WO2020130142A1 - Electronic component connection structure and method for producing electronic component connection structure - Google Patents

Electronic component connection structure and method for producing electronic component connection structure Download PDF

Info

Publication number
WO2020130142A1
WO2020130142A1 PCT/JP2019/050175 JP2019050175W WO2020130142A1 WO 2020130142 A1 WO2020130142 A1 WO 2020130142A1 JP 2019050175 W JP2019050175 W JP 2019050175W WO 2020130142 A1 WO2020130142 A1 WO 2020130142A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
electronic component
thickness
coverlay
circuit
Prior art date
Application number
PCT/JP2019/050175
Other languages
French (fr)
Japanese (ja)
Inventor
隆司 松川
昌浩 岩村
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2020130142A1 publication Critical patent/WO2020130142A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering

Definitions

  • the present invention relates to a connection structure for electronic components and a method for manufacturing a connection structure for electronic components.
  • a plurality of electronic parts used in electronic devices such as mobile phones are connected by a flexible printed wiring board.
  • a method of connecting electronic components using a conductive member such as solder is known.
  • a technology in which solder is interposed between a flexible printed circuit and a cable conductor portion, and the cable conductor portion is heated for solder connection Patent Document 1.
  • connection part may have a step structure.
  • the terminal serving as a contact is located at a position lower than the coverlay.
  • the connection reliability may not be guaranteed in some cases.
  • the solder material is melted to fill the step structure, there is a disadvantage that the heat load on the electronic component is increased in the step of heating the solder.
  • the problem to be solved by the present invention is to improve the connection reliability even when one electronic component to be connected has a step structure in which the height of the terminal to be connected is lower than the coverlay.
  • An object of the present invention is to provide a high connection structure for electronic components and a manufacturing method thereof.
  • the present invention provides a connection structure of an electronic component for connecting a first terminal included in a first electronic component and a second terminal included in a second electronic component, wherein the first electronic component comprises a first insulation.
  • Conductive base material the first terminal connected to a first circuit formed on one main surface of the first insulating base material, and covering at least a part of the first circuit and the periphery of the first terminal.
  • a first coverlay having an opening exposing at least a part of the first terminal, and a height of a main surface of the first terminal in a stacking direction along a thickness of the first insulating base material.
  • the second electronic component has a second insulating base material and a second circuit formed on one main surface of the second insulating base material.
  • a second coverlay covering at least a part of the second circuit, and a second coverlay formed in a predetermined region other than a part of the second circuit covered with the second coverlay.
  • a second terminal having a plating layer electrically connected to the first terminal, and the connection structure includes the first terminal and the second terminal.
  • the anisotropic conductive film provided between The main surface of the first coverlay along the stacking direction from the main surface of the first circuit, wherein the total value of the thickness and the thickness of the anisotropic conductive film corresponds to the height of the inner edge surface of the opening.
  • the total value of the thickness of the plating layer and the thickness of the anisotropic conductive film corresponds to the height of the inner edge surface of the opening, and the lamination is performed from the main surface of the first circuit. Is less than the total value of the thickness of the first cover lay to the main surface of the first cover lay along the direction and the thickness of the second cover lay, and the other main surface of the second insulating base material is Regarding the height along the stacking direction, the height of the first region including the region where the second terminal is provided is equal to the height of the second region where the second coverlay covers the second circuit other than the first region. The above problem is solved by making the height lower than the height.
  • the second coverlay when the connection structure is viewed along a direction substantially perpendicular to the main surface of the second insulating base material, the second coverlay has an end portion of the second coverlay. Can be arranged at a position separated from the position of the end of the plating layer on the second coverlay side by a first predetermined distance.
  • the second coverlay is based on the second terminal.
  • the position of the end portion of the second cover lay provided only in the area opposite to the released end portion is on the second cover lay side of the opening formed in the first cover lay. It can be arranged at a position separated from the position of the end portion by a second predetermined distance.
  • the second predetermined distance may be 70% or more and 90% or less of an opening width of the opening of the first coverlay.
  • a first insulating base material is prepared, and a first circuit and a first terminal connected to the first circuit are formed on one main surface of the first insulating base material, and the first insulating base material is formed.
  • a first coverlay having an opening provided at a position corresponding to the position of the terminal and having a thickness thicker than the thickness of the first terminal is prepared, and at least a part of the first terminal is exposed from the opening.
  • a step of preparing a first electronic component in which the first coverlay is arranged on one main surface of the first insulating base material, a second insulating base material, and the second insulating property Forming a second circuit on one main surface of the base material, plating a connection portion of the second circuit, and preparing a second electronic component having a second terminal having a plating layer;
  • An anisotropic conductive film is disposed between one terminal and the second terminal, and the first electronic component and the second electronic component are pressed against each other while being heated, the second insulating base material and the second circuit.
  • connection reliability is improved without a soldering step.
  • FIG. 1A is a diagram showing a first electronic component that constitutes the electronic component of the present invention.
  • FIG. 1B is a diagram showing a second electronic component that constitutes the electronic component of the present invention.
  • FIG. 1C is a first assembly diagram of the electronic component of the present invention.
  • FIG. 1D is a second assembly diagram of the electronic component of the present invention.
  • FIG. 2A is a schematic sectional view taken along line IIA-IIA shown in FIG. 1C.
  • FIG. 2B is a schematic sectional view taken along line IIB-IIB shown in FIG. 1D.
  • the electronic component 1 of this embodiment includes a first electronic component 10 and a second electronic component 20 that are connected to each other.
  • the first electronic component 10 and the second electronic component 20 are flexible printed circuits.
  • the electronic component 1 of this embodiment is used for electronic devices such as mobile phones and PDAs (Personal Digital Assistants).
  • the electronic component 1 has flexibility and is housed in the housing of the electronic device when completed.
  • the electronic component 1 of the present embodiment may be a strain sensor.
  • the electronic component 1 of the present embodiment is a sensor that detects a signal based on resistance value fluctuations.
  • the electronic component 1 includes a connection structure 100 for connecting the first electronic component 10 and the second electronic component 20.
  • the connection structure 100 includes a structure that connects the first terminal 13 included in the first electronic component 10 and the second terminal 23 included in the second electronic component 20.
  • the first terminal 13 and the second terminal 23 function as electrical contacts.
  • a part of the first terminal 13 and/or at least a part of the second terminal 23 can function as an electrical contact.
  • the 1st terminal 13 and the 2nd terminal 23 of this embodiment are electrically connected through an anisotropic conductive film (ACF:Anisotropic conductive adhesive film).
  • ACF anisotropic conductive film
  • FIG. 1A is a diagram showing an example of a mode of the first electronic component 10 according to the present embodiment.
  • the first electronic component 10 includes a first insulating base material 11 and first circuits 12a, 12b, 12c, 12d formed on one main surface (the surface on the Z direction side in the drawing) of the first insulating base material 11. (Hereinafter, sometimes collectively referred to as the first circuit 12) and first terminals 13a, 13b, 13c, 13d (hereinafter collectively referred to as the first terminal 13) connected to the first circuits 12a, 12b, 12c, 12d. Sometimes).
  • the first terminals 13a, 13b, 13c, 13d are a part of the first circuits 12a, 12b, 12c, 12d.
  • the first circuits 12a, 12b, 12c, 12d are signal lines that acquire signals based on resistance value fluctuations.
  • the first electronic component 10 has a first coverlay 14 formed on one main surface of the first insulating base material 11.
  • the first coverlay 14 can cover the first circuits 12a, 12b, 12c, 12d and at least a portion of the first terminal 13 (a portion that does not contact the second terminal 23).
  • the first coverlay 14 includes an opening 15 that exposes at least a portion of the first terminal 13 (a portion that contacts the second terminal 23).
  • the first terminals 13a, 13b, 13c, 13d are arranged such that at least a part thereof (a portion in contact with the second terminal 23) is located in a region inside the inner edge surface 15E of the opening 15, and the opening 15 Exposed at.
  • the inner edge surface 15E defines the inner extension of the opening 15.
  • the first coverlay 14 covers at least the periphery of the exposed first terminal 13.
  • the first coverlay 14 and the first terminals 13a, 13b, 13c, 13d are formed on the same one main surface of the same first insulating base material 11.
  • the thickness (height in the Z direction in the figure) of the first coverlay 14 is thicker than the thickness (height in the Z direction in the figure) of the first terminals 13a, 13b, 13c, 13d.
  • the thickness of the first terminals 13a, 13b, 13c, 13d is substantially uniform.
  • the height position of the main surface of 13d (the surface including the electrical contact with the plating layer 23M of the second terminal 23) is located in the first cover lay 14 along the Z direction (Z direction shown in the drawing, the same applies below). On the other hand, it is lower than the height position of the main surface (the main surface facing the second electronic component 20 side).
  • the exposed portions (contact points with the second terminals 23) of the first terminals 13a, 13b, 13c, 13d are formed in the relatively recessed portions or recessed portions of the opening 15 formed by the first coverlay 14.
  • the area where the exposed portions of the first terminals 13a, 13b, 13c, 13d are formed is surrounded by the inner edge surface 15E of the opening 15 of the first coverlay 14.
  • the predetermined area of the first circuit 12 is widened to form the first terminal 13.
  • the thickness of the first terminal 13 corresponds to the thickness of the first circuit 12.
  • the depth or height T15 of the relatively recessed portion or the recessed portion of the opening 15 corresponds to the thickness T14 of the first coverlay 14 forming the inner edge surface 15E of the opening 15.
  • the thickness T14 of the first coverlay 14 is based on the height (position in the Z-axis direction in the drawing) of the first circuit 12 or the first terminals 13a, 13b, 13c, 13d, and the first circuit. The distance from the principal surface (front surface) of 12 to the principal surface of the first coverlay 14 closest to the second electronic component 20 along the stacking direction (Z-axis direction in the drawing).
  • the thickness T14 of the first coverlay 14 is based on the height of the first circuit 12 or the first terminals 13a, 13b, 13c, 13d (the position in the Z-axis direction in the figure) as a thickness reference (of the height coordinates).
  • the first insulating substrate 11 can be made of polyimide (PI), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyester (PE) or liquid crystal polymer (LCP).
  • the thickness of the first insulating base material 11 can be set to 15 [ ⁇ m] to 75 [ ⁇ m]. In this example, the first insulating base material 11 having a thickness of 50 [ ⁇ m] is used.
  • the first circuits 12a, 12b, 12c, 12d are made of copper.
  • the first circuits 12a, 12b, 12c, 12d may be formed on one main surface of the first insulating base material 11, and the circuit 120 (see FIG. 2A) may be formed on the other main surface.
  • the method for producing the first electronic component 10 is not particularly limited, but a copper clad laminate in which a metal foil such as copper is attached to one main surface or both main surfaces of the first insulating substrate 11 via an adhesive layer ( CCL) and other members are used to remove a predetermined area by using a general photolithography method, and the first circuits 12a, 12b, 12c, 12d having a desired pattern are formed on one main surface, and the other is formed by the same method.
  • a wiring board 110 having a circuit 120 (see FIG. 2A) formed on the main surface is obtained.
  • a first coverlay 14 covering at least a part of the first circuit 12 is laminated on the wiring board 110.
  • the coverlay 16 covering at least a part of the circuit 120 is laminated on the wiring board 110 to obtain the first electronic component 10 shown in FIG. 1A.
  • FIG. 1B is a diagram showing an example of a mode of the second electronic component 20 according to the present embodiment.
  • the second electronic component 20 includes a second insulating base material 21 and second circuits 22a, 22b, 22c, 22d (hereinafter, referred to as “second circuits”) formed on one main surface (Z direction in the drawing) of the second insulating base material 21. 2nd circuit 22), and 2nd terminal 23A, 23B, 23C, 23D connected to this 2nd circuit 22a, 22b, 22c, 22d (it may be generically called the 2nd terminal 23 hereafter).
  • second circuits second circuits 22a, 22b, 22c, 22d
  • the second terminals 23A, 23B, 23C, 23D of the present embodiment are the connection portions 23a, 23b, 23c, 23d (hereinafter also referred to as the connection portion 23x) of the second circuits 22a, 22b, 22c, 22d, and are connected. It has plating layers 23aM, 23bM, 23cM and 23dM (hereinafter also referred to as plating layer 23M) formed on the surfaces of the portions 23a, 23b, 23c and 23d. The plating layers 23aM, 23bM, 23cM, 23dM are formed only in the regions where the second terminals 23A, 23B, 23C, 23D are provided.
  • the plating layer 23M is formed on the main surface of the second terminal 23 (a main surface facing the first terminal 13) formed in a predetermined region of the second circuit 22.
  • the plating layer 23M may be formed only on the main surface of the second terminal 23.
  • the second insulating base material 21 of the present embodiment has a second coverlay 24.
  • the second coverlay 24 covers a part of the second circuits 22a, 22b, 22c, 22d except at least a part where the second terminals 23A, 23B, 23C, 23D functioning as contacts are formed.
  • the portions where the plated layers 23aM, 23bM, 23cM and 23dM are formed are thicker than the second circuits 22a, 22b, 22c and 22d.
  • the second insulating base material 21 can be made of polyimide (PI), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyester (PE) or liquid crystal polymer (LCP).
  • the thickness of the second insulating base material 21 is about 10 [ ⁇ m] to 50 [ ⁇ m]. In this example, the second insulating base material 21 having a thickness of 12 [ ⁇ m] is used.
  • the second circuits 22a, 22b, 22c, 22d are made of copper. In the present embodiment, an example is shown in which the second circuits 22a, 22b, 22c, 22d are formed on one main surface of the second insulating base material 21, but circuits may be formed on the other main surface.
  • the method for producing the second electronic component 20 is not particularly limited, but a base in which a metal foil (copper foil) such as copper is attached to one main surface or both main surfaces of the second insulating base material 21 via an adhesive layer.
  • a material is used to remove a predetermined area by using a general photolithography method, and second circuits 22a, 22b, 22c, 22d having a desired pattern are formed.
  • the second circuits 22a, 22b, 22c, 22d are signal lines for acquiring signals based on resistance value fluctuations.
  • Plating layers 23aM, 23bM, 23cM, and 23dM are formed in regions of the second circuits 22a, 22b, 22c, and 22d that will be contacts with the first terminal 13.
  • the areas other than the contact areas are masked and subjected to button plating to form the plating layers 23aM, 23bM, 23cM, 23dM.
  • the plating conditions such as the plating time are set so that the plating layers 23aM, 23bM, 23cM and 23dM have desired thicknesses.
  • a method known at the time of filing is used as a method for controlling the thickness of plating including setting of plating conditions. As a result, the second electronic component 20 shown in FIG. 1B is obtained.
  • FIG. 1C there is a difference between the obtained first terminals 13a, 13b, 13c, 13d of the first electronic component 10 and the second terminals 23A, 23B, 23C, 23D of the second electronic component 20.
  • An anisotropic conductive film 30 (ACF: Anisotropic conductive adhesive film) is arranged. After that, the first electronic component 10 and the second electronic component 20 are moved so as to approach each other (approach along the Z direction in the drawing) and pressed while being heated. The second terminal 23 and the first terminal 13 are brought into contact with each other while the second insulating base material 21 and the second circuit 22 of the second electronic component 20 are bent. By this pressing process, the connection structure 100 that electrically connects the first electronic component 10 and the second electronic component is formed.
  • ACF Anisotropic conductive adhesive film
  • the anisotropic conductive film 30 is a conductive film formed into a sheet by mixing a thermosetting resin with conductive particles having a particle diameter of 10 [ ⁇ m] to 30 [ ⁇ m].
  • the anisotropic conductive film 30 containing conductive particles having a particle diameter of 20 [ ⁇ m] is used.
  • the thermosetting resin acrylic resin, epoxy resin, modified polyphenylene ether resin or the like can be used.
  • An anisotropic conductive film may be used in which a support film such as PET is coated with an adhesive having a thickness of 10 [ ⁇ m] to 50 [ ⁇ m] in which conductive particles 31 are dispersed.
  • plastic particles plated with metal or metal particles such as nickel are used.
  • the anisotropic conductive film realizes electrical connection and mechanical adhesion between electrodes by a process of heat treatment or thermocompression bonding treatment.
  • thermocompression bonding using the anisotropic conductive film 30 is performed by heating at 100° C. to 180° C. and pressurizing at 0.3 [MPa] to 1.0 [MPa].
  • an anisotropic conductive film of model number CP923CM-25AC manufactured by Dexerials Co., Ltd. can be used.
  • the anisotropic conductive film of the present embodiment has a thickness of 25 [ ⁇ m] and a conductive particle diameter of 20 [ ⁇ m], and the conductive particles are gold/nickel plated resin particles.
  • the pressure bonding conditions of this product are a temperature of 130 to 160 [° C.], a time of 5 to 10 [sec], and a pressure of 0.5 to 4.0 [MPa].
  • FIG. 1D shows a state where the first terminals 13a, 13b, 13c, 13d of the first electronic component 10 and the second terminals 23A, 23B, 23C, 23D of the second electronic component 20 are in contact with each other.
  • the first terminals 13a, 13b, 13c, 13d and the second terminals 23A, 23B, 23C, 23D are electrically connected via the conductive particles 31 of the anisotropic conductive film 30.
  • the first terminal 13a is connected to the second terminal 23A
  • the first terminal 13b is connected to the second terminal 23B
  • the first terminal 13c is connected to the second terminal 23C
  • the first terminal 13d is connected to the second terminal 23D.
  • the connection structure 100 is formed by the pressing process.
  • FIG. 2A is a diagram schematically showing a cross section taken along the line IIA-IIA shown in FIG. 1C and shows a state before the connection between the first electronic component 10 and the second electronic component 20 (before the pressing process).
  • the second electronic component 20 is moved along the direction of the arrow P shown in the figure and pressed against the first electronic component 10.
  • the contact portion 14a of the first cover lay 14 and the contact portion 24a of the second cover lay 24, which are arranged to face each other come into contact with each other.
  • the contact portion 24a of the second coverlay 24 is a portion continuous with the end portion 24T.
  • FIG. 2B is a diagram schematically showing a cross section taken along the line IIB-IIB shown in FIG. 1D, showing a state in which the first electronic component 10 and the second electronic component 20 are connected.
  • the conductive particles 31 of the anisotropic conductive film 30 are crushed.
  • the thickness T30A (After) of the anisotropic conductive film 30 after the pressing process shown in FIG. 2B is thinner than the thickness T30B (Before) of the anisotropic conductive film 30 before the pressing process shown in FIG. 2A.
  • a resin material having fluidity during heating such as an adhesive forming the anisotropic conductive film 30, is extruded in the pressing process and wraps around the plating layer 23aM.
  • the resin material wrapping around the plating layer 23aM may overflow or run off from the opening 15 of the first coverlay 14.
  • the anisotropic conductive film 30 after the pressing process may include a portion that is raised toward the second electronic component 20 side than a portion that is in contact with the plating layer 23aM. Further, the anisotropic conductive film 30 deformed by the pressing process may come into contact with the second circuit 22 and the second insulating base material 21.
  • the “thickness T30A of the anisotropic conductive film 30” in the present embodiment is the thickness of the anisotropic conductive film 30 in the portion in contact with the second terminal 23 after the pressing process.
  • the “thickness T30A of the anisotropic conductive film 30” is the anisotropic conductive film of the portion including the deformed conductive particles 31 when the conductive particles 31 included in the anisotropic conductive film 30 are deformed by the pressing process. 30 thickness. That is, the thickness T30A is the thickness of the anisotropic conductive film 30 interposed between the main surface of the first terminal 13 facing each other and the plating layer 23M in the completed electronic component 1.
  • the end portion 10E of the first electronic component 10 is an open end opposite to the base end portion 10B and is relatively located on the ⁇ X side (left side) in the drawing.
  • the end portion 20E of the second electronic component 20 is an open end opposite to the base end portion 20B and is an end portion relatively located on the +X side (right side) in the figure.
  • the first terminal 13 of the first electronic component 10 and the second electron are formed in the connection region 100′ in which the connection structure 100 is formed.
  • the component 20 is arranged so as to face the second terminal 23.
  • the width W along the X direction (the X direction shown in the drawing, the same applies hereinafter) of the region in which the second terminal 23 of the present embodiment is provided is the width L(the width L of the opening 15 of the first coverlay 14 along the X direction. Opening width).
  • the width of the second terminal 23 of the present embodiment along the Y direction (Y direction shown in the drawing, the same applies hereinafter) (width from the second terminals 23A to 23D: see FIGS.
  • the first coverlay 14 includes a sheet 14A and an adhesive layer 14B.
  • the thickness T14 of the first coverlay 14 corresponds to the total of the thickness T14A of the sheet 14A and the thickness T14B of the adhesive layer 14B.
  • the thickness T14 of the first cover lay 14 is the main surface of the upper sheet 14A of the first cover lay (the second electronic component 20) along the stacking direction (Z in the drawing) from the main surface of the first circuit 12.
  • the thickness T14 of the first coverlay 14 corresponds to the height T15 of the opening 15.
  • the material of the sheet 14A it is preferable to use the same kind of material as the first insulating base material 11.
  • the material of the adhesive layer 14B can be appropriately selected according to the sheet 14A.
  • the width W of the second terminal 23 along the X direction in the figure is a figure of the opening 15 of the first coverlay 14 from the viewpoint that the second electronic component 20 bends and the alignment accuracy is ensured.
  • the width L (opening width L(X)) along the middle X direction can be 30% or more and 80% or less, preferably 40% or more and 70% or less. The same applies to the width W(Y) of the second terminal 23 along the Y direction.
  • the width W of the second terminal 23 along the X direction is along the X direction of the opening 15 of the first coverlay 14.
  • the width L is set to 20% or more and 80% or less. It is preferably 50%.
  • the width of the second terminal 23 along the Y direction is set to the Y direction of the opening 15 of the first coverlay 14. The width is 20% or more and 80% or less.
  • the contact area of the second terminal 23 is smaller than the opening area of the opening 15 on the XY plane in the drawing, a gap is formed between the second terminal 23 and the wall of the opening 15.
  • the gap receives the resin material of the anisotropic conductive film 30 melted in the heating and pressing process.
  • a flowable resin material such as an adhesive forming the anisotropic conductive film 30 flows into the gap formed around the plating layer 23aM of the second terminal 23.
  • the molten resin material may overflow or run off from the gap.
  • the anisotropic conductive film 30 is provided with a portion that is raised toward the second electronic component 20 side from the portion that is in contact with the plating layer 23aM due to the resin material overflowing or protruding from the opening 15 of the first coverlay 14 that forms the gap. Sometimes.
  • the plating layer 23M (23aM, 23bM, 23cM, 23dM) is formed on the second terminal 23 (23A, 23B, 23C, 23D) of the connection portion 23x (23a, 23b, 23c, 23d) of the second circuit 22.
  • the thickness of the plating layer 23M can be controlled by the plating conditions such as plating time, plating solution, and current amount. For example, the longer the plating time is, the thicker the plating layer 23M can be.
  • the plating layer 23M can be made thicker as the amount of current is increased within a range where a plating layer having an appropriate density is formed.
  • the plating layer 23M is formed to a target thickness by referring to the method and the experiment result known at the time of filing this application.
  • the plated layer 23M is preferably formed of copper.
  • the contact surface of the terminal is preferably flat. By making the surface of the plating layer 23M flat, the conductive particles 31 can be reliably sandwiched and deformed in the pressing process.
  • the total value of the thickness T23M of the plating layer 23M of the second terminal 23 and the thickness T30A of the anisotropic conductive film 30 is equal to that of the first coverlay 14 forming the inner edge surface 15E of the opening 15.
  • the thickness T14 of the first coverlay 14 in the present embodiment is the opening of the electronic component 1. It corresponds to the height T15 of the portion 15.
  • the thickness T14 of the first coverlay 14 in this embodiment is from the main surface of the first circuit 12 (the main surface in contact with the anisotropic conductive film 30) in the stacking direction (in the figure).
  • the thickness T30A of the anisotropic conductive film 30 corresponds to that of the first terminal 13. It is the thickness of the anisotropic conductive film 30 in a state where the conductive particles 31 are crushed after the pressing process for connecting the second terminal 23.
