WO2020130000A1 - 二次電池用の電極板及びそれを用いた二次電池 - Google Patents

二次電池用の電極板及びそれを用いた二次電池 Download PDF

Info

Publication number
WO2020130000A1
WO2020130000A1 PCT/JP2019/049491 JP2019049491W WO2020130000A1 WO 2020130000 A1 WO2020130000 A1 WO 2020130000A1 JP 2019049491 W JP2019049491 W JP 2019049491W WO 2020130000 A1 WO2020130000 A1 WO 2020130000A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
plate
electrode plate
secondary battery
Prior art date
Application number
PCT/JP2019/049491
Other languages
English (en)
French (fr)
Inventor
寛之 田島
佐藤 哲也
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to EP19899059.0A priority Critical patent/EP3902030A4/en
Priority to CN201980068345.1A priority patent/CN112868114A/zh
Priority to JP2020561471A priority patent/JP7398392B2/ja
Priority to US17/311,967 priority patent/US20220029167A1/en
Publication of WO2020130000A1 publication Critical patent/WO2020130000A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/588Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries outside the batteries, e.g. incorrect connections of terminals or busbars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode plate for a secondary battery and a secondary battery using the same.
  • Secondary batteries such as alkaline rechargeable batteries and non-aqueous electrolyte rechargeable batteries are used as drive power sources for electric vehicles (EV) and hybrid electric vehicles (HEV, PHEV).
  • EV electric vehicles
  • HEV hybrid electric vehicles
  • These secondary batteries have a structure in which an electrode body including a positive electrode plate, a negative electrode plate, and a separator is housed in a battery case together with an electrolyte.
  • the battery case includes an exterior body having an opening and a sealing plate that seals the opening of the exterior body.
  • a positive electrode terminal and a negative electrode terminal are attached to the sealing plate.
  • the positive electrode terminal is electrically connected to the positive electrode plate via the positive electrode current collector
  • the negative electrode terminal is electrically connected to the negative electrode plate via the negative electrode current collector.
  • One object of the present invention is to provide a highly reliable secondary battery.
  • An electrode plate for a secondary battery A metal core and an electrode plate for a secondary battery having an active material layer formed on both surfaces of the core, The electrode plate has a first edge and a tab protruding from the first edge, A coating film containing fluorine is formed on the end surface of the core body at the first end side.
  • a secondary battery according to an aspect of the present invention includes the electrode plate and another electrode plate having a polarity different from that of the electrode plate.
  • a highly reliable secondary battery can be provided.
  • FIG. 2 is a sectional view taken along line II-II in FIG. 1.
  • A is a top view of a positive electrode original plate.
  • B is a plan view of the positive electrode original plate after tab formation.
  • C is a plan view of the positive electrode plate.
  • FIG. 3A is a sectional view taken along the line aa in FIG.
  • FIG. 3B is a sectional view taken along the line bb in FIG.
  • A) is a top view of a negative electrode original plate.
  • (B) is a plan view of the negative electrode original plate after tab formation.
  • C is a plan view of the negative electrode plate. It is a top view of the electrode body concerning an embodiment.
  • the configuration of the prismatic secondary battery 20 as the secondary battery according to the embodiment will be described below.
  • the present invention is not limited to the embodiments below.
  • a prismatic secondary battery 20 includes a battery case 100 including a prismatic outer casing 1 having a bottomed rectangular tubular shape having an opening, and a sealing plate 2 for sealing the opening of the prismatic outer casing 1. ..
  • the prismatic outer casing 1 and the sealing plate 2 are preferably made of metal.
  • an electrode body 3 including a positive electrode plate and a negative electrode plate is housed together with an electrolyte.
  • a positive electrode tab group 40A including a plurality of positive electrode tabs 40 and a negative electrode tab group 50A including a plurality of negative electrode tabs 50 are provided at an end portion of the electrode body 3 on the sealing plate 2 side.
  • the positive electrode tab group 40A is electrically connected to the positive electrode terminal 7 via the second positive electrode current collector 6b and the first positive electrode current collector 6a.
  • the negative electrode tab group 50A is electrically connected to the negative electrode terminal 9 via the second negative electrode current collector 8b and the first negative electrode current collector 8a.
  • the first positive electrode current collector 6a and the second positive electrode current collector 6b form the positive electrode current collector 6.
  • the positive electrode current collector 6 may be a single component.
  • the first negative electrode current collector 8a and the second negative electrode current collector 8b form the negative electrode current collector 8. Note that the negative electrode current collector 8 may be a single component.
  • the first positive electrode current collector 6a, the second positive electrode current collector 6b, and the positive electrode terminal 7 are preferably made of metal, and more preferably made of aluminum or aluminum alloy.
  • An external insulating member 10 made of resin is disposed between the positive electrode terminal 7 and the sealing plate 2.
  • An inner insulating member 11 made of resin is disposed between the first positive electrode current collector 6 a and the second positive electrode current collector 6 b and the sealing plate 2.
  • the first negative electrode current collector 8a, the second negative electrode current collector 8b, and the negative electrode terminal 9 are preferably made of metal, and more preferably made of copper or a copper alloy. Further, the negative electrode terminal 9 preferably has a portion made of aluminum or an aluminum alloy and a portion made of copper or a copper alloy. In this case, it is preferable that the portion made of copper or a copper alloy is connected to the first negative electrode current collector 8a so that the portion made of aluminum or an aluminum alloy projects outward from the sealing plate 2.
  • An outer insulating member 12 made of resin is arranged between the negative electrode terminal 9 and the sealing plate 2.
  • An inner insulating member 13 made of resin is disposed between the first negative electrode current collector 8 a and the second negative electrode current collector 8 b and the sealing plate 2.
  • An electrode body holder 14 made of a resin sheet made of resin is arranged between the electrode body 3 and the rectangular outer casing 1.
  • the electrode body holder 14 is preferably formed by bending an insulating sheet made of resin into a bag shape or a box shape.
  • the sealing plate 2 is provided with an electrolytic solution injection hole 15, and the electrolytic solution injection hole 15 is sealed with a sealing member 16.
  • the sealing plate 2 is provided with a gas discharge valve 17 that breaks when the pressure inside the battery case 100 exceeds a predetermined value and discharges the gas inside the battery case 100 to the outside of the battery case 100.
  • Lithium nickel cobalt manganese composite oxide as a positive electrode active material, polyvinylidene fluoride (PVdF) as a binder, a carbon material as a conductive material, and N-methyl-2-pyrrolidone (NMP) as a dispersion medium are lithium nickel.
  • the cobalt-manganese composite oxide:PVdF:carbon material is kneaded in a mass ratio of 97.5:1:1.5 to prepare a positive electrode active material layer slurry.
  • Alumina powder, carbon material as a conductive material, polyvinylidene fluoride (PVdF) as a binder and N-methyl-2-pyrrolidone (NMP) as a dispersion medium were used, and the mass ratio of alumina powder:carbon material:PVdF was 83. Kneading is performed to obtain a protective layer slurry.
  • the positive electrode active material layer slurry and the positive electrode protective layer slurry produced by the above method are applied to both surfaces of a 15 ⁇ m-thick aluminum foil as a positive electrode core by a die coater. At this time, the positive electrode active material layer slurry is applied to the center of the positive electrode core in the width direction. Further, the positive electrode protective layer slurry is applied to both ends in the width direction of the region to which the positive electrode active material layer slurry is applied.
  • the positive electrode active material layer slurry and the positive electrode protective layer slurry are dried to remove the NMP contained in the positive electrode active material layer slurry and the positive electrode protective layer slurry. Thus, the positive electrode active material layer and the protective layer are formed. After that, the positive electrode active material layer is compressed by passing between the pair of press rollers to obtain the positive electrode original plate 400.
  • FIG. 3A is a plan view of the positive electrode original plate 400 manufactured by the above method.
  • a positive electrode active material layer 4b is formed on both surfaces of the strip-shaped positive electrode core 4a along the longitudinal direction of the positive electrode core 4a.
  • the positive electrode protective layer 4c is formed at both ends in the width direction of the region where the positive electrode active material layer 4b is formed.
  • the positive electrode core body exposed portions 4d are formed on both ends of the positive electrode original plate 400 in the width direction along the longitudinal direction of the positive electrode original plate 400.
  • the thickness of the positive electrode active material layer 4b is preferably larger than the thickness of the positive electrode protective layer 4c.
  • the thickness of the positive electrode protective layer 4c formed on one surface of the positive electrode core body is preferably 10 to 100 ⁇ m, and more preferably 15 to 50 ⁇ m.
  • FIG. 3B is a plan view of the positive electrode original plate 401 after tab formation.
  • the positive electrode original plate 401 after tab formation is produced.
  • the laser output is preferably 500 W to 1200 W, more preferably 550 W to 1000 W, and further preferably 600 W to 1000 W.
  • the scanning speed of the laser is preferably 100 mm/s to 5000 mm/s. However, it is not limited to this. A pulsed laser may be used.
  • a plurality of positive electrode tabs 40 are formed at both ends in the width direction of the positive electrode original plate 401 after tab formation.
  • the positive electrode tab 40 includes the positive electrode core exposed portion 4d.
  • the positive electrode is formed so that the positive electrode protective layer 4c remains on the root of the positive electrode tab 40 and the edge of the positive electrode original plate 401 after the tab is formed between the adjacent positive electrode tabs 40.
