.
  • a cell culture unit is configured by fluidly connecting a medium container for supplying a medium to a culture container in a cell culture and a culture container for use in cell culture. At this time, it is important that the cell culture unit is configured to accurately mimic the culture environment of the cell when the cell is cultured.
  • 1 is an anatomical diagram of the respiratory tract mucosa.
  • the respiratory tract mucosa comprises an epithelial layer (1), a miracle membrane (2), and sub-epithelial layers (3, 4).
  • the subepithelial layer (3, 4) is composed of fibroblasts (3), vascular endothelial cells (4).
  • the respiratory mucosa has a multi-layered structure.
  • a cultured cell chip capable of simulating a multi-layered structure is required, and when cultured, not only the medium supply to the cell but also the air supply are required, and thus cultured cells capable of satisfying these characteristics Chips are required.
  • the present invention is a microfluidic chip designed to make tissues specialized for the respiratory system. As the movements of the cilia in cells of the actual respiratory tissue are made in a single direction, if the flow of air is given in one direction, the tissue formation with these cilia movements will be promoted. It is an object to solve the problem of providing a microfluidic chip.
  • the present invention is to solve the problem of providing a microfluidic air-liquid interface (ALI) cultured multi-layer cell chip capable of simultaneously supplying media and supplying air during cell culture.
  • ALI microfluidic air-liquid interface
  • the present invention is to solve the problem of providing a multi-layered microfluidic cell ALI (air-liquid interface) cultured multi-layer cell chip capable of culture.
  • ALI air-liquid interface
  • a first member having a plurality of first fluid passages, a first member receiving the first member, and upon receiving, a plurality of first spacers for seating the first member
  • a first space formed between the first member and the first spacer includes a second member provided to communicate with the first fluid passage, a through hole for receiving the second member, and a plurality of second fluid passages
  • a microfluidic chip is provided that includes a base member, a media flow member having a plurality of second fluid passages and flow channels respectively connected to the through holes, and a substrate on which the media flow member is mounted.
  • a first member having a plurality of first fluid passages the first member is accommodated, and when received, the first member includes a plurality of first spacers for seating, and
  • the first space formed between the first member and the first spacer includes a second member provided to communicate with the first fluid passage, a through member for accommodating the second member, a base member having a plurality of second fluid passages, a plurality of A first medium flow member having at least one of the second fluid passages and a first flow channel fluidly connected to the through-holes, and at least one of the plurality of second fluid passages and the first flow channel, respectively, to enable fluid movement
  • a microfluidic chip is provided that includes a second medium flow member having a second flow channel to be connected, a mesh member disposed between the first flow channel and the second flow channel, and a substrate on which the second medium flow member is mounted.
  • the microfluidic chip according to an embodiment of the present invention has the following effects.
  • micro-fluid based air-liquid interface (ALI) cultured multi-layered cell chip according to at least one embodiment of the present invention, during cell culture, medium supply and air supply can be simultaneously performed, and multi-layered culture is possible. Do.
  • 1 is an anatomical diagram of the respiratory tract mucosa.
  • FIG. 2 is a schematic perspective view showing a multi-layered cell chip according to a first embodiment of the present invention.
  • FIG. 3 is a schematic plan view of a state in which the first member is accommodated in the second member illustrated in FIG. 2.
  • FIG. 4 is a schematic side view of a state in which the first member is accommodated in the second member illustrated in FIG. 2.
  • FIG. 5 is a schematic perspective view showing a multi-layer cell chip according to a second embodiment of the present invention.
  • FIG. 6 is a schematic side view of a state in which the first member is accommodated in the second member illustrated in FIG. 5.
  • microfluidic chip hereinafter, also referred to as a'multilayer cell chip'
  • a'multilayer cell chip' a microfluidic chip
  • the present invention is a microfluidic chip designed to make tissues specialized for the respiratory system. As the movements of the cilia in cells of the actual respiratory tissue are made in a single direction, if the flow of air is given in one direction, the tissue formation with these cilia movements will be promoted. It provides a microfluidic chip.
  • the present invention provides a microfluidic air-liquid interface (ALI) cultured multi-layer cell chip (hereinafter referred to as a'multilayer cell chip').
  • ALI microfluidic air-liquid interface
  • Figure 2 is a schematic perspective view showing a multi-layered cell chip 100 according to the first embodiment of the present invention
  • Figure 3 is a schematic plan view of a state in which the first member is accommodated in the second member shown in Figure 2
  • Figure 4 is It is a schematic side view of the state in which the 1st member was accommodated in the 2nd member shown in FIG.
  • the multi-layer cell chip 100 related to the first embodiment of the present invention includes a first member 110, a second member 120, a base member 130, a medium flow member 140, and a substrate 150. .
  • the first member 110 and the second member 120 form a well in which cells to be cultured are seated.
  • the multi-layer cell chip 100 includes a first member 110 having a plurality of first fluid passages 111 and 112.
  • the first member may be formed of a resin material, for example, a polyester water quality.
  • the first member 110 may have a cylindrical shape, and the plurality of first fluid passages 111 and 112 may be formed to penetrate the first member 110, for example, a plurality of first fluids.
  • the passages 111 and 112 may be formed to penetrate the top surface and bottom surface 113 of the first member 110.
  • the plurality of first fluid passages 111 to 114 may have flow cross-sections of various shapes such as circular, elliptical, or polygonal shapes.
  • the plurality of first fluid passages 111 and 112 may be provided in two or more.
  • the multi-layered cell chip 100 accommodates the first member 110, and upon receipt, includes a plurality of first spacers 123 and 124 for seating the first member 110, and the first member ( 110) and the first space 10 formed between the first spacers 123 and 124 includes a second member 120 provided to communicate with the first fluid passages 111 to 114.
  • the second member 120 may have a cylindrical shape having a hollow portion 121 to accommodate the first member 110. At this time, the second member 120 may have a bottom surface 122 on the first member 110 side, that is, the top is opened, and the bottom. At this time, the first member 110 may enter the open top of the second member 120 and be accommodated in the second member 120. In a state in which the first member 110 is accommodated in the second member 120, the first member 110 and the second member 120 are used for a well having a first space 10 for culturing cells. To form.
  • the second member 120 has a bottom surface 122 on which the first spacers 123 and 124 are disposed. A plurality of first spacers 123 and 124 may be provided.
  • each of the first spacers 123 and 124 is positioned at a predetermined distance.
  • the first spacers 123 and 124 are disposed above the bottom surface 122 of the second member 120, and the bottom surface 113 of the first member 110 is seated on the first spacer 125. Therefore, between the bottom surface 113 of the first member 110 and the bottom surface 122 of the second member 120, the first space 10 having a predetermined size by the first spacers 123 and 124 This is formed, and the first space 10 is air for supplying external air to cells cultured in the first space 10 as a plurality of first fluid passages 111 to 114 are fluidly connected.
  • the second member 120 may be formed of a resin material, for example, a polyester water quality.
  • the bottom surface 122 refers to the bottom member of the second member 120 having a cylindrical shape with an open top, and the bottom surface 122 of the surface exposed toward the hollow portion 121 of the second member 120. (Or the bottom of the bottom member), and the surface exposed to the outside is referred to as the bottom of the bottom surface 122 (or the bottom member).
  • the second member 120 may include second spacers 125 and 126 disposed under the bottom surface 122 of the second member 120.
  • the second space 20 having a predetermined size may be formed in the lower portion of the bottom surface 122 of the second member 120 by the second spacers 125 and 126.
  • the second space 20 forms a medium channel for medium flow to be described later. Therefore, when the cells are accommodated in the first space 10 in a state where the first member 110 is accommodated in the second member 120, based on the bottom surface 122 of the first member 120, the upper part An air channel (first space) is formed, and a discharge channel (second space) is formed at the bottom.