  • the plating layer 23M having a thickness satisfying the above conditions is formed. Thereby, the main surface of the second electronic component 20 can be maintained in a flat state, and the second terminal 23 can be brought into contact with the first terminal 13 surrounded by the opening 15.
  • the total value of the thickness T23M of the plating layer 23M of the second terminal 23 and the thickness T30A of the anisotropic conductive film 30 is the first coverlay forming the inner edge surface 15E of the opening 15.
  • the thickness T14 of the first coverlay 14 can be the height T15 of the opening 15.
  • the thickness T30A of the anisotropic conductive film 30 is the thickness of the anisotropic conductive film 30 after the pressing process for connecting the first terminal 13 and the second terminal 23 and the conductive particles 31 are crushed. That's it.
  • the conductive particles 31 of the anisotropic conductive film 30 whose thickness T30A is measured are deformed by the pressing process.
  • the second cover lay 24 includes a sheet 24A and an adhesive layer 24B.
  • the thickness T24 of the second coverlay 24 corresponds to the total of the thickness T24A of the sheet 24A and the thickness T24B of the adhesive layer 24B.
  • As the material of the sheet 24A it is preferable to use the same kind of material as the second insulating base material 21.
  • the material of the adhesive layer 24B can be appropriately selected according to the sheet 24A.
  • one main surface of the second insulating base material 21 of the second electronic component 20 a surface opposite to the other main surface on which the second circuit 22 is formed
  • the height 21EZ position along the Z direction in the figure
  • the first region 20R1 of the outer principal surface 21Ba of the second insulating base material 21 is other than the first region 20R1. It is a region and is lower than the height 21BZ (position along the Z direction in the figure) of the second region 20R2 of the second insulating base material 21 where the second circuit is covered with the second coverlay 24 by DZ. (It is located in the minus direction of Z in the figure).
  • the first region 20R1 is a region that includes a region where the second terminal 23 is provided and can be defined by XY coordinates in the drawing.
  • the second cover lay 24 is provided in the second region 20R2, and the outer main part of the second insulating base material 21 in the second region 20R2 and the first region 20R1 is provided depending on the thickness T24 of the second cover lay 24.
  • a difference (inclination) occurs in the height of the surface 21Ba. Therefore, the second electronic component 20 bends in the portion extending from the second region 20R2 to the first region 20R1.
  • the second terminal 23 can be connected (contacted) with the first terminal 13 surrounded by the opening 15.
  • the thickness T14 of the first coverlay 14 may be the height T15 of the opening 15.
  • the thickness T30A of the anisotropic conductive film 30 is the thickness after the pressing process for connecting the first terminal 13 and the second terminal 23, and is the thickness when the conductive particles 31 are crushed. That's it.
  • the “thickness T30A of the anisotropic conductive film 30” of the present embodiment is the thickness of the portion where the conductive particles 31 included in the anisotropic conductive film 30 are deformed by the pressing process.
  • the thickness of the anisotropic conductive film 30 that exists between the later first terminal 13 and the second terminal 23 can also be defined as the “thickness T30A of the anisotropic conductive film 30” of the present embodiment. ..
  • the conductive particles 31 before pressing are substantially spherical as shown in FIG. 2A and are not crushed, but the conductive particles 31 after pressing are crushed to have a flat shape as shown in FIG. 2B.
  • the thickness T30A of the anisotropic conductive film 30 used when setting the thickness of the plating layer 23M is the thickness after the pressing process (the thickness after the conductive particles 31 are crushed).
  • the thickness T30A of the anisotropic conductive film 30 after the pressing treatment is 50% or more and 80% or less of the thickness T30B of the anisotropic conductive film 30 before the pressing treatment.
  • the pressing processing conditions are set so that the thickness T30A of the anisotropic conductive film 30 after the pressing processing is 50% or more and 80% or less of the thickness T30B of the anisotropic conductive film 30 before the pressing processing.
  • the thickness T30A of the anisotropic conductive film 30 after the pressure treatment is 50% or more and 80% or less of the thickness T30B of the anisotropic conductive film 30 before the pressure treatment. If not, the pressure processing condition is adjusted by increasing the pressure applied in the pressure processing.
  • the ratio of the thickness T30A of the anisotropic conductive film 30 after the pressing process to the thickness T30B of the anisotropic conductive film 30 before the pressing process is anisotropy to be used.
  • the type and thickness of the electrically conductive film 30 can be specified for each standard. Based on the specified ratio (T30A/T30B), the thickness T30A of the anisotropic conductive film 30 (before the pressing treatment) to be used is calculated in advance from the thickness T30A of the anisotropic conductive film 30 after the pressing treatment. Can be calculated.
  • the position where the second cover lay 24 is provided is controlled.
  • the position of the second coverlay 24 on the XY plane in the figure is controlled.
  • the second terminals 23A, 23B, 23C, 23D are provided in a partial area of the second circuits 22a, 22b, 22c, 22d.
  • the second terminals 23A, 23B, 23C, and 23D are formed in a predetermined region other than the region covered by the second coverlay 24. That is, the second coverlay 24 and the second terminal 23 are provided at different locations (different areas) on the main surface of the second circuit 22.
  • the second terminal 23 is not formed in the portion of the second circuit 22 (22a, 22b, 22c, 22d) where the second coverlay 24 is provided.
  • the main surface of the second coverlay 24 is in contact with the second circuit 22 (22a, 22b, 22c, 22d).
  • the second terminal 23 is arranged at a position corresponding to a position facing the arrangement position of the first terminal 13 and the opening 15 in the connection structure 100 of the electronic component 1. That is, in the connection structure 100 of the electronic component 1, the position of the second terminal 23 along the main surface of the second insulating base material 21 (the position on the XY coordinates in the drawing) is the first insulating group of the first terminal 13.
  • the position of the second terminal 23 along the main surface of the second insulating base material 21 is the position of the first insulating base material 11 of the opening 15. It is included in the position of the area along the main surface (the position on the XY coordinates in the figure).
  • the plating layer 23aM of the present embodiment is provided in a region where the second coverlay 24 is not provided.
  • the region where the plating layer 23aM is provided and the region where the second coverlay 24 is provided are different regions.
  • the region in which the plating layer 23aM of the present embodiment is provided and the region in which the second cover lay 24 is provided do not overlap at a position (XY coordinates in the drawing) along the main surface of the electronic component 1, and the region where the plating layer 23aM and the second layer are provided. It does not overlap the coverlay 24. That is, the plating layer 23aM is not formed under the second cover lay 24 (between the cover lay 24 and the second circuit 22).
  • the plating layer 23aM is formed under the second cover lay 24 as much as the sheet 24A.
  • a step difference between the upper surface (contact surface with the adhesive layer 24B) and the upper surface of the plating layer 23aM (contact surface with the second terminal 23/second circuit 22) becomes large. Therefore, there is a possibility that there is a high possibility that a connection failure with the first terminal 13 will occur.
  • the plating layer 23aM and the second cover lay 24 may be provided in different regions and may be regions that are not continuous.
  • the plating layer 23aM is formed up to the point where it comes into contact with the end portion 24T of the second cover lay 24, and the plating layer 23aM and the second cover lay 24 are continuous (there is no gap/separation). No.), and in the exposed portion including the first terminal 13 (13a, 13b, 13c, 13d), the bending portion of the second electronic component 20 is hard to bend. Therefore, the contact state between the first terminal 13 (13a, 13b, 13c, 13d) and the second terminal 23 cannot be maintained, and the possibility of connection failure increases. In addition, if the plating layer 23aM is formed even in a portion where the second electronic component 20 bends, there is an inconvenience that the step becomes large and the possibility of connection failure increases.
  • the plating layer 23aM and the second coverlay 24 are formed in different regions, it is possible to prevent the above inconvenience from occurring and to form the first terminal 13 despite the step structure being formed. It is possible to provide the electronic component 1 in which the connection state between the second terminal 23 and the second terminal 23 is favorably maintained.
  • the second terminal 23 is located closer to the released end 20E of the second electronic component 20 than the second coverlay 24 that covers a part of the second circuit 22 (22a, 22b, 22c, 22d). It is provided.
  • the plating layer 23M provided on the main surface of the second terminal 23 is also provided closer to the released end 20E of the second electronic component 20 than the second coverlay 24 is.
  • the second coverlay 24 is closer to the base end portion 20B side (opposite to the released end portion 20E side) than the second terminal 23 provided in another part of the second circuit 22 (22a, 22b, 22c, 22d). Side) area.
  • the second cover lay 24 is not provided in a region closer to the end 20E than the second terminal 23.
  • the plating layer 23aM is provided on the released end 20E side of the second electronic component 20 with respect to the second coverlay 24, and these are provided in mutually independent (non-continuous) regions. .. Since the region where the plating layer 23aM is provided and the position where the second cover lay 24 is provided are separated, the above-described effects can be obtained.
  • the plating layer 23aM since the plating layer 23aM is not formed up to the point where it comes into contact with the end portion 24T of the second coverlay 24, the exposed portion including the first terminal 13 (13a, 13b, 13c, 13d) is It is possible to prevent the bending portion of the second electronic component 20 from being difficult to bend, and to maintain the contact state between the first terminal 13 (13a, 13b, 13c, 13d) and the second terminal 23. For this reason, it is possible to reduce the possibility of connection failure even though the electronic component 1 has a step structure. In addition, since the plating layer 23aM is not formed in the portion where the second electronic component 20 bends, it is possible to suppress the possibility of poor connection due to the large step.
  • the plating layer 23aM is not formed below the second cover lay 24 (between the cover lay 24 and the second circuit 22), the plating layer 23aM is not formed on the upper surface of the sheet 24A of the second cover lay 24. It is possible to avoid an increase in the level difference on the upper surface of the plating layer 23aM. Therefore, it is possible to suppress the possibility of poor connection with the first terminal 13. It is possible to provide the electronic component 1 having a good connection state while having a step structure.
  • the second cover lay 24 is arranged such that the position of the end portion 24T of the second cover lay 24 is set at a position separated from the plating layer 23M by a predetermined first predetermined distance.
  • the second cover lay 24 is arranged such that the position of the end of the second cover lay 24 is separated from the position of the end 23MT of the plating layer 23M by a first predetermined distance P.
  • the end 24T of the second coverlay 24 is an end located on the side of the end 20E of the second electronic component 20, and the end 23MT of the plating layer 23M is on the side of the base end 20B of the second electronic component 20 ( It is an end portion located on the second coverlay 24 side). That is, the positions of the second cover lay 24 and/or the plating layer 23M are set such that the distance (shortest distance) between the plating layer 23M and the second cover lay 24 is separated by the first predetermined distance P.
  • the plating layer 23aM of the present embodiment is provided in another region of the region on the side of the end 20E of the second electronic component 20 (region on the +X side in the drawing) with the end 24T of the second coverlay 24 as a reference.
  • the end portion 23MT of the plating layer 23aM on the base end portion 20B side and the end portion 24T on the released end portion 20E side of the second coverlay 24 are separated by a first predetermined distance, The positions of the second coverlay 24 and the plating layer 23aM are set.
  • the exposure including the first terminal 13 (13a, 13b, 13c, 13d).
  • the bending portion of the second electronic component 20 becomes difficult to bend. Therefore, the contact state between the first terminal 13 (13a, 13b, 13c, 13d) and the second terminal 23 cannot be maintained, and the possibility of connection failure increases.
  • the plating layer 23aM is formed even in a portion where the second electronic component 20 bends, there is a possibility that the step becomes large and the possibility of connection failure increases.
  • the plating layer 23aM and the second cover lay 24 do not overlap each other, and the plating layer 23aM is formed under the second cover lay 24 (between the cover lay 24 and the second circuit 22). Not not.
  • the plating layer 23aM when the plating layer 23aM is also formed under the second cover lay 24, the plating layer 23aM is also formed under the second cover lay 24, and thus the upper surface of the sheet 24A is reduced.
  • the step of the upper surface of the plating layer 23aM becomes large, and there is a possibility that the possibility of connection failure with the first terminal 13 becomes high.
  • the electronic component 1 having the connection structure 100 of the present embodiment suppresses the occurrence of such inconvenience, and despite the step structure being formed, the first terminal 13 and the second terminal 23 are formed. It is possible to provide the electronic component 1 in which the connection state with is kept good.
  • the distance between the second terminal 23 and the plating layer 23M By controlling the distance between the second terminal 23 and the plating layer 23M, the connection between the first terminal 13 and the second terminal 23 that bends and contacts the second insulating base material 21 and the second circuit 22 is stable. Can be made.
  • the thickness T24 of the second cover lay 24 becomes the second. It is possible to reduce the influence on the bending amount of the electronic component 20.
  • the inclination of the second electronic component 20 from the second region 20R2 to the first region 20R1 can be reduced.
  • the amount of bending of the second electronic component 20 can be reduced.
  • the position of the end portion 24T of the second cover lay 24 of the second electronic component 20 is located at a second predetermined distance from the inner edge portion of the inner edge surface 15E of the opening 15 of the first cover lay 14 that is closest to the second cover lay 24.
  • the second cover lay 24 is arranged such that the second cover lay 24 is located at a position separated by M. In the example shown in FIG.
  • the position of the end portion 24T of the second cover lay 24 is arranged at a position separated from the end portion 23MT of the plating layer 23M by a predetermined distance [((LW)/2)+M].
  • the position of the end portion 24T of the second cover lay 24 along the X direction in the figure is a second predetermined distance M from the inner edge surface 15E of the opening 15 on the second cover lay 24 side- It is arranged at a position separated in the X direction.
  • the position of the end portion 24T of the second coverlay 24 is located along the direction in which the height of the outer main surface 21Ba (see FIG. 2B) of the second insulating base material 21 changes.
  • the thickness T24 of the second cover lay 24 causes the bending of the second electronic component 20.
  • the influence on the quantity can be reduced.
  • the first cover lay 14 and the second cover lay 24 are present between the first insulating base material 11 and the second insulating base material 21, the first terminal 13 of the first electronic component 10 and the second electronic component When the second terminal 23 of the second electronic component 20 is connected, the second insulating base material 21 and the second circuit 22 of the second electronic component 20 bend. That is, as shown in FIG.
  • the second terminal A height 21EZ of the first region 20R1 including 23 along the Z direction in the drawing is a region other than the first region 20R1 in the Z direction of the second region 20R2 where the second coverlay 24 is provided. It becomes DZ lower than the following height 21BZ (positioned in the minus direction of Z in the figure).
  • the plating layer 23M is formed on the second terminal 23. In the case where the plating layer 23M is formed, the DZ distance can be reduced and the amount of bending of the second electronic component 20 can be reduced as compared with the case where the plating layer 23M is not formed.
  • the second predetermined distance M between the inner edge surface 15E of the opening 15 of the first cover lay 14 on the second cover lay 24 side and the end 24T of the second cover lay 24 is not particularly limited.
  • the opening width L of the opening 15 of the first coverlay 14 can be 70% or more and 90% or less.
  • the second predetermined distance M can be 80% of the opening width L of the first coverlay 14. Thereby, the amount of bending of the second electronic component 20 can be reduced.
  • the second predetermined distance M is a distance along the X direction in the drawing, and the opening width L is also a distance of the opening 15 along the X direction in the drawing.
  • the longitudinal direction of the second cover lay 24 is along the X direction in the figure.
  • the second predetermined distance M between the ends 24T of the ray 24 is set to be large. If the opening 15 is small, the contact area between the first terminal 13 and the second terminal 23 is also small, and thus the adhesive force of the anisotropic conductive film 30 is small. In this embodiment, as the area of the opening 15 is smaller, the position of the end 24T of the second cover lay 24 is separated from the second terminal 23. Thereby, the inclination of the portion of the second electronic component 20 from the second region 20R2 to the first region 20R1 can be reduced.
  • connection state of the connection portion 23x can be stabilized.
  • the end 23MT of the plating layer 23M on the second cover lay 24 side (the side of the base end 20B) and the end of the second cover lay 24 are smaller.
  • the first predetermined distance P between the portions 24T is set to be large. If the opening 15 is small, the contact area between the first terminal 13 and the second terminal 23 is also small, and thus the adhesive force of the anisotropic conductive film 30 is small.
  • the position of the end 24T of the second cover lay 24 is separated from the second terminal 23. Thereby, the inclination of the portion of the second electronic component 20 from the second region 20R2 to the first region 20R1 can be reduced.
  • connection state of the connection portion 23x can be stabilized.
  • the second predetermined distance M between the surface 15E and the end portion 24T of the second coverlay 24 is set to be large.
  • the second predetermined distance M between the ends 24T of the two coverlays 24 may be set to be large.
  • the second predetermined distance M is 3 [mm]. It is possible to be 5 mm or less.
  • the second predetermined distance M is 6 [mm] or more and 8 [mm]. ] Can be: According to this embodiment, the inclination of the second electronic component 20 from the second region 20R2 to the first region 20R1 can be reduced, and the amount of bending can be reduced.
  • the thickness T22a of the second circuit 22 in this example is the same as the thickness T23a of the second terminal 23A.
  • the first predetermined distance P between the end portions 24T of the second coverlay 24 is set to be large.
  • the distance P may be set large.
  • the second predetermined distance M between the ends 24T is set to be large.
  • the second predetermined distance M is set to 3 [mm] or more and 6 [mm] or less, and the total thickness is 30 [ ⁇ m].
  • the 2nd predetermined distance M can be 4 [mm] or more and 8 [mm] or less.
  • the thicker the first cover lay 14 is, the greater the distance between the end 23MT of the plating layer 23M on the second cover lay 24 side (base end 20B side) and the end 24T of the second cover lay 24 is.
  • the first predetermined distance P is set to be large. In this way, by increasing the first predetermined distance P as the thickness of the first cover lay 14 increases, the inclination of the outer main surface 21Ba of the second electronic component 20 from the second region 20R2 to the first region 20R1 can be reduced. Can be made smaller. As a result, the repulsive force of the second electronic component 20 acting in the direction away from the first electronic component 10 can be reduced, and the connection state of the connection portion 23x of the first terminal 13 and the second terminal 23 can be stabilized.
  • the second predetermined distance M is determined. You may set it. In the present embodiment, specifically, the second predetermined distance M is set as follows.
  • the second predetermined distance M is set to 3 [mm] and (1-2) the thickness of the first cover lay 14 and When the total thickness of the two coverlays 24 is 30 [ ⁇ m] or more and 50 [ ⁇ m] or less, the second predetermined distance M is set to 4 [mm].
  • the second predetermined distance M is set to 6 [mm]
  • the second predetermined distance M is set to 8 [mm].
  • the electronic component 1 having the connection structure 100 of the present embodiment can reduce the amount of bending of the second electronic component 20 and reduce the repulsive force acting on the connecting portion 23x between the first terminal 13 and the second terminal 23. You can Therefore, it is possible to maintain the connection stability over time and improve the reliability of the product.
  • an electronic component having a detection function such as a strain sensor
  • low conductor resistance is required from the viewpoint of ensuring accuracy.
  • the connection structure 100 of the present embodiment it was possible to connect the strain sensor (electronic component) with a connection resistance of 100 mmOHM or less.
  • the connection structure 100 of the present embodiment is suitable for a sensor (electronic component) such as a strain sensor that requires a low conductor resistance.
  • the electronic component 1 was manufactured as follows.
  • the first electronic component 10 shown in FIG. 1A was prepared.
  • the first electronic component 10 shown in this example is a printed wiring board including a first circuit 12.
  • the configuration and manufacturing method of the first electronic component 10 are as described above.
  • a double-sided copper-clad base material is prepared in which a copper layer having a thickness of 12 [ ⁇ m] is formed on both main surfaces of a first insulating base material 11 made of polyimide having a thickness of 50 [ ⁇ m].
  • the first circuit 12 can appropriately use a subtractive method, an additive method, a semi-additive method, or the like.
  • the circuit 120 is also formed on the other main surface.
  • Wiring board 110 having first circuit 12 formed on one main surface of first insulating base material 11 and circuit 120 formed on the other main surface is obtained.
  • the circuit 120 of the wiring board 110 is protected by the coverlay 16.
  • the coverlay 16 includes a polyimide sheet 16A and an adhesive layer 16B.
  • the first terminal 13 is provided at a predetermined portion of the first circuit 12.
  • a first coverlay 14 made of polyimide having an opening 15 in which a portion (region) corresponding to at least a portion (contact portion with the second terminal 23) of the first terminal 13 is cut out was prepared.
  • the first coverlay 14 includes a polyimide sheet 14A having a thickness of 12 [ ⁇ m] and a polyimide adhesive layer 14B having a thickness of 15 [ ⁇ m].
  • the thickness T14 of the first coverlay 14 is the distance from the main surface of the first terminal 13 to the main surface of the sheet 14A on the second electronic component 20 side.
  • the thickness T14 of the first cover lay 14 corresponds to the height T15 of the inner edge surface 15E forming the opening 15. That is, the height T15 of the opening 15 may be used as the thickness T14 of the first coverlay 14.
  • the first coverlay 14 was attached by aligning the positions so that the first terminals 13 were present in the region surrounded by the inner edge surface 15E of the opening 15. In the opening 15 of the first coverlay 14, at least a part of the first terminal 13 is exposed. The exposed first terminal 13 or a part of the first terminal 13 is surrounded by the inner edge surface 15E of the opening 15 of the first coverlay 14.
  • the second electronic component 20 shown in FIG. 1B was prepared.
  • the second electronic component 20 shown in this example is a printed wiring board having a second circuit 22.
  • the configuration and manufacturing method of the second electronic component 20 are as described above.
  • a single-sided copper-clad substrate having a 12 [ ⁇ m] thick copper layer having a thickness of 12 [ ⁇ m] formed on one principal surface of a second insulating substrate 21 made of polyimide is prepared.
  • the second circuit 22 can appropriately use a subtractive method, an additive method, a semi-additive method, or the like.
  • the plating layer 23M was formed on the connection portion 23x of the second circuit 22.
  • the thickness of the plated-up plated layer 23M in this example was 15 [ ⁇ m].
  • the plating layer 23M was formed by the button plating method.
  • the second cover lay 24 is arranged so as to cover at least a part of the second circuit 22 except for the region where the second terminal 23 is provided.
  • An anisotropic conductive film 30 having a thickness of 25 ⁇ m was arranged between the first terminal 13 and the second terminal 23. With the anisotropic conductive film 30 interposed, the first electronic component 10 and the second electronic component 20 were heated to 160° C. to 200° C., and a pressing process of pressing each other was performed. The resin material of the anisotropic conductive film 30 melted in the pressing process is housed in the gap of the opening 15 larger than the second terminal 23.
  • the thickness T30A of the anisotropic conductive film 30 after the pressing process is 50% or more and 80% or less of the thickness T30B of the anisotropic conductive film 30 before the pressing process.
  • the thickness T30A of the anisotropic conductive film 30 after the pressing process is 12.5 [ ⁇ m] or more and 20 [ ⁇ m] or less.
  • the thickness of the anisotropic conductive film 30 after the pressing process accompanied by heating in this example was measured and found to be 15 [ ⁇ m].
  • the sum of the thickness T23M of the plating layer 23M of the second terminal 23 and the thickness T30A of the anisotropic conductive film 30 after the pressing treatment is the thickness of the first coverlay 14 forming the inner edge surface 15E of the opening 15.
  • the thickness T23M of the plating layer 23M needs to be 12 [ ⁇ m] or more.
  • the thickness T23M of the plating layer 23M is set to 15 [ ⁇ m].
  • the second electronic component 20 having the thickness T23M of the plating layer 23M of 15 [ ⁇ m] was obtained by the above method and used.
  • the total value of the thickness T30A (15 [ ⁇ m]) of the anisotropic conductive film 30 and the thickness T23M (15 [ ⁇ m]) of the plating layer 23M is the thickness of the first coverlay 14 (27 It was 30 [ ⁇ m] which is more than [ ⁇ m]).
  • the electronic component 1 shown in FIG. 1C was obtained.
  • the thickness T14 of the first coverlay 14 may be replaced with the height T15 of the opening 15.
  • connection structure 100' of electronic components... Connection area 10
  • ... 1st electronic component 11 ... 1st insulating base material 12a, 12b, 12c, 12d, 12... 1st circuit 13a, 13b, 13c, 13d, 13... 1st terminal 14
  • ... 1st coverlay 15 ... Opening part 16
  • Coverlay 110 ... Wiring board 20
  • 2nd electronic component 21 ... 2nd insulating base material 22a, 22b, 22c, 22d, 22.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

