WO2020129782A1 - Data processing device, charging/discharging device, and data processing method - Google Patents

Data processing device, charging/discharging device, and data processing method Download PDF

Info

Publication number
WO2020129782A1
WO2020129782A1 PCT/JP2019/048542 JP2019048542W WO2020129782A1 WO 2020129782 A1 WO2020129782 A1 WO 2020129782A1 JP 2019048542 W JP2019048542 W JP 2019048542W WO 2020129782 A1 WO2020129782 A1 WO 2020129782A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
vehicle
data
value
discharging
Prior art date
Application number
PCT/JP2019/048542
Other languages
French (fr)
Japanese (ja)
Inventor
岡田 直樹
晋吾 小山
Original Assignee
株式会社椿本チエイン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019217180A external-priority patent/JP6737390B2/en
Application filed by 株式会社椿本チエイン filed Critical 株式会社椿本チエイン
Publication of WO2020129782A1 publication Critical patent/WO2020129782A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging

Definitions

  • the present invention relates to a data processing device, a charging/discharging device, and a data processing method.
  • Patent Documents 1 to 3 technologies related to charging and discharging electric vehicles have been disclosed.
  • Patent Documents 1 and 2 electric power supply for an electric vehicle that calculates a charging progress state of a vehicle-mounted battery of a registered electric vehicle based on user master information and charging characteristic data stored in advance and measurement data for a registered electric vehicle of a user.
  • a system is disclosed.
  • the latest charging history data is compared with past charging history data or charging characteristic data of an on-vehicle battery without deterioration to determine the deterioration state of the on-vehicle battery.
  • the charging characteristic data for each vehicle type it is possible to calculate the charging progress status of the on-board battery of the electric vehicle other than the registered electric vehicle, and to determine the deterioration status of the on-board battery of the electric vehicle. It is also possible.
  • Patent Document 3 based on the past traveling information of each electric vehicle (or the past traveling information of the same vehicle type as the target vehicle) and the charging amount at the time of charging, the electric power cost of each electric vehicle is calculated, and the electric power cost and the target are calculated.
  • a state-of-charge estimating device that estimates the amount of charge of a target vehicle based on the travel route of the vehicle.
  • the method of defining the range of chargeable/dischargeable storage capacity or charging rate of the onboard storage battery differs depending on the vehicle type. Therefore, when the charging/discharging device or its higher-level device uniformly calculates the values related to the charging/discharging operation for various vehicle types, even if the charging/discharging is determined to be possible with respect to the onboard storage battery, There is a possibility that the charging/discharging operation will be stopped by the instruction. Further, even if the charging/discharging device or a higher-level device thereof is within the range determined to be capable of charging/discharging the on-vehicle storage battery at the rated output, there is a possibility that the charging/discharging operation at the rated output cannot be performed.
  • Patent Documents 1 and 2 do not disclose the charging/discharging process in the charging/discharging device or its superordinate device in consideration of the above-described method for each vehicle type.
  • An aspect of the present invention is to realize a charging/discharging device and a data processing method capable of performing a charging/discharging operation according to the current state of a vehicle-mounted storage battery of an electric vehicle for each vehicle type.
  • a data processing device is connected to an on-vehicle battery of an electric vehicle, and has characteristics in transmitting and receiving signals or communication data between the electric vehicle and a charging/discharging device.
  • An acquisition unit that acquires, and a data generation unit that generates data including a value related to the charging/discharging operation toward the charging/discharging device or a higher-level device that controls the charging/discharging operation of the vehicle-mounted battery based on the acquired characteristics. Equipped with.
  • a data processing device indicates a plurality of types of values related to an on-vehicle battery of an electric vehicle, and is predetermined by communication between the electric vehicle and a charging/discharging device.
  • a pre-recorded table using an input unit to which primary data acquired in a different format is input, at least a part of the values of the plurality of types, or information indicating the characteristics of the communication.
  • a conversion unit that converts the primary data into more generalized secondary data.
  • a charging/discharging device indicates a plurality of types of values related to an on-vehicle battery of an electric vehicle, and is previously set by communication between the electric vehicle and the charging/discharging device.
  • Primary data acquired in a predetermined format is input, at least a part of the values of the plurality of types, or information indicating the characteristics of the communication is used to estimate the electric vehicle, and the in-vehicle battery is estimated. Control the charging/discharging operation for.
  • a data processing method relates to a vehicle-mounted battery of an electric vehicle, acquires characteristics in transmission and reception of signals or communication data between the electric vehicle and a charging/discharging device, and based on the acquired characteristics, A process of generating data including a value relating to the charging/discharging operation toward the charging/discharging device or a host device that controls the charging/discharging operation of the vehicle-mounted battery is included.
  • FIG. 6 is a flowchart illustrating an example of a data generation processing procedure by a control circuit. It is a figure which shows an example of the table used in the charging/discharging system of FIG. It is a figure which shows an example of the table used in the charging/discharging system of FIG. It is a figure which shows an example of the table used in the charging/discharging system of FIG. 6 is a flowchart showing an example of a procedure for updating a table by the control circuit.
  • a “charging/discharging device” (example: charging/discharging device 10) means (1) a charging/discharging device capable of performing both charging and discharging, (2) a charging device performing only charging, And (3) any one of the discharging devices that perform only the discharging operation.
  • the charging/discharging device in this specification is a concept including a charging/discharging device, a charging device, and a discharging device.
  • charge/discharge” comprehensively includes both charging and discharging operations. That is, “charging/discharging” in this specification refers to at least one of charging and discharging.
  • FIG. 1 is a diagram schematically showing an example of the charging/discharging system 1.
  • the charging/discharging system 1 includes a charging/discharging device 10, a distribution board 20, an electric vehicle 200, an EMS (Energy Management System) controller 300 (upper device), and a commercial power system 410.
  • the EMS controller 300 is connected to the command center 400.
  • the commercial power system 410 is a power system from a power company.
  • a power system is a system that integrates power generation, transformation, transmission, and distribution for supplying power.
  • the distribution board 20 is connected to the commercial power system 410.
  • Commercial AC power having a specified voltage eg, 100 V
  • the AC power is supplied to the charging/discharging device 10 through the distribution board 20.
  • the charging/discharging device 10 operates using AC power (or DC power converted from AC power) supplied through the distribution board 20.
  • the EMS controller 300 is a controller that controls and manages the charging/discharging device 10. Specifically, the EMS controller 300 is connected to the charging/discharging device 10 via, for example, a communication cable (eg: LAN (Local Area Network) cable). In the example of FIG. 1, the EMS controller 300 is wire-connected to the charging/discharging device 10 via the hub 21 of the distribution board 20. However, the EMS controller 300 and the charging/discharging device 10 may be wirelessly connected. The EMS controller 300 controls each operation mode of the charging/discharging device 10 or the amount of charging/discharging.
  • a communication cable eg: LAN (Local Area Network) cable
  • the central controller (not shown) of the server connected to the network may control and manage the charging/discharging device 10.
  • the centralized controller causes the EMS controller 300 to control and manage the charging/discharging device 10 by transmitting an instruction regarding the charging/discharging operation or an instruction regarding the charging/discharging amount to the EMS controller 300.
  • the EMS controller 300 may be a centralized controller.
  • the electric vehicle 200 is, for example, an electric vehicle (EV: Electric Vehicle), a plug-in hybrid vehicle (PHV), a PHEV: Plug-in Hybrid Electric Vehicle, or a fuel cell vehicle (FCV: Fuel Cell Vehicle).
  • EV Electric Vehicle
  • PSV plug-in hybrid vehicle
  • FCV Fuel Cell Vehicle
  • the electric vehicle 200 is equipped with a vehicle-mounted storage battery 210 (vehicle-mounted battery).
  • the onboard storage battery 210 may be a known secondary battery.
  • the power in the onboard storage battery 210 may be supplied to the load (not shown) in the charge/discharge system 1 by the charge/discharge device 10.
  • the power supply process at the time of the power failure is particularly referred to as an independent operation of the charging/discharging device 10.
  • the electric power in the onboard storage battery 210 can be supplied to the load.
  • AC power is supplied to the load from both the commercial power system 410 and the charging/discharging device 10.
  • This power supply process at the time of non-power failure is particularly referred to as a grid interconnection operation of the charging/discharging device 10.
  • the charging/discharging device 10 controls charging/discharging of the vehicle-mounted storage battery 210.
  • the charging/discharging device 10 charges/discharges the vehicle-mounted storage battery 210 based on an instruction from the EMS controller 300.
  • the charging/discharging device 10 may charge/discharge the in-vehicle storage battery 210 based on an instruction from the electric vehicle 200.
  • the charging/discharging device 10 may charge/discharge the in-vehicle storage battery 210 based on an input operation by the user.
  • the charging/discharging device 10 includes a charging/discharging circuit 11, a control circuit 12 (data processing device), a transformer 13, a power supply circuit 14, and a starting battery 15.
  • the control circuit 12 includes a vehicle type estimation unit 120 (input unit, conversion unit), a data conversion unit 121 (conversion unit), a data generation unit 122, and a charge/discharge control unit 123.
  • the charging/discharging device 10 includes a known connection mechanism (example: connector and cable) (not shown) for connection with the onboard storage battery 210.
  • the cable includes, for example, a power line, a signal line, and a CAN (Controller Area Network) signal line.
  • a power line When charging/discharging the in-vehicle storage battery 210, electric power is supplied from the charging/discharging device 10 to the electric vehicle 200 or from the electric vehicle 200 to the charging/discharging device 10 via the power line.
  • Various signals are transmitted/received between the charging/discharging device 10 and the electric vehicle 200 during charging/discharging of the onboard storage battery 210 via the signal line and the CAN signal line.
  • the charging/discharging device 10 is connected to the secondary side (downstream) of the distribution board 20 via an AC power line.
  • the power supply circuit 14 of the charging/discharging device 10 can receive the AC power through the distribution board 20.
  • the charging/discharging device 10 uses commercial AC power supplied from the commercial power system 410 to the charging/discharging device 10 via the distribution board 20 as a control power source of the charging/discharging device 10.
  • the control power supply is a power supply for obtaining control power of a predetermined voltage (for example, 12 V) necessary for starting up the charging/discharging device 10 and subsequent operations.
  • the power supply circuit 14 converts the supplied AC power into control power of a predetermined voltage (for example, 12 V) used for the operation of the charging/discharging device 10 and supplies the control power to the control circuit 12. This activates the control circuit 12 and the like.
  • the power supply circuit 14 continues to supply the control power to the control circuit 12, so that the control circuit 12 can continue to operate.
  • the control power supplied to the control circuit 12 is also supplied to other internal components such as the charging/discharging circuit 11 so that the charging/discharging device 10 as a whole can be started and continue to operate.
  • the charging/discharging circuit 11 controls the charging/discharging operation with respect to the vehicle-mounted storage battery 210 based on the control by the control circuit 12. Specifically, the charging/discharging circuit 11 converts the AC power supplied from the commercial power system 410 and converted by the transformer 13 into DC power having a specified voltage (eg, 400 V) suitable for charging the onboard storage battery 210. Convert. Then, the charge/discharge circuit 11 supplies the DC power to the electric vehicle 200. Alternatively, the charging/discharging circuit 11 can also convert the DC voltage supplied from the electric vehicle 200 into AC power. In this case, the charge/discharge circuit 11 may supply the AC power to the load.
  • a specified voltage eg, 400 V
  • the charge/discharge control unit 123 controls the charge/discharge circuit 11 to control the charge/discharge of the in-vehicle storage battery 210.
  • the charge/discharge control unit 123 may control the charge/discharge of the onboard storage battery 210 in response to a command from the EMS controller 300, which is a higher-level device.
  • the EMS controller 300 acquires Table 2 (tertiary data) described below from the charging/discharging device 10. Then, the EMS controller 300 uses the table 2 to control the charging/discharging of the onboard storage battery 210 via the charging/discharging control unit 123.
  • the start-up battery 15 is a battery that outputs direct-current power of a specified voltage (eg, 12 V) that the charge/discharge device 10 can start.
  • a specified voltage eg, 12 V
  • the charging/discharging device 10 cannot be supplied with commercial AC power through the distribution board 20, so it cannot be started using commercial AC power, that is, commercial AC power cannot be used as a control power supply. .. Therefore, in order to start the charging/discharging device 10 at the time of power failure, the starting battery 15 for starting the charging/discharging device 10 at the time of power failure is used.
  • the charging/discharging device 10 may be provided with a known input device (eg, touch panel) not shown.
  • a known input device eg, touch panel
  • the charging/discharging device 10 configured in this manner determines the range of the chargeable/dischargeable storage capacity or the charging rate of the vehicle-mounted storage battery 210, and sets the range in a state in which the range can be acquired from the EMS controller 300.
  • FIG. 2 is a flowchart showing an example of a processing procedure of data generation by the control circuit 12.
  • control circuit 12 When the control circuit 12 confirms the connection between the electric vehicle 200 and the cable (step S101), the control circuit 12 establishes a communication connection with the communication unit of the electric vehicle 200 and transmits/receives data relating to charge/discharge control (step S102). The control circuit 12 transmits/receives a signal between the charging/discharging circuit 11 and the onboard storage battery 210 of the electric vehicle 200 in step S101, or acquires data indicating a characteristic of data transmission/reception by communication in step S102 ( Step S103).
  • the control circuit 12 estimates the vehicle type of the electric vehicle 200 based on the acquired data (step S104).
  • the estimation of the vehicle type in step S104 corresponds to a process of determining whether the value indicated by the data acquired in step S102 corresponds to a value such as the upper limit battery charge remaining capacity that differs depending on the vehicle type of electric vehicle 200.
  • the control circuit 12 refers to the stored data (table 1) to estimate the data acquired in step S102 or 103 depending on which vehicle model the data matches. .. Details of the vehicle type estimation method in step S104 will be described later.
  • the control circuit 12 Based on the vehicle type estimated in step S104, the control circuit 12 converts the data acquired in step S103 into a characteristic amount such as a charge upper limit battery remaining capacity required for charge/discharge for each vehicle type (step S105). In step S105, the control circuit 12 converts the acquired data to the referenced data when the data matches the referenced data.
  • a characteristic amount such as a charge upper limit battery remaining capacity required for charge/discharge for each vehicle type
  • the control circuit 12 generates, as data for the EMS controller, information related to charge/discharge control according to the vehicle type based on the converted characteristic amount (step S106).
  • the control circuit 12 stores the generated data so that the EMS controller 300 can refer to the generated data (step S107), and ends the data generation process.
  • the conversion in step S105 may be omitted.
  • the control circuit 12 may generate data by performing a predetermined calculation on the data acquired in step S103, for example, the value of the charge upper limit battery remaining capacity, based on the vehicle type estimated in step S104. (S106). For example, the control circuit 12 generates data by setting the upper limit of the charge remaining battery capacity or a value obtained by reducing the value determined to be fully charged by a predetermined ratio (for example, 10%) as the upper limit. You may add or subtract a predetermined value.
  • control circuit 12 may perform control (local operation) by the charge/discharge circuit 11 for the electric vehicle 200.
  • control local operation
  • the charging/discharging operation according to the onboard storage battery 210 of the electric vehicle 200 can be performed for each vehicle type.
  • step S104 the vehicle type estimation method in step S104, the conversion process in step S105, and the data generation process for the EMS controller 300 in step S106 by the control circuit 12 will be described in detail.
  • the vehicle type estimation unit 120 estimates (specifies) the vehicle type of the electric vehicle 200. This corresponds to the process of step S104 in the flowchart of FIG.
  • the vehicle type of electric vehicle 200 is simply referred to as a vehicle type.
  • the vehicle type estimation unit 120 also indicates a plurality of types of values related to the on-vehicle storage battery 210, and also serves as an input unit to which primary data acquired in a predetermined format by communication between the electric vehicle 200 and the charging/discharging device 10 is input. Function.
  • This format is defined in the charging/discharging standard applied to the charging/discharging device 10 and the electric vehicle 200, for example.
  • Examples of this charge/discharge standard include CHAdeMO (registered trademark).
  • the charging/discharging standard is described as CHAdeMO, but the charging/discharging standard (eg, COMBO) other than CHAdeMO is also applicable.
  • the charging/discharging system 1 is described as being realized by V2H complying with CHAdeMO, but it may be realized by V2H complying with a charging/discharging standard other than CHAdeMO.
  • the communication standard used in the charging/discharging system 1 is described as ECHONET Lite (registered trademark), but other communication standards compatible with the charging/discharging standard may be used. ..
  • communication of information (eg, battery capacity) related to the electric vehicle 200 may be performed in a unique communication format that is not specified by the standard.
  • the primary data is, for example, CAN data transmitted from the electric vehicle 200 (hereinafter, vehicle CAN data), and includes data as shown in Table 1 of FIG. 3A.
  • vehicle CAN data transmitted from the electric vehicle 200
  • Table 1 of FIG. 3A data as shown in Table 1 of FIG. 3A.
  • a value other than the identification information unique to the onboard storage battery 210 or the electric vehicle 200 is used as the value of the vehicle CAN data used in the comparison with the table 1.
  • the data acquired by the vehicle type estimation unit 120 may be, for example, information indicating the characteristics of the communication.
  • the control circuit 12 monitors the timing (or cycle) at which various data such as vehicle CAN data transmitted by the electric vehicle 200 is transmitted, or the timing at which electric power is supplied. Also, this timing may differ for each vehicle type. Therefore, when the data is transmitted or the power is supplied, the control circuit 12 generates the information indicating the timing in association with the characteristics (eg, data or power) to be transmitted and the type of the data. Then, the information indicating the above characteristics is input to the vehicle type estimation unit 120.
  • the vehicle type estimation unit 120 estimates the vehicle type by referring to a table recorded in advance using the vehicle CAN data or the information indicating the above characteristics. Specifically, the vehicle type estimation unit 120 can estimate the vehicle type based on the communication content or communication state between the charging/discharging device 10 and the electric vehicle 200. That is, the vehicle CAN data and the information indicating the characteristics of the communication are information used for estimating the vehicle type of the connected electric vehicle 200 by collating with the table 1.
  • the above process will be explained using specific examples.
  • the vehicle type is estimated by (1) using the numerical values of the vehicle CAN data, (2) using the output mode of the vehicle CAN data, and (3) using the mode of exchanging signals with the electric vehicle 200. And (4) when using output characteristics in power transfer between the on-vehicle storage battery 210 and (5) when using response contents from the electric vehicle 200 based on vehicle CAN data, or by a plurality of Is.
  • the methods (1)-(5) are described as follows.
  • the vehicle type estimation unit 120 estimates the vehicle type based on the vehicle CAN data acquired from the electric vehicle 200.
  • FIG. 3A shows an example of a table 1 showing a correspondence relationship between various data included in the vehicle CAN data and each vehicle type.
  • the table 1 is used as a lookup table for estimating the vehicle type by the vehicle type estimation unit 120. It corresponds to the data referred to in step S104 in the flowchart of FIG.
  • the table 1 includes at least one item out of a plurality of types of items included in the vehicle CAN data so that the vehicle type can be estimated using the vehicle CAN data.
  • the information indicating the communication characteristics may be registered in the table 1 in association with the vehicle type so that the vehicle type can be estimated using the information indicating the communication characteristics.
  • Each data shown in Table 1 is acquired, for example, by a connection confirmation experiment with the electric vehicle 200 before the charging/discharging device 10 is sold.
  • the vehicle type estimation unit 120 estimates the vehicle type by referring to Table 1 using the vehicle CAN data.
  • table 1 includes data included in the vehicle CAN data, for example, ⁇ Standard version (standard control number); ⁇ Upper limit of battery strength; ⁇ Charge voltage upper limit; -Battery total capacity (total capacity of in-vehicle storage battery 210); ⁇ Discharge lower limit battery remaining capacity; ⁇ Charge upper limit battery remaining capacity; ⁇ Vehicle maker code; May be included.
  • the remaining capacity may be a charging rate (%) or a storage capacity (capacity value).
  • the charge rate is also referred to as SOC (State of Charge).
  • the vehicle type estimation unit 120 determines whether the value of each item of the acquired vehicle CAN data matches the value of the item corresponding to each item included in the table 1 and is associated with the matching value.
  • the estimated vehicle type is estimated as the vehicle type of the connected electric vehicle 200.
  • the vehicle type estimation unit 120 estimates which of the vehicle types 1 to 10 the vehicle type corresponds to by determining whether the above two values match.
  • the item prepared in Table 1 may be one if it is possible to estimate the vehicle type. However, by preparing a plurality of items in the table 1 and determining whether the above two values match in the combination, the possibility of uniquely estimating the vehicle type increases.
  • some electric vehicles 200 include a debug code unique to the electric vehicle 200 in vehicle CAN data and output the debug code. Therefore, by including the debug code as an item of the table 1 and registering the value for each vehicle type, the vehicle type estimation unit 120 can estimate the vehicle type based on the debug code.
  • the vehicle type estimation unit 120 estimates the vehicle type based on the output mode of the vehicle CAN data from the electric vehicle 200. For example, some electric vehicles 200 output vehicle CAN data in an output mode different from the model sequence described in the specification (preset model sequence). Therefore, by including each item of the vehicle CAN data output in the output mode as an item of the table 1 and registering the value for each vehicle type, the vehicle type estimation unit 120 adds the item to the vehicle CAN data. Based on that, the vehicle type can be estimated.
  • the cycle in which the electric vehicle 200 outputs the vehicle CAN data may differ depending on the vehicle type. Therefore, as an item of the table 1, information indicating the cycle (timing) (information indicating the characteristics of the communication) is included, the value is registered for each vehicle type, and when the vehicle CAN data is acquired.
  • the vehicle type estimation unit 120 can estimate the vehicle type based on the cycle by generating the information indicating the cycle.
  • the CAN communication is performed after the charge/discharge device 10 transmits a charge/discharge end signal for a period of time from when the charge/discharge device 10 transmits a charge/discharge start signal to when the electric vehicle 200 outputs vehicle CAN data.
  • the time until the end or the timing of starting or ending the transmission of the vehicle CAN data from a certain standard may differ depending on the vehicle type. Therefore, the vehicle type estimation unit 120 can estimate the vehicle type by using the information indicating the time or the timing as the information indicating the characteristics.
  • the items included in the vehicle CAN data at the start of transmission of the vehicle CAN data, the items included in the vehicle CAN data at the end, the order of the items included in the vehicle CAN data, or the communication interval of each item are different depending on the vehicle type. sell.
  • This information is also included as an item in Table 1, the value is registered for each vehicle type, and when the vehicle CAN data is acquired, the item included in the vehicle CAN data or the communication interval of each item is set.
  • the vehicle type estimation unit 120 can estimate the vehicle type based on the information.
  • the item included in the vehicle CAN data may be replaced with the ID that defines the item.
  • the vehicle type estimation unit 120 estimates the vehicle type based on the output mode of the signal from the electric vehicle 200 (eg, an arbitrary analog signal or digital signal different from the vehicle CAN data).
  • the cycle in which the electric vehicle 200 outputs the signal may differ depending on the vehicle type. Therefore, the vehicle type estimation unit 120 can estimate the vehicle type based on the cycle, as in the case of (2) above.
  • the timing (including the case where no power is supplied) from the electric vehicle 200 to the charging/discharging device 10 via the charging/discharging connector 12V line which is one of the signal lines depends on the vehicle type. Can be different. For example, there are vehicle models that supply the electric power only during CAN communication, and there are vehicle models that supply the electric power for a certain period of time after a charging connector (not shown) is connected. In addition, since the charge/discharge connector 12V line has an optional function configuration, some vehicle types do not have the charge/discharge connector 12V line. In this case, even if a series of charging/discharging operations are completed after the charging connector is connected, the charging/discharging device 10 is not supplied with the power. Therefore, the vehicle type estimation unit 120 can estimate the vehicle type in the same manner as (2) above based on the supply timing that may differ depending on the vehicle type.
  • the vehicle type estimation unit 120 estimates the vehicle type based on the output characteristics of the power exchange with the onboard storage battery 210.
  • the in-vehicle storage battery 210 exchanges a control signal based on the charging/discharging standard with the charging/discharging device 10, and then executes control to increase the battery voltage within a predetermined time under the standard. How many seconds after the output of the control signal from the charging/discharging device 10 the rising timing of the voltage differs depending on the vehicle type. So, in Table 1, ⁇ Number of seconds until the battery voltage rises; ⁇ Rising waveform of battery voltage; ⁇ Number of seconds until the battery voltage goes down; ⁇ Characteristics of falling waveform of battery voltage; Etc. are memorized.
  • the vehicle type estimation unit 120 can estimate the vehicle type based on whether the output timing of the control signal and the rising characteristics match those stored in Table 1.
  • the charging/discharging device 10 acquires the data specific to the electric vehicle 200 or the vehicle type by changing the CAN data (hereinafter, the charging/discharging device CAN data) supplied from the charging/discharging device 10 to the electric vehicle 200. .. Specific data include vehicle CAN data obtained when the charging/discharging device CAN data is changed.
  • the vehicle type estimation unit 120 estimates the vehicle type based on the vehicle CAN data (see: (1) above).
  • the charging/discharging device 10 supplies irregular charging/discharging device CAN data to the electric vehicle 200, so that vehicle CAN data (irregular vehicle CAN) different from when normal charging/discharging device CAN data is supplied. (Also referred to as data) can be acquired.
  • vehicle CAN data irregular vehicle CAN
  • the irregular charging/discharging device CAN data may be, for example, lower version data, and the regular charging/discharging device CAN data may be higher version (eg, latest version) data.
  • the electric vehicle 200 communicates with the charging/discharging device 10 according to the data of the lower version.
  • irregular vehicle CAN data can be obtained from the electric vehicle 200.
  • the maximum charging current upper limit value or the discharging current upper limit value transmitted from the electric vehicle 200 may differ depending on the vehicle type, and thus the difference in this value is used for estimating the vehicle type.
  • the charging/discharging device transmits the outputtable current value or the inputtable current value within the chargeable/dischargeable range (capacity) to the electric vehicle.
  • the electric vehicle transmits an upper limit value of charging current (hereinafter, upper limit value of charging current) or an upper limit value of discharging current (hereinafter, upper limit value of discharging current) to the charging/discharging device as an upper limit value of those values.
  • the charging/discharging device 10 intentionally transmits an outputtable current value or an inputtable current value (for example, the maximum value defined by the standard) that exceeds the chargeable/dischargeable range, and the maximum charging current upper limit from the electric vehicle 200.
  • Value or discharge current upper limit value is received.
  • the vehicle type estimation unit 120 estimates the vehicle type based on the received charging current upper limit value or discharging current upper limit value. Specifically, the charging current upper limit value or the discharging current upper limit value is included in the table 1 for each vehicle type, and the control circuit 12 transmits the outputtable current value or the inputtable current value that exceeds the chargeable/dischargeable range.
  • the vehicle type estimation unit 120 can estimate the vehicle type by measuring the charging current upper limit value or the discharging current upper limit value at this time and acquiring the measurement result as information indicating the communication characteristics.
  • the vehicle type estimation unit 120 can estimate the vehicle type by including the value determined for each vehicle type in the table 1.
  • the vehicle type estimation unit 120 can estimate the year and grade of the electric vehicle 200 together with the estimation of the vehicle type.
  • the data conversion unit 121 selects data in a table (hereinafter, referred to as Table 1′) that is more generalized than the vehicle CAN data and that corresponds to the vehicle type. This corresponds to the details of the conversion process of step S105 in the flowchart of FIG. Specifically, the data conversion unit 121 refers to the table 1 ′ to convert the vehicle CAN data into secondary data that is generalized to the vehicle CAN data (secondary data that is more versatile than the vehicle CAN data). ) Function as a conversion unit.
  • the definition of the total battery capacity, the chargeable capacity value, the dischargeable capacity value, etc. that the charging/discharging device 10 acquires from the electric vehicle 200 differs depending on the vehicle type. For example, there is a vehicle type that transmits a catalog value as the total battery capacity, and a vehicle type that transmits an actual measurement value. Therefore, when the charging/discharging control is performed using the acquired vehicle CAN data as it is, the charging/discharging device 10 may perform the charging/discharging control with a value that does not conform to the current state of the onboard storage battery 210.
  • the secondary data is data that enables charge/discharge control with a value that conforms to the current state of the vehicle-mounted storage battery 210, and in that respect is data that is more versatile than vehicle CAN data. ..