  • the original plate 400 can be cut.
  • FIG. 3C is a plan view of the positive electrode plate 4.
  • the positive electrode original plate 401 after tab formation is cut at the center in the width direction along the longitudinal direction of the positive electrode original plate 401 after tab formation.
  • the positive electrode original plate 401 after tab formation is cut at predetermined intervals to manufacture the positive electrode plate 4.
  • laser cutting, cutting using a mold or a cutter, and the like can be used. It is preferable to use a mold or a cutter to cut the positive electrode original plate 401 after the tab formation.
  • FIG. 4A is a cross-sectional view taken along the line aa in FIG. 3C, and is a cross-sectional view of the first end 4A of the positive electrode plate 4 from which the positive electrode tab 40 projects.
  • FIG. 4B is a sectional view taken along the line bb of FIG. 3C and is a sectional view of the end portion of the positive electrode tab 40.
  • the positive electrode plate 4 has an active material layer non-formation portion along the first edge 4A in which the positive electrode active material layer 4b is not formed in the positive electrode core body 4a.
  • a positive electrode protective layer 4c is formed in a portion adjacent to the positive electrode active material layer 4b in the active material layer non-forming portion.
  • a protrusion 4x1 is formed that protrudes from one surface (the upper surface in FIG. 4A) of the positive electrode core body 4a in the thickness direction of the positive electrode core body 4a.
  • the thickness of the end portion of the positive electrode core body 4a on the first end side 4A is larger than the thickness of the portion of the positive electrode core body 4a on which the positive electrode active material layer 4b is formed.
  • the thickness of the portion of the positive electrode core body 4a where the positive electrode active material layer 4b is formed is approximately the same as the thickness of the portion of the positive electrode core body 4a where the positive electrode protective layer 4c is formed.
  • the protruding portion 4x1 is a portion where the positive electrode core body 4a is melted and solidified during laser cutting. The protrusion 4x1 is likely to occur on the surface of the positive electrode core body 4a on the laser irradiation side during laser cutting.
  • a film 4y containing fluorine is formed on the end surface of the positive electrode core body 4a on the first edge 4A. Therefore, it is possible to prevent the exposed portion of the positive electrode core body 4a from coming into contact with the separator and damaging the separator. It is more preferable that the coating 4y is also formed on the surface of the protrusion 4x1. Further, even when the end surface of the positive electrode core body 4a comes into contact with the negative electrode plate 5, it is possible to prevent a large current from flowing. In addition, it is preferable that the coating 4y is formed on substantially the entire end surface of the positive electrode core body 4a on the first end side 4A.
  • the coating film 4y may be formed in a region of 90% or more, more preferably 95% or more, still more preferably 99% or more with respect to the total area of the end surface of the positive electrode core body 4a in the first edge 4A. preferable.
  • the coating film 4y does not have to be formed on the end surface of the positive electrode core body 4a at the three end sides other than the first end side 4A.
  • the coating film 4y containing fluorine can be a resin film. Thereby, damage to the separator can be prevented more effectively. Further, even when the end surface of the positive electrode core body 4a comes into contact with the negative electrode plate 5, it is possible to effectively suppress the flow of a large current. Further, the coating film 4y is difficult to peel off from the end surface of the positive electrode core body 4a.
  • a coating film 4y containing fluorine can be formed on the end surface of the first end side 4A of the positive electrode core body 4a.
  • a resin containing molten fluorine can be attached to the end surface of the positive electrode core body 4a. It is also conceivable that the resin containing fluorine is irradiated with an energy ray such as a laser to melt the resin, and the molten resin is sprayed onto the end surface of the positive electrode core body 4a.
  • the film 4y containing fluorine can be a film containing aluminum fluoride. Thereby, damage to the separator can be prevented more effectively. Further, even when the end surface of the positive electrode core body 4a comes into contact with the negative electrode plate 5, it is possible to effectively suppress the flow of a large current.
  • the coating film 4y containing fluorine can be a coating film containing aluminum fluoride as a main component. For example, 60 mass% of the coating 4y can be made of aluminum fluoride.
  • the coating 4y may be made of aluminum fluoride and resin.
  • a molten aluminum or aluminum positive electrode core body 4a and a gas containing fluorine are allowed to react with each other to generate aluminum fluoride on the end surface of the positive electrode core body 4a.
  • laser cutting of the positive electrode original plate 400 in a gas containing fluorine can be considered.
  • a coating film containing aluminum fluoride can be formed on the end surface of the positive electrode core body 4a.
  • the coating film 4y is also formed on the end surface of the positive electrode tab 40. It is preferable that the coating 4y is formed on the positive electrode tab 40 in the width direction (the end surface in the left-right direction of FIG. 3C). In the positive electrode tab 40, it is preferable that the coating film 4y be formed on the end surface (the upper end surface in FIG. 3C) in the protruding direction of the positive electrode tab 40. At the end of the positive electrode tab 40, a protrusion 4x2 that protrudes from one surface (the upper surface in FIG. 4B) of the positive electrode core body 4a in the thickness direction of the positive electrode core body 4a is formed. It is preferable that the coating 4y is also formed on the surface of the protrusion 4x2.
  • the protrusion 4x1 protrudes from one surface (the upper surface in FIG. 4A) of the positive electrode core body 4a in the thickness direction of the positive electrode core body 4a.
  • the height from one surface (upper surface in FIG. 4A) of the positive electrode core body 4a to the upper end of the protruding portion 4x1 is defined as the protruding height of the protruding portion 4x1.
  • the protrusion height of the protrusion 4x1 is preferably smaller than the thickness of the positive electrode protective layer 4c. With such a structure, it is possible to more effectively prevent the separator 4x1 from coming into contact with the separator and damaging the separator.
  • the protruding height of the protruding portion 4x1 is preferably 2 ⁇ 3 or less of the thickness of the positive electrode protective layer 4c, and more preferably 1 ⁇ 3 or less.
  • the protrusion height of the protrusion 4x1 is The thickness can also be made larger than the thickness of the positive electrode protective layer 4c.
  • the positive electrode protective layer 4c is not an essential component.
  • the positive electrode protective layer 4c may not be provided on the positive electrode plate 4.
  • the protruding height of the protruding portion 4x1 is preferably 1/4 or less of the thickness of the portion of the positive electrode core body 4a where the positive electrode active material layers are formed on both surfaces.
  • the other surface in the thickness direction of the positive electrode core body 4a It is preferable that no protruding portion is formed.
  • the thickness of the positive electrode core body 4a from the other surface is increased.
  • the protruding portion protruding in the direction is formed, the protruding height is preferably smaller than the protruding height of the protruding portion 4x1.
  • the protrusion height of the protrusion formed on the other surface is preferably 1 ⁇ 3 or less, and more preferably 1 ⁇ 5 or less, of the protrusion height of the protrusion 4x1.
  • the negative electrode active material layer slurry prepared by the above method is applied to both surfaces of a copper foil having a thickness of 8 ⁇ m as a negative electrode core by a die coater.
  • the negative electrode core body to which the negative electrode active material layer slurry has been applied is dried to remove water contained in the negative electrode active material layer slurry. Thereby, the negative electrode active material layer is formed. After that, the negative electrode active material layer is compressed by passing between a pair of press rollers to obtain the negative electrode original plate 500.
  • FIG. 5A is a plan view of the negative electrode original plate 500 manufactured by the above method.
  • Negative electrode active material layers 5b are formed on both surfaces of the strip-shaped negative electrode core 5a along the longitudinal direction of the negative electrode core 5a.
  • negative electrode core exposed portions 5c are formed at both ends of the negative electrode original plate 500 in the width direction along the longitudinal direction of the negative electrode original plate 500.
  • FIG. 5B is a plan view of the negative electrode original plate 501 after tab formation.
  • the cutting of the negative electrode original plate 500 can be performed by irradiation with energy rays such as a laser, a mold, or a cutter.
  • a plurality of negative electrode tabs 50 are formed at both ends of the negative electrode original plate 501 after tab formation in the width direction along the longitudinal direction of the negative electrode original plate 501 after tab formation.
  • the negative electrode tab 50 includes the negative electrode core exposed portion 5c.
  • it is preferable that the negative electrode original plate 500 is cut by irradiation with energy rays to form the negative electrode tab 50.
  • FIG. 5C is a plan view of the negative electrode plate 5.
  • the negative electrode original plate 501 after tab formation is cut at the central portion in the width direction along the longitudinal direction of the negative electrode original plate 501 after tab formation. Then, in the longitudinal direction of the negative electrode original plate 501 after tab formation, the negative electrode original plate 501 after tab formation is cut at a predetermined interval to manufacture the negative electrode plate 5.
  • FIG. 6 is a plan view of the electrode body 3.
  • a positive electrode tab group 40A including a plurality of positive electrode tabs 40 and a negative electrode tab group 50A including a plurality of negative electrode tabs 50 are provided at one end of the electrode body 3.
  • the area of the positive electrode plate 4 in which the positive electrode active material layer 4b is formed is preferably smaller than the area of the negative electrode plate 5 in which the negative electrode active material layer 5b is formed in plan view. ..