This electronic component connection structure comprises: a first electronic component 10 having a first terminal 13 which connects to a first circuit formed on a first insulating substrate 11, and a first coverlay 14 equipped with an opening 15, the height of the principal surface of the first terminal 13 being lower than the height of the principal surface of the first coverlay 14; a second electronic component 20 which has a second circuit 22 formed on the second insulating substrate 21, a second coverlay 24 which covers at least part thereof, and a second terminal 23 which is formed in a predetermined region of another part of the second circuit 22, and which has a plating layer 23M; and an anisotropic electro-conductive film 30 which connects the first terminal 13 and the second terminal 23. The total value for the thickness T30 of the thickness 23M of the plating layer T23M and the thickness T30 of the anisotropic electro-conductive film 30 is at least the thickness (T14) of the first coverlay 14 from the principal surface of the first circuit 12 to the principal surface of the first coverlay 14, in the lamination direction (Z).

Description

電子部品の接続構造及び電子部品の接続構造の製造方法Electronic component connection structure and method for manufacturing electronic component connection structure
 本発明は、電子部品の接続構造及び電子部品の接続構造の製造方法に関する。 The present invention relates to a connection structure for electronic components and a method for manufacturing a connection structure for electronic components.
 携帯電話などの電子機器に用いられる複数の電子部品は、フレキシブルプリント配線板により接続される。半田などの導電部材を用いて電子部品を接続する手法が知られている。この種の技術に関し、フレキシブルプリントサーキットとケーブル導体部との間に半田を介在させ、ケーブル導体部を加熱して半田接続をする技術が知られている(特許文献1)。 A plurality of electronic parts used in electronic devices such as mobile phones are connected by a flexible printed wiring board. A method of connecting electronic components using a conductive member such as solder is known. Regarding this type of technology, there is known a technology in which solder is interposed between a flexible printed circuit and a cable conductor portion, and the cable conductor portion is heated for solder connection (Patent Document 1).
特開2005-310527号公報JP, 2005-310527, A
 電子部品の構造は様々であり、接続部が段差構造となる場合がある。例えば、回路形成後に端子以外をカバーレイで覆う構造においては、接点となる端子がカバーレイよりも低い位置となる。このような段差構造においては、端子同士の接続状態を維持することが難しく、接続信頼性が担保できない場合がある。半田材料を溶融させて段差構造を埋める場合には、半田を加熱する工程において電子部品への熱負荷が大きくなるという不都合がある。  Electronic parts have various structures, and the connection part may have a step structure. For example, in the structure in which the circuit other than the terminals is covered with the coverlay after the circuit is formed, the terminal serving as a contact is located at a position lower than the coverlay. In such a step structure, it is difficult to maintain the connection state between the terminals, and the connection reliability may not be guaranteed in some cases. When the solder material is melted to fill the step structure, there is a disadvantage that the heat load on the electronic component is increased in the step of heating the solder.
 本発明が解決しようとする課題は、接続される一方の電子部品が、接続対象となる端子の高さがカバーレイよりも低い位置となる段差構造を有する場合であっても、接続信頼性の高い電子部品の接続構造及びその製造方法を提供することである。 The problem to be solved by the present invention is to improve the connection reliability even when one electronic component to be connected has a step structure in which the height of the terminal to be connected is lower than the coverlay. An object of the present invention is to provide a high connection structure for electronic components and a manufacturing method thereof.
 [1]本発明は、第1電子部品が備える第1端子と、第2電子部品が備える第2端子とを接続させる電子部品の接続構造であって、前記第1電子部品は、第1絶縁性基材と、前記第1絶縁性基材の一方主面に形成された第1回路に接続される前記第1端子と、前記第1回路の少なくとも一部及び前記第1端子の周囲を覆いつつ、前記第1端子の少なくとも一部を露出させる開口部を備える第1カバーレイと、を備え、前記第1絶縁性基材の厚さに沿う積層方向における前記第1端子の主面の高さが、前記第1カバーレイの主面の高さよりも低く、前記第2電子部品は、第2絶縁性基材と、前記第2絶縁性基材の一方主面に形成された第2回路と、前記第2回路の少なくとも一部を覆う第2カバーレイと、前記第2回路の前記第2カバーレイに覆われた部分以外の他の一部の所定領域に形成され、前記第2回路に接続される前記第2端子と、を備え、前記第2端子は、前記第1端子に電気的に接続するめっき層を有し、前記接続構造は、前記第1端子と前記第2端子との間に設けられた異方性導電フィルムを有し、前記異方性導電フィルムを介して前記第1端子と前記第2端子とを電気的に接続させ、前記接続構造における、前記めっき層の厚さと前記異方性導電フィルムの厚さの合計値が、前記開口部の内縁面の高さに対応する、前記第1回路の主面から前記積層方向に沿う前記第1カバーレイの主面までの前記第1カバーレイの厚さ以上である電子部品の接続構造を提供することにより、上記課題を解決する。 [1] The present invention provides a connection structure of an electronic component for connecting a first terminal included in a first electronic component and a second terminal included in a second electronic component, wherein the first electronic component comprises a first insulation. Conductive base material, the first terminal connected to a first circuit formed on one main surface of the first insulating base material, and covering at least a part of the first circuit and the periphery of the first terminal. A first coverlay having an opening exposing at least a part of the first terminal, and a height of a main surface of the first terminal in a stacking direction along a thickness of the first insulating base material. Is lower than the height of the main surface of the first coverlay, and the second electronic component has a second insulating base material and a second circuit formed on one main surface of the second insulating base material. A second coverlay covering at least a part of the second circuit, and a second coverlay formed in a predetermined region other than a part of the second circuit covered with the second coverlay. And a second terminal having a plating layer electrically connected to the first terminal, and the connection structure includes the first terminal and the second terminal. Between the first terminal and the second terminal electrically through the anisotropic conductive film, the anisotropic conductive film provided between The main surface of the first coverlay along the stacking direction from the main surface of the first circuit, wherein the total value of the thickness and the thickness of the anisotropic conductive film corresponds to the height of the inner edge surface of the opening. The above problem is solved by providing a connection structure for an electronic component having a thickness equal to or greater than the thickness of the first coverlay up to.
 [2]上記発明において、前記めっき層の厚さと前記異方性導電フィルムの厚さの合計値が、前記開口部の内縁面の高さに対応する、前記第1回路の主面から前記積層方向に沿う前記第1カバーレイの主面までの前記第1カバーレイの厚さと、前記第2カバーレイの厚さとの合計値未満であり、前記第2絶縁性基材の他方主面の前記積層方向に沿う高さに関し、前記第2端子が設けられた領域を含む第1領域の高さが、前記第1領域以外の前記第2回路を前記第2カバーレイが被覆する第2領域の高さよりも低くすることにより、上記課題を解決する。 [2] In the above invention, the total value of the thickness of the plating layer and the thickness of the anisotropic conductive film corresponds to the height of the inner edge surface of the opening, and the lamination is performed from the main surface of the first circuit. Is less than the total value of the thickness of the first cover lay to the main surface of the first cover lay along the direction and the thickness of the second cover lay, and the other main surface of the second insulating base material is Regarding the height along the stacking direction, the height of the first region including the region where the second terminal is provided is equal to the height of the second region where the second coverlay covers the second circuit other than the first region. The above problem is solved by making the height lower than the height.
 [3]上記発明において、前記第2絶縁性基材の主面に対して略垂直方向に沿って前記接続構造を見た場合に、前記第2カバーレイは、当該第2カバーレイの端部の位置が、前記めっき層の前記第2カバーレイ側の端部の位置から第1所定距離だけ離隔させた位置となるように配置することができる。 [3] In the above invention, when the connection structure is viewed along a direction substantially perpendicular to the main surface of the second insulating base material, the second coverlay has an end portion of the second coverlay. Can be arranged at a position separated from the position of the end of the plating layer on the second coverlay side by a first predetermined distance.
 [4]上記発明において、前記第2絶縁性基材の主面に対して略垂直方向に沿って前記接続構造を見た場合に、前記第2カバーレイは、前記第2端子を基準とした場合に解放された端部とは反対側の領域のみに設けられ、前記第2カバーレイの端部の位置が、前記第1カバーレイに形成された前記開口部の前記第2カバーレイ側の端部の位置から第2所定距離だけ離隔させた位置となるように配置することができる。 [4] In the above invention, when the connection structure is viewed along a direction substantially perpendicular to the main surface of the second insulating base material, the second coverlay is based on the second terminal. In this case, the position of the end portion of the second cover lay provided only in the area opposite to the released end portion is on the second cover lay side of the opening formed in the first cover lay. It can be arranged at a position separated from the position of the end portion by a second predetermined distance.
 [5]上記発明において、前記第2所定距離は、前記第1カバーレイの前記開口部の開口幅の70%以上、かつ90%以下とすることができる。 [5] In the above invention, the second predetermined distance may be 70% or more and 90% or less of an opening width of the opening of the first coverlay.
 [6]上記発明において、第1絶縁性基材を準備し、前記第1絶縁性基材の一方主面に第1回路と前記第1回路に接続する第1端子を形成し、前記第1端子の位置に対応する位置に設けられた開口部を備え、前記第1端子の厚さよりも厚さが厚い第1カバーレイを準備し、前記開口部から前記第1端子の少なくとも一部を露出させるように、前記第1絶縁性基材の一方主面に前記第1カバーレイが配置された第1電子部品を準備する工程と、第2絶縁性基材を準備し、前記第2絶縁性基材の一方主面に第2回路を形成し、前記第2回路の接続部にめっきをして、めっき層を有する第2端子が形成された第2電子部品を準備する工程と、前記第1端子と前記第2端子の間に異方性導電フィルムを配置し、前記第1電子部品と前記第2電子部品を加熱しながら互いに押圧し、前記第2絶縁性基材及び前記第2回路を撓ませた状態で前記第2端子と前記第1端子とを接触させ、前記第1端子と前記第2端子と電気的に接続させる接続構造を備える電子部品の製造方法を提供することにより、上記課題を解決する。 [6] In the above invention, a first insulating base material is prepared, and a first circuit and a first terminal connected to the first circuit are formed on one main surface of the first insulating base material, and the first insulating base material is formed. A first coverlay having an opening provided at a position corresponding to the position of the terminal and having a thickness thicker than the thickness of the first terminal is prepared, and at least a part of the first terminal is exposed from the opening. As described above, a step of preparing a first electronic component in which the first coverlay is arranged on one main surface of the first insulating base material, a second insulating base material, and the second insulating property Forming a second circuit on one main surface of the base material, plating a connection portion of the second circuit, and preparing a second electronic component having a second terminal having a plating layer; An anisotropic conductive film is disposed between one terminal and the second terminal, and the first electronic component and the second electronic component are pressed against each other while being heated, the second insulating base material and the second circuit. By providing a method of manufacturing an electronic component including a connection structure in which the second terminal and the first terminal are brought into contact with each other in a flexed state, and the first terminal and the second terminal are electrically connected, The above problems are solved.
 本発明によれば、接続される一方の電子部品が、接続対象となる端子がカバーレイよりも低い位置となる段差構造を有する場合であっても、半田工程を経ることなく、接続信頼性を向上させる電子部品の接続構造及びその製造方法を提供できる。 According to the present invention, even when one of the electronic components to be connected has a step structure in which the terminal to be connected is located at a position lower than the cover lay, the connection reliability is improved without a soldering step. An improved connection structure for electronic components and a method of manufacturing the same can be provided.
図1Aは、本発明の電子部品を構成する第1電子部品を示す図である。FIG. 1A is a diagram showing a first electronic component that constitutes the electronic component of the present invention. 図1Bは、本発明の電子部品を構成する第2電子部品を示す図である。FIG. 1B is a diagram showing a second electronic component that constitutes the electronic component of the present invention. 図1Cは、本発明の電子部品の第1の組み立て図である。FIG. 1C is a first assembly diagram of the electronic component of the present invention. 図1Dは、本発明の電子部品の第2の組み立て図である。FIG. 1D is a second assembly diagram of the electronic component of the present invention. 図2Aは、図1Cに示すIIA-IIAに沿う断面模式図である。FIG. 2A is a schematic sectional view taken along line IIA-IIA shown in FIG. 1C. 図2Bは、図1Dに示すIIB-IIBに沿う断面模式図である。FIG. 2B is a schematic sectional view taken along line IIB-IIB shown in FIG. 1D.
 以下、本発明の本実施形態を図面に基づいて説明する。
 本実施形態の電子部品1は、互いに接続された第1電子部品10と第2電子部品20とを備える。第1電子部品10と第2電子部品20は、フレキシブルプリントサーキットである。本実施形態の電子部品1は、携帯電話、PDA(Personal Digital Assistant)などの電子機器に用いられる。電子部品1は、屈曲性を備え、完成時においては電子機器の筐体に収納される。また、本実施形態の電子部品1は、歪みセンサであってもよい。本実施形態の電子部品1は、抵抗値変動に基づく信号を検知するセンサである。
Hereinafter, the present embodiment of the present invention will be described with reference to the drawings.
The electronic component 1 of this embodiment includes a first electronic component 10 and a second electronic component 20 that are connected to each other. The first electronic component 10 and the second electronic component 20 are flexible printed circuits. The electronic component 1 of this embodiment is used for electronic devices such as mobile phones and PDAs (Personal Digital Assistants). The electronic component 1 has flexibility and is housed in the housing of the electronic device when completed. Moreover, the electronic component 1 of the present embodiment may be a strain sensor. The electronic component 1 of the present embodiment is a sensor that detects a signal based on resistance value fluctuations.
 電子部品1は、第1電子部品10と第2電子部品20との接続構造100を備える。接続構造100は、第1電子部品10が備える第1端子13と、第2電子部品20が備える第2端子23とを接続させる構造を備える。第1端子13と第2端子23は、電気的接点として機能する。本実施形態では、第1端子13のうちの一部及び/又は第2端子23の内の少なくとも一部を電気的接点として機能させることができる。本実施形態の第1端子13と第2端子23は、異方性導電フィルム(ACF:Anisotropic conductive adhesive film)を介して電気的に接続される。 The electronic component 1 includes a connection structure 100 for connecting the first electronic component 10 and the second electronic component 20. The connection structure 100 includes a structure that connects the first terminal 13 included in the first electronic component 10 and the second terminal 23 included in the second electronic component 20. The first terminal 13 and the second terminal 23 function as electrical contacts. In this embodiment, a part of the first terminal 13 and/or at least a part of the second terminal 23 can function as an electrical contact. The 1st terminal 13 and the 2nd terminal 23 of this embodiment are electrically connected through an anisotropic conductive film (ACF:Anisotropic conductive adhesive film).
 以下、図面に基づいて、本実施形態に係る電子部品の接続構造について説明する。
 図1Aは、本実施形態に係る第1電子部品10の態様の一例を示す図である。
 第1電子部品10は、第1絶縁性基材11と、第1絶縁性基材11の一方主面(図中Z方向側の表面)に形成された第1回路12a,12b,12c,12d(以下、第1回路12と総称することがある)と、この第1回路12a,12b,12c,12dに接続する第1端子13a,13b,13c,13d(以下、第1端子13と総称することがある)とを有する。本実施形態の第1電子部品10において、第1端子13a,13b,13c,13dは、第1回路12a,12b,12c,12dの一部分である。特に限定されないが、第1回路12a,12b,12c,12dは抵抗値変動に基づく信号を取得する信号ラインである。第1電子部品10は、第1絶縁性基材11の一方主面に形成される第1カバーレイ14を有する。第1カバーレイ14は、第1回路12a,12b,12c,12dと、第1端子13の少なくとも一部(第2端子23と接触しない部分)を覆うことができる。第1カバーレイ14は、第1端子13の少なくとも一部(第2端子23と接触する部分)を露出させる開口部15を備える。第1端子13a,13b,13c,13dは、少なくともこれらの一部(第2端子23と接触する部分)が開口部15の内縁面15Eの内側の領域に所在するように配置され、開口部15において露出する。内縁面15Eは、開口部15の内延を規定する。第1カバーレイ14は、少なくとも、露出された第1端子13の周囲を覆う。
Hereinafter, the connection structure of the electronic component according to the present embodiment will be described with reference to the drawings.
FIG. 1A is a diagram showing an example of a mode of the first electronic component 10 according to the present embodiment.
The first electronic component 10 includes a first insulating base material 11 and first circuits 12a, 12b, 12c, 12d formed on one main surface (the surface on the Z direction side in the drawing) of the first insulating base material 11. (Hereinafter, sometimes collectively referred to as the first circuit 12) and first terminals 13a, 13b, 13c, 13d (hereinafter collectively referred to as the first terminal 13) connected to the first circuits 12a, 12b, 12c, 12d. Sometimes). In the first electronic component 10 of the present embodiment, the first terminals 13a, 13b, 13c, 13d are a part of the first circuits 12a, 12b, 12c, 12d. Although not particularly limited, the first circuits 12a, 12b, 12c, 12d are signal lines that acquire signals based on resistance value fluctuations. The first electronic component 10 has a first coverlay 14 formed on one main surface of the first insulating base material 11. The first coverlay 14 can cover the first circuits 12a, 12b, 12c, 12d and at least a portion of the first terminal 13 (a portion that does not contact the second terminal 23). The first coverlay 14 includes an opening 15 that exposes at least a portion of the first terminal 13 (a portion that contacts the second terminal 23). The first terminals 13a, 13b, 13c, 13d are arranged such that at least a part thereof (a portion in contact with the second terminal 23) is located in a region inside the inner edge surface 15E of the opening 15, and the opening 15 Exposed at. The inner edge surface 15E defines the inner extension of the opening 15. The first coverlay 14 covers at least the periphery of the exposed first terminal 13.
 本実施形態の第1電子部品10において、第1カバーレイ14と第1端子13a,13b,13c,13dは、同じ第1絶縁性基材11の同じ一方主面に形成されている。第1カバーレイ14の厚さ(図中Z方向の高さ)は、第1端子13a,13b,13c,13dの厚さ(図中Z方向の高さ)よりも厚い。第1端子13a,13b,13c,13dの厚さは、略均一の厚さである。このため、第1絶縁性基材11の一方主面を基準とした、第1絶縁性基材11の厚さに沿う積層方向(図中Z方向)において、第1端子13a,13b,13c,13dの主面(第2端子23のめっき層23Mとの電気的接点を含む面)の高さの位置は、Z方向(図中に示すZ方向、以下同じ)に沿う第1カバーレイ14の一方主面(第2電子部品20側に向いた主面)の高さの位置よりも低い。第1カバーレイ14が形成する開口部15の、相対的に凹んだ部分又は窪んだ部分に、第1端子13a,13b,13c,13dの露出部(第2端子23との接点)が形成されている。第1端子13a,13b,13c,13dの露出部が形成された領域は、第1カバーレイ14の開口部15の内縁面15Eにより囲われている。なお、本実施形態では、第1回路12の所定領域を拡幅させて第1端子13を形成する。第1端子13の厚さは、第1回路12の厚さに対応する。開口部15の相対的に凹んだ部分又は窪んだ部分の深さ又は高さT15は、開口部15の内縁面15Eを形成する第1カバーレイ14の厚さT14に対応する。本実施形態において、第1カバーレイ14の厚さT14は、第1回路12又は第1端子13a,13b,13c,13dの高さ(図中Z軸方向の位置)を基準とし、第1回路12の主面(表面)から積層方向(図中Z軸方向)に沿って第1カバーレイの14の第2電子部品20に最も近い主面までの距離とする。つまり、第1カバーレイ14の厚さT14は、第1回路12又は第1端子13a,13b,13c,13dの高さ(図中Z軸方向の位置)を厚さの基準(高さ座標の原点)とした、第1カバーレイ14の厚さT14(T14A+T14B=T15)と定義できる。 In the first electronic component 10 of the present embodiment, the first coverlay 14 and the first terminals 13a, 13b, 13c, 13d are formed on the same one main surface of the same first insulating base material 11. The thickness (height in the Z direction in the figure) of the first coverlay 14 is thicker than the thickness (height in the Z direction in the figure) of the first terminals 13a, 13b, 13c, 13d. The thickness of the first terminals 13a, 13b, 13c, 13d is substantially uniform. Therefore, the first terminals 13a, 13b, 13c, in the stacking direction (Z direction in the drawing) along the thickness of the first insulating base material 11 with reference to the one main surface of the first insulating base material 11, The height position of the main surface of 13d (the surface including the electrical contact with the plating layer 23M of the second terminal 23) is located in the first cover lay 14 along the Z direction (Z direction shown in the drawing, the same applies below). On the other hand, it is lower than the height position of the main surface (the main surface facing the second electronic component 20 side). The exposed portions (contact points with the second terminals 23) of the first terminals 13a, 13b, 13c, 13d are formed in the relatively recessed portions or recessed portions of the opening 15 formed by the first coverlay 14. ing. The area where the exposed portions of the first terminals 13a, 13b, 13c, 13d are formed is surrounded by the inner edge surface 15E of the opening 15 of the first coverlay 14. In the present embodiment, the predetermined area of the first circuit 12 is widened to form the first terminal 13. The thickness of the first terminal 13 corresponds to the thickness of the first circuit 12. The depth or height T15 of the relatively recessed portion or the recessed portion of the opening 15 corresponds to the thickness T14 of the first coverlay 14 forming the inner edge surface 15E of the opening 15. In the present embodiment, the thickness T14 of the first coverlay 14 is based on the height (position in the Z-axis direction in the drawing) of the first circuit 12 or the first terminals 13a, 13b, 13c, 13d, and the first circuit. The distance from the principal surface (front surface) of 12 to the principal surface of the first coverlay 14 closest to the second electronic component 20 along the stacking direction (Z-axis direction in the drawing). In other words, the thickness T14 of the first coverlay 14 is based on the height of the first circuit 12 or the first terminals 13a, 13b, 13c, 13d (the position in the Z-axis direction in the figure) as a thickness reference (of the height coordinates). The thickness can be defined as the thickness T14 (T14A+T14B=T15) of the first coverlay 14, which is the origin.
 第1絶縁性基材11は、ポリイミド(PI)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエステル(PE)又は液晶ポリマー(LCP)を用いることができる。第1絶縁性基材11の厚さは15[μm]~75[μm]とすることができる。本例では50[μm]の第1絶縁性基材11を用いる。第1回路12a,12b,12c,12dは銅から構成される。第1絶縁性基材11の一方主面に第1回路12a,12b,12c,12dを形成し、他方主面に回路120(図2A参照)を形成してもよい。第1電子部品10の作製方法は特に限定されないが、第1絶縁性基材11の一方主面又は両主面に接着層を介して銅などの金属箔が貼り付けられた銅張積層板(CCL)などの部材を用い、一般的なフォトリソグラフィ法を用いて所定領域を除去し、所望のパターンの第1回路12a,12b,12c,12dを一方主面に形成し、同様の手法で他方主面に回路120(図2A参照)が形成された配線板110を得る。第1回路12の少なくとも一部を覆う第1カバーレイ14を配線板110に積層する。他方主面側においては、回路120の少なくとも一部を覆うカバーレイ16を配線板110に積層して、図1Aに示す第1電子部品10を得る。 The first insulating substrate 11 can be made of polyimide (PI), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyester (PE) or liquid crystal polymer (LCP). The thickness of the first insulating base material 11 can be set to 15 [μm] to 75 [μm]. In this example, the first insulating base material 11 having a thickness of 50 [μm] is used. The first circuits 12a, 12b, 12c, 12d are made of copper. The first circuits 12a, 12b, 12c, 12d may be formed on one main surface of the first insulating base material 11, and the circuit 120 (see FIG. 2A) may be formed on the other main surface. The method for producing the first electronic component 10 is not particularly limited, but a copper clad laminate in which a metal foil such as copper is attached to one main surface or both main surfaces of the first insulating substrate 11 via an adhesive layer ( CCL) and other members are used to remove a predetermined area by using a general photolithography method, and the first circuits 12a, 12b, 12c, 12d having a desired pattern are formed on one main surface, and the other is formed by the same method. A wiring board 110 having a circuit 120 (see FIG. 2A) formed on the main surface is obtained. A first coverlay 14 covering at least a part of the first circuit 12 is laminated on the wiring board 110. On the other main surface side, the coverlay 16 covering at least a part of the circuit 120 is laminated on the wiring board 110 to obtain the first electronic component 10 shown in FIG. 1A.
 図1Bは、本実施形態に係る第2電子部品20の態様の一例を示す図である。
 第2電子部品20は、第2絶縁性基材21と、第2絶縁性基材21の一方主面(図中Z方向)に形成された第2回路22a,22b,22c,22d(以下、第2回路22とも総称することがある)と、この第2回路22a,22b,22c,22dに接続する第2端子23A,23B,23C,23D(以下第2端子23と総称することがある)とを有する。
 本実施形態の第2端子23A,23B,23C,23Dは、第2回路22a,22b,22c,22dの接続部23a,23b,23c,23d(以下、接続部23xとも称する)であって、接続部23a,23b,23c,23dの表面に形成されためっき層23aM,23bM,23cM,23dM(以下、めっき層23Mとも称する)を有する。めっき層23aM,23bM,23cM,23dMは、第2端子23A,23B,23C,23Dが設けられている領域のみに形成される。めっき層23Mは、第2回路22の所定領域に形成された第2端子23の主面(第1端子13に対向する主面)に形成される。めっき層23Mは、第2端子23の主面のみに形成してもよい。
 本実施形態の第2絶縁性基材21は、第2カバーレイ24を有する。第2カバーレイ24は、接点として機能する第2端子23A,23B,23C,23Dが形成された部分を少なくとも除く第2回路22a,22b,22c,22dの一部を覆う。第2端子23A,23B,23C,23Dにおいて、めっき層23aM,23bM,23cM,23dMが形成された部分は、第2回路22a,22b,22c,22dの厚さよりも厚い。
FIG. 1B is a diagram showing an example of a mode of the second electronic component 20 according to the present embodiment.
The second electronic component 20 includes a second insulating base material 21 and second circuits 22a, 22b, 22c, 22d (hereinafter, referred to as “second circuits”) formed on one main surface (Z direction in the drawing) of the second insulating base material 21. 2nd circuit 22), and 2nd terminal 23A, 23B, 23C, 23D connected to this 2nd circuit 22a, 22b, 22c, 22d (it may be generically called the 2nd terminal 23 hereafter). Have and.
The second terminals 23A, 23B, 23C, 23D of the present embodiment are the connection portions 23a, 23b, 23c, 23d (hereinafter also referred to as the connection portion 23x) of the second circuits 22a, 22b, 22c, 22d, and are connected. It has plating layers 23aM, 23bM, 23cM and 23dM (hereinafter also referred to as plating layer 23M) formed on the surfaces of the portions 23a, 23b, 23c and 23d. The plating layers 23aM, 23bM, 23cM, 23dM are formed only in the regions where the second terminals 23A, 23B, 23C, 23D are provided. The plating layer 23M is formed on the main surface of the second terminal 23 (a main surface facing the first terminal 13) formed in a predetermined region of the second circuit 22. The plating layer 23M may be formed only on the main surface of the second terminal 23.