  • the vehicle type estimation unit 120 estimates the vehicle type by referring to Table 1 using the vehicle CAN data or the information indicating the characteristics of the above communication, and thus the secondary data corresponding to the vehicle type by the data conversion unit 121 is obtained.
  • FIG. 3B shows an example of contents of data converted by the data conversion process.
  • An example of the table 1' is shown in FIG. 3B.
  • Each data shown in Table 1' may be referred to as secondary data.
  • the table 1' is used as a lookup table for the data conversion unit 121 to select the secondary data for each vehicle type.
  • each data shown in the table 1′ is acquired, for example, by a connection confirmation experiment with the electric vehicle 200 before the charge/discharge device 10 is sold.
  • the secondary data is also referred to as a feature amount of each vehicle type (vehicle types 1 to 10) defined in Table 1.
  • the secondary data include ⁇ Discharge lower limit battery remaining capacity; ⁇ Charge upper limit battery remaining capacity; ⁇ Lower limit of remaining battery capacity for rated output (discharge); ⁇ Upper limit of battery capacity that can be rated (charged); ⁇ Lower limit output (discharge) characteristics; ⁇ Output (charge) characteristics on the upper limit side; ⁇ Interval time; ⁇ label; May be included.
  • the remaining amount may be the charging rate (%) or the storage capacity (capacity value).
  • the charging/discharging device 10 discharges the in-vehicle storage battery 210 when the electric vehicle 200 is connected, and the value when the electric vehicle 200 transmits a stop instruction of the discharging operation to the charging/discharging device 10 or the discharge current upper limit value is The value when the value becomes 0 or a value close to 0 is set as the “discharge lower limit battery remaining capacity”. However, before the storage capacity or the charging rate of the onboard storage battery 210 reaches the discharge lower limit battery remaining capacity or the discharge lower limit charge rate transmitted from the electric vehicle 200, a stop instruction is received from the electric vehicle 200, or The discharge current upper limit may be zero.
  • the above value set as the “discharge lower limit battery remaining capacity” is reset to the discharge lower limit battery remaining capacity or the discharge lower limit charge rate transmitted from the electric vehicle 200. Further, the charging/discharging device 10 may set the discharge lower limit battery remaining capacity or the discharge lower limit battery remaining rate as it is as the “discharge lower limit battery remaining capacity” transmitted from the electric vehicle 200.
  • the charging/discharging device 10 charges the in-vehicle storage battery 210 when the electric vehicle 200 is connected, and the value when the electric vehicle 200 transmits a stop instruction of the charging operation to the charging/discharging device 10, or the charging current upper limit.
  • the value when the value becomes 0 or a value close to 0 is set as the "charge upper limit battery remaining capacity".
  • a stop instruction is received from the electric vehicle 200, or The charging current upper limit may be 0.
  • the value set as the “charge upper limit battery remaining capacity” is reset to the charge upper limit battery remaining capacity or the charge upper limit charging rate transmitted from the electric vehicle 200. Further, the charging/discharging device 10 may set the charging upper limit battery remaining capacity or the charging upper limit charging rate transmitted from the electric vehicle 200 as it is as the “charging upper limit battery remaining capacity”.
  • the charging/discharging device 10 discharges or charges the in-vehicle storage battery 210 having a predetermined charging rate (eg, 50%) at the rated output value. Then, the charging/discharging device 10 sets the value at the time when the request for the charging/discharging operation at a value lower than the rated output value is received from the electric vehicle 200 as “the lower limit battery remaining capacity at which the rated output is possible” or “the rated output is possible”. Upper limit of remaining battery capacity”.
  • the output characteristic indicates the characteristic of how to throttle the charging power by electric vehicle 200 (how to throttle the output), and specifically shows the output value of charging/discharging device 10 with respect to the charging rate.
  • electric-powered vehicle 200 side requests that the value be lower than the rated output value, as described above.
  • a decreasing tendency from the rated output value when the charging rate approaches 0 (first decreasing tendency), or a decreasing tendency from the rated output value when the charging rate approaches 100 (second decreasing tendency) May differ depending on the vehicle type.
  • the charging/discharging device 10 acquires the first lowering tendency and the second lowering tendency, which are the lowering tendencies of the output value due to the fluctuation of the charging rate, and respectively, the “lower limit side output characteristic” and the “upper limit side output characteristic”. Value of. Note that these values may be, for example, the slopes of the first decreasing tendency and the second decreasing tendency (eg, the slope of the approximate expression obtained by performing a predetermined statistical process).
  • Label indicates whether the acquired total battery capacity is a catalog value or an actual measurement value (actual value).
  • the catalog value is the value of the total battery capacity described in the catalog of electric vehicle 200 (the value of the total battery capacity when vehicle-mounted storage battery 210 is new (not deteriorated)). Since the measured value is the actual value of the total battery capacity, it can be said that it is a value that takes into consideration the deterioration of the onboard storage battery 210.
  • the value of "label” is ⁇ At the time of initial shipment of the charging/discharging device 10, ⁇ During user input operation on the touch panel, or -It is set at the time of tuning described later. At the time of initial shipping, the charging/discharging device 10 specifies whether the value is a catalog value or an actual measurement value based on the acquired vehicle CAN data. Also, as described later, the charging/discharging device 10 sets the value of the “label” by an input operation to the server instead of the user's input operation on the touch panel or by data transmitted from another charging/discharging device. You can set it.
  • the charging/discharging device 10 determines whether or not there is a difference between the calculated estimated value and the total battery capacity acquired from the electric vehicle 200 by the calculation method (described later) when the total battery capacity is the catalog value. It may be determined whether or not the total battery capacity is a measured value. When there is no difference (when it is within the predetermined range), it is determined that it is the actual measurement value.
  • the data generator 122 uses the secondary data and the total battery capacity to generate each data processed by the EMS controller 300. The details of the generation processing in step S106 of the processing procedure shown in the flowchart of FIG. 2 will be described.
  • the table showing each data is also referred to as table 2.
  • An example of Table 2 is shown in FIG. 3C. Each data in Table 2 may be referred to as tertiary data.
  • the tertiary data is data that is calculated based on the secondary data values selected from the table 1', or the secondary data values are input as they are. Therefore, similar to the secondary data, the tertiary data is data that enables charge/discharge control with a value that conforms to the current state of the vehicle-mounted storage battery 210, and in that respect is more versatile than vehicle CAN data. It can be said to be data.
  • FIG. 3C shows a content example of data generated by the data generation process.
  • the tertiary data include -Vehicle type (vehicle type estimated by the vehicle type estimation unit 120); ⁇ In-vehicle storage battery capacity (total battery capacity); ⁇ Total battery capacity catalog value or actual value; ⁇ Dischargeable capacity value of in-vehicle storage battery; ⁇ Dischargeable remaining capacity of in-vehicle storage battery; ⁇ Chargeable capacity value of in-vehicle storage battery; ⁇ Chargeable remaining capacity of in-vehicle storage battery; ⁇ Battery remaining capacity of in-vehicle storage battery; ⁇ Maximum battery capacity for rated output; ⁇ Lower limit battery capacity for rated output; ⁇ Output characteristics on the upper limit side; ⁇ Lower limit output characteristics; ⁇ Tuning required; May be included (values AM in FIG. 3C).
  • the “vehicle type” may be input with ⁇ In-vehicle
  • the total battery capacity is A[Wh]
  • the current battery capacity obtained from the electric vehicle 200 is B[Wh]
  • the charging upper limit battery remaining capacity is C[Wh]
  • the discharging lower limit battery remaining capacity is D[Wh].
  • the C and D data are contained in Table 1'.
  • a measured value or an estimated value may be used as A.
  • a catalog value may be used as a reference value.
  • B may be a measured value.
  • tertiary data may include data items defined by the designer of the charging/discharging device 10.
  • the “total battery capacity catalog value or actual value” (value C) included in the tertiary data reflects the value of the “label” in the table 1′.
  • the values (values I to I) of the "upper limit battery capacity that can be rated output”, “lower limit battery capacity that can be rated output”, “upper limit side output characteristic” and “lower limit side output characteristic” included in the tertiary data are reflected respectively.
  • the “whether tuning is required” is for setting ON or OFF of a tuning mode described later.
  • the setting of this value (value M) is performed, for example, by a user's input operation on the touch panel or the EMS controller 300.
  • the control circuit 12 may generate each data processed by the EMS controller 300 without using the secondary data obtained by the data conversion unit 121.
  • the control circuit 12 may generate the tertiary data based on the current battery capacity and the total battery capacity acquired from the electric vehicle 200 by a function defined in advance.
  • a learning model that has been learned so as to output tertiary data when the data obtained in step S102 or the like is input may be used.
  • the control circuit 12 transmits the tertiary data generated by the data generation unit 122 to the EMS controller 300. Therefore, the EMS controller 300 can control the charging/discharging operation of the vehicle-mounted storage battery 210 by the charging/discharging device 10 using the acquired tertiary data. That is, the EMS controller 300 can cause the charging/discharging device 10 to perform the charging/discharging control with a value according to the current state of the in-vehicle storage battery 210.
  • the control circuit 12 can also transmit the tertiary data generated by the data generation unit 122 to a higher-level device of the charging/discharging device 10 other than the EMS controller 300. Therefore, the charge/discharge device 10 can be controlled using the tertiary data in various host devices.
  • the charging/discharging device 10 Prior to the vehicle type estimation by the vehicle type estimation unit 120, the charging/discharging device 10 stores (holds) the table 1 in advance. Each data in the table 1 is used as learning data for the vehicle type estimation unit 120 to perform vehicle type estimation. However, the table 1 can be updated as described later.
  • the table 1' is stored in advance prior to conversion of the acquired vehicle CAN data into secondary data based on the vehicle type estimation result by the data conversion unit 121.
  • the table 1' can be updated as described later.
  • the vehicle type estimation unit 120 estimates the vehicle type based on the table 1. Subsequently, the data conversion unit 121 selects a value corresponding to the vehicle type from the table 1'as secondary data by referring to the table 1'based on the vehicle type estimation result. Subsequently, the data generation unit 122 generates Table 2 based on the secondary data and the total battery capacity. Then, the data generation unit 122 supplies the generated table 2 to the EMS controller 300.
  • Total battery capacity setting Some electric vehicles 200 transmit the catalog value of the total battery capacity to the charging/discharging device 10 as data indicating the total battery capacity. On the other hand, some of the electric vehicles 200 transmit data indicating actual measurement values to the charging/discharging device 10.
  • the charging/discharging device 10 may use the actual measurement value as it is. This is because it can be said that the actual measurement value is a value indicating the actual performance of the in-vehicle storage battery 210 (a value having higher reliability than the catalog value).
  • charging/discharging device 10 calculates the total battery capacity based on, for example, the integrated power. This is because the catalog value does not always match the actual performance of the onboard storage battery 210.
  • the charging/discharging device 10 may acquire integrated power from an integrated power meter (not shown). Alternatively, the charging/discharging device 10 may calculate the integrated power based on the output (X[kW]) and the charging/discharging time (Y[h]) of the electric vehicle 200. Then, the charging/discharging device 10 calculates the amount of power per SOC 1% (unit: kWh) from the integrated power and the SOC increased or decreased during the charging/discharging time. Subsequently, the charging/discharging device 10 converts the amount of power per SOC 1% into the amount of power corresponding to SOC 100% (that is, the total battery capacity).
  • the charging/discharging device 10 calculates the total battery capacity by multiplying the amount of power per SOC 1% by 100. Further, the average value may be continuously calculated by repeating this process. In this case, since the average value can be used as the total battery capacity, the certainty of the total battery capacity is improved.
  • charge/discharge device 10 may use the catalog value as a reference value until the conversion process is completed.
  • the conversion process may be executed each time the connector is removed from the electric vehicle 200. That is, the charging/discharging device 10 may hold the calculated total battery capacity during the period in which the connector is inserted in the electric vehicle 200.
  • FIG. 4 is a flowchart showing an example of a procedure for updating the table by the control circuit 12.
  • the same steps as those shown in the flowchart of FIG. 2 are designated by the same step numbers, and detailed description thereof will be omitted.
  • the control circuit 12 determines whether or not the vehicle type could be estimated in step S104 based on whether or not the data acquired in step S103 matches the known vehicle type data in Table 1 (step S115). When it is determined that the vehicle type could not be estimated (S115: NO), the data acquired in step S103 is added to the table 1 as the data of the new vehicle type (step S116), and the process proceeds to the next step S105. If the vehicle type cannot be estimated in step S115, it corresponds to the determination that the data does not match the reference data, that is, it cannot be converted into the data for the known vehicle type.
  • step S115 when it is determined in step S115 that the conversion into the secondary data cannot be performed (when the new electric vehicle 200 having no connection record is connected to the charge/discharge apparatus), the charging/discharging device 10 sets the new electric vehicle 200.
  • Information data relating to the onboard storage battery 210) is input to the tables 1 and 1'(S116).
  • the vehicle type estimation unit 120 when the vehicle type estimation unit 120 cannot convert the secondary data, the vehicle type estimation unit 120 at least part of a plurality of types of values included in the vehicle CAN data acquired from the new electric vehicle 200 (prepared in Table 1). (The value of the selected item) is input to Table 1. That is, the vehicle type estimation unit 120 collects data for vehicle type determination. By this input processing, when the new electric vehicle 200 is connected next time, it becomes possible to estimate the vehicle type.
  • the vehicle type estimating unit 120 uses, as a reference value, at least a part of a plurality of types of values included in the vehicle CAN data, or a value calculated from at least a part of the plurality of types of values, as a reference value. To enter. By this input processing, it becomes possible to use the table 1'when the new electric vehicle 200 is connected next time.
  • step S115 If it is determined in step S115 that the vehicle type can be estimated (S115: YES), the process proceeds to the next step S105.
  • the control circuit 12 converts the data acquired in step S103 into a characteristic amount such as the charge upper limit battery remaining capacity of the vehicle type based on the vehicle type estimated in step S104 or the vehicle type newly added in step S116 (S105). ). In step S105, the control circuit 12 converts the acquired data to the referenced data when the data matches the referenced data.
  • step S115 When it is determined in step S115 that the vehicle type could not be estimated (S115: NO), the control circuit 12 does not have to add new vehicle type data to the table 1 in step S116. For example, if the control circuit 12 cannot (or does not) estimate the vehicle type (S115: NO), the control circuit 12 proceeds to step S106, and based on the value of the vehicle CAN data transmitted/received in step S102 and the characteristic acquired in step S103, the charge/discharge control is performed. You may generate the data required for. In this case, the control circuit 12 may generate the data so as to have a margin of 3%-10% with respect to the upper limit value or the lower limit value.
  • a flag indicating that the value of the item is the reference value and the value needs to be changed may be added.
  • the charging/discharging device 10 can notify the EMS controller 300 that it is a reference value and that the value needs to be changed. Note that changing the value is also referred to as tuning.
  • the vehicle type estimating unit 120 inputs a value indicating the “catalog value” as the value of the “label” in the table 1 ′, assuming that the acquired total battery capacity is the catalog value. In this case also, the flag may be added.
  • the EMS controller 300 permits the tuning. If there is, the vehicle type estimation unit 120 collects each value of the table 1′ by automatically performing charge/discharge control on the vehicle-mounted storage battery 210. Specifically, the vehicle type estimation unit 120 rewrites the reference value based on the result of the charging/discharging operation of the onboard storage battery 210 performed under a predetermined condition. Rewriting at this time is the same as the method of acquiring each value of the table 1'described above.
  • the vehicle type estimation unit 120 causes the vehicle-mounted storage battery 210 to be based on the predetermined operation mode.
  • the reference value is rewritten to the value.
  • the vehicle type estimation unit 120 uses the “discharge lower limit battery remaining capacity” or the “charge upper limit battery remaining capacity” of the table 1 ′, for example, while performing the charging/discharging operation according to the instruction of the EMS controller 300 or the reserved operation.
  • a charge/discharge operation stop instruction is received from the vehicle 200, the value at the time of reception is rewritten.
  • the upper limit value of the discharge current or the upper limit value of the charge current is rewritten to a value when it becomes 0 or a value close to 0.
  • the stop instruction is not received up to the discharge lower limit battery remaining capacity, or when the discharge current upper limit value does not become 0 or a value close to 0, the value (reference value) transmitted from the electric vehicle 200 is directly discharged.
  • the value of “lower limit battery remaining capacity” may be used. Similarly, if the stop instruction is not received or the charging current upper limit value does not reach 0 or a value close to 0, the value transmitted from the electric vehicle 200 is directly used as the “charging upper limit battery remaining capacity”. The value of “capacity” may be used.
  • the vehicle type estimation unit 120 may, for example, regarding the “lower limit battery remaining capacity for rated output” or the “upper limit battery remaining capacity for rated output” in the table 1′, for example, during the charging/discharging operation, the rated output value ( Example: When a request for charging/discharging operation (for example, determination based on the discharge current upper limit value or the charge current upper limit value) at a value lower than the rated output current value is received from the electric vehicle 200, the value when the request is received Rewrite
  • the charging/discharging device 10 can notify the EMS controller 300 that the value has been rewritten.
  • the charging/discharging device 10 can perform the charging/discharging operation according to the current state of the onboard storage battery 210 of the new electric vehicle 200 by rewriting the reference value. Further, when the tuning mode is ON, the value after rewriting can be used as the value of the table 1′, so that the charging/discharging device 10 can perform the charging/discharging operation according to the current state of the onboard storage battery 210. .. On the other hand, when the tuning mode is OFF, the value can be rewritten during the operation of the charging/discharging system 1.
  • the charging/discharging device 10 performs the charging/discharging operation according to the current state of the onboard storage battery 210 of the new electric vehicle 200 by gradually rewriting. Will be able to do. Further, when the tuning mode is OFF, it is possible to prevent the EMS controller 300 from granting tuning permission or performing tuning at an unintended timing.
  • the charging/discharging device 10 may be connected to another charging/discharging device via a server on the network.
  • the charging/discharging device 10 may supply each newly acquired table to another charging/discharging device.
  • the charging/discharging device 10 may set each data in the table 1 ′ based on a user's input operation on the touch panel or a server input operation.
  • the charging/discharging device 10 may be connected to a terminal device (eg, smartphone) owned by the user via a network. In this case, the user inputs each data to the terminal device. Then, the terminal device supplies the respective data to the charging/discharging device 10.
  • the charging/discharging device 10 allows the user to select a vehicle type by pop-up display on, for example, a touch panel when inputting each data. This makes it possible to record each input data in association with the selected vehicle type.
  • the charging/discharging device has a function of transmitting the total battery capacity, the chargeable capacity value, the dischargeable capacity value, or the like acquired from the electric vehicle to the EMS controller.
  • the EMS controller may perform charge/discharge control with a value that does not comply with the current state of the onboard storage battery.
  • the EMS controller issues a request to stop the charging/discharging operation with a value different from the chargeable capacity value or the dischargeable capacity value transmitted from the electric vehicle (that is, at an earlier timing than planned). May be accepted from.
  • the EMS controller charges and discharges at a value lower than the rated output value in the range of the storage capacity (capacity value) or the charging rate that was determined to be capable of performing the charging and discharging operation at the rated output value.
  • the operation request may be received from the electric vehicle.
  • the method of shifting to a value lower than the rated output value (how to throttle the output) differs depending on the vehicle type, it may not be possible for the EMS controller side to specify how to shift to a lower value. ..
  • the charging/discharging device 10 has at least a part of values of a plurality of types included in the vehicle CAN data acquired from the electric vehicle 200, or communication between the electric vehicle 200 and the charging/discharging device 10.
  • Tables 1 and 1' are referred to using the information indicating the characteristics of.
  • the vehicle type of the electric vehicle 200 can be specified by referring to the table 1. Further, by referring to the table 1', the value of the vehicle CAN data can be converted into the value of the secondary data corresponding to the specified vehicle type, which is more generalized than the vehicle CAN data. Therefore, a generalized value can be used for charge/discharge control.
  • the charging/discharging device 10 includes the vehicle type estimating unit 120 and the data converting unit 121, and thus the values are of the same type, but even if the definition of the value is different for each vehicle, each vehicle type is different. A common value that offsets the difference in the definition of can be used for charge/discharge control.
  • the charging/discharging device 10 can perform the charging/discharging operation according to the current state of the vehicle-mounted storage battery 210 for each vehicle type. That is, the charging/discharging device 10 can perform charging/discharging control with respect to the vehicle-mounted storage battery 210, avoiding the problem described above.
  • the charging/discharging device 10 also uses the table 1 ′ to generate the table 2 processed by the EMS controller 300. Therefore, the EMS controller 300 can control the charging/discharging device 10 so that the charging/discharging device 10 can perform charging/discharging control with the value according to the present condition of the vehicle-mounted storage battery 210. That is, the EMS controller 300 can perform charging/discharging control with respect to the vehicle-mounted storage battery 210, avoiding the problem described above. Further, the EMS controller 300 can avoid occurrence of disadvantages (eg, penalties for the provider of the EMS controller 300 due to the inability to meet the request for adjustment power) when the above problems occur. ..
  • disadvantages eg, penalties for the provider of the EMS controller 300 due to the inability to meet the request for adjustment power
  • the charging/discharging device 10 or the EMS controller 300 can perform the charging/discharging control according to the current state of the vehicle-mounted storage battery 210, without performing the predetermined control prepared for every vehicle type. Therefore, the software can be simplified.
  • the charging/discharging device 10 or the EMS controller 300 can perform charging/discharging control using a value according to the current state of the onboard storage battery 210. Therefore, the following effects are produced. -It becomes easier to predict charge/discharge operation. -The onboard storage battery 210 can be efficiently charged and discharged. It is possible to make it difficult to receive a stop request or the like from the electric vehicle 200. Therefore, it is possible to reduce the number of times of connecting and disconnecting the charging/discharging device 10 and the electric vehicle 200, or performing output control of the charging/discharging device 10 associated with a stop request or the like. Therefore, failure of the charging/discharging device 10 or the electric vehicle 200 due to repetition of these operations can be prevented.
  • the charging/discharging device 10 of the present embodiment controls the charging/discharging operation for the in-vehicle storage battery 210 in its own device using the values in the table 1'. That is, the charging/discharging device 10 of the present embodiment does not necessarily have the function of generating the table 2 and transmitting the table 2 to the EMS controller 300 as in the first embodiment.
  • the battery remaining capacity acquired from the electric vehicle 200 is the “charging upper limit battery remaining capacity” in the table 1′ corresponding to the vehicle type. Or when the "remaining battery capacity of the upper limit of the rated output” is reached, the charging operation is stopped. Further, the charge/discharge control unit 123, while performing the discharging operation, the acquired battery remaining capacity is “discharge lower limit battery remaining capacity” or “rated output lower limit battery remaining capacity” of the table 1′ corresponding to the vehicle type. The discharge operation is stopped.
  • the values in Table 1' are values that take into consideration the characteristics of the vehicle type of electric vehicle 200. Therefore, the charging/discharging control unit 123 can perform the charging/discharging operation according to the current state of the in-vehicle storage battery 210. In addition, the charge/discharge control unit 123 can control the charge/discharge operation so as not to exceed the range in which the charge/discharge is allowed in the vehicle-mounted storage battery 210 or the range in which the charge/discharge device 10 can perform the rated output.
  • the upper limit value or the lower limit value according to the current state of the in-vehicle storage battery 210 can be used, it is possible to accurately predict the end time of the charging/discharging operation (in the case of discharging, the independent operation or the grid interconnection operation). Becomes
  • the charging current upper limit value and the discharging current upper limit value may be set for each vehicle type in the table 1'.
  • the charge/discharge control unit 123 applies the charge current upper limit value and the discharge current upper limit value of the table 1'instead of the charge current upper limit value and the discharge current upper limit value acquired as the vehicle CAN data. Therefore, the charging/discharging current can be adjusted according to the current state of the on-vehicle storage battery 210.
  • the charging/discharging control unit 123 monitors the “interval time” of the table 1′ corresponding to the vehicle type after the charging/discharging operation ends, and starts the charging/discharging operation again after the lapse of the interval time.
  • the interval time is a time from when a series of charging/discharging operations is completed to when another charging/discharging operation can be started again. Specifically, it is the time from when the termination process of the charging/discharging operation accompanying the pressing of the stop button is completely completed until the charging/discharging operation is actually started when the stop button is pressed again. ..
  • the interval time is set in accordance with the vehicle type with the longest interval time in consideration of safety, assuming that electric vehicles 200 of all vehicle types are connected.
  • the charging/discharging operation can be started after the appropriate interval time has elapsed for each vehicle type. Therefore, the time until the start of the charging/discharging operation again can be shortened. Further, the response time (the time until the EMS controller 300 receives the charge/discharge instruction from the command station 400 and the charge/discharge device 10 actually starts the output at the set command value) can be shortened.
  • the charging/discharging operation based on the instruction from the EMS controller 300 can also be applied.
  • the charge/discharge control unit 123 receives a charge/discharge operation start instruction from the EMS controller 300 before the “interval time” of the table 1′ corresponding to the vehicle type has elapsed, the charge/discharge control unit 123 receives the interval time. After the lapse of time, the charging/discharging operation can be started again. Further, the interval time may be notified to the EMS controller 300.
  • the vehicle type estimation unit 120 may estimate the vehicle type based on the value of identification information unique to the vehicle-mounted storage battery 210 or the electric vehicle 200 (eg, ID of the electric vehicle 200 (vehicle ID)). In this case, for example, the vehicle ID may be recorded in the table 1.
  • the total battery capacity may be measured in advance for the electric vehicle 200 indicated by the vehicle ID.
  • the charging/discharging device 10 may use the total battery capacity. However, the total battery capacity may deteriorate over time. Therefore, the total battery capacity may be tuned for each predetermined period (eg, once a year). The total battery capacity may be added to the table 1'.
  • the charging/discharging device 10 includes the vehicle type estimation unit 120, the data conversion unit 121 and/or the data generation unit 122 in the control circuit 12, and stores the tables 1 and 1′.
  • the device that includes the vehicle type estimation unit 120, the data conversion unit 121, and/or the data generation unit 122 and stores the tables 1 and 1′ is not limited to the charging/discharging device 10 and is connected to the charging/discharging device 10 so as to communicate with each other. It may be an external device that can be used.
  • the charging/discharging system 1 includes a HEMS (Home Energy Management System) controller (not shown) that manages the charging/discharging device 10.
  • the HEMS controller may include the vehicle type estimation unit 120, the data conversion unit 121, and the data generation unit 122, and may store the tables 1 and 1'.
  • the EMS controller 300 can also function as a HEMS controller.
  • the tables 1 and 1 ′ do not necessarily have to be stored in the charging/discharging device 10 or the HEMS controller.
  • the tables 1 and 1 ′ may be managed by a device other than the charging/discharging device 10 and the HEMS controller, and may be acquired by the charging/discharging device 10 and the HEMS controller as needed.
  • control block (particularly each part of the control circuit 12) of the charging/discharging device 10 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be realized by software.
  • the charging/discharging device 10 includes a computer that executes the instructions of a program that is software that realizes each function.
  • the computer includes, for example, one or more processors and a computer-readable recording medium that stores the program. Then, in the computer, the processor reads the program from the recording medium and executes the program to achieve the object of the present invention.
  • a CPU Central Processing Unit
  • the recording medium a "non-transitory tangible medium" such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. Further, a RAM (Random Access Memory) for expanding the program may be further provided.
  • the program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program.
  • any transmission medium communication network, broadcast wave, etc.
  • one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
  • Charge/Discharge Device 12 Control Circuit (Data Processing Device) 120 Vehicle type estimation unit (input unit, conversion unit) 121 Data conversion unit (conversion unit) 122 data generation unit 200 electric vehicle 210 in-vehicle storage battery (in-vehicle battery) 300 EMS controller (upper device)