  • the entire area of the positive electrode plate 4 on which the positive electrode active material layer 4b is formed is located within the area of the negative electrode plate 5 on which the negative electrode active material layer 5b is formed.
  • the end portion of the positive electrode tab 40 of the positive electrode protection layer 4c formed on the positive electrode tab 40 is closer to the front end side of the positive electrode tab 40 than the end side of the negative electrode plate 5 on which the negative electrode tab 50 is formed.
  • the positive electrode protective layer 4c is present between the positive electrode core body 4a that constitutes the positive electrode tab 40 and the negative electrode plate 5. It will be composed. This makes it possible to more effectively prevent the short circuit between the positive electrode plate 4 and the negative electrode plate 5. It is preferable to use a porous film made of polyolefin as the separator. Further, it is more preferable to use a separator in which a heat-resistant layer containing ceramic is formed on the surface of a polyolefin porous film.
  • the positive electrode tab group 40A of the two electrode bodies 3 is connected to the second positive electrode current collector 6b, and the negative electrode tab group 50A of the two electrode bodies 3 is connected to the second negative electrode current collector 8b.
  • the positive electrode tab group 40A is welded and connected to the second positive electrode current collector 6b to form a welded connection portion 60.
  • the negative electrode tab group 50A is welded and connected to the second negative electrode current collector 8b to form a welded connection portion 61.
  • a thin portion 6c is formed in the second positive electrode current collector 6b, and a current collector opening 6d is formed in the thin portion 6c.
  • the second positive electrode current collector 6b is connected to the first positive electrode current collector 6a.
  • a current collector through hole 6e is formed in the second positive electrode current collector 6b at a position facing the electrolyte solution injection hole 15 of the sealing plate 2.
  • a thin portion 8c is formed on the second negative electrode current collector 8b, and a current collector opening 8d is formed in the thin portion 8c.
  • the second negative electrode current collector 8b is connected to the first negative electrode current collector 8a.
  • the positive electrode tab group 40A and the second positive electrode current collector 6b can be connected by ultrasonic welding, resistance welding, laser welding, or the like.
  • FIG. 8 is a view showing a surface of the sealing plate 2 to which the respective components are attached, on the inner side of the battery. Each component is attached to the sealing plate 2 as follows.
  • the outer insulating member 10 is arranged on the outer surface of the battery around the positive electrode terminal insertion hole 2a of the sealing plate 2.
  • the inner insulating member 11 and the first positive electrode current collector 6a are arranged on the inner surface of the battery around the positive electrode terminal insertion hole 2a of the sealing plate 2.
  • the positive electrode terminal 7 is provided from the outside of the battery to the through hole of the outer insulating member 10, the positive electrode terminal insertion hole 2a of the sealing plate 2, the through hole of the inner insulating member 11 and the through hole of the first positive electrode current collector 6a.
  • the tip of the positive electrode terminal 7 is crimped onto the first positive electrode current collector 6a.
  • the positive electrode terminal 7 and the first positive electrode current collector 6a are fixed to the sealing plate 2. It is preferable that the crimped portion of the positive electrode terminal 7 and the first positive electrode current collector 6a be connected by welding.
  • the outer insulating member 12 is arranged on the outer surface of the battery around the negative electrode terminal insertion hole 2b of the sealing plate 2.
  • the inner insulating member 13 and the first negative electrode current collector 8a are arranged on the inner surface of the battery around the negative electrode terminal insertion hole 2b of the sealing plate 2.
  • the negative electrode terminal 9 is provided from the outside of the battery to the through hole of the outer insulating member 12, the negative electrode terminal insertion hole 2b of the sealing plate 2, the through hole of the inner insulating member 13, and the through hole of the first negative electrode current collector 8a.
  • the tip of the negative electrode terminal 9 is crimped onto the first negative electrode current collector 8a.
  • the negative electrode terminal 9 and the first negative electrode current collector 8a are fixed to the sealing plate 2. It is preferable that the crimped portion of the negative electrode terminal 9 and the first negative electrode current collector 8a be connected by welding.
  • a liquid injection opening 11 a is provided in a portion of the inner insulating member 11 that faces the electrolyte liquid injection hole 15 provided in the sealing plate 2.
  • a cylindrical portion 11b is provided at the edge of the liquid injection opening 11a.
  • FIG. 9 shows the inner side of the battery of the sealing plate 2 after the second positive electrode current collector 6b is attached to the first positive electrode current collector 6a and the second negative electrode current collector 8b is attached to the first negative electrode current collector 8a. It is a figure which shows a surface.
  • the second positive electrode current collector 6b to which the positive electrode tab group 40A is connected is arranged on the inner insulating member 11 such that a part thereof overlaps the first positive electrode current collector 6a. Then, by irradiating the thin portion 6c with a laser, the second positive electrode current collector 6b and the first positive electrode current collector 6a are welded and connected, and the welded connection portion 62 is formed.
  • the second negative electrode current collector 8b to which the negative electrode tab group 50A is connected is arranged on the inner insulating member 13 such that a part thereof overlaps the first negative electrode current collector 8a. Then, by irradiating the thin portion 8c with a laser, the second negative electrode current collector 8b and the first negative electrode current collector 8a are welded and connected, and the welded connection portion 63 is formed.
  • the upper surface (the front surface in FIG. 9) of one of the electrode bodies 3 in FIG. 9 and the upper surface (the front surface in FIG. 9) of the other electrode body 3 are in contact with each other directly or through another member.
  • One positive electrode tab group 40A and two negative electrode tab group 50A are curved.
  • the two electrode bodies 3 are put together.
  • the two electrode bodies 3 are arranged in the electrode body holder 14 made of an insulating sheet formed in a box shape or a bag shape.
  • the one positive electrode tab group 40A and the other positive electrode tab group 40A are curved in different directions.
  • the one negative electrode tab group 50A and the other negative electrode tab group 50A are curved in different directions.
  • the sealing plate 2 and the rectangular outer casing 1 are welded, and the opening of the rectangular outer casing 1 is sealed by the sealing plate 2.
  • the electrolytic solution is injected into the rectangular exterior body 1 through the electrolytic solution injection hole 15 provided in the sealing plate 2.
  • the electrolyte injection hole 15 is sealed with a sealing member such as a blind rivet. As a result, the prismatic secondary battery 20 is completed.
  • the thickness of the film containing fluorine can be 0.05 ⁇ m to 5 ⁇ m.
  • the thickness of the coating film containing fluorine is preferably less than 1 ⁇ m, more preferably 0.1 ⁇ m to 0.8 ⁇ m.
  • the thickness of the coating is preferably less than 1 ⁇ m, more preferably 0.05 ⁇ m to 0.8 ⁇ m, and 0.1 ⁇ m to 0.6 ⁇ m. It is more preferable that there is.
  • the protective layer provided on the electrode plate is preferably a layer having lower electrical conductivity than the core body forming the electrode plate. Further, the protective layer is preferably a layer having lower electric conductivity than the active material layer. In addition, in the above-mentioned embodiment, the example in which the protective layer is provided on the positive electrode plate is shown, but the protective layer may be provided on the negative electrode plate.
  • the protective layer preferably contains a ceramic and a binder.
  • a ceramic oxides, nitrides, borides, carbides, silicides, sulfides and the like can be used.
  • Aluminum oxide, boehmite, titanium oxide, silicon oxide, tungsten oxide or the like can be used as the ceramic.
  • a resin-based binder is preferable as the binder.
  • the protective layer may not include ceramic.
  • the protective layer may be a resin layer.
  • the protective layer may include a conductive material such as a carbon material. Note that the protective layer may not include a conductive material.
  • the positive electrode core is preferably made of aluminum or an aluminum alloy containing aluminum as a main component.
  • aluminum alloy an aluminum alloy in which the proportion of aluminum is 90 mass% or more is preferable, and an aluminum alloy in which the proportion of aluminum is 95 mass% or more is more preferable.
  • the negative electrode core is preferably made of copper or a copper alloy containing copper as a main component.
  • copper alloy a copper alloy in which the mass ratio of copper is 95 mass% or more is preferable, and a copper alloy in which the mass ratio of copper is 99 mass% or more is more preferable.
  • the thickness of the core is preferably 5 to 30 ⁇ m, more preferably 5 to 20 ⁇ m.
  • the positive electrode plate 4 is provided with the positive electrode protective layer 4c.
  • the protective layer is not an essential configuration, and the protective layer may not be provided.
  • the protective layer and coating provided on the electrode plate have different configurations.
  • the number of electrode bodies may be one, or three or more.
  • the electrode body may be a laminated electrode body or a wound electrode body.
  • the details of the configuration of the end portion of the active material layer non-forming portion are described with respect to the positive electrode plate, but the negative electrode plate may have the same configuration.
  • the positive electrode current collector and the negative electrode current collector each include two parts
  • the positive electrode current collector and the negative electrode current collector may each include one part.
  • Known materials can be used for the positive electrode plate, the negative electrode plate, the separator, the electrolyte, and the like.