The second insulating base material 21 of the present embodiment has a second coverlay 24. The second coverlay 24 covers a part of the second circuits 22a, 22b, 22c, 22d except at least a part where the second terminals 23A, 23B, 23C, 23D functioning as contacts are formed. In the second terminals 23A, 23B, 23C and 23D, the portions where the plated layers 23aM, 23bM, 23cM and 23dM are formed are thicker than the second circuits 22a, 22b, 22c and 22d.
 第2絶縁性基材21は、ポリイミド(PI)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエステル(PE)又は液晶ポリマー(LCP)を用いることができる。第2絶縁性基材21の厚さは10[μm]~50[μm]程度である。本例では厚さが12[μm]の第2絶縁性基材21を用いる。第2回路22a,22b,22c,22dは、銅から構成される。本実施形態では、第2絶縁性基材21の一方主面に第2回路22a,22b,22c,22dが形成された例を示すが、他方主面にも回路を形成してもよい。第2電子部品20の作製方法は特に限定されないが、第2絶縁性基材21の一方主面又は両主面に接着層を介して銅などの金属箔(銅箔)が貼り付けられた基材を用い、一般的なフォトリソグラフィ法を用いて所定領域を除去し、所望のパターンの第2回路22a,22b,22c,22dを形成する。第2回路22a,22b,22c,22dは抵抗値変動に基づく信号を取得する信号ラインである。第2回路22a,22b,22c,22dのうち第1端子13との接点となる領域にめっき層23aM,23bM,23cM,23dMを形成する。接点となる領域以外をマスクして、ボタンめっき処理をすることにより、めっき層23aM,23bM,23cM,23dMを形成する。めっき層23aM,23bM,23cM,23dMは所望の厚さとなるように、めっき時間等のめっき条件を設定する。めっき条件の設定を含むめっきの厚さの制御手法は、出願時に知られた手法を用いる。これにより、図1Bに示す第2電子部品20を得る。 The second insulating base material 21 can be made of polyimide (PI), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyester (PE) or liquid crystal polymer (LCP). The thickness of the second insulating base material 21 is about 10 [μm] to 50 [μm]. In this example, the second insulating base material 21 having a thickness of 12 [μm] is used. The second circuits 22a, 22b, 22c, 22d are made of copper. In the present embodiment, an example is shown in which the second circuits 22a, 22b, 22c, 22d are formed on one main surface of the second insulating base material 21, but circuits may be formed on the other main surface. The method for producing the second electronic component 20 is not particularly limited, but a base in which a metal foil (copper foil) such as copper is attached to one main surface or both main surfaces of the second insulating base material 21 via an adhesive layer. A material is used to remove a predetermined area by using a general photolithography method, and second circuits 22a, 22b, 22c, 22d having a desired pattern are formed. The second circuits 22a, 22b, 22c, 22d are signal lines for acquiring signals based on resistance value fluctuations. Plating layers 23aM, 23bM, 23cM, and 23dM are formed in regions of the second circuits 22a, 22b, 22c, and 22d that will be contacts with the first terminal 13. The areas other than the contact areas are masked and subjected to button plating to form the plating layers 23aM, 23bM, 23cM, 23dM. The plating conditions such as the plating time are set so that the plating layers 23aM, 23bM, 23cM and 23dM have desired thicknesses. A method known at the time of filing is used as a method for controlling the thickness of plating including setting of plating conditions. As a result, the second electronic component 20 shown in FIG. 1B is obtained.
 図1Cに示すように、得られた第1電子部品10の第1端子13a,13b,13c,13dと、第2電子部品20の第2端子23A,23B,23C,23Dとの間に、異方性導電フィルム30(ACF:Anisotropic conductive adhesive film)を配置する。この後、第1電子部品10と第2電子部品20とが互いに接近するように移動させ(図中Z方向に沿って近接させ)、加熱しながら押圧する。第2電子部品20の第2絶縁性基材21及び第2回路22を撓ませた状態で第2端子23と第1端子13とを接触させる。この押圧処理により、第1電子部品10と第2電子部品とを電気的に接続する接続構造100が形成される。 As shown in FIG. 1C, there is a difference between the obtained first terminals 13a, 13b, 13c, 13d of the first electronic component 10 and the second terminals 23A, 23B, 23C, 23D of the second electronic component 20. An anisotropic conductive film 30 (ACF: Anisotropic conductive adhesive film) is arranged. After that, the first electronic component 10 and the second electronic component 20 are moved so as to approach each other (approach along the Z direction in the drawing) and pressed while being heated. The second terminal 23 and the first terminal 13 are brought into contact with each other while the second insulating base material 21 and the second circuit 22 of the second electronic component 20 are bent. By this pressing process, the connection structure 100 that electrically connects the first electronic component 10 and the second electronic component is formed.
 異方性導電フィルム30は、熱硬化性樹脂に粒子径が10[μm]~30[μm]の導電性粒子を混ぜ合わせたものを、シート状に形成した導電性フィルムである。本実施形態では、粒子径が20[μm]の導電性粒子を含む異方性導電フィルム30を用いる。熱硬化性樹脂としてはアクリル系樹脂、エポキシ系樹脂、変性ポリフェニレンエーテル樹脂などを用いることができる。PETなどの支持フィルムに導電性粒子31を分散させた厚さ10[μm]~50[μm]の厚さの接着材を塗布した異方性導電フィルムを用いてもよい。導電性粒子としては、金属をめっきしたプラスチック粒子やニッケルなどの金属粒子が用いられる。異方性導電フィルムは電極同士を電気的接続と機械的接着とを加熱処理又は加熱圧着処理という一工程により実現する。特に限定されないが、異方性導電フィルム30を用いた熱圧着は100℃~180℃の加熱及び0.3[MPa]~1.0[MPa]の加圧により行われる。
 特に限定されないが、本実施形態では、デクセリアルズ株式会社製の型番CP923CM-25ACの異方性導電フィルムを使用することができる。本実施形態の異方性導電フィルムは、厚さが25[μm]、導電性粒子径が20[μm]であり、導電性粒子は、金/ニッケルめっき樹脂粒子である。本品の圧着条件は温度が130~160[℃]、時間は5~10[sec]、圧力は0.5~4.0[MPa]である。
The anisotropic conductive film 30 is a conductive film formed into a sheet by mixing a thermosetting resin with conductive particles having a particle diameter of 10 [μm] to 30 [μm]. In this embodiment, the anisotropic conductive film 30 containing conductive particles having a particle diameter of 20 [μm] is used. As the thermosetting resin, acrylic resin, epoxy resin, modified polyphenylene ether resin or the like can be used. An anisotropic conductive film may be used in which a support film such as PET is coated with an adhesive having a thickness of 10 [μm] to 50 [μm] in which conductive particles 31 are dispersed. As the conductive particles, plastic particles plated with metal or metal particles such as nickel are used. The anisotropic conductive film realizes electrical connection and mechanical adhesion between electrodes by a process of heat treatment or thermocompression bonding treatment. Although not particularly limited, thermocompression bonding using the anisotropic conductive film 30 is performed by heating at 100° C. to 180° C. and pressurizing at 0.3 [MPa] to 1.0 [MPa].
Although not particularly limited, in this embodiment, an anisotropic conductive film of model number CP923CM-25AC manufactured by Dexerials Co., Ltd. can be used. The anisotropic conductive film of the present embodiment has a thickness of 25 [μm] and a conductive particle diameter of 20 [μm], and the conductive particles are gold/nickel plated resin particles. The pressure bonding conditions of this product are a temperature of 130 to 160 [° C.], a time of 5 to 10 [sec], and a pressure of 0.5 to 4.0 [MPa].
 図1Dは、第1電子部品10の第1端子13a,13b,13c,13dと第2電子部品20の第2端子23A,23B,23C,23Dとを接触させた状態を示す。第1端子13a,13b,13c,13dと第2端子23A,23B,23C,23Dとは、異方性導電フィルム30の導電性粒子31を介して電気的に接続する。第1端子13aは第2端子23Aと接続し、第1端子13bは第2端子23Bと接続し、第1端子13cは第2端子23Cと接続し、第1端子13dは第2端子23Dと接続する。押圧処理により、接続構造100が形成される。 FIG. 1D shows a state where the first terminals 13a, 13b, 13c, 13d of the first electronic component 10 and the second terminals 23A, 23B, 23C, 23D of the second electronic component 20 are in contact with each other. The first terminals 13a, 13b, 13c, 13d and the second terminals 23A, 23B, 23C, 23D are electrically connected via the conductive particles 31 of the anisotropic conductive film 30. The first terminal 13a is connected to the second terminal 23A, the first terminal 13b is connected to the second terminal 23B, the first terminal 13c is connected to the second terminal 23C, and the first terminal 13d is connected to the second terminal 23D. To do. The connection structure 100 is formed by the pressing process.
 図2Aは、図1Cに示すIIA-IIAに沿う断面を模式的に示す図であり、第1電子部品10と第2電子部品20との接続前(押圧処理前)の状態を示す。第2電子部品20は、図中に示す矢印Pの方向に沿って移動させられ、第1電子部品10に押し付けられる。この押圧処理により、対向配置された第1カバーレイ14の接触部14aと第2カバーレイ24の接触部24aは接する。第2カバーレイ24の接触部24aは、端部24Tに連なる部分である。接触部24aを含む第2カバーレイ24と接触部14aを含む第1カバーレイ14は、第1絶縁性基材11と第2絶縁性基材21との間に存在する。押圧処理により、第2絶縁性基材21に設けられた第2端子23は、第1端子13に接近乃至接触し、異方性導電フィルム30を介して、第1端子13と電気的に接続する。図2Bは、第1電子部品10と第2電子部品20とが接続された状態を示し、図1Dに示すIIB-IIBに沿う断面を模式的に示す図である。押圧処理に伴い、異方性導電フィルム30の導電性粒子31は潰れる。これにより、図2Bに示す押圧処理後の異方性導電フィルム30の厚さT30A(After)は、図2Aに示す押圧処理前の異方性導電フィルム30の厚さT30B(Before)よりも薄くなる。図示は省略するが、異方性導電フィルム30を構成する接着材などの加熱時において流動性を有する樹脂材料は、押圧処理において押し出され、めっき層23aMの周囲に回り込む。めっき層23aMの周囲に回り込んだ樹脂材料は、第1カバーレイ14の開口部15から溢れる又ははみ出すことがある。樹脂材料が開口部15から流れ出ることにより、押圧処理後の異方性導電フィルム30は、めっき層23aMに接する部分よりも第2電子部品20側に盛り上がった部分を備えることがある。また、押圧処理により変形した異方性導電フィルム30は、第2回路22、第2絶縁性基材21と接触してもよい。本実施形態における「異方性導電フィルム30の厚さT30A」は、押圧処理後において第2端子23と接する部分における異方性導電フィルム30の厚さである。「異方性導電フィルム30の厚さT30A」は、異方性導電フィルム30に含まれる導電性粒子31が押圧処理によって変形し、その変形した導電性粒子31を含む部分の異方性導電フィルム30の厚さである。つまり、厚さT30Aは、完成した電子部品1において、互いに対向する第1端子13の主面と、めっき層23Mとの間に介在する異方性導電フィルム30の厚さである。図2A及び図2Bに示す例において、第1電子部品10の端部10Eは、基端部10Bとは反対側の解放端であって、相対的に図中-X側(左側)に位置する端部である。同図に示すように、第2電子部品20の端部20Eは、基端部20Bとは反対側の解放端であって相対的に図中+X側(右側)に位置する端部である。 FIG. 2A is a diagram schematically showing a cross section taken along the line IIA-IIA shown in FIG. 1C and shows a state before the connection between the first electronic component 10 and the second electronic component 20 (before the pressing process). The second electronic component 20 is moved along the direction of the arrow P shown in the figure and pressed against the first electronic component 10. By this pressing process, the contact portion 14a of the first cover lay 14 and the contact portion 24a of the second cover lay 24, which are arranged to face each other, come into contact with each other. The contact portion 24a of the second coverlay 24 is a portion continuous with the end portion 24T. The second cover lay 24 including the contact portion 24 a and the first cover lay 14 including the contact portion 14 a are present between the first insulating base material 11 and the second insulating base material 21. By the pressing process, the second terminal 23 provided on the second insulating base material 21 approaches or contacts the first terminal 13 and is electrically connected to the first terminal 13 via the anisotropic conductive film 30. To do. FIG. 2B is a diagram schematically showing a cross section taken along the line IIB-IIB shown in FIG. 1D, showing a state in which the first electronic component 10 and the second electronic component 20 are connected. With the pressing process, the conductive particles 31 of the anisotropic conductive film 30 are crushed. As a result, the thickness T30A (After) of the anisotropic conductive film 30 after the pressing process shown in FIG. 2B is thinner than the thickness T30B (Before) of the anisotropic conductive film 30 before the pressing process shown in FIG. 2A. Become. Although illustration is omitted, a resin material having fluidity during heating, such as an adhesive forming the anisotropic conductive film 30, is extruded in the pressing process and wraps around the plating layer 23aM. The resin material wrapping around the plating layer 23aM may overflow or run off from the opening 15 of the first coverlay 14. When the resin material flows out from the opening 15, the anisotropic conductive film 30 after the pressing process may include a portion that is raised toward the second electronic component 20 side than a portion that is in contact with the plating layer 23aM. Further, the anisotropic conductive film 30 deformed by the pressing process may come into contact with the second circuit 22 and the second insulating base material 21. The “thickness T30A of the anisotropic conductive film 30” in the present embodiment is the thickness of the anisotropic conductive film 30 in the portion in contact with the second terminal 23 after the pressing process. The “thickness T30A of the anisotropic conductive film 30” is the anisotropic conductive film of the portion including the deformed conductive particles 31 when the conductive particles 31 included in the anisotropic conductive film 30 are deformed by the pressing process. 30 thickness. That is, the thickness T30A is the thickness of the anisotropic conductive film 30 interposed between the main surface of the first terminal 13 facing each other and the plating layer 23M in the completed electronic component 1. In the example shown in FIGS. 2A and 2B, the end portion 10E of the first electronic component 10 is an open end opposite to the base end portion 10B and is relatively located on the −X side (left side) in the drawing. At the end. As shown in the figure, the end portion 20E of the second electronic component 20 is an open end opposite to the base end portion 20B and is an end portion relatively located on the +X side (right side) in the figure.
 図2Aに示すように、接続構造100の形成前(接続させる前)における、接続構造100が形成される接続領域100´おいては、第1電子部品10の第1端子13と、第2電子部品20の第2端子23とは対向した状態で配置される。本実施形態の第2端子23が設けられた領域のX方向(図中に示すX方向、以下同じ)に沿う幅Wは、第1カバーレイ14の開口部15のX方向に沿う幅L(開口幅)よりも小さい。図示は省略するが、本実施形態の第2端子23のY方向(図中に示すY方向、以下同じ)に沿う幅(第2端子23Aから23Dまでの幅:図1A、図1C参照)は、第1カバーレイ14の開口部15のY方向に沿う幅よりも小さい。第2端子23は、第1端子13の少なくとも一部が露出される開口部15と対向する位置に配置される。第2端子23A,23B,23C,及び23Dの少なくとも一部が、第1カバーレイ14の開口部15(開口領域)に収容される。開口部15の内縁面15Eの高さT15は、第1カバーレイ14の厚さT14に対応する。第1カバーレイ14は、シート14Aと接着層14Bとを備える。第1カバーレイ14の厚さT14は、シート14Aの厚さT14Aと接着層14Bの厚さT14Bの合計に対応する。本例において、第1カバーレイ14の厚さT14は、第1回路12の主面から積層方向(図中Z)に沿う第1カバーレイの上側のシート14Aの主面(第2電子部品20に最も近い主面)までの第1カバーレイの厚さT14(=T14A+T14B)=T15である。第1カバーレイ14の厚さT14は、開口部15の高さT15に対応する。シート14Aの材料は、第1絶縁性基材11と同じ種類の材料のものを用いることが好ましい。接着層14Bの材料は、シート14Aに応じて適宜に選択できる。 As shown in FIG. 2A, before the formation of the connection structure 100 (before connecting), in the connection region 100′ in which the connection structure 100 is formed, the first terminal 13 of the first electronic component 10 and the second electron are formed. The component 20 is arranged so as to face the second terminal 23. The width W along the X direction (the X direction shown in the drawing, the same applies hereinafter) of the region in which the second terminal 23 of the present embodiment is provided is the width L(the width L of the opening 15 of the first coverlay 14 along the X direction. Opening width). Although illustration is omitted, the width of the second terminal 23 of the present embodiment along the Y direction (Y direction shown in the drawing, the same applies hereinafter) (width from the second terminals 23A to 23D: see FIGS. 1A and 1C) is , Smaller than the width of the opening 15 of the first coverlay 14 along the Y direction. The second terminal 23 is arranged at a position facing the opening 15 where at least a part of the first terminal 13 is exposed. At least a part of the second terminals 23A, 23B, 23C, and 23D is housed in the opening 15 (opening region) of the first coverlay 14. The height T15 of the inner edge surface 15E of the opening 15 corresponds to the thickness T14 of the first cover lay 14. The first coverlay 14 includes a sheet 14A and an adhesive layer 14B. The thickness T14 of the first coverlay 14 corresponds to the total of the thickness T14A of the sheet 14A and the thickness T14B of the adhesive layer 14B. In the present example, the thickness T14 of the first cover lay 14 is the main surface of the upper sheet 14A of the first cover lay (the second electronic component 20) along the stacking direction (Z in the drawing) from the main surface of the first circuit 12. The thickness T14 (=T14A+T14B)=T15 of the first cover lay up to the main surface closest to the first cover lay. The thickness T14 of the first coverlay 14 corresponds to the height T15 of the opening 15. As the material of the sheet 14A, it is preferable to use the same kind of material as the first insulating base material 11. The material of the adhesive layer 14B can be appropriately selected according to the sheet 14A.
 特に限定されないが、第2電子部品20が撓むこと、位置合わせ精度を確保する観点から、第2端子23の図中X方向に沿う幅Wは、第1カバーレイ14の開口部15の図中X方向に沿う幅L(開口幅L(X))の30%以上、80%以下、好ましくは40%以上70%以下とすることができる。第2端子23のY方向に沿う幅W(Y)についても同様である。 Although not particularly limited, the width W of the second terminal 23 along the X direction in the figure is a figure of the opening 15 of the first coverlay 14 from the viewpoint that the second electronic component 20 bends and the alignment accuracy is ensured. The width L (opening width L(X)) along the middle X direction can be 30% or more and 80% or less, preferably 40% or more and 70% or less. The same applies to the width W(Y) of the second terminal 23 along the Y direction.
 なお、第2端子23の面積(X方向の幅及び/又はY方向の幅)が大きいほど、第2端子23と第1端子13との接続状態が安定する傾向がある。本実施形態では、位置合わせ精度及び安定した接続状態を確保する観点から、X方向において、第2端子23のX方向に沿う幅Wを、第1カバーレイ14の開口部15のX方向に沿う幅Lの20%以上、80%以下とする。好ましくは50%とする。Y方向においても同様に、第2端子23のY方向に沿う幅(第2端子23Aから23Dまでの幅:図1A、図1C参照)を、第1カバーレイ14の開口部15のY方向に沿う幅の20%以上、80%以下とする。好ましくは50%とする。このように、図中XY面において、第2端子23の接触面積は、開口部15の開口面積よりも小さいので、第2端子23と開口部15の壁との間には、隙間が生じる。この隙間は、加熱押圧処理において溶融された異方性導電フィルム30の樹脂材料を受け入れる。第2端子23のめっき層23aMの周囲に形成される隙間には、異方性導電フィルム30を構成する接着材などの流動可能な樹脂材料が回り込む。溶融した樹脂材料は隙間から溢れ又ははみ出すこともある。隙間を形成する第1カバーレイ14の開口部15から樹脂材料が溢れ又ははみ出すことにより、異方性導電フィルム30はめっき層23aMに接する部分よりも第2電子部品20側に盛り上がった部分を備えることがある。 The larger the area (width in the X direction and/or width in the Y direction) of the second terminal 23, the more stable the connection state between the second terminal 23 and the first terminal 13. In the present embodiment, from the viewpoint of ensuring alignment accuracy and a stable connection state, in the X direction, the width W of the second terminal 23 along the X direction is along the X direction of the opening 15 of the first coverlay 14. The width L is set to 20% or more and 80% or less. It is preferably 50%. Similarly in the Y direction, the width of the second terminal 23 along the Y direction (width from the second terminals 23A to 23D: see FIGS. 1A and 1C) is set to the Y direction of the opening 15 of the first coverlay 14. The width is 20% or more and 80% or less. It is preferably 50%. As described above, since the contact area of the second terminal 23 is smaller than the opening area of the opening 15 on the XY plane in the drawing, a gap is formed between the second terminal 23 and the wall of the opening 15. The gap receives the resin material of the anisotropic conductive film 30 melted in the heating and pressing process. A flowable resin material such as an adhesive forming the anisotropic conductive film 30 flows into the gap formed around the plating layer 23aM of the second terminal 23. The molten resin material may overflow or run off from the gap. The anisotropic conductive film 30 is provided with a portion that is raised toward the second electronic component 20 side from the portion that is in contact with the plating layer 23aM due to the resin material overflowing or protruding from the opening 15 of the first coverlay 14 that forms the gap. Sometimes.
 本実施形態では、第2回路22の接続部23x(23a,23b,23c,23d)の第2端子23(23A,23B,23C,23D)にめっき層23M(23aM,23bM,23cM,23dM)を形成する。めっき層23Mの厚さは、めっき時間、めっき液、電流量などのめっき条件によって制御可能である。例えば、めっき時間を長くするほどめっき層23Mを厚くすることができる。適切な密度のめっき層が形成される範囲で電流量を高くするほどめっき層23Mを厚くすることができる。本願出願時に知られた手法と実験結果を参照し、目的の厚さにめっき層23Mを形成する。めっき層23Mは銅により形成することが好ましい。また、導電性粒子31を確実に挟み込むようにするためには、端子の接触面は平坦であることが好ましい。めっき層23Mの表面を平坦にすることにより、導電性粒子31を確実に挟み込み、押圧処理において変形させることができる。 In the present embodiment, the plating layer 23M (23aM, 23bM, 23cM, 23dM) is formed on the second terminal 23 (23A, 23B, 23C, 23D) of the connection portion 23x (23a, 23b, 23c, 23d) of the second circuit 22. Form. The thickness of the plating layer 23M can be controlled by the plating conditions such as plating time, plating solution, and current amount. For example, the longer the plating time is, the thicker the plating layer 23M can be. The plating layer 23M can be made thicker as the amount of current is increased within a range where a plating layer having an appropriate density is formed. The plating layer 23M is formed to a target thickness by referring to the method and the experiment result known at the time of filing this application. The plated layer 23M is preferably formed of copper. Further, in order to surely sandwich the conductive particles 31, the contact surface of the terminal is preferably flat. By making the surface of the plating layer 23M flat, the conductive particles 31 can be reliably sandwiched and deformed in the pressing process.
 本実施形態において、第2端子23のめっき層23Mの厚さT23Mと、異方性導電フィルム30の厚さT30Aの合計値が、開口部15の内縁面15Eを形成する第1カバーレイ14の厚さT14以上(T23M+T30A≧T14(=T14A+T14B=T15)となるように、厚さT23Mのめっき層23Mを形成する。本実施形態における第1カバーレイ14の厚さT14は、電子部品1の開口部15の高さT15に対応する。本実施形態における第1カバーレイ14の厚さT14は、第1回路12の主面(異方性導電フィルム30に接する主面)から積層方向(図中Z方向)に沿う第1カバーレイ14の主面(第1電子部品10に最も近い面)までの距離/長さである。異方性導電フィルム30の厚さT30Aは、第1端子13と第2端子23とを接続させる押圧処理の後であって、導電性粒子31がつぶれた状態における異方性導電フィルム30の厚さである。上記条件を満たす厚さのめっき層23Mを形成することにより、第2電子部品20の主面を平坦な状態を維持して、第2端子23を開口部15に囲まれた第1端子13に接触させることができる。 In the present embodiment, the total value of the thickness T23M of the plating layer 23M of the second terminal 23 and the thickness T30A of the anisotropic conductive film 30 is equal to that of the first coverlay 14 forming the inner edge surface 15E of the opening 15. The plating layer 23M having a thickness T23M is formed such that the thickness is T14 or more (T23M+T30A≧T14 (=T14A+T14B=T15).) The thickness T14 of the first coverlay 14 in the present embodiment is the opening of the electronic component 1. It corresponds to the height T15 of the portion 15. The thickness T14 of the first coverlay 14 in this embodiment is from the main surface of the first circuit 12 (the main surface in contact with the anisotropic conductive film 30) in the stacking direction (in the figure). The distance/length to the main surface (the surface closest to the first electronic component 10) of the first coverlay 14 along the Z direction) The thickness T30A of the anisotropic conductive film 30 corresponds to that of the first terminal 13. It is the thickness of the anisotropic conductive film 30 in a state where the conductive particles 31 are crushed after the pressing process for connecting the second terminal 23. The plating layer 23M having a thickness satisfying the above conditions is formed. Thereby, the main surface of the second electronic component 20 can be maintained in a flat state, and the second terminal 23 can be brought into contact with the first terminal 13 surrounded by the opening 15.
 また、めっき層23Mの厚さT23Mと、異方性導電フィルム30の厚さT30Aの合計値と、開口部15の内縁乃至内縁面15Eを形成する第1カバーレイ14の厚さT14(=T14A+T14B)=T15とが等しくなるように、めっき層23Mの厚さT23Mを設定することが好ましい。上記条件を満たすようにめっき層23Mを形成することにより、第2電子部品20の撓み量を低減させて、第2端子23を開口部15に囲まれた段差構造における第1端子13に接続(接触)させることができる。 Further, the total value of the thickness T23M of the plating layer 23M and the thickness T30A of the anisotropic conductive film 30, and the thickness T14 (=T14A+T14B) of the first coverlay 14 forming the inner edge or the inner edge surface 15E of the opening 15. It is preferable to set the thickness T23M of the plating layer 23M so that )=T15 is equal. By forming the plating layer 23M so as to satisfy the above condition, the amount of bending of the second electronic component 20 is reduced, and the second terminal 23 is connected to the first terminal 13 in the step structure surrounded by the opening 15 ( Contact).
 さらに、本実施形態において、第2端子23のめっき層23Mの厚さT23Mと、異方性導電フィルム30の厚さT30Aの合計値が、開口部15の内縁面15Eを形成する第1カバーレイ14の厚さT14(=T14A+T14B)=T15と第2カバーレイ24の厚さT24の合計値未満となるように、厚さT23Mのめっき層23Mを形成する。つまり、T23M+T30A<T14+T24となるように、T23Mを設定し、第2回路22の接続部23xにめっき層23Mを形成する。第1カバーレイ14の厚さT14は、開口部15の高さT15とすることができる。異方性導電フィルム30の厚さT30Aは、第1端子13と第2端子23とを接続させる押圧処理の後であって、導電性粒子31がつぶれた状態における異方性導電フィルム30の厚さである。厚さT30Aが計測される異方性導電フィルム30の導電性粒子31は押圧処理によって変形している。第2カバーレイ24は、シート24Aと接着層24Bとを備える。第2カバーレイ24の厚さT24は、シート24Aの厚さT24Aと接着層24Bの厚さT24Bの合計に対応する。シート24Aの材料は、第2絶縁性基材21と同じ種類の材料のものを用いることが好ましい。接着層24Bの材料は、シート24Aに応じて適宜に選択できる。
 図2Bに示すように、上記条件を満たす場合には、第2電子部品20の第2絶縁性基材21の一方主面(第2回路22が形成されている他方主面の反対側の面)の図中Z方向に沿う高さに関し、第2絶縁性基材21の外側主面21Baの第1領域20R1の高さ21EZ(図中Z方向に沿う位置)が、第1領域20R1以外の領域であって、第2回路が第2カバーレイ24で被覆されている第2絶縁性基材21の第2領域20R2の高さ21BZ(図中Z方向に沿う位置)よりもDZだけ低くなる(図中Zのマイナス方向に位置する)。第1領域20R1は、第2端子23が設けられた領域を含み、図中XY座標で定義することができる領域である。第2領域20R2には第2カバーレイ24が設けられており、第2カバーレイ24の厚さT24に応じて、第2領域20R2と第1領域20R1における第2絶縁性基材21の外側主面21Baの高さに差(傾き)が生じる。このため、第2領域20R2から第1領域20R1へ延在する部分において第2電子部品20は撓む。しかし、上記条件(T23M+T30A≧T14(=T14A+T14B)=T15),かつT23M+T30A<T14+T24)を満たすようにめっき層23Mを第2端子23に形成した場合には、めっき層23Mが形成されない場合よりも、第2電子部品20の撓み量を低減させて、第2端子23を開口部15に囲まれた第1端子13に接続(接触)させることができる。第1カバーレイ14の厚さT14は、開口部15の高さT15としてもよい。
Further, in the present embodiment, the total value of the thickness T23M of the plating layer 23M of the second terminal 23 and the thickness T30A of the anisotropic conductive film 30 is the first coverlay forming the inner edge surface 15E of the opening 15. The plating layer 23M having a thickness T23M is formed so as to be less than the total value of the thickness T14 (=T14A+T14B)=T15 of 14 and the thickness T24 of the second coverlay 24. That is, T23M is set so that T23M+T30A<T14+T24, and the plating layer 23M is formed on the connection portion 23x of the second circuit 22. The thickness T14 of the first coverlay 14 can be the height T15 of the opening 15. The thickness T30A of the anisotropic conductive film 30 is the thickness of the anisotropic conductive film 30 after the pressing process for connecting the first terminal 13 and the second terminal 23 and the conductive particles 31 are crushed. That's it. The conductive particles 31 of the anisotropic conductive film 30 whose thickness T30A is measured are deformed by the pressing process. The second cover lay 24 includes a sheet 24A and an adhesive layer 24B. The thickness T24 of the second coverlay 24 corresponds to the total of the thickness T24A of the sheet 24A and the thickness T24B of the adhesive layer 24B. As the material of the sheet 24A, it is preferable to use the same kind of material as the second insulating base material 21. The material of the adhesive layer 24B can be appropriately selected according to the sheet 24A.