  • the bottom surface 122 (or bottom member) of the second member 120 is formed of a fluid-permeable membrane. That is, the medium flowing through the medium channel may be supplied to the cell side in the first space through the bottom surface 122.
  • the bottom surface 122 is formed of a fluid-permeable membrane (membrane), it may be provided so that the cells do not communicate.
  • the multilayer cell chip 100 includes a base member 130 having a through hole 131 for accommodating the second member 120 and a plurality of second fluid passages 132 and 133.
  • the base member 130 may have a cylindrical shape, a rectangular parallelepiped shape, or the like, and may be formed of, for example, PDMS (polydimethylsiloxane) material.
  • the plurality of second fluid passages 132 and 133 may be provided to penetrate the base member 130.
  • the plurality of second fluid passages 132 and 133 respectively function as an inlet and outlet passage of the medium.
  • the multi-layer cell chip 100 includes a medium flow member 130 having a plurality of second fluid passages 132 and 133 and a flow channel 141 connected to the through hole 131, respectively.
  • connection portions 142 and 143 are provided at both ends of the flow channel 141, and each connection portion is movably connected to the second fluid passages 132 and 133, respectively. That is, the medium introduced through any one of the second fluid passages 132 flows through the flow channel 141 through one connection part 142 connected to the second fluid passage 132, and then another connection part 143 ) And the second fluid passage 1330 movably connected to the connection part 143 to flow out of the chip.
  • the flow channel 141 may be formed to penetrate the medium flow member 140.
  • the medium flow member 140 may be formed of PDMS (polydimethylsiloxane) material.
  • the multi-layer cell chip 100 includes a substrate 150 on which the medium flow member 140 is mounted.
  • the substrate 150 may be formed of a glass material.
  • the flow channel 141 is fluidly connected to the second space 20 described above.
  • a plurality of second spacers 125 and 126 contacting the flow channel 141 are provided on the bottom surface 122 of the second member 120, and the second spacers 125 and 126 flow In contact with the bottom surface of the channel 141, the bottom surface 122 of the second member 120 may be positioned at a predetermined distance from the bottom surface of the flow channel 141.
  • the substrate 150 may form a bottom surface of the flow channel 141.
  • the bottom surface 122 enables fluid movement with the flow channel 141 of the discharge medium member 140 Is placed.
  • the at least one first fluid passage 111 to 114 may be provided to increase the flow cross-sectional area at least partially toward the bottom surface 122 of the second member 120.
  • at least one of the first fluid passages 111 and 112 flows in a circumferential direction based on the central axis of the first member 110 in at least a portion toward the bottom surface 122 of the second member 120.
  • the cross section may be provided to be expanded.
  • the media flow member 140 is disposed on the substrate 150
  • the base member 130 is disposed on the media flow member 140
  • the second member in the through hole 131 of the base member 130 120 is disposed, the first member 110 is accommodated in the second member 120.
  • the bottom surface 122 of the second member 120 forms a first space between the first member 110, and when cells are disposed in the first space 10, the first fluid passage The air flows through the (111, 112) to the first space 10, and the medium flowing through the flow channel 141 passes through the bottom surface 122 of the second member 120 so that the first space ( 10) is supplied to the cell side.
  • FIG. 5 is a schematic perspective view showing a multi-layered cell chip 200 according to a second embodiment of the present invention
  • FIG. 6 is a schematic side view of a state in which the first member is accommodated in the second member shown in FIG. 5.
  • the multi-layered cell chip 200 includes a first member 210, a second member 220, a base member 230, a first medium flow member 240, and a second medium flow member 250. , A mesh member 270 having a plurality of pores of a predetermined diameter, and a substrate 260.
  • the first member 210 and the second member 220 have the same structure as the first member 110 and the second member 120 described in the first embodiment.
  • the first member 210 has a plurality of first fluid passages 210 and 211.
  • the second member 220 has a hollow portion 221 for accommodating the first member 210, and when receiving the first member 210, a plurality of first for the first member 210 is seated Spacers 223 and 224 are included.
  • the first space 10 formed between the first member 210 and the first spacers 223 and 224 is provided to communicate with the first fluid passages 210 and 211.
  • the first space 10 is formed between a bottom surface of the first member 213, a pair of first spacers 223 and 224, and a bottom surface 222 of the second member 220.
  • the multi-layered cell chip 200 includes a base member 230 having a through hole 231 for accommodating the second member 220 and a plurality of second fluid passages 232 to 235.
  • the plurality of second fluid passages 232 to 235 be provided with four or more.
  • the at least two second fluid passages 232 and 233 are fluidly connected to the first flow channel 241 of the first medium flow member 240, and the at least two second fluid passages 234 and 235 ) Is fluidly connected to the second flow channel 251 of the second medium flow member 250.
  • a plurality of second spacers 225 and 226 in contact with the first flow channel 241 are provided on the bottom surface 222 of the second member 220, and the second spacers 225 and 226 are first In contact with the bottom surface of the flow channel 141 (the mesh member 270 to be described later), the bottom surface 222 of the second member 220 will be positioned a predetermined distance away from the bottom surface of the first flow channel 241. Can.
  • the multi-layered cell chip 200 has a first medium flow member 240 having at least two of a plurality of second fluid passages and a first flow channel 241 that is respectively fluidly connected to the through hole 231. It includes.
  • the first flow channel 241 is formed to penetrate the first medium flow member 240.
  • the multi-layered cell chip 200 is provided with at least two (234, 235) of the plurality of second fluid passages and a second flow channel (251) that is respectively fluidly connected to the first flow channel (241).
  • 2 includes a medium flow member 250.
  • the second flow channel 251 is formed to penetrate the second medium flow member 250.
  • the first flow channel 241 of the first medium flow member 240 has two or more second flow channels 232 and 233 and two or more first connection portions 242 and 243 that are fluidly connected to each other. .
  • the second flow channel 251 of the second medium flow member 250 has two or more second connection parts 252 and 253 for fluidly connected to the two or more second flow channels 234 and 235, respectively. ).
  • first medium flow member 240 has two or more second flow channels 234 and 235 and third connection parts 244 and 245 for fluidly connecting the second connection parts 252 and 253. .
  • the second medium flow member 250 has fourth connection parts 254 and 255, and the fourth connection parts 254 and 255 may be used when another medium flow member is additionally disposed.
  • the multi-layer cell chip 200 includes a mesh member 270 disposed between the first flow channel 241 and the second flow channel 251.
  • the mesh member 270 fluidly connects the first flow channel 241 and the second flow channel 251.
  • the multi-layer cell chip 200 includes a substrate 260 on which the second medium flow member 250 is mounted.
  • the second medium flow member 250 is disposed on the substrate 250, and the first placement flow member 240 is disposed on the second medium flow member 250 via the mesh member 270, and the first
  • the base member 230 is disposed on the discharge medium flow member 240, the second member 220 is disposed in the through hole 231 of the base member 230, and the first member ( 210) is accepted.
  • a second space 20 having a predetermined size may also be formed under the bottom surface 222 of the second member 220.
  • the second space 20 is fluidly connected to the first flow channel 241 for the first medium flow.
  • the third space 30 is formed by the mesh member 270, the second flow channel 251 and the substrate 260. That is, the third space 30 is fluidly connected to the second flow channel 251 for medium flow.
  • the third space 30 and the second space 20 are fluidly connected via the mesh member 270, and the second space 20 and the first space 10 are second members 220 ) Is fluidly connected via the bottom surface (222, also referred to as a'floor member').
  • the same or different media may form a multi-layer structure, and the media of the first flow channel 241 and the media of the second flow channel 251 may be supplied to the first space 10.
  • microfluidic chip for promoting respiratory differentiation through air flow control related to at least one embodiment of the present invention, when culturing cells, medium supply and air supply can be simultaneously performed, and multi-layer culture is possible.