Abstract

信頼性の高い二次電池用の電極板、及びそれを用いた二次電池を提供する。金属製の正極芯体(4a)と、正極芯体(4a)の両面に形成された正極活物質層(4b)を有する二次電池用の正極板(4)であって、正極板(4)は、第1端辺(4A)と、第1端辺(4A)から突出する正極タブ(40)を有し、正極板(4)の第1端辺(4A)における正極芯体(4a)の端面には、フッ素を含有する被膜(4y)が形成されている。二次電池は、正極板(4)と負極板(5)を有する。

Description

二次電池用の電極板及びそれを用いた二次電池
 本発明は二次電池用の電極板及びそれを用いた二次電池に関する。
 電気自動車(EV)やハイブリッド電気自動車(HEV、PHEV)等の駆動用電源において、アルカリ二次電池や非水電解質二次電池等の二次電池が使用されている。
 これらの二次電池は、電池ケース内に正極板、負極板及びセパレータからなる電極体が電解質と共に収容された構成を有する。電池ケースは、開口を有する外装体と、外装体の開口を封口する封口板から構成される。封口板には正極端子及び負極端子が取り付けられる。正極端子は正極集電体を介して正極板に電気的に接続され、負極端子は負極集電体を介して負極板に電気的に接続される。
 このような二次電池として、電極体における封口板側の端部に複数の正極タブからなる正極タブ群及び複数の負極タブからなる負極タブ群が設けられた二次電池が提案されている(下記特許文献1)。
特開2016-115409号公報
 本発明は、信頼性の高い二次電池を提供することを一つの目的とする。
 本発明の一形態に係る二次電池用の電極板は、
金属製の芯体と、前記芯体の両面に形成された活物質層を有する二次電池用の電極板であって、
 前記電極板は、第1端辺と、前記第1端辺から突出するタブを有し、
 前記第1端辺における前記芯体の端面には、フッ素を含有する被膜が形成されている。
本発明の一形態に係る二次電池は、前記電極板と、前記電極板とは極性の異なる他の電極板と、を備える。
 本発明によると、信頼性の高い二次電池を提供できる。
実施形態に係る二次電池の斜視図である。 図1におけるII-II線に沿った断面図である。 (a)は正極原板の平面図である。(b)はタブ形成後の正極原板の平面図である。(c)は正極板の平面図である。 (a)は図3(c)におけるa-a線に沿った断面図である。(b)は図3(c)におけるb-b線に沿った断面図である。 (a)は負極原板の平面図である。(b)はタブ形成後の負極原板の平面図である。(c)は負極板の平面図である。 実施形態に係る電極体の平面図である。 第2正極集電体に正極タブ群を接続し、第2負極集電体に負極タブ群を接続した状態を示す図である。 第1正極集電体及び第1負極集電体を取り付けた後の封口板の電極体側の面を示す図である。 第1正極集電体に第2正極集電体を取り付け、第1負極集電体に第2負極集電体を取り付けた後の封口板の電極体側の面を示す図である。
 実施形態に係る二次電池としての角形二次電池20の構成を以下に説明する。なお、本発明は、以下の実施形態に限定されない。
 図1及び図2に示すように角形二次電池20は、開口を有する有底角筒状の角形外装体1と、角形外装体1の開口を封口する封口板2からなる電池ケース100を備える。角形外装体1及び封口板2は、それぞれ金属製であることが好ましい。角形外装体1内には、正極板と負極板を含む電極体3が電解質と共に収容されている。
 電極体3の封口板2側の端部には、複数の正極タブ40からなる正極タブ群40Aと、複数の負極タブ50からなる負極タブ群50Aが設けられている。正極タブ群40Aは第2正極集電体6b及び第1正極集電体6aを介して正極端子7に電気的に接続されている。負極タブ群50Aは第2負極集電体8b及び第1負極集電体8aを介して負極端子9に電気的に接続されている。第1正極集電体6aと第2正極集電体6bが正極集電体6を構成している。なお、正極集電体6を一つの部品としてもよい。第1負極集電体8aと第2負極集電体8bが負極集電体8を構成している。なお、負極集電体8を一つの部品としてもよい。
 第1正極集電体6a、第2正極集電体6b及び正極端子7は金属製であることが好ましく、アルミニウム又はアルミニウム合金製であることがより好ましい。正極端子7と封口板2の間には樹脂製の外部側絶縁部材10が配置されている。第1正極集電体6a及び第2正極集電体6bと封口板2の間には樹脂製の内部側絶縁部材11が配置されている。
 第1負極集電体8a、第2負極集電体8b及び負極端子9は金属製であることが好ましく、銅又は銅合金製であることがより好ましい。また、負極端子9は、アルミニウム又はアルミニウム合金からなる部分と、銅又は銅合金からなる部分を有するようにすることが好ましい。この場合、銅又は銅合金からなる部分を第1負極集電体8aに接続し、アルミニウム又はアルミニウム合金からなる部分を封口板2よりも外部側に突出するようにすることが好ましい。負極端子9と封口板2の間には樹脂製の外部側絶縁部材12が配置されている。第1負極集電体8a及び第2負極集電体8bと封口板2の間には樹脂製の内部側絶縁部材13が配置されている。
 電極体3と角形外装体1の間には樹脂製の樹脂シートからなる電極体ホルダー14が配置されている。電極体ホルダー14は、樹脂製の絶縁シートを袋状又は箱状に折り曲げ成形されたものであることが好ましい。封口板2には電解液注液孔15が設けられており、電解液注液孔15は封止部材16で封止されている。封口板2には、電池ケース100内の圧力が所定値以上となったときに破断し電池ケース100内のガスを電池ケース100外に排出するガス排出弁17が設けられている。
  次に角形二次電池20の製造方法及び各構成の詳細を説明する。
 [正極板]
 まず、正極板の製造方法を説明する。
 [正極活物質層スラリーの作製]
 正極活物質としてのリチウムニッケルコバルトマンガン複合酸化物、結着材としてのポリフッ化ビニリデン(PVdF)、導電材としての炭素材料、及び分散媒としてのN-メチル-2-ピロリドン(NMP)をリチウムニッケルコバルトマンガン複合酸化物:PVdF:炭素材料の質量比が97.5:1:1.5となるように混練し、正極活物質層スラリーを作製する。
 [正極保護層スラリーの作製]
 アルミナ粉末、導電材としての炭素材料、結着材としてのポリフッ化ビニリデン(PVdF)と分散媒としてのN-メチル-2-ピロリドン(NMP)を、アルミナ粉末:炭素材料:PVdFの質量比が83:3:14 となるように混練し、保護層スラリーを作製
する。
 [正極活物質層及び正極保護層の形成]
 正極芯体としての厚さ15μmのアルミニウム箔の両面に、上述の方法で作製した正極活物質層スラリー及び正極保護層スラリーをダイコータにより塗布する。このとき、正極芯体の幅方向の中央に正極活物質層スラリーが塗布される。また、正極活物質層スラリーが塗布される領域の幅方向の両端に正極保護層スラリーが塗布されるようにする。
 正極活物質層スラリー及び正極保護層スラリーが塗布された正極芯体を乾燥させ、正極活物質層スラリー及び正極保護層スラリーに含まれるNMPを除去する。これにより正極活物質層及び保護層が形成される。その後、一対のプレスローラの間を通過させることにより、正極活物質層を圧縮して正極原板400とする。
 図3(a)は、上述の方法で作製された正極原板400の平面図である。帯状の正極芯体4aの両面には、正極芯体4aの長手方向に沿って正極活物質層4bが形成されている。正極芯体4aにおいて、正極活物質層4bが形成された領域の幅方向の両端部には正極保護層4cが形成されている。そして、正極原板400の幅方向の両端部には、正極原板400の長手方向に沿って正極芯体露出部4dが形成されている。なお、正極活物質層4bの厚みは、正極保護層4cの厚みよりも大きいことが好ましい。正極芯体の一方の面に形成された正極保護層4cの厚みは10~100μmであることが好ましく、15~50μmとすることがより好ましい。
 図3(b)は、タブ形成後の正極原板401の平面図である。正極原板400の正極芯体露出部4dを所定形状に切断することにより、タブ形成後の正極原板401を作製する。正極原板400を切断しタブを形成する際は、レーザー等のエネルギー線の照射により正極原板400を切断することが好ましい。
 レーザー切断としては、連続発振(CW)レーザーを用いることが好ましい。レーザーの出力は、500W~1200Wであることが好ましく、550W~1000Wであることがより好ましく、600W~1000Wであることがさらに好ましい。レーザーの走査速度は100mm/s~5000mm/sであることが好ましい。但し、これに限定されない。なお、パルスレーザーを用いてもよい。
 タブ形成後の正極原板401においては、タブ形成後の正極原板401の幅方向の両端に複数の正極タブ40が形成される。なお、正極タブ40は正極芯体露出部4dからなる。図3(b)に示すように、正極タブ40の根元、及び隣接する正極タブ40同士の間に形成されるタブ形成後の正極原板401の端辺に、正極保護層4cが残るように正極原板400を切断することが出来る。
 図3(c)は、正極板4の平面図である。まず、タブ形成後の正極原板401の長手方向に沿って、タブ形成後の正極原板401を幅方向における中央部で切断する。その後、タブ形成後の正極原板401の長手方向において、タブ形成後の正極原板401を所定間隔で切断することにより、正極板4を作製する。タブ形成後の正極原板401を切断する際は、レーザー切断、金型ないしカッターを用いた切断等を用いることができる。タブ形成後の正極原板401を切断は、金型ないしカッターを用いることが好ましい。
 図4(a)は、図3(c)のa-a線に沿った断面図であり、正極板4において正極タブ40が突出する第1端辺4Aの断面図である。図4(b)は、図3(c)のb-b線に沿った断面図であり、正極タブ40の端部の断面図である。
 図4(a)に示すように、正極板4は、第1端辺4Aに沿って、正極芯体4aにおいて正極活物質層4bが形成されていない活物質層非形成部を有する。活物質層非形成部において、正極活物質層4bと隣接する部分には、正極保護層4cが形成されている。活物質層非形成領域の端部には、正極芯体4aの一方の面(図4(a)では上面)から正極芯体4aの厚み方向に突出する突出部4x1が形成されている。そのため、第1端辺4Aにおける正極芯体4aの端部の厚みは、正極芯体4aにおいて表面に正極活物質層4bが形成されている部分の厚みよりも大きい。なお、正極芯体4aにおいて表面に正極活物質層4bが形成されている部分の厚みは、正極芯体4aにおいて表面に正極保護層4cが形成されている部分の厚みと略同じである。突出部4x1は、レーザー切断の際に正極芯体4aが溶融し凝固した部分である。突出部4x1は、レーザー切断の際に正極芯体4aにおいてレーザーが照射される側の面に生じやすい。
 第1端辺4Aにおける正極芯体4aの端面にはフッ素を含有する被膜4yが形成されている。このため、正極芯体4aの端面が露出した部分がセパレータと接触し、セパレータを損傷させることを抑制できる。なお、突出部4x1の表面にも被膜4yが形成されていることがより好ましい。また、正極芯体4aの端面が負極板5と接触した場合でも、大電流が流れることを抑制できる。なお、第1端辺4Aにおける正極芯体4aの端面の略全体に被膜4yが形成されていることが好ましい。例えば、第1端辺4Aにおける正極芯体4aの端面の全面積に対して90%以上、より好ましくは95%以上、さらに好ましくは99%以上の領域に、被膜4yが形成されていることが好ましい。なお、正極板4において、第1端辺4A以外の3つの端辺において、正極芯体4aの端面に被膜4yは形成されていなくてもよい。
 フッ素を含有する被膜4yは、樹脂膜とすることができる。これにより、セパレータの損傷をより効果的に防止できる。また、正極芯体4aの端面が負極板5と接触した場合でも、大電流が流れることを効果的に抑制できる。また、正極芯体4aの端面から被膜4yが剥がれ難い。
 正極原板400を切断する際に、正極芯体4aにおける第1端辺4Aの端面にフッ素を含有する被膜4yが形成されるようにすることができる。例えば、正極芯体4aの端面に溶融したフッ素を含む樹脂を付着させることができる。また、レーザー等のエネルギー線を、フッ素を含有する樹脂に照射し、樹脂を溶融させ、この溶融した樹脂を正極芯体4aの端面に吹き付けることも考えられる。
 フッ素を含有する被膜4yは、フッ化アルミニウムを含む被膜とすることができる。これにより、セパレータの損傷をより効果的に防止できる。また、正極芯体4aの端面が負極板5と接触した場合でも、大電流が流れることを効果的に抑制できる。フッ素を含有する被膜4yは、フッ化アルミニウムを主成分とした被膜とすることができる。例えば、被膜4yの60質量%がフッ化アルミニウムからなるようにすることができる。被膜4yがフッ化アルミニウムと樹脂からなるようにしてもよい。
 正極原板400を切断する際に、溶融したアルミニウム製又はアルミニウム製の正極芯体4aとフッ素を含むガスを反応させ、正極芯体4aの端面にフッ化アルミニウムを生じさせることができる。例えば、フッ素を含有するガス中で正極原板400をレーザー切断することが考えられる。これにより、正極芯体4aの端面にフッ化アルミニウムを含む被膜を形成することができる。
 なお、図4(b)に示すように、正極タブ40の端面にも被膜4yが形成されることが好ましい。正極タブ40において幅方向(図3(c)の左右方向における端面)に被膜4yが形成されることが好ましい。正極タブ40において正極タブ40の突出方向における端面(図3(c)における上端面)に被膜4yが形成されることが好ましい。正極タブ40の端部には、正極芯体4aの一方の面(図4(b)では上面)から正極芯体4aの厚み方向に突出する突出部4x2が形成されている。突出部4x2の表面にも被膜4yが形成されることが好ましい。