As shown in FIG. 2B, when the above condition is satisfied, one main surface of the second insulating base material 21 of the second electronic component 20 (a surface opposite to the other main surface on which the second circuit 22 is formed) ), the height 21EZ (position along the Z direction in the figure) of the first region 20R1 of the outer principal surface 21Ba of the second insulating base material 21 is other than the first region 20R1. It is a region and is lower than the height 21BZ (position along the Z direction in the figure) of the second region 20R2 of the second insulating base material 21 where the second circuit is covered with the second coverlay 24 by DZ. (It is located in the minus direction of Z in the figure). The first region 20R1 is a region that includes a region where the second terminal 23 is provided and can be defined by XY coordinates in the drawing. The second cover lay 24 is provided in the second region 20R2, and the outer main part of the second insulating base material 21 in the second region 20R2 and the first region 20R1 is provided depending on the thickness T24 of the second cover lay 24. A difference (inclination) occurs in the height of the surface 21Ba. Therefore, the second electronic component 20 bends in the portion extending from the second region 20R2 to the first region 20R1. However, when the plating layer 23M is formed on the second terminal 23 so as to satisfy the above conditions (T23M+T30A≧T14 (=T14A+T14B)=T15) and T23M+T30A<T14+T24), the plating layer 23M is formed more than when the plating layer 23M is not formed. By reducing the amount of bending of the second electronic component 20, the second terminal 23 can be connected (contacted) with the first terminal 13 surrounded by the opening 15. The thickness T14 of the first coverlay 14 may be the height T15 of the opening 15.
 先述したとおり、異方性導電フィルム30の厚さT30Aは、第1端子13と第2端子23とを接続させる押圧処理の後の厚さであって、導電性粒子31がつぶれた状態における厚さである。本実施形態の「異方性導電フィルム30の厚さT30A」は、異方性導電フィルム30に含まれる導電性粒子31が押圧処理によって変形している部分の厚さである。本実施形態の押圧処理によって、第1端子13と第2端子23との間に介在する導電性粒子31が変形している場合に(導電性粒子31が変形している状態において)、押圧処理後の第1端子13と第2端子23との間に存在する異方性導電フィルム30の厚さを、本実施形態の「異方性導電フィルム30の厚さT30A」と定義することもできる。押圧前の導電性粒子31は、図2Aに示すようにほぼ球形であり、潰れていないが、押圧処理後の導電性粒子31は図2Bに示すように潰れて扁平な形状となる。めっき層23Mの厚さを設定する際に用いる異方性導電フィルム30の厚さT30Aは、押圧処理後の厚さ(導電性粒子31が潰れた後の厚さ)である。押圧処理後の異方性導電フィルム30の厚さT30Aは、押圧処理前の異方性導電フィルム30の厚さT30Bに対して、50%以上、80%以下である。押圧処理後の異方性導電フィルム30の厚さT30Aが、押圧処理前の異方性導電フィルム30の厚さT30Bの50%以上、80%以下となるように、押圧処理条件を設定する。設定された所定の押圧処理条件の下において、押圧処理後の異方性導電フィルム30の厚さT30Aが押圧処理前の異方性導電フィルム30の厚さT30Bの50%以上、80%以下とならない場合には、押圧処理において加える圧力を高くするなど、押圧処理の条件を調整する。押圧処理の条件を予め調整しておくことにより、押圧処理前の異方性導電フィルム30の厚さT30Bに対する押圧処理後の異方性導電フィルム30の厚さT30Aの比を、使用する異方性導電フィルム30の種類、厚さなどの規格ごとに特定することができる。特定された比(T30A/T30B)に基づいて、使用する(押圧処理前の)異方性導電フィルム30の厚さT30Bから、押圧処理後の異方性導電フィルム30の厚さT30Aを事前に算出できる。 As described above, the thickness T30A of the anisotropic conductive film 30 is the thickness after the pressing process for connecting the first terminal 13 and the second terminal 23, and is the thickness when the conductive particles 31 are crushed. That's it. The “thickness T30A of the anisotropic conductive film 30” of the present embodiment is the thickness of the portion where the conductive particles 31 included in the anisotropic conductive film 30 are deformed by the pressing process. When the conductive particles 31 interposed between the first terminal 13 and the second terminal 23 are deformed by the pressing process of the present embodiment (when the conductive particles 31 are deformed), the pressing process is performed. The thickness of the anisotropic conductive film 30 that exists between the later first terminal 13 and the second terminal 23 can also be defined as the “thickness T30A of the anisotropic conductive film 30” of the present embodiment. .. The conductive particles 31 before pressing are substantially spherical as shown in FIG. 2A and are not crushed, but the conductive particles 31 after pressing are crushed to have a flat shape as shown in FIG. 2B. The thickness T30A of the anisotropic conductive film 30 used when setting the thickness of the plating layer 23M is the thickness after the pressing process (the thickness after the conductive particles 31 are crushed). The thickness T30A of the anisotropic conductive film 30 after the pressing treatment is 50% or more and 80% or less of the thickness T30B of the anisotropic conductive film 30 before the pressing treatment. The pressing processing conditions are set so that the thickness T30A of the anisotropic conductive film 30 after the pressing processing is 50% or more and 80% or less of the thickness T30B of the anisotropic conductive film 30 before the pressing processing. Under the set predetermined pressure treatment conditions, the thickness T30A of the anisotropic conductive film 30 after the pressure treatment is 50% or more and 80% or less of the thickness T30B of the anisotropic conductive film 30 before the pressure treatment. If not, the pressure processing condition is adjusted by increasing the pressure applied in the pressure processing. By adjusting the condition of the pressing process in advance, the ratio of the thickness T30A of the anisotropic conductive film 30 after the pressing process to the thickness T30B of the anisotropic conductive film 30 before the pressing process is anisotropy to be used. The type and thickness of the electrically conductive film 30 can be specified for each standard. Based on the specified ratio (T30A/T30B), the thickness T30A of the anisotropic conductive film 30 (before the pressing treatment) to be used is calculated in advance from the thickness T30A of the anisotropic conductive film 30 after the pressing treatment. Can be calculated.
 本実施形態では、第2カバーレイ24を設ける位置を制御する。本例では第2カバーレイ24の図中XY面における位置を制御する。先述したように、第2端子23A,23B,23C,23Dは、第2回路22a,22b,22c,22dの一部の領域に設けられる。第2端子23A,23B,23C,23Dは、第2カバーレイ24によって覆われた一部の領域以外の他の一部の所定領域に形成される。つまり、第2カバーレイ24と第2端子23は、第2回路22の主面において異なる場所(別の領域)に設けられる。本実施形態において、第2回路22(22a,22b,22c,22d)のうち、第2カバーレイ24が設けられている部分に、第2端子23は形成されていない。第2カバーレイ24の主面は、第2回路22(22a,22b,22c,22d)に接する。
 なお、第2端子23は、電子部品1の接続構造100において、第1端子13、開口部15の配置位置に対向する位置に応じた位置に配置される。つまり、電子部品1の接続構造100において、第2端子23の第2絶縁性基材21の主面に沿う位置(図中XY座標上の位置)は、第1端子13の第1絶縁性基材11の主面に沿う位置(図中XY座標上の位置)と少なくとも一部が共通する。電子部品1の接続構造100において、第2端子23の第2絶縁性基材21の主面に沿う位置(図中XY座標上の位置)は、開口部15の第1絶縁性基材11の主面に沿う領域の位置(図中XY座標上の位置)に含まれる。
In this embodiment, the position where the second cover lay 24 is provided is controlled. In this example, the position of the second coverlay 24 on the XY plane in the figure is controlled. As described above, the second terminals 23A, 23B, 23C, 23D are provided in a partial area of the second circuits 22a, 22b, 22c, 22d. The second terminals 23A, 23B, 23C, and 23D are formed in a predetermined region other than the region covered by the second coverlay 24. That is, the second coverlay 24 and the second terminal 23 are provided at different locations (different areas) on the main surface of the second circuit 22. In the present embodiment, the second terminal 23 is not formed in the portion of the second circuit 22 (22a, 22b, 22c, 22d) where the second coverlay 24 is provided. The main surface of the second coverlay 24 is in contact with the second circuit 22 (22a, 22b, 22c, 22d).
The second terminal 23 is arranged at a position corresponding to a position facing the arrangement position of the first terminal 13 and the opening 15 in the connection structure 100 of the electronic component 1. That is, in the connection structure 100 of the electronic component 1, the position of the second terminal 23 along the main surface of the second insulating base material 21 (the position on the XY coordinates in the drawing) is the first insulating group of the first terminal 13. At least a part is common with the position along the main surface of the material 11 (position on the XY coordinates in the drawing). In the connection structure 100 of the electronic component 1, the position of the second terminal 23 along the main surface of the second insulating base material 21 (the position on the XY coordinate in the figure) is the position of the first insulating base material 11 of the opening 15. It is included in the position of the area along the main surface (the position on the XY coordinates in the figure).
 本実施形態のめっき層23aMは、第2カバーレイ24が設けられていない領域に設けられる。めっき層23aMが設けられている領域と第2カバーレイ24が設けられている領域とは別の領域である。本実施形態のめっき層23aMが設けられる領域と、第2カバーレイ24が設けられる領域とは電子部品1の主面に沿う位置(図中XY座標)において重複せず、めっき層23aMと第2カバーレイ24とは重なっていない。つまり、めっき層23aMは、第2カバーレイ24の下(カバーレイ24と第2回路22との間)には形成されていない。
 本実施形態とは異なり、めっき層23aMが第2カバーレイ24の下にも形成されている場合には、めっき層23aMが第2カバーレイ24の下にも形成されている分だけシート24Aの上面(接着層24Bとの接面)とめっき層23aMの上面(第2端子23/第2回路22との接面)の段差が大きくなってしまう。そのため、第1端子13と接続不良が生じる可能性が高くなるという不都合が生じることがある。
 また、本実施形態においては、めっき層23aMと、第2カバーレイ24とは異なる領域に設けられ、それらが連続しない領域としてもよい。
 この実施形態とは異なり、めっき層23aMが第2カバーレイ24の端部24Tに接するところまで形成され、めっき層23aMと第2カバーレイ24とが連続している(隙間がない/離隔していない)と、第1端子13(13a,13b,13c,13d)を含む露出部において、第2電子部品20の撓む部分が曲がりにくくなる。そのため、第1端子13(13a,13b,13c,13d)と第2端子23との接触状態が保つことができずに、接続不良が生じる可能性が高くなる。また、第2電子部品20が撓む箇所にもめっき層23aMが形成されていると段差が大きくなり接続不良となる可能性が高くなるという不都合がある。
 本実施形態によれば、めっき層23aMと第2カバーレイ24とを異なる領域に形成するので、上記不都合が生じることを抑制し、段差構造が形成されているにもかかわらず、第1端子13と第2端子23との接続状態が良好に保たれる電子部品1を提供することができる。
The plating layer 23aM of the present embodiment is provided in a region where the second coverlay 24 is not provided. The region where the plating layer 23aM is provided and the region where the second coverlay 24 is provided are different regions. The region in which the plating layer 23aM of the present embodiment is provided and the region in which the second cover lay 24 is provided do not overlap at a position (XY coordinates in the drawing) along the main surface of the electronic component 1, and the region where the plating layer 23aM and the second layer are provided. It does not overlap the coverlay 24. That is, the plating layer 23aM is not formed under the second cover lay 24 (between the cover lay 24 and the second circuit 22).
Unlike the present embodiment, in the case where the plating layer 23aM is also formed under the second cover lay 24, the plating layer 23aM is formed under the second cover lay 24 as much as the sheet 24A. A step difference between the upper surface (contact surface with the adhesive layer 24B) and the upper surface of the plating layer 23aM (contact surface with the second terminal 23/second circuit 22) becomes large. Therefore, there is a possibility that there is a high possibility that a connection failure with the first terminal 13 will occur.
Further, in the present embodiment, the plating layer 23aM and the second cover lay 24 may be provided in different regions and may be regions that are not continuous.
Unlike this embodiment, the plating layer 23aM is formed up to the point where it comes into contact with the end portion 24T of the second cover lay 24, and the plating layer 23aM and the second cover lay 24 are continuous (there is no gap/separation). No.), and in the exposed portion including the first terminal 13 (13a, 13b, 13c, 13d), the bending portion of the second electronic component 20 is hard to bend. Therefore, the contact state between the first terminal 13 (13a, 13b, 13c, 13d) and the second terminal 23 cannot be maintained, and the possibility of connection failure increases. In addition, if the plating layer 23aM is formed even in a portion where the second electronic component 20 bends, there is an inconvenience that the step becomes large and the possibility of connection failure increases.
According to this embodiment, since the plating layer 23aM and the second coverlay 24 are formed in different regions, it is possible to prevent the above inconvenience from occurring and to form the first terminal 13 despite the step structure being formed. It is possible to provide the electronic component 1 in which the connection state between the second terminal 23 and the second terminal 23 is favorably maintained.
 本実施形態において、第2端子23は、第2回路22(22a,22b,22c,22d)の一部を覆う第2カバーレイ24よりも第2電子部品20の解放された端部20E側に設けられる。第2端子23の主面に設けられるめっき層23Mも第2カバーレイ24よりも第2電子部品20の解放された端部20E側に設けられる。第2カバーレイ24は、第2回路22(22a,22b,22c,22d)の他の一部に設けられた第2端子23よりも基端部20B側(解放された端部20E側の反対側)の領域のみに設けられる。第2端子23よりも端部20E側の領域には、第2カバーレイ24は設けられていない。 In the present embodiment, the second terminal 23 is located closer to the released end 20E of the second electronic component 20 than the second coverlay 24 that covers a part of the second circuit 22 (22a, 22b, 22c, 22d). It is provided. The plating layer 23M provided on the main surface of the second terminal 23 is also provided closer to the released end 20E of the second electronic component 20 than the second coverlay 24 is. The second coverlay 24 is closer to the base end portion 20B side (opposite to the released end portion 20E side) than the second terminal 23 provided in another part of the second circuit 22 (22a, 22b, 22c, 22d). Side) area. The second cover lay 24 is not provided in a region closer to the end 20E than the second terminal 23.
 本実施形態において、めっき層23aMは、第2カバーレイ24よりも第2電子部品20の解放された端部20E側に設けられており、これらは、互いに独立した(連続しない)領域に設けられる。めっき層23aMが設けられる領域と、第2カバーレイ24が設けられる位置が離隔しているので、上述した作用効果を奏することができる。
 つまり、本実施形態では、めっき層23aMが第2カバーレイ24の端部24Tに接するところまで形成されていないので、第1端子13(13a,13b,13c,13d)を含む露出部において、第2電子部品20の撓む部分が曲がりにくくなることを回避し、第1端子13(13a,13b,13c,13d)と第2端子23との接触状態が保つことができる。このため、段差構造を有する電子部品1であるにもかかわらず接続不良が生じる可能性を低減できる。また、第2電子部品20が撓む箇所にめっき層23aMが形成されていないので、段差が大きくなることにより接続不良となる可能性を抑制できる。
 同様に、本実施形態では、第2カバーレイ24の下(カバーレイ24と第2回路22との間)にめっき層23aMが形成されていないので、第2カバーレイ24のシート24Aの上面とめっき層23aMの上面の段差が大きくなることを回避することができる。そのため、第1端子13と接続不良が生じる可能性を抑制できる。段差構造を有しつつも、接続状態が良好に保たれた電子部品1を提供することができる。
In the present embodiment, the plating layer 23aM is provided on the released end 20E side of the second electronic component 20 with respect to the second coverlay 24, and these are provided in mutually independent (non-continuous) regions. .. Since the region where the plating layer 23aM is provided and the position where the second cover lay 24 is provided are separated, the above-described effects can be obtained.
That is, in the present embodiment, since the plating layer 23aM is not formed up to the point where it comes into contact with the end portion 24T of the second coverlay 24, the exposed portion including the first terminal 13 (13a, 13b, 13c, 13d) is It is possible to prevent the bending portion of the second electronic component 20 from being difficult to bend, and to maintain the contact state between the first terminal 13 (13a, 13b, 13c, 13d) and the second terminal 23. For this reason, it is possible to reduce the possibility of connection failure even though the electronic component 1 has a step structure. In addition, since the plating layer 23aM is not formed in the portion where the second electronic component 20 bends, it is possible to suppress the possibility of poor connection due to the large step.
Similarly, in the present embodiment, since the plating layer 23aM is not formed below the second cover lay 24 (between the cover lay 24 and the second circuit 22), the plating layer 23aM is not formed on the upper surface of the sheet 24A of the second cover lay 24. It is possible to avoid an increase in the level difference on the upper surface of the plating layer 23aM. Therefore, it is possible to suppress the possibility of poor connection with the first terminal 13. It is possible to provide the electronic component 1 having a good connection state while having a step structure.
 本実施形態では、第2カバーレイ24は、めっき層23Mから所定の第1所定距離だけ離隔した位置に第2カバーレイ24の端部24Tの位置がセットされるように配置される。第2カバーレイ24は、その第2カバーレイ24の端部の位置が、めっき層23Mの端部23MTの位置から第1所定距離Pだけ離隔させた位置となるように配置される。第2カバーレイ24の端部24Tは、第2電子部品20の端部20E側に位置する端部であり、めっき層23Mの端部23MTは、第2電子部品20の基端部20B側(第2カバーレイ24側)に位置する端部である。つまり、めっき層23Mと第2カバーレイ24との距離(最短距離)が第1所定距離Pだけ離隔した配置となるように、第2カバーレイ24及び/又はめっき層23Mの位置を設定する。 In the present embodiment, the second cover lay 24 is arranged such that the position of the end portion 24T of the second cover lay 24 is set at a position separated from the plating layer 23M by a predetermined first predetermined distance. The second cover lay 24 is arranged such that the position of the end of the second cover lay 24 is separated from the position of the end 23MT of the plating layer 23M by a first predetermined distance P. The end 24T of the second coverlay 24 is an end located on the side of the end 20E of the second electronic component 20, and the end 23MT of the plating layer 23M is on the side of the base end 20B of the second electronic component 20 ( It is an end portion located on the second coverlay 24 side). That is, the positions of the second cover lay 24 and/or the plating layer 23M are set such that the distance (shortest distance) between the plating layer 23M and the second cover lay 24 is separated by the first predetermined distance P.
 本実施形態のめっき層23aMは、第2カバーレイ24の端部24Tを基準として、第2電子部品20の端部20E側の領域(図中+X側の領域)の別の領域に設けられる。本実施形態では、基端部20B側のめっき層23aMの端部23MTと第2カバーレイ24の解放された端部20E側の端部24Tとの間が第1所定距離だけ離隔するように、第2カバーレイ24及びめっき層23aMの位置を設定する。
 本実施形態とは異なり、めっき層23aMが第2カバーレイ24の端部24Tまで形成され、両者が離隔されていない場合には、第1端子13(13a,13b,13c,13d)を含む露出部において、第2電子部品20の撓む部分が曲がりにくくなる。そのため、第1端子13(13a,13b,13c,13d)と第2端子23との接触状態が保つことができずに、接続不良が生じる可能性が高くなる。また、第2電子部品20が撓む箇所にもめっき層23aMが形成されていると段差が大きくなり接続不良となる可能性が高くなるという不都合が生じることがある。
 さらに、本実施形態において、めっき層23aMと第2カバーレイ24とは重なっておらず、第2カバーレイ24の下(カバーレイ24と第2回路22との間)にめっき層23aMは形成されていない。
 本実施形態とは異なり、めっき層23aMが第2カバーレイ24の下にも形成されていると、めっき層23aMが第2カバーレイ24の下にも形成されている分だけシート24Aの上面とめっき層23aMの上面の段差が大きくなり、第1端子13と接続不良が生じる可能性が高くなるという不都合が生じることがある。
 これに対し、本実施形態の接続構造100を有する電子部品1は、このような不都合が生じることを抑制し、段差構造が形成されているにもかかわらず、第1端子13と第2端子23との接続状態が良好に保たれる電子部品1を提供することができる。
The plating layer 23aM of the present embodiment is provided in another region of the region on the side of the end 20E of the second electronic component 20 (region on the +X side in the drawing) with the end 24T of the second coverlay 24 as a reference. In this embodiment, the end portion 23MT of the plating layer 23aM on the base end portion 20B side and the end portion 24T on the released end portion 20E side of the second coverlay 24 are separated by a first predetermined distance, The positions of the second coverlay 24 and the plating layer 23aM are set.
Unlike the present embodiment, when the plating layer 23aM is formed up to the end 24T of the second coverlay 24 and the two are not separated, the exposure including the first terminal 13 (13a, 13b, 13c, 13d). In the portion, the bending portion of the second electronic component 20 becomes difficult to bend. Therefore, the contact state between the first terminal 13 (13a, 13b, 13c, 13d) and the second terminal 23 cannot be maintained, and the possibility of connection failure increases. In addition, if the plating layer 23aM is formed even in a portion where the second electronic component 20 bends, there is a possibility that the step becomes large and the possibility of connection failure increases.
Further, in the present embodiment, the plating layer 23aM and the second cover lay 24 do not overlap each other, and the plating layer 23aM is formed under the second cover lay 24 (between the cover lay 24 and the second circuit 22). Not not.
Unlike the present embodiment, when the plating layer 23aM is also formed under the second cover lay 24, the plating layer 23aM is also formed under the second cover lay 24, and thus the upper surface of the sheet 24A is reduced. The step of the upper surface of the plating layer 23aM becomes large, and there is a possibility that the possibility of connection failure with the first terminal 13 becomes high.
On the other hand, the electronic component 1 having the connection structure 100 of the present embodiment suppresses the occurrence of such inconvenience, and despite the step structure being formed, the first terminal 13 and the second terminal 23 are formed. It is possible to provide the electronic component 1 in which the connection state with is kept good.
本実施形態によれば、接続構造100に段差を生じさせる一つの要因となる基端部20B側の第2カバーレイ24と、接続構造100に段差を生じさせる他の要因となる端部20E側の第2端子23のめっき層23Mとの距離を制御することにより、第2絶縁性基材21及び第2回路22を撓ませて接触させる第1端子13と第2端子23との接続を安定させることができる。
このように、第2カバーレイ24の位置を第2端子23の端部23MTから基端部20B側に第1所定距離だけセットバックさせることにより、第2カバーレイ24の厚さT24が第2電子部品20の撓み量に与える影響を低減させることができる。第2カバーレイ24の端部24Tの位置を第2端子23から離隔させることにより、第2電子部品20の第2領域20R2から第1領域20R1へ至る傾きを小さくすることができる。その結果、第2電子部品20の撓み量を低減させることができる。
According to the present embodiment, the second cover lay 24 on the base end 20B side that is one factor that causes a step in the connection structure 100, and the end 20E side that is another factor that causes a step in the connection structure 100. By controlling the distance between the second terminal 23 and the plating layer 23M, the connection between the first terminal 13 and the second terminal 23 that bends and contacts the second insulating base material 21 and the second circuit 22 is stable. Can be made.
In this way, by setting the position of the second cover lay 24 back from the end portion 23MT of the second terminal 23 toward the base end portion 20B by the first predetermined distance, the thickness T24 of the second cover lay 24 becomes the second. It is possible to reduce the influence on the bending amount of the electronic component 20. By separating the position of the end portion 24T of the second coverlay 24 from the second terminal 23, the inclination of the second electronic component 20 from the second region 20R2 to the first region 20R1 can be reduced. As a result, the amount of bending of the second electronic component 20 can be reduced.
 第2カバーレイ24を設ける位置の制御手法に関して、他の例を以下に説明する。第2絶縁性基材21の主面に対して略垂直方向(図中Z方向)に沿って接続構造100を見た場合に、図中X方向(又は図中Y方向)に沿う位置に関し、第2電子部品20の第2カバーレイ24の端部24Tの位置が、第1カバーレイ14の開口部15の内縁面15Eのうち、第2カバーレイ24に最も近い内縁部から第2所定距離Mだけ離隔させた位置となるように、第2カバーレイ24を配置する。図2Aに示す例においては、第2カバーレイ24の端部24Tの位置は、めっき層23Mの端部23MTから所定の距離[((L-W)/2)+M]だけ離隔した位置に配置される。図2Aに示すように、第2カバーレイ24の端部24Tの図中X方向に沿う位置は、開口部15の第2カバーレイ24側の内縁面15Eから第2所定距離Mだけ図中-X方向に離隔した位置に配置される。本実施形態の接続構造100においては、第2絶縁性基材21の外側主面21Ba(図2B参照)の高さに変化がある方向に沿って、第2カバーレイ24の端部24Tの位置を開口部15の内縁面15Eの位置から離隔させることが好ましい。
 このように、第2カバーレイ24の位置を第2端子23の端部23MTから基端部20B側にセットバックさせることにより、第2カバーレイ24の厚さT24が第2電子部品20の撓み量に与える影響を低減させることができる。第2カバーレイ24の端部24Tの位置を第2端子23から離隔させることにより、第2電子部品20の第2領域20R2から第1領域20R1へ至る傾きを小さくすることができる。その結果、第2電子部品20の撓み量を低減させることができる。
Another example of the method for controlling the position at which the second coverlay 24 is provided will be described below. Regarding the position along the X direction in the drawing (or the Y direction in the drawing) when the connection structure 100 is viewed along the direction substantially perpendicular to the main surface of the second insulating base material 21 (Z direction in the drawing), The position of the end portion 24T of the second cover lay 24 of the second electronic component 20 is located at a second predetermined distance from the inner edge portion of the inner edge surface 15E of the opening 15 of the first cover lay 14 that is closest to the second cover lay 24. The second cover lay 24 is arranged such that the second cover lay 24 is located at a position separated by M. In the example shown in FIG. 2A, the position of the end portion 24T of the second cover lay 24 is arranged at a position separated from the end portion 23MT of the plating layer 23M by a predetermined distance [((LW)/2)+M]. To be done. As shown in FIG. 2A, the position of the end portion 24T of the second cover lay 24 along the X direction in the figure is a second predetermined distance M from the inner edge surface 15E of the opening 15 on the second cover lay 24 side- It is arranged at a position separated in the X direction. In the connection structure 100 of the present embodiment, the position of the end portion 24T of the second coverlay 24 is located along the direction in which the height of the outer main surface 21Ba (see FIG. 2B) of the second insulating base material 21 changes. Is preferably separated from the position of the inner edge surface 15E of the opening 15.
In this way, by setting the position of the second cover lay 24 back from the end 23MT of the second terminal 23 to the base end 20B side, the thickness T24 of the second cover lay 24 causes the bending of the second electronic component 20. The influence on the quantity can be reduced. By separating the position of the end portion 24T of the second coverlay 24 from the second terminal 23, the inclination of the second electronic component 20 from the second region 20R2 to the first region 20R1 can be reduced. As a result, the amount of bending of the second electronic component 20 can be reduced.