Abstract

본 발명은 공기 흐름 제어를 통한 호흡기 분화 촉진을 위한 미세 유체 칩에 관한 것으로, 특히, 다층 세포 칩과 관련되며, 구체적으로, 호흡기 특화 조직을 만들고자 고안된 다층 세포 칩으로서, 실제 호흡기 조직의 세포에서 섬모의 움직임이 단일 방향으로 이루어짐에 따라, 공기의 흐름을 한 방향으로 줄 경우 이러한 섬모 움직임을 가지는 조직 형성을 촉진 할 수 있는 미세 유체 칩에 관한 것이다.

Description

공기 흐름 제어를 통한 호흡기 분화 촉진을 위한 미세 유체 칩
본 발명은 공기 흐름 제어를 통한 호흡기 분화 촉진을 위한 미세 유체 칩에 관한 것으로, 특히, 다층 세포 칩과 관련되며, 구체적으로, 호흡기 특화 조직을 만들고자 고안된 다층 세포 칩으로서, 실제 호흡기 조직의 세포에서 섬모의 움직임이 단일 방향으로 이루어짐에 따라, 공기의 흐름을 한 방향으로 줄 경우 이러한 섬모 움직임을 가지는 조직 형성을 촉진 할 수 있는 미세 유체 칩에 관한 것이다.
세포나 조직 등을 인공적인 환경하에서 효과적으로 배양하는 것이 요구되고 있다.
일반적으로 세포 배양에서 배지를 배양 용기에 공급하기 위한 배지 용기와, 세포 배양에 사용하기 위한 배양 용기를 유체 이동 가능하게 연결하여 세포 배양 유닛을 구성한다. 이때, 세포 배양 유닛은 세포가 배양될 때, 세포의 배양환경을 정확하게 모사할 수 있도록 구성되는 것이 중요하다.
도 1은 호흡기도 점막 해부도이다.
도 1을 참조하면, 호흡기도 점막은 상피층(1), 기적막(2), 상피하층(3, 4)를 포함한다. 이때, 상피하층(3, 4)은 섬유아세포(3), 혈관내피세포(4)로 구성된다. 이와 같이, 호흡기 점막은 다층 구조를 이루고 있다.
따라서, 호흡기 점막의 세포를 배양할 때, 다층 구조를 모사할 수 있는 배양 세포 칩이 요구되고, 배양 시, 세포로 배지 공급뿐만 아니라 공기 공급이 함께 요구되므로, 이러한 특성을 만족시킬 수 있는 배양 세포 칩이 요구된다.
본 발명은 호흡기 특화 조직을 만들고자 고안된 미세 유체 칩으로서, 실제 호흡기 조직의 세포에서 섬모의 움직임이 단일 방향으로 이루어짐에 따라, 공기의 흐름을 한 방향으로 줄 경우 이러한 섬모 움직임을 가지는 조직 형성을 촉진 할 수 있는 미세 유체 칩을 제공하는 것을 해결하고자 하는 과제로 한다.
또한, 본 발명은 세포 배양 시, 배지 공급 및 공기 공급이 동시에 이루어질 수 있는 미세 유체 기반의 ALI(air-liquid interface) 배양 다층 세포 칩을 제공하는 것을 해결하고자 하는 과제로 한다.
또한, 본 발명은 다층 구조로 배양이 가능한 미세 유체 기반의 ALI(air-liquid interface) 배양 다층 세포 칩을 제공하는 것을 해결하고자 하는 과제로 한다.
상기한 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면, 복수 개의 제1 유체통로를 갖는 제1 부재, 제1 부재를 수용하고, 수용 시, 제1 부재가 안착되기 위한 복수 개의 제1 스페이서를 포함하고, 제1 부재 및 제1 스페이서 사이에 형성된 제1 공간은 제1 유체통로와 연통되도록 마련된 제2 부재, 제2 부재를 수용하기 위한 관통홀을 갖고, 복수 개의 제2 유체 통로를 갖는 베이스부재, 복수 개의 제2 유체 통로 및 관통홀과 각각 연결되는 유동 채널을 갖는 배지 유동부재, 및 배지 유동부재가 장착되는 기재를 포함하는 미세 유체 칩이 제공된다.
또한, 본 발명의 또 다른 측면에 따르면, 복수 개의 제1 유체통로를 갖는 제1 부재, 제1 부재를 수용하고, 수용 시, 제1 부재가 안착되기 위한 복수 개의 제1 스페이서를 포함하고, 제1 부재 및 제1 스페이서 사이에 형성된 제1 공간은 제1 유체통로와 연통되도록 마련된 제2 부재, 제2 부재를 수용하기 위한 관통홀을 갖고, 복수 개의 제2 유체 통로를 갖는 베이스부재, 복수 개의 제2 유체 통로 중 적어도 하나 및 관통홀과 각각 유체 이동 가능하게 연결되는 제1 유동 채널을 갖는 제1 배지 유동부재, 복수 개의 제2 유체 통로 중 적어도 하나 및 제1 유동 채널과 각각 유체 이동 가능하게 연결되는 제2 유동 채널을 갖는 제2 배지 유동부재, 제1 유동 채널 및 제2 유동 채널 사이에 배치되는 메쉬 부재, 및 제2 배지 유동부재가 장착되는 기재를 포함하는 미세 유체 칩이 제공된다.
이상에서 살펴본 바와 같이, 본 발명의 일 실시예에 따른 미세 유체 칩은 다음과 같은 효과를 갖는다.
호흡기 특화 조직을 만들고자 고안된 미세 유체 칩으로서, 실제 호흡기 조직의 세포에서 섬모의 움직임이 단일 방향으로 이루어짐에 따라, 공기의 흐름을 한 방향으로 줄 경우 이러한 섬모 움직임을 가지는 조직 형성을 촉진 할 수 있는 작용효과를 갖는다.
또한, 본 발명의 적어도 일 실시예와 관련된 미세 유체 기반의 ALI(air-liquid interface) 배양 다층 세포 칩에 따르면, 세포 배양 시, 배지 공급 및 공기 공급이 동시에 이루어질 수 있고, 다층 구조로 배양이 가능하다.
도 1은 호흡기도 점막 해부도이다.
도 2는 본 발명의 제1 실시예와 관련된 다층 세포 칩을 나타내는 개략 사시도이다.
도 3은 도 2에 도시된 제2 부재 내에 제1 부재가 수용된 상태의 개략 평면도이다.
도 4는 도 2에 도시된 제2 부재 내에 제1 부재가 수용된 상태의 개략 측면도이다.