Abstract

In the present invention, a charging/discharging operation appropriate for the present condition of a vehicle-mounted storage battery is performed for each vehicle type. A control circuit (12) is provided with a data generation unit (122) which, regarding a vehicle-mounted storage battery (210) of an electric vehicle, on the basis of characteristics in transmission/reception of a signal or communication data between the electric vehicle and a charging/discharging device (10), generates data including a charging/discharging operation-related value for a host device or a charging/discharging device that controls the operation of charging/discharging the vehicle-mounted storage battery.

Description

データ処理装置、充放電装置及びデータ処理方法Data processing device, charging/discharging device, and data processing method
 本発明は、データ処理装置、充放電装置及びデータ処理方法に関する。 The present invention relates to a data processing device, a charging/discharging device, and a data processing method.
 従来、例えば特許文献1~3に開示されているように、電動車両に対する充放電に係る技術が開示されている。 Conventionally, as disclosed in, for example, Patent Documents 1 to 3, technologies related to charging and discharging electric vehicles have been disclosed.
 特許文献1及び2には、予め記憶されたユーザマスタ情報及び充電特性データと、ユーザの登録電動車両に対する計測データとに基づき、登録電動車両の車載電池の充電進行状態を演算する電動車両用給電システムが開示されている。この電動車両用給電システムでは、最新の充電履歴データを、過去の充電履歴データ又は劣化のない車載電池の充電特性データと対比することで、車載電池の劣化状況を判定する。また、車種毎に充電特性データを記憶しておくことで、登録電動車両以外の電動車両が備える車載電池の充電進行状態を演算したり、当該電動車両の車載電池の劣化状況を判定したりすることも可能である。 In Patent Documents 1 and 2, electric power supply for an electric vehicle that calculates a charging progress state of a vehicle-mounted battery of a registered electric vehicle based on user master information and charging characteristic data stored in advance and measurement data for a registered electric vehicle of a user. A system is disclosed. In this power supply system for an electric vehicle, the latest charging history data is compared with past charging history data or charging characteristic data of an on-vehicle battery without deterioration to determine the deterioration state of the on-vehicle battery. In addition, by storing the charging characteristic data for each vehicle type, it is possible to calculate the charging progress status of the on-board battery of the electric vehicle other than the registered electric vehicle, and to determine the deterioration status of the on-board battery of the electric vehicle. It is also possible.
 特許文献3には、各電動車両の過去の走行情報(又は対象車両と同一車種の過去の走行情報)と充電時充電量とに基づき、各電動車両の電費を演算し、当該電費と、対象車両の走行経路とに基づき、対象車両の充電量を推定する充電状態推定装置が開示されている。 In Patent Document 3, based on the past traveling information of each electric vehicle (or the past traveling information of the same vehicle type as the target vehicle) and the charging amount at the time of charging, the electric power cost of each electric vehicle is calculated, and the electric power cost and the target are calculated. Disclosed is a state-of-charge estimating device that estimates the amount of charge of a target vehicle based on the travel route of the vehicle.
特開2011-166971号公報JP, 2011-166971, A 特開2012-161241号公報JP 2012-161241 A 特開2017-67720号公報JP, 2017-67720, A
 ところで、車種によって、車載蓄電池の充放電可能な蓄電容量又は充電率の範囲の規定の仕方が異なる。そのため、充放電装置又はその上位装置が、様々な車種に対して一律に充放電動作に関する値を算出した場合、車載蓄電池に対して充放電可能と判断した範囲内であっても、電動車両からの指示により充放電動作が停止してしまう可能性がある。また、充放電装置又はその上位装置が、定格出力で車載蓄電池に対して充放電可能と判断した範囲内であっても、定格出力での充放電動作が行えなくなる可能性がある。 By the way, the method of defining the range of chargeable/dischargeable storage capacity or charging rate of the onboard storage battery differs depending on the vehicle type. Therefore, when the charging/discharging device or its higher-level device uniformly calculates the values related to the charging/discharging operation for various vehicle types, even if the charging/discharging is determined to be possible with respect to the onboard storage battery, There is a possibility that the charging/discharging operation will be stopped by the instruction. Further, even if the charging/discharging device or a higher-level device thereof is within the range determined to be capable of charging/discharging the on-vehicle storage battery at the rated output, there is a possibility that the charging/discharging operation at the rated output cannot be performed.
 特許文献1及び2は、車種毎に上記規定の仕方を考慮した充放電装置又はその上位装置における充放電処理を開示するものではない。 Patent Documents 1 and 2 do not disclose the charging/discharging process in the charging/discharging device or its superordinate device in consideration of the above-described method for each vehicle type.
 本発明の一態様は、電動車両の車載蓄電池の現状に則した充放電動作を車種毎に行うことを可能とする、充放電装置及びデータ処理方法を実現することを目的とする。 An aspect of the present invention is to realize a charging/discharging device and a data processing method capable of performing a charging/discharging operation according to the current state of a vehicle-mounted storage battery of an electric vehicle for each vehicle type.
 上記の課題を解決するために、本発明の一態様に係るデータ処理装置は、電動車両の車載バッテリと接続され、前記電動車両と充放電装置との間の信号又は通信データの授受における特性を取得する取得部と、取得した特性に基づき、前記車載バッテリへの充放電動作を制御する前記充放電装置又は上位装置へ向けて、前記充放電動作に関する値を含むデータを生成するデータ生成部とを備える。 In order to solve the above-mentioned problems, a data processing device according to an aspect of the present invention is connected to an on-vehicle battery of an electric vehicle, and has characteristics in transmitting and receiving signals or communication data between the electric vehicle and a charging/discharging device. An acquisition unit that acquires, and a data generation unit that generates data including a value related to the charging/discharging operation toward the charging/discharging device or a higher-level device that controls the charging/discharging operation of the vehicle-mounted battery based on the acquired characteristics. Equipped with.
 上記の課題を解決するために、本発明の一態様に係るデータ処理装置は、電動車両の車載バッテリに関する複数種類の値を示し、前記電動車両と充放電装置との間の通信により予め定められたフォーマットで取得される一次データが入力される入力部と、前記複数種類の値のうちの少なくとも一部の値、又は前記通信の特性を示す情報を用いて、予め記録されたテーブルの参照処理を行うことにより、前記一次データをより汎用化された二次データへ換算する換算部と、を備える。 In order to solve the above-mentioned problems, a data processing device according to an aspect of the present invention indicates a plurality of types of values related to an on-vehicle battery of an electric vehicle, and is predetermined by communication between the electric vehicle and a charging/discharging device. A pre-recorded table using an input unit to which primary data acquired in a different format is input, at least a part of the values of the plurality of types, or information indicating the characteristics of the communication. And a conversion unit that converts the primary data into more generalized secondary data.
 また、上記の課題を解決するために、本発明の一態様に係る充放電装置は、電動車両の車載バッテリに関する複数種類の値を示し、前記電動車両と充放電装置との間の通信により予め定められたフォーマットで取得される一次データが入力され、前記複数種類の値のうちの少なくとも一部の値、又は前記通信の特性を示す情報を用いて、前記電動車両を推定し、前記車載バッテリに対する充放電動作を制御する。 Further, in order to solve the above problems, a charging/discharging device according to one aspect of the present invention indicates a plurality of types of values related to an on-vehicle battery of an electric vehicle, and is previously set by communication between the electric vehicle and the charging/discharging device. Primary data acquired in a predetermined format is input, at least a part of the values of the plurality of types, or information indicating the characteristics of the communication is used to estimate the electric vehicle, and the in-vehicle battery is estimated. Control the charging/discharging operation for.
 本発明の一態様に係るデータ処理方法は、電動車両の車載バッテリに関し、前記電動車両と充放電装置との間の信号又は通信データの授受における特性を取得し、取得した特性に基づいて、前記車載バッテリへの充放電動作を制御する前記充放電装置又は上位装置へ向けて、前記充放電動作に関する値を含むデータを生成する、処理を含む。 A data processing method according to an aspect of the present invention relates to a vehicle-mounted battery of an electric vehicle, acquires characteristics in transmission and reception of signals or communication data between the electric vehicle and a charging/discharging device, and based on the acquired characteristics, A process of generating data including a value relating to the charging/discharging operation toward the charging/discharging device or a host device that controls the charging/discharging operation of the vehicle-mounted battery is included.
 本発明の一態様によれば、電動車両の車載蓄電池の現状に則した充放電動作を車種毎に行うことを可能とする。 According to one aspect of the present invention, it is possible to perform charge/discharge operation according to the current state of the onboard storage battery of an electric vehicle for each vehicle type.
実施形態1に係る充放電システムの一例を概略的に示す図である。It is a figure which shows schematically an example of the charging/discharging system which concerns on Embodiment 1. 制御回路によるデータ生成の処理手順の一例を示すフローチャートである。6 is a flowchart illustrating an example of a data generation processing procedure by a control circuit. 図1の充放電システムにおいて用いられるテーブルの一例を示す図である。It is a figure which shows an example of the table used in the charging/discharging system of FIG. 図1の充放電システムにおいて用いられるテーブルの一例を示す図である。It is a figure which shows an example of the table used in the charging/discharging system of FIG. 図1の充放電システムにおいて用いられるテーブルの一例を示す図である。It is a figure which shows an example of the table used in the charging/discharging system of FIG. 制御回路によるテーブルの更新手順の一例を示すフローチャートである。6 is a flowchart showing an example of a procedure for updating a table by the control circuit.
 〔実施形態1〕
 実施形態1の充放電システム1について、以下に説明する。なお、本明細書において「充放電装置」(例:充放電装置10)とは、(1)充電及び放電の両方を行うことが可能な充放電装置、(2)充電のみを行う充電装置、並びに、(3)放電動作のみを行う放電装置のいずれかの装置を指す。換言すれば、本明細書における充放電装置は、充放電装置、充電装置及び放電装置を含む概念である。また、本明細書において「充放電」は、充電及び放電の両方の動作を包括的に含む。つまり、本明細書の「充放電」は、充電及び放電の少なくともいずれかの動作を指す。
[Embodiment 1]
The charging/discharging system 1 of Embodiment 1 will be described below. In addition, in this specification, a "charging/discharging device" (example: charging/discharging device 10) means (1) a charging/discharging device capable of performing both charging and discharging, (2) a charging device performing only charging, And (3) any one of the discharging devices that perform only the discharging operation. In other words, the charging/discharging device in this specification is a concept including a charging/discharging device, a charging device, and a discharging device. Further, in the present specification, “charge/discharge” comprehensively includes both charging and discharging operations. That is, "charging/discharging" in this specification refers to at least one of charging and discharging.
 <充放電システムの概要>
 図1は、充放電システム1の一例を概略的に示す図である。充放電システム1は、充放電装置10、分電盤20、電動車両200、EMS(Energy Management System)コントローラ300(上位装置)、及び商用電力系統410を含む。EMSコントローラ300は、指令所400に接続されている。
<Outline of charge/discharge system>
FIG. 1 is a diagram schematically showing an example of the charging/discharging system 1. The charging/discharging system 1 includes a charging/discharging device 10, a distribution board 20, an electric vehicle 200, an EMS (Energy Management System) controller 300 (upper device), and a commercial power system 410. The EMS controller 300 is connected to the command center 400.
 商用電力系統410は、電力会社からの電力系統である。電力系統は電力を供給するための、発電・変電・送電及び配電を統合したシステムである。 The commercial power system 410 is a power system from a power company. A power system is a system that integrates power generation, transformation, transmission, and distribution for supplying power.
 分電盤20は、商用電力系統410に接続される。商用電力系統410から分電盤20に規定の電圧(例:100V)の商用交流電力が供給される。交流電力は、分電盤20を通じて、充放電装置10に供給される。充放電装置10は、分電盤20を通じて供給される交流電力(または交流電力から変換された直流電力)を用いて動作する。 The distribution board 20 is connected to the commercial power system 410. Commercial AC power having a specified voltage (eg, 100 V) is supplied from the commercial power system 410 to the distribution board 20. The AC power is supplied to the charging/discharging device 10 through the distribution board 20. The charging/discharging device 10 operates using AC power (or DC power converted from AC power) supplied through the distribution board 20.
 EMSコントローラ300は、充放電装置10を制御及び管理するコントローラである。具体的には、EMSコントローラ300は、充放電装置10に、例えば通信ケーブル(例:LAN(Local Area Network)ケーブル)を介して接続される。図1の例では、EMSコントローラ300は、分電盤20のハブ21を介して、充放電装置10と有線接続されている。但し、EMSコントローラ300と充放電装置10とは無線により接続されても構わない。EMSコントローラ300は、充放電装置10の各動作モード又は充放電量等を制御する。 The EMS controller 300 is a controller that controls and manages the charging/discharging device 10. Specifically, the EMS controller 300 is connected to the charging/discharging device 10 via, for example, a communication cable (eg: LAN (Local Area Network) cable). In the example of FIG. 1, the EMS controller 300 is wire-connected to the charging/discharging device 10 via the hub 21 of the distribution board 20. However, the EMS controller 300 and the charging/discharging device 10 may be wirelessly connected. The EMS controller 300 controls each operation mode of the charging/discharging device 10 or the amount of charging/discharging.
 なお、ネットワークに接続されたサーバの集中コントローラ(不図示)が、充放電装置10を制御及び管理しても構わない。この場合、例えば、集中コントローラは、充放電動作に関する指示、又は、充放電量に関する指示をEMSコントローラ300に送信することで、EMSコントローラ300に充放電装置10を制御及び管理させる。また、EMSコントローラ300が集中コントローラであっても構わない。 The central controller (not shown) of the server connected to the network may control and manage the charging/discharging device 10. In this case, for example, the centralized controller causes the EMS controller 300 to control and manage the charging/discharging device 10 by transmitting an instruction regarding the charging/discharging operation or an instruction regarding the charging/discharging amount to the EMS controller 300. Further, the EMS controller 300 may be a centralized controller.
 電動車両200は、例えば、電気自動車(EV:Electric Vehicle)、プラグインハイブリッド車(PHV:Plug in Hybrid Vehicle、PHEV:Plug-in Hybrid Electric Vehicle)、又は燃料電池自動車(FCV:Fuel Cell Vehicle)であってよい。電動車両200は、車載蓄電池210(車載バッテリ)を搭載している。車載蓄電池210は、公知の二次電池であってよい。 The electric vehicle 200 is, for example, an electric vehicle (EV: Electric Vehicle), a plug-in hybrid vehicle (PHV), a PHEV: Plug-in Hybrid Electric Vehicle, or a fuel cell vehicle (FCV: Fuel Cell Vehicle). You can The electric vehicle 200 is equipped with a vehicle-mounted storage battery 210 (vehicle-mounted battery). The onboard storage battery 210 may be a known secondary battery.
 なお、商用電力系統410の停電時、車載蓄電池210内の電力は、充放電装置10により、充放電システム1内の負荷(不図示)に供給されてよい。上記停電時の電力供給処理は、特に、充放電装置10の自立運転と称される。一方、非停電時にも、車載蓄電池210内の電力を負荷に供給できる。この場合、商用電力系統410及び充放電装置10の双方から負荷へ、交流電力が供給される。この非停電時の電力供給処理は、特に、充放電装置10の系統連系運転と称される。 It should be noted that during a power failure of the commercial power system 410, the power in the onboard storage battery 210 may be supplied to the load (not shown) in the charge/discharge system 1 by the charge/discharge device 10. The power supply process at the time of the power failure is particularly referred to as an independent operation of the charging/discharging device 10. On the other hand, even when there is no power failure, the electric power in the onboard storage battery 210 can be supplied to the load. In this case, AC power is supplied to the load from both the commercial power system 410 and the charging/discharging device 10. This power supply process at the time of non-power failure is particularly referred to as a grid interconnection operation of the charging/discharging device 10.
 <充放電装置の概要>
 充放電装置10は、車載蓄電池210の充放電を制御する。一例として、充放電装置10は、EMSコントローラ300からの指示に基づき、車載蓄電池210の充放電を行う。あるいは、充放電装置10は、電動車両200からの指示に基づき、車載蓄電池210に対する充放電を行ってもよい。また、充放電装置10は、ユーザによる入力操作に基づき、車載蓄電池210に対する充放電を行ってもよい。
<Outline of charging/discharging device>
The charging/discharging device 10 controls charging/discharging of the vehicle-mounted storage battery 210. As an example, the charging/discharging device 10 charges/discharges the vehicle-mounted storage battery 210 based on an instruction from the EMS controller 300. Alternatively, the charging/discharging device 10 may charge/discharge the in-vehicle storage battery 210 based on an instruction from the electric vehicle 200. Further, the charging/discharging device 10 may charge/discharge the in-vehicle storage battery 210 based on an input operation by the user.
 充放電装置10は、充放電回路11、制御回路12(データ処理装置)、トランス13、電源回路14及び起動用バッテリ15を備える。制御回路12は、車種推定部120(入力部、換算部)、データ換算部121(換算部)、データ生成部122、および充放電制御部123を備える。充放電装置10は、車載蓄電池210との接続のための公知の接続機構(例:コネクタおよびケーブル)(不図示)を備える。 The charging/discharging device 10 includes a charging/discharging circuit 11, a control circuit 12 (data processing device), a transformer 13, a power supply circuit 14, and a starting battery 15. The control circuit 12 includes a vehicle type estimation unit 120 (input unit, conversion unit), a data conversion unit 121 (conversion unit), a data generation unit 122, and a charge/discharge control unit 123. The charging/discharging device 10 includes a known connection mechanism (example: connector and cable) (not shown) for connection with the onboard storage battery 210.
 ケーブルには、例えば、動力線、信号線及びCAN(Controller Area Network)信号線が含まれる。車載蓄電池210を充放電する場合、動力線を介して、充放電装置10から電動車両200に、又は電動車両200から充放電装置10に、電力が供給される。信号線及びCAN信号線を介して、車載蓄電池210の充放電時に、充放電装置10と電動車両200との間で、各種の信号が送受信される。 The cable includes, for example, a power line, a signal line, and a CAN (Controller Area Network) signal line. When charging/discharging the in-vehicle storage battery 210, electric power is supplied from the charging/discharging device 10 to the electric vehicle 200 or from the electric vehicle 200 to the charging/discharging device 10 via the power line. Various signals are transmitted/received between the charging/discharging device 10 and the electric vehicle 200 during charging/discharging of the onboard storage battery 210 via the signal line and the CAN signal line.
 充放電装置10は、分電盤20の二次側(下流)に交流電力線を介して接続されている。商用交流電力が建物(不図示)内に正常に供給されているとき、充放電装置10の電源回路14は、分電盤20を通じてこの交流電力の供給を受けることができる。充放電装置10は、商用電力系統410から分電盤20を介して充放電装置10に供給される商用交流電力を、充放電装置10の制御電源として用いる。制御電源とは、充放電装置10の起動およびその後の動作に必要な所定電圧(例:12V)の制御電力を得るための電源のことである。電源回路14は、供給された交流電力を、充放電装置10の動作に用いられる所定電圧(例:12V)の制御電力に変換し、制御回路12に供給する。これにより制御回路12等が起動される。電源回路14が制御電力を制御回路12に供給し続けることによって、制御回路12は動作を継続することができる。なお、制御回路12に供給される制御電力は充放電回路11等の他の内部部品にも供給され、これにより充放電装置10全体の起動および動作継続が実現される。 The charging/discharging device 10 is connected to the secondary side (downstream) of the distribution board 20 via an AC power line. When commercial AC power is normally supplied to the building (not shown), the power supply circuit 14 of the charging/discharging device 10 can receive the AC power through the distribution board 20. The charging/discharging device 10 uses commercial AC power supplied from the commercial power system 410 to the charging/discharging device 10 via the distribution board 20 as a control power source of the charging/discharging device 10. The control power supply is a power supply for obtaining control power of a predetermined voltage (for example, 12 V) necessary for starting up the charging/discharging device 10 and subsequent operations. The power supply circuit 14 converts the supplied AC power into control power of a predetermined voltage (for example, 12 V) used for the operation of the charging/discharging device 10 and supplies the control power to the control circuit 12. This activates the control circuit 12 and the like. The power supply circuit 14 continues to supply the control power to the control circuit 12, so that the control circuit 12 can continue to operate. The control power supplied to the control circuit 12 is also supplied to other internal components such as the charging/discharging circuit 11 so that the charging/discharging device 10 as a whole can be started and continue to operate.
 また、商用電力系統410からは、電源回路14に加えて、トランス13にも交流電力が供給される。トランス13は、供給された交流電力を、規定の他の電圧の交流電力に変換し、変換後の交流電力を充放電回路11に供給する。充放電回路11は、制御回路12による制御に基づき、車載蓄電池210に対する充放電動作を制御する。具体的には、充放電回路11は、商用電力系統410から供給され、トランス13で変換された交流電力を、車載蓄電池210の充電に適した規定の電圧(例:400V)の直流電力へと変換する。そして、充放電回路11は、当該直流電力を、電動車両200に供給する。あるいは、充放電回路11は、電動車両200から供給された直流電圧を、交流電力へと変換することもできる。この場合、充放電回路11は、当該交流電力を、負荷に供給してよい。 In addition to the power supply circuit 14, AC power is supplied from the commercial power system 410 to the transformer 13. The transformer 13 converts the supplied AC power into AC power having another prescribed voltage, and supplies the converted AC power to the charge/discharge circuit 11. The charging/discharging circuit 11 controls the charging/discharging operation with respect to the vehicle-mounted storage battery 210 based on the control by the control circuit 12. Specifically, the charging/discharging circuit 11 converts the AC power supplied from the commercial power system 410 and converted by the transformer 13 into DC power having a specified voltage (eg, 400 V) suitable for charging the onboard storage battery 210. Convert. Then, the charge/discharge circuit 11 supplies the DC power to the electric vehicle 200. Alternatively, the charging/discharging circuit 11 can also convert the DC voltage supplied from the electric vehicle 200 into AC power. In this case, the charge/discharge circuit 11 may supply the AC power to the load.
 充放電制御部123は、充放電回路11を制御することにより、車載蓄電池210の充放電を制御する。一例として、充放電制御部123は、上位装置であるEMSコントローラ300の指令を受けて、車載蓄電池210の充放電を制御してよい。例えば、実施形態1では、EMSコントローラ300は、後述するテーブル2(三次データ)を、充放電装置10から取得する。そして、EMSコントローラ300は、当該テーブル2を用いて、充放電制御部123を介して、車載蓄電池210の充放電を制御する。 The charge/discharge control unit 123 controls the charge/discharge circuit 11 to control the charge/discharge of the in-vehicle storage battery 210. As an example, the charge/discharge control unit 123 may control the charge/discharge of the onboard storage battery 210 in response to a command from the EMS controller 300, which is a higher-level device. For example, in the first embodiment, the EMS controller 300 acquires Table 2 (tertiary data) described below from the charging/discharging device 10. Then, the EMS controller 300 uses the table 2 to control the charging/discharging of the onboard storage battery 210 via the charging/discharging control unit 123.
 また、起動用バッテリ15は、充放電装置10の起動可能な規定の電圧(例:12V)の直流電力を出力するバッテリである。停電時、充放電装置10は、分電盤20を通じた商用交流電力の供給を受けることができないので、商用交流電力を用いて起動すること、すなわち、商用交流電力を制御電源として用いることができない。そこで、停電時に充放電装置10を起動するために、停電時に充放電装置10を起動させるための起動用バッテリ15が、用いられる。 Further, the start-up battery 15 is a battery that outputs direct-current power of a specified voltage (eg, 12 V) that the charge/discharge device 10 can start. During a power failure, the charging/discharging device 10 cannot be supplied with commercial AC power through the distribution board 20, so it cannot be started using commercial AC power, that is, commercial AC power cannot be used as a control power supply. .. Therefore, in order to start the charging/discharging device 10 at the time of power failure, the starting battery 15 for starting the charging/discharging device 10 at the time of power failure is used.