 第1絶縁性基材11と第2絶縁性基材21との間に第1カバーレイ14と第2カバーレイ24が存在するため、第1電子部品10の第1端子13と第2電子部品20の第2端子23とを接続させると、第2電子部品20の第2絶縁性基材21及び第2回路22は撓む。つまり、図2Bに示すように、第2電子部品20の第2絶縁性基材21の外側主面21Ba(図中上側の面)の図中Z方向に沿う高さの位置に関し、第2端子23を含む第1領域20R1の図中Z方向に沿う高さ21EZは、第1領域20R1以外の領域であって、第2カバーレイ24が設けられている第2領域20R2の図中Z方向に沿う高さ21BZよりもDZだけ低くなる(図中Zのマイナス方向に位置する)。このように、第2領域20R2から第1領域20R1へ延在する部分において第2電子部品20の第2絶縁性基材21及び第2回路22は撓むものの、第2端子23にめっき層23Mを形成した場合には、めっき層23Mが形成されない場合よりも、DZの距離を縮小し、第2電子部品20の撓み量を低減させることができる。 Since the first cover lay 14 and the second cover lay 24 are present between the first insulating base material 11 and the second insulating base material 21, the first terminal 13 of the first electronic component 10 and the second electronic component When the second terminal 23 of the second electronic component 20 is connected, the second insulating base material 21 and the second circuit 22 of the second electronic component 20 bend. That is, as shown in FIG. 2B, with respect to the position of the height of the outer main surface 21Ba (upper surface in the drawing) of the second insulating base material 21 of the second electronic component 20 along the Z direction in the drawing, the second terminal A height 21EZ of the first region 20R1 including 23 along the Z direction in the drawing is a region other than the first region 20R1 in the Z direction of the second region 20R2 where the second coverlay 24 is provided. It becomes DZ lower than the following height 21BZ (positioned in the minus direction of Z in the figure). Thus, although the second insulating base material 21 and the second circuit 22 of the second electronic component 20 are bent in the portion extending from the second region 20R2 to the first region 20R1, the plating layer 23M is formed on the second terminal 23. In the case where the plating layer 23M is formed, the DZ distance can be reduced and the amount of bending of the second electronic component 20 can be reduced as compared with the case where the plating layer 23M is not formed.
 特に限定されないが、本実施形態において、第1カバーレイ14の開口部15の第2カバーレイ24側の内縁面15Eと第2カバーレイ24の端部24Tの間の第2所定距離Mは、第1カバーレイ14の開口部15の開口幅Lの70%以上、90%以下とすることができる。好ましくは、第2所定距離Mは、第1カバーレイ14の開口幅Lの80%とすることができる。これにより、第2電子部品20の撓み量を低減させることができる。第2所定距離Mは、図中X方向に沿う距離であり、開口幅Lも図中X方向に沿う開口部15の距離である。第2カバーレイ24の長手方向は図中X方向に沿う。 In the present embodiment, the second predetermined distance M between the inner edge surface 15E of the opening 15 of the first cover lay 14 on the second cover lay 24 side and the end 24T of the second cover lay 24 is not particularly limited. The opening width L of the opening 15 of the first coverlay 14 can be 70% or more and 90% or less. Preferably, the second predetermined distance M can be 80% of the opening width L of the first coverlay 14. Thereby, the amount of bending of the second electronic component 20 can be reduced. The second predetermined distance M is a distance along the X direction in the drawing, and the opening width L is also a distance of the opening 15 along the X direction in the drawing. The longitudinal direction of the second cover lay 24 is along the X direction in the figure.
 特に限定されないが、本実施形態において、第1カバーレイ14の開口部15の大きさが小さいほど、第1カバーレイ14の開口部15の第2カバーレイ24側の内縁面15Eと第2カバーレイ24の端部24Tの間の第2所定距離Mを大きく設定する。開口部15が小さいと、第1端子13と第2端子23との接触面積も小さくなるので、異方性導電フィルム30による接着力が小さくなる。本実施形態では、開口部15の面積が小さいほど、第2カバーレイ24の端部24Tの位置を第2端子23から離隔させる。これにより、第2電子部品20の第2領域20R2から第1領域20R1へ至る部分の傾きを小さくさせることができる。第2電子部品20の撓んだ部分の傾きを小さくすることにより、第1電子部品10から離隔する方向に働く第2電子部品20の反発力を低減させ、第1端子13と第2端子23の接続部23xの接続状態を安定させることができる。 Although not particularly limited, in this embodiment, the smaller the size of the opening 15 of the first cover lay 14 is, the inner edge surface 15E of the opening 15 of the first cover lay 14 on the second cover lay 24 side and the second cover. The second predetermined distance M between the ends 24T of the ray 24 is set to be large. If the opening 15 is small, the contact area between the first terminal 13 and the second terminal 23 is also small, and thus the adhesive force of the anisotropic conductive film 30 is small. In this embodiment, as the area of the opening 15 is smaller, the position of the end 24T of the second cover lay 24 is separated from the second terminal 23. Thereby, the inclination of the portion of the second electronic component 20 from the second region 20R2 to the first region 20R1 can be reduced. By reducing the inclination of the bent portion of the second electronic component 20, the repulsive force of the second electronic component 20 acting in the direction away from the first electronic component 10 is reduced, and the first terminal 13 and the second terminal 23 are reduced. The connection state of the connection portion 23x can be stabilized.
本実施形態において、第1カバーレイ14の開口部15の大きさが小さいほど、めっき層23Mの第2カバーレイ24側(基端部20B側)の端部23MTと第2カバーレイ24の端部24Tの間の第1所定距離Pを大きく設定する。開口部15が小さいと、第1端子13と第2端子23との接触面積も小さくなるので、異方性導電フィルム30による接着力が小さくなる。本実施形態では、開口部15の面積が小さいほど、第2カバーレイ24の端部24Tの位置を第2端子23から離隔させる。これにより、第2電子部品20の第2領域20R2から第1領域20R1へ至る部分の傾きを小さくさせることができる。第2電子部品20の撓んだ部分の傾きを小さくすることにより、第1電子部品10から離隔する方向に働く第2電子部品20の反発力を低減させ、第1端子13と第2端子23の接続部23xの接続状態を安定させることができる。 In the present embodiment, as the size of the opening 15 of the first cover lay 14 is smaller, the end 23MT of the plating layer 23M on the second cover lay 24 side (the side of the base end 20B) and the end of the second cover lay 24 are smaller. The first predetermined distance P between the portions 24T is set to be large. If the opening 15 is small, the contact area between the first terminal 13 and the second terminal 23 is also small, and thus the adhesive force of the anisotropic conductive film 30 is small. In this embodiment, as the area of the opening 15 is smaller, the position of the end 24T of the second cover lay 24 is separated from the second terminal 23. Thereby, the inclination of the portion of the second electronic component 20 from the second region 20R2 to the first region 20R1 can be reduced. By reducing the inclination of the bent portion of the second electronic component 20, the repulsive force of the second electronic component 20 acting in the direction away from the first electronic component 10 is reduced, and the first terminal 13 and the second terminal 23 are reduced. The connection state of the connection portion 23x can be stabilized.
 特に限定されないが、本実施形態において、第2絶縁性基材21の厚さと第2回路22の厚さT22aが厚いほど、第1カバーレイ14の開口部15の第2カバーレイ24側の内縁面15Eと第2カバーレイ24の端部24Tの間の第2所定距離Mを大きく設定する。第2絶縁性基材21の厚さが厚いほど、又は第2回路22の厚さT22aが厚いほど、第1カバーレイ14の開口部15の第2カバーレイ24側の内縁面15Eと、第2カバーレイ24の端部24Tの間の第2所定距離Mを大きく設定してもよい。
 特に限定されないが、第2絶縁性基材21の厚さが12[μm]であり、第2回路22の厚さT22aが12[μm]である場合に第2所定距離Mを3[mm]以上、5[mm]以下とすることができる。第2絶縁性基材21の厚さが25[μm]であり、第2回路22の厚さT22aが12[μm]である場合に第2所定距離Mを6[mm]以上、8[mm]以下とすることができる。
 本実施形態によれば、第2電子部品20の第2領域20R2から第1領域20R1へ至る傾きを小さくさせ、撓み量を低減することができる。この結果、第1端子13と第2端子23の接続部23xに働く反発力を低減させることができる。本例における第2回路22の厚さT22aは、第2端子23Aの厚さT23aと共通する。
 本実施形態において、第2絶縁性基材21の厚さと第2回路22の厚さT22aが厚いほど、めっき層23Mの第2カバーレイ24側(基端部20B側)の端部23MTと第2カバーレイ24の端部24Tの間の第1所定距離Pを大きく設定する。第2絶縁性基材21の厚さが厚いほど、又は第2回路22の厚さT22aが厚いほど、めっき層23Mの端部23MTと第2カバーレイ24の端部24Tの間の第1所定距離Pを大きく設定してもよい。
Although not particularly limited, in the present embodiment, the thicker the thickness of the second insulating base material 21 and the thickness T22a of the second circuit 22, the inner edge of the opening 15 of the first coverlay 14 on the second coverlay 24 side. The second predetermined distance M between the surface 15E and the end portion 24T of the second coverlay 24 is set to be large. The thicker the second insulating base material 21 or the thicker the thickness T22a of the second circuit 22, the inner edge surface 15E of the opening 15 of the first coverlay 14 on the second coverlay 24 side, The second predetermined distance M between the ends 24T of the two coverlays 24 may be set to be large.
Although not particularly limited, when the thickness of the second insulating base material 21 is 12 [μm] and the thickness T22a of the second circuit 22 is 12 [μm], the second predetermined distance M is 3 [mm]. It is possible to be 5 mm or less. When the thickness of the second insulating base material 21 is 25 [μm] and the thickness T22a of the second circuit 22 is 12 [μm], the second predetermined distance M is 6 [mm] or more and 8 [mm]. ] Can be:
According to this embodiment, the inclination of the second electronic component 20 from the second region 20R2 to the first region 20R1 can be reduced, and the amount of bending can be reduced. As a result, the repulsive force acting on the connecting portion 23x between the first terminal 13 and the second terminal 23 can be reduced. The thickness T22a of the second circuit 22 in this example is the same as the thickness T23a of the second terminal 23A.
In the present embodiment, as the thickness of the second insulating base material 21 and the thickness T22a of the second circuit 22 are larger, the second coverlay 24 side (base end portion 20B side) end portion 23MT of the plating layer 23M and the second end portion 23MT. The first predetermined distance P between the end portions 24T of the second coverlay 24 is set to be large. The thicker the second insulating base material 21 or the thicker the thickness T22a of the second circuit 22, the first predetermined distance between the end 23MT of the plating layer 23M and the end 24T of the second coverlay 24. The distance P may be set large.
 特に限定されないが、本実施形態において、第1カバーレイ14の厚さが厚いほど、第1カバーレイ14の開口部15の第2カバーレイ24側の内縁面15Eの位置と第2カバーレイ24の端部24Tの間の第2所定距離Mを大きく設定する。特に限定されないが、第1カバーレイ14の厚さが30[μm]未満であるときには、第2所定距離Mを3[mm]以上、6[mm]以下とし、合計した厚さが30[μm]以上であるときには、第2所定距離Mを4[mm]以上、8[mm]以下とすることができる。このように、第1カバーレイ14の厚さが厚いほど第2所定距離Mを大きくすることにより、第2電子部品20の外側主面21Baの第2領域20R2から第1領域20R1へ至る傾きを小さくさせることができる。この結果、第1電子部品10から離隔する方向に働く第2電子部品20の反発力を低減させ、第1端子13と第2端子23の接続部23xの接続状態を安定させることができる。
 本実施形態において、第1カバーレイ14の厚さが厚いほど、めっき層23Mの第2カバーレイ24側(基端部20B側)の端部23MTと第2カバーレイ24の端部24Tの間の第1所定距離Pを大きく設定する。このように、第1カバーレイ14の厚さが厚いほど第1所定距離Pを大きくすることにより、第2電子部品20の外側主面21Baの第2領域20R2から第1領域20R1へ至る傾きを小さくさせることができる。この結果、第1電子部品10から離隔する方向に働く第2電子部品20の反発力を低減させ、第1端子13と第2端子23の接続部23xの接続状態を安定させることができる。
Although not particularly limited, in the present embodiment, the thicker the first cover lay 14 is, the more the position of the inner edge surface 15E of the opening 15 of the first cover lay 14 on the second cover lay 24 side and the second cover lay 24 are. The second predetermined distance M between the ends 24T is set to be large. Although not particularly limited, when the thickness of the first coverlay 14 is less than 30 [μm], the second predetermined distance M is set to 3 [mm] or more and 6 [mm] or less, and the total thickness is 30 [μm]. ] Or more, the 2nd predetermined distance M can be 4 [mm] or more and 8 [mm] or less. In this way, by increasing the second predetermined distance M as the thickness of the first coverlay 14 is larger, the inclination of the outer main surface 21Ba of the second electronic component 20 from the second region 20R2 to the first region 20R1 can be made smaller. Can be made smaller. As a result, the repulsive force of the second electronic component 20 acting in the direction away from the first electronic component 10 can be reduced, and the connection state of the connection portion 23x of the first terminal 13 and the second terminal 23 can be stabilized.
In the present embodiment, the thicker the first cover lay 14 is, the greater the distance between the end 23MT of the plating layer 23M on the second cover lay 24 side (base end 20B side) and the end 24T of the second cover lay 24 is. The first predetermined distance P is set to be large. In this way, by increasing the first predetermined distance P as the thickness of the first cover lay 14 increases, the inclination of the outer main surface 21Ba of the second electronic component 20 from the second region 20R2 to the first region 20R1 can be reduced. Can be made smaller. As a result, the repulsive force of the second electronic component 20 acting in the direction away from the first electronic component 10 can be reduced, and the connection state of the connection portion 23x of the first terminal 13 and the second terminal 23 can be stabilized.
 第2絶縁性基材21の厚さと、第2回路22の厚さと、第1カバーレイ14の厚さと第2カバーレイ24の厚さの合計厚さとを考慮して、第2所定距離Mを設定してもよい。本実施形態では、具体的には以下のように第2所定距離Mを設定する。
 (1)第2絶縁性基材21の厚さが12[μm]であり、第2回路22の厚さが12[μm]である場合において、(1-1)第1カバーレイ14の厚さと第2カバーレイ24の厚さの合計の厚さが30[μm]未満であるときには、第2所定距離Mを3[mm]とし、(1-2)第1カバーレイ14の厚さと第2カバーレイ24の厚さの合計の厚さが30[μm]以上、50[μm]以下であるときには、第2所定距離Mを4[mm]とする。
 (2)第2絶縁性基材21の厚さが25[μm]であり、第2回路22の厚さが12[μm]である場合において、(2-1)第1カバーレイ14の厚さと第2カバーレイ24の合計の厚さが30[μm]未満であるときには、第2所定距離Mを6[mm]とし、(2-2)第1カバーレイ14の厚さと第2カバーレイ24の合計の厚さが30[μm]以上、50[μm]以下であるときには、第2所定距離Mを8[mm]とする。
Considering the thickness of the second insulating base material 21, the thickness of the second circuit 22, the total thickness of the thickness of the first cover lay 14 and the thickness of the second cover lay 24, the second predetermined distance M is determined. You may set it. In the present embodiment, specifically, the second predetermined distance M is set as follows.
(1) In the case where the thickness of the second insulating base material 21 is 12 [μm] and the thickness of the second circuit 22 is 12 [μm], (1-1) the thickness of the first coverlay 14 And the thickness of the second cover lay 24 is less than 30 [μm], the second predetermined distance M is set to 3 [mm], and (1-2) the thickness of the first cover lay 14 and When the total thickness of the two coverlays 24 is 30 [μm] or more and 50 [μm] or less, the second predetermined distance M is set to 4 [mm].
(2) In the case where the thickness of the second insulating base material 21 is 25 [μm] and the thickness of the second circuit 22 is 12 [μm], (2-1) the thickness of the first coverlay 14 And the total thickness of the second cover lay 24 is less than 30 [μm], the second predetermined distance M is set to 6 [mm], and (2-2) the thickness of the first cover lay 14 and the second cover lay 14. When the total thickness of 24 is 30 [μm] or more and 50 [μm] or less, the second predetermined distance M is set to 8 [mm].
 本実施形態の接続構造100を有する電子部品1は、第2電子部品20の撓み量を小さくすることができ、第1端子13と第2端子23の接続部23xに働く反発力を低減させることができる。このため、経時的な接続安定性を維持することができ、製品の信頼性を向上させることができる。
 特に、歪みセンサなどの検知機能を有する電子部品との接続においては、精度確保の観点から導体抵抗が低いことが要求される。本実施形態の接続構造100によれば、接続抵抗を100mmOHM以下で歪みセンサ(電子部品)と接続させることができた。本実施形態の接続構造100は、低い導体抵抗が要求される歪みセンサなどのセンサ(電子部品)に適する。
The electronic component 1 having the connection structure 100 of the present embodiment can reduce the amount of bending of the second electronic component 20 and reduce the repulsive force acting on the connecting portion 23x between the first terminal 13 and the second terminal 23. You can Therefore, it is possible to maintain the connection stability over time and improve the reliability of the product.
In particular, in connection with an electronic component having a detection function such as a strain sensor, low conductor resistance is required from the viewpoint of ensuring accuracy. According to the connection structure 100 of the present embodiment, it was possible to connect the strain sensor (electronic component) with a connection resistance of 100 mmOHM or less. The connection structure 100 of the present embodiment is suitable for a sensor (electronic component) such as a strain sensor that requires a low conductor resistance.
 続いて、電子部品1の製造方法を実施例に基づいて説明する。
 実施例に係る電子部品1を下記のとおり作製した。
 図1Aに示す第1電子部品10を準備した。本例に示す第1電子部品10は第1回路12を備えたプリント配線板である。第1電子部品10の構成及び作製方法は先述したとおりである。本実施形態では、厚さ50[μm]のポリイミド製の第1絶縁性基材11の両主面に厚さ12[μm]の銅層が形成された両面銅張基材を準備した。第1回路12は、サブトラクティブ法、アディティブ法、セミアディティブ法などを適宜に用いることができる。本実施形態では他方主面にも回路120を形成した。第1絶縁性基材11の一方主面に第1回路12が形成され、他方主面に回路120が形成された配線板110を得る。この配線板110の回路120はカバーレイ16により保護される。カバーレイ16はポリイミド製のシート16Aと接着層16Bを備える。
Next, a method of manufacturing the electronic component 1 will be described based on examples.
The electronic component 1 according to the example was manufactured as follows.
The first electronic component 10 shown in FIG. 1A was prepared. The first electronic component 10 shown in this example is a printed wiring board including a first circuit 12. The configuration and manufacturing method of the first electronic component 10 are as described above. In this embodiment, a double-sided copper-clad base material is prepared in which a copper layer having a thickness of 12 [μm] is formed on both main surfaces of a first insulating base material 11 made of polyimide having a thickness of 50 [μm]. The first circuit 12 can appropriately use a subtractive method, an additive method, a semi-additive method, or the like. In this embodiment, the circuit 120 is also formed on the other main surface. Wiring board 110 having first circuit 12 formed on one main surface of first insulating base material 11 and circuit 120 formed on the other main surface is obtained. The circuit 120 of the wiring board 110 is protected by the coverlay 16. The coverlay 16 includes a polyimide sheet 16A and an adhesive layer 16B.
 第1回路12の所定部分に第1端子13を設けた。第1端子13の少なくとも一部分(第2端子23との接触部分)に対応する部分(領域)を切り欠いた開口部15を有するポリイミド製の第1カバーレイ14を準備した。第1カバーレイ14は、厚さ12[μm]のポリイミド製のシート14Aと、厚さ15[μm]のポリイミド系の接着層14Bとを備える。第1カバーレイ14の厚さT14(=開口部15の高さT15)は、シート14Aの厚さT14Aと接着層14Bの厚さT14Bとの合計である。第1カバーレイ14の厚さT14は、第1端子13の主面から、シート14Aの第2電子部品20側の主面に至る距離である。第1カバーレイ14の厚さT14は、開口部15を形成する内縁面15Eの高さT15に対応する。つまり、第1カバーレイ14の厚さT14として、開口部15の高さT15を用いてもよい。開口部15の内縁面15Eに囲われる領域内に第1端子13が存在するように位置を合わせて、第1カバーレイ14を貼り付けた。第1カバーレイ14の開口部15において、第1端子13の少なくとも一部は露出した状態となる。露出した第1端子13又は第1端子13の一部は第1カバーレイ14の開口部15の内縁面15Eに取り囲まれている。 The first terminal 13 is provided at a predetermined portion of the first circuit 12. A first coverlay 14 made of polyimide having an opening 15 in which a portion (region) corresponding to at least a portion (contact portion with the second terminal 23) of the first terminal 13 is cut out was prepared. The first coverlay 14 includes a polyimide sheet 14A having a thickness of 12 [μm] and a polyimide adhesive layer 14B having a thickness of 15 [μm]. The thickness T14 of the first coverlay 14 (=the height T15 of the opening 15) is the total of the thickness T14A of the sheet 14A and the thickness T14B of the adhesive layer 14B. The thickness T14 of the first coverlay 14 is the distance from the main surface of the first terminal 13 to the main surface of the sheet 14A on the second electronic component 20 side. The thickness T14 of the first cover lay 14 corresponds to the height T15 of the inner edge surface 15E forming the opening 15. That is, the height T15 of the opening 15 may be used as the thickness T14 of the first coverlay 14. The first coverlay 14 was attached by aligning the positions so that the first terminals 13 were present in the region surrounded by the inner edge surface 15E of the opening 15. In the opening 15 of the first coverlay 14, at least a part of the first terminal 13 is exposed. The exposed first terminal 13 or a part of the first terminal 13 is surrounded by the inner edge surface 15E of the opening 15 of the first coverlay 14.
 図1Bに示す第2電子部品20を準備した。本例に示す第2電子部品20は第2回路22を備えたプリント配線板である。第2電子部品20の構成及び作製方法は先述したとおりである。本実施形態では、厚さ12[μm]のポリイミド製の第2絶縁性基材21の一方主面に厚さ12[μm]の銅層が形成された片面銅張基材を準備した。第2回路22は、サブトラクティブ法、アディティブ法、セミアディティブ法などを適宜に用いることができる。第2回路22の接続部23xにめっき層23Mを形成した。本例におけるめっきアップされためっき層23Mの厚さは15[μm]であった。めっき層23Mは、ボタンめっき法で形成した。第2端子23が設けられた領域を除き、第2回路22の少なくとも一部を覆うように第2カバーレイ24を配置した。 The second electronic component 20 shown in FIG. 1B was prepared. The second electronic component 20 shown in this example is a printed wiring board having a second circuit 22. The configuration and manufacturing method of the second electronic component 20 are as described above. In this embodiment, a single-sided copper-clad substrate having a 12 [μm] thick copper layer having a thickness of 12 [μm] formed on one principal surface of a second insulating substrate 21 made of polyimide is prepared. The second circuit 22 can appropriately use a subtractive method, an additive method, a semi-additive method, or the like. The plating layer 23M was formed on the connection portion 23x of the second circuit 22. The thickness of the plated-up plated layer 23M in this example was 15 [μm]. The plating layer 23M was formed by the button plating method. The second cover lay 24 is arranged so as to cover at least a part of the second circuit 22 except for the region where the second terminal 23 is provided.
 第1端子13と第2端子23との間に厚さ25[μm]の異方性導電フィルム30を配置した。異方性導電フィルム30を介在させた状態で、第1電子部品10と第2電子部品20とを160℃~200℃に加熱し、互いに押し付ける押圧処理を行った。押圧処理の工程において溶融した異方性導電フィルム30の樹脂材は、第2端子23よりも大きい開口部15の隙間に収容される。押圧処理後における異方性導電フィルム30の厚さT30Aは、押圧処理前における異方性導電フィルム30の厚さT30Bの50%以上、80%以下となる。本実施例において押圧処理後の異方性導電フィルム30の厚さT30Aは12.5[μm]以上、20[μm]以下となる。本実施例における加熱を伴う押圧処理後の異方性導電フィルム30の厚さを計測したところ15[μm]であった。本実施形態では、開口部15を形成する第1カバーレイ14の厚さT14(T14A+T14B)=T15(開口部15の高さT15)は27[μm]である。第2端子23のめっき層23Mの厚さT23Mと、押圧処理後の異方性導電フィルム30の厚さT30Aの合計が、開口部15の内縁面15Eを形成する第1カバーレイ14の厚さT14(T14A+T14B)以上(T23M+T30A≧T14=T14A+T14B=T15)とするために、めっき層23Mの厚さT23Mは12[μm]以上であることが必要である。本例では、めっき層23Mの厚さT23Mを15[μm]と設定した。本実施例では、上記手法により、めっき層23Mの厚さT23Mを15[μm]の第2電子部品20を得て、これを用いた。本例における、異方性導電フィルム30の厚さT30A(15[μm])とめっき層23Mの厚さT23M(15[μm])との合計値は、第1カバーレイ14の厚さ(27[μm])以上である30[μm]であった。これにより、図1Cに示す電子部品1を得た。本例において、第1カバーレイ14の厚さT14は、開口部15の高さT15と置き換えてもよい。 An anisotropic conductive film 30 having a thickness of 25 μm was arranged between the first terminal 13 and the second terminal 23. With the anisotropic conductive film 30 interposed, the first electronic component 10 and the second electronic component 20 were heated to 160° C. to 200° C., and a pressing process of pressing each other was performed. The resin material of the anisotropic conductive film 30 melted in the pressing process is housed in the gap of the opening 15 larger than the second terminal 23. The thickness T30A of the anisotropic conductive film 30 after the pressing process is 50% or more and 80% or less of the thickness T30B of the anisotropic conductive film 30 before the pressing process. In this example, the thickness T30A of the anisotropic conductive film 30 after the pressing process is 12.5 [μm] or more and 20 [μm] or less. The thickness of the anisotropic conductive film 30 after the pressing process accompanied by heating in this example was measured and found to be 15 [μm]. In the present embodiment, the thickness T14 (T14A+T14B)=T15 (height T15 of the opening 15) of the first coverlay 14 forming the opening 15 is 27 [μm]. The sum of the thickness T23M of the plating layer 23M of the second terminal 23 and the thickness T30A of the anisotropic conductive film 30 after the pressing treatment is the thickness of the first coverlay 14 forming the inner edge surface 15E of the opening 15. In order to satisfy T14 (T14A+T14B) or more (T23M+T30A≧T14=T14A+T14B=T15), the thickness T23M of the plating layer 23M needs to be 12 [μm] or more. In this example, the thickness T23M of the plating layer 23M is set to 15 [μm]. In the present embodiment, the second electronic component 20 having the thickness T23M of the plating layer 23M of 15 [μm] was obtained by the above method and used. In this example, the total value of the thickness T30A (15 [μm]) of the anisotropic conductive film 30 and the thickness T23M (15 [μm]) of the plating layer 23M is the thickness of the first coverlay 14 (27 It was 30 [μm] which is more than [μm]). Thereby, the electronic component 1 shown in FIG. 1C was obtained. In this example, the thickness T14 of the first coverlay 14 may be replaced with the height T15 of the opening 15.
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiments described above are described to facilitate the understanding of the present invention, and are not described to limit the present invention. Therefore, each element disclosed in the above-described embodiment is intended to include all design changes and equivalents within the technical scope of the present invention.
1…電子部品
100…接続構造、電子部品の接続構造
100´…接続領域
10…第1電子部品
 11…第1絶縁性基材
 12a,12b,12c,12d,12…第1回路
 13a,13b,13c,13d,13…第1端子
 14…第1カバーレイ
 15…開口部
 16…カバーレイ
 110…配線板
20…第2電子部品
 21…第2絶縁性基材
 22a,22b,22c,22d,22…第2回路
 23A,23B,23C,23D,23…第2端子
 23a,23b,23c,23d,23x…第2回路の接続部
 23aM,23bM,23cM,23dM,23M…めっき層
 24…第2カバーレイ
 30…異方性導電フィルム
 31…導電性粒子
DESCRIPTION OF SYMBOLS 1... Electronic component 100... Connection structure, connection structure 100' of electronic components... Connection area 10... 1st electronic component 11... 1st insulating base material 12a, 12b, 12c, 12d, 12... 1st circuit 13a, 13b, 13c, 13d, 13... 1st terminal 14... 1st coverlay 15... Opening part 16... Coverlay 110... Wiring board 20... 2nd electronic component 21... 2nd insulating base material 22a, 22b, 22c, 22d, 22. ... Second circuit 23A, 23B, 23C, 23D, 23... Second terminal 23a, 23b, 23c, 23d, 23x... Connection portion of second circuit 23aM, 23bM, 23cM, 23dM, 23M... Plating layer 24... Second cover Ray 30... Anisotropic conductive film 31... Conductive particles