도 5는 본 발명의 제2 실시예와 관련된 다층 세포 칩을 나타내는 개략 사시도이다.
도 6은 도 5에 도시된 제2 부재 내에 제1 부재가 수용된 상태의 개략 측면도이다.
이하, 본 발명의 일 실시예에 따른 미세 유체 칩(이하, '다층 세포 칩'이라고도 함)을 첨부된 도면을 참고하여 상세히 설명한다.
본 발명은 호흡기 특화 조직을 만들고자 고안된 미세 유체 칩으로서, 실제 호흡기 조직의 세포에서 섬모의 움직임이 단일 방향으로 이루어짐에 따라, 공기의 흐름을 한 방향으로 줄 경우 이러한 섬모 움직임을 가지는 조직 형성을 촉진 할 수 있는 미세 유체 칩을 제공한다.
또한, 본 발명은 미세 유체 기반의 ALI(air-liquid interface) 배양 다층 세포 칩(이하, '다층 세포 칩'이라 함)을 제곤한다.
또한, 도면 부호에 관계없이 동일하거나 대응되는 구성요소는 동일 또는 유사한 참조번호를 부여하고 이에 대한 중복 설명은 생략하기로 하며, 설명의 편의를 위하여 도시된 각 구성 부재의 크기 및 형상은 과장되거나 축소될 수 있다.
도 2는 본 발명의 제1 실시예와 관련된 다층 세포 칩(100)을 나타내는 개략 사시도이고, 도 3은 도 2에 도시된 제2 부재 내에 제1 부재가 수용된 상태의 개략 평면도이며, 도 4는 도 2에 도시된 제2 부재 내에 제1 부재가 수용된 상태의 개략 측면도이다.
본 발명의 제1 실시예와 관련된 다층 세포 칩(100)은 제1 부재(110), 제2 부재(120), 베이스부재(130), 배지 유동부재(140) 및 기재(150)를 포함한다. 상기 제1 부재(110) 및 제2 부재(120)는 배양될 세포가 안착되는 웰(well)을 형성한다.
상기 다층 세포 칩(100)은 복수 개의 제1 유체통로(111, 112)를 갖는 제1 부재(110)를 포함한다. 상기 제1 부재는 수지 재질로 형성될 수 있고, 예를 들어 폴리에스테르 수질로 형성될 수 있다. 상기 제1 부재(110)는 원통 형상을 가질 수 있고, 복수 개의 제1 유체통로(111, 112)는 제1 부재(110)를 관통하도록 형성될 수 있으며, 예를 들어, 복수 개의 제1 유체통로(111, 112)는 제1 부재(110)의 상부면 및 바닥면(113)을 관통하도록 형성될 수 있다. 복수 개의 제1 유체통로(111 내지 114)는 원형, 타원형, 또는 다각형 등의 다양한 형상의 유동 단면을 가질 수 있다. 복수 개의 제1 유체통로(111, 112)는 2개 이상 구비될 수 있다.
또한, 다층 세포 칩(100)은 제1 부재(110)를 수용하고, 수용 시, 제1 부재(110)가 안착되기 위한 복수 개의 제1 스페이서(123, 124)를 포함하고, 제1 부재(110) 및 제1 스페이서(123, 124) 사이에 형성된 제1 공간(10)이 제1 유체통로(111 내지 114)와 연통되도록 마련된 제2 부재(120)를 포함한다.
제2 부재(120)는 제1 부재(110)를 수용할 수 있도록 중공부(121)를 갖는 원통형상을 가질 수 있다. 이때, 제2 부재(120)는 제1 부재(110) 측, 즉 상부가 개방되고, 하부에 바닥면(122)을 가질 수 있다. 이때, 제1 부재(110)는 제2 부재(120)의 개방된 상부로 진입하여 제2 부재(120) 내에 수용될 수 있다. 제1 부재(110)가 제2 부재(120)에 수용된 상태에서, 제1 부재(110)와 제2 부재(120)는 세포가 배양되기 위한 제1 공간(10)을 갖는 웰(well)을 형성한다. 제2 부재(120)는 제1 스페이서(123, 124)가 상부에 배치되는 바닥면(122)을 갖는다. 제1 스페이서(123, 124)는 복수 개로 구비될 수 있고, 예를 들어, 한 쌍으로 구비될 경우, 각각의 제1 스페이서(123, 124)는 소정 간격 떨어져 위치된다. 제1 스페이서(123, 124)는 제2 부재(120)의 바닥면(122)의 상부에 배치되고, 제1 스페이서(125)에 제1 부재(110)의 바닥면(113)이 안착된다. 따라서, 제1 부재(110)의 바닥면(113)과 제2 부재(120)의 바닥면(122) 사이에, 제1 스페이서(123, 124)에 의해 소정 크기를 갖는 제1 공간(10)이 형성되며, 제1 공간(10)은 복수 개의 제1 유체통로(111 내지 114)가 유체 이동 가능하게 연결됨에 따라, 제1 공간(10) 내에서 배양되는 세포로 외부 공기를 공급하기 위한 공기채널을 형성한다. 상기 제2 부재(120)는 수지 재질로 형성될 수 있고, 예를 들어 폴리에스테르 수질로 형성될 수 있다.
본 문서에서 바닥면(122)은 상부가 개방된 원통형상인 제2 부재(120)의 바닥부재를 의미하고, 제2 부재(120)의 중공부(121) 측으로 노출된 면을 바닥면(122)(또는 바닥부재)의 상부라 지칭하고, 외부로 노출된 면을 바닥면(122)(또는 바닥부재)의 하부라 지칭한다.
또한, 제2 부재(120)는 제2 부재(120)의 바닥면(122)의 하부에 배치된 제2 스페이서(125, 126)를 포함할 수 있다. 이러한 구조에서, 제2 스페이서(125, 126)에 의해, 제2 부재(120)의 바닥면(122)의 하부에도 소정 크기를 갖는 제2 공간(20)이 형성될 수 있다. 제2 공간(20)은 후술할 배지 유동을 위한 배지채널을 형성하게 된다. 따라서, 제1 부재(110)가 제2 부재(120) 내에 수용된 상태에서, 제1 공간(10) 내에 세포가 수용되면, 제1 부재(120)의 바닥면(122)을 기준으로, 상부에는 공기 채널(제1 공간)이 형성되고, 하부에는 배지 채널(제2 공간)이 형성된다. 제2 부재(120)의 바닥면(122)(또는 바닥부재)은 유체 통과성 막으로 형성된다. 즉, 배지 채널을 유동하는 배지는 바닥면(122)을 통과하여 제1 공간 내의 세포 측으로 공급될 수 있다. 또한, 상기 바닥면(122)은 유체 통과성 막(membrane)으로 형성되되, 세포가 통화하지 못하도록 마련될 수 있다.