 なお、充放電装置10には、図示しない公知の入力装置(例:タッチパネル)が設けられていてもよい。 The charging/discharging device 10 may be provided with a known input device (eg, touch panel) not shown.
 このように構成される充放電装置10は、車載蓄電池210の充放電可能な蓄電容量又は充電率の範囲を判別し、その範囲をEMSコントローラ300から取得することが可能な状態とする。図2は、制御回路12によるデータ生成の処理手順の一例を示すフローチャートである。 The charging/discharging device 10 configured in this manner determines the range of the chargeable/dischargeable storage capacity or the charging rate of the vehicle-mounted storage battery 210, and sets the range in a state in which the range can be acquired from the EMS controller 300. FIG. 2 is a flowchart showing an example of a processing procedure of data generation by the control circuit 12.
 制御回路12は、電動車両200とケーブルの接続を確認すると(ステップS101)、電動車両200における通信部と通信接続を確立し、充放電の制御に関するデータを送受信する(ステップS102)。制御回路12は、ステップS101における、充放電回路11及び電動車両200の車載蓄電池210との間での信号の授受、又は、ステップS102における、通信によるデータの送受信の特性を示すデータを取得する(ステップS103)。 When the control circuit 12 confirms the connection between the electric vehicle 200 and the cable (step S101), the control circuit 12 establishes a communication connection with the communication unit of the electric vehicle 200 and transmits/receives data relating to charge/discharge control (step S102). The control circuit 12 transmits/receives a signal between the charging/discharging circuit 11 and the onboard storage battery 210 of the electric vehicle 200 in step S101, or acquires data indicating a characteristic of data transmission/reception by communication in step S102 ( Step S103).
 制御回路12は、取得したデータに基づいて電動車両200の車種を推定する(ステップS104)。ステップS104の車種の推定は、ステップS102で取得したデータが示す値が、電動車両200の車種によって異なる充電上限電池残容量等の値のいずれに対応するか、を判別する処理に対応する。具体的にはステップS104において制御回路12は、ステップS102又は103で取得したデータが、記憶してあるデータ(テーブル1)を参照して、いずれの車種のデータと合致するか否かで推定する。ステップS104における車種推定方法の詳細については後述する。 The control circuit 12 estimates the vehicle type of the electric vehicle 200 based on the acquired data (step S104). The estimation of the vehicle type in step S104 corresponds to a process of determining whether the value indicated by the data acquired in step S102 corresponds to a value such as the upper limit battery charge remaining capacity that differs depending on the vehicle type of electric vehicle 200. Specifically, in step S104, the control circuit 12 refers to the stored data (table 1) to estimate the data acquired in step S102 or 103 depending on which vehicle model the data matches. .. Details of the vehicle type estimation method in step S104 will be described later.
 制御回路12は、ステップS104で推定した車種に基づいて、ステップS103で取得したデータを、その車種毎の充放電に必要な充電上限電池残容量等の特徴量へ換算する(ステップS105)。ステップS105において制御回路12は、取得したデータが参照されたデータとマッチする場合に、そのデータへ換算する。 Based on the vehicle type estimated in step S104, the control circuit 12 converts the data acquired in step S103 into a characteristic amount such as a charge upper limit battery remaining capacity required for charge/discharge for each vehicle type (step S105). In step S105, the control circuit 12 converts the acquired data to the referenced data when the data matches the referenced data.
 制御回路12は、換算した特徴量に基づいて、車種に応じた充放電制御に関する情報を、EMSコントローラ向けのデータとして生成する(ステップS106)。制御回路12は、生成したデータを、EMSコントローラ300から参照可能に記憶し(ステップS107)、データ生成処理を終了する。 The control circuit 12 generates, as data for the EMS controller, information related to charge/discharge control according to the vehicle type based on the converted characteristic amount (step S106). The control circuit 12 stores the generated data so that the EMS controller 300 can refer to the generated data (step S107), and ends the data generation process.
 ステップS105の換算は省略されてもよい。この場合、制御回路12は、ステップS104で推定した車種に基づいて、ステップS103で取得したデータ、例えば充電上限電池残容量の値に対して所定の演算を行なうことによってデータを生成してもよい(S106)。制御回路12は例えば、充電上限電池残容量、また、満充電と判断される値に対し、所定割合(例えば10%)低下させた値を上限としてデータを生成する。所定値を加減算してもよい。 The conversion in step S105 may be omitted. In this case, the control circuit 12 may generate data by performing a predetermined calculation on the data acquired in step S103, for example, the value of the charge upper limit battery remaining capacity, based on the vehicle type estimated in step S104. (S106). For example, the control circuit 12 generates data by setting the upper limit of the charge remaining battery capacity or a value obtained by reducing the value determined to be fully charged by a predetermined ratio (for example, 10%) as the upper limit. You may add or subtract a predetermined value.
 制御回路12は、ステップS107の代替として、電動車両200への充放電回路11による制御(ローカル運転)を実施してもよい。これにより、電動車両200の車載蓄電池210に則した充放電動作を車種毎に行うことが可能となる。 As an alternative to step S107, the control circuit 12 may perform control (local operation) by the charge/discharge circuit 11 for the electric vehicle 200. As a result, the charging/discharging operation according to the onboard storage battery 210 of the electric vehicle 200 can be performed for each vehicle type.
 以下、制御回路12によるステップS104における車種推定方法、ステップS105における換算処理、及び、ステップS106におけるEMSコントローラ300向けのデータ生成処理について詳細を説明する。 Hereinafter, the vehicle type estimation method in step S104, the conversion process in step S105, and the data generation process for the EMS controller 300 in step S106 by the control circuit 12 will be described in detail.
 <車種の推定方法>
 車種推定部120は、電動車両200の車種を推定(特定)する。図2のフローチャートにおけるステップS104の処理に対応する。以下、電動車両200の車種を、単に車種と称する。車種推定部120は、車載蓄電池210に関する複数種類の値を示し、電動車両200と充放電装置10との間の通信により予め定められたフォーマットで取得される一次データが入力される入力部としても機能する。
<Vehicle type estimation method>
The vehicle type estimation unit 120 estimates (specifies) the vehicle type of the electric vehicle 200. This corresponds to the process of step S104 in the flowchart of FIG. Hereinafter, the vehicle type of electric vehicle 200 is simply referred to as a vehicle type. The vehicle type estimation unit 120 also indicates a plurality of types of values related to the on-vehicle storage battery 210, and also serves as an input unit to which primary data acquired in a predetermined format by communication between the electric vehicle 200 and the charging/discharging device 10 is input. Function.
 このフォーマットは、例えば、充放電装置10及び電動車両200に適用される充放電規格において定められている。この充放電規格としては、例えばCHAdeMO(登録商標)が挙げられる。本明細書では、充放電規格がCHAdeMOであるものとして説明するが、CHAdeMO以外の充放電規格(例:COMBO)についても適用可能である。 This format is defined in the charging/discharging standard applied to the charging/discharging device 10 and the electric vehicle 200, for example. Examples of this charge/discharge standard include CHAdeMO (registered trademark). In this specification, the charging/discharging standard is described as CHAdeMO, but the charging/discharging standard (eg, COMBO) other than CHAdeMO is also applicable.
 また本明細書では、充放電システム1がCHAdeMOに準拠したV2Hで実現されるものとして説明するが、CHAdeMO以外の充放電規格に準拠したV2Hで実現されても構わない。また本明細書では、充放電システム1で用いられる通信規格が、ECHONETLite(登録商標)であるものとして説明するが、上記充放電規格と互換性があるその他の通信規格が用いられても構わない。また、規格で規定されたものでは無く、独自の通信フォーマットで、電動車両200に関する情報(例:電池容量)等の通信が行われても構わない。 Further, in the present specification, the charging/discharging system 1 is described as being realized by V2H complying with CHAdeMO, but it may be realized by V2H complying with a charging/discharging standard other than CHAdeMO. Further, in this specification, the communication standard used in the charging/discharging system 1 is described as ECHONET Lite (registered trademark), but other communication standards compatible with the charging/discharging standard may be used. .. Further, communication of information (eg, battery capacity) related to the electric vehicle 200 may be performed in a unique communication format that is not specified by the standard.
 一次データとしては、例えば電動車両200から送信されるCANデータ(以下、車両CANデータ)であり、図3Aのテーブル1に示すようなデータが挙げられる。なお本実施形態では、テーブル1との照合において用いられる車両CANデータの値として、車載蓄電池210又は電動車両200に固有の識別情報以外の値が用いられるものとする。 The primary data is, for example, CAN data transmitted from the electric vehicle 200 (hereinafter, vehicle CAN data), and includes data as shown in Table 1 of FIG. 3A. In addition, in this embodiment, as the value of the vehicle CAN data used in the comparison with the table 1, a value other than the identification information unique to the onboard storage battery 210 or the electric vehicle 200 is used.
 また、車種推定部120が取得するデータとしては、例えば、上記通信の特性を示す情報が挙げられる。制御回路12は、電動車両200が送信する車両CANデータ等の種々のデータが送信されるタイミング(もしくは周期)、又は電力が供給されるタイミング等を監視している。また、このタイミングは車種毎に相違しうる。そのため、制御回路12は、データが送信されたとき、又は電力が供給されたときに、そのタイミングを示す情報を、送信される特性(例:データ又は電力)及びデータの種類に対応付けて生成し、上記特性を示す情報として、車種推定部120に入力する。 The data acquired by the vehicle type estimation unit 120 may be, for example, information indicating the characteristics of the communication. The control circuit 12 monitors the timing (or cycle) at which various data such as vehicle CAN data transmitted by the electric vehicle 200 is transmitted, or the timing at which electric power is supplied. Also, this timing may differ for each vehicle type. Therefore, when the data is transmitted or the power is supplied, the control circuit 12 generates the information indicating the timing in association with the characteristics (eg, data or power) to be transmitted and the type of the data. Then, the information indicating the above characteristics is input to the vehicle type estimation unit 120.
 車種推定部120は、車両CANデータ又は上記特性を示す情報を用いて、予め記録されたテーブルを参照することにより車種を推定する。具体的には、車種推定部120は、充放電装置10と電動車両200との通信内容又は通信状況に基づき、車種を推定できる。つまり、車両CANデータ及び上記通信の特性を示す情報は、テーブル1と照合することにより、接続された電動車両200の車種を推定するために用いられる情報である。 The vehicle type estimation unit 120 estimates the vehicle type by referring to a table recorded in advance using the vehicle CAN data or the information indicating the above characteristics. Specifically, the vehicle type estimation unit 120 can estimate the vehicle type based on the communication content or communication state between the charging/discharging device 10 and the electric vehicle 200. That is, the vehicle CAN data and the information indicating the characteristics of the communication are information used for estimating the vehicle type of the connected electric vehicle 200 by collating with the table 1.
 上述の処理について具体例を挙げて説明する。車種の推定は、(1)車両CANデータの数値を用いる場合と、(2)車両CANデータの出力態様を用いる場合と、(3)電動車両200との間の信号の授受の態様を用いる場合と、(4)車載蓄電池210との間の電力授受における出力特性を用いる場合と、(5)車両CANデータによる電動車両200からの応答内容を用いる場合とのいずれか1つ、又は複数によって可能である。(1)-(5)の方法は以下のように説明される。  The above process will be explained using specific examples. The vehicle type is estimated by (1) using the numerical values of the vehicle CAN data, (2) using the output mode of the vehicle CAN data, and (3) using the mode of exchanging signals with the electric vehicle 200. And (4) when using output characteristics in power transfer between the on-vehicle storage battery 210 and (5) when using response contents from the electric vehicle 200 based on vehicle CAN data, or by a plurality of Is. The methods (1)-(5) are described as follows.
 (1)車種推定部120は、電動車両200から取得した車両CANデータに基づいて、車種を推定する。図3Aには、車両CANデータに含まれる各種データと各車種との対応関係を示すテーブル1の一例が示されている。テーブル1は、車種推定部120によって車種を推定するためのルックアップテーブルとして用いられる。図2のフローチャートの内、ステップS104で参照されるデータに対応する。車両CANデータを用いて車種の推定を行うことが可能なように、テーブル1には、車両CANデータに含まれる複数種類の項目のうち、少なくとも1つの項目が含まれる。また、上記通信の特性を示す情報を用いて車種の推定を行うことが可能なように、テーブル1には、上記通信の特性を示す情報が車種に対応付けて登録されていてよい。テーブル1に示される各データは、例えば、充放電装置10の販売前の、電動車両200との接続確認実験により取得される。 (1) The vehicle type estimation unit 120 estimates the vehicle type based on the vehicle CAN data acquired from the electric vehicle 200. FIG. 3A shows an example of a table 1 showing a correspondence relationship between various data included in the vehicle CAN data and each vehicle type. The table 1 is used as a lookup table for estimating the vehicle type by the vehicle type estimation unit 120. It corresponds to the data referred to in step S104 in the flowchart of FIG. The table 1 includes at least one item out of a plurality of types of items included in the vehicle CAN data so that the vehicle type can be estimated using the vehicle CAN data. In addition, the information indicating the communication characteristics may be registered in the table 1 in association with the vehicle type so that the vehicle type can be estimated using the information indicating the communication characteristics. Each data shown in Table 1 is acquired, for example, by a connection confirmation experiment with the electric vehicle 200 before the charging/discharging device 10 is sold.
 車種推定部120は、車両CANデータを用いてテーブル1を参照することにより、車種を推定する。図3Aに示されるように、テーブル1には、車両CANデータに含まれるデータ、例えば、
  ・規格のバージョン(規格の管理番号);
  ・電池耐力上限値;
  ・充電電圧上限値;
  ・電池総容量(車載蓄電池210の総容量);
  ・放電下限電池残容量;
  ・充電上限電池残容量;
  ・車両メーカコード;
を、示すデータが含まれうる。なお、上記残容量は、充電率(%)であってもよいし、蓄電容量(容量値)であってもよい。また、充電率は、SOC(State of Charge)とも称される。
The vehicle type estimation unit 120 estimates the vehicle type by referring to Table 1 using the vehicle CAN data. As shown in FIG. 3A, table 1 includes data included in the vehicle CAN data, for example,
・Standard version (standard control number);
・Upper limit of battery strength;
・Charge voltage upper limit;
-Battery total capacity (total capacity of in-vehicle storage battery 210);
・Discharge lower limit battery remaining capacity;
・Charge upper limit battery remaining capacity;
・Vehicle maker code;
May be included. The remaining capacity may be a charging rate (%) or a storage capacity (capacity value). The charge rate is also referred to as SOC (State of Charge).
 車種推定部120は、取得した車両CANデータの各項目の値が、テーブル1に含まれる、当該各項目に対応する項目の値と一致するか否かを判定し、一致する値に対応付けられた車種を、接続された電動車両200の車種として推定する。図3Aの例では、車種推定部120は、上記2つの値の一致を判定することにより、車種が車種1~10のいずれに該当するかを推定する。 The vehicle type estimation unit 120 determines whether the value of each item of the acquired vehicle CAN data matches the value of the item corresponding to each item included in the table 1 and is associated with the matching value. The estimated vehicle type is estimated as the vehicle type of the connected electric vehicle 200. In the example of FIG. 3A, the vehicle type estimation unit 120 estimates which of the vehicle types 1 to 10 the vehicle type corresponds to by determining whether the above two values match.
 なお、車種の推定を行うことが可能であれば、テーブル1で準備される項目は1項目であっても構わない。但し、テーブル1に複数の項目を準備し、その組合せにおいて上記2つの値の一致を判定することにより、一意に車種を推定できる可能性が高まる。 Note that the item prepared in Table 1 may be one if it is possible to estimate the vehicle type. However, by preparing a plurality of items in the table 1 and determining whether the above two values match in the combination, the possibility of uniquely estimating the vehicle type increases.
 なお、一部の電動車両200は、当該電動車両200に固有のデバッグ用コードを、車両CANデータに含めて出力する。従って、テーブル1の項目としてデバッグ用コードを含めておき、車種毎にその値を登録しておくことで、車種推定部120は、当該デバッグ用コードに基づいて、車種を推定できる。 Note that some electric vehicles 200 include a debug code unique to the electric vehicle 200 in vehicle CAN data and output the debug code. Therefore, by including the debug code as an item of the table 1 and registering the value for each vehicle type, the vehicle type estimation unit 120 can estimate the vehicle type based on the debug code.
 (2)車種推定部120は、電動車両200による車両CANデータの出力態様に基づいて、車種を推定する。例えば、一部の電動車両200は、仕様書に記載のモデルシーケンス(予め設定されたモデルシーケンス)とは異なる出力態様で、車両CANデータを出力する。従って、テーブル1の項目として、当該出力態様で出力される車両CANデータの各項目を含めておき、車種毎にその値を登録しておくことで、車種推定部120は、当該車両CANデータに基づいて、車種を推定できる。 (2) The vehicle type estimation unit 120 estimates the vehicle type based on the output mode of the vehicle CAN data from the electric vehicle 200. For example, some electric vehicles 200 output vehicle CAN data in an output mode different from the model sequence described in the specification (preset model sequence). Therefore, by including each item of the vehicle CAN data output in the output mode as an item of the table 1 and registering the value for each vehicle type, the vehicle type estimation unit 120 adds the item to the vehicle CAN data. Based on that, the vehicle type can be estimated.
 また、電動車両200が車両CANデータを出力する周期は、車種によって相違しうる。従って、テーブル1の項目として、当該周期(タイミング)を示す情報(上記通信の特性を示す情報)を含めておき、車種毎にその値を登録しておくと共に、車両CANデータを取得したときに、当該周期を示す情報を生成することにより、車種推定部120は、当該周期に基づいて、車種を推定できる。 Further, the cycle in which the electric vehicle 200 outputs the vehicle CAN data may differ depending on the vehicle type. Therefore, as an item of the table 1, information indicating the cycle (timing) (information indicating the characteristics of the communication) is included, the value is registered for each vehicle type, and when the vehicle CAN data is acquired. The vehicle type estimation unit 120 can estimate the vehicle type based on the cycle by generating the information indicating the cycle.
 なお、充放電装置10から充放電の開始信号を送信してから、電動車両200が車両CANデータを出力するまでの時間、充放電装置10から充放電の終了信号を送信してからCAN通信を終了するまでの時間、又は、ある基準からの車両CANデータの送信開始又は終了のタイミングも、車種によって相違しうる。そのため、車種推定部120は、これらの時間又はタイミングを示す情報も上記特性を示す情報として用いて、車種を推定できる。 The CAN communication is performed after the charge/discharge device 10 transmits a charge/discharge end signal for a period of time from when the charge/discharge device 10 transmits a charge/discharge start signal to when the electric vehicle 200 outputs vehicle CAN data. The time until the end or the timing of starting or ending the transmission of the vehicle CAN data from a certain standard may differ depending on the vehicle type. Therefore, the vehicle type estimation unit 120 can estimate the vehicle type by using the information indicating the time or the timing as the information indicating the characteristics.
 その他、車両CANデータの送信開始時に車両CANデータに含まれる項目、終了時に車両CANデータに含まれる項目、車両CANデータに含まれる項目の順序、又は、各項目の通信間隔も、車種によって相違しうる。これらの情報もテーブル1の項目として含めておき、車種毎にその値を登録しておくと共に、車両CANデータを取得したときに、当該車両CANデータに含まれる項目、又は各項目の通信間隔を示す情報を上記通信の特性を示す情報として生成することにより、車種推定部120は、当該情報に基づいて、車種を推定できる。なお、上記の車両CANデータに含まれる項目を、当該項目を規定するIDと読み替えてもよい。 In addition, the items included in the vehicle CAN data at the start of transmission of the vehicle CAN data, the items included in the vehicle CAN data at the end, the order of the items included in the vehicle CAN data, or the communication interval of each item are different depending on the vehicle type. sell. This information is also included as an item in Table 1, the value is registered for each vehicle type, and when the vehicle CAN data is acquired, the item included in the vehicle CAN data or the communication interval of each item is set. By generating the information shown as the information showing the characteristics of the communication, the vehicle type estimation unit 120 can estimate the vehicle type based on the information. The item included in the vehicle CAN data may be replaced with the ID that defines the item.
 (3)車種推定部120は、電動車両200による信号(例:車両CANデータとは異なる、任意のアナログ信号またはデジタル信号)の出力態様に基づいて、車種を推定する。電動車両200が上記信号を出力する周期は、車種によって相違しうる。従って、車種推定部120は、上記(2)の場合と同様にして、当該周期に基づいて、車種を推定できる。 (3) The vehicle type estimation unit 120 estimates the vehicle type based on the output mode of the signal from the electric vehicle 200 (eg, an arbitrary analog signal or digital signal different from the vehicle CAN data). The cycle in which the electric vehicle 200 outputs the signal may differ depending on the vehicle type. Therefore, the vehicle type estimation unit 120 can estimate the vehicle type based on the cycle, as in the case of (2) above.
 また、信号線のうちの1つである充放電コネクタ12V線を介して、電動車両200から充放電装置10へ電力(例:12V)を供給するタイミング(供給しない場合を含む)は、車種によって相違しうる。例えば、CAN通信中にのみ上記電力を供給する車種もあれば、充電コネクタ(不図示)が接続されてから一定時間、上記電力を供給する車種もある。また、充放電コネクタ12V線はオプション機能構成であるため、車種によっては充放電コネクタ12V線を有していないものもある。この場合、充電コネクタが接続されてから一連の充放電動作が終了しても、充放電装置10には上記電力の供給が無い。従って、車種推定部120は、このように車種によって相違し得る供給タイミングに基づいて、上記(2)と同様にして車種を推定できる。 In addition, the timing (including the case where no power is supplied) from the electric vehicle 200 to the charging/discharging device 10 via the charging/discharging connector 12V line which is one of the signal lines depends on the vehicle type. Can be different. For example, there are vehicle models that supply the electric power only during CAN communication, and there are vehicle models that supply the electric power for a certain period of time after a charging connector (not shown) is connected. In addition, since the charge/discharge connector 12V line has an optional function configuration, some vehicle types do not have the charge/discharge connector 12V line. In this case, even if a series of charging/discharging operations are completed after the charging connector is connected, the charging/discharging device 10 is not supplied with the power. Therefore, the vehicle type estimation unit 120 can estimate the vehicle type in the same manner as (2) above based on the supply timing that may differ depending on the vehicle type.
 (4)車種推定部120は、車載蓄電池210との間の電力授受における出力特性に基づいて、車種を推定する。車載蓄電池210は例えば、充放電装置10との間で充放電規格に基づく制御信号のやり取りを実行してから、規格下における所定時間内に、電池電圧を上昇させる制御を実行する。その電圧の立ち上がりタイミングが、充放電装置10からの制御信号の出力から何秒後であったかは、車種に応じて異なる。そこで、テーブル1に、
  ・電池電圧の立ち上がりタイミングまでの秒数;
  ・電池電圧の立ち上がり波形;
  ・電池電圧の下りタイミングまでの秒数;
  ・電池電圧の下がり波形の特性;
 等を記憶しておく。車種推定部120は、制御信号の出力タイミング、立ち上がりの特性を、テーブル1に記憶してあるものと一致するかによって、車種を推定できる。
(4) The vehicle type estimation unit 120 estimates the vehicle type based on the output characteristics of the power exchange with the onboard storage battery 210. The in-vehicle storage battery 210, for example, exchanges a control signal based on the charging/discharging standard with the charging/discharging device 10, and then executes control to increase the battery voltage within a predetermined time under the standard. How many seconds after the output of the control signal from the charging/discharging device 10 the rising timing of the voltage differs depending on the vehicle type. So, in Table 1,
・Number of seconds until the battery voltage rises;
・Rising waveform of battery voltage;
・Number of seconds until the battery voltage goes down;
・Characteristics of falling waveform of battery voltage;
Etc. are memorized. The vehicle type estimation unit 120 can estimate the vehicle type based on whether the output timing of the control signal and the rising characteristics match those stored in Table 1.
 (5)充放電装置10は、当該充放電装置10から電動車両200に供給するCANデータ(以下、充放電装置CANデータ)を変更することにより、電動車両200又は車種に固有のデータを取得する。固有のデータとしては、充放電装置CANデータを変更したときに得られる車両CANデータが挙げられる。車種推定部120は、この車両CANデータに基づいて、車種を推定する(参照:上述の(1))。 (5) The charging/discharging device 10 acquires the data specific to the electric vehicle 200 or the vehicle type by changing the CAN data (hereinafter, the charging/discharging device CAN data) supplied from the charging/discharging device 10 to the electric vehicle 200. .. Specific data include vehicle CAN data obtained when the charging/discharging device CAN data is changed. The vehicle type estimation unit 120 estimates the vehicle type based on the vehicle CAN data (see: (1) above).