 突出部4x1は、正極芯体4aの一方の面(図4(a)における上面)から正極芯体4aの厚み方向に突出している。ここで、正極芯体4aの一方の面(図4(a)における上面)から、突出部4x1の上端までの高さを、突出部4x1の突出高さとする。突出部4x1の突出高さは、正極保護層4cの厚みよりも小さいことが好ましい。このような構成であると、突出部4x1がセパレータと接触しセパレータが損傷することをより効果的に抑制できる。突出部4x1の突出高さは、正極保護層4cの厚みの2/3以下であること
が好ましく、1/3以下であることがより好ましい。但し、突出部4x1の突出高さを、
正極保護層4cの厚みよりも大きくすることもできる。正極保護層4cは必須の構成ではない。正極板4に正極保護層4cを設けなくてもよい。
 なお、突出部4x1の突出高さは、正極芯体4aにおいて両面に正極活物質層が形成された部分の厚みの1/4以下であることが好ましい。
 正極芯体4aにおいて、突出部4x1が形成された面とは反対側の面である他方の面(図4(a)においては下面)には、他方の面から正極芯体4aの厚み方向に突出する突出部が形成されていないことが好ましい。あるいは、正極芯体4aにおいて、突出部4x1が形成された面とは反対側の面である他方の面(図4(a)においては下面)には、他方の面から正極芯体4aの厚み方向に突出する突出部が形成されているものの、その突出高さは、突出部4x1の突出高さよりも小さいことが好ましい。このような構成により、正極板4と負極板5が短絡することをより効果的に防止できる。他方の面に形成された突出部の突出高さは、突出部4x1の突出高さの1/3以下であることが好ましく、1/5以下であることがより好ましい。
 [負極板]
 次に、負極板の製造方法を説明する。
[負極活物質層スラリーの作製]
 負極活物質としての黒鉛、結着材としてのスチレンブタジエンゴム(SBR)及びカルボキシメチルセルロース(CMC)、及び分散媒としての水を、黒鉛:SBR:CMCの質量比が98:1:1となるように混練し、負極活物質層スラリーを作製する。
 [負極活物質層の形成]
 負極芯体としての厚さ8μmの銅箔の両面に、上述の方法で作製した負極活物質層スラリーをダイコータにより塗布する。
 負極活物質層スラリーが塗布された負極芯体を乾燥させ、負極活物質層スラリーに含まれる水を除去する。これにより負極活物質層が形成される。その後、一対のプレスローラの間を通過させることにより、負極活物質層を圧縮して負極原板500とする。
 図5(a)は、上述の方法で作製された負極原板500の平面図である。帯状の負極芯体5aの両面には、負極芯体5aの長手方向に沿って負極活物質層5bが形成されている。そして、負極原板500の幅方向の両端部には、負極原板500の長手方向に沿って負極芯体露出部5cが形成されている。
 図5(b)は、タブ形成後の負極原板501の平面図である。タブ形成後の負極原板501の負極芯体露出部5cを所定形状に切断することにより、タブ形成後の負極原板501を作製する。負極原板500の切断は、レーザー等のエネルギー線の照射、金型、あるいはカッター等により行うことができる。タブ形成後の負極原板501においては、タブ形成後の負極原板501の幅方向の両端に、タブ形成後の負極原板501の長手方向に沿って複数の負極タブ50が形成される。なお、負極タブ50は負極芯体露出部5cからなる。なお、負極原板500をエネルギー線の照射により切断し、負極タブ50を形成することが好ましい。
 図5(c)は、負極板5の平面図である。まず、タブ形成後の負極原板501の長手方向に沿って、タブ形成後の負極原板501を幅方向における中央部で切断する。その後、タブ形成後の負極原板501の長手方向において、タブ形成後の負極原板501を所定間隔で切断することにより、負極板5を作製する。
 [電極体の作製]
 上述の方法で作製した正極板4及び負極板5を、セパレータを介して積層し、積層型の電極体3を製造する。図6は、電極体3の平面図である。電極体3の一つの端部には、複数の正極タブ40からなる正極タブ群40Aと、複数の負極タブ50からなる負極タブ群50Aが設けられる。
 なお、正極板4において正極活物質層4bが形成された領域の平面視での面積は、負極板5において負極活物質層5bが形成された領域の平面視での面積よりも小さいことが好ましい。そして、電極体3を平面視したとき、正極板4において正極活物質層4bが形成された領域が全て、負極板5において負極活物質層5bが形成された領域内に配置されていることが好ましい。
 電極体3において、正極タブ40上に形成された正極保護層4cの正極タブ40の先端側端部は、負極板5において負極タブ50が形成された端辺よりも、正極タブ40の先端側に位置することが好ましい。即ち、負極板5において負極タブ50が形成された端辺において正極タブ40と対向する領域では、正極タブ40を構成する正極芯体4aと負極板5の間には正極保護層4cが存在する構成となる。これにより、正極板4と負極板5が短絡することをより効果的に防止できる。
セパレータとしてはポリオレフィン製の多孔膜を用いることが好ましい。また、ポリオレフィン製の多孔膜の表面にセラミックを含む耐熱層が形成されたセパレータを用いることがより好ましい。
 [集電体とタブの接続]
 図7に示すように、二つの電極体3の正極タブ群40Aを第2正極集電体6bに接続すると共に、二つの電極体3の負極タブ群50Aを第2負極集電体8bに接続する。正極タブ群40Aは第2正極集電体6bに溶接接続され溶接接続部60が形成される。負極タブ群50Aは第2負極集電体8bに溶接接続され溶接接続部61が形成される。
 第2正極集電体6bには、薄肉部6cが形成され、薄肉部6c内には集電体開口6dが形成されている。この薄肉部6cにおいて、第2正極集電体6bは第1正極集電体6aに接続される。第2正極集電体6bには、封口板2の電解液注液孔15と対向する位置に集電体貫通穴6eが形成されている。
 第2負極集電体8bには、薄肉部8cが形成され、薄肉部8c内には集電体開口8dが形成されている。この薄肉部8cにおいて、第2負極集電体8bは第1負極集電体8aに接続される。
 正極タブ群40Aと第2正極集電体6bの接続は、超音波溶接、抵抗溶接、レーザー溶接等により行える。
 [封口板への各部品取り付け]
 図8は、各部品を取り付けた封口板2の電池内部側の面を示す図である。封口板2への各部品取り付けは次のように行われる。
 封口板2の正極端子挿入孔2aの周囲の電池外面側に外部側絶縁部材10を配置する。封口板2の正極端子挿入孔2aの周囲の電池内面側に内部側絶縁部材11及び第1正極集電体6aを配置する。そして、正極端子7を電池外部側から、外部側絶縁部材10の貫通孔、封口板2の正極端子挿入孔2a、内部側絶縁部材11の貫通孔及び第1正極集電体6aの貫通孔に挿入し、正極端子7の先端を第1正極集電体6a上にカシメる。これにより、正極端子7及び第1正極集電体6aが封口板2に固定される。なお、正極端子7においてカシメられた部分と第1正極集電体6aを溶接接続することが好ましい。
 封口板2の負極端子挿入孔2bの周囲の電池外面側に外部側絶縁部材12を配置する。封口板2の負極端子挿入孔2bの周囲の電池内面側に内部側絶縁部材13及び第1負極集電体8aを配置する。そして、負極端子9を電池外部側から、外部側絶縁部材12の貫通孔、封口板2の負極端子挿入孔2b、内部側絶縁部材13の貫通孔及び第1負極集電体8aの貫通孔に挿入し、負極端子9の先端を第1負極集電体8a上にカシメる。これにより、負極端子9及び第1負極集電体8aが封口板2に固定される。なお、負極端子9においてカシメられた部分と第1負極集電体8aを溶接接続することが好ましい。
 内部側絶縁部材11において、封口板2に設けられた電解液注液孔15と対向する部分には、注液開口11aが設けられている。また、注液開口11aの縁部には筒状部11bが設けられている。
 [第1集電体と第2集電体の接続]
 図9は、第1正極集電体6aに第2正極集電体6bを取り付け、第1負極集電体8aに第2負極集電体8bを取り付けた後の封口板2の電池内部側の面を示す図である。
正極タブ群40Aが接続された第2正極集電体6bを、その一部が第1正極集電体6aと重なるようにして、内部側絶縁部材11上に配置する。そして、薄肉部6cにレーザー照射することにより、第2正極集電体6bと第1正極集電体6aを溶接接続し、溶接接続部62が形成される。また、負極タブ群50Aが接続された第2負極集電体8bを、その一部が第1負極集電体8aと重なるようにして、内部側絶縁部材13上に配置する。そして、薄肉部8cにレーザー照射することにより、第2負極集電体8bと第1負極集電体8aを溶接接続し、溶接接続部63が形成される。
 [二次電池の作製]
 図9における一方の電極体3の上面(図9では手前側の面)と他方の電極体3の上面(図9では手前側の面)とが直接ないし他の部材を介して接するように二つの正極タブ群40A及び二つの負極タブ群50Aを湾曲させる。これにより、二つの電極体3を一つに纏める。そして、二つの電極体3を、箱状ないし袋状に成形した絶縁シートからなる電極体ホルダー14内に配置する。
 一方の正極タブ群40Aと他方の正極タブ群40Aとは、それぞれ異なる向きに湾曲する。また、一方の負極タブ群50Aと他方の負極タブ群50Aとは、それぞれ異なる向きに湾曲する。
 電極体ホルダー14で包まれた二つの電極体3を角形外装体1に挿入する。そして、封口板2と角形外装体1を溶接し、角形外装体1の開口を封口板2により封口する。そして、封口板2に設けられた電解液注液孔15を通じて角形外装体1内に電解液を注液する。その後、電解液注液孔15をブラインドリベット等の封止部材により封止する。これにより角形二次電池20が完成する。
 フッ素を含む被膜の厚みは、0.05μm~5μmとすることができる。なお、フッ素を含む被膜の厚みは、1μm未満であることが好ましく、0.1μm~0.8μmであることが好ましい。フッ素を含む被膜の厚みを比較的小さくすることにより、芯体の端面からフッ素を含有する被膜が剥がれ落ちることを抑制できる。
 フッ素を含む被膜がフッ化アルミニウムを主成分とする場合、被膜の厚みは1μm未満であることが好ましく、0.05μm~0.8μmであることがより好ましいく、0.1μm~0.6μmであることがさらに好ましい。被膜の厚みを比較的小さくすることにより、芯体の端面と他の極性を有する電極板が接触した場合でも、芯体の端面が完全には絶縁されておらず、芯体の端面と他の極性を有する電極板の間に電流が流れるようにすることができる。これにより、被膜のみにより正極板と負極板の絶縁が保たれている状態が維持されることを避け、芯体の端面と他の極性を有する極板が接触した場合に、エネルギーが放出されるようにすることも考えられる。
 電極板に設けられる保護層は、電極板を構成する芯体よりも電気伝導性が低い層であることが好ましい。また、保護層は、活物質層よりも電気伝導性が低い層であることが好ましい。なお、上述の実施形態においては、正極板に保護層を設ける例を示したが、負極板に保護層を設けてもよい。
 また、保護層は、セラミックとバインダーを含有することが好ましい。セラミックとしては、酸化物、窒化物、ホウ化物、カーバイド、ケイ化物、硫化物等を用いることができる。セラミックとしては酸化アルミニウム、ベーマイト、酸化チタン、酸化ケイ素、酸化タングステン等を用いることができる。但し、これらに限定されない。バインダーとしては樹脂系のバインダーが好ましい。但し、これらに限定されない。なお、保護層はセラミックを含まなくてもよい。例えば、保護層を樹脂層とすることもできる。保護層は、炭素材料等からなる導電材を含んでいてもよい。なお、保護層は導電材を含まなくてもよい。
 正極芯体は、アルミニウム製、又はアルミニウムを主成分とするアルミニウム合金製であることが好ましい。なお、アルミニウム合金としては、アルミニウムが占める割合が90質量%以上のアルミニウム合金が好ましく、アルミニウムが占める割合が95質量%以上のアルミニウム合金がより好ましい。
 負極芯体は、銅製、又は銅を主成分とする銅合金製であることが好ましい。なお、銅合金としては、銅が占める質量割合が95質量%以上の銅合金が好ましく、銅が占める質量割合が99質量%以上の銅合金がより好ましい。
 芯体の厚みは、5~30μmであることが好ましく、5~20μmであることがより好ましい。
 上述の実施形態においては、正極板4に正極保護層4cを設ける例を示した。しかしながら、保護層は必須の構成ではなく、保護層を設けなくてもよい。
 電極板に設けられる保護層と被膜は異なる構成を有する。
 上述の実施形態においては、電池ケース内に二つの電極体を配置する例を示したが、電極体は一つであても良いし、三つ以上であってもよい。また、電極体は積層電極体であってもよいし、巻回電極体であってもよい。
 上述の実施形態においては、正極板に関して活物質層非形成部の端部の構成の詳細について説明を行ったが、負極板に関しても同様の構成とすることができる。
 上述の実施形態においては、正極集電体及び負極集電体がそれぞれ二つの部品からなる例を示したが、正極集電体及び負極集電体はそれぞれ一つの部品から構成されてもよい。
 正極板、負極板、セパレータ、及び電解質等に関しては、公知の材料を用いることができる。
20・・・角形二次電池
1・・・角形外装体 
2・・・封口板
 2a・・・正極端子挿入孔 
 2b・・・負極端子挿入孔
100・・・電池ケース
3・・・電極体
4・・・正極板
 4A・・・第1端辺
  4a・・・正極芯体
  4b・・・正極活物質層
  4c・・・正極保護層
  4d・・・正極芯体露出部
  4x1、4x2・・・突出部
  4y・・・被膜
40・・・正極タブ
 40A・・・正極タブ群
400・・・正極原板
401・・・タブ形成後の正極原板