다층 세포 칩(100)은 제2 부재(120)를 수용하기 위한 관통홀(131)을 갖고, 복수 개의 제2 유체 통로(132, 133)를 갖는 베이스부재(130)를 포함한다. 또한, 상기 베이스부재(130)는 원통 형태, 또는 직육면체 형태 등을 가질 수 있고, 예를 들어, PDMS(폴리디메틸실록산) 재질로 형성될 수 있다. 복수 개의 제2 유체 통로(132, 133)는 베이스부재(130)를 관통하도록 마련될 수 있다. 복수 개의 제2 유체 통로(132, 133)는 각각 배지의 유입 및 유출 통로로 기능한다.
또한, 다층 세포 칩(100)은 복수 개의 제2 유체 통로(132, 133) 및 관통홀(131)과 각각 연결되는 유동 채널(141)을 갖는 배지 유동부재(130)를 포함한다. 또한, 유동 채널(141)의 양 종단부에는 각각 연결부(142, 143)가 마련되며, 각각의 연결부는 제2 유체 통로(132, 133)와 각각 유체 이동 가능하게 연결된다. 즉, 어느 한 제2 유체 통로(132)를 통해 유입된 배지는 상기 제2 유체 통로(132)와 연결된 어느 한 연결부(142)를 통해 유동 채널(141)을 유동한 후, 또 다른 연결부(143) 및 상기 연결부(143)와 유체 이동 가능하게 연결된 제2 유체 통로(1330를 통해 칩 외부로 유출될 수 있다. 예시적으로, 유동 채널(141)는 배지 유동부재(140)를 관통하도록 형성될 수도 있다. 상기 배지 유동부재(140)는 PDMS(폴리디메틸실록산) 재질로 형성될 수 있다.
또한, 다층 세포 칩(100)은 배지 유동부재(140)가 장착되는 기재(150)를 포함한다. 예를 들어, 상기 기재(150)는 유리 재질로 형성될 수 있다. 상기 유동 채널(141)은 전술한 제2 공간(20)과 유체 이동 가능하게 연결된다.
전술한 바와 같이, 제2 부재(120)의 바닥면(122)에는 유동 채널(141)과 접촉하는 복수 개의 제2 스페이서(125, 126)가 마련되며, 제2 스페이서(125, 126)가 유동 채널(141)의 바닥면에 접촉되어, 제2 부재(120)의 바닥면(122)이 유동 채널(141)의 바닥면으로부터 소정 간격 떨어져 위치할 수 있다. 또한, 유동 채널(141)는 배지 유동부재(140)를 관통하는 경우, 상기 기재(150)는 유동 채널(141)의 바닥면을 형성할 수 있다.
정리하면, 제2 부재(120)는 관통홀(131)을 통해 베이스부재(130) 내에 배치될 때, 바닥면(122)이 배지 유동부재(140)의 유동 채널(141)과 유체 이동 가능하게 배치된다.
또한, 적어도 하나의 제1 유체통로(111 내지 114)는 제2 부재(120)의 바닥면(122) 측으로 갈수록 적어도 일부에서 유동 단면적이 증가하도록 마련될 수 있다. 또한, 적어도 하나의 제1 유체통로(111, 112)는 제2 부재(120)의 바닥면(122) 측으로 갈수록 적어도 일부에서, 제1 부재(110)의 중심축 방향(원통 형상의 중심축)으로 유동 단면이 확장되도록 마련될 수 있다. 또한, 적어도 하나의 제1 유체통로(111, 112)는 제2 부재(120)의 바닥면(122) 측으로 갈수록 적어도 일부에서, 제1 부재(110)의 중심축을 기준으로 하여, 원주방향으로 유동 단면이 확장되도록 마련될 수 있다.
또한, 기재(150) 상에 배지 유동부재(140)가 배치되고, 배지 유동 부재(140) 상에 베이스부재(130)가 배치되며, 베이스부재(130)의 관통홀(131) 내에 제2 부재(120)가 배치되고, 제2 부재(120) 내에 제1 부재(110)가 수용된다.
이러한 구조에서, 제2 부재(120)의 바닥면(122)은 제1 부재(110)와의 사이에 제1 공간을 형성하며, 제1 공간(10)에 세포가 배치될 때, 제1 유체통로(111, 112)를 통해 공기가 제1 공간(10)으로 유동하고, 유동 채널(141)을 통해 유동하는 배지가 제2 부재(120)의 바닥면(122)을 통과하여 해 제1 공간(10)의 세포 측으로 공급된다.
도 5는 본 발명의 제2 실시예와 관련된 다층 세포 칩(200)을 나타내는 개략 사시도이고, 도 6은 도 5에 도시된 제2 부재 내에 제1 부재가 수용된 상태의 개략 측면도이다.
제2 실시예와 관련된 다층 세포 칩(200)은 제1 부재(210), 제2 부재(220), 베이스 부재(230), 제1 배지 유동부재(240), 제2 배지 유동부재(250), 소정 직경의 복수의 포어(pore)를 갖는 메쉬(mech) 부재(270) 및 기재(260)를 포함한다.
제1 부재(210) 및 제2 부재(220)는 제1 실시예에서 설명한 제1 부재(110) 및 제2 부재(120)와 동일한 구조를 갖는다. 간략히 설명하면, 제1 부재(210)는 복수 개의 제1 유체통로(210, 211)을 갖는다. 또한, 제2 부재(220)는 제1 부재(210)를 수용하기 위한 중공부(221)를 갖고, 제1 부재(210) 수용 시, 제1 부재(210)가 안착되기 위한 복수 개의 제1 스페이서(223, 224)를 포함한다. 또한, 제1 부재(210) 및 제1 스페이서(223, 224) 사이에 형성된 제1 공간(10)은 제1 유체통로(210, 211)와 연통되도록 마련된다. 상기 제1 공간(10)은 제1 부재(213)의 바닥면, 한 쌍의 제1 스페이서(223, 224) 및 제2 부재(220)의 바닥면(222) 사이에 형성된다.
다층 세포 칩(200)은 제2 부재(220)를 수용하기 위한 관통홀(231)을 갖고, 복수 개의 제2 유체 통로(232 내지 235)를 갖는 베이스부재(230)를 포함한다. 제2 실시예에서, 복수 개의 제2 유체 통로(232 내지 235)는 4개 이상 구비되는 것이 바람직하다. 이때, 적어도 2개의 제2 유체 통로(232, 233)는 제1 배지 유동부재(240)의 제1 유동채널(241)과 유체 이동 가능하게 연결되고, 적어도 2개의 제2 유체 통로(234, 235)는 제2 배지 유동부재(250)의 제2 유동채널(251)과 유체 이동 가능하게 연결된다.
한편, 제2 부재(220)의 바닥면(222)에는 제1 유동 채널(241)과 접촉하는 복수 개의 제2 스페이서(225, 226)가 마련되며, 제2 스페이서(225, 226)가 제1 유동 채널(141)의 바닥면(후술할 메쉬 부재(270))에 접촉되어, 제2 부재(220)의 바닥면(222)이 제1 유동 채널(241)의 바닥면으로부터 소정 간격 떨어져 위치할 수 있다.
또한, 다층 세포 칩(200)은 복수 개의 제2 유체 통로 중 적어도 2개 및 관통홀(231)과 각각 유체 이동 가능하게 연결되는 제1 유동 채널(241)을 갖는 제1 배지 유동부재(240)를 포함한다. 제1 유동 채널(241)은 제1 배지 유동부재(240)을 관통하도록 형성된다.
또한, 다층 세포 칩(200)은 복수 개의 제2 유체 통로 중 적어도 2개(234, 235) 및 제1 유동 채널(241)과 각각 유체 이동 가능하게 연결되는 제2 유동 채널(251)을 갖는 제2 배지 유동부재(250)를 포함한다. 제2 유동 채널(251)은 제2 배지 유동부재(250)을 관통하도록 형성된다.
제1 배지 유동부재(240)의 제1 유동채널(241)은 2개 이상의 제2 유동채널(232, 233)과 각각 유체 이동 가능하게 연결되는 2개이상의 제1 연결부(242, 243)을 갖는다.
또한, 제2 배지 유동부재(250)의 제2 유동채널(251)은 2개 이상의 제2 유동채널(234, 235)과 각각 유체 이동 가능하게 연결되기 위한 2개이상의 제2 연결부(252, 253)를 갖는다.
또한, 제1 배지 유동부재(240)는 2개 이상의 제2 유동채널(234, 235)과 제2 연결부(252, 253)를 유체 이동 가능하게 연결하기 위한 제3 연결부(244, 245)를 갖는다.
또한, 제2 배지 유동부재(250)는 제4 연결부(254, 255)를 가지며, 이러한 제4 연결부(254, 255)는 또 다른 배지 유동부재가 추가로 배치될 때, 사용될 수 있다.
또한, 다층 세포 칩(200)은 제1 유동 채널(241) 및 제2 유동 채널(251) 사이에 배치되는 메쉬 부재(270)를 포함한다. 상기 메쉬 부재(270)은 제1 유동 채널(241) 및 제2 유동 채널(251)을 유체 이동 가능하게 연결한다.
또한, 다층 세포 칩(200)은 제2 배지 유동부재(250)가 장착되는 기재(260)를 포함한다.
기재(250) 상에 제2 배지 유동부재(250)가 배치되고, 제2 배지 유동 부재(250) 상에 메쉬 부재(270)를 매개로 제1 배치 유동부재(240)가 배치되며, 제1 배지 유동부재(240) 상에 베이스부재(230)가 배치되고, 베이스부재(230)의 관통홀(231) 내에 제2 부재(220)가 배치되고, 제2 부재(220) 내에 제1 부재(210)가 수용된다.
이러한 구조에서, 제2 부재(220)의 제2 스페이서(225, 226)에 의해, 제2 부재(220)의 바닥면(222)의 하부에도 소정 크기를 갖는 제2 공간(20)이 형성될 수 있다. 제2 공간(20)은 제1 배지 유동을 위한 제1 유동채널(241)과 유체 이동 가능하게 연결된다. 또한, 메쉬 부재(270), 제2 유동 채널(251) 및 기재(260)에 의해 제3 공간(30)이 형성된다. 즉, 제3 공간(30)은 배지 유동을 위한 제2 유동채널(251)과 유체 이동 가능하게 연결된다. 또한, 제3 공간(30) 및 제2 공간(20)은 메쉬 부재(270)를 매개로 유체 이동 가능하게 연결되고, 제2 공간(20) 및 제1 공간(10)은 제2 부재(220)의 바닥면(222, 또는 '바닥부재'라고도 함)를 매개로 유체 이동 가능하게 연결된다.
이와 같이, 동일 또는 상이한 배지가 다층 구조를 형성할 수 있고, 제1 유동채널(241)의 배지 및 제2 유동채널(251)의 배지가 제1 공간(10)으로 공급될 수 있다.
위에서 설명된 본 발명의 바람직한 실시예는 예시의 목적을 위해 개시된 것이고, 본 발명에 대한 통상의 지식을 가지는 당업자라면 본 발명의 사상과 범위 안에서 다양한 수정, 변경, 부가가 가능할 것이며, 이러한 수정, 변경 및 부가는 하기의 청구범위에 속하는 것으로 보아야 할 것이다.
본 발명의 적어도 일 실시예와 관련된 공기 흐름 제어를 통한 호흡기 분화 촉진을 위한 미세 유체 칩에 따르면, 세포 배양 시, 배지 공급 및 공기 공급이 동시에 이루어질 수 있고, 다층 구조로 배양이 가능하다.

Claims (8)

  1. 복수 개의 제1 유체통로를 갖는 제1 부재;
    제1 부재를 수용하고, 수용 시, 제1 부재가 안착되기 위한 복수 개의 제1 스페이서를 포함하고, 제1 부재 및 제1 스페이서 사이에 형성된 제1 공간은 제1 유체통로와 연통되도록 마련된 제2 부재;
    제2 부재를 수용하기 위한 관통홀을 갖고, 복수 개의 제2 유체 통로를 갖는 베이스부재;
    복수 개의 제2 유체 통로 및 관통홀과 각각 연결되는 유동 채널을 갖는 배지 유동부재; 및
    배지 유동부재가 장착되는 기재를 포함하는 미세 유체 칩.
  2. 제 1 항에 있어서,
    제2 부재는 제1 스페이서가 상부에 배치된 바닥면을 갖고,
    바닥면은 유체 통과성 막으로 형성된 미세 유체 칩.
  3. 제 2 항에 있어서,
    제2 부재는 관통홀을 통해 베이스부재 내에 배치될 때, 바닥면이 배지 유동부재의 유동 채널과 유체 이동 가능하게 배치되는 미세 유체 칩.
  4. 제 3 항에 있어서,
    제2 부재의 바닥면에는 유동 채널과 접촉하는 제2 스페이서가 마련된 미세 유체 칩.
  5. 제 1 항에 있어서,
    제1 유체통로는 제2 부재의 바닥면 측으로 갈수록 적어도 일부에서 유동 단면적이 증가하도록 마련된 미세 유체 칩.
  6. 제 5 항에 있어서,
    제1 유체통로는 제2 부재의 바닥면 측으로 갈수록 적어도 일부에서, 제1 부재의 중심축을 기준으로 하여, 원주방향으로 유동 단면이 확장되도록 마련된 미세 유체 칩.
  7. 제 1 항에 있어서,
    제2 부재의 바닥면은 제1 공간을 형성하며,
    제1 공간에 세포가 배치될 때, 제1 유체통로를 통해 공기가 제1 공간으로 유동하고, 유동 채널을 통해 유동하는 배지가 바닥면을 통과하여 해 제1 공간의 세포 측으로 공급되는 미세 유체 칩.
  8. 복수 개의 제1 유체통로를 갖는 제1 부재;
    제1 부재를 수용하고, 수용 시, 제1 부재가 안착되기 위한 복수 개의 제1 스페이서를 포함하고, 제1 부재 및 제1 스페이서 사이에 형성된 제1 공간은 제1 유체통로와 연통되도록 마련된 제2 부재;
    제2 부재를 수용하기 위한 관통홀을 갖고, 복수 개의 제2 유체 통로를 갖는 베이스부재;
    복수 개의 제2 유체 통로 중 적어도 하나 및 관통홀과 각각 유체 이동 가능하게 연결되는 제1 유동 채널을 갖는 제1 배지 유동부재;
    복수 개의 제2 유체 통로 중 적어도 하나 및 제1 유동 채널과 각각 유체 이동 가능하게 연결되는 제2 유동 채널을 갖는 제2 배지 유동부재;
    제1 유동 채널 및 제2 유동 채널 사이에 배치되는 메쉬 부재; 및
    제2 배지 유동부재가 장착되는 기재를 포함하는 미세 유체 칩.
PCT/KR2019/016305 2018-12-21 2019-11-26 공기 흐름 제어를 통한 호흡기 분화 촉진을 위한 미세 유체 칩 WO2020130388A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0167112 2018-12-21
KR20180167112 2018-12-21
KR1020190063591A KR102230589B1 (ko) 2018-12-21 2019-05-30 공기 흐름 제어를 통한 호흡기 분화 촉진을 위한 미세 유체 칩
KR10-2019-0063591 2019-05-30

Publications (1)

Publication Number Publication Date
WO2020130388A1 true WO2020130388A1 (ko) 2020-06-25

Family

ID=71102847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016305 WO2020130388A1 (ko) 2018-12-21 2019-11-26 공기 흐름 제어를 통한 호흡기 분화 촉진을 위한 미세 유체 칩

Country Status (1)

Country Link
WO (1) WO2020130388A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080097883A (ko) * 2007-05-03 2008-11-06 주식회사 바이오트론 다중 생물 반응 장치
KR20140040704A (ko) * 2011-02-28 2014-04-03 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 세포 배양 시스템

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080097883A (ko) * 2007-05-03 2008-11-06 주식회사 바이오트론 다중 생물 반응 장치
KR20140040704A (ko) * 2011-02-28 2014-04-03 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 세포 배양 시스템

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BLUME, C. ET AL.: "Temporal monitoring of differentiated human airway epithelial cells using microfluidics", PLOS ONE, vol. 10, no. 10, 5 October 2015 (2015-10-05), pages 1 - 13, XP055569914 *
GEISER, M. ET AL.: "Evaluating adverse effects of inhaled nanoparticles by realistic in vitro technology", NANOMATERIALS, vol. 7, no. 49, 2017, pages 1 - 15, XP055655217 *
YU , T. ET AL.: "The use of a 0.02um paticulate matter filter decreses cytotoxicity in lung epithelal cells following air-liquid interface exposure to motor cycle exhaust", ENVIRONMENTAL POLLUTION, vol. 227, 4 May 2017 (2017-05-04), pages 287 - 295, XP085055943 *

Similar Documents

Publication Publication Date Title
US6759245B1 (en) Cell culture systems and methods for organ assist devices
JP5801311B2 (ja) 細胞培養用のマイクロスケール多流体流バイオリアクタ
CN112280678B (zh) 一种可拆卸、可重复使用的疏水或超疏水微流控器官芯片
US10982181B2 (en) Devices for cell culture and methods of making and using the same
US20120107926A1 (en) Apparatus for cell or tissue culture
SE1650371A1 (en) Microfluidic device for culturing cells
WO2020130388A1 (ko) 공기 흐름 제어를 통한 호흡기 분화 촉진을 위한 미세 유체 칩
US5583037A (en) Trans-membrane co-culture insert and method for using
WO2019107858A1 (ko) 액체 자동 배출장치
CN113174332B (zh) 仿生肾器官芯片结构和仿生肝肾芯片结构
RU191716U1 (ru) Микрофлюидный чип для культивирования и исследования клеточных моделей
KR102230589B1 (ko) 공기 흐름 제어를 통한 호흡기 분화 촉진을 위한 미세 유체 칩
JP2002153256A (ja) 細胞培養容器の培地交換用システム
WO2023063660A1 (ko) 채널 내 유체의 유동 제어가 용이한 생체 조직 모사용 마이크로유체 디바이스
JP6968381B2 (ja) 細胞培養装置
WO2024019195A1 (ko) 세포 배양 장치 및 이를 포함하는 세포 배양 시스템
WO2019017682A2 (ko) 체외 세포 배양 블록
CN114107047B (zh) 基于双光子光刻的多细胞共培养三维微支架嵌合流道
CN111566198A (zh) 平面模块化微流体系统
US11499127B2 (en) Multi-layered microfluidic systems for in vitro large-scale perfused capillary networks
CN108611273B (zh) 细胞共培养单元
CN219653038U (zh) 一种可拆卸的体外微组织动态共培养装置
CN220099063U (zh) 一种灌流式细胞培养系统
WO2019103479A1 (ko) 수처리 장치
CN114798023A (zh) 一种模块化微流控芯片平台、工作方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19900493

Country of ref document: EP

Kind code of ref document: A1