 一例として、充放電装置10は、イレギュラーな充放電装置CANデータを電動車両200に供給することにより、通常の充放電装置CANデータを供給したときとは異なる車両CANデータ(イレギュラーな車両CANデータとも称する)を取得できる。イレギュラーな充放電装置CANデータは、例えば、下位のバージョンのデータであり、通常の充放電装置CANデータは、上位のバージョン(例:最新バージョン)のデータであってよい。 As an example, the charging/discharging device 10 supplies irregular charging/discharging device CAN data to the electric vehicle 200, so that vehicle CAN data (irregular vehicle CAN) different from when normal charging/discharging device CAN data is supplied. (Also referred to as data) can be acquired. The irregular charging/discharging device CAN data may be, for example, lower version data, and the regular charging/discharging device CAN data may be higher version (eg, latest version) data.
 充放電装置10と電動車両200との上記データが一致しない場合、電動車両200は、上記下位のバージョンのデータによって、充放電装置10との通信を行う。当該通信によって、電動車両200からイレギュラーな車両CANデータを取得できる。 If the above data of the charging/discharging device 10 and the electric vehicle 200 do not match, the electric vehicle 200 communicates with the charging/discharging device 10 according to the data of the lower version. By the communication, irregular vehicle CAN data can be obtained from the electric vehicle 200.
 なおこの場合、テーブル1には、下位のバージョンに係る各項目の値が、車種毎に登録されている。 In this case, in Table 1, the value of each item related to the lower version is registered for each vehicle type.
 あるいは、電動車両200から送信される最大の充電電流上限値又は放電電流上限値は、車種によって異なる可能性があるため、この値の相違を車種の推定に利用する。 Alternatively, the maximum charging current upper limit value or the discharging current upper limit value transmitted from the electric vehicle 200 may differ depending on the vehicle type, and thus the difference in this value is used for estimating the vehicle type.
 一般に、充放電装置は、充放電できる範囲(能力)の出力可能電流値又は入力可能電流値を電動車両に送信する。電動車両は、それらの値の上限値として、充電電流の上限値(以下、充電電流上限値)又は放電電流の上限値(以下、放電電流上限値)を充放電装置に送信する。 Generally, the charging/discharging device transmits the outputtable current value or the inputtable current value within the chargeable/dischargeable range (capacity) to the electric vehicle. The electric vehicle transmits an upper limit value of charging current (hereinafter, upper limit value of charging current) or an upper limit value of discharging current (hereinafter, upper limit value of discharging current) to the charging/discharging device as an upper limit value of those values.
 そこで、充放電装置10は、敢えて充放電できる範囲を超えた出力可能電流値又は入力可能電流値(例:規格で定義された最大値)を送信して、電動車両200から最大の充電電流上限値又は放電電流上限値を受け取る。車種推定部120は、この受け取った充電電流上限値又は放電電流上限値に基づき車種を推定する。具体的には、この充電電流上限値又は放電電流上限値を車種毎にテーブル1に含めておき、制御回路12が、充放電できる範囲を超えた出力可能電流値又は入力可能電流値を送信したときの充電電流上限値又は放電電流上限値を測定し、その測定結果を上記通信の特性を示す情報として取得することで、車種推定部120は車種を推定できる。 Therefore, the charging/discharging device 10 intentionally transmits an outputtable current value or an inputtable current value (for example, the maximum value defined by the standard) that exceeds the chargeable/dischargeable range, and the maximum charging current upper limit from the electric vehicle 200. Value or discharge current upper limit value is received. The vehicle type estimation unit 120 estimates the vehicle type based on the received charging current upper limit value or discharging current upper limit value. Specifically, the charging current upper limit value or the discharging current upper limit value is included in the table 1 for each vehicle type, and the control circuit 12 transmits the outputtable current value or the inputtable current value that exceeds the chargeable/dischargeable range. The vehicle type estimation unit 120 can estimate the vehicle type by measuring the charging current upper limit value or the discharging current upper limit value at this time and acquiring the measurement result as information indicating the communication characteristics.
 このように、上記(1)~(5)に示すように、テーブル1に車種毎に定められた値が含まれていることで、車種推定部120による車種の推定が可能となる。なお、車種推定部120は、車種の推定と共に、電動車両200の年式及びグレードも推定できる。 As described above, as shown in (1) to (5) above, the vehicle type estimation unit 120 can estimate the vehicle type by including the value determined for each vehicle type in the table 1. The vehicle type estimation unit 120 can estimate the year and grade of the electric vehicle 200 together with the estimation of the vehicle type.
 <データの換算>
 データ換算部121は、テーブル1に基づく車種推定の結果に基づき、車種に対応する、車両CANデータよりも汎用化されたテーブル(以下、テーブル1’)内のデータを選択する。図2のフローチャートにおけるステップS105の換算処理の詳細に対応する。具体的には、データ換算部121は、テーブル1’を参照することで、車両CANデータを、車両CANデータよりも汎用化された二次データ(車両CANデータよりも汎用性が高い二次データ)へと換算する換算部として機能する。
<Data conversion>
Based on the result of vehicle type estimation based on Table 1, the data conversion unit 121 selects data in a table (hereinafter, referred to as Table 1′) that is more generalized than the vehicle CAN data and that corresponds to the vehicle type. This corresponds to the details of the conversion process of step S105 in the flowchart of FIG. Specifically, the data conversion unit 121 refers to the table 1 ′ to convert the vehicle CAN data into secondary data that is generalized to the vehicle CAN data (secondary data that is more versatile than the vehicle CAN data). ) Function as a conversion unit.
 充放電装置10が電動車両200から取得する電池総容量、充電可能容量値又は放電可能容量値等は、車種によってその定義が異なる。例えば、電池総容量としてカタログ値を送信する車種もあれば、実測値を送信する車種もある。そのため、取得した車両CANデータをそのまま用いて充放電制御を行った場合、充放電装置10は、車載蓄電池210の現状に則さない値で充放電制御を行ってしまう可能性がある。 The definition of the total battery capacity, the chargeable capacity value, the dischargeable capacity value, etc. that the charging/discharging device 10 acquires from the electric vehicle 200 differs depending on the vehicle type. For example, there is a vehicle type that transmits a catalog value as the total battery capacity, and a vehicle type that transmits an actual measurement value. Therefore, when the charging/discharging control is performed using the acquired vehicle CAN data as it is, the charging/discharging device 10 may perform the charging/discharging control with a value that does not conform to the current state of the onboard storage battery 210.
 そこで、充放電装置10では、同種類の値であるが、その値の定義が車両毎に異なる場合であっても、その車種毎の定義の違いを相殺し共通化した値を、テーブル1’として持たせておき、テーブル1’の中から車種毎に選択されたデータを二次データとしている。そのため、二次データを用いて充放電制御を行うことにより、取得した車両CANデータを用いた場合よりも、車載蓄電池210の現状に則した値で充放電制御を行うことが可能となる。つまり、二次データは、車載蓄電池210の現状に則した値で充放電制御を行うことを可能とするデータであって、その点において、車両CANデータよりも汎用性が高いデータであるといえる。 Therefore, in the charging/discharging device 10, even if the values of the same type are defined differently for each vehicle, the commonized value by canceling the difference in the definition of each vehicle type is shown in Table 1′. The data selected for each vehicle type from the table 1′ is used as the secondary data. Therefore, by performing the charge/discharge control using the secondary data, it becomes possible to perform the charge/discharge control with a value according to the current state of the onboard storage battery 210, as compared with the case of using the acquired vehicle CAN data. That is, the secondary data is data that enables charge/discharge control with a value that conforms to the current state of the vehicle-mounted storage battery 210, and in that respect is data that is more versatile than vehicle CAN data. ..
 なお、車種推定部120が、車両CANデータ又は上記通信の特性を示す情報を用いてテーブル1を参照することにより車種の推定を行うことで、データ換算部121による、車種に対応した二次データへの換算処理が実現する。つまり、車種推定部120も、車種に対応した二次データへの換算処理を行う換算部の一部の機能を有するものといえる。 Note that the vehicle type estimation unit 120 estimates the vehicle type by referring to Table 1 using the vehicle CAN data or the information indicating the characteristics of the above communication, and thus the secondary data corresponding to the vehicle type by the data conversion unit 121 is obtained. The conversion process to That is, it can be said that the vehicle type estimation unit 120 also has a part of the function of the conversion unit that performs the conversion process into the secondary data corresponding to the vehicle type.
 図3Bは、データの換算処理によって換算されるデータの内容例を示す。
 図3Bには、テーブル1’の一例が示されている。テーブル1’に示される各データは、二次データと称されてもよい。テーブル1’は、データ換算部121によって車種毎の二次データを選択するためのルックアップテーブルとして用いられる。また、テーブル1’に示される各データは、例えば、充放電装置10の販売前の、電動車両200との接続確認実験により取得される。二次データは、テーブル1において規定されている各車種(車種1~10)の特徴量とも称される。
FIG. 3B shows an example of contents of data converted by the data conversion process.
An example of the table 1'is shown in FIG. 3B. Each data shown in Table 1'may be referred to as secondary data. The table 1'is used as a lookup table for the data conversion unit 121 to select the secondary data for each vehicle type. Further, each data shown in the table 1′ is acquired, for example, by a connection confirmation experiment with the electric vehicle 200 before the charge/discharge device 10 is sold. The secondary data is also referred to as a feature amount of each vehicle type (vehicle types 1 to 10) defined in Table 1.
 図3Bに示されるように、二次データには、
  ・放電下限電池残容量;
  ・充電上限電池残容量;
  ・定格出力(放電)可能な下限の電池残容量;
  ・定格出力(充電)可能な上限の電池残容量;
  ・下限側の出力(放電)特性;
  ・上限側の出力(充電)特性;
  ・インターバル時間;
  ・ラベル;
を、示すデータが含まれうる。なお、上記残量量は充電率(%)であってもよいし、蓄電容量(容量値)であってもよい。
As shown in FIG. 3B, the secondary data include
・Discharge lower limit battery remaining capacity;
・Charge upper limit battery remaining capacity;
・Lower limit of remaining battery capacity for rated output (discharge);
・Upper limit of battery capacity that can be rated (charged);
・Lower limit output (discharge) characteristics;
・Output (charge) characteristics on the upper limit side;
・Interval time;
·label;
May be included. The remaining amount may be the charging rate (%) or the storage capacity (capacity value).
 例えば、充放電装置10は、電動車両200を接続したときに車載蓄電池210を放電させ、電動車両200が放電動作の停止指示を充放電装置10へ送信したときの値、又は放電電流上限値が0又は0に近い値となったときの値を、「放電下限電池残容量」として設定する。但し、車載蓄電池210の蓄電容量又は充電率が、電動車両200から送信された放電下限電池残容量又は放電下限充電率に到達するよりも前に、電動車両200から停止指示を受け付けるか、又は、放電電流上限値が0になる場合がある。この場合、「放電下限電池残容量」として設定された上記値を、電動車両200から送信された放電下限電池残容量又は放電下限充電率に再設定する。また、充放電装置10は、電動車両200から送信された放電下限電池残容量又は放電下限充電率をそのまま「放電下限電池残容量」として設定しても構わない。 For example, the charging/discharging device 10 discharges the in-vehicle storage battery 210 when the electric vehicle 200 is connected, and the value when the electric vehicle 200 transmits a stop instruction of the discharging operation to the charging/discharging device 10 or the discharge current upper limit value is The value when the value becomes 0 or a value close to 0 is set as the “discharge lower limit battery remaining capacity”. However, before the storage capacity or the charging rate of the onboard storage battery 210 reaches the discharge lower limit battery remaining capacity or the discharge lower limit charge rate transmitted from the electric vehicle 200, a stop instruction is received from the electric vehicle 200, or The discharge current upper limit may be zero. In this case, the above value set as the “discharge lower limit battery remaining capacity” is reset to the discharge lower limit battery remaining capacity or the discharge lower limit charge rate transmitted from the electric vehicle 200. Further, the charging/discharging device 10 may set the discharge lower limit battery remaining capacity or the discharge lower limit battery remaining rate as it is as the “discharge lower limit battery remaining capacity” transmitted from the electric vehicle 200.
 一方、充放電装置10は、電動車両200を接続したときに車載蓄電池210を充電していき、電動車両200が充電動作の停止指示を充放電装置10へ送信したときの値、又は充電電流上限値が0又は0に近い値となったときの値を、「充電上限電池残容量」として設定する。但し、車載蓄電池210の蓄電容量又は充電率が、電動車両200から送信された充電上限電池残容量又は充電上限充電率に到達するよりも前に、電動車両200から停止指示を受け付けるか、又は、充電電流上限値が0になる場合がある。この場合、「充電上限電池残容量」として設定された上記値を、電動車両200から送信された充電上限電池残容量又は充電上限充電率に再設定する。また、充放電装置10は、電動車両200から送信された充電上限電池残容量又は充電上限充電率をそのまま「充電上限電池残容量」として設定しても構わない。 On the other hand, the charging/discharging device 10 charges the in-vehicle storage battery 210 when the electric vehicle 200 is connected, and the value when the electric vehicle 200 transmits a stop instruction of the charging operation to the charging/discharging device 10, or the charging current upper limit. The value when the value becomes 0 or a value close to 0 is set as the "charge upper limit battery remaining capacity". However, before the storage capacity or the charging rate of the vehicle-mounted storage battery 210 reaches the charging upper limit battery remaining capacity or the charging upper limit charging rate transmitted from the electric vehicle 200, a stop instruction is received from the electric vehicle 200, or The charging current upper limit may be 0. In this case, the value set as the “charge upper limit battery remaining capacity” is reset to the charge upper limit battery remaining capacity or the charge upper limit charging rate transmitted from the electric vehicle 200. Further, the charging/discharging device 10 may set the charging upper limit battery remaining capacity or the charging upper limit charging rate transmitted from the electric vehicle 200 as it is as the “charging upper limit battery remaining capacity”.
 また例えば、充放電装置10は、充電率が所定値(例:50%)である車載蓄電池210について、定格出力値で放電又は充電していく。そして、充放電装置10は、定格出力値よりも低い値での充放電動作の要求を電動車両200から受け付けたときの値を、「定格出力可能な下限の電池残容量」又は「定格出力可能な上限の電池残容量」として設定する。 Further, for example, the charging/discharging device 10 discharges or charges the in-vehicle storage battery 210 having a predetermined charging rate (eg, 50%) at the rated output value. Then, the charging/discharging device 10 sets the value at the time when the request for the charging/discharging operation at a value lower than the rated output value is received from the electric vehicle 200 as “the lower limit battery remaining capacity at which the rated output is possible” or “the rated output is possible”. Upper limit of remaining battery capacity”.
 出力特性は、電動車両200による充電電力の絞り方(出力の絞り方)の特性を示すものであり、具体的には、充電率に対する充放電装置10の出力値を示す。充電率が0又は100に近づいていくと、上記の通り、定格出力値よりも低い値とすることを電動車両200側から要求される。この充電率が0に近づいていくときの定格出力値からの低下傾向(第1低下傾向)、又は、充電率が100に近づいていくときの定格出力値からの低下傾向(第2低下傾向)は、車種により相違しうる。そのため、充放電装置10は、充電率の変動に伴う出力値の低下傾向である第1低下傾向及び第2低下傾向を取得し、それぞれ「下限側の出力特性」及び「上限側の出力特性」の値とする。なお、これらの値は、例えば、第1低下傾向及び第2低下傾向の傾き(例:所定の統計処理を行うことで得られる近似式の傾き)であっても構わない。 The output characteristic indicates the characteristic of how to throttle the charging power by electric vehicle 200 (how to throttle the output), and specifically shows the output value of charging/discharging device 10 with respect to the charging rate. When the charging rate approaches 0 or 100, electric-powered vehicle 200 side requests that the value be lower than the rated output value, as described above. A decreasing tendency from the rated output value when the charging rate approaches 0 (first decreasing tendency), or a decreasing tendency from the rated output value when the charging rate approaches 100 (second decreasing tendency) May differ depending on the vehicle type. Therefore, the charging/discharging device 10 acquires the first lowering tendency and the second lowering tendency, which are the lowering tendencies of the output value due to the fluctuation of the charging rate, and respectively, the “lower limit side output characteristic” and the “upper limit side output characteristic”. Value of. Note that these values may be, for example, the slopes of the first decreasing tendency and the second decreasing tendency (eg, the slope of the approximate expression obtained by performing a predetermined statistical process).
 「ラベル」は、取得した電池総容量がカタログ値であるか実測値(実値)であるかを示すものである。カタログ値は、電動車両200のカタログに記載されている電池総容量の値(車載蓄電池210が新品であるとき(劣化していないとき)の電池総容量の値)である。実測値は、電池総容量の実際の値であるため、車載蓄電池210の劣化を考慮した値といえる。 "Label" indicates whether the acquired total battery capacity is a catalog value or an actual measurement value (actual value). The catalog value is the value of the total battery capacity described in the catalog of electric vehicle 200 (the value of the total battery capacity when vehicle-mounted storage battery 210 is new (not deteriorated)). Since the measured value is the actual value of the total battery capacity, it can be said that it is a value that takes into consideration the deterioration of the onboard storage battery 210.
 「ラベル」の値は、
・充放電装置10の初期出荷時、
・タッチパネルへのユーザの入力操作時、又は、
・後述のチューニング時
に設定される。初期出荷時には、充放電装置10は、取得する車両CANデータにより、カタログ値であるか実測値であるかを特定する。また、充放電装置10は、後述するように、タッチパネルへのユーザの入力操作に代えて、サーバへの入力操作、又は、別の充放電装置から送信されたデータにより、「ラベル」の値を設定しても構わない。また、チューニング時には、充放電装置10は、電池総容量がカタログ値である場合の算出方法(後述)により、算出した推定値と、電動車両200から取得した電池総容量との差異の有無により、電池総容量が実測値であるか否かを判定しても構わない。差異が無い場合(所定範囲である場合)、実測値であると判定される。
The value of "label" is
・At the time of initial shipment of the charging/discharging device 10,
・During user input operation on the touch panel, or
-It is set at the time of tuning described later. At the time of initial shipping, the charging/discharging device 10 specifies whether the value is a catalog value or an actual measurement value based on the acquired vehicle CAN data. Also, as described later, the charging/discharging device 10 sets the value of the “label” by an input operation to the server instead of the user's input operation on the touch panel or by data transmitted from another charging/discharging device. You can set it. Further, at the time of tuning, the charging/discharging device 10 determines whether or not there is a difference between the calculated estimated value and the total battery capacity acquired from the electric vehicle 200 by the calculation method (described later) when the total battery capacity is the catalog value. It may be determined whether or not the total battery capacity is a measured value. When there is no difference (when it is within the predetermined range), it is determined that it is the actual measurement value.
 なお、「インターバル時間」については、実施形態2で説明する。 Note that the “interval time” will be described in the second embodiment.
 <データの生成>
 データ生成部122は、二次データ及び電池総容量を用いて、EMSコントローラ300によって処理される各データを生成する。図2のフローチャートに示した処理手順の内、ステップS106における生成処理の詳細を示す。当該各データを示すテーブルは、テーブル2とも称される。図3Cには、テーブル2の一例が示されている。テーブル2の各データは、三次データと称されてもよい。
<Generation of data>
The data generator 122 uses the secondary data and the total battery capacity to generate each data processed by the EMS controller 300. The details of the generation processing in step S106 of the processing procedure shown in the flowchart of FIG. 2 will be described. The table showing each data is also referred to as table 2. An example of Table 2 is shown in FIG. 3C. Each data in Table 2 may be referred to as tertiary data.
 三次データは、テーブル1’から選択された二次データの値に基づき演算、又は二次データの値をそのまま入力したデータである。そのため、三次データは、二次データと同様、車載蓄電池210の現状に則した値で充放電制御を行うことを可能とするデータであって、その点において、車両CANデータよりも汎用性が高いデータであるといえる。 The tertiary data is data that is calculated based on the secondary data values selected from the table 1', or the secondary data values are input as they are. Therefore, similar to the secondary data, the tertiary data is data that enables charge/discharge control with a value that conforms to the current state of the vehicle-mounted storage battery 210, and in that respect is more versatile than vehicle CAN data. It can be said to be data.
 図3Cは、データの生成処理によって生成されるデータの内容例を示す。
 図3Cに示されるように、三次データには、
  ・車種(車種推定部120によって推定された車種);
  ・車載蓄電池の使用容量値(電池総容量);
  ・電池総容量 カタログ値or実値;
  ・車載蓄電池の放電可能容量値;
  ・車載蓄電池の放電可能残容量;
  ・車載蓄電池の充電可能容量値;
  ・車載蓄電池の充電可能残容量;
  ・車載蓄電池の電池残容量;
  ・定格出力可能な上限の電池容量;
  ・定格出力可能な下限の電池容量;
  ・上限側の出力特性;
  ・下限側の出力特性;
  ・チューニングの必要有無;
を、示すデータ(図3Cの値A~M)が含まれうる。なお、「車種」には、規格とは別で定義した数値データが入力されても構わないし、車種の名称を示す文字コード(例:ASCII(登録商標)データ)が入力されても構わない。
FIG. 3C shows a content example of data generated by the data generation process.
As shown in FIG. 3C, the tertiary data include
-Vehicle type (vehicle type estimated by the vehicle type estimation unit 120);
・In-vehicle storage battery capacity (total battery capacity);
・Total battery capacity catalog value or actual value;
・Dischargeable capacity value of in-vehicle storage battery;
・Dischargeable remaining capacity of in-vehicle storage battery;
・Chargeable capacity value of in-vehicle storage battery;
・Chargeable remaining capacity of in-vehicle storage battery;
・Battery remaining capacity of in-vehicle storage battery;
・Maximum battery capacity for rated output;
・Lower limit battery capacity for rated output;
・Output characteristics on the upper limit side;
・Lower limit output characteristics;
・Tuning required;
May be included (values AM in FIG. 3C). It should be noted that the “vehicle type” may be input with numerical data defined separately from the standard, or a character code indicating the type of vehicle (eg, ASCII (registered trademark) data) may be input.
 ところで、ECHONETLiteでは、
 (1)車載蓄電池の放電可能容量値[Wh](テーブル2の値Dに対応);
 (2)車載蓄電池の放電可能残容量[Wh](テーブル2の値Eに対応,Wh表示);
 (3)車載蓄電池の放電可能残容量[%](テーブル2の値Eに対応,%表示);
 (4)車載蓄電池の充電可能容量値[Wh](テーブル2の値Fに対応);
 (5)車載蓄電池の充電可能残容量[Wh](テーブル2の値Gに対応);
 (6)車載蓄電池の使用容量値[Wh](テーブル2の値Bに対応);
 (7)車載蓄電池の電池残容量[Wh](テーブル2の値Hに対応,Wh表示)
 (8)車載蓄電池の電池残容量[%](テーブル2の値Hに対応,%表示)
という、8通りのプロパティ項目が準備されている。これらのプロパティ項目の値は、以下に示す2通りの手法によって計算できる。すなわち、データ生成部122は、例えば以下の第1の手法または第2の手法のいずれかを用いて、三次データに含まれる上記値を算出する。
By the way, in ECHONET Lite,
(1) Dischargeable capacity value [Wh] of in-vehicle storage battery (corresponding to value D in Table 2);
(2) Remaining dischargeable capacity [Wh] of the on-vehicle storage battery (corresponding to the value E in Table 2, Wh display);
(3) Remaining dischargeable capacity [%] of the in-vehicle storage battery (corresponding to the value E in Table 2, displayed in%);
(4) Rechargeable capacity value [Wh] of in-vehicle storage battery (corresponding to value F in Table 2);
(5) Remaining chargeable capacity [Wh] of the in-vehicle storage battery (corresponding to the value G in Table 2);
(6) In-vehicle storage battery usage capacity value [Wh] (corresponding to value B in Table 2);
(7) Remaining battery capacity [Wh] of in-vehicle storage battery (corresponding to the value H in Table 2, Wh display)
(8) Remaining battery capacity [%] of in-vehicle storage battery (corresponding to the value H in Table 2, displayed in%)
That is, eight types of property items are prepared. The values of these property items can be calculated by the following two methods. That is, the data generation unit 122 calculates the value included in the tertiary data using, for example, either the following first method or second method.
 (第1の手法)
 電池総容量をA[Wh]、電動車両200から取得した現在の電池容量をB[Wh]、充電上限電池残容量をC[Wh]、放電下限電池残容量をD[Wh]とする。CおよびDのデータは、テーブル1’に含まれている。後述するように、Aとしては、実測値または推定値が使用されてもよい。あるいは、Aとして、カタログ値が参考値として使用されてもよい。Bは、実測値であってよい。
(First method)
It is assumed that the total battery capacity is A[Wh], the current battery capacity obtained from the electric vehicle 200 is B[Wh], the charging upper limit battery remaining capacity is C[Wh], and the discharging lower limit battery remaining capacity is D[Wh]. The C and D data are contained in Table 1'. As described later, a measured value or an estimated value may be used as A. Alternatively, as A, a catalog value may be used as a reference value. B may be a measured value.
 上記8種類の数値は、
 (1)車載蓄電池の放電可能容量値[Wh]=A-D;
 (2)車載蓄電池の放電可能残容量[Wh]=B-D;
 (3)車載蓄電池の放電可能残容量[%]={(B-D)/A}×100;
 (4)車載蓄電池の充電可能容量値[Wh]=C;
 (5)車載蓄電池の充電可能残容量[Wh]=C-B;
 (6)車載蓄電池の使用容量値[Wh]=A;
 (7)車載蓄電池の電池残容量[Wh]=B;
 (8)車載蓄電池の電池残容量[%]=(B/A)×100;
として算出可能である。
The above eight types of numerical values are
(1) Dischargeable capacity value [Wh] of vehicle-mounted storage battery=AD;
(2) Remaining dischargeable capacity [Wh] of in-vehicle storage battery = BD;
(3) Remaining dischargeable capacity of in-vehicle storage battery [%]={(BD)/A}×100;
(4) Rechargeable capacity value [Wh] of in-vehicle storage battery=C;
(5) Remaining chargeable capacity of in-vehicle storage battery [Wh]=CB;
(6) In-vehicle storage battery usage capacity value [Wh]=A;
(7) Remaining battery capacity [Wh] of vehicle-mounted storage battery=B;
(8) Remaining battery capacity [%] of in-vehicle storage battery=(B/A)×100;
Can be calculated as
 (第2の手法)
 電池総容量をA[Wh]、電動車両200から取得した現在の電池容量をB2[%]、充電上限電池残容量をC2[%]、放電下限電池残容量をD2[%]とする。なお、B2~D2は、Aを基準として、B~Dを%表示した数である。従って、B~DとB2~D2との間には、
  B=(A×B2)/100;
  C=(A×C2)/100;
  D=(A×D2)/100;
の関係が成立する。
(Second method)
It is assumed that the total battery capacity is A [Wh], the current battery capacity acquired from the electric vehicle 200 is B2 [%], the charging upper limit battery remaining capacity is C2 [%], and the discharging lower limit battery remaining capacity is D2 [%]. It should be noted that B2 to D2 are numbers in which B to D are expressed in% with A as a reference. Therefore, between B to D and B2 to D2,
B=(A×B2)/100;
C=(A×C2)/100;
D=(A×D2)/100;
The relationship is established.
 このため、上述の第1の手法の各式を考慮すれば、上記8種類の数値は、
 (1)車載蓄電池の放電可能容量値[Wh]=A×(100-D2)/100;
 (2)車載蓄電池の放電可能残容量[Wh]=A×(B2-D2)/100;
 (3)車載蓄電池の放電可能残容量[%]=B2-D2;
 (4)車載蓄電池の充電可能容量値[Wh]=A×C2/100;
 (5)車載蓄電池の充電可能残容量[Wh]=A×(C2-B2);
 (6)車載蓄電池の使用容量値[Wh]=A;
 (7)車載蓄電池の電池残容量[Wh]=A×B2/100;
 (8)車載蓄電池の電池残容量[%]=B2;
として算出することもできる。
Therefore, considering each equation of the above-mentioned first method, the above eight kinds of numerical values are
(1) Dischargeable capacity value of in-vehicle storage battery [Wh]=A×(100−D2)/100;
(2) Remaining dischargeable capacity [Wh] of vehicle-mounted storage battery=A×(B2-D2)/100;
(3) Remaining dischargeable capacity [%] of in-vehicle storage battery = B2-D2;
(4) Rechargeable capacity value of onboard storage battery [Wh]=A×C2/100;
(5) Remaining chargeable capacity of onboard storage battery [Wh]=A×(C2-B2);
(6) In-vehicle storage battery usage capacity value [Wh]=A;
(7) Remaining battery capacity [Wh] of vehicle-mounted storage battery=A×B2/100;
(8) Battery residual capacity [%] of vehicle-mounted storage battery=B2;
Can also be calculated as
 (補足)
 上記の例では、ECHONETLiteに基づく各値の算出方法について説明した。但し、本発明の一態様に係る充放電装置には、上述の通り、ECHONETLite以外の公知の通信規格が適用可能である。つまり、各通信規格において車載蓄電池210の充放電に必要となるプロパティ項目がテーブル2の項目として準備され、必要に応じてテーブル1’の値を用いて算出されればよい。換言すれば、三次データは、規格によって定められたデータ項目を含むものであればよい。また、テーブル1’の項目についても、テーブル2の項目の値を算出するのに十分な項目が準備されればよい。
(Supplement)
In the above example, the method of calculating each value based on ECHONET Lite has been described. However, as described above, known communication standards other than ECHONET Lite can be applied to the charging/discharging device according to one aspect of the present invention. That is, in each communication standard, property items required for charging/discharging the in-vehicle storage battery 210 may be prepared as items in Table 2, and may be calculated using the values in Table 1′ as needed. In other words, the tertiary data may include data items defined by the standard. Also, as for the items of the table 1′, sufficient items may be prepared to calculate the values of the items of the table 2.
 なお、三次データは、充放電装置10の設計者によって定められたデータ項目を含むものであっても構わない。 Note that the tertiary data may include data items defined by the designer of the charging/discharging device 10.
 (その他)
 三次データに含まれる「電池総容量 カタログ値or実値」(値C)は、テーブル1’の「ラベル」の値が反映される。また、三次データに含まれる「定格出力可能な上限の電池容量」、「定格出力可能な下限の電池容量」、「上限側の出力特性」及び「下限側の出力特性」の値(値I~L)についても、テーブル1’の「定格出力可能な下限の電池残容量」、「定格出力可能な上限の電池残容量」、「下限側の出力特性」及び「上限側の出力特性」の値がそれぞれ反映される。「チューニングの必要有無」は、後述のチューニングモードのON又はOFFを設定するものである。この値(値M)の設定は、例えば、タッチパネル又はEMSコントローラ300へのユーザの入力操作により行われる。
(Other)
The “total battery capacity catalog value or actual value” (value C) included in the tertiary data reflects the value of the “label” in the table 1′. In addition, the values (values I to I) of the "upper limit battery capacity that can be rated output", "lower limit battery capacity that can be rated output", "upper limit side output characteristic" and "lower limit side output characteristic" included in the tertiary data. Also for L), the values of "lower limit battery capacity that can be rated output", "upper limit battery capacity that can be rated output", "lower limit side output characteristic" and "upper limit side output characteristic" in Table 1' Are reflected respectively. The “whether tuning is required” is for setting ON or OFF of a tuning mode described later. The setting of this value (value M) is performed, for example, by a user's input operation on the touch panel or the EMS controller 300.
 制御回路12は、データ換算部121によって得られる二次データを用いることなしに、EMSコントローラ300によって処理される各データを生成してもよい。この場合制御回路12は、電動車両200から取得した現在の電池容量、総電池容量に対し、予め規定しておいた関数によって三次データを生成してもよい。ステップS102等で得られるデータを入力した場合に三次データを出力するように学習してある学習モデルを用いてもよい。 The control circuit 12 may generate each data processed by the EMS controller 300 without using the secondary data obtained by the data conversion unit 121. In this case, the control circuit 12 may generate the tertiary data based on the current battery capacity and the total battery capacity acquired from the electric vehicle 200 by a function defined in advance. A learning model that has been learned so as to output tertiary data when the data obtained in step S102 or the like is input may be used.
 <データの送信>
 制御回路12は、データ生成部122が生成した三次データを、EMSコントローラ300に送信する。そのため、EMSコントローラ300は、取得した三次データを用いて充放電装置10による車載蓄電池210の充放電動作を制御できる。つまり、EMSコントローラ300は、充放電装置10に、車載蓄電池210の現状に則した値で充放電制御を行わせることができる。
<Sending data>
The control circuit 12 transmits the tertiary data generated by the data generation unit 122 to the EMS controller 300. Therefore, the EMS controller 300 can control the charging/discharging operation of the vehicle-mounted storage battery 210 by the charging/discharging device 10 using the acquired tertiary data. That is, the EMS controller 300 can cause the charging/discharging device 10 to perform the charging/discharging control with a value according to the current state of the in-vehicle storage battery 210.
 また、制御回路12は、データ生成部122が生成した三次データを、EMSコントローラ300以外の、充放電装置10の上位装置に送信することも可能である。そのため、種々の上位装置において、三次データを用いて充放電装置10を制御できる。 The control circuit 12 can also transmit the tertiary data generated by the data generation unit 122 to a higher-level device of the charging/discharging device 10 other than the EMS controller 300. Therefore, the charge/discharge device 10 can be controlled using the tertiary data in various host devices.
 <各データの保持方法および更新方法>
 [各テーブルの保持]
 (1)車種推定部120による車種推定に先立ち、充放電装置10には、予めテーブル1が格納(保持)されている。テーブル1内の各データは、車種推定部120が車種推定を行うための学習データとして用いられる。但し、テーブル1は、後述の通り更新可能である。
<How to hold and update each data>
[Hold each table]
(1) Prior to the vehicle type estimation by the vehicle type estimation unit 120, the charging/discharging device 10 stores (holds) the table 1 in advance. Each data in the table 1 is used as learning data for the vehicle type estimation unit 120 to perform vehicle type estimation. However, the table 1 can be updated as described later.
 (2)また、データ換算部121による、車種推定の結果に基づく、取得した車両CANデータの、二次データへの換算に先立ち、予めテーブル1’が格納されている。但し、テーブル1’は、後述の通り更新可能である。 (2) Further, prior to conversion of the acquired vehicle CAN data into secondary data based on the vehicle type estimation result by the data conversion unit 121, the table 1'is stored in advance. However, the table 1'can be updated as described later.
 (3)充放電装置10が電動車両200に接続された場合、車種推定部120は、テーブル1に基づいて車種を推定する。続いて、データ換算部121は、車種推定の結果に基づき、テーブル1’を参照することで、テーブル1’の中から車種に応じた値を二次データとして選択する。続いて、データ生成部122は、二次データと電池総容量とに基づき、テーブル2を生成する。そして、データ生成部122は、生成したテーブル2を、EMSコントローラ300に供給する。 (3) When the charging/discharging device 10 is connected to the electric vehicle 200, the vehicle type estimation unit 120 estimates the vehicle type based on the table 1. Subsequently, the data conversion unit 121 selects a value corresponding to the vehicle type from the table 1'as secondary data by referring to the table 1'based on the vehicle type estimation result. Subsequently, the data generation unit 122 generates Table 2 based on the secondary data and the total battery capacity. Then, the data generation unit 122 supplies the generated table 2 to the EMS controller 300.
 [電池総容量の設定]
 一部の電動車両200は、電池総容量を示すデータとして、当該電池総容量のカタログ値を、充放電装置10に送信する。他方、一部の電動車両200は、実測値を示すデータを充放電装置10に送信する。
[Total battery capacity setting]
Some electric vehicles 200 transmit the catalog value of the total battery capacity to the charging/discharging device 10 as data indicating the total battery capacity. On the other hand, some of the electric vehicles 200 transmit data indicating actual measurement values to the charging/discharging device 10.
 (1A)電動車両200が実測値を送信する場合、充放電装置10は、当該実測値をそのまま使用すればよい。当該実測値は、車載蓄電池210の実際の性能を示す値である(カタログ値に比べ、信頼性が高い値である)と言えるためである。 (1A) When the electric vehicle 200 transmits the actual measurement value, the charging/discharging device 10 may use the actual measurement value as it is. This is because it can be said that the actual measurement value is a value indicating the actual performance of the in-vehicle storage battery 210 (a value having higher reliability than the catalog value).
 (1B)電動車両200がカタログ値を送信する場合、充放電装置10は、例えば積算電力に基づき、電池総容量を算出する。カタログ値は、車載蓄電池210の実際の性能と必ずしも一致しないためである。 (1B) When electric vehicle 200 transmits the catalog value, charging/discharging device 10 calculates the total battery capacity based on, for example, the integrated power. This is because the catalog value does not always match the actual performance of the onboard storage battery 210.
 一例として、充放電装置10は、積算電力計(不図示)から積算電力を取得してよい。あるいは、充放電装置10は、電動車両200の出力(X[kW])および充放電時間(Y[h])に基づいて、積算電力を算出してもよい。そして、充放電装置10は、積算電力と、その充放電時間において増加又は減少したSOCとから、SOC1%あたりの電力量(単位:kWh)を算出する。続いて、充放電装置10は、SOC1%あたりの電力量を、SOC100%に相当する電力量(すなわち、電池総容量)に換算する。例えば、充放電装置10は、SOC1%あたりの電力量を100倍することにより、電池総容量を算出する。また、本処理を繰り返すことにより平均値を算出し続けても構わない。この場合、その平均値を電池総容量とすることができるため、電池総容量の確からしさが向上する。 As an example, the charging/discharging device 10 may acquire integrated power from an integrated power meter (not shown). Alternatively, the charging/discharging device 10 may calculate the integrated power based on the output (X[kW]) and the charging/discharging time (Y[h]) of the electric vehicle 200. Then, the charging/discharging device 10 calculates the amount of power per SOC 1% (unit: kWh) from the integrated power and the SOC increased or decreased during the charging/discharging time. Subsequently, the charging/discharging device 10 converts the amount of power per SOC 1% into the amount of power corresponding to SOC 100% (that is, the total battery capacity). For example, the charging/discharging device 10 calculates the total battery capacity by multiplying the amount of power per SOC 1% by 100. Further, the average value may be continuously calculated by repeating this process. In this case, since the average value can be used as the total battery capacity, the certainty of the total battery capacity is improved.
 なお、上記換算処理が完了するまでは、充放電装置10は、カタログ値を参考値として使用してよい。 Note that the charge/discharge device 10 may use the catalog value as a reference value until the conversion process is completed.
 また、上記換算処理は、コネクタが電動車両200から取り外されるたびに実行されてよい。すなわち、充放電装置10は、コネクタが電動車両200に挿入されている期間において、算出した電池総容量を保持してよい。 The conversion process may be executed each time the connector is removed from the electric vehicle 200. That is, the charging/discharging device 10 may hold the calculated total battery capacity during the period in which the connector is inserted in the electric vehicle 200.
 [各テーブルの新規取得(更新)]
 テーブル1に、充放電装置10に接続された電動車両200の車種特有の値が含まれていない場合、車種推定部120は、当該電動車両200の車種を推定できない。そのため、この場合、データ換算部121は、取得した車両CANデータを車種に対応する二次データに換算できない。
[New acquisition (update) of each table]
When the table 1 does not include a value specific to the vehicle type of the electric vehicle 200 connected to the charging/discharging device 10, the vehicle type estimation unit 120 cannot estimate the vehicle type of the electric vehicle 200. Therefore, in this case, the data conversion unit 121 cannot convert the acquired vehicle CAN data into secondary data corresponding to the vehicle type.
 図4は、制御回路12によるテーブルの更新手順の一例を示すフローチャートである。図4のフローチャートに示す処理手順の内、図2のフローチャートに示した手順と共通する処理については同一のステップ番号を付して詳細な説明を省略する。 FIG. 4 is a flowchart showing an example of a procedure for updating the table by the control circuit 12. Of the processing procedures shown in the flowchart of FIG. 4, the same steps as those shown in the flowchart of FIG. 2 are designated by the same step numbers, and detailed description thereof will be omitted.
 制御回路12は、ステップS103で取得したデータが、テーブル1の既知の車種のデータに合致するか否か、によって、ステップS104で車種を推定できたか否かを判断する(ステップS115)。車種を推定できなかったと判断された場合(S115:NO)、新たな車種のデータとして、ステップS103で取得したデータをテーブル1に追加し(ステップS116)、処理を次のステップS105へ進める。ステップS115で車種を推定できない場合は、参照データと合致せず、即ち、既知の車種用のデータへ換算ができないと判断されることに対応する。 The control circuit 12 determines whether or not the vehicle type could be estimated in step S104 based on whether or not the data acquired in step S103 matches the known vehicle type data in Table 1 (step S115). When it is determined that the vehicle type could not be estimated (S115: NO), the data acquired in step S103 is added to the table 1 as the data of the new vehicle type (step S116), and the process proceeds to the next step S105. If the vehicle type cannot be estimated in step S115, it corresponds to the determination that the data does not match the reference data, that is, it cannot be converted into the data for the known vehicle type.
 つまり充放電装置10は、ステップS115にて二次データへの換算ができないと判断される場合(充放電装置に接続実績のない新規の電動車両200が接続された場合)、新規の電動車両200の情報(車載蓄電池210に関するデータ)をテーブル1及び1’に入力する(S116)。 That is, when it is determined in step S115 that the conversion into the secondary data cannot be performed (when the new electric vehicle 200 having no connection record is connected to the charge/discharge apparatus), the charging/discharging device 10 sets the new electric vehicle 200. Information (data relating to the onboard storage battery 210) is input to the tables 1 and 1'(S116).
 具体的には、車種推定部120は、二次データへの換算ができない場合、新規の電動車両200から取得した車両CANデータに含まれる複数種類の値のうちの少なくとも一部(テーブル1で準備された項目の値)を、テーブル1に入力する。つまり、車種推定部120は、車種判定用のデータを収集する。この入力処理により、次回、新規の電動車両200が接続されたときに、その車種を推定することが可能となる。 Specifically, when the vehicle type estimation unit 120 cannot convert the secondary data, the vehicle type estimation unit 120 at least part of a plurality of types of values included in the vehicle CAN data acquired from the new electric vehicle 200 (prepared in Table 1). (The value of the selected item) is input to Table 1. That is, the vehicle type estimation unit 120 collects data for vehicle type determination. By this input processing, when the new electric vehicle 200 is connected next time, it becomes possible to estimate the vehicle type.
 また、車種推定部120は、車両CANデータに含まれる複数種類の値のうちの少なくとも一部、又は、複数種類の値のうちの少なくとも一部から算出される値を、参考値としてテーブル1’に入力する。この入力処理により、次回、新規の電動車両200が接続されたときに、テーブル1’を使用することが可能となる。 Further, the vehicle type estimating unit 120 uses, as a reference value, at least a part of a plurality of types of values included in the vehicle CAN data, or a value calculated from at least a part of the plurality of types of values, as a reference value. To enter. By this input processing, it becomes possible to use the table 1'when the new electric vehicle 200 is connected next time.
 ステップS115で車種を推定できたと判断された場合(S115:YES)、処理を次のステップS105へ進める。 If it is determined in step S115 that the vehicle type can be estimated (S115: YES), the process proceeds to the next step S105.
 制御回路12は、ステップS104で推定した車種、又はステップS116で新たに加えた車種に基づいて、ステップS103で取得したデータを、その車種における充電上限電池残容量等の特徴量へ換算する(S105)。ステップS105において制御回路12は、取得したデータが参照されたデータとマッチする場合に、そのデータへ換算する。 The control circuit 12 converts the data acquired in step S103 into a characteristic amount such as the charge upper limit battery remaining capacity of the vehicle type based on the vehicle type estimated in step S104 or the vehicle type newly added in step S116 (S105). ). In step S105, the control circuit 12 converts the acquired data to the referenced data when the data matches the referenced data.
 制御回路12は、ステップS115において車種を推定できなかったと判断された場合(S115:NO)、ステップS116にて新たな車種のデータをテーブル1に追加せずともよい。例えば制御回路12は、車種を推定できない(しない)場合には(S115:NO)、ステップS106へ進み、ステップS102で送受信した車両CANデータの値、ステップS103で取得した特性に基づき、充放電制御に必要なデータを生成してもよい。この場合の制御回路12は例えば、上限又は下限となる値に対して3%-10%の余地を持つように、データを生成してもよい。 When it is determined in step S115 that the vehicle type could not be estimated (S115: NO), the control circuit 12 does not have to add new vehicle type data to the table 1 in step S116. For example, if the control circuit 12 cannot (or does not) estimate the vehicle type (S115: NO), the control circuit 12 proceeds to step S106, and based on the value of the vehicle CAN data transmitted/received in step S102 and the characteristic acquired in step S103, the charge/discharge control is performed. You may generate the data required for. In this case, the control circuit 12 may generate the data so as to have a margin of 3%-10% with respect to the upper limit value or the lower limit value.
 図4のフローチャートに示した処理手順により、新たに接続された車種の電動車両200に対しても、充放電処理を実行しながら、EMSコントローラ300で充放電制御するために必要な情報を、参照可能とすることができる。 According to the processing procedure shown in the flowchart of FIG. 4, refer to the information necessary for the charge/discharge control by the EMS controller 300 while executing the charge/discharge processing even for the electric vehicle 200 of the newly connected vehicle type. It can be possible.
 なお、テーブル1’において参考値が入力されている項目については、当該項目の値が参考値であり、値を変更する必要があるというフラグを付しておいても構わない。この場合、充放電装置10は、EMSコントローラ300に、参考値であること、及び値を変更する必要があることを通知できる。なお、値を変更することを、チューニングするとも称する。 Note that for the item for which the reference value is input in the table 1', a flag indicating that the value of the item is the reference value and the value needs to be changed may be added. In this case, the charging/discharging device 10 can notify the EMS controller 300 that it is a reference value and that the value needs to be changed. Note that changing the value is also referred to as tuning.
 また、車種推定部120は、取得した電池総容量がカタログ値であるものとして、テーブル1’の「ラベル」の値として「カタログ値」を示す値を入力する。この場合も、上記フラグが付されてよい。 Further, the vehicle type estimating unit 120 inputs a value indicating the “catalog value” as the value of the “label” in the table 1 ′, assuming that the acquired total battery capacity is the catalog value. In this case also, the flag may be added.
 また、テーブル2の「チューニングの必要有無」が「有」を示す値に設定されている場合(チューニングモードがONに設定されている場合)で、かつEMSコントローラ300からチューニングしてよい旨の許可があった場合、車種推定部120は、車載蓄電池210に対する充放電制御を自動で行うことにより、テーブル1’の各値を収集する。具体的には、車種推定部120は、所定の条件により行われた車載蓄電池210の充放電動作の結果に基づき、参考値を書き換える。このときの書き換えは、上述したテーブル1’の各値の取得方法と同じである。 Further, when the “necessity of tuning” in Table 2 is set to a value indicating “Yes” (when the tuning mode is set to ON), the EMS controller 300 permits the tuning. If there is, the vehicle type estimation unit 120 collects each value of the table 1′ by automatically performing charge/discharge control on the vehicle-mounted storage battery 210. Specifically, the vehicle type estimation unit 120 rewrites the reference value based on the result of the charging/discharging operation of the onboard storage battery 210 performed under a predetermined condition. Rewriting at this time is the same as the method of acquiring each value of the table 1'described above.
 一方、「チューニングの必要有無」が「無」を示す値に設定されている場合(チューニングモードがOFFに設定されている場合)、車種推定部120は、所定の運転モードに基づき車載蓄電池210の充放電動作を行っている間に、テーブル1’の値とすべき、参考値とは異なる値を取得した場合に、当該値に参考値を書き換える。 On the other hand, when “whether or not tuning is required” is set to a value indicating “absent” (when the tuning mode is set to OFF), the vehicle type estimation unit 120 causes the vehicle-mounted storage battery 210 to be based on the predetermined operation mode. When a value different from the reference value, which should be the value of the table 1', is acquired during the charging/discharging operation, the reference value is rewritten to the value.
 車種推定部120は、テーブル1’の「放電下限電池残容量」又は「充電上限電池残容量」については、例えば、EMSコントローラ300の指示又は予約運転により充放電動作を行っている間に、電動車両200から充放電動作の停止指示を受け付けたとき、その受け付けたときの値に書き換える。あるいは、放電電流上限値又は充電電流上限値が0又は0に近い値となったときの値に書き換える。あるいは、放電下限電池残容量まで、停止指示を受け付けない、又は、放電電流上限値が0もしくは0に近い値にならない場合には、電動車両200から送信された値(参考値)をそのまま「放電下限電池残容量」の値としても構わない。同様に、充電上限電池残容量まで、停止指示を受け付けない、又は、充電電流上限値が0もしくは0に近い値にならない場合には、電動車両200から送信された値をそのまま「充電上限電池残容量」の値としても構わない。 The vehicle type estimation unit 120 uses the “discharge lower limit battery remaining capacity” or the “charge upper limit battery remaining capacity” of the table 1 ′, for example, while performing the charging/discharging operation according to the instruction of the EMS controller 300 or the reserved operation. When a charge/discharge operation stop instruction is received from the vehicle 200, the value at the time of reception is rewritten. Alternatively, the upper limit value of the discharge current or the upper limit value of the charge current is rewritten to a value when it becomes 0 or a value close to 0. Alternatively, when the stop instruction is not received up to the discharge lower limit battery remaining capacity, or when the discharge current upper limit value does not become 0 or a value close to 0, the value (reference value) transmitted from the electric vehicle 200 is directly discharged. The value of “lower limit battery remaining capacity” may be used. Similarly, if the stop instruction is not received or the charging current upper limit value does not reach 0 or a value close to 0, the value transmitted from the electric vehicle 200 is directly used as the “charging upper limit battery remaining capacity”. The value of “capacity” may be used.
 また、車種推定部120は、テーブル1’の「定格出力可能な下限の電池残容量」又は「定格出力可能な上限の電池残容量」については、例えば、充放電動作中に、定格出力値(例:定格出力可能な電流値)よりも低い値での充放電動作(例えば、放電電流上限値又は充電電流上限値で判断)の要求を電動車両200から受け付けたとき、その受け付けたときの値に書き換える。 In addition, the vehicle type estimation unit 120 may, for example, regarding the “lower limit battery remaining capacity for rated output” or the “upper limit battery remaining capacity for rated output” in the table 1′, for example, during the charging/discharging operation, the rated output value ( Example: When a request for charging/discharging operation (for example, determination based on the discharge current upper limit value or the charge current upper limit value) at a value lower than the rated output current value is received from the electric vehicle 200, the value when the request is received Rewrite
 なお、値を書き換えた場合には、その値が確定値であるというフラグを付しても構わない。この場合、充放電装置10は、値を書き換えたことを、EMSコントローラ300に通知できる。 Note that if you rewrite a value, you may add a flag that the value is a definite value. In this case, the charging/discharging device 10 can notify the EMS controller 300 that the value has been rewritten.
 このように、充放電装置10は、参考値の書き換えを行うことにより、新規の電動車両200の車載蓄電池210についても、その現状に則した充放電動作を行うことが可能となる。また、チューニングモードがONの場合には、テーブル1’の値として書き換え後の値を用いることができるので、充放電装置10は、車載蓄電池210の現状に則した充放電動作を行うことができる。一方、チューニングモードがOFFの場合には、充放電システム1の運用の中で値の書き換えを行っていくことができる。そのため、テーブル1’への登録当初は参考値が含まれるものの、徐々に書き換えを行っていくことで、充放電装置10は、新規の電動車両200の車載蓄電池210の現状に則した充放電動作を行うことができるようになる。また、チューニングモードがOFFの場合には、EMSコントローラ300がチューニングの許可を与えたり、意図しないタイミングでチューニングされたりすることを防止できる。 As described above, the charging/discharging device 10 can perform the charging/discharging operation according to the current state of the onboard storage battery 210 of the new electric vehicle 200 by rewriting the reference value. Further, when the tuning mode is ON, the value after rewriting can be used as the value of the table 1′, so that the charging/discharging device 10 can perform the charging/discharging operation according to the current state of the onboard storage battery 210. .. On the other hand, when the tuning mode is OFF, the value can be rewritten during the operation of the charging/discharging system 1. Therefore, although the reference value is initially included in the table 1 ′, the charging/discharging device 10 performs the charging/discharging operation according to the current state of the onboard storage battery 210 of the new electric vehicle 200 by gradually rewriting. Will be able to do. Further, when the tuning mode is OFF, it is possible to prevent the EMS controller 300 from granting tuning permission or performing tuning at an unintended timing.
 ところで、充放電装置10は、ネットワーク上のサーバを介して、別の充放電装置に接続されてもよい。この場合、充放電装置10は、新規に取得した各テーブルを、別の充放電装置に供給してもよい。この場合、別の充放電装置においても、充放電装置10と同様の充放電制御を行うことが可能となる。 By the way, the charging/discharging device 10 may be connected to another charging/discharging device via a server on the network. In this case, the charging/discharging device 10 may supply each newly acquired table to another charging/discharging device. In this case, also in another charging/discharging device, it becomes possible to perform the same charging/discharging control as the charging/discharging device 10.
 なお、充放電装置10は、タッチパネルへのユーザの入力操作、又はサーバへの入力操作に基づいて、テーブル1’の各データを設定してもよい。あるいは、充放電装置10は、ネットワークを介して、ユーザが所有する端末装置(例:スマートフォン)に接続されてもよい。この場合、ユーザは、端末装置に対して各データを入力する。そして、端末装置は、当該各データを充放電装置10に供給する。 Note that the charging/discharging device 10 may set each data in the table 1 ′ based on a user's input operation on the touch panel or a server input operation. Alternatively, the charging/discharging device 10 may be connected to a terminal device (eg, smartphone) owned by the user via a network. In this case, the user inputs each data to the terminal device. Then, the terminal device supplies the respective data to the charging/discharging device 10.
 また、充放電装置10は、各データの入力時には、例えばタッチパネルにポップアップ表示することで、ユーザに車種を選択させる。これにより、入力された各データを、選択された車種に対応付けて記録することが可能となる。 Also, the charging/discharging device 10 allows the user to select a vehicle type by pop-up display on, for example, a touch panel when inputting each data. This makes it possible to record each input data in association with the selected vehicle type.
 <効果>
 一般に、充放電装置は、電動車両から取得した電池総容量、充電可能容量値又は放電可能容量値等をEMSコントローラに送信する機能を有している。この電動車両から取得する電池総容量等は、上述のように、車種によってその定義が異なる。そのため、EMSコントローラは、車載蓄電池の現状に則さない値で充放電制御を行ってしまう可能性がある。
<Effect>
Generally, the charging/discharging device has a function of transmitting the total battery capacity, the chargeable capacity value, the dischargeable capacity value, or the like acquired from the electric vehicle to the EMS controller. As described above, the definition of the total battery capacity or the like acquired from the electric vehicle differs depending on the vehicle type. Therefore, the EMS controller may perform charge/discharge control with a value that does not comply with the current state of the onboard storage battery.
 その結果、例えば、EMSコントローラは、電動車両から送信された充電可能容量値又は放電可能容量値とは異なる値で(つまり、予定よりも早期のタイミングで)、充放電動作の停止要求を電動車両から受け付ける可能性がある。また、EMSコントローラは、定格出力値での充放電動作を行うことが可能であると判定していた蓄電容量(容量値)又は充電率の範囲において、定格出力値よりも低い値での充放電動作の要求を電動車両から受け付ける可能性がある。また、車種によって定格出力値より低い値への移行の仕方(出力の絞り方)も異なるため、EMSコントローラ側でどのように低い値へと移行すればよいかを特定することができない場合がある。 As a result, for example, the EMS controller issues a request to stop the charging/discharging operation with a value different from the chargeable capacity value or the dischargeable capacity value transmitted from the electric vehicle (that is, at an earlier timing than planned). May be accepted from. In addition, the EMS controller charges and discharges at a value lower than the rated output value in the range of the storage capacity (capacity value) or the charging rate that was determined to be capable of performing the charging and discharging operation at the rated output value. There is a possibility that the operation request may be received from the electric vehicle. In addition, since the method of shifting to a value lower than the rated output value (how to throttle the output) differs depending on the vehicle type, it may not be possible for the EMS controller side to specify how to shift to a lower value. ..
 なお、上記のような問題は、充放電装置がEMSコントローラに依らず、車載蓄電池に対する充放電制御を行う場合にも生じ得る。 Note that the above-mentioned problems may occur even when the charging/discharging device does not rely on the EMS controller but performs charging/discharging control for the onboard storage battery.
 本実施形態の充放電装置10は、電動車両200から取得した車両CANデータに含まれる複数種類の値のうちの少なくとも一部の値、又は、電動車両200と充放電装置10との間の通信の特性を示す情報を用いて、テーブル1及び1’を参照する。テーブル1を参照することで、電動車両200の車種を特定できる。また、テーブル1’を参照することで、特定した車種に対応する、車両CANデータよりも汎用化された二次データの値に、車両CANデータの値を換算できる。そのため、汎用化された値を充放電制御に用いることが可能となる。 The charging/discharging device 10 according to the present embodiment has at least a part of values of a plurality of types included in the vehicle CAN data acquired from the electric vehicle 200, or communication between the electric vehicle 200 and the charging/discharging device 10. Tables 1 and 1'are referred to using the information indicating the characteristics of. The vehicle type of the electric vehicle 200 can be specified by referring to the table 1. Further, by referring to the table 1', the value of the vehicle CAN data can be converted into the value of the secondary data corresponding to the specified vehicle type, which is more generalized than the vehicle CAN data. Therefore, a generalized value can be used for charge/discharge control.
 換言すれば、充放電装置10は、車種推定部120及びデータ換算部121を備えることにより、同種類の値であるが、その値の定義が車両毎に異なる場合であっても、その車種毎の定義の違いを相殺し共通化した値を、充放電制御に用いることができる。 In other words, the charging/discharging device 10 includes the vehicle type estimating unit 120 and the data converting unit 121, and thus the values are of the same type, but even if the definition of the value is different for each vehicle, each vehicle type is different. A common value that offsets the difference in the definition of can be used for charge/discharge control.
 従って、充放電装置10は、車載蓄電池210の現状に則した充放電動作を車種毎に行うことが可能となる。つまり、充放電装置10は、上記のような問題が生じることを回避しながら、車載蓄電池210に対する充放電制御を行うことができる。 Therefore, the charging/discharging device 10 can perform the charging/discharging operation according to the current state of the vehicle-mounted storage battery 210 for each vehicle type. That is, the charging/discharging device 10 can perform charging/discharging control with respect to the vehicle-mounted storage battery 210, avoiding the problem described above.
 また、充放電装置10は、テーブル1’を用いて、EMSコントローラ300により処理されるテーブル2を生成する。そのため、EMSコントローラ300は、充放電装置10が、車載蓄電池210の現状に則した値で充放電制御を行うことが可能なように、充放電装置10を制御できる。つまり、EMSコントローラ300は、上記のような問題が生じることを回避しながら、車載蓄電池210に対する充放電制御を行うことができる。また、EMSコントローラ300は、上記のような問題が生じた場合の不利益(例:調整力の要請に応えることができないことに伴う、EMSコントローラ300の提供者に対する罰則)が生じることを回避できる。 The charging/discharging device 10 also uses the table 1 ′ to generate the table 2 processed by the EMS controller 300. Therefore, the EMS controller 300 can control the charging/discharging device 10 so that the charging/discharging device 10 can perform charging/discharging control with the value according to the present condition of the vehicle-mounted storage battery 210. That is, the EMS controller 300 can perform charging/discharging control with respect to the vehicle-mounted storage battery 210, avoiding the problem described above. Further, the EMS controller 300 can avoid occurrence of disadvantages (eg, penalties for the provider of the EMS controller 300 due to the inability to meet the request for adjustment power) when the above problems occur. ..
 (その他の効果)
 充放電装置10又はEMSコントローラ300は、車種毎に準備した所定の制御を行うことなく、車載蓄電池210の現状に則した充放電制御を行うことができる。そのため、ソフトウェアを単純化できる。
(Other effects)
The charging/discharging device 10 or the EMS controller 300 can perform the charging/discharging control according to the current state of the vehicle-mounted storage battery 210, without performing the predetermined control prepared for every vehicle type. Therefore, the software can be simplified.
 また、充放電装置10又はEMSコントローラ300は、車載蓄電池210の現状に則した値を用いて充放電制御を行うことができる。そのため、以下のような効果を奏する。
・充放電動作の予測を行いやすくなる。
・車載蓄電池210に効率良く充放電できる。
・電動車両200からの停止要求等を受けにくくすることができる。そのため、停止要求等に伴う、充放電装置10と電動車両200との接続及び遮断、又は、充放電装置10の出力制御を行う回数を低減させることができる。従って、これらの動作の繰り返しによる充放電装置10又は電動車両200の故障を防止できる。
In addition, the charging/discharging device 10 or the EMS controller 300 can perform charging/discharging control using a value according to the current state of the onboard storage battery 210. Therefore, the following effects are produced.
-It becomes easier to predict charge/discharge operation.
-The onboard storage battery 210 can be efficiently charged and discharged.
It is possible to make it difficult to receive a stop request or the like from the electric vehicle 200. Therefore, it is possible to reduce the number of times of connecting and disconnecting the charging/discharging device 10 and the electric vehicle 200, or performing output control of the charging/discharging device 10 associated with a stop request or the like. Therefore, failure of the charging/discharging device 10 or the electric vehicle 200 due to repetition of these operations can be prevented.
 〔実施形態2〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。他の実施形態についても同様である。
[Embodiment 2]
Another embodiment of the present invention will be described below. For convenience of description, members having the same functions as the members described in the above embodiment will be designated by the same reference numerals, and the description thereof will not be repeated. The same applies to the other embodiments.
 本実施形態の充放電装置10は、テーブル1’の値を用いて、自装置において車載蓄電池210に対する充放電動作を制御する。つまり、本実施形態の充放電装置10は、実施形態1のように、テーブル2を生成し、かつEMSコントローラ300に送信する機能を有する必要は必ずしも無い。 The charging/discharging device 10 of the present embodiment controls the charging/discharging operation for the in-vehicle storage battery 210 in its own device using the values in the table 1'. That is, the charging/discharging device 10 of the present embodiment does not necessarily have the function of generating the table 2 and transmitting the table 2 to the EMS controller 300 as in the first embodiment.
 本実施形態では、例えば、充放電制御部123は、充電動作(運転)を行っている間、電動車両200から取得した電池残容量が、車種に対応するテーブル1’の「充電上限電池残容量」又は「定格出力可能な上限の電池残容量」に達したときに、充電動作を停止する。また、充放電制御部123は、放電動作を行っている間、取得した電池残容量が、車種に対応するテーブル1’の「放電下限電池残容量」又は「定格出力可能な下限の電池残容量」に達したときに、放電動作を停止する。 In the present embodiment, for example, while the charging/discharging control unit 123 is performing the charging operation (operation), the battery remaining capacity acquired from the electric vehicle 200 is the “charging upper limit battery remaining capacity” in the table 1′ corresponding to the vehicle type. Or when the "remaining battery capacity of the upper limit of the rated output" is reached, the charging operation is stopped. Further, the charge/discharge control unit 123, while performing the discharging operation, the acquired battery remaining capacity is “discharge lower limit battery remaining capacity” or “rated output lower limit battery remaining capacity” of the table 1′ corresponding to the vehicle type. The discharge operation is stopped.
 テーブル1’の値は、電動車両200の車種の特性を考慮した値である。そのため、充放電制御部123は、車載蓄電池210の現状に則した充放電動作を行うことができる。また、充放電制御部123は、車載蓄電池210において充放電が許容された範囲、又は、充放電装置10が定格出力を行うことが可能な範囲を超えないように、充放電動作を制御できる。 The values in Table 1'are values that take into consideration the characteristics of the vehicle type of electric vehicle 200. Therefore, the charging/discharging control unit 123 can perform the charging/discharging operation according to the current state of the in-vehicle storage battery 210. In addition, the charge/discharge control unit 123 can control the charge/discharge operation so as not to exceed the range in which the charge/discharge is allowed in the vehicle-mounted storage battery 210 or the range in which the charge/discharge device 10 can perform the rated output.
 また、車載蓄電池210の現状に則した上限値又は下限値を用いることができるので、充放電動作(放電の場合、自立運転又は系統連系運転)の終了時刻の予測を精度良く行うことが可能となる。 Further, since the upper limit value or the lower limit value according to the current state of the in-vehicle storage battery 210 can be used, it is possible to accurately predict the end time of the charging/discharging operation (in the case of discharging, the independent operation or the grid interconnection operation). Becomes
 さらに、テーブル1’には、車種毎に充電電流上限値及び放電電流上限値が設定されていても構わない。この場合、充放電制御部123は、車両CANデータとして取得した充電電流上限値及び放電電流上限値に代えて、テーブル1’の充電電流上限値及び放電電流上限値を適用する。そのため、車載蓄電池210の現状に則して充放電の電流を調整できる。 Furthermore, the charging current upper limit value and the discharging current upper limit value may be set for each vehicle type in the table 1'. In this case, the charge/discharge control unit 123 applies the charge current upper limit value and the discharge current upper limit value of the table 1'instead of the charge current upper limit value and the discharge current upper limit value acquired as the vehicle CAN data. Therefore, the charging/discharging current can be adjusted according to the current state of the on-vehicle storage battery 210.
 さらに、充放電制御部123は、充放電動作が終了してから、車種に対応するテーブル1’の「インターバル時間」を監視し、当該インターバル時間の経過後に、再度の充放電動作を開始しても構わない。インターバル時間とは、一連の充放電動作が終了してから再度の充放電動作の開始が可能となるまでの時間である。具体的には、ストップボタンが押下されたことに伴う充放電動作の終了処理が完全に終了してから、再度ストップボタンが押下されたときに実際に充放電動作を開始するまでの時間である。 Further, the charging/discharging control unit 123 monitors the “interval time” of the table 1′ corresponding to the vehicle type after the charging/discharging operation ends, and starts the charging/discharging operation again after the lapse of the interval time. I don't care. The interval time is a time from when a series of charging/discharging operations is completed to when another charging/discharging operation can be started again. Specifically, it is the time from when the termination process of the charging/discharging operation accompanying the pressing of the stop button is completely completed until the charging/discharging operation is actually started when the stop button is pressed again. ..
 一般に、インターバル時間は、あらゆる車種の電動車両200が接続されることを想定し、安全性を考慮し、インターバル時間が最も長い車種にあわせて設定される。本実施形態の充放電装置10によれば、車種に応じてインターバル時間を監視できるので、車種毎に適切なインターバル時間経過後に、充放電動作を開始できる。そのため、再度の充放電動作の開始までの時間を短縮できる。また、応動時間(EMSコントローラ300が指令所400から充放電指示を受けて、充放電装置10が、設定された指令値での出力を実際に開始するまでの時間)を短縮できる。 Generally, the interval time is set in accordance with the vehicle type with the longest interval time in consideration of safety, assuming that electric vehicles 200 of all vehicle types are connected. According to the charging/discharging device 10 of the present embodiment, since the interval time can be monitored according to the vehicle type, the charging/discharging operation can be started after the appropriate interval time has elapsed for each vehicle type. Therefore, the time until the start of the charging/discharging operation again can be shortened. Further, the response time (the time until the EMS controller 300 receives the charge/discharge instruction from the command station 400 and the charge/discharge device 10 actually starts the output at the set command value) can be shortened.
 なお、EMSコントローラ300の指示に基づく充放電動作においても適用できる。この場合、充放電制御部123は、車種に対応するテーブル1’の「インターバル時間」が経過する前に、EMSコントローラ300から充放電動作の開始指示を受け付けた場合であっても、当該インターバル時間経過後に、再度の充放電動作を開始できる。また、インターバル時間は、EMSコントローラ300に通知されても構わない。 The charging/discharging operation based on the instruction from the EMS controller 300 can also be applied. In this case, even if the charge/discharge control unit 123 receives a charge/discharge operation start instruction from the EMS controller 300 before the “interval time” of the table 1′ corresponding to the vehicle type has elapsed, the charge/discharge control unit 123 receives the interval time. After the lapse of time, the charging/discharging operation can be started again. Further, the interval time may be notified to the EMS controller 300.
 〔実施形態3〕
 車種推定部120は、車載蓄電池210又は電動車両200に固有の識別情報(例:電動車両200のID(車両ID))の値に基づき、車種を推定しても構わない。この場合、例えばテーブル1に、車両IDが記録されていればよい。
[Embodiment 3]
The vehicle type estimation unit 120 may estimate the vehicle type based on the value of identification information unique to the vehicle-mounted storage battery 210 or the electric vehicle 200 (eg, ID of the electric vehicle 200 (vehicle ID)). In this case, for example, the vehicle ID may be recorded in the table 1.
 また、テーブル1に車両IDが含まれている場合、車両IDが示す電動車両200に対し、事前に電池総容量が実測されてよい。充放電装置10は、当該電池総容量を使用すればよい。但し、電池総容量は、時間の経過に応じて劣化しうる。そこで、所定の期間毎に(例:1年に1度)、上記電池総容量に対するチューニングが行われてもよい。また、上記電池総容量を、テーブル1’に追加してもよい。 If the vehicle ID is included in the table 1, the total battery capacity may be measured in advance for the electric vehicle 200 indicated by the vehicle ID. The charging/discharging device 10 may use the total battery capacity. However, the total battery capacity may deteriorate over time. Therefore, the total battery capacity may be tuned for each predetermined period (eg, once a year). The total battery capacity may be added to the table 1'.
 〔実施形態4〕
 上記実施形態においては、充放電装置10は、制御回路12に車種推定部120、データ換算部121及び/又はデータ生成部122を備えると共に、テーブル1及び1’を記憶していた。しかしながら、車種推定部120、データ換算部121及び/又はデータ生成部122を備え、かつテーブル1及び1’を記憶する装置は、充放電装置10に限られず、充放電装置10と通信可能に接続できる外部装置であっても構わない。
[Embodiment 4]
In the above embodiment, the charging/discharging device 10 includes the vehicle type estimation unit 120, the data conversion unit 121 and/or the data generation unit 122 in the control circuit 12, and stores the tables 1 and 1′. However, the device that includes the vehicle type estimation unit 120, the data conversion unit 121, and/or the data generation unit 122 and stores the tables 1 and 1′ is not limited to the charging/discharging device 10 and is connected to the charging/discharging device 10 so as to communicate with each other. It may be an external device that can be used.
 例えば、充放電システム1は、充放電装置10を管理するHEMS(Home Energy Management System)コントローラ(不図示)を備える。このHEMSコントローラが、車種推定部120、データ換算部121及びデータ生成部122を備え、かつ、テーブル1及び1’を記憶していても構わない。また、充放電システム1では、EMSコントローラ300をHEMSコントローラとして機能させることもできる。 For example, the charging/discharging system 1 includes a HEMS (Home Energy Management System) controller (not shown) that manages the charging/discharging device 10. The HEMS controller may include the vehicle type estimation unit 120, the data conversion unit 121, and the data generation unit 122, and may store the tables 1 and 1'. Further, in the charging/discharging system 1, the EMS controller 300 can also function as a HEMS controller.
 なお、テーブル1及び1’は、充放電装置10又はHEMSコントローラに記憶されている必要は必ずしもない。テーブル1及び1’は、充放電装置10及びHEMSコントローラ以外の他の装置で管理され、必要に応じて充放電装置10及びHEMSコントローラにより取得されればよい。 The tables 1 and 1 ′ do not necessarily have to be stored in the charging/discharging device 10 or the HEMS controller. The tables 1 and 1 ′ may be managed by a device other than the charging/discharging device 10 and the HEMS controller, and may be acquired by the charging/discharging device 10 and the HEMS controller as needed.
 〔ソフトウェアによる実現例〕
 充放電装置10の制御ブロック(特に制御回路12の各部)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
[Example of software implementation]
The control block (particularly each part of the control circuit 12) of the charging/discharging device 10 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be realized by software.
 後者の場合、充放電装置10は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば1つ以上のプロセッサを備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the charging/discharging device 10 includes a computer that executes the instructions of a program that is software that realizes each function. The computer includes, for example, one or more processors and a computer-readable recording medium that stores the program. Then, in the computer, the processor reads the program from the recording medium and executes the program to achieve the object of the present invention. As the processor, for example, a CPU (Central Processing Unit) can be used. As the recording medium, a "non-transitory tangible medium" such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. Further, a RAM (Random Access Memory) for expanding the program may be further provided. The program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program. Note that one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
[Appendix]
The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining the technical means disclosed in the different embodiments Is also included in the technical scope of the present invention.
 10  充放電装置
 12  制御回路(データ処理装置)
 120 車種推定部(入力部、換算部)
 121 データ換算部(換算部)
 122 データ生成部
 200 電動車両
 210 車載蓄電池(車載バッテリ)
 300 EMSコントローラ(上位装置)
 
10 Charge/Discharge Device 12 Control Circuit (Data Processing Device)
120 Vehicle type estimation unit (input unit, conversion unit)
121 Data conversion unit (conversion unit)
122 data generation unit 200 electric vehicle 210 in-vehicle storage battery (in-vehicle battery)
300 EMS controller (upper device)

Claims (19)

  1.  電動車両の車載バッテリと接続され、
     前記電動車両と充放電装置との間の信号又は通信データの授受における特性を取得する取得部と、
     取得した特性に基づき、前記車載バッテリへの充放電動作を制御する前記充放電装置又は上位装置へ向けて、前記充放電動作に関する値を含むデータを生成するデータ生成部と
     を備えるデータ処理装置。
    Connected to the onboard battery of an electric vehicle,
    An acquisition unit that acquires characteristics in transmission and reception of signals or communication data between the electric vehicle and the charging/discharging device,
    A data processing unit that generates data including a value relating to the charge/discharge operation toward the charge/discharge apparatus or a higher-level device that controls the charge/discharge operation of the vehicle-mounted battery based on the acquired characteristics.
  2.  前記充放電装置による前記車載バッテリへの充放電動作を制御する上位装置へ、前記データ生成部によって生成されたデータを供給する、請求項1に記載のデータ処理装置。 The data processing device according to claim 1, wherein the data generated by the data generation unit is supplied to a higher-level device that controls a charging/discharging operation of the on-vehicle battery by the charging/discharging device.
  3.  前記特性に基づいて前記電動車両の車種を推定する車種推定部を備え、
     前記データ生成部は、前記充放電動作に関する値を含むデータを、前記車種推定部が推定した車種に応じて生成する、請求項1又は2に記載のデータ処理装置。
    A vehicle type estimating unit that estimates the vehicle type of the electric vehicle based on the characteristics,
    The data processing device according to claim 1, wherein the data generation unit generates data including a value regarding the charge/discharge operation according to the vehicle type estimated by the vehicle type estimation unit.
  4.  前記車種推定部は、前記車載バッテリに関する複数種類の値を示し、前記電動車両と充放電装置との間の通信により予め定められたフォーマットで取得される一次データが入力される入力部である、請求項3に記載のデータ処理装置。 The vehicle type estimating unit is an input unit that indicates a plurality of types of values related to the vehicle-mounted battery, and that primary data acquired in a predetermined format by communication between the electric vehicle and the charging/discharging device is input. The data processing device according to claim 3.
  5.  前記複数種類の値のうちの少なくとも一部の値、又は前記通信の特性を示す情報を用いて、予め記録されたテーブルの参照処理を行うことにより、前記一次データをより汎用化された二次データへ換算する換算部を備え、
     前記データ生成部は、前記換算部によって換算された二次データに基づき、前記車載バッテリへの充放電動作を制御する上位装置により処理される三次データを生成する、請求項4に記載のデータ処理装置。
    By using at least a part of the values of the plurality of types or information indicating the characteristics of the communication to perform a reference process of a prerecorded table, the secondary data in which the primary data is more generalized Equipped with a conversion unit that converts to data,
    The data processing according to claim 4, wherein the data generation unit generates tertiary data processed by a higher-level device that controls the charging/discharging operation of the vehicle-mounted battery based on the secondary data converted by the conversion unit. apparatus.
  6.  前記テーブルには、前記電動車両の車種毎に定められた値が含まれている、請求項5に記載のデータ処理装置。 The data processing device according to claim 5, wherein the table includes a value determined for each vehicle type of the electric vehicle.
  7.  前記換算部は、前記複数種類の値のうちの少なくとも一部の値として、前記車載バッテリ又は前記電動車両に固有の識別情報以外の値を用いる、請求項5又は6に記載のデータ処理装置。 The data processing device according to claim 5, wherein the conversion unit uses a value other than identification information unique to the on-vehicle battery or the electric vehicle as at least a part of the plurality of types of values.
  8.  前記データ生成部は、前記二次データと、前記車載バッテリの総容量を示す電池総容量とを用いて前記三次データを生成する、請求項5から7のいずれか1項に記載のデータ処理装置。 The data processing device according to claim 5, wherein the data generation unit generates the tertiary data using the secondary data and a battery total capacity indicating a total capacity of the vehicle-mounted battery. ..
  9.  前記データ生成部は、
     前記二次データを参照することにより前記電池総容量が実測値でないと判定した場合、前記実測値を推定し、
     前記実測値を推定した推定値を、前記三次データを生成するための前記電池総容量の値として用いる、請求項8に記載のデータ処理装置。
    The data generator is
    When it is determined that the total battery capacity is not the actual measurement value by referring to the secondary data, the actual measurement value is estimated,
    The data processing device according to claim 8, wherein an estimated value obtained by estimating the actual measurement value is used as a value of the battery total capacity for generating the tertiary data.
  10.  前記入力部は、
     前記換算部により前記二次データへの換算ができない場合、前記一次データに示された前記複数種類の値のうちの少なくとも一部を、前記テーブルに入力し、
     前記複数種類の値のうちの少なくとも一部、又は、前記複数種類の値のうちの少なくとも一部から算出される値を、前記二次データの参考値として、前記テーブルに入力する、請求項5から9の何れか1項に記載のデータ処理装置。
    The input unit is
    When the conversion unit cannot convert to the secondary data, at least a part of the plurality of types of values shown in the primary data is input to the table,
    6. At least a part of the plurality of types of values, or a value calculated from at least a part of the plurality of types of values is input to the table as a reference value of the secondary data. 10. The data processing device according to any one of 1 to 9.
  11.  前記換算部は、所定の条件により行われた前記車載バッテリの充放電動作の結果に基づき、前記参考値を書き換える、請求項10に記載のデータ処理装置。 The data processing device according to claim 10, wherein the conversion unit rewrites the reference value based on a result of charging/discharging operation of the vehicle-mounted battery performed under a predetermined condition.
  12.  前記換算部は、所定の運転モードに基づき前記車載バッテリの充放電動作を行っている間に、前記二次データの値とすべき、前記参考値とは異なる値を取得した場合に、当該値に前記参考値を書き換える、請求項10に記載のデータ処理装置。 When the conversion unit acquires a value different from the reference value, which should be the value of the secondary data, while performing the charging/discharging operation of the vehicle-mounted battery based on a predetermined operation mode, the value is the value. The data processing device according to claim 10, wherein the reference value is rewritten to.
  13.  前記車載バッテリに対して充放電を行う充放電装置であって、
     請求項1から12の何れか1項に記載のデータ処理装置を備える、充放電装置。
    A charging/discharging device for charging/discharging the on-vehicle battery,
    A charging/discharging device comprising the data processing device according to claim 1.
  14.  前記データ処理装置によって生成されたデータを用いて、前記車載バッテリに対する充放電動作を制御する、請求項13に記載の充放電装置。 The charging/discharging device according to claim 13, which controls the charging/discharging operation for the vehicle-mounted battery using the data generated by the data processing device.
  15.  前記車載バッテリに対して充放電を行う充放電装置であって、
     請求項5から12の何れか1項に記載のデータ処理装置を備え、前記データ処理装置により換算された前記二次データを用いて、前記車載バッテリに対する充放電動作を制御する、充放電装置。
    A charging/discharging device for charging/discharging the on-vehicle battery,
    A charging/discharging device comprising the data processing device according to claim 5, wherein the secondary data converted by the data processing device is used to control a charging/discharging operation for the vehicle-mounted battery.
  16.  電動車両の車載バッテリに関し、前記電動車両と充放電装置との間の信号又は通信データの授受における特性を取得する取得部と、
     取得した特性に基づき、前記車載バッテリへの充放電動作を制御する前記充放電装置又は上位装置へ向けて、前記充放電動作に関する値を含むデータを生成する生成部と
     を備え、
     生成したデータに基づいて前記車載バッテリに対する充放電動作を制御する、充放電装置。
    An in-vehicle battery of an electric vehicle, an acquisition unit for acquiring characteristics in transmission and reception of signals or communication data between the electric vehicle and the charging/discharging device,
    A generator that generates data including a value related to the charging/discharging operation toward the charging/discharging device or a higher-level device that controls the charging/discharging operation to the vehicle-mounted battery based on the acquired characteristics;
    A charging/discharging device that controls a charging/discharging operation for the vehicle-mounted battery based on the generated data.
  17.  電動車両の車載バッテリに関する複数種類の値を示し、前記電動車両と充放電装置との間の通信により予め定められたフォーマットで取得される一次データが入力され、
     前記複数種類の値のうちの少なくとも一部の値、又は前記通信の特性を示す情報を用いて、前記電動車両を推定し、前記車載バッテリに対する充放電動作を制御する、充放電装置。
    Shows a plurality of values related to the on-vehicle battery of the electric vehicle, primary data obtained in a predetermined format by communication between the electric vehicle and the charging and discharging device is input,
    A charging/discharging device that estimates the electric vehicle and controls a charging/discharging operation for the vehicle-mounted battery by using at least a part of the plurality of types of values or information indicating the characteristics of the communication.
  18.  電動車両の車載バッテリに関し、前記電動車両と充放電装置との間の信号又は通信データの授受における特性を取得し、
     取得した特性に基づいて、前記車載バッテリへの充放電動作を制御する前記充放電装置又は上位装置へ向けて、前記充放電動作に関する値を含むデータを生成する
     処理を含む、データ処理方法。
    Regarding a vehicle-mounted battery of an electric vehicle, acquiring characteristics in transmission and reception of signals or communication data between the electric vehicle and the charging/discharging device,
    A data processing method comprising: a process of generating data including a value relating to the charge/discharge operation toward the charge/discharge device or a higher-level device that controls the charge/discharge operation of the vehicle-mounted battery based on the acquired characteristics.
  19.  前記車載バッテリに関する複数種類の値を示し、前記電動車両と充放電装置との間の通信により予め定められたフォーマットで取得される一次データを入力し、
     前記複数種類の値のうちの少なくとも一部の値、又は前記通信の特性を示す情報を用いて、予め記録されたテーブルの参照処理を行うことにより、前記一次データをより汎用化された二次データへ換算し、
     換算した二次データに基づき、前記車載バッテリへの充放電動作を制御する上位装置により処理される三次データを生成する
     請求項18に記載のデータ処理方法。
     
    Shows a plurality of types of values for the on-vehicle battery, and inputs primary data acquired in a predetermined format by communication between the electric vehicle and the charging/discharging device,
    By using at least a part of the values of the plurality of types or information indicating the characteristics of the communication to perform a reference process of a prerecorded table, the secondary data in which the primary data is more generalized Converted to data,
    The data processing method according to claim 18, wherein tertiary data processed by a higher-level device that controls the charging/discharging operation of the vehicle-mounted battery is generated based on the converted secondary data.
PCT/JP2019/048542 2018-12-17 2019-12-11 Data processing device, charging/discharging device, and data processing method WO2020129782A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018235822 2018-12-17
JP2018-235822 2018-12-17
JP2019-217180 2019-11-29
JP2019217180A JP6737390B2 (en) 2018-12-17 2019-11-29 Data processing device, charging/discharging device, and data processing method

Publications (1)

Publication Number Publication Date
WO2020129782A1 true WO2020129782A1 (en) 2020-06-25

Family

ID=71100472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048542 WO2020129782A1 (en) 2018-12-17 2019-12-11 Data processing device, charging/discharging device, and data processing method

Country Status (1)

Country Link
WO (1) WO2020129782A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112849302A (en) * 2021-02-08 2021-05-28 江苏惊蛰智能科技有限公司 agv energy management system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082506A1 (en) * 2009-01-19 2010-07-22 株式会社エネルギー応用技術研究所 Direct-current power supply system
WO2012008195A1 (en) * 2010-07-12 2012-01-19 アルプス・グリーンデバイス株式会社 Battery charging system and battery charging method
JP2013046449A (en) * 2011-08-23 2013-03-04 Toyota Industries Corp Charging stand
JP2014204600A (en) * 2013-04-08 2014-10-27 トヨタ自動車株式会社 Power connector and power supply system
JP2017112765A (en) * 2015-12-17 2017-06-22 トヨタ自動車株式会社 Charge control method for on-vehicle storage battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082506A1 (en) * 2009-01-19 2010-07-22 株式会社エネルギー応用技術研究所 Direct-current power supply system
WO2012008195A1 (en) * 2010-07-12 2012-01-19 アルプス・グリーンデバイス株式会社 Battery charging system and battery charging method
JP2013046449A (en) * 2011-08-23 2013-03-04 Toyota Industries Corp Charging stand
JP2014204600A (en) * 2013-04-08 2014-10-27 トヨタ自動車株式会社 Power connector and power supply system
JP2017112765A (en) * 2015-12-17 2017-06-22 トヨタ自動車株式会社 Charge control method for on-vehicle storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112849302A (en) * 2021-02-08 2021-05-28 江苏惊蛰智能科技有限公司 agv energy management system

Similar Documents

Publication Publication Date Title
US9178381B2 (en) Storage battery control device, charging station, and storage battery control method
US8664915B2 (en) Plug-in vehicle
JP5728582B2 (en) Power distribution device
US10814741B2 (en) Power transmission management apparatus and power transmission method
JP6037013B2 (en) CHARGE STATE MANAGEMENT METHOD, CHARGE STATE MANAGEMENT DEVICE, AND PROGRAM
US20160250942A1 (en) Charging state management method, charging state management device, and program
US10464434B2 (en) Energy storage system, transportation unit, and method of controlling energy storage system
EP2797206B1 (en) Power demand regulation system, power demand regulation device, and power demand regulation method
JP6737390B2 (en) Data processing device, charging/discharging device, and data processing method
EP2769871A2 (en) Electric vehicle and method for actuating same
US20100161517A1 (en) Systems and methods for electricity metering for vehicular applications
EP3207615B1 (en) Power path information generation device, method for generating power path information, and computer program
JP2013070507A (en) Power supply system, electric vehicle, and charging adapter
EP3016237A1 (en) Method for controlling charging power, system for controlling charging power, and program
JP5547358B1 (en) Charge / discharge system control method and charge / discharge system
KR102548922B1 (en) Electric vehicle charging system and method
CN104053570A (en) Method and device for optimized recharging of electric battery
EP3179588A1 (en) Dc power transmission device, dc power reception device, and dc power transmission system
CN113165546A (en) Device for charging and discharging a drive accumulator of a hybrid or electric vehicle
WO2020129782A1 (en) Data processing device, charging/discharging device, and data processing method
KR20210082457A (en) How to charge the accumulator battery via the charging terminal
US20220194254A1 (en) Methods and systems for determining electric vehicle electricity consumption cost
US20180375328A1 (en) Method for managing a group of electrical energy consuming devices, and electrical energy management module
CN113934970A (en) Method and device for processing charging remaining time
JP2020074679A (en) Power management method and charge management method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19900213

Country of ref document: EP

Kind code of ref document: A1