Claims (6)

  1.  第1電子部品が備える第1端子と、第2電子部品が備える第2端子とを接続させる電子部品の接続構造であって、
     前記第1電子部品は、
     第1絶縁性基材と、
     前記第1絶縁性基材の一方主面に形成された第1回路に接続される前記第1端子と、
     前記第1回路の少なくとも一部及び前記第1端子の周囲を覆いつつ、前記第1端子の少なくとも一部を露出させる開口部を備える第1カバーレイと、を備え、
     前記第1絶縁性基材の厚さに沿う積層方向における前記第1端子の主面の高さが、前記第1カバーレイの主面の高さよりも低く、
     前記第2電子部品は、
     第2絶縁性基材と、
     前記第2絶縁性基材の一方主面に形成された第2回路と、
     前記第2回路の少なくとも一部を覆う第2カバーレイと、
     前記第2回路の前記第2カバーレイに覆われた部分以外の他の一部の所定領域に形成され、前記第2回路に接続される前記第2端子と、
    を備え、
     前記第2端子は、前記第1端子に電気的に接続するめっき層を有し、
     前記接続構造は、前記第1端子と前記第2端子との間に設けられた異方性導電フィルムを有し、前記異方性導電フィルムを介して前記第1端子と前記第2端子とを電気的に接続させ、
     前記接続構造における、前記めっき層の厚さと前記異方性導電フィルムの厚さの合計値が、前記開口部の内縁面の高さに対応する、前記第1回路の主面から前記積層方向に沿う前記第1カバーレイの主面までの前記第1カバーレイの厚さ以上である電子部品の接続構造。
    A connection structure of an electronic component for connecting a first terminal included in a first electronic component and a second terminal included in a second electronic component,
    The first electronic component is
    A first insulating substrate,
    The first terminal connected to a first circuit formed on one main surface of the first insulating base material;
    A first coverlay having an opening for exposing at least a part of the first terminal while covering at least a part of the first circuit and the periphery of the first terminal,
    The height of the main surface of the first terminal in the stacking direction along the thickness of the first insulating substrate is lower than the height of the main surface of the first coverlay,
    The second electronic component is
    A second insulating base material,
    A second circuit formed on one main surface of the second insulating base material;
    A second coverlay covering at least a portion of the second circuit;
    A second terminal formed in a predetermined region other than a portion of the second circuit other than the portion covered by the second coverlay, the second terminal being connected to the second circuit;
    Equipped with
    The second terminal has a plating layer electrically connected to the first terminal,
    The connection structure has an anisotropic conductive film provided between the first terminal and the second terminal, and connects the first terminal and the second terminal via the anisotropic conductive film. Electrically connected,
    In the connection structure, the total value of the thickness of the plating layer and the thickness of the anisotropic conductive film corresponds to the height of the inner edge surface of the opening, from the main surface of the first circuit in the stacking direction. A connection structure for an electronic component having a thickness equal to or greater than the thickness of the first cover lay up to the main surface of the first cover lay.
  2.  前記めっき層の厚さと前記異方性導電フィルムの厚さの合計値が、前記開口部の内縁面の高さに対応する、前記第1回路の主面から前記積層方向に沿う前記第1カバーレイの主面までの前記第1カバーレイの厚さと、前記第2カバーレイの厚さとの合計値未満であり、
     前記第2絶縁性基材の他方主面の前記積層方向に沿う高さに関し、前記第2端子が設けられた領域を含む第1領域の高さが、前記第1領域以外の前記第2回路を前記第2カバーレイが被覆する第2領域の高さよりも低い請求項1に記載の接続構造。
    The total value of the thickness of the plating layer and the thickness of the anisotropic conductive film corresponds to the height of the inner edge surface of the opening, and the first cover extends along the stacking direction from the main surface of the first circuit. Is less than the total value of the thickness of the first cover lay to the main surface of the lay and the thickness of the second cover lay,
    Regarding the height of the other main surface of the second insulating base material along the stacking direction, the height of the first region including the region where the second terminal is provided is the second circuit other than the first region. The connection structure according to claim 1, wherein the height is lower than the height of the second region covered by the second coverlay.
  3.  前記第2絶縁性基材の主面に対して略垂直方向に沿って前記接続構造を見た場合に、
     前記第2カバーレイは、当該第2カバーレイの端部の位置が、前記めっき層の前記第2カバーレイ側の端部の位置から第1所定距離だけ離隔させた位置となるように配置される請求項1又は2に記載の接続構造。
    When the connection structure is viewed along a direction substantially perpendicular to the main surface of the second insulating base material,
    The second cover lay is arranged such that the position of the end of the second cover lay is separated from the position of the end of the plating layer on the second cover lay side by a first predetermined distance. The connection structure according to claim 1 or 2.
  4.  前記第2絶縁性基材の主面に対して略垂直方向に沿って前記接続構造を見た場合に、
     前記第2カバーレイは、前記第2端子を基準とした場合に解放された端部とは反対側の領域のみに設けられ、前記第2カバーレイの端部の位置が、前記第1カバーレイに形成された前記開口部の前記第2カバーレイ側の端部の位置から第2所定距離だけ離隔させた位置となるように配置される請求項1~3のいずれか一項に記載の接続構造。
    When the connection structure is viewed along a direction substantially perpendicular to the main surface of the second insulating base material,
    The second cover lay is provided only in a region opposite to the end that is released when the second terminal is the reference, and the position of the end of the second cover lay is the same as that of the first cover lay. The connection according to any one of claims 1 to 3, wherein the connection is arranged at a position separated by a second predetermined distance from the position of the end of the opening formed on the second coverlay side. Construction.
  5.  前記第2所定距離は、前記第1カバーレイの前記開口部の開口幅の70%以上、かつ90%以下である請求項4に記載の接続構造。 The connection structure according to claim 4, wherein the second predetermined distance is 70% or more and 90% or less of an opening width of the opening of the first coverlay.
  6.  第1絶縁性基材を準備し、
     前記第1絶縁性基材の一方主面に第1回路と前記第1回路に接続する第1端子を形成し、
     前記第1端子の位置に対応する位置に設けられた開口部を備え、前記第1端子の厚さよりも厚さが厚い第1カバーレイを準備し、
     前記開口部から前記第1端子の少なくとも一部を露出させるように、前記第1絶縁性基材の一方主面に前記第1カバーレイが配置された第1電子部品を準備する工程と、
     第2絶縁性基材を準備し、
     前記第2絶縁性基材の一方主面に第2回路を形成し、
     前記第2回路の接続部にめっきをして、めっき層を有する第2端子が形成された第2電子部品を準備する工程と、
     前記第1端子と前記第2端子の間に異方性導電フィルムを配置し、
     前記第1電子部品と前記第2電子部品を加熱しながら互いに押圧し、
     前記第2絶縁性基材及び前記第2回路を撓ませた状態で前記第2端子と前記第1端子とを接触させ、
     前記第1端子と前記第2端子と電気的に接続させる接続構造を備える電子部品の製造方法。
    Preparing a first insulating substrate,
    A first circuit and a first terminal connected to the first circuit are formed on one main surface of the first insulating substrate;
    Preparing a first coverlay having an opening provided at a position corresponding to the position of the first terminal and having a thickness larger than the thickness of the first terminal;
    A step of preparing a first electronic component in which the first coverlay is arranged on one main surface of the first insulating base material so as to expose at least a part of the first terminal from the opening;
    Preparing a second insulating substrate,
    Forming a second circuit on one main surface of the second insulating base material;
    Plating the connection portion of the second circuit to prepare a second electronic component having a second terminal having a plating layer formed thereon;
    An anisotropic conductive film is arranged between the first terminal and the second terminal,
    The first electronic component and the second electronic component are pressed against each other while being heated,
    Contacting the second terminal and the first terminal in a state in which the second insulating base material and the second circuit are bent,
    A method of manufacturing an electronic component, comprising a connection structure for electrically connecting the first terminal and the second terminal.
PCT/JP2019/050175 2018-12-21 2019-12-20 Electronic component connection structure and method for producing electronic component connection structure WO2020130142A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-239962 2018-12-21
JP2018239962 2018-12-21