5・・・負極板
 5a・・・負極芯体
 5b・・・負極活物質層
50・・・負極タブ
 50A・・・負極タブ群
6・・・正極集電体
 6a・・・第1正極集電体
 6b・・・第2正極集電体
 6c・・・薄肉部
 6d・・・集電体開口
 6e・・・集電体貫通穴

7・・・正極端子

8・・・負極集電体
 8a・・・第1負極集電体
 8b・・・第2負極集電体
 8c・・・薄肉部
 8d・・・集電体開口

9・・・負極端子

10・・・外部側絶縁部材
11・・・内部側絶縁部材
 11a・・・注液開口
 11b・・・筒状部

12・・・外部側絶縁部材
13・・・内部側絶縁部材

14・・・電極体ホルダー
15・・・電解液注液孔
16・・・封止部材
17・・・ガス排出弁

60、61、62、63・・・溶接接続部

Claims (8)

  1.  金属製の芯体と、前記芯体の両面に形成された活物質層を有する二次電池用の電極板であって、
     前記電極板は、第1端辺と、前記第1端辺から突出するタブを有し、
     前記第1端辺における前記芯体の端面には、フッ素を含有する被膜が形成されている、二次電池用の電極板。
  2.  前記第1端辺における前記芯体の厚みは、前記芯体において前記活物質層が形成されている部分の厚みよりも大きい請求項1に記載の二次電池用の電極板。
  3.  前記芯体はアルミニウム又はアルミニウム合金製である請求項1又は2に記載の二次電池用の電極板。
  4.  前記被膜は、フッ素を含む樹脂被膜である請求項1~3のいずれかに記載の二次電池用の電極板。
  5.  前記被膜は、フッ化アルミニウムを含む被膜である請求項1~3のいずれかに記載の二次電池用の電極板。
  6.  前記タブの端面にも前記被膜が形成された請求項1~5のいずれかに記載の二次電池用の電極板。
  7.  前記被膜の厚みは1μm未満である請求項1~6のいずれかに記載の二次電池用の電極板。
  8.  前記請求項1~7のいずれかに記載の電極板と、
     前記電極板とは極性の異なる他の電極板と、を備えた二次電池。
PCT/JP2019/049491 2018-12-19 2019-12-17 二次電池用の電極板及びそれを用いた二次電池 WO2020130000A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19899059.0A EP3902030A4 (en) 2018-12-19 2019-12-17 SECONDARY BATTERY ELECTRODE PLATE AND SECONDARY BATTERY WITH USE THEREOF
CN201980068345.1A CN112868114A (zh) 2018-12-19 2019-12-17 二次电池用电极板和使用了其的二次电池
JP2020561471A JP7398392B2 (ja) 2018-12-19 2019-12-17 二次電池用の電極板及びそれを用いた二次電池
US17/311,967 US20220029167A1 (en) 2018-12-19 2019-12-17 Secondary battery electrode plate and secondary battery using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-236843 2018-12-19
JP2018236843 2018-12-19

Publications (1)

Publication Number Publication Date
WO2020130000A1 true WO2020130000A1 (ja) 2020-06-25

Family

ID=71101828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049491 WO2020130000A1 (ja) 2018-12-19 2019-12-17 二次電池用の電極板及びそれを用いた二次電池

Country Status (5)

Country Link
US (1) US20220029167A1 (ja)
EP (1) EP3902030A4 (ja)
JP (1) JP7398392B2 (ja)
CN (1) CN112868114A (ja)
WO (1) WO2020130000A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06231754A (ja) * 1993-02-05 1994-08-19 Sanyo Electric Co Ltd 非水系電解液二次電池
JPH117962A (ja) * 1997-04-24 1999-01-12 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2015099658A (ja) * 2013-11-18 2015-05-28 トヨタ自動車株式会社 非水電解液二次電池
JP2016035901A (ja) * 2014-07-31 2016-03-17 株式会社東芝 非水電解質電池、非水電解質電池の製造方法及び電池パック
JP2016115409A (ja) 2014-12-11 2016-06-23 株式会社Gsユアサ 蓄電素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010854A (ja) * 2006-06-01 2008-01-17 Matsushita Electric Ind Co Ltd 電気二重層キャパシタ及びその製造方法
US9231245B2 (en) * 2011-03-23 2016-01-05 Sanyo Electric Co., Ltd. Positive electrode plate for nonaqueous electrolyte secondary battery, method for manufacturing the positive electrode plate, nonaqueous electrolyte secondary battery, and method for manufacturing the battery
JP2012199162A (ja) * 2011-03-23 2012-10-18 Sanyo Electric Co Ltd ラミネート外装体二次電池
US10461327B2 (en) * 2016-03-29 2019-10-29 Samsung Sdi Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR20180001229A (ko) * 2016-06-27 2018-01-04 삼성에스디아이 주식회사 이차 전지의 제조 방법 및 이를 이용한 이차 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06231754A (ja) * 1993-02-05 1994-08-19 Sanyo Electric Co Ltd 非水系電解液二次電池
JPH117962A (ja) * 1997-04-24 1999-01-12 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2015099658A (ja) * 2013-11-18 2015-05-28 トヨタ自動車株式会社 非水電解液二次電池
JP2016035901A (ja) * 2014-07-31 2016-03-17 株式会社東芝 非水電解質電池、非水電解質電池の製造方法及び電池パック
JP2016115409A (ja) 2014-12-11 2016-06-23 株式会社Gsユアサ 蓄電素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3902030A4

Also Published As

Publication number Publication date
US20220029167A1 (en) 2022-01-27
EP3902030A4 (en) 2022-02-09
EP3902030A1 (en) 2021-10-27
JP7398392B2 (ja) 2023-12-14
JPWO2020130000A1 (ja) 2021-11-04
CN112868114A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
EP3985763B1 (en) Electrode assembly and battery unit
JP7027790B2 (ja) 二次電池の製造方法
JP7330211B2 (ja) 角形二次電池
CN113439350B (zh) 电极板及其制造方法、二次电池及其制造方法
WO2020129999A1 (ja) 二次電池用の電極板及びそれを用いた二次電池
CN111584815A (zh) 二次电池
WO2020129998A1 (ja) 二次電池用の電極板及びそれを用いた二次電池
WO2020130000A1 (ja) 二次電池用の電極板及びそれを用いた二次電池
WO2020130001A1 (ja) 二次電池用の電極板及びそれを用いた二次電池
JP7353302B2 (ja) 二次電池
WO2020137715A1 (ja) 電極板及びそれを用いた二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899059

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561471

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019899059

Country of ref document: EP

Effective date: 20210719