Publications (1)

Publication Number Publication Date
WO2020130142A1 true WO2020130142A1 (en) 2020-06-25

Family

ID=71101280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050175 WO2020130142A1 (en) 2018-12-21 2019-12-20 Electronic component connection structure and method for producing electronic component connection structure

Country Status (1)

Country Link
WO (1) WO2020130142A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249549A (en) * 2010-05-26 2011-12-08 Sumitomo Electric Printed Circuit Inc Flexible printed wiring board, connection structure thereof, method of manufacturing them, and electronic equipment
JP2011258739A (en) * 2010-06-09 2011-12-22 Sumitomo Electric Printed Circuit Inc Connection structure of printed wiring board, wiring board connection body, electronic apparatus and method of manufacturing wiring board connection body
JP2013153114A (en) * 2012-01-26 2013-08-08 Sumitomo Electric Printed Circuit Inc Printed wiring board, printed wiring board connection structure using printed wiring board, and manufacturing method of printed wiring board
JP2017161887A (en) * 2016-03-07 2017-09-14 株式会社ジャパンディスプレイ Display device
JP2018014381A (en) * 2016-07-20 2018-01-25 富士通株式会社 Substrate and electronic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249549A (en) * 2010-05-26 2011-12-08 Sumitomo Electric Printed Circuit Inc Flexible printed wiring board, connection structure thereof, method of manufacturing them, and electronic equipment
JP2011258739A (en) * 2010-06-09 2011-12-22 Sumitomo Electric Printed Circuit Inc Connection structure of printed wiring board, wiring board connection body, electronic apparatus and method of manufacturing wiring board connection body
JP2013153114A (en) * 2012-01-26 2013-08-08 Sumitomo Electric Printed Circuit Inc Printed wiring board, printed wiring board connection structure using printed wiring board, and manufacturing method of printed wiring board
JP2017161887A (en) * 2016-03-07 2017-09-14 株式会社ジャパンディスプレイ Display device
JP2018014381A (en) * 2016-07-20 2018-01-25 富士通株式会社 Substrate and electronic apparatus

Similar Documents

Publication Publication Date Title
CN102316664B (en) Flexible circuit board and manufacture method thereof
US11558958B2 (en) Laminated body and method for manufacturing the same
US20080251280A1 (en) Soldering structure between circuit boards
US7772501B2 (en) Flexible printed circuit board
US8604354B2 (en) Printed wiring board, method of manufacturing printed wiring board, and method of connecting printed wiring board
JP3522513B2 (en) Flat cable and method of manufacturing the same
US11374361B2 (en) Plug connector, connector system, and flying body
US10091879B2 (en) Conductor connecting structure and mounting board
JP2007258410A (en) Wiring board connecting structure and its manufacturing method
US10123414B2 (en) Multilayer circuit board using laser direct structuring additive
WO2020130142A1 (en) Electronic component connection structure and method for producing electronic component connection structure
US8546696B2 (en) Printed circuit board and method for manufacturing the same
JP2019021863A (en) Multilayer substrate
CN112423472A (en) Rigid-flexible circuit board and manufacturing method thereof
US20170064828A1 (en) Conductor connecting structure and mounting board
JP2008098026A (en) Conductive connection member, and manufacturing method of the same
CN211352592U (en) Electromagnetic interference shielding structure and flexible circuit board with electromagnetic interference shielding structure
JP2006066525A (en) Flexible printed wiring board
GB2565453A (en) Flexible printed board
WO2020012952A1 (en) Flat cable and method for producing flat cable
US8742264B2 (en) Electronic apparatus
CN113597085A (en) Transmission circuit board and manufacturing method thereof
JP2020088197A (en) Resin multilayer substrate and electronic apparatus
CN220457635U (en) Flexible circuit board capable of being connected on two sides
JP2013093608A (en) Printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19899649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP