WO2020129765A1 - Latex production method, and methods for producing film molded body, dip molded body and adhesive layer-formed substrate using latex obtained using said production method - Google Patents

Latex production method, and methods for producing film molded body, dip molded body and adhesive layer-formed substrate using latex obtained using said production method Download PDF

Info

Publication number
WO2020129765A1
WO2020129765A1 PCT/JP2019/048424 JP2019048424W WO2020129765A1 WO 2020129765 A1 WO2020129765 A1 WO 2020129765A1 JP 2019048424 W JP2019048424 W JP 2019048424W WO 2020129765 A1 WO2020129765 A1 WO 2020129765A1
Authority
WO
WIPO (PCT)
Prior art keywords
latex
stirring
rubber
emulsion
producing
Prior art date
Application number
PCT/JP2019/048424
Other languages
French (fr)
Japanese (ja)
Inventor
小出村 順司
吉隆 佐藤
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020217017675A priority Critical patent/KR20210104694A/en
Priority to BR112021011428-9A priority patent/BR112021011428B1/en
Priority to JP2020561337A priority patent/JP7359160B2/en
Priority to CN201980081519.8A priority patent/CN113166429A/en
Publication of WO2020129765A1 publication Critical patent/WO2020129765A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/07Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • C08L21/02Latex
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J121/00Adhesives based on unspecified rubbers
    • C09J121/02Latex
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition

Definitions

  • the present invention relates to a method for producing a rubber latex, and further relates to a method for producing a film molded body, a dip molded body and an adhesive layer forming base material using the latex obtained by the manufacturing method.
  • a rubber solution in which rubber is dissolved or dispersed in an organic solvent and an emulsifier aqueous solution such as soap water are supplied to an emulsifier at a predetermined ratio and mixed.
  • an emulsifier aqueous solution such as soap water
  • the present invention has been made in view of the above circumstances, it is possible to obtain a good emulsified state in the emulsification step of the raw material, as a result, a latex production method capable of producing a high-quality latex with less aggregates. Is intended to provide.
  • the method for producing a latex according to the present invention includes an emulsification step of emulsifying a rubber composition containing rubber, an organic solvent, water and an emulsifier, and a desolvation step of removing the organic solvent from the emulsion,
  • a method for producing a latex wherein the rubber composition is a stirrer including a container in which a stirrer is stored, and a stirrer rotatably provided in the container.
  • the stirring means is configured to include a flat plate-shaped stirring blade having a stirring surface facing the agitated object substantially at right angles to the rotation direction thereof. It should be noted that all "substantially orthogonal" in the present invention are defined such that the angle formed is usually 85° or more, preferably 89° or more, and usually 95° or less, preferably 91° or less.
  • the rubber composition stored in the container is stirred and mixed by a stirring blade to emulsify the rubber composition.
  • a stirring blade provided in the stirring device of the present invention, it is possible to generate a circulating flow that circulates the agitated material vertically in the container. For this reason, it is possible to effectively disperse the rubber, which has a relatively low specific gravity and floats near the liquid surface and easily stagnates, in the solution, and to obtain an emulsion in which the rubber is dispersed in a homogeneous state. be able to. Therefore, according to the present invention, the rubber composition can be emulsified in a good state in the emulsification step, and as a result, a high-quality latex with few aggregates can be produced.
  • the method for producing a latex according to the present invention a rubber solution in which a rubber and an organic solvent are mixed, and a rough emulsification step of obtaining an emulsion in a rough emulsified state by mixing an emulsifier aqueous solution, and the rough emulsification step.
  • a method for producing a latex comprising: in at least one of the rough emulsifying step and the circulating emulsifying step, the emulsified liquid, a container in which an agitated material is stored, and rotatably in the container.
  • a stirrer provided with the stirrer is provided, and the stirrer is configured to include a plate-shaped stirrer blade having a stirrer surface that is substantially orthogonal to the rotation direction and faces the stirring object. It is characterized by
  • the emulsion in at least one of the coarse emulsification step and the circulation emulsification step, by stirring the emulsion with a stirring blade, the emulsion is circulated up and down in the container as described above to make the rubber homogeneous. It is possible to obtain an emulsion that is dispersed in various states. Therefore, in the present invention, the emulsion can be mixed in a good state in at least one of the rough emulsification step and the circulation emulsification step.
  • the emulsified liquid can be emulsified in a better state by stirring the emulsified liquid with the flat plate stirring blade according to the present invention in both the rough emulsification process and the circulation emulsification process.
  • the emulsion in the desolvation step, is stirred with a container in which a stirred product is stored, and stirring means rotatably provided in the container.
  • the stirring means is configured to include a plate-shaped stirring blade having a stirring surface that is substantially orthogonal to the rotation direction of the apparatus and faces the stirring object.
  • the rubber in the emulsion being desolvated is circulated vertically and stirred to be sufficiently mixed. .. Therefore, the latex obtained after desolvation has a high quality with few aggregates.
  • the stirring blade used in the method for producing a latex according to the present invention from the viewpoint of effectively obtaining the effect of the mixing of the present invention, the area of the stirring surface is the stirring object stored in the container. It is characterized by being 10 to 60% of the cross-sectional area, and in this range, it is preferably 15 to 50%, more preferably 20 to 40%, and further preferably 25 to 35%.
  • the stirring blade according to the present invention is characterized by including a lattice portion having a lattice structure.
  • the rotating lattice part shears and subdivides the rubber in the solution that circulates up and down, and the rubber is entangled and mixed in the fine vortex generated behind the lattice part in the rotation direction. For this reason, miniaturization and mixing of the rubber are promoted, a good emulsified state is easily obtained, and aggregates can be reduced.
  • the rubber solution and the emulsifier aqueous solution may be continuously mixed using the emulsifier.
  • the method for producing a film-molded article of the present invention comprises: adding a cross-linking agent to the latex produced by the method for producing a latex according to the present invention to obtain a latex composition, and using the latex composition, film-forming It is characterized by shaping a body.
  • the method for producing a dip-formed article of the present invention is a dip-formed article obtained by adding a crosslinking agent to the latex produced by the method for producing a latex according to the present invention to obtain a latex composition. Is molded.
  • the method for producing an adhesive layer-forming substrate of the present invention is a latex composition obtained by adding a crosslinking agent to the latex produced by the method for producing a latex according to the present invention, and using the latex composition as an adhesive. It is characterized in that it is formed on the surface of the substrate as a layer.
  • a good emulsified state can be obtained in the step of emulsifying a raw material, and as a result, a latex production method capable of producing a high-quality latex with few aggregates can be provided.
  • FIG. 2 is a schematic view of the latex manufacturing apparatus shown in FIG. 1, in which the piping configuration for the stirring tank for the rubber solution and the emulsifier aqueous solution is changed.
  • (A) is a side sectional view of a tank main body constituting the stirring tank shown in FIG. 1, and (b) is a plan view of a stirring blade and a rotating shaft included in the stirring tank.
  • It is a sectional side view of a stirring tank provided with a stirring blade according to another embodiment of the present invention.
  • FIG. 9 is a side sectional view of a stirring tank including stirring blades according to a modification of the other embodiment shown in FIG. 4. It is a sectional side view which shows the stirring tank provided with the stirring blade which concerns on the comparative example other than this invention. It is a sectional side view which shows the stirring tank provided with the stirring blade which concerns on the other comparative example other than this invention.
  • FIG. 1 schematically shows a latex production apparatus capable of suitably implementing the latex production method according to the embodiment. First, this manufacturing apparatus will be described.
  • the latex manufacturing apparatus shown in FIG. 1 stores a rubber solution tank 1 in which a rubber solution is prepared, an emulsifier tank 2 in which an emulsifier aqueous solution is prepared, a rubber solution and an emulsifier aqueous solution in a stirring tank 30, and the stirring tank 30
  • a stirrer 3 for stirring and mixing the rubber solution and the emulsifier aqueous solution therein, an emulsifier 4 for emulsifying the mixed solution of the rubber solution and the emulsifier aqueous solution, and depressurizing the stirring tank 30 to reduce the organic solvent from the emulsion.
  • a decompression pump 5 for distilling and removing, and a concentrator 6 for concentrating the organic solvent removed from the emulsion in the stirring tank 30 are provided.
  • the rubber solution in the rubber solution tank 1 and the emulsifier aqueous solution in the emulsifier tank 2 are directly supplied into the stirring tank 30 through the supply pipes 11 and 12, respectively.
  • the solution in the agitation tank 30 can be circulated through a circulation pipe 14 which is provided from the bottom to the top of the agitation tank 30.
  • the emulsifying machine 4 is arranged in the middle of the circulation pipe 14.
  • the supply pipes 11 and 12 have a pipe configuration in which they are respectively joined to a joining pipe 13 connected to the agitation tank 30, and the rubber solution and the emulsifier aqueous solution are joined to each other from the joining pipe 13. It may be supplied into the stirring tank 30.
  • a distillation pipe 15 is installed between the stirring tank 30 and the decompression pump 5, and a valve 7 and a condenser 6 are arranged between the stirring tank 30 and the decompression pump 5 of the distillation pipe 15 in this order from the stirring tank 30 side. Has been done.
  • Each of the tanks 1, 2, 30 is equipped with a heating means (not shown) for heating the solution stored therein.
  • the stirring device 3 includes a stirring tank 30 and a stirring means 40.
  • the stirring tank 30 constitutes the container of the present invention.
  • the agitation tank 30 includes a bottomed cylindrical tank body 31 that stores the mixed solution, and a lid 32 that is detachably fixed to an upper opening of the tank body 31 to close the upper opening.
  • the tank body 31 is installed so that its axis extends substantially vertically.
  • the supply pipes 11 and 12, the downstream end of the circulation pipe 14 and the distillation pipe 15 are connected to the lid 32.
  • the circulation pipe 14 has its upstream end connected to the bottom of the tank body 31 and its downstream end connected to the lid 32.
  • the stirring means 40 has a plate-shaped stirring blade 50 provided inside the tank body 31, and a rotating shaft 41 of the stirring blade 50.
  • the rotating shaft 41 is arranged coaxially with the axis of the tank body 31, and is rotatably supported via a bearing (not shown).
  • the rotary shaft 41 is rotatably driven by a drive source (both not shown) connected to the upper end of the rotary shaft 41 via a coupling.
  • the drive source is arranged above the lid 32.
  • the drive source that rotationally drives the rotary shaft 41 may be disposed below the tank body 31 and connected to the lower end of the rotary shaft 41.
  • the stirring blade 50 has a rectangular shape, and is fixed to the rotating shaft 41 so that the rotating shaft 41 passes through the middle portion in the width direction. That is, the stirring blade 50 has a bilaterally symmetrical shape with the rotating shaft 41 as a line of symmetry, and has a blade portion 51a on one of the left and right sides of the rotating shaft 41 and a blade portion 51b on the other side.
  • the stirring blade 50 rotates together with the rotation shaft 41, and the stirring blade 50 is substantially orthogonal to the rotation direction indicated by the arrow as shown in FIG. ) Opposite to the stirring surface 52.
  • the stirring blade 50 has a paddle portion 53 at the bottom thereof, and a lattice portion 54 having a lattice-like structure is integrally formed on the upper side of the paddle portion 53.
  • the paddle portion 53 and the lattice portion 54 have the stirring surface 52.
  • the ratio of the height dimension occupied by the paddle portion 53 and the lattice portion 54 to the total height of the stirring blade 50 is about 60 to 70% in the lattice portion 54, which is larger than that of the paddle portion 53. It is not limited to this.
  • the symbol L indicates the liquid surface of a solution such as an emulsified liquid, and the stirring blade 50 is used in a state where the whole is immersed in the solution.
  • the paddle portion 53 has a shape in which the lower end edge thereof is substantially along the bottom surface inside the tank body 31, and the distance between the lower end edge and the bottom surface inside the tank body 31 is set as narrow as possible. It is set to about 200 mm, preferably about 5 to 100 mm, and most preferably about 10 to 50 mm.
  • the lattice part 54 has a plurality of plate rod-shaped horizontal members 54a and a plurality of plate rod-shaped vertical members 54b orthogonal to these horizontal members 54a. Although the lattice part 54 of this embodiment has two horizontal members 54a and four vertical members 54b, the number and width of each member 54a, 54b are arbitrarily set in consideration of the effect of stirring.
  • the stirring blade 50 stirs a solution such as an emulsion stored in the stirring tank 30 by rotating together with the rotating shaft 41, but the stirring surface 52 faces the solution to be stirred while the stirring blade 50 is rotating. , And the surface that contacts. Therefore, as shown in FIG. 3( b ), the actual stirring surface 52 is composed of one surface (front surface) of the blade portion 51 a on one side and the other surface (back surface) of the blade portion 51 b on the other side. To be done. The total area of these stirring surfaces 52 corresponds to the area of the stirring blade 50 itself.
  • the stirring blade 50 has the area (corresponding to the area of the left and right stirring surfaces 52 shown in FIG. 3B combined) stored in the stirring tank 30.
  • the ratio of such a solution to the cross-sectional area of the solution (hereinafter, sometimes referred to as wetted area ratio) is 10 to 60%. This is a ratio at which the effect of mixing can be effectively obtained, and within the range, 15 to 50% is preferable, 20 to 40% is more preferable, and 25 to 35% is further preferable.
  • baffle plates 90 extending along the axial direction of the stirring tank 30 are arranged on the inner wall surface of the tank body 31 via upper and lower stays 91. These baffle plates 90 are radially installed so that the width direction thereof is substantially parallel to the radial direction of the tank body 31.
  • the area and number of the baffle plates 90 are arbitrarily set in consideration of the effect of stirring and the like.
  • each baffle plate 90 is of course provided with an interval with the stirring blade 50 so as not to hinder the rotation of the stirring blade 50, but the interval is 1 to 200 mm in consideration of the effect of stirring and the like.
  • the thickness is preferably set to about 5 to 100 mm, most preferably about 10 to 50 mm.
  • the stirring means 40 of the present embodiment when the stirring blade 50 rotates in one direction, it is possible to stir the solution such as the emulsion stored in the stirring tank 30 as follows. That is, the solution in the stirring tank 30 is pushed radially outward by the lower paddle portion 53 to collide with the inner wall surface of the tank body 31, and then rises by the action of the baffle plate 90, and then the inner wall surface of the upper portion of the tank body 31. From the center to the center of the rotating shaft 41, then flows downward through the rotating shaft 41 and the lattice portion 54 and returns to the paddle portion 53, thereby generating a vertical circulating flow.
  • the descending rubber is sheared and subdivided by each horizontal member 54a and each vertical member 54b of the lattice portion 54, and further generated rearward in the rotational direction of these members 54a, 54b.
  • the rubber is entrained in the fine vortex that is mixed and mixed.
  • the baffle plate 90 functions to prevent the solution extruded radially outward by the paddle portion 53 from rotating as the stirring blade 50 rotates and to generate an upward flow.
  • the horizontal members 54a and the vertical members 54b of the lattice portion 54 act to subdivide and mix the descending solution as described above.
  • the emulsifier 4 may be any device as long as it can apply strong shearing force to the solution and continuously mix the solution, and is not particularly limited.
  • a plurality of slits may be provided for a stator having a plurality of slits.
  • a rotor-stator type emulsifying machine having a plurality of rotor-stator pairs in which the rotor having the above-mentioned structure rotates relatively is preferably used.
  • rotor-stator emulsifier examples include a trade name “TK Pipeline Homomixer” (manufactured by Primix Co., Ltd.), a trade name “Slusha” (manufactured by Nippon Coke Industry Co., Ltd.), and a trade name “Trigonal” (Japan Use commercially available products such as Coke Kogyo Co., Ltd., product name "Cavitron” (Eurotech Co., Ltd.), product name “Milder” (Pacific Machine Engineering Co., Ltd.), product name “Fine Flow Mill” (Pacific Machine Engineering Co., Ltd.) You can
  • the emulsifying machine 4 it is preferable to use one having a pump function because it can pressure-feed and circulate the solution, but when using one having no pump function, a pressure-feeding pump is provided in the middle of the circulation pipe 14. It can be placed separately.
  • the method for producing a latex according to the present embodiment is a step of emulsifying a rubber composition containing rubber, an organic solvent, water and an emulsifier to obtain an emulsion, and removing the organic solvent from the emulsion obtained in the emulsification step. And a desolvation step.
  • the rubber composition is emulsified by stirring with the stirring blade 50 in the stirring tank 30 of the stirring device 3.
  • the method for producing a latex according to the present embodiment the emulsification step, a rubber solution in which a rubber and an organic solvent are mixed, and a coarse emulsification step of obtaining an emulsion in a coarse emulsified state by mixing an emulsifier aqueous solution, It includes a case where it is divided into a rough emulsified emulsion obtained in the rough emulsification step and a circulation emulsification step in which the emulsion is circulated through the emulsifier 4 and further emulsified. In this case, it further includes a case where the emulsion is stirred using the stirring device 3 in at least one of the rough emulsification step and the circulation emulsification step.
  • a rubber composition containing rubber, an organic solvent, water and an emulsifier is emulsified.
  • these raw materials are a mixture of a rubber and an organic solvent (rubber solution) and a mixture of water and an emulsifier ( Aqueous emulsifier solution).
  • the rubber and the organic solvent are supplied at a predetermined ratio into the rubber solution tank 1 and the rubber is dissolved by stirring and heating to, for example, about 60° C. to prepare a rubber solution. Further, an emulsifier and water are supplied into the emulsifier tank 2 at a predetermined ratio and mixed, and then heated to, for example, about 60° C. to prepare an emulsifier aqueous solution.
  • the rubber solution is supplied directly from the rubber solution tank 1 and the emulsifier aqueous solution from the emulsifier tank 2 directly into the stirring tank 30 through the supply pipes 11 and 12, respectively. Then, in the stirring tank 30, a mixture (rubber composition) of the rubber solution and the aqueous emulsifier solution is stirred and mixed by the stirring blade 50 to obtain an emulsion.
  • the rubber solution prepared in the rubber solution tank 1 and the emulsifier aqueous solution prepared in the emulsifier tank 2 are maintained at a predetermined temperature by heating each tank 1 and 2 as necessary from the viewpoint of favorably emulsifying. Is desirable.
  • the temperatures of the rubber solution and the aqueous emulsifier solution are not particularly limited, but are preferably 20 to 100° C., more preferably 40 to 90° C., and further preferably 60 to 80° C., respectively.
  • the supply ratios of the rubber solution and the emulsifier aqueous solution are not particularly limited, but from the viewpoint of favorably emulsifying the rubber solution and the emulsifier aqueous solution.
  • the volume ratio is preferably 1:2 to 1:0.3, more preferably 1:1.5 to 1:0.5, and further preferably 1:1 to 1:0.7.
  • the emulsification step of the present embodiment includes a case where an emulsion is obtained through a rough emulsification step and a circulating emulsification step.
  • ⁇ Coarse emulsified state refers to the emulsified state of the previous stage where the solubility of rubber is relatively low and it is not sufficiently emulsified.
  • the rubber solution is continuously supplied from the rubber solution tank 1 and the emulsifier aqueous solution is supplied from the emulsifier tank 2 to the stirring tank 30, respectively.
  • the mixture (rubber composition) of the rubber solution and the emulsifier aqueous solution is agitated by the agitating blade 50 to be mixed.
  • the emulsification machine 4 is operated, and the circulation emulsification step of returning the roughened emulsified liquid from the stirring tank 30 to the stirring tank 30 through the circulation pipe 14 is performed at least once.
  • the emulsified liquid is circulated by the emulsifying machine 4 so as to return from the stirring tank 30 to the stirring tank 30 via the circulation pipe 14, and passes through the emulsifying machine 4.
  • the emulsion is continuously emulsified, and the emulsion is stored in the stirring tank 30.
  • the method for producing latex in the present embodiment preferably includes the circulating emulsification step, but does not necessarily include the circulating emulsification step.
  • the operation pattern of stirring the emulsified liquid in the stirring tank 30 is appropriately selected depending on the emulsification situation and the like, and at least one of the rough emulsification step and the circulation emulsification step is selected from the viewpoint of favorably emulsifying.
  • the emulsion may be stirred in step 1, but among these, it is more preferable to stir the emulsion in the circulating emulsification step. However, it is most preferable to stir the emulsion in both the rough emulsification step and the circulation emulsification step.
  • the rubber composition which is a mixture of the rubber solution and the emulsifier aqueous solution, is not stirred by the stirring blade 50 in the stirring tank 30, and the rubber solution and the emulsifier aqueous solution are combined as shown in FIG. 2, for example.
  • the rubber composition may be coarsely emulsified and supplied into the stirring tank 30 by merging in the pipe 13 and continuously mixing only with the emulsifier 8 arranged in the merging pipe 13.
  • Examples of the rubber that can be used in this embodiment include natural rubber and synthetic rubber.
  • the synthetic rubber is not particularly limited, and examples thereof include isoprene rubber (IR), styrene-isoprene-styrene block copolymer (SIS), acrylonitrile butadiene rubber (NBR), chloroprene rubber (CR), styrene butadiene rubber (SBR). , Isobutyene/isoprene rubber (IIR) and the like.
  • natural rubber, isoprene rubber (IR) and styrene-isoprene-styrene block copolymer (SIS) are excellent in mechanical properties such as tensile strength and elongation when latex is used as a dip molded product.
  • Preferred are isoprene rubber (IR) and styrene-isoprene-styrene block copolymer (SIS), and isoprene rubber (IR) is more preferred.
  • the organic solvent for dissolving/dispersing rubber into a rubber solution is not particularly limited, and examples thereof include aromatic hydrocarbon solvents such as benzene, toluene, xylene, and fats such as cyclopentane, cyclopentene, cyclohexane, and cyclohexene. It can be appropriately selected from a cyclic hydrocarbon solvent, an aliphatic hydrocarbon solvent such as butane, pentane, hexane and heptane, or a halogenated hydrocarbon solvent such as methylene chloride, chloroform and ethylene dichloride. ..
  • the content ratio of the rubber in the rubber solution is not particularly limited, but is preferably 3 to 30% by weight, more preferably 5 to 20% by weight, and further preferably 7 to 15% by weight.
  • the emulsifier is not particularly limited, but an anionic emulsifier can be preferably used.
  • the anionic emulsifier include fatty acid salts such as sodium laurate, potassium myristate, sodium palmitate, potassium oleate, sodium linolenate, sodium rosinate, and potassium rosinate, or sodium dodecylbenzenesulfonate and dodecylbenzenesulfone.
  • Alkylbenzenesulfonates such as potassium acid salt, sodium decylbenzenesulfonate, potassium decylbenzenesulfonate, sodium cetylbenzenesulfonate, potassium cetylbenzenesulfonate, etc., or sodium di(2-ethylhexyl)sulfosuccinate, di(2-ethylhexyl) Alkyl sulfosuccinates such as potassium sulfosuccinate and sodium dioctyl sulfosuccinate, alkyl sulfate ester salts such as sodium lauryl sulfate and potassium lauryl sulfate, or polyoxyethylene salts such as sodium polyoxyethylene lauryl ether sulfate and potassium polyoxyethylene lauryl ether sulfate. Examples thereof include ethylene alkyl ether sulfate ester salts and monoalkyl phosphates such as sodium lauryl
  • fatty acid salts, alkylbenzene sulfonates, alkylsulfosuccinates, alkyl sulfate ester salts and polyoxyethylene alkyl ether sulfate ester salts are preferable, fatty acid salts and alkylbenzene sulfonate salts are more preferable, and fatty acid salts are More preferably, sodium rosinate and potassium rosinate are particularly preferable from the viewpoint that generation of aggregates in the latex of the obtained rubber can be prevented more appropriately.
  • the content ratio of the emulsifier in the aqueous solution is not particularly limited, but from the viewpoint of favorably emulsifying, it is preferably 0.1 to 5% by weight, more preferably 0.3 to 3% by weight, and 0.5. It is more preferable that the content is up to 2% by weight.
  • the desolvation step is a step of removing the organic solvent from the emulsion obtained in the emulsification step.
  • a method of desolvation a method capable of controlling the content of the organic solvent in the emulsion to be 500 ppm by weight or less is preferable, and for example, a method such as vacuum distillation, atmospheric distillation, steam distillation, and centrifugation is adopted. can do.
  • vacuum distillation is preferable from the viewpoint of being able to remove the organic solvent appropriately and efficiently.
  • the decompression pump 5 and the concentrator 6 are used to depressurize the emulsified liquid obtained in the emulsification step and stored in the stirring tank 30 to desolvate it. That is, in the desolvation step of the present embodiment, the valve 7 is opened and the decompression pump 5 is operated from a state where the emulsion in the stirring tank 30 is heated to, for example, about 80° C., and the inside of the stirring tank 30 is, for example, less than 700 mmHg. Depressurize to. As a result, the organic solvent is distilled from the emulsion in the stirring tank 30, and the organic solvent is discharged from the stirring tank 30 to the distillation pipe 15, concentrated by the concentrator 6, and collected.
  • the desolvation step is performed while stirring the emulsion in the stirring tank 30 with the stirring blades 50, since aggregates existing in the latex obtained after desolvation tend to be reduced.
  • the pressure in the stirring tank 30 is preferably reduced to less than 700 mmHg. If the pressure in the stirring tank 30 is high in the desolvation step, the desolvation step may take a long time, and if the pressure is low, the emulsion may foam excessively. Therefore, from the viewpoint of suppressing the occurrence of these problems, the pressure in the stirring tank 30 in the desolvation step is preferably 1 to 600 mmHg, more preferably 10 to 500 mmHg, and further preferably 100 to 400 mmHg. ..
  • the temperature of the emulsion in the stirring tank 30 in the desolvation step in the present embodiment is preferably heated to a temperature equal to or higher than the boiling point of the organic solvent contained in the emulsion, but specifically, It is more preferable to control the temperature to be 5° C. or higher than the boiling point, and it is more preferable to control the temperature to be 10° C. or higher.
  • the upper limit of the temperature of the emulsion in the stirring tank 30 in the solvent removal step is not particularly limited, but it is preferably less than 100°C.
  • the emulsified liquid from which the organic solvent has been removed is transferred to a centrifuge and centrifuged to obtain a light liquid with an increased solid content concentration as a rubber latex. ..
  • a pH adjusting agent is added in advance to the emulsion from which the organic solvent has been removed, and the pH is set to 7 or higher, preferably 9 or higher.
  • Examples of the pH adjusting agent include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, and alkali metal hydrogen carbonates such as sodium hydrogen carbonate. Examples thereof include ammonia, organic amine compounds such as trimethylamine and triethanolamine, and alkali metal hydroxides and ammonia are preferable.
  • the rubber latex obtained in the present embodiment is added with an antifoaming agent, an antiseptic, a chelating agent, an oxygen scavenger, a dispersant, an antiaging agent or the like which is blended in the latex field. You may mix
  • the above is the method for producing latex according to the present embodiment.
  • a dip-formed article such as rubber gloves can be obtained via the latex composition.
  • the dip molded body is an aspect of the film molded body according to the present invention.
  • an adhesive layer-forming substrate can be obtained using the latex produced by the production method according to this embodiment.
  • the adhesive layer-forming base material refers to a composite material in which a latex composition is formed as an adhesive layer on the surface of the base material.
  • the following are specific examples of the method for producing the latex composition, the dip molded product, and the adhesive layer-forming substrate.
  • the latex composition can be obtained by adding a crosslinking agent to the latex.
  • cross-linking agent for example, sulfur powder, sulfur flower, precipitated sulfur, colloidal sulfur, surface-treated sulfur, sulfur such as insoluble sulfur, or sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, caprolactam disulfide, phosphorus-containing phosphorus.
  • sulfur-containing compounds such as polysulfide, polymeric polysulfide, and 2-(4′-morpholinodithio)benzothiazole. Of these, sulfur is preferably used.
  • the crosslinking agent may be used alone or in combination of two or more.
  • the content of the cross-linking agent is not particularly limited, but is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 3 parts by weight with respect to 100 parts by weight of the rubber contained in the rubber latex. ..
  • the content of the cross-linking agent is not particularly limited, but is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 3 parts by weight with respect to 100 parts by weight of the rubber contained in the rubber latex. ..
  • the latex composition preferably further contains a crosslinking accelerator.
  • a crosslinking accelerator those usually used in dip molding can be used, and examples thereof include diethyldithiocarbamic acid, dibutyldithiocarbamic acid, di-2-ethylhexyldithiocarbamic acid, dicyclohexyldithiocarbamic acid, diphenyldithiocarbamic acid, dibenzyldithiocarbamic acid.
  • Dithiocarbamic acids and their zinc salts or 2-mercaptobenzothiazole, 2-mercaptobenzothiazole zinc, 2-mercaptothiazoline, dibenzothiazyl disulfide, 2-(2,4-dinitrophenylthio)benzothiazole, 2 -(N,N-diethylthiocarbaylthio)benzothiazole, 2-(2,6-dimethyl-4-morpholinothio)benzothiazole, 2-(4'-morpholinodithio)benzothiazole, 4-morphonylyl-2-benzothiazyl Examples thereof include disulfide and 1,3-bis(2-benzothiazyl.mercaptomethyl)urea, and zinc diethyldithiocarbamate, zinc didibutyldithiocarbamate, and zinc 2-mercaptobenzothiazole are preferable.
  • the crosslinking accelerator may be used alone or in combination of two or more.
  • the content of the crosslinking accelerator is preferably 0.05 to 5 parts by weight, more preferably 0.1 to 2 parts by weight, based on 100 parts by weight of the rubber contained in the rubber latex.
  • the latex composition further contains zinc oxide.
  • the content of zinc oxide is not particularly limited, but is preferably 0.1 to 5 parts by weight, and more preferably 0.2 to 2 parts by weight with respect to 100 parts by weight of the rubber contained in the rubber latex. By setting the content of zinc oxide in the above range, it is possible to further improve the tensile strength of the obtained dip-molded article while improving the emulsion stability.
  • the latex composition further requires an antioxidant, a dispersant, a reinforcing agent such as carbon black, silica, talc, a filler such as calcium carbonate or clay, an ultraviolet absorber, a compounding agent such as a plasticizer, and the like. Can be blended accordingly.
  • antiaging agents include 2,6-di-4-methylphenol, 2,6-di-t-butylphenol, butylhydroxyanisole, 2,6-di-t-butyl- ⁇ -dimethylamino-p-cresol. , Octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, styrenated phenol, 2,2'-methylene-bis(6- ⁇ -methyl-benzyl-p-cresol), 4 ,4'-methylenebis(2,6-di-t-butylphenol), 2,2'-methylene-bis(4-methyl-6-t-butylphenol), alkylated bisphenol, butyl of p-cresol and dicyclopentadiene Sulfur atom-free phenolic antioxidants such as chlorinated reaction products, 2,2'-thiobis-(4-methyl-6-t-butylphenol), 4,4'-thiobis-(6-t-butyl)
  • the content of the antioxidant is preferably 0.05 to 10 parts by weight, and more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the rubber contained in the rubber latex.
  • the method for preparing the latex composition is not particularly limited, but for example, using a dispersing machine such as a ball mill, a kneader, or a disperser, a rubber latex is mixed with a crosslinking agent, and various compounding agents to be mixed as necessary.
  • a dispersing machine such as a ball mill, a kneader, or a disperser
  • a rubber latex is mixed with a crosslinking agent, and various compounding agents to be mixed as necessary.
  • Examples of the method include a method of preparing an aqueous dispersion of compounding ingredients other than the rubber latex using the above disperser, and then mixing the aqueous dispersion with the rubber latex.
  • the latex composition preferably has a pH of 7 or more, more preferably in the range of 7 to 13, and further preferably in the range of 8 to 12. Further, the solid content concentration of the latex composition is preferably in the range of 15 to 65% by weight.
  • the latex composition is preferably aged (pre-crosslinked) before being subjected to dip molding from the viewpoint of further enhancing the mechanical properties of the obtained dip molded product.
  • the time for pre-crosslinking is not particularly limited and depends on the temperature of pre-crosslinking, but is preferably 1 to 14 days, more preferably 1 to 7 days.
  • the temperature of pre-crosslinking is preferably 20 to 40°C.
  • pre-crosslinking After pre-crosslinking, it is preferable to store at a temperature of 10 to 30° C. until it is subjected to dip molding. This is because the tensile strength of the obtained dip-molded product may decrease if it is stored at a temperature higher than this.
  • the dip-molded article can be obtained by dip-molding the above latex composition.
  • Dip molding is a molding method in which the latex composition is deposited on the surface of the mold immersed in the latex composition, then the mold is pulled out of the latex composition, and then the latex composition deposited on the surface of the mold is dried. ..
  • the mold may be preheated before being immersed in the latex composition.
  • a coagulant can be used if necessary before the mold is dipped in the latex composition or after the mold is pulled up from the latex composition.
  • the method of using the coagulant include a method of immersing the mold in a coagulant solution and then immersing the mold in a latex composition (anode coagulation dipping method), or a method in which the mold is first immersed in the latex composition. After that, there is a method of immersing the mold in a coagulant solution (Teag coagulation dipping method) and the like, but the anode coagulation dipping method is preferable from the viewpoint that a dip molded body with less thickness unevenness can be obtained.
  • the coagulant include metal halides such as barium chloride, calcium chloride, magnesium chloride, zinc chloride and aluminum chloride, nitrates such as barium nitrate, calcium nitrate and zinc nitrate, barium acetate, calcium acetate and zinc acetate.
  • metal halides such as barium chloride, calcium chloride, magnesium chloride, zinc chloride and aluminum chloride
  • nitrates such as barium nitrate, calcium nitrate and zinc nitrate, barium acetate, calcium acetate and zinc acetate.
  • water-soluble polyvalent metal salts such as calcium sulfate, magnesium sulfate, and aluminum sulfate.
  • calcium salt is preferable, and calcium nitrate is more preferable.
  • These water-soluble polyvalent metal salts can be used alone or in combination of two or more.
  • the coagulant is preferably used in the form of an aqueous solution.
  • This aqueous solution may further contain a water-soluble organic solvent such as methanol or ethanol, or a nonionic surfactant.
  • concentration of the coagulant varies depending on the type of the water-soluble polyvalent metal salt, it is preferably 5 to 50% by weight, more preferably 10 to 30% by weight.
  • heating is usually performed to dry the deposit formed into a film on the mold.
  • the drying conditions may be appropriately selected.
  • the deposit formed as a film on the mold is cross-linked.
  • the heating conditions at the time of crosslinking are not particularly limited, but the heating temperature is preferably 60 to 150°C, more preferably 100 to 130°C.
  • the heating time is preferably 10 to 120 minutes.
  • the heating method is not particularly limited, and examples thereof include a method of heating by applying warm air in an oven and a method of heating by irradiating infrared rays.
  • the mold before or after heating the mold on which the latex composition is deposited, the mold should be washed with water or warm water to remove water-soluble impurities (for example, excess surfactant or coagulant). Is preferred.
  • warm water the temperature of the warm water is preferably 40 to 80°C, more preferably 50 to 70°C.
  • the dip-molded product is removed from the mold.
  • the desorption method a method of peeling from the mold by hand, a method of peeling from the mold by water pressure or compressed air pressure, and the like are adopted. As long as the dip-molded article during crosslinking has sufficient strength for desorption, it may be desorbed during the crosslinking and then the subsequent crosslinking may be continued.
  • the dip molded body for example, rubber gloves are particularly preferably manufactured.
  • organic particles such as talc, calcium carbonate, etc., or starch particles, etc. are used to prevent the dip molded products from sticking to each other at their contact surfaces and to improve the slippage when they are put on and taken off from the hand.
  • Fine particles may be dispersed on the surface of the glove, an elastomer layer containing fine particles may be formed on the surface of the glove, or the surface layer of the glove may be chlorinated.
  • the dip-molded article may be a medical item such as a baby bottle nipple, a dropper, a tube, a water pillow, a balloon sack, a catheter, a condom, a toy such as a balloon, a doll, a ball, or It can be applied to industrial products such as pressure molding bags and gas storage bags, and various rubber moldings such as finger cots.
  • the thickness of the dip molded body depends on the application and product, and is molded, for example, with a thickness of about 0.03 to 0.50 mm.
  • the adhesive layer-forming substrate according to the present embodiment is obtained by forming an adhesive layer formed using the above latex composition on the surface of the substrate.
  • the base material in the present embodiment is not particularly limited, but a fiber base material can be used, for example.
  • the type of fibers constituting the fiber base material is not particularly limited, and examples thereof include vinylon fibers, polyester fibers, nylon, polyamide fibers such as aramid (aromatic polyamide), glass fibers, cotton, rayon and the like. These can be appropriately selected according to the application.
  • the shape of the fiber base material is not particularly limited, but examples thereof include staples, filaments, cords, ropes, woven fabrics (sailcloths, etc.), etc., and can be appropriately selected according to the application.
  • the adhesive layer-forming substrate can be used as a substrate-rubber composite by adhering it to rubber via the adhesive layer.
  • the base material-rubber composite is not particularly limited, but for example, a rubber toothed belt with a core wire using a cord-shaped fiber base material or a base cloth-shaped fiber base material such as canvas is used. Examples thereof include rubber toothed belts.
  • the method for obtaining the base material-rubber composite is not particularly limited, but for example, the latex composition is adhered to the base material by dipping treatment or the like to obtain an adhesive layer forming base material, and then the adhesive layer forming base material. Is placed on rubber, and heating and pressurizing it.
  • the pressurization in the above method can be performed using a press molding machine, a metal roll, an injection molding machine, or the like.
  • the pressure applied is preferably 0.5 to 20 MPa, more preferably 2 to 10 MPa.
  • the heating temperature is preferably 130 to 300°C, more preferably 150 to 250°C.
  • the heating and pressurizing time in the above method is preferably 1 to 180 minutes, more preferably 5 to 120 minutes.
  • the molding of rubber and the adhesion of the adhesive layer-forming base material to the rubber can be performed simultaneously.
  • a base material-rubber-base material composite material can be mentioned as one embodiment of the base material-rubber composite material.
  • the base material-rubber-base material composite can be formed, for example, by combining a base material (which may be a composite of two or more kinds of base materials) and a base material-rubber composite. Specifically, a core wire as a base material, rubber and a base cloth as a base material are stacked (at this time, a latex composition is appropriately adhered to the core wire and the base cloth as an adhesive layer forming base material), A base material-rubber-base material composite can be obtained by applying pressure while heating.
  • the base material-rubber composite obtained by using the adhesive layer-forming base material according to the present embodiment is excellent in mechanical strength, abrasion resistance and water resistance. Therefore, the flat belt, V belt, V It can be suitably used as a belt such as a ribbed belt, a round belt, a square belt, and a toothed belt. Further, the base material-rubber composite obtained by using the adhesive layer-forming base material according to the present embodiment has excellent oil resistance and can be suitably used as an in-oil belt. Further, the base material-rubber composite obtained by using the adhesive layer-forming base material according to the present embodiment can be suitably used for hoses, tubes, diaphragms and the like.
  • Examples of the hose include a single tube rubber hose, a multi-layer rubber hose, a braided reinforcing hose, and a cloth wound reinforcing hose.
  • Examples of the diaphragm include a flat diaphragm and a rolling diaphragm.
  • the base material-rubber composite obtained using the adhesive layer-forming base material according to the present embodiment can be used as an industrial product such as a seal or a rubber roll, in addition to the above-mentioned applications.
  • the seal include a rotating part, a swinging part, a reciprocating part, and a fixed part seal.
  • the moving part seal include an oil seal, a piston seal, a mechanical seal, a boot, a dust cover, a diaphragm, an accumulator and the like.
  • the fixed part seal include an O-ring and various gaskets.
  • a roll that is a part of OA equipment such as a printing machine or a copying machine, a fiber processing roll such as a drawing roll for spinning, a draft roll for spinning, or a steelmaking roll such as a bridle roll, a snubber roll, or a steering roll.
  • a fiber processing roll such as a drawing roll for spinning, a draft roll for spinning, or a steelmaking roll such as a bridle roll, a snubber roll, or a steering roll.
  • the rubber composition (rubber solution+emulsifier aqueous solution) stored in the stirring tank 30 of the stirring device 3 in the emulsification step of the raw material including the rough emulsification step is performed by the flat stirring blade 50. Stir to mix.
  • the stirring blade 50 With the stirring blade 50 according to the present embodiment, it is possible to generate a circulation flow that circulates the emulsion in the vertical direction as described above. Therefore, it is possible to effectively disperse the rubber that has a relatively low specific gravity and floats near the liquid surface of the solution and easily stagnates in the solution in the vertical direction. Can be obtained. Therefore, since the rubber composition can be emulsified in a good state in the emulsification step, it is possible to produce a high-quality latex with few aggregates.
  • the rubber in the solution that circulates vertically is sheared and subdivided by the lattice portion 54 having the lattice structure, and the fine particles generated behind the lattice portion 54 in the rotation direction.
  • the rubber is caught in the vortex and mixed. For this reason, miniaturization and mixing of the rubber are promoted, a good emulsified state is easily obtained, and aggregates can be reduced.
  • the stirring blade 50 of the present embodiment since the lower end portion of the paddle portion 53 is close to the bottom portion of the stirring tank 30, the solution can be put on the circulation flow without being left at the bottom portion and stirred. Therefore, the upper and lower circulating flows are appropriately generated, the rubber is dispersed, and a good emulsion can be obtained.
  • the baffle plate 90 acts to suppress the solution extruded radially outward by the paddle portion 53 from rotating with the rotation of the stirring blade 50 and to generate an upward flow. Also by this, the upper and lower circulating flows are appropriately generated, the rubber is dispersed, and a good emulsion can be obtained.
  • the emulsified liquid is stirred by the stirring blade 50, so that the rubber in the emulsified liquid being desolvated is circulated up and down to be agitated. Because of sufficient mixing, the latex obtained after desolvation will be of high quality with few aggregates.
  • the emulsification process including the rough emulsification process and the desolvation process are performed by one stirring tank 30, but two stirring tanks 30 are prepared and the emulsification process and the desolvation process are different.
  • the stirring tank 30 may be used.
  • the stirring blade 50 does not perform stirring in the desolvation step
  • the emulsified liquid obtained in the stirring tank 30 may be transferred to a tank dedicated to desolvation to perform the desolvation step.
  • FIG. 4 shows a stirring tank (container) 30B including a stirring blade 60 according to another embodiment.
  • the stirring blade 60 has a flat plate shape and a rectangular shape as a whole, and has a bilaterally symmetrical shape with the rotating shaft 41 as a symmetry line.
  • the stirring blade 60 has a lower rectangular paddle portion 63 and right and left rectangular blade portions 64a and 64b extending upward from the paddle portion 63.
  • the rotating shaft 41 is fixed to the paddle part 63 so as to penetrate the center of the paddle part 63 in the width direction, and the stirring blade 60 rotates together with the rotating shaft 41.
  • the left and right wing portions 64a, 64b each have an inner side (rotating shaft 41 side) edge portion 65, and these edge portions 65 are formed parallel to the rotating shaft 41.
  • the left and right wings 64a and 64b each have an outer edge portion 66, and these edge portions 66 are formed in a sawtooth shape in which irregularities are repeated.
  • a predetermined gap is formed between the inner edge portion 65 and the rotary shaft 41, and between the outer edge portion 66 and the baffle plate 90.
  • the ratio of the height dimension occupied by the paddle portion 63 and each blade portion 64a, 64b to the entire height of the stirring blade 60 is about 60 to 70% for each blade portion 64a, 64b, which is larger than the paddle portion 63. However, it is not limited to this.
  • the stirring blade 60 has a stirring surface 62 that is substantially orthogonal to the rotation direction and faces a solution such as an emulsion stored in the stirring tank 30B.
  • the area of the stirring surface 62 corresponds to the area of the stirring blade 60, and the stirring blade 60 has a liquid contact area ratio of the stirring surface 62, that is, an area of the stirring surface 62 with respect to a cross-sectional area of the solution stored in the stirring tank 30B.
  • the ratio is configured to be 10 to 60%.
  • FIG. 5 shows a stirring tank (container) 30C equipped with a stirring blade 70.
  • the stirring blade 70 has the same shape as the stirring blade 60 shown in FIG. 4, but is a modification in which the size thereof is changed. Therefore, the same components as those of the stirring blade 60 are designated by the same reference numerals, and the description thereof will be omitted.
  • the stirring blade 70 of the modified example shown in FIG. 5 is larger in area than the stirring blade 60 shown in FIG. 4, that is, the area of the stirring surface 72 is, for example, about 10 to 30%.
  • the liquid contact area ratio of the stirring surface 62 of the stirring blade 60 is about 15%
  • the liquid contact area ratio of the stirring surface 72 of the stirring blade 70 is about 45%.
  • the flat plate-shaped stirring blades 60 and 70 as in the case of the stirring blades 50, it is possible to generate a circulating flow that circulates vertically in the solution to be stirred, and has a relatively high specific gravity. It is possible to circulate rubber, which floats near the liquid surface of the solution and easily stagnates, up and down to disperse it in a homogeneous state. Therefore, it is possible to produce a high-quality latex with few aggregates.
  • Example 1 (Production of rubber solution) After storing 85 parts of cyclohexane (organic solvent) in the rubber solution tank 1 shown in FIG. 1, an isoprene polymer having a weight average molecular weight of 1,300,000 (synthetic rubber: trade name “NIPOL IR2200L”, Nippon Zeon ( Co., Ltd., isoprene homopolymer, cis bond unit amount 98%) 15 parts, and the temperature is raised to 60° C. with stirring in the rubber solution tank 1 to dissolve, and a cyclohexane solution of the isoprene polymer is obtained. A rubber solution (a) was prepared.
  • a styrene-maleic acid mono-sec-butyl ester-maleic acid monomethyl ester polymer (trade name: Scripset550, manufactured by Hercules) was neutralized with 100% of the carboxyl groups in the polymer using sodium hydroxide. Then, a sodium salt aqueous solution (concentration: 10% by weight) as a dispersant (f) was prepared.
  • the dispersant (f) was added to 100 parts of the synthetic polyisoprene latex (e) so as to be 0.6 part in terms of solid content and mixed, and the mixture was stirred while stirring in the mixture.
  • An aqueous dispersion of these compounding agents was added so that the amount was 0.35 part and the mercaptobenzothiazole zinc salt was 0.3 part.
  • aqueous potassium hydroxide solution was further added to adjust the pH to 10.5, and then distilled water was added so that the solid content concentration became 40% to obtain a latex composition (g) for dip molding. It was Then, the obtained latex composition (g) was aged at 25° C. for 48 hours.
  • the glass mold coated with the coagulant was dried in an oven at 70°C. Then, the glass mold coated with the coagulant was taken out of the oven, immersed in the latex composition (g) at 25° C. for 10 seconds, taken out, and dried at room temperature for 60 minutes. As a result, the synthetic polyisoprene latex (e) was formed into a film on the surface of the glass mold.
  • the glass mold having the film-like synthetic polyisoprene latex (e) formed on the surface thereof is placed in an oven, heated from 50° C. to 60° C. for 25 minutes to be pre-dried, and then placed in an oven at 70° C. for 10 minutes. Let stand for a minute to dry further. Then, the glass mold was immersed in warm water of 60° C. for 2 minutes and then air-dried at room temperature for 10 minutes.
  • the glass mold coated with the film-shaped synthetic polyisoprene latex (e) was placed in an oven and vulcanized at 100° C. for 60 minutes.
  • the glass mold covered with the vulcanized film was cooled to room temperature, talc was sprinkled on the surface, and then the film was peeled from the glass mold to obtain a dip-molded article made of synthetic polyisoprene latex.
  • Example 2 Dip in the same manner as in Example 1 except that the circulation emulsification step was performed using the stirring tank 30B equipped with the stirring blade 60 (wetted area ratio: 15%) shown in FIG. 4 instead of the stirring blade 50. A molded body was obtained.
  • Example 3 Dip in the same manner as in Example 1 except that the circulating emulsification step was performed using the stirring tank 30C equipped with the stirring blade 70 (wetted area ratio: 45%) shown in FIG. 5 instead of the stirring blade 50. A molded body was obtained.
  • Example 4 Dip in the same manner as in Example 1 except that the desolvation step was performed using a stirring tank 30B equipped with a stirring blade 60 (wetted area ratio: 15%) shown in FIG. 4 instead of the stirring blade 50. A molded body was obtained with.
  • Example 5 Example 1 except that the desolvation step was performed using a stirring tank 100 equipped with a two-stage paddle type stirring blade 110 (wetted area ratio: 5%) shown in FIG. 6 instead of the stirring blade 50. Similarly, a dip molded body was obtained.
  • the stirring tank 100 shown in FIG. 6 includes a tank body 101 and a lid (not shown), and also includes a plurality of baffle plates 109 similar to the baffle plate 90 described above.
  • Two stirring blades 110 are arranged in the tank main body 101, and these stirring blades 110 are fixed to the rotating shaft 104 at predetermined intervals in the vertical direction.
  • the stirring blade 110 is a stirring blade according to a comparative example other than the present invention, has a plate shape extending in the left-right direction from the rotating shaft 104, is inclined at approximately 45° with respect to the rotation direction, and the inclination direction is right and left. It has a staggered shape.
  • the liquid contact area ratio: 5% is the sum of the liquid contact area ratios of the two upper and lower stirring blades 110.
  • the stirring tank 200 shown in FIG. 7 includes a tank main body 201 and a lid not shown.
  • the stirring blade 210 is arranged in the tank body 201 so as to be rotatable by the rotating shaft 204.
  • the stirring blade 210 is a stirring blade according to a comparative example other than the present invention, in which helical ribbon blades 211 composed of two strip-shaped plates are combined so as to be point-symmetrical when viewed in the axial direction around the rotation shaft 204. It is composed.
  • the two helical ribbon wings 211 are connected to each other by a bottom frame 221 to which the lower end of the rotary shaft 204 is fixed and a pair of side frames 222.
  • the agitating surface of the helical ribbon blade 211 forms a spiral surface and is inclined with respect to the rotation direction.
  • the liquid contact area ratio: 15% is the sum of the liquid contact area ratios of the two helical ribbon blades 211.
  • Example 1 The manufacturing methods of Examples 1 to 5 and Comparative Examples 1 and 2 are summarized in Table 1, and the evaluation is also shown in Table 1.
  • Table 1 “floating matter” indicates the result of observing the state of the floating matter when the emulsion was left standing in the stirring tank for 20 minutes after the circulation emulsification was completed and the liquid level was observed.
  • Table 1 “aggregate” indicates the amount of the rubber component remaining in the emulsion after the desolvation step.
  • the mechanical strength is the mechanical strength of the obtained dip-molded article, and was measured as follows.
  • the dip molding was left in a constant temperature and humidity room at 23°C and 50% relative humidity for 24 hours or more, then punched out with a dumbbell (product name "Die C", dumbbell company) and measured.
  • a test piece was prepared. Then, the test piece was pulled at a tensile speed of 500 mm/min with a Tensilon universal tester (trade name "RTG-1210", manufactured by A&D Co.), tensile strength (unit: MPa) immediately before breaking, tensile elongation (unit: immediately before breaking) :%) and tear strength (unit: N/mm) were measured.
  • Example 5 did not use a plate-shaped stirring blade in the circulation emulsification step, so that the amount of aggregates was slightly larger than that of Examples 1 to 4, and therefore plate-shaped stirring was performed in both the emulsification step and the desolvation step. It is preferable to use wings.
  • Examples 1 to 5 are superior to Comparative Examples 1 and 2, and the dip-molded article produced from the latex produced by the present invention has excellent strength. Was confirmed.
  • the present invention is useful as a latex production method capable of improving the quality because a good emulsified state can be obtained in the emulsification step of a raw material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

In order to provide a latex production method in which a good emulsified state can be attained in a raw material emulsification step and a high quality latex having few aggregates can therefore be produced, the present invention is a method for producing a latex, the method comprising: an emulsification step for emulsifying a rubber composition that contains a rubber, an organic solvent, water and an emulsifier so as to obtain an emulsified liquid; and a solvent removal step for removing the organic solvent from the emulsified liquid. In the emulsification step, the rubber composition is stirred in a stirring apparatus (3) provided with: a stirring tank (30) in which a stirred object is stored; and a stirring means (40) provided in a rotatable manner in the stirring tank (30). The stirring means (40) includes a flat plate-like stirring blade (50) having a stirring face (52) that is substantially perpendicular to the direction of rotation of the stirring means.

Description

ラテックスの製造方法および該製造方法で得られたラテックスを用いた膜成形体、ディップ成形体および接着剤層形成基材の製造方法Method for producing latex and method for producing film molded article, dip molded article and adhesive layer forming substrate using latex obtained by the method
 本発明は、ゴムのラテックスの製造方法に関し、さらに該製造方法で得られたラテックスを用いた膜成形体、ディップ成形体および接着剤層形成基材の製造方法に関する。 The present invention relates to a method for producing a rubber latex, and further relates to a method for producing a film molded body, a dip molded body and an adhesive layer forming base material using the latex obtained by the manufacturing method.
 従来、天然ゴムや合成ゴムのラテックスを含有するラテックス組成物をディップ成形して、哺乳瓶用乳首、風船、手袋、サック、カテーテルのバルーン等の人体と接触して使用されるディップ成形体が製造されている。特にイソプレン重合体等の合成ゴムは、人体にアレルギー症状を引き起こす蛋白質を含有しないことから、生体粘膜や臓器等と直接接触するようなディップ成形体用のラテックスの原料として有用とされている。 Conventionally, dip molding of a latex composition containing a latex of natural rubber or synthetic rubber to produce a dip molded body used in contact with a human body such as a nipple for baby bottles, balloons, gloves, sacks, and balloons of catheters. Has been done. In particular, synthetic rubber such as isoprene polymer does not contain a protein that causes allergic symptoms in the human body, and is therefore considered to be useful as a raw material for a latex for a dip-molded product which comes into direct contact with a living mucous membrane or an organ.
 天然ゴムや合成ゴムのラテックスの製造方法としては、有機溶媒中にゴムを溶解または分散させたゴム溶液と、石鹸水等の乳化剤水溶液とを所定の比率で乳化機に供給して混合することにより乳化させ(乳化工程)、この後、得られた乳化液中の有機溶媒を除去する(脱溶媒工程)といった製造方法が知られている(例えば、特許文献1等参照)。 As a method for producing a latex of natural rubber or synthetic rubber, a rubber solution in which rubber is dissolved or dispersed in an organic solvent and an emulsifier aqueous solution such as soap water are supplied to an emulsifier at a predetermined ratio and mixed. There is known a production method of emulsifying (emulsifying step) and thereafter removing an organic solvent in the obtained emulsion (desolvation step) (see, for example, Patent Document 1).
特許第5260738号公報Japanese Patent No. 5260738
 ラテックスを製造するにあたっては、乳化工程において固形分であるゴムが微細化し、かつ微細化したゴムが均質な状態に分散した良好な乳化状態を得ることが肝要であり、良好な乳化がなされることにより、凝集物の少ない高品質のラテックスを得ることができる。しかし、従来の乳化機で原料を乳化した場合、乳化が不十分で比較的粗大な粒度のゴムが残存し、さらにその粗大なゴムに起因して脱溶媒工程後のラテックスに存在する凝集物の量が多くなる場合があった。 In producing a latex, it is important to obtain a good emulsified state in which the rubber that is a solid content is finely divided in the emulsification step, and the finely divided rubber is dispersed in a homogeneous state, so that good emulsification is performed. This makes it possible to obtain a high-quality latex with few aggregates. However, when emulsifying the raw material with a conventional emulsifier, the emulsification is insufficient and a relatively coarse particle size rubber remains, and due to the coarse rubber, aggregates present in the latex after the desolvation step There were cases where the amount increased.
 本発明は上記事情に鑑みてなされたものであり、原料の乳化工程において良好な乳化状態を得ることができ、その結果、凝集物の少ない高品質のラテックスを製造することができるラテックスの製造方法を提供することを目的としている。 The present invention has been made in view of the above circumstances, it is possible to obtain a good emulsified state in the emulsification step of the raw material, as a result, a latex production method capable of producing a high-quality latex with less aggregates. Is intended to provide.
 本発明に係るラテックスの製造方法は、ゴム、有機溶媒、水および乳化剤を含むゴム組成物を乳化して乳化液を得る乳化工程と、前記乳化液から前記有機溶媒を除去する脱溶媒工程と、を備えるラテックスの製造方法であって、前記乳化工程において、前記ゴム組成物を、撹拌物が貯留される容器と、該容器内に回転可能に設けられた撹拌手段と、を備えた撹拌装置で撹拌するようにし、前記撹拌手段は、その回転方向と略直交して撹拌物に対向する撹拌面を有する平板状の撹拌翼を含む構成であることを特徴とする。なお、本発明でいう全ての「略直交」とは、なす角度が通常で85°以上、好ましくは89°以上、かつ、通常で95°以下、好ましくは91°以下と定義する。 The method for producing a latex according to the present invention includes an emulsification step of emulsifying a rubber composition containing rubber, an organic solvent, water and an emulsifier, and a desolvation step of removing the organic solvent from the emulsion, In the emulsification step, a method for producing a latex, wherein the rubber composition is a stirrer including a container in which a stirrer is stored, and a stirrer rotatably provided in the container. The stirring means is configured to include a flat plate-shaped stirring blade having a stirring surface facing the agitated object substantially at right angles to the rotation direction thereof. It should be noted that all "substantially orthogonal" in the present invention are defined such that the angle formed is usually 85° or more, preferably 89° or more, and usually 95° or less, preferably 91° or less.
 本発明では、乳化工程において、容器内に貯留したゴム組成物を撹拌翼で撹拌して混合し、ゴム組成物を乳化する。本発明の撹拌装置が備える平板状の撹拌翼によれば、撹拌物を容器内で上下方向に循環させる循環流を生じさせることができる。このため、比重が比較的軽く液面近傍に浮遊して停滞しやすいゴムを上下に循環させることで溶液中に効果的に分散させることができ、ゴムが均質な状態に分散した乳化液を得ることができる。したがって本発明によれば、乳化工程においてゴム組成物を良好な状態に乳化することができ、その結果、凝集物の少ない高品質のラテックスを製造することができる。 In the present invention, in the emulsification step, the rubber composition stored in the container is stirred and mixed by a stirring blade to emulsify the rubber composition. According to the plate-shaped stirring blade provided in the stirring device of the present invention, it is possible to generate a circulating flow that circulates the agitated material vertically in the container. For this reason, it is possible to effectively disperse the rubber, which has a relatively low specific gravity and floats near the liquid surface and easily stagnates, in the solution, and to obtain an emulsion in which the rubber is dispersed in a homogeneous state. be able to. Therefore, according to the present invention, the rubber composition can be emulsified in a good state in the emulsification step, and as a result, a high-quality latex with few aggregates can be produced.
 また、本発明に係るラテックスの製造方法は、ゴムと有機溶媒とを混合させたゴム溶液と、乳化剤水溶液とを混合することにより粗乳化状態の乳化液を得る粗乳化工程と、前記粗乳化工程で得られた粗乳化状態の乳化液を、乳化機を通じて循環してさらに乳化する循環乳化工程と、前記循環乳化工程を経て得られた乳化液から前記有機溶媒を除去する脱溶媒工程と、を備えるラテックスの製造方法であって、前記粗乳化工程および前記循環乳化工程のうちの少なくともいずれか一方の工程において、前記乳化液を、撹拌物が貯留される容器と、該容器内に回転可能に設けられた撹拌手段と、を備えた撹拌装置で撹拌するようにし、前記撹拌手段は、その回転方向と略直交して撹拌物に対向する撹拌面を有する平板状の撹拌翼を含む構成であることを特徴とする。 Further, the method for producing a latex according to the present invention, a rubber solution in which a rubber and an organic solvent are mixed, and a rough emulsification step of obtaining an emulsion in a rough emulsified state by mixing an emulsifier aqueous solution, and the rough emulsification step. The emulsion in the crude emulsified state obtained in, a circulation emulsification step of further emulsifying by circulating through an emulsifier, and a desolvation step of removing the organic solvent from the emulsion obtained through the circulation emulsification step, A method for producing a latex, comprising: in at least one of the rough emulsifying step and the circulating emulsifying step, the emulsified liquid, a container in which an agitated material is stored, and rotatably in the container. A stirrer provided with the stirrer is provided, and the stirrer is configured to include a plate-shaped stirrer blade having a stirrer surface that is substantially orthogonal to the rotation direction and faces the stirring object. It is characterized by
 本発明では、粗乳化工程および循環乳化工程のうちの少なくとも一方の工程において、乳化液を撹拌翼により撹拌することにより、その乳化液を上記のように容器内で上下に循環させてゴムが均質な状態に分散した乳化液を得ることができる。したがって本発明では、粗乳化工程および循環乳化工程のうちの少なくとも一方の工程において乳化液を良好な状態に混合することができる。本発明では、粗乳化工程および循環乳化工程の双方において本発明に係る平板状の撹拌翼により乳化液を撹拌すれば、乳化液をより良好な状態に乳化することができる。 In the present invention, in at least one of the coarse emulsification step and the circulation emulsification step, by stirring the emulsion with a stirring blade, the emulsion is circulated up and down in the container as described above to make the rubber homogeneous. It is possible to obtain an emulsion that is dispersed in various states. Therefore, in the present invention, the emulsion can be mixed in a good state in at least one of the rough emulsification step and the circulation emulsification step. In the present invention, the emulsified liquid can be emulsified in a better state by stirring the emulsified liquid with the flat plate stirring blade according to the present invention in both the rough emulsification process and the circulation emulsification process.
 また、本発明に係るラテックスの製造方法は、前記脱溶媒工程において、前記乳化液を、撹拌物が貯留される容器と、該容器内に回転可能に設けられた撹拌手段と、を備えた撹拌装置で撹拌するようにし、前記撹拌手段は、その回転方向と略直交して撹拌物に対向する撹拌面を有する平板状の撹拌翼を含む構成であることを好ましい形態としている。 Further, in the method for producing a latex according to the present invention, in the desolvation step, the emulsion is stirred with a container in which a stirred product is stored, and stirring means rotatably provided in the container. It is preferable that the stirring means is configured to include a plate-shaped stirring blade having a stirring surface that is substantially orthogonal to the rotation direction of the apparatus and faces the stirring object.
 この形態では、脱溶媒工程においても本発明に係る平板状の撹拌翼によって乳化液を撹拌することにより、脱溶媒中の乳化液中のゴムは上下に循環して撹拌されて十分に混合される。このため、脱溶媒後に得られるラテックスは凝集物の少ない高品質なものとなる。 In this form, even in the desolvation step, by stirring the emulsion with the flat stirring blade according to the present invention, the rubber in the emulsion being desolvated is circulated vertically and stirred to be sufficiently mixed. .. Therefore, the latex obtained after desolvation has a high quality with few aggregates.
 また、本発明に係るラテックスの製造方法において用いられる前記撹拌翼は、本発明の混合の効果を有効に得られる観点から、前記撹拌面の面積が、前記容器内に貯留される前記撹拌物の断面積の10~60%であることを特徴とするものであり、当該範囲では、好ましくは15~50%、より好ましくは20~40%、さらに好ましくは25~35%とされる。 Further, the stirring blade used in the method for producing a latex according to the present invention, from the viewpoint of effectively obtaining the effect of the mixing of the present invention, the area of the stirring surface is the stirring object stored in the container. It is characterized by being 10 to 60% of the cross-sectional area, and in this range, it is preferably 15 to 50%, more preferably 20 to 40%, and further preferably 25 to 35%.
 また、本発明に係る前記撹拌翼は、格子状の構造を有する格子部を備えることを特徴とする。 Further, the stirring blade according to the present invention is characterized by including a lattice portion having a lattice structure.
 この構成によれば、回転する格子部により、上下に循環する溶液中のゴムが剪断・細分化され、さら格子部の回転方向後方に発生する微細渦にゴムが巻き込まれて混合される。このため、ゴムの微細化および混合が促進し、良好な乳化状態を得やすくなるとともに凝集物を少なくすることができる。 According to this configuration, the rotating lattice part shears and subdivides the rubber in the solution that circulates up and down, and the rubber is entangled and mixed in the fine vortex generated behind the lattice part in the rotation direction. For this reason, miniaturization and mixing of the rubber are promoted, a good emulsified state is easily obtained, and aggregates can be reduced.
 また、本発明では、前記粗乳化工程において、前記ゴム溶液と前記乳化剤水溶液とを、前記乳化機を用いて連続的に混合してもよい。 Further, in the present invention, in the rough emulsification step, the rubber solution and the emulsifier aqueous solution may be continuously mixed using the emulsifier.
 次に、本発明の膜成形体の製造方法は、上記本発明に係るラテックスの製造方法によって製造されたラテックスに架橋剤を添加してラテックス組成物を得、該ラテックス組成物を用いて膜成形体を成形することを特徴とする。 Next, the method for producing a film-molded article of the present invention comprises: adding a cross-linking agent to the latex produced by the method for producing a latex according to the present invention to obtain a latex composition, and using the latex composition, film-forming It is characterized by shaping a body.
 また、本発明のディップ成形体の製造方法は、上記本発明に係るラテックスの製造方法によって製造されたラテックスに架橋剤を添加してラテックス組成物を得、該ラテックス組成物を用いてディップ成形体を成形することを特徴とする。 Further, the method for producing a dip-formed article of the present invention is a dip-formed article obtained by adding a crosslinking agent to the latex produced by the method for producing a latex according to the present invention to obtain a latex composition. Is molded.
 また、本発明の接着剤層形成基材の製造方法は、上記本発明に係るラテックスの製造方法によって製造されたラテックスに架橋剤を添加してラテックス組成物を得、該ラテックス組成物を接着剤層として基材の表面に形成することを特徴とする。 Further, the method for producing an adhesive layer-forming substrate of the present invention is a latex composition obtained by adding a crosslinking agent to the latex produced by the method for producing a latex according to the present invention, and using the latex composition as an adhesive. It is characterized in that it is formed on the surface of the substrate as a layer.
 本発明によれば、原料の乳化工程において良好な乳化状態を得ることができ、その結果、凝集物の少ない高品質のラテックスを製造することができるラテックスの製造方法を提供することができる。 According to the present invention, a good emulsified state can be obtained in the step of emulsifying a raw material, and as a result, a latex production method capable of producing a high-quality latex with few aggregates can be provided.
本発明の一実施形態に係るラテックスの製造方法を好適に実施し得るラテックス製造装置の概略図である。It is a schematic diagram of a latex manufacturing device which can suitably carry out a latex manufacturing method concerning one embodiment of the present invention. 図1に示すラテックス製造装置において、ゴム溶液および乳化剤水溶液の撹拌タンクに対する配管構成を変更したラテックス製造装置の概略図である。FIG. 2 is a schematic view of the latex manufacturing apparatus shown in FIG. 1, in which the piping configuration for the stirring tank for the rubber solution and the emulsifier aqueous solution is changed. (a)は図1に示した撹拌タンクを構成するタンク本体の側断面図、(b)は同撹拌タンクが備える撹拌翼および回転軸の平面図である。(A) is a side sectional view of a tank main body constituting the stirring tank shown in FIG. 1, and (b) is a plan view of a stirring blade and a rotating shaft included in the stirring tank. 本発明の他の実施形態に係る撹拌翼を備えた撹拌タンクの側断面図である。It is a sectional side view of a stirring tank provided with a stirring blade according to another embodiment of the present invention. 図4に示した他の実施形態の変更例に係る撹拌翼を備えた撹拌タンクの側断面図である。FIG. 9 is a side sectional view of a stirring tank including stirring blades according to a modification of the other embodiment shown in FIG. 4. 本発明外の比較例に係る撹拌翼を備えた撹拌タンクを示す側断面図である。It is a sectional side view which shows the stirring tank provided with the stirring blade which concerns on the comparative example other than this invention. 本発明外の他の比較例に係る撹拌翼を備えた撹拌タンクを示す側断面図である。It is a sectional side view which shows the stirring tank provided with the stirring blade which concerns on the other comparative example other than this invention.
 以下、本発明の実施形態に係るラテックスの製造方法について、図面を参照しつつ説明する。 Hereinafter, a method for producing a latex according to an embodiment of the present invention will be described with reference to the drawings.
(実施形態)
 図1は、実施形態に係るラテックスの製造方法を好適に実施し得るラテックス製造装置を概略的に示している。まず、この製造装置について説明する。
(Embodiment)
FIG. 1 schematically shows a latex production apparatus capable of suitably implementing the latex production method according to the embodiment. First, this manufacturing apparatus will be described.
 図1に示すラテックス製造装置は、ゴム溶液が調製されるゴム溶液タンク1と、乳化剤水溶液が調製される乳化剤タンク2と、ゴム溶液と乳化剤水溶液とを撹拌タンク30に貯留し、該撹拌タンク30内でこれらゴム溶液と乳化剤水溶液とを撹拌・混合する撹拌装置3と、ゴム溶液と乳化剤水溶液との混合溶液を乳化する乳化機4と、撹拌タンク30内を減圧して乳化液から有機溶媒を蒸留して除去するための減圧ポンプ5と、撹拌タンク30内の乳化液から除去された有機溶媒を濃縮する濃縮器6と、を備えている。 The latex manufacturing apparatus shown in FIG. 1 stores a rubber solution tank 1 in which a rubber solution is prepared, an emulsifier tank 2 in which an emulsifier aqueous solution is prepared, a rubber solution and an emulsifier aqueous solution in a stirring tank 30, and the stirring tank 30 A stirrer 3 for stirring and mixing the rubber solution and the emulsifier aqueous solution therein, an emulsifier 4 for emulsifying the mixed solution of the rubber solution and the emulsifier aqueous solution, and depressurizing the stirring tank 30 to reduce the organic solvent from the emulsion. A decompression pump 5 for distilling and removing, and a concentrator 6 for concentrating the organic solvent removed from the emulsion in the stirring tank 30 are provided.
 ゴム溶液タンク1内のゴム溶液、および乳化剤タンク2内の乳化剤水溶液は、それぞれ供給管11、12から直接撹拌タンク30内に供給されるようになっている。撹拌タンク30内の溶液は、撹拌タンク30の底部から頂部にわたって配管された循環管14を通じて循環可能となっている。乳化機4は、循環管14の途中に配置されている。 The rubber solution in the rubber solution tank 1 and the emulsifier aqueous solution in the emulsifier tank 2 are directly supplied into the stirring tank 30 through the supply pipes 11 and 12, respectively. The solution in the agitation tank 30 can be circulated through a circulation pipe 14 which is provided from the bottom to the top of the agitation tank 30. The emulsifying machine 4 is arranged in the middle of the circulation pipe 14.
 なお、図2に示すように、供給管11、12を、撹拌タンク30に接続する合流管13にそれぞれ合流させた配管構成とし、ゴム溶液と乳化剤水溶液とを合流させた状態で合流管13から撹拌タンク30内に供給するようにしてもよい。 In addition, as shown in FIG. 2, the supply pipes 11 and 12 have a pipe configuration in which they are respectively joined to a joining pipe 13 connected to the agitation tank 30, and the rubber solution and the emulsifier aqueous solution are joined to each other from the joining pipe 13. It may be supplied into the stirring tank 30.
 撹拌タンク30と減圧ポンプ5との間には蒸留管15が配管され、蒸留管15の撹拌タンク30と減圧ポンプ5との間には、撹拌タンク30側から順にバルブ7および濃縮器6が配置されている。各タンク1、2、30は、それぞれ内部に貯留する溶液を加熱する図示せぬ加熱手段を備えている。 A distillation pipe 15 is installed between the stirring tank 30 and the decompression pump 5, and a valve 7 and a condenser 6 are arranged between the stirring tank 30 and the decompression pump 5 of the distillation pipe 15 in this order from the stirring tank 30 side. Has been done. Each of the tanks 1, 2, 30 is equipped with a heating means (not shown) for heating the solution stored therein.
 図1および図3(a)に示すように、撹拌装置3は、撹拌タンク30と、撹拌手段40と、を備えている。撹拌タンク30は、本発明の容器を構成するものである。 As shown in FIGS. 1 and 3A, the stirring device 3 includes a stirring tank 30 and a stirring means 40. The stirring tank 30 constitutes the container of the present invention.
 図1に示すように、撹拌タンク30は、上記混合溶液を貯留する有底円筒状のタンク本体31と、タンク本体31の上部開口に着脱可能に固定されてその上部開口を塞ぐ蓋体32と、を有する。タンク本体31は、その軸心がほぼ鉛直方向に延びるように設置されている。供給管11、12、循環管14の下流側端部および蒸留管15は、蓋体32に接続されている。また、循環管14は、その上流側端部がタンク本体31の底部に接続され、下流側端部が蓋体32に接続されている。 As shown in FIG. 1, the agitation tank 30 includes a bottomed cylindrical tank body 31 that stores the mixed solution, and a lid 32 that is detachably fixed to an upper opening of the tank body 31 to close the upper opening. With. The tank body 31 is installed so that its axis extends substantially vertically. The supply pipes 11 and 12, the downstream end of the circulation pipe 14 and the distillation pipe 15 are connected to the lid 32. The circulation pipe 14 has its upstream end connected to the bottom of the tank body 31 and its downstream end connected to the lid 32.
 図3(a)に示すように、本実施形態に係る撹拌手段40は、タンク本体31内に設けられた平板状の撹拌翼50と、撹拌翼50の回転軸41と、を有する。回転軸41はタンク本体31の軸心と同軸に配設されており、図示せぬ軸受を介して回転可能に支持されている。回転軸41は、その上端部にカップリングを介して連結された駆動源(いずれも図示略)によって回転駆動されるようになっている。その駆動源は、蓋体32の上方に配設される。 As shown in FIG. 3( a ), the stirring means 40 according to the present embodiment has a plate-shaped stirring blade 50 provided inside the tank body 31, and a rotating shaft 41 of the stirring blade 50. The rotating shaft 41 is arranged coaxially with the axis of the tank body 31, and is rotatably supported via a bearing (not shown). The rotary shaft 41 is rotatably driven by a drive source (both not shown) connected to the upper end of the rotary shaft 41 via a coupling. The drive source is arranged above the lid 32.
 なお、回転軸41を回転駆動する駆動源は、タンク本体31の下方に配設されて回転軸41の下端部に連結されるものであってもよい。 The drive source that rotationally drives the rotary shaft 41 may be disposed below the tank body 31 and connected to the lower end of the rotary shaft 41.
 撹拌翼50は、矩形形状を有しており、その幅方向中間の部分に回転軸41が通るようにして、回転軸41に固定されている。すなわち撹拌翼50は、回転軸41を対称線として左右対称の形状を有し、回転軸41の左右一方側の翼部51aおよび他方側の翼部51bを有する。撹拌翼50は回転軸41とともに回転し、撹拌翼50は、図3(b)に示すように矢印で示す回転方向と略直交して撹拌タンク30内に貯留する乳化液等の溶液(撹拌物)に対向する撹拌面52を有する。 The stirring blade 50 has a rectangular shape, and is fixed to the rotating shaft 41 so that the rotating shaft 41 passes through the middle portion in the width direction. That is, the stirring blade 50 has a bilaterally symmetrical shape with the rotating shaft 41 as a line of symmetry, and has a blade portion 51a on one of the left and right sides of the rotating shaft 41 and a blade portion 51b on the other side. The stirring blade 50 rotates together with the rotation shaft 41, and the stirring blade 50 is substantially orthogonal to the rotation direction indicated by the arrow as shown in FIG. ) Opposite to the stirring surface 52.
 撹拌翼50は、その下部にパドル部53を有し、パドル部53の上側に、格子状の構造を有する格子部54が一体に形成されている。パドル部53および格子部54が、上記撹拌面52を有する。撹拌翼50の全体高さに対するパドル部53および格子部54が占める高さ寸法の割合は、本実施形態では格子部54の方が6~7割程度であってパドル部53よりも大きいが、これには限定されない。図3(a)において符号Lは乳化液等の溶液の液面を示しており、撹拌翼50は、溶液中に全体が埋没した状態で使用される。 The stirring blade 50 has a paddle portion 53 at the bottom thereof, and a lattice portion 54 having a lattice-like structure is integrally formed on the upper side of the paddle portion 53. The paddle portion 53 and the lattice portion 54 have the stirring surface 52. In the present embodiment, the ratio of the height dimension occupied by the paddle portion 53 and the lattice portion 54 to the total height of the stirring blade 50 is about 60 to 70% in the lattice portion 54, which is larger than that of the paddle portion 53. It is not limited to this. In FIG. 3A, the symbol L indicates the liquid surface of a solution such as an emulsified liquid, and the stirring blade 50 is used in a state where the whole is immersed in the solution.
 パドル部53は、その下端縁がタンク本体31内の底面に概ね沿った形状を有し、その下端縁とタンク本体31内の底面との間隔はできるだけ狭く設定され、例えばその間隔は、1~200mm程度、好ましくは5~100mm程度、最も好ましくは10~50mm程度に設定される。 The paddle portion 53 has a shape in which the lower end edge thereof is substantially along the bottom surface inside the tank body 31, and the distance between the lower end edge and the bottom surface inside the tank body 31 is set as narrow as possible. It is set to about 200 mm, preferably about 5 to 100 mm, and most preferably about 10 to 50 mm.
 格子部54は、複数の板棒状の横メンバー54aと、これら横メンバー54aに直交する複数の板棒状の縦メンバー54bと、を有する。本実施形態の格子部54は、2つの横メンバー54aと4つの縦メンバー54bとを有するが、各メンバー54a、54bの数および幅に関しては、撹拌の効果等を鑑みて任意に設定される。 The lattice part 54 has a plurality of plate rod-shaped horizontal members 54a and a plurality of plate rod-shaped vertical members 54b orthogonal to these horizontal members 54a. Although the lattice part 54 of this embodiment has two horizontal members 54a and four vertical members 54b, the number and width of each member 54a, 54b are arbitrarily set in consideration of the effect of stirring.
 撹拌翼50は回転軸41とともに回転することにより、撹拌タンク30内に貯留する乳化液等の溶液を撹拌するが、上記撹拌面52は、撹拌翼50の回転中において撹拌対象の溶液に対向し、かつ接触する面である。したがって実際の撹拌面52は、図3(b)に示したように、一方側の翼部51aの一方の面(表面)と、他方側の翼部51bの他方の面(裏面)とにより構成される。これら撹拌面52を合わせた面積は、撹拌翼50自体の面積に相当する。 The stirring blade 50 stirs a solution such as an emulsion stored in the stirring tank 30 by rotating together with the rotating shaft 41, but the stirring surface 52 faces the solution to be stirred while the stirring blade 50 is rotating. , And the surface that contacts. Therefore, as shown in FIG. 3( b ), the actual stirring surface 52 is composed of one surface (front surface) of the blade portion 51 a on one side and the other surface (back surface) of the blade portion 51 b on the other side. To be done. The total area of these stirring surfaces 52 corresponds to the area of the stirring blade 50 itself.
 ここで、本実施形態に係る撹拌翼50は、その面積(図3(b)で示した左右の各撹拌面52を合わせた面積に相当する)の、撹拌タンク30内に貯留される乳化液等の溶液の断面積に対する比率(以下、接液面積率という場合がある)が10~60%となるように構成されている。これは、混合の効果を有効に得られる割合であり、当該範囲内では、15~50%が好ましく、20~40%であればより好ましく、25~35%であればさらに好ましい。 Here, the stirring blade 50 according to the present embodiment has the area (corresponding to the area of the left and right stirring surfaces 52 shown in FIG. 3B combined) stored in the stirring tank 30. The ratio of such a solution to the cross-sectional area of the solution (hereinafter, sometimes referred to as wetted area ratio) is 10 to 60%. This is a ratio at which the effect of mixing can be effectively obtained, and within the range, 15 to 50% is preferable, 20 to 40% is more preferable, and 25 to 35% is further preferable.
 また、図3(a)に示すように、タンク本体31の内壁面には、撹拌タンク30の軸方向に沿って延びる複数のバッフル板90が上下のステー91を介して配設されている。これらバッフル板90は、その幅方向がタンク本体31の径方向と概ね平行になるように放射状に設置されている。バッフル板90の面積および数に関しては、撹拌の効果等を鑑みて任意に設定される。 Further, as shown in FIG. 3A, a plurality of baffle plates 90 extending along the axial direction of the stirring tank 30 are arranged on the inner wall surface of the tank body 31 via upper and lower stays 91. These baffle plates 90 are radially installed so that the width direction thereof is substantially parallel to the radial direction of the tank body 31. The area and number of the baffle plates 90 are arbitrarily set in consideration of the effect of stirring and the like.
 また、各バッフル板90は、撹拌翼50の回転を阻害しないように撹拌翼50との間隔が確保されるのはもちろんであるが、その間隔は、撹拌の効果等を鑑みて、1~200mm程度、好ましくは5~100mm程度、最も好ましくは10~50mm程度に設定される。 Further, each baffle plate 90 is of course provided with an interval with the stirring blade 50 so as not to hinder the rotation of the stirring blade 50, but the interval is 1 to 200 mm in consideration of the effect of stirring and the like. The thickness is preferably set to about 5 to 100 mm, most preferably about 10 to 50 mm.
 本実施形態の撹拌手段40によれば、撹拌翼50が一方向に回転すると、次のように撹拌タンク30内に貯留された乳化液等の溶液を撹拌することができるようになっている。すなわち、撹拌タンク30内の溶液は、下方のパドル部53で径方向外側に押し出されてタンク本体31内壁面に衝突し、次いでバッフル板90の作用で上昇してからタンク本体31上部の内壁面から中心の回転軸41方向に流動し、次いで回転軸41および格子部54を通って下方に流動してパドル部53に戻るといった上下方向の循環流が生じる。 According to the stirring means 40 of the present embodiment, when the stirring blade 50 rotates in one direction, it is possible to stir the solution such as the emulsion stored in the stirring tank 30 as follows. That is, the solution in the stirring tank 30 is pushed radially outward by the lower paddle portion 53 to collide with the inner wall surface of the tank body 31, and then rises by the action of the baffle plate 90, and then the inner wall surface of the upper portion of the tank body 31. From the center to the center of the rotating shaft 41, then flows downward through the rotating shaft 41 and the lattice portion 54 and returns to the paddle portion 53, thereby generating a vertical circulating flow.
 このように循環しながら撹拌される溶液においては、格子部54の各横メンバー54aおよび各縦メンバー54bによって下降中のゴムが剪断・細分化され、さらにこれらメンバー54a、54bの回転方向後方に発生する微細渦にゴムが巻き込まれて混合されるようになっている。 In the solution which is agitated while being circulated as described above, the descending rubber is sheared and subdivided by each horizontal member 54a and each vertical member 54b of the lattice portion 54, and further generated rearward in the rotational direction of these members 54a, 54b. The rubber is entrained in the fine vortex that is mixed and mixed.
 また、パドル部53は、その下端部が撹拌タンク30内の底部に近接しているため、溶液を底部に残存させず循環流に乗せて撹拌することができるようになっている。また、バッフル板90は、パドル部53により径方向外方に押し出された溶液が撹拌翼50の回転に伴って回転することを抑制するとともに上昇流を発生させるように作用する。また、格子部54の横メンバー54aおよび縦メンバー54bは、上記のように下降する溶液を細分化して混合するように作用する。 Further, since the lower end portion of the paddle portion 53 is close to the bottom portion inside the stirring tank 30, the solution can be placed on the circulation flow without being left at the bottom portion to be stirred. In addition, the baffle plate 90 functions to prevent the solution extruded radially outward by the paddle portion 53 from rotating as the stirring blade 50 rotates and to generate an upward flow. Further, the horizontal members 54a and the vertical members 54b of the lattice portion 54 act to subdivide and mix the descending solution as described above.
 乳化機4は、強い剪断力を溶液に付与して連続的に混合することができるような装置であればよく、特に限定はされないが、例えば、複数のスリットを有するステータに対して複数のスリットを有するロータが相対的に回転する構成のロータ・ステータ対を複数有するロータ・ステータ式の乳化機が好適に用いられる。このようなロータ・ステータ式の乳化機としては、例えば、商品名「TKパイプラインホモミキサー」(プライミクス社製)、商品名「スラッシャ」(日本コークス工業社製)、商品名「トリゴナル」(日本コークス工業社製)、商品名「キャビトロン」(ユーロテック社製)、商品名「マイルダー」(太平洋機工社製)、商品名「ファインフローミル」(太平洋機工社製)等の市販品を用いることができる。 The emulsifier 4 may be any device as long as it can apply strong shearing force to the solution and continuously mix the solution, and is not particularly limited. For example, a plurality of slits may be provided for a stator having a plurality of slits. A rotor-stator type emulsifying machine having a plurality of rotor-stator pairs in which the rotor having the above-mentioned structure rotates relatively is preferably used. Examples of such a rotor-stator emulsifier include a trade name “TK Pipeline Homomixer” (manufactured by Primix Co., Ltd.), a trade name “Slusha” (manufactured by Nippon Coke Industry Co., Ltd.), and a trade name “Trigonal” (Japan Use commercially available products such as Coke Kogyo Co., Ltd., product name "Cavitron" (Eurotech Co., Ltd.), product name "Milder" (Pacific Machine Engineering Co., Ltd.), product name "Fine Flow Mill" (Pacific Machine Engineering Co., Ltd.) You can
 また、乳化機4としては、ポンプ機能を備えたものが溶液を圧送して循環させることができるので好ましいが、ポンプ機能を備えないものを用いる場合には、循環管14の途中に圧送ポンプを別途配置すればよい。 Further, as the emulsifying machine 4, it is preferable to use one having a pump function because it can pressure-feed and circulate the solution, but when using one having no pump function, a pressure-feeding pump is provided in the middle of the circulation pipe 14. It can be placed separately.
 次に、本実施形態に係るラテックスの製造方法を説明する。 Next, a method for producing latex according to this embodiment will be described.
 本実施形態に係るラテックスの製造方法は、ゴム、有機溶媒、水および乳化剤を含むゴム組成物を乳化して乳化液を得る乳化工程と、乳化工程で得られた乳化液から有機溶媒を除去する脱溶媒工程と、を備える。 The method for producing a latex according to the present embodiment is a step of emulsifying a rubber composition containing rubber, an organic solvent, water and an emulsifier to obtain an emulsion, and removing the organic solvent from the emulsion obtained in the emulsification step. And a desolvation step.
 乳化工程においては、ゴム組成物を上記撹拌装置3の撹拌タンク30内において撹拌翼50により撹拌して乳化する。 In the emulsification step, the rubber composition is emulsified by stirring with the stirring blade 50 in the stirring tank 30 of the stirring device 3.
 本実施形態に係るラテックスの製造方法は、上記乳化工程を、ゴムと有機溶媒とを混合させたゴム溶液と、乳化剤水溶液とを混合することにより粗乳化状態の乳化液を得る粗乳化工程と、粗乳化工程で得られた粗乳化状態の乳化液を、上記乳化機4を通じて循環してさらに乳化する循環乳化工程と、に分ける場合を含む。この場合には、粗乳化工程および循環乳化工程のうちの少なくともいずれか一方の工程において、乳化液を、上記撹拌装置3を用いて撹拌する場合をさらに含む。 The method for producing a latex according to the present embodiment, the emulsification step, a rubber solution in which a rubber and an organic solvent are mixed, and a coarse emulsification step of obtaining an emulsion in a coarse emulsified state by mixing an emulsifier aqueous solution, It includes a case where it is divided into a rough emulsified emulsion obtained in the rough emulsification step and a circulation emulsification step in which the emulsion is circulated through the emulsifier 4 and further emulsified. In this case, it further includes a case where the emulsion is stirred using the stirring device 3 in at least one of the rough emulsification step and the circulation emulsification step.
 以下、図1に示すラテックス製造装置を用いて行う本実施形態に係るラテックスの製造方法例を、より具体的に説明する。 Hereinafter, an example of the latex manufacturing method according to the present embodiment performed using the latex manufacturing apparatus shown in FIG. 1 will be described more specifically.
[乳化工程]
 乳化工程においては、ゴム、有機溶媒、水および乳化剤を含むゴム組成物を乳化するが、ここでは、これら原料を、ゴムおよび有機溶媒との混合物(ゴム溶液)と、水および乳化剤との混合物(乳化剤水溶液)とに分ける。
[Emulsification process]
In the emulsification step, a rubber composition containing rubber, an organic solvent, water and an emulsifier is emulsified. Here, these raw materials are a mixture of a rubber and an organic solvent (rubber solution) and a mixture of water and an emulsifier ( Aqueous emulsifier solution).
 すなわち、ゴム溶液タンク1内にゴムと有機溶媒とを所定の割合で供給して撹拌しながら例えば60℃程度に加熱することでゴムを溶解し、ゴム溶液を調製する。また、乳化剤タンク2内に乳化剤と水とを所定の割合で供給して混合した後、例えば60℃程度に加熱して乳化剤水溶液を調製する。 That is, the rubber and the organic solvent are supplied at a predetermined ratio into the rubber solution tank 1 and the rubber is dissolved by stirring and heating to, for example, about 60° C. to prepare a rubber solution. Further, an emulsifier and water are supplied into the emulsifier tank 2 at a predetermined ratio and mixed, and then heated to, for example, about 60° C. to prepare an emulsifier aqueous solution.
 次に、ゴム溶液タンク1からゴム溶液を、また、乳化剤タンク2から乳化剤水溶液を、それぞれ供給管11、12から連続的に撹拌タンク30内に直接供給する。そして撹拌タンク30内で、これらゴム溶液と乳化剤水溶液との混合物(ゴム組成物)を撹拌翼50により撹拌して混合することにより、乳化液を得る。 Next, the rubber solution is supplied directly from the rubber solution tank 1 and the emulsifier aqueous solution from the emulsifier tank 2 directly into the stirring tank 30 through the supply pipes 11 and 12, respectively. Then, in the stirring tank 30, a mixture (rubber composition) of the rubber solution and the aqueous emulsifier solution is stirred and mixed by the stirring blade 50 to obtain an emulsion.
 ゴム溶液タンク1内で調製するゴム溶液および乳化剤タンク2内で調製する乳化剤水溶液は、乳化を良好に行う観点から、各タンク1、2をそれぞれ必要に応じて加熱することで所定温度に維持することが望ましい。ゴム溶液および乳化剤水溶液の温度は、特に限定されないが、それぞれ、20~100℃が好ましく、40~90℃であればより好ましく、60~80℃であればさらに好ましい。 The rubber solution prepared in the rubber solution tank 1 and the emulsifier aqueous solution prepared in the emulsifier tank 2 are maintained at a predetermined temperature by heating each tank 1 and 2 as necessary from the viewpoint of favorably emulsifying. Is desirable. The temperatures of the rubber solution and the aqueous emulsifier solution are not particularly limited, but are preferably 20 to 100° C., more preferably 40 to 90° C., and further preferably 60 to 80° C., respectively.
 また、ゴム溶液および乳化剤水溶液を連続的に撹拌タンク30内に送る際の、これらゴム溶液および乳化剤水溶液の供給割合は、特に限定されないが、乳化を良好に行う観点から、ゴム溶液:乳化剤水溶液の体積比が、1:2~1:0.3が好ましく、1:1.5~1:0.5であればより好ましく、1:1~1:0.7であればさらに好ましい。 Further, when the rubber solution and the emulsifier aqueous solution are continuously fed into the stirring tank 30, the supply ratios of the rubber solution and the emulsifier aqueous solution are not particularly limited, but from the viewpoint of favorably emulsifying the rubber solution and the emulsifier aqueous solution. The volume ratio is preferably 1:2 to 1:0.3, more preferably 1:1.5 to 1:0.5, and further preferably 1:1 to 1:0.7.
[粗乳化工程]
 本実施形態の乳化工程は、粗乳化工程の次に循環乳化工程を経て乳化液を得る場合を含む。
[Rough emulsification process]
The emulsification step of the present embodiment includes a case where an emulsion is obtained through a rough emulsification step and a circulating emulsification step.
 粗乳化の状態とは、ゴムの溶解度が比較的低く、十分に乳化していない前段階の乳化の状態をいう。粗乳化工程では、上記乳化工程と同様に、ゴム溶液タンク1からゴム溶液を、また、乳化剤タンク2から乳化剤水溶液を、それぞれ連続的に撹拌タンク30内に供給し、撹拌タンク30内で、これらゴム溶液と乳化剤水溶液との混合物(ゴム組成物)を撹拌翼50により撹拌して混合する。 ≪Coarse emulsified state refers to the emulsified state of the previous stage where the solubility of rubber is relatively low and it is not sufficiently emulsified. In the rough emulsification step, similarly to the above emulsification step, the rubber solution is continuously supplied from the rubber solution tank 1 and the emulsifier aqueous solution is supplied from the emulsifier tank 2 to the stirring tank 30, respectively. The mixture (rubber composition) of the rubber solution and the emulsifier aqueous solution is agitated by the agitating blade 50 to be mixed.
[循環乳化工程]
 次に、乳化機4を作動させ、この乳化機4を通じて、粗乳化状態の乳化液を、撹拌タンク30内から循環管14を通して撹拌タンク30内に戻す循環乳化工程を少なくも1回行う。循環乳化工程においては、乳化機4によって乳化液が撹拌タンク30内から循環管14を経て撹拌タンク30内に戻るように循環され、乳化機4を通過することにより、粗乳化状態の乳化液は連続的に乳化され、乳化液が撹拌タンク30内に貯留される。なお、本実施形態におけるラテックスの製造方法においては、当該循環乳化工程を含むことが好ましいが、当該循環乳化工程を含むことは、必ずしも必須ではない。
[Circulating emulsification process]
Next, the emulsification machine 4 is operated, and the circulation emulsification step of returning the roughened emulsified liquid from the stirring tank 30 to the stirring tank 30 through the circulation pipe 14 is performed at least once. In the circulating emulsification step, the emulsified liquid is circulated by the emulsifying machine 4 so as to return from the stirring tank 30 to the stirring tank 30 via the circulation pipe 14, and passes through the emulsifying machine 4. The emulsion is continuously emulsified, and the emulsion is stored in the stirring tank 30. The method for producing latex in the present embodiment preferably includes the circulating emulsification step, but does not necessarily include the circulating emulsification step.
 上記のように粗乳化工程を行った後に循環乳化工程を行って乳化液を得る場合、粗乳化工程および循環乳化工程のいずれの工程でも撹拌タンク30内で乳化液を撹拌翼50により撹拌する場合の他に、粗乳化工程でのみ乳化液を撹拌翼50で撹拌する場合と、循環乳化工程でのみ乳化液を撹拌翼50で撹拌する場合のいずれかの操作パターンが選択される。 When the circulation emulsification step is performed after the rough emulsification step as described above to obtain an emulsion, when the emulsion is stirred by the stirring blade 50 in the stirring tank 30 in both the rough emulsification step and the circulation emulsification step In addition, either operation pattern is selected when the emulsified liquid is stirred by the stirring blade 50 only in the rough emulsification step and when the emulsified liquid is stirred by the stirring blade 50 only in the circulation emulsification step.
 撹拌タンク30内で乳化液を撹拌する操作パターンは、乳化の状況等に応じて適宜に選択され、乳化を良好に行う観点から、少なくとも粗乳化工程および循環乳化工程のうちのいずれか一方の工程で乳化液を撹拌すればよいが、これらのうちでは、循環乳化工程で乳化液を撹拌することがより好ましい。しかしながら、粗乳化工程および循環乳化工程のいずれの工程においても乳化液を撹拌することが最も好ましい。 The operation pattern of stirring the emulsified liquid in the stirring tank 30 is appropriately selected depending on the emulsification situation and the like, and at least one of the rough emulsification step and the circulation emulsification step is selected from the viewpoint of favorably emulsifying. The emulsion may be stirred in step 1, but among these, it is more preferable to stir the emulsion in the circulating emulsification step. However, it is most preferable to stir the emulsion in both the rough emulsification step and the circulation emulsification step.
 なお、粗乳化工程においては、撹拌タンク30内では撹拌翼50によってゴム溶液と乳化剤水溶液との混合物であるゴム組成物は撹拌せず、例えば図2に示すようにゴム溶液と乳化剤水溶液とを合流管13で合流させ、この合流管13に配置した乳化機8のみで連続的に混合することにより、ゴム組成物を粗乳化して撹拌タンク30内に供給するようにしてもよい。 In the rough emulsification step, the rubber composition, which is a mixture of the rubber solution and the emulsifier aqueous solution, is not stirred by the stirring blade 50 in the stirring tank 30, and the rubber solution and the emulsifier aqueous solution are combined as shown in FIG. 2, for example. The rubber composition may be coarsely emulsified and supplied into the stirring tank 30 by merging in the pipe 13 and continuously mixing only with the emulsifier 8 arranged in the merging pipe 13.
 ここで、原料である上記のゴム、有機溶媒、乳化剤の具体例を述べる。 Here, specific examples of the above-mentioned rubber, organic solvent, and emulsifier as raw materials will be described.
(ゴム)
 本実施形態で使用可能なゴムとしては、天然ゴムおよび合成ゴムが挙げられる。合成ゴムとしては、特に限定されないが、例えば、イソプレンゴム(IR)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、スチレンブタジエンゴム(SBR)、イソブチエン・イソプレンゴム(IIR)等が挙げられる。これらの中では、ラテックスをディップ成形体とした場合における引張強度や伸び等の機械的特性に優れる点で、天然ゴム、イソプレンゴム(IR)およびスチレン-イソプレン-スチレンブロック共重合体(SIS)が好ましく、より好ましくはイソプレンゴム(IR)およびスチレン-イソプレン-スチレンブロック共重合体(SIS)であり、イソプレンゴム(IR)であればさらに好ましい。
(Rubber)
Examples of the rubber that can be used in this embodiment include natural rubber and synthetic rubber. The synthetic rubber is not particularly limited, and examples thereof include isoprene rubber (IR), styrene-isoprene-styrene block copolymer (SIS), acrylonitrile butadiene rubber (NBR), chloroprene rubber (CR), styrene butadiene rubber (SBR). , Isobutyene/isoprene rubber (IIR) and the like. Among them, natural rubber, isoprene rubber (IR) and styrene-isoprene-styrene block copolymer (SIS) are excellent in mechanical properties such as tensile strength and elongation when latex is used as a dip molded product. Preferred are isoprene rubber (IR) and styrene-isoprene-styrene block copolymer (SIS), and isoprene rubber (IR) is more preferred.
(有機溶媒)
 ゴムを溶解・分散させてゴム溶液とするための有機溶媒としては、特に限定されないが、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素溶媒、あるいはシクロペンタン、シクロペンテン、シクロヘキサン、シクロヘキセン等の脂環族炭化水素溶媒、あるいはブタン、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶媒、あるいは塩化メチレン、クロロホルム、二塩化エチレン等のハロゲン化炭化水素溶媒等の中から、適宜に選択することができる。
(Organic solvent)
The organic solvent for dissolving/dispersing rubber into a rubber solution is not particularly limited, and examples thereof include aromatic hydrocarbon solvents such as benzene, toluene, xylene, and fats such as cyclopentane, cyclopentene, cyclohexane, and cyclohexene. It can be appropriately selected from a cyclic hydrocarbon solvent, an aliphatic hydrocarbon solvent such as butane, pentane, hexane and heptane, or a halogenated hydrocarbon solvent such as methylene chloride, chloroform and ethylene dichloride. ..
 ゴム溶液におけるゴムの含有割合は、特に限定されないが、3~30重量%が好ましく、5~20重量%であればより好ましく、7~15重量%であればさらに好ましい。 The content ratio of the rubber in the rubber solution is not particularly limited, but is preferably 3 to 30% by weight, more preferably 5 to 20% by weight, and further preferably 7 to 15% by weight.
(乳化剤)
 乳化剤としては、特に限定されないが、アニオン性乳化剤を好ましく用いることができる。アニオン性乳化剤としては、例えば、ラウリン酸ナトリウム、ミリスチン酸カリウム、パルミチン酸ナトリウム、オレイン酸カリウム、リノレン酸ナトリウム、ロジン酸ナトリウム、ロジン酸カリウム等の脂肪酸塩、あるいはドデシルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸カリウム、デシルベンゼンスルホン酸ナトリウム、デシルベンゼンスルホン酸カリウム、セチルベンゼンスルホン酸ナトリウム、セチルベンゼンスルホン酸カリウム等のアルキルベンゼンスルホン酸塩、あるいはジ(2-エチルヘキシル)スルホコハク酸ナトリウム、ジ(2-エチルヘキシル)スルホコハク酸カリウム、ジオクチルスルホコハク酸ナトリウム等のアルキルスルホコハク酸塩、あるいはラウリル硫酸ナトリウム、ラウリル硫酸カリウム等のアルキル硫酸エステル塩、あるいはポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシエチレンラウリルエーテル硫酸カリウム等のポリオキシエチレンアルキルエーテル硫酸エステル塩、あるいはラウリルリン酸ナトリウム、ラウリルリン酸カリウム等のモノアルキルリン酸塩等が挙げられる。
(emulsifier)
The emulsifier is not particularly limited, but an anionic emulsifier can be preferably used. Examples of the anionic emulsifier include fatty acid salts such as sodium laurate, potassium myristate, sodium palmitate, potassium oleate, sodium linolenate, sodium rosinate, and potassium rosinate, or sodium dodecylbenzenesulfonate and dodecylbenzenesulfone. Alkylbenzenesulfonates such as potassium acid salt, sodium decylbenzenesulfonate, potassium decylbenzenesulfonate, sodium cetylbenzenesulfonate, potassium cetylbenzenesulfonate, etc., or sodium di(2-ethylhexyl)sulfosuccinate, di(2-ethylhexyl) Alkyl sulfosuccinates such as potassium sulfosuccinate and sodium dioctyl sulfosuccinate, alkyl sulfate ester salts such as sodium lauryl sulfate and potassium lauryl sulfate, or polyoxyethylene salts such as sodium polyoxyethylene lauryl ether sulfate and potassium polyoxyethylene lauryl ether sulfate. Examples thereof include ethylene alkyl ether sulfate ester salts and monoalkyl phosphates such as sodium lauryl phosphate and potassium lauryl phosphate.
 これらアニオン性乳化剤の中でも、脂肪酸塩、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩が好ましく、脂肪酸塩およびアルキルベンゼンスルホン酸塩がより好ましく、脂肪酸塩がさらに好ましく、得られるゴムのラテックス中における凝集物の発生をより適切に防止することができるという点より、ロジン酸ナトリウム、ロジン酸カリウムが特に好ましい。 Among these anionic emulsifiers, fatty acid salts, alkylbenzene sulfonates, alkylsulfosuccinates, alkyl sulfate ester salts and polyoxyethylene alkyl ether sulfate ester salts are preferable, fatty acid salts and alkylbenzene sulfonate salts are more preferable, and fatty acid salts are More preferably, sodium rosinate and potassium rosinate are particularly preferable from the viewpoint that generation of aggregates in the latex of the obtained rubber can be prevented more appropriately.
 乳化剤の水溶液中における乳化剤の含有割合は、特に限定されないが、乳化を良好に行う観点から、0.1~5重量%が好ましく、0.3~3重量%であればより好ましく、0.5~2重量%であればさらに好ましい。 The content ratio of the emulsifier in the aqueous solution is not particularly limited, but from the viewpoint of favorably emulsifying, it is preferably 0.1 to 5% by weight, more preferably 0.3 to 3% by weight, and 0.5. It is more preferable that the content is up to 2% by weight.
[脱溶媒工程]
 脱溶媒工程は、乳化工程で得られた乳化液から有機溶媒を除去する工程である。脱溶媒の方法としては、乳化液中における有機溶媒の含有量を500重量ppm以下とすることが可能な方法が好ましく、例えば、減圧蒸留、常圧蒸留、水蒸気蒸留、遠心分離等の方法を採用することができる。これらの中では、有機溶媒を適切かつ効率的に除去できるという観点から、減圧蒸留が好ましい。
[Desolvation step]
The desolvation step is a step of removing the organic solvent from the emulsion obtained in the emulsification step. As a method of desolvation, a method capable of controlling the content of the organic solvent in the emulsion to be 500 ppm by weight or less is preferable, and for example, a method such as vacuum distillation, atmospheric distillation, steam distillation, and centrifugation is adopted. can do. Among these, vacuum distillation is preferable from the viewpoint of being able to remove the organic solvent appropriately and efficiently.
 本実施形態では、減圧ポンプ5および濃縮器6を用い、乳化工程で得られた撹拌タンク30内に貯留する乳化液を減圧蒸留して脱溶媒する。すなわち、本実施形態の脱溶媒工程では、撹拌タンク30内の乳化液を例えば80℃程度に加温した状態から、バルブ7を開いて減圧ポンプ5を作動させ、撹拌タンク30内を例えば700mmHg未満に減圧する。これにより撹拌タンク30内の乳化液からは有機溶媒が蒸留し、その有機溶媒は、撹拌タンク30内から蒸留管15に排出され、濃縮器6により濃縮されて回収される。 In the present embodiment, the decompression pump 5 and the concentrator 6 are used to depressurize the emulsified liquid obtained in the emulsification step and stored in the stirring tank 30 to desolvate it. That is, in the desolvation step of the present embodiment, the valve 7 is opened and the decompression pump 5 is operated from a state where the emulsion in the stirring tank 30 is heated to, for example, about 80° C., and the inside of the stirring tank 30 is, for example, less than 700 mmHg. Depressurize to. As a result, the organic solvent is distilled from the emulsion in the stirring tank 30, and the organic solvent is discharged from the stirring tank 30 to the distillation pipe 15, concentrated by the concentrator 6, and collected.
 本実施形態において、脱溶媒工程では撹拌タンク30内で乳化液を撹拌翼50により撹拌しながら行うことが、脱溶媒後に得られるラテックス中に存在する凝集物が少なくなりやすいため好ましい。 In the present embodiment, it is preferable that the desolvation step is performed while stirring the emulsion in the stirring tank 30 with the stirring blades 50, since aggregates existing in the latex obtained after desolvation tend to be reduced.
 減圧蒸留による脱溶媒工程では、撹拌タンク30内の圧力は700mmHg未満に減圧されることが望ましい。脱溶媒工程で撹拌タンク30内の圧力が高い場合には脱溶媒工程に長時間を要し、また、圧力が低い場合には乳化液が過度に発泡するおそれがある。そこでこれらの問題の発生を抑制する観点から、脱溶媒工程での撹拌タンク30内の圧力は、好ましくは1~600mmHgであり、10~500mmHgであればより好ましく、100~400mmHgであればさらに好ましい。 In the desolvation process by vacuum distillation, the pressure in the stirring tank 30 is preferably reduced to less than 700 mmHg. If the pressure in the stirring tank 30 is high in the desolvation step, the desolvation step may take a long time, and if the pressure is low, the emulsion may foam excessively. Therefore, from the viewpoint of suppressing the occurrence of these problems, the pressure in the stirring tank 30 in the desolvation step is preferably 1 to 600 mmHg, more preferably 10 to 500 mmHg, and further preferably 100 to 400 mmHg. ..
 また、本実施形態での脱溶媒工程における撹拌タンク30内の乳化液の温度は、乳化液に含まれる有機溶媒の沸点以上の温度に加熱することが好ましいが、具体的にはその有機溶媒の沸点よりも5℃以上高い温度に制御することがより好ましく、10℃以上高い温度に制御することがさらに好ましい。なお、脱溶媒工程における撹拌タンク30内の乳化液の温度の上限は、特に限定されないが、100℃未満とすることが好ましい。 Further, the temperature of the emulsion in the stirring tank 30 in the desolvation step in the present embodiment is preferably heated to a temperature equal to or higher than the boiling point of the organic solvent contained in the emulsion, but specifically, It is more preferable to control the temperature to be 5° C. or higher than the boiling point, and it is more preferable to control the temperature to be 10° C. or higher. The upper limit of the temperature of the emulsion in the stirring tank 30 in the solvent removal step is not particularly limited, but it is preferably less than 100°C.
[遠心分離工程]
 本実施形態では、脱溶媒工程を行った後に、有機溶媒が除去された乳化液を、遠心分離機に移して遠心分離することにより、固形分濃度が高められた軽液をゴムのラテックスとして得る。
[Centrifugation process]
In the present embodiment, after performing the desolvation step, the emulsified liquid from which the organic solvent has been removed is transferred to a centrifuge and centrifuged to obtain a light liquid with an increased solid content concentration as a rubber latex. ..
 遠心分離工程では、得られるラテックスの機械的安定性を向上させるために、有機溶媒が除去された乳化液に予めpH調製剤を添加して、そのpHを7以上、好ましくは9以上としておく。 In the centrifugation step, in order to improve the mechanical stability of the obtained latex, a pH adjusting agent is added in advance to the emulsion from which the organic solvent has been removed, and the pH is set to 7 or higher, preferably 9 or higher.
 pH調製剤としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物、あるいは炭酸ナトリウム、炭酸カリウム等のアルカリ金属の炭酸塩、あるいは炭酸水素ナトリウム等のアルカリ金属の炭酸水素塩、あるいはアンモニア、あるいはトリメチルアミン、トリエタノールアミン等の有機アミン化合物等が挙げられるが、アルカリ金属の水酸化物またはアンモニアが好ましい。 Examples of the pH adjusting agent include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, and alkali metal hydrogen carbonates such as sodium hydrogen carbonate. Examples thereof include ammonia, organic amine compounds such as trimethylamine and triethanolamine, and alkali metal hydroxides and ammonia are preferable.
 また、上記のようにして本実施形態で得られるゴムのラテックスには、ラテックスの分野で配合される消泡剤、防腐剤、キレート化剤、酸素捕捉剤、分散剤、老化防止剤等の添加剤を適宜配合してもよい。 Further, as described above, the rubber latex obtained in the present embodiment is added with an antifoaming agent, an antiseptic, a chelating agent, an oxygen scavenger, a dispersant, an antiaging agent or the like which is blended in the latex field. You may mix|blend an agent suitably.
 また、ゴムの原料として天然ゴムを用いた場合において、得られたラテックスを人体に接触するディップ成形体として用いる場合には、人体にアレルギー症状を引き起こす蛋白質を、ラテックスの段階で分解除去する必要がある。 Further, in the case of using natural rubber as a raw material of rubber, when the obtained latex is used as a dip-molded body that comes into contact with the human body, it is necessary to decompose and remove proteins that cause allergic symptoms in the human body at the latex stage. is there.
 以上が本実施形態に係るラテックスの製造方法である。本実施形態に係る製造方法で製造されるラテックスからは、ラテックス組成物を経てゴム手袋等のディップ成形体を得ることができる。ディップ成形体は、本発明に係る膜成形体の一態様である。さらに、本実施形態に係る製造方法で製造されるラテックスを用いて、接着剤層形成基材を得ることができる。接着剤層形成基材は、基材の表面にラテックス組成物を接着剤層として形成した複合材料をいう。 The above is the method for producing latex according to the present embodiment. From the latex produced by the production method according to the present embodiment, a dip-formed article such as rubber gloves can be obtained via the latex composition. The dip molded body is an aspect of the film molded body according to the present invention. Furthermore, an adhesive layer-forming substrate can be obtained using the latex produced by the production method according to this embodiment. The adhesive layer-forming base material refers to a composite material in which a latex composition is formed as an adhesive layer on the surface of the base material.
 以下、ラテックス組成物、ディップ成形体および接着剤層形成基材の製造方法の具体例を挙げる。 The following are specific examples of the method for producing the latex composition, the dip molded product, and the adhesive layer-forming substrate.
(ラテックス組成物の製造)
 ラテックス組成物は、ラテックスに架橋剤を添加することで得ることができる。
(Production of latex composition)
The latex composition can be obtained by adding a crosslinking agent to the latex.
 架橋剤としては、例えば、粉末硫黄、硫黄華、沈降硫黄、コロイド硫黄、表面処理硫黄、不溶性硫黄等の硫黄、あるいは塩化硫黄、二塩化硫黄、モルホリン・ジスルフィド、アルキルフェノール・ジスルフィド、カプロラクタムジスルフィド、含りんポリスルフィド、高分子多硫化物、2-(4'-モルホリノジチオ)ベンゾチアゾール等の硫黄含有化合物が挙げられる。これらの中では、硫黄が好ましく使用される。架橋剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。 As the cross-linking agent, for example, sulfur powder, sulfur flower, precipitated sulfur, colloidal sulfur, surface-treated sulfur, sulfur such as insoluble sulfur, or sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, caprolactam disulfide, phosphorus-containing phosphorus. Examples thereof include sulfur-containing compounds such as polysulfide, polymeric polysulfide, and 2-(4′-morpholinodithio)benzothiazole. Of these, sulfur is preferably used. The crosslinking agent may be used alone or in combination of two or more.
 架橋剤の含有量は、特に限定されないが、ゴムのラテックスに含まれるゴム100重量部に対して、好ましくは0.1~10重量部であり、より好ましくは0.2~3重量部である。架橋剤の含有量を当該範囲とすることにより、得られるディップ成形体の引張強度をより高めることができる。 The content of the cross-linking agent is not particularly limited, but is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 3 parts by weight with respect to 100 parts by weight of the rubber contained in the rubber latex. .. By setting the content of the cross-linking agent within the range, the tensile strength of the obtained dip-molded product can be further increased.
 また、ラテックス組成物は、さらに架橋促進剤を含有することが好ましい。架橋促進剤としては、ディップ成形において通常用いられるものが使用することができ、例えば、ジエチルジチオカルバミン酸、ジブチルジチオカルバミン酸、ジ-2-エチルヘキシルジチオカルバミン酸、ジシクロヘキシルジチオカルバミン酸、ジフェニルジチオカルバミン酸、ジベンジルジチオカルバミン酸等のジチオカルバミン酸類およびそれらの亜鉛塩、あるいは2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾール亜鉛、2-メルカプトチアゾリン、ジベンゾチアジル・ジスルフィド、2-(2,4-ジニトロフェニルチオ)ベンゾチアゾール、2-(N,N-ジエチルチオ・カルバイルチオ)ベンゾチアゾール、2-(2,6-ジメチル-4-モルホリノチオ)ベンゾチアゾール、2-(4'-モルホリノ・ジチオ)ベンゾチアゾール、4-モルホニリル-2-ベンゾチアジル・ジスルフィド、1,3-ビス(2-ベンゾチアジル・メルカプトメチル)ユリア等が挙げられるが、ジエチルジチオカルバミン酸亜鉛、2ジブチルジチオカルバミン酸亜鉛、2-メルカプトベンゾチアゾール亜鉛が好ましい。架橋促進剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。 Also, the latex composition preferably further contains a crosslinking accelerator. As the crosslinking accelerator, those usually used in dip molding can be used, and examples thereof include diethyldithiocarbamic acid, dibutyldithiocarbamic acid, di-2-ethylhexyldithiocarbamic acid, dicyclohexyldithiocarbamic acid, diphenyldithiocarbamic acid, dibenzyldithiocarbamic acid. Dithiocarbamic acids and their zinc salts, or 2-mercaptobenzothiazole, 2-mercaptobenzothiazole zinc, 2-mercaptothiazoline, dibenzothiazyl disulfide, 2-(2,4-dinitrophenylthio)benzothiazole, 2 -(N,N-diethylthiocarbaylthio)benzothiazole, 2-(2,6-dimethyl-4-morpholinothio)benzothiazole, 2-(4'-morpholinodithio)benzothiazole, 4-morphonylyl-2-benzothiazyl Examples thereof include disulfide and 1,3-bis(2-benzothiazyl.mercaptomethyl)urea, and zinc diethyldithiocarbamate, zinc didibutyldithiocarbamate, and zinc 2-mercaptobenzothiazole are preferable. The crosslinking accelerator may be used alone or in combination of two or more.
 架橋促進剤の含有量は、ゴムのラテックスに含まれるゴム100重量部に対して、好ましくは0.05~5重量部であり、より好ましくは0.1~2重量部である。架橋促進剤の含有量を当該範囲とすることにより、得られるディップ成形体の引張強度をより高めることができる。 The content of the crosslinking accelerator is preferably 0.05 to 5 parts by weight, more preferably 0.1 to 2 parts by weight, based on 100 parts by weight of the rubber contained in the rubber latex. By setting the content of the crosslinking accelerator in the range, the tensile strength of the obtained dip-molded product can be further increased.
 また、ラテックス組成物には、さらに酸化亜鉛を含有させることが好ましい。酸化亜鉛の含有量は、特に限定されないが、ゴムのラテックスに含まれるゴム100重量部に対して、好ましくは0.1~5重量部、より好ましくは0.2~2重量部である。酸化亜鉛の含有量を上記範囲とすることにより、乳化安定性を良好なものとしながら、得られるディップ成形体の引張強度をより高めることができる。 Further, it is preferable that the latex composition further contains zinc oxide. The content of zinc oxide is not particularly limited, but is preferably 0.1 to 5 parts by weight, and more preferably 0.2 to 2 parts by weight with respect to 100 parts by weight of the rubber contained in the rubber latex. By setting the content of zinc oxide in the above range, it is possible to further improve the tensile strength of the obtained dip-molded article while improving the emulsion stability.
 ラテックス組成物には、さらに、老化防止剤、分散剤、カーボンブラック、シリカ、タルク等の補強剤、炭酸カルシウムやクレー等の充填剤、紫外線吸収剤、可塑剤等の配合剤等を、必要に応じて配合することができる。 The latex composition further requires an antioxidant, a dispersant, a reinforcing agent such as carbon black, silica, talc, a filler such as calcium carbonate or clay, an ultraviolet absorber, a compounding agent such as a plasticizer, and the like. Can be blended accordingly.
 例えば老化防止剤としては、2,6-ジ-4-メチルフェノール、2,6-ジ-t-ブチルフェノール、ブチルヒドロキシアニソール、2,6-ジ-t-ブチル-α-ジメチルアミノ-p-クレゾール、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、スチレン化フェノール、2,2'-メチレン-ビス(6-α-メチル-ベンジル-p-クレゾール)、4,4'-メチレンビス(2,6-ジ-t-ブチルフェノール)、2,2'-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、アルキル化ビスフェノール、p-クレゾールとジシクロペンタジエンのブチル化反応生成物等の硫黄原子を含有しないフェノール系老化防止剤、あるいは2,2'-チオビス-(4-メチル-6-t-ブチルフェノール)、4,4'-チオビス-(6-t-ブチル-o-クレゾール)、2,6-ジ-t-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノール等のチオビスフェノール系老化防止剤、あるいはトリス(ノニルフェニル)ホスファイト、ジフェニルイソデシルホスファイト、テトラフェニルジプロピレングリコール・ジホスファイト等の亜燐酸エステル系老化防止剤、あるいはチオジプロピオン酸ジラウリル等の硫黄エステル系老化防止剤、あるいはフェニル-α-ナフチルアミン、フェニル-β-ナフチルアミン、p-(p-トルエンスルホニルアミド)-ジフェニルアミン、4,4'―(α,α-ジメチルベンジル)ジフェニルアミン、N,N-ジフェニル-p-フェニレンジアミン、N-イソプロピル-N'-フェニル-p-フェニレンジアミン、ブチルアルデヒド-アニリン縮合物等のアミン系老化防止剤、あるいは6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリン等のキノリン系老化防止剤、あるいは2,5-ジ-(t-アミル)ハイドロキノン等のハイドロキノン系老化防止剤等が挙げられる。これらの老化防止剤は、1種単独で、または2種以上を併用することができる。 For example, antiaging agents include 2,6-di-4-methylphenol, 2,6-di-t-butylphenol, butylhydroxyanisole, 2,6-di-t-butyl-α-dimethylamino-p-cresol. , Octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, styrenated phenol, 2,2'-methylene-bis(6-α-methyl-benzyl-p-cresol), 4 ,4'-methylenebis(2,6-di-t-butylphenol), 2,2'-methylene-bis(4-methyl-6-t-butylphenol), alkylated bisphenol, butyl of p-cresol and dicyclopentadiene Sulfur atom-free phenolic antioxidants such as chlorinated reaction products, 2,2'-thiobis-(4-methyl-6-t-butylphenol), 4,4'-thiobis-(6-t-butyl) -O-cresol), 2,6-di-t-butyl-4-(4,6-bis(octylthio)-1,3,5-triazin-2-ylamino)phenol, and other thiobisphenol antioxidants, Alternatively, phosphite-based antioxidants such as tris(nonylphenyl)phosphite, diphenylisodecylphosphite, tetraphenyldipropyleneglycol/diphosphite, sulfur ester-based antioxidants such as dilauryl thiodipropionate, or phenyl- α-naphthylamine, phenyl-β-naphthylamine, p-(p-toluenesulfonylamide)-diphenylamine, 4,4′-(α,α-dimethylbenzyl)diphenylamine, N,N-diphenyl-p-phenylenediamine, N- Amine-based antioxidants such as isopropyl-N'-phenyl-p-phenylenediamine and butyraldehyde-aniline condensate, or quinoline-based aging such as 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline Examples of the antioxidant include hydroquinone antiaging agents such as 2,5-di-(t-amyl)hydroquinone. These antioxidants may be used alone or in combination of two or more.
 老化防止剤の含有量は、ゴムのラテックスに含まれるゴム100重量部に対して、好ましくは0.05~10重量部であり、より好ましくは0.1~5重量部である。 The content of the antioxidant is preferably 0.05 to 10 parts by weight, and more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the rubber contained in the rubber latex.
 ラテックス組成物の調製方法は、特に限定されないが、例えば、ボールミル、ニーダー、ディスパー等の分散機を用いて、ゴムのラテックスに、架橋剤、および必要に応じて配合される各種配合剤を混合する方法や、上記の分散機を用いて、ゴムのラテックス以外の配合成分の水性分散液を調製した後、該水性分散液をゴムのラテックスに混合する方法等が挙げられる。 The method for preparing the latex composition is not particularly limited, but for example, using a dispersing machine such as a ball mill, a kneader, or a disperser, a rubber latex is mixed with a crosslinking agent, and various compounding agents to be mixed as necessary. Examples of the method include a method of preparing an aqueous dispersion of compounding ingredients other than the rubber latex using the above disperser, and then mixing the aqueous dispersion with the rubber latex.
 ラテックス組成物は、pHが7以上であることが好ましく、pHが7~13の範囲であればより好ましく、pHが8~12の範囲であればさらに好ましい。また、ラテックス組成物の固形分濃度は、15~65重量%の範囲にあることが好ましい。 The latex composition preferably has a pH of 7 or more, more preferably in the range of 7 to 13, and further preferably in the range of 8 to 12. Further, the solid content concentration of the latex composition is preferably in the range of 15 to 65% by weight.
 ラテックス組成物は、得られるディップ成形体の機械的特性をより高めるという観点から、ディップ成形に供する前に熟成(前架橋)させることが好ましい。前架橋する時間は、特に限定されず、前架橋の温度にも依存するが、好ましくは1~14日間であり、より好ましくは1~7日間である。なお、前架橋の温度は、好ましくは20~40℃である。 The latex composition is preferably aged (pre-crosslinked) before being subjected to dip molding from the viewpoint of further enhancing the mechanical properties of the obtained dip molded product. The time for pre-crosslinking is not particularly limited and depends on the temperature of pre-crosslinking, but is preferably 1 to 14 days, more preferably 1 to 7 days. The temperature of pre-crosslinking is preferably 20 to 40°C.
 そして、前架橋した後、ディップ成形に供されるまで、好ましくは10~30℃の温度で貯蔵することが好ましい。これは、これより高温のままの状態で貯蔵すると、得られるディップ成形体の引張強度が低下する場合があるからである。 After pre-crosslinking, it is preferable to store at a temperature of 10 to 30° C. until it is subjected to dip molding. This is because the tensile strength of the obtained dip-molded product may decrease if it is stored at a temperature higher than this.
(ディップ成形体の製造)
 ディップ成形体は、上記のラテックス組成物をディップ成形することによって得ることができる。ディップ成形は、ラテックス組成物に浸漬した型の表面にラテックス組成物を沈着させ、次に型をラテックス組成物から引き上げ、その後、型の表面に沈着したラテックス組成物を乾燥させるといった成形方法である。なお、ラテックス組成物に浸漬される前の型は予熱しておいてもよい。また、型をラテックス組成物に浸漬する前、または、型をラテックス組成物から引き上げた後、必要に応じて凝固剤を使用することができる。
(Manufacture of dip molding)
The dip-molded article can be obtained by dip-molding the above latex composition. Dip molding is a molding method in which the latex composition is deposited on the surface of the mold immersed in the latex composition, then the mold is pulled out of the latex composition, and then the latex composition deposited on the surface of the mold is dried. .. The mold may be preheated before being immersed in the latex composition. In addition, a coagulant can be used if necessary before the mold is dipped in the latex composition or after the mold is pulled up from the latex composition.
 凝固剤の使用方法の具体例としては、型を凝固剤溶液に浸漬してから、その型をラテックス組成物に浸漬する方法(アノード凝着浸漬法)や、先に型をラテックス組成物に浸漬してから型を凝固剤溶液に浸漬する方法(ティーグ凝着浸漬法)等があるが、厚みムラの少ないディップ成形体が得られる点で、アノード凝着浸漬法が好ましい。 Specific examples of the method of using the coagulant include a method of immersing the mold in a coagulant solution and then immersing the mold in a latex composition (anode coagulation dipping method), or a method in which the mold is first immersed in the latex composition. After that, there is a method of immersing the mold in a coagulant solution (Teag coagulation dipping method) and the like, but the anode coagulation dipping method is preferable from the viewpoint that a dip molded body with less thickness unevenness can be obtained.
 凝固剤の具体例としては、塩化バリウム、塩化カルシウム、塩化マグネシウム、塩化亜鉛、塩化アルミニウム等のハロゲン化金属、あるいは硝酸バリウム、硝酸カルシウム、硝酸亜鉛等の硝酸塩、あるいは酢酸バリウム、酢酸カルシウム、酢酸亜鉛等の酢酸塩、あるいは硫酸カルシウム、硫酸マグネシウム、硫酸アルミニウム等の硫酸塩等の水溶性多価金属塩である。中でも、カルシウム塩が好ましく、硝酸カルシウムがより好ましい。これらの水溶性多価金属塩は、1種単独で、または2種以上を併用することができる。 Specific examples of the coagulant include metal halides such as barium chloride, calcium chloride, magnesium chloride, zinc chloride and aluminum chloride, nitrates such as barium nitrate, calcium nitrate and zinc nitrate, barium acetate, calcium acetate and zinc acetate. And water-soluble polyvalent metal salts such as calcium sulfate, magnesium sulfate, and aluminum sulfate. Among them, calcium salt is preferable, and calcium nitrate is more preferable. These water-soluble polyvalent metal salts can be used alone or in combination of two or more.
 凝固剤は、好ましくは水溶液の状態で使用する。この水溶液は、さらにメタノール、エタノール等の水溶性有機溶媒や、ノニオン性界面活性剤を含有していてもよい。凝固剤の濃度は、水溶性多価金属塩の種類によっても異なるが、好ましくは5~50重量%、より好ましくは10~30重量%である。 The coagulant is preferably used in the form of an aqueous solution. This aqueous solution may further contain a water-soluble organic solvent such as methanol or ethanol, or a nonionic surfactant. Although the concentration of the coagulant varies depending on the type of the water-soluble polyvalent metal salt, it is preferably 5 to 50% by weight, more preferably 10 to 30% by weight.
 型をラテックス組成物から引き上げた後は、通常、加熱することにより型上において膜状に形成された沈着物を乾燥させる。乾燥条件は適宜選択すればよい。 After pulling up the mold from the latex composition, heating is usually performed to dry the deposit formed into a film on the mold. The drying conditions may be appropriately selected.
 次いで、加熱することにより型上に膜状に形成された沈着物を架橋させる。架橋時の加熱条件は、特に限定されないが、加熱温度としては60~150℃が好ましく、100~130℃がより好ましい。また、加熱時間としては、10~120分が好ましい。 Next, by heating, the deposit formed as a film on the mold is cross-linked. The heating conditions at the time of crosslinking are not particularly limited, but the heating temperature is preferably 60 to 150°C, more preferably 100 to 130°C. The heating time is preferably 10 to 120 minutes.
 加熱の方法は、特に限定されないが、オーブンの中で温風をあてて加熱する方法や、赤外線を照射して加熱する方法等が挙げられる。 The heating method is not particularly limited, and examples thereof include a method of heating by applying warm air in an oven and a method of heating by irradiating infrared rays.
 また、ラテックス組成物を沈着させた型を加熱する前、あるいは加熱した後に、水溶性不純物(例えば、余剰の界面活性剤や凝固剤)を除去するために、型を水または温水で洗浄することが好ましい。温水を用いる場合、その温水の温度は、好ましくは40~80℃であり、より好ましくは50~70℃である。 Also, before or after heating the mold on which the latex composition is deposited, the mold should be washed with water or warm water to remove water-soluble impurities (for example, excess surfactant or coagulant). Is preferred. When using warm water, the temperature of the warm water is preferably 40 to 80°C, more preferably 50 to 70°C.
 架橋後のディップ成形体は、型から脱着される。脱着方法としては、手で型から剥がす方法や、水圧または圧縮空気圧力により型から剥がす方法等が採用される。架橋途中のディップ成形体が脱着に対する十分な強度を有していれば、架橋途中で脱着し、引き続き、その後の架橋を継続してもよい。 After cross-linking, the dip-molded product is removed from the mold. As the desorption method, a method of peeling from the mold by hand, a method of peeling from the mold by water pressure or compressed air pressure, and the like are adopted. As long as the dip-molded article during crosslinking has sufficient strength for desorption, it may be desorbed during the crosslinking and then the subsequent crosslinking may be continued.
 ディップ成形体としては、例えばゴム手袋が特に好適に製造される。ディップ成形体がゴム手袋である場合、ディップ成形体どうしの接触面における密着を防止するとともに手に対する着脱の際の滑りをよくするために、タルク、炭酸カルシウム等の無機微粒子または澱粉粒子等の有機微粒子を手袋表面に散布したり、微粒子を含有するエラストマー層を手袋表面に形成したり、あるいは手袋の表面層を塩素化したりするとよい。 As the dip molded body, for example, rubber gloves are particularly preferably manufactured. When the dip molded product is a rubber glove, organic particles such as talc, calcium carbonate, etc., or starch particles, etc. are used to prevent the dip molded products from sticking to each other at their contact surfaces and to improve the slippage when they are put on and taken off from the hand. Fine particles may be dispersed on the surface of the glove, an elastomer layer containing fine particles may be formed on the surface of the glove, or the surface layer of the glove may be chlorinated.
 また、ディップ成形体としては、上記ゴム手袋の他にも、哺乳瓶用乳首、スポイト、チューブ、水枕、バルーンサック、カテーテル、コンドーム等の医療用品や、風船、人形、ボール等の玩具、あるいは加圧成形用バッグ、ガス貯蔵用バッグ等の工業用品、あるいは指サック等の各種ゴム成形体に適用することができる。 In addition to the above rubber gloves, the dip-molded article may be a medical item such as a baby bottle nipple, a dropper, a tube, a water pillow, a balloon sack, a catheter, a condom, a toy such as a balloon, a doll, a ball, or It can be applied to industrial products such as pressure molding bags and gas storage bags, and various rubber moldings such as finger cots.
 また、ディップ成形体の厚さは用途や製品に応じたものとなり、例えば0.03~0.50mm程度の厚さで成形される。 Also, the thickness of the dip molded body depends on the application and product, and is molded, for example, with a thickness of about 0.03 to 0.50 mm.
(接着剤層形成基材)
 本実施形態に係る接着剤層形成基材は、上記ラテックス組成物を用いて形成される接着剤層を基材の表面に形成して得られる。
(Adhesive layer forming base material)
The adhesive layer-forming substrate according to the present embodiment is obtained by forming an adhesive layer formed using the above latex composition on the surface of the substrate.
 本実施形態でいう基材は、特に限定されないが、例えば、繊維基材を用いることができる。繊維基材を構成する繊維の種類は、特に限定されず、例えば、ビニロン繊維、ポリエステル繊維、ナイロン、アラミド(芳香族ポリアミド)等のポリアミド繊維、ガラス繊維、綿、レーヨン等が挙げられる。これらは、その用途に応じて適宜選定することができる。 The base material in the present embodiment is not particularly limited, but a fiber base material can be used, for example. The type of fibers constituting the fiber base material is not particularly limited, and examples thereof include vinylon fibers, polyester fibers, nylon, polyamide fibers such as aramid (aromatic polyamide), glass fibers, cotton, rayon and the like. These can be appropriately selected according to the application.
 繊維基材の形状は、特に限定されないが、例えば、ステープル、フィラメント、コード状、ロープ状、織布(帆布等)等を挙げることができ、その用途に応じて適宜選定することができる。例えば、接着剤層形成基材は、接着剤層を介して、ゴムと接着することにより、基材-ゴム複合体として用いることができる。基材-ゴム複合体としては、特に限定されないが、例えば、繊維基材としてコード状のものを用いた芯線入りのゴム製歯付きベルトや、帆布等の基布状の繊維基材を用いたゴム製歯付きベルト等が挙げられる。 The shape of the fiber base material is not particularly limited, but examples thereof include staples, filaments, cords, ropes, woven fabrics (sailcloths, etc.), etc., and can be appropriately selected according to the application. For example, the adhesive layer-forming substrate can be used as a substrate-rubber composite by adhering it to rubber via the adhesive layer. The base material-rubber composite is not particularly limited, but for example, a rubber toothed belt with a core wire using a cord-shaped fiber base material or a base cloth-shaped fiber base material such as canvas is used. Examples thereof include rubber toothed belts.
 基材-ゴム複合体を得る方法としては、特に限定されないが、例えば、浸漬処理等によりラテックス組成物を基材に付着させて接着剤層形成基材を得、次いで、接着剤層形成基材をゴム上に載置し、これを加熱および加圧する方法が挙げられる。 The method for obtaining the base material-rubber composite is not particularly limited, but for example, the latex composition is adhered to the base material by dipping treatment or the like to obtain an adhesive layer forming base material, and then the adhesive layer forming base material. Is placed on rubber, and heating and pressurizing it.
 上記方法での加圧は、プレス成形機、金属ロール、あるいは射出成形機等を用いて行うことができる。また、加圧の圧力は、好ましくは0.5~20MPa、より好ましくは2~10MPaである。また、加熱の温度は、好ましくは130~300℃、より好ましくは150~250℃である。また、上記方法での加熱および加圧の処理時間は、好ましくは1~180分、より好ましくは5~120分である。加熱および加圧する方法によっては、ゴムの成形、および接着剤層形成基材とゴムとの接着を、同時に行なうことができる。なお、加圧に用いるプレス成形機の型の内面やロールの表面には、目的とする基材-ゴム複合体のゴムに所望の表面形状を付与するための型を形成させておくことが好ましい。 The pressurization in the above method can be performed using a press molding machine, a metal roll, an injection molding machine, or the like. The pressure applied is preferably 0.5 to 20 MPa, more preferably 2 to 10 MPa. The heating temperature is preferably 130 to 300°C, more preferably 150 to 250°C. The heating and pressurizing time in the above method is preferably 1 to 180 minutes, more preferably 5 to 120 minutes. Depending on the method of heating and pressurizing, the molding of rubber and the adhesion of the adhesive layer-forming base material to the rubber can be performed simultaneously. In addition, it is preferable to form a mold for imparting a desired surface shape to the rubber of the target base material-rubber composite on the inner surface of the mold of the press molding machine used for pressurization or the surface of the roll. ..
 また、基材-ゴム複合体の一態様として、基材-ゴム-基材複合体を挙げることができる。基材-ゴム-基材複合体は、例えば、基材(2種以上の基材の複合体であってもよい)と基材-ゴム複合体とを組み合わせて形成することができる。具体的には、基材としての芯線、ゴムおよび基材としての基布を重ね(このとき、芯線および基布には、ラテックス組成物を適宜付着させて接着剤層形成基材としておく)、加熱しながら加圧することにより、基材-ゴム-基材複合体を得ることができる。 In addition, a base material-rubber-base material composite material can be mentioned as one embodiment of the base material-rubber composite material. The base material-rubber-base material composite can be formed, for example, by combining a base material (which may be a composite of two or more kinds of base materials) and a base material-rubber composite. Specifically, a core wire as a base material, rubber and a base cloth as a base material are stacked (at this time, a latex composition is appropriately adhered to the core wire and the base cloth as an adhesive layer forming base material), A base material-rubber-base material composite can be obtained by applying pressure while heating.
 本実施形態に係る接着剤層形成基材を用いて得られる基材-ゴム複合体は、機械的強度、耐摩耗性および耐水性に優れたものであり、そのため、平ベルト、Vベルト、Vリブドベルト、丸ベルト、角ベルト、歯付ベルト等のベルトとして好適に用いることができる。また、本実施形態に係る接着剤層形成基材を用いて得られる基材-ゴム複合体は、耐油性に優れ、油中ベルトとして好適に用いることができる。さらに、本実施形態に係る接着剤層形成基材を用いて得られる基材-ゴム複合体は、ホース、チューブ、ダイアフラム等にも好適に使用できる。ホースとしては、単管ゴムホース、多層ゴムホース、編上式補強ホース、布巻式補強ホース等が挙げられる。ダイアフラムとしては、平形ダイアフラム、転動形ダイアフラム等が挙げられる。 The base material-rubber composite obtained by using the adhesive layer-forming base material according to the present embodiment is excellent in mechanical strength, abrasion resistance and water resistance. Therefore, the flat belt, V belt, V It can be suitably used as a belt such as a ribbed belt, a round belt, a square belt, and a toothed belt. Further, the base material-rubber composite obtained by using the adhesive layer-forming base material according to the present embodiment has excellent oil resistance and can be suitably used as an in-oil belt. Further, the base material-rubber composite obtained by using the adhesive layer-forming base material according to the present embodiment can be suitably used for hoses, tubes, diaphragms and the like. Examples of the hose include a single tube rubber hose, a multi-layer rubber hose, a braided reinforcing hose, and a cloth wound reinforcing hose. Examples of the diaphragm include a flat diaphragm and a rolling diaphragm.
 さらに、本実施形態に係る接着剤層形成基材を用いて得られる基材-ゴム複合体は、上記の用途以外にも、シール、ゴムロール等の工業用製品として用いることができる。シールとしては、回転用、揺動用、往復動等の運動部位シールと固定部位シールが挙げられる。運動部位シールとしては、オイルシール、ピストンシール、メカニカルシール、ブーツ、ダストカバー、ダイアフラム、アキュムレータ等が挙げられる。固定部位シールとしては、Oリング、各種ガスケット等が挙げられる。ゴムロールとしては、印刷機器、コピー機器等のOA機器の部品であるロール、あるいは紡糸用延伸ロール、紡績用ドラフトロール等の繊維加工用ロール、あるいはブライドルロール、スナバロール、ステアリングロール等の製鉄用ロール等が挙げられる。 Furthermore, the base material-rubber composite obtained using the adhesive layer-forming base material according to the present embodiment can be used as an industrial product such as a seal or a rubber roll, in addition to the above-mentioned applications. Examples of the seal include a rotating part, a swinging part, a reciprocating part, and a fixed part seal. Examples of the moving part seal include an oil seal, a piston seal, a mechanical seal, a boot, a dust cover, a diaphragm, an accumulator and the like. Examples of the fixed part seal include an O-ring and various gaskets. As the rubber roll, a roll that is a part of OA equipment such as a printing machine or a copying machine, a fiber processing roll such as a drawing roll for spinning, a draft roll for spinning, or a steelmaking roll such as a bridle roll, a snubber roll, or a steering roll. Are listed.
(作用)
 次に、本実施形態に係るラテックスの製造方法の作用を説明する。
(Action)
Next, the operation of the method for producing latex according to this embodiment will be described.
 本実施形態に係るラテックスの製造方法では、粗乳化工程を含む原料の乳化工程において撹拌装置3の撹拌タンク30内に貯留したゴム組成物(ゴム溶液+乳化剤水溶液)を平板状の撹拌翼50で撹拌して混合する。 In the method for producing latex according to the present embodiment, the rubber composition (rubber solution+emulsifier aqueous solution) stored in the stirring tank 30 of the stirring device 3 in the emulsification step of the raw material including the rough emulsification step is performed by the flat stirring blade 50. Stir to mix.
 本実施形態に係る撹拌翼50によれば、前述のごとく乳化液を上下方向に循環させる循環流を生じさせることができる。このため、比重が比較的軽く溶液の液面近傍に浮遊して停滞しやすいゴムを上下に循環させることで溶液中に効果的に分散させることができ、ゴムが均質な状態に分散した乳化液を得ることができる。したがって乳化工程においてゴム組成物を良好な状態に乳化することができるため、凝集物の少ない高品質のラテックスを製造することができる。 With the stirring blade 50 according to the present embodiment, it is possible to generate a circulation flow that circulates the emulsion in the vertical direction as described above. Therefore, it is possible to effectively disperse the rubber that has a relatively low specific gravity and floats near the liquid surface of the solution and easily stagnates in the solution in the vertical direction. Can be obtained. Therefore, since the rubber composition can be emulsified in a good state in the emulsification step, it is possible to produce a high-quality latex with few aggregates.
 また、本実施形態に係る撹拌翼50は、格子状の構造を有する格子部54により、上下に循環する溶液中のゴムが剪断・細分化され、さら格子部54の回転方向後方に発生する微細渦にゴムが巻き込まれて混合される。このため、ゴムの微細化および混合が促進し、良好な乳化状態を得やすくなるとともに凝集物を少なくすることができる。 In addition, in the stirring blade 50 according to the present embodiment, the rubber in the solution that circulates vertically is sheared and subdivided by the lattice portion 54 having the lattice structure, and the fine particles generated behind the lattice portion 54 in the rotation direction. The rubber is caught in the vortex and mixed. For this reason, miniaturization and mixing of the rubber are promoted, a good emulsified state is easily obtained, and aggregates can be reduced.
 また、本実施形態の撹拌翼50は、パドル部53の下端部が撹拌タンク30内の底部に近接しているため、溶液を底部に残存させず循環流に乗せて撹拌することができる。このため、上下の循環流が的確に発生してゴムが分散され、良好な乳化液を得ることができる。 Further, in the stirring blade 50 of the present embodiment, since the lower end portion of the paddle portion 53 is close to the bottom portion of the stirring tank 30, the solution can be put on the circulation flow without being left at the bottom portion and stirred. Therefore, the upper and lower circulating flows are appropriately generated, the rubber is dispersed, and a good emulsion can be obtained.
 また、バッフル板90は、パドル部53により径方向外方に押し出された溶液が撹拌翼50の回転に伴って回転することを抑制するとともに上昇流を発生させるように作用する。これによっても上下の循環流が的確に発生してゴムが分散され、良好な乳化液を得ることができるものとなっている。 Further, the baffle plate 90 acts to suppress the solution extruded radially outward by the paddle portion 53 from rotating with the rotation of the stirring blade 50 and to generate an upward flow. Also by this, the upper and lower circulating flows are appropriately generated, the rubber is dispersed, and a good emulsion can be obtained.
 また、本実施形態に係るラテックスの製造方法は、脱溶媒工程においても撹拌翼50によって乳化液を撹拌することにより、脱溶媒中の乳化液中のゴムは上下に循環して撹拌されてゴムが十分に混合されるため、脱溶媒後に得られるラテックスは、凝集物の少ない高品質なものとなる。 Further, in the method for producing a latex according to the present embodiment, even in the desolvation step, the emulsified liquid is stirred by the stirring blade 50, so that the rubber in the emulsified liquid being desolvated is circulated up and down to be agitated. Because of sufficient mixing, the latex obtained after desolvation will be of high quality with few aggregates.
 なお、上記の実施形態では、粗乳化工程を含めた乳化工程および脱溶媒工程を1つの撹拌タンク30で行っているが、2つの撹拌タンク30を用意し、乳化工程と脱溶媒工程とを異なる撹拌タンク30で行うようにしてもよい。また、脱溶媒工程で撹拌翼50による撹拌を行わない場合には、撹拌タンク30で得た乳化液を脱溶媒専用のタンクに移して脱溶媒工程を行うようにしてもよい。 In the above embodiment, the emulsification process including the rough emulsification process and the desolvation process are performed by one stirring tank 30, but two stirring tanks 30 are prepared and the emulsification process and the desolvation process are different. Alternatively, the stirring tank 30 may be used. When the stirring blade 50 does not perform stirring in the desolvation step, the emulsified liquid obtained in the stirring tank 30 may be transferred to a tank dedicated to desolvation to perform the desolvation step.
(撹拌翼の他の実施形態)
 次に、図4および図5を参照して、上記撹拌手段40を構成する撹拌翼50の他の実施形態を説明する。他の実施形態の各図においては上記実施形態と同一の構成要素には同一の符号を付し、その説明を省略する。
(Other embodiment of stirring blade)
Next, with reference to FIG. 4 and FIG. 5, another embodiment of the stirring blade 50 constituting the stirring means 40 will be described. In each drawing of other embodiments, the same components as those in the above-mentioned embodiment are designated by the same reference numerals, and the description thereof will be omitted.
 図4は、他の実施形態の撹拌翼60を備えた撹拌タンク(容器)30Bを示している。撹拌翼60は、全体的には平板状で矩形形状を有しており、かつ回転軸41を対称線として左右対称の形状を有している。撹拌翼60は、下部の矩形状のパドル部63と、パドル部63から上方に延びる左右の矩形状の翼部64a、64bと、を有している。回転軸41はパドル部63の幅方向中心を貫通するようにしてパドル部63に固定されており、撹拌翼60は回転軸41とともに回転する。 FIG. 4 shows a stirring tank (container) 30B including a stirring blade 60 according to another embodiment. The stirring blade 60 has a flat plate shape and a rectangular shape as a whole, and has a bilaterally symmetrical shape with the rotating shaft 41 as a symmetry line. The stirring blade 60 has a lower rectangular paddle portion 63 and right and left rectangular blade portions 64a and 64b extending upward from the paddle portion 63. The rotating shaft 41 is fixed to the paddle part 63 so as to penetrate the center of the paddle part 63 in the width direction, and the stirring blade 60 rotates together with the rotating shaft 41.
 左右の翼部64a、64bは、内側(回転軸41側)の縁部65をそれぞれ有し、これら縁部65は回転軸41と平行に形成されている。また、左右の翼部64a、64bは外側の縁部66をそれぞれ有し、これら縁部66は、凹凸が繰り返す鋸歯状に形成されている。内側の縁部65と回転軸41との間、および外側の縁部66とバッフル板90との間は、それぞれ所定の間隔が空くように構成されている。 The left and right wing portions 64a, 64b each have an inner side (rotating shaft 41 side) edge portion 65, and these edge portions 65 are formed parallel to the rotating shaft 41. The left and right wings 64a and 64b each have an outer edge portion 66, and these edge portions 66 are formed in a sawtooth shape in which irregularities are repeated. A predetermined gap is formed between the inner edge portion 65 and the rotary shaft 41, and between the outer edge portion 66 and the baffle plate 90.
 撹拌翼60の全体高さに対するパドル部63および各翼部64a、64bが占める高さ寸法の割合は、各翼部64a、64bの方が6~7割程度であってパドル部63よりも大きいが、これには限定されない。 The ratio of the height dimension occupied by the paddle portion 63 and each blade portion 64a, 64b to the entire height of the stirring blade 60 is about 60 to 70% for each blade portion 64a, 64b, which is larger than the paddle portion 63. However, it is not limited to this.
 撹拌翼60は、前述の実施形態の撹拌翼50と同様に、回転方向と略直交して撹拌タンク30B内に貯留する乳化液等の溶液に対向する撹拌面62を有する。その撹拌面62の面積は撹拌翼60の面積に相当し、撹拌翼60は、撹拌面62の接液面積率、すなわち撹拌タンク30B内に貯留される溶液の断面積に対する撹拌面62の面積の比率が、10~60%となるように構成されている。 Like the stirring blade 50 of the above-described embodiment, the stirring blade 60 has a stirring surface 62 that is substantially orthogonal to the rotation direction and faces a solution such as an emulsion stored in the stirring tank 30B. The area of the stirring surface 62 corresponds to the area of the stirring blade 60, and the stirring blade 60 has a liquid contact area ratio of the stirring surface 62, that is, an area of the stirring surface 62 with respect to a cross-sectional area of the solution stored in the stirring tank 30B. The ratio is configured to be 10 to 60%.
 図5は、撹拌翼70を備えた撹拌タンク(容器)30Cを示している。撹拌翼70は、図4に示した撹拌翼60と同一の形状を有しているが、その大きさを変更した変更例である。したがって撹拌翼60と同一の構成要素には同一の符号を付し、その説明を省略する。 FIG. 5 shows a stirring tank (container) 30C equipped with a stirring blade 70. The stirring blade 70 has the same shape as the stirring blade 60 shown in FIG. 4, but is a modification in which the size thereof is changed. Therefore, the same components as those of the stirring blade 60 are designated by the same reference numerals, and the description thereof will be omitted.
 図5に示す変更例の撹拌翼70は、図4に示した撹拌翼60よりも面積すなわち撹拌面72の面積が例えば10~30%程度大きいものである。例えば、撹拌翼60の撹拌面62の接液面積率が15%程度であった場合、撹拌翼70が有する撹拌面72の接液面積率は45%程度である。 The stirring blade 70 of the modified example shown in FIG. 5 is larger in area than the stirring blade 60 shown in FIG. 4, that is, the area of the stirring surface 72 is, for example, about 10 to 30%. For example, when the liquid contact area ratio of the stirring surface 62 of the stirring blade 60 is about 15%, the liquid contact area ratio of the stirring surface 72 of the stirring blade 70 is about 45%.
 他の実施形態に係る上記平板状の撹拌翼60、70によれば、撹拌翼50の場合と同様に、撹拌する溶液に上下方向に循環する循環流を生じさせることができ、比重が比較的軽く溶液の液面近傍に浮遊して停滞しやすいゴムを上下に循環させて均質な状態に分散させることができる。したがって凝集物の少ない高品質のラテックスを製造することができる。 According to the flat plate-shaped stirring blades 60 and 70 according to another embodiment, as in the case of the stirring blades 50, it is possible to generate a circulating flow that circulates vertically in the solution to be stirred, and has a relatively high specific gravity. It is possible to circulate rubber, which floats near the liquid surface of the solution and easily stagnates, up and down to disperse it in a homogeneous state. Therefore, it is possible to produce a high-quality latex with few aggregates.
 次に、本発明の実施例および比較例を説明する。なお、本発明は以下の実施例に限られるものではない。 Next, examples and comparative examples of the present invention will be described. The present invention is not limited to the examples below.
[実施例1]
(ゴム溶液の製造)
 図1に示すゴム溶液タンク1内に85部のシクロヘキサン(有機溶媒)を貯留した後、重量平均分子量が1,300,000のイソプレン重合体(合成ゴム:商品名「NIPOL IR2200L」、日本ゼオン(株)製、イソプレンの単独重合体、シス結合単位量98%)15部を投入し、ゴム溶液タンク1内で撹拌しながら温度を60℃に昇温して溶解し、イソプレン重合体のシクロヘキサン溶液からなるゴム溶液(a)を調製した。
[Example 1]
(Production of rubber solution)
After storing 85 parts of cyclohexane (organic solvent) in the rubber solution tank 1 shown in FIG. 1, an isoprene polymer having a weight average molecular weight of 1,300,000 (synthetic rubber: trade name “NIPOL IR2200L”, Nippon Zeon ( Co., Ltd., isoprene homopolymer, cis bond unit amount 98%) 15 parts, and the temperature is raised to 60° C. with stirring in the rubber solution tank 1 to dissolve, and a cyclohexane solution of the isoprene polymer is obtained. A rubber solution (a) was prepared.
(乳化剤水溶液の製造)
 図1に示す乳化剤タンク2内に、ロジン酸ナトリウム塩10部およびドデシルベンゼンスルホン酸ナトリウム塩5部を水と混合し、濃度2.3重量%のアニオン性界面活性剤水溶液を乳化剤水溶液(b)として調製した後、60℃に昇温した。
(Production of emulsifier aqueous solution)
In an emulsifier tank 2 shown in FIG. 1, 10 parts of rosin acid sodium salt and 5 parts of dodecylbenzenesulfonic acid sodium salt are mixed with water, and an aqueous solution of anionic surfactant having a concentration of 2.3% by weight is added to the emulsifier aqueous solution (b). Then, the temperature was raised to 60°C.
(粗乳化工程)
 次いで、上記シクロヘキサン溶液からなるゴム溶液(a)と、上記アニオン性界面活性剤水溶液からなる乳化剤水溶液(b)とを、重量比で1:1となるように、撹拌タンク30内に供給した後、接液面積率が30%の撹拌翼50で30分間撹拌し、粗乳化した。
(Coarse emulsification process)
Then, the rubber solution (a) composed of the cyclohexane solution and the emulsifier aqueous solution (b) composed of the anionic surfactant aqueous solution were fed into the stirring tank 30 in a weight ratio of 1:1. Then, the mixture was stirred for 30 minutes with a stirring blade 50 having a liquid contact area ratio of 30% to coarsely emulsify.
(循環乳化工程)
 次いで、得られた粗乳化液を撹拌翼50で撹拌しながら、乳化機4を用いて循環数が2回となるように循環管14を循環させて循環乳化し、乳化液(c)を得た。なお、循環数は、「乳化機4による流速(L/HR)÷L×HR(L:粗乳化液量、HR:運転時間)」にて算出した。また、乳化機4には、商品名「マイルダーMDN310」(太平洋機工株式会社製)を用いた。循環乳化が終了した後、撹拌タンク30内で乳化液を20分間静置して液面を観察したが、浮遊物は存在していなかった。
(Circulating emulsification process)
Next, while stirring the obtained crude emulsion with the stirring blade 50, the circulation pipe 14 is circulated using the emulsifier 4 so that the number of circulation is two, and the emulsion is circulated to obtain an emulsion (c). It was The circulation number was calculated by “flow rate (L/HR)/L×HR (L: amount of coarse emulsion, HR: operating time)”. Further, as the emulsifying machine 4, a trade name “Milder MDN310” (manufactured by Taiheiyo Kiko Co., Ltd.) was used. After the circulation emulsification was completed, the emulsion was allowed to stand for 20 minutes in the stirring tank 30 to observe the liquid surface, but no suspended matter was present.
(脱溶媒工程)
 次いで、バルブ7を開けて減圧ポンプ5を作動させ、乳化液(c)を撹拌翼50で撹拌しながら、撹拌タンク30内を-0.01~-0.09MPa(ゲージ圧)に減圧するとともに80℃に加熱し、これによりシクロヘキサンを蒸留して除去し、撹拌タンク30内に合成イソプレン重合体の水分散液(d)を得た。
(Desolvation step)
Next, the valve 7 is opened and the decompression pump 5 is operated to reduce the pressure in the stirring tank 30 to −0.01 to −0.09 MPa (gauge pressure) while stirring the emulsion (c) with the stirring blades 50. The mixture was heated to 80° C., whereby cyclohexane was distilled off, and an aqueous dispersion (d) of the synthetic isoprene polymer was obtained in the stirring tank 30.
 シクロヘキサンを除去している最中、撹拌タンク30内を観察していたが、発泡はほとんど観察されなかった。また、水分散液(d)を撹拌タンク30から抜き出した後、撹拌タンク30の内壁や撹拌翼50に付着した凝固物を回収し、その回収物の重量を測定したところ、0.01部以下であった。 While removing cyclohexane, the inside of the stirring tank 30 was observed, but almost no foaming was observed. In addition, after the aqueous dispersion (d) was extracted from the stirring tank 30, the solidified matter adhered to the inner wall of the stirring tank 30 and the stirring blade 50 was collected, and the weight of the collected product was measured. Met.
(遠心分離工程)
 次いで、撹拌タンク30から抜き出して得られた水分散液(d)を、遠心分離機を用いて遠心分離し、軽液を固形分濃度60重量%の合成ポリイソプレンラテックス(e)として得た。
(Centrifugation process)
Next, the aqueous dispersion (d) obtained by extracting from the stirring tank 30 was centrifuged using a centrifuge to obtain a light liquid as a synthetic polyisoprene latex (e) having a solid content concentration of 60% by weight.
(ディップ成形用のラテックス組成物の製造)
 以上のようにして得た合成ポリイソプレンラテックス(e)を撹拌しながら、5重量%のジブチルジチオカルバミン酸ナトリウム水溶液を添加した(添加量は、合成ポリイソプレン100部に対して、ジブチルジチオカルバミン酸ナトリウム0.4部とした)。
(Production of latex composition for dip molding)
While stirring the synthetic polyisoprene latex (e) obtained as described above, a 5 wt% aqueous solution of sodium dibutyldithiocarbamate was added (the addition amount was 0 parts of sodium dibutyldithiocarbamate per 100 parts of the synthetic polyisoprene. .4).
 一方、スチレン-マレイン酸モノ-sec-ブチルエステル-マレイン酸モノメチルエステル重合体(商品名:Scripset550、Hercules社製)を、水酸化ナトリウムを用い、重合体中のカルボキシル基を100%中和して、分散剤(f)としてのナトリウム塩水溶液(濃度10重量%)を調製した。 On the other hand, a styrene-maleic acid mono-sec-butyl ester-maleic acid monomethyl ester polymer (trade name: Scripset550, manufactured by Hercules) was neutralized with 100% of the carboxyl groups in the polymer using sodium hydroxide. Then, a sodium salt aqueous solution (concentration: 10% by weight) as a dispersant (f) was prepared.
 次いで、分散剤(f)を、合成ポリイソプレンラテックス(e)100部に対して、固形分換算で0.6部になるようにして添加して混合し、この混合物を撹拌しながら、混合物中の合成ポリイソプレン100部に対して、固形分換算で、酸化亜鉛1.5部、硫黄1.5部、老化防止剤(商品名:Wingstay L、グッドイヤー社製)2部、ジエチルジチオカルバミン酸亜鉛0.35部、メルカプトベンゾチアゾール亜鉛塩0.3部となるように、これら配合剤の水分散液を添加した。この後、さらに水酸化カリウム水溶液を添加してpHを10.5に調製した後、固形分濃度が40%となるように蒸留水を添加し、ディップ成形用のラテックス組成物(g)を得た。その後、得られたラテックス組成物(g)を、25℃で48時間熟成した。 Then, the dispersant (f) was added to 100 parts of the synthetic polyisoprene latex (e) so as to be 0.6 part in terms of solid content and mixed, and the mixture was stirred while stirring in the mixture. 1.5 parts of zinc oxide, 1.5 parts of sulfur, 1.5 parts of sulfur, 2 parts of anti-aging agent (trade name: Wingstay L, manufactured by Goodyear), and zinc diethyldithiocarbamate based on 100 parts of synthetic polyisoprene of 0. An aqueous dispersion of these compounding agents was added so that the amount was 0.35 part and the mercaptobenzothiazole zinc salt was 0.3 part. Thereafter, an aqueous potassium hydroxide solution was further added to adjust the pH to 10.5, and then distilled water was added so that the solid content concentration became 40% to obtain a latex composition (g) for dip molding. It was Then, the obtained latex composition (g) was aged at 25° C. for 48 hours.
(ディップ成形体の製造)
 表面がすり加工されたガラス型(直径約5cm、すり部長さ約15cm)を洗浄し、70℃のオーブン内で予備加熱した後、そのガラス型を、16重量%の硝酸カルシウムおよび0.05重量%のポリオキシエチレンラウリルエーテル(商品名:エマルゲン109P、花王(株)製)からなる凝固剤水溶液に5秒間浸漬し、取り出した。
(Manufacture of dip molding)
The surface of the glass mold (about 5 cm in diameter and about 15 cm in length of the ground portion) was ground and preheated in an oven at 70° C., and then the glass mold was treated with 16% by weight of calcium nitrate and 0.05% by weight. % Polyoxyethylene lauryl ether (trade name: Emulgen 109P, manufactured by Kao Corporation) was immersed in an aqueous solution of a coagulant for 5 seconds and then taken out.
 次いで、凝固剤で被覆された上記ガラス型を70℃のオーブン内で乾燥した。その後、凝固剤で被覆されたガラス型をオーブンから取り出し、25℃の上記ラテックス組成物(g)に10秒間浸漬してから取り出し、室温で60分間乾燥した。これにより、ガラス型の表面に合成ポリイソプレンラテックス(e)がフィルム状に形成された。 Next, the glass mold coated with the coagulant was dried in an oven at 70°C. Then, the glass mold coated with the coagulant was taken out of the oven, immersed in the latex composition (g) at 25° C. for 10 seconds, taken out, and dried at room temperature for 60 minutes. As a result, the synthetic polyisoprene latex (e) was formed into a film on the surface of the glass mold.
 次いで、フィルム状の合成ポリイソプレンラテックス(e)が表面に形成されたガラス型をオーブン内に置き、25分間で50℃から60℃まで昇温して予備乾燥し、70℃のオーブン内に10分間置いてさらに乾燥した。そして、そのガラス型を60℃の温水中に2分間浸漬した後、室温で10分間風乾した。 Then, the glass mold having the film-like synthetic polyisoprene latex (e) formed on the surface thereof is placed in an oven, heated from 50° C. to 60° C. for 25 minutes to be pre-dried, and then placed in an oven at 70° C. for 10 minutes. Let stand for a minute to dry further. Then, the glass mold was immersed in warm water of 60° C. for 2 minutes and then air-dried at room temperature for 10 minutes.
 次いで、フィルム状の合成ポリイソプレンラテックス(e)で被覆されたガラス型をオーブン内に置き、100℃で60分間加硫を行った。加硫されたフィルムで被覆されたガラス型を室温まで冷却し、表面にタルクを散布した後、当該フィルムをガラス型から剥離し、合成ポリイソプレンラテックスからなるディップ成形体を得た。 Next, the glass mold coated with the film-shaped synthetic polyisoprene latex (e) was placed in an oven and vulcanized at 100° C. for 60 minutes. The glass mold covered with the vulcanized film was cooled to room temperature, talc was sprinkled on the surface, and then the film was peeled from the glass mold to obtain a dip-molded article made of synthetic polyisoprene latex.
[実施例2]
 循環乳化工程を、撹拌翼50に代えて図4に示した撹拌翼60(接液面積率:15%)を備えた撹拌タンク30Bを用いて行った以外は、実施例1と同様にしてディップ成形体を得た。
[Example 2]
Dip in the same manner as in Example 1 except that the circulation emulsification step was performed using the stirring tank 30B equipped with the stirring blade 60 (wetted area ratio: 15%) shown in FIG. 4 instead of the stirring blade 50. A molded body was obtained.
[実施例3]
 循環乳化工程を、撹拌翼50に代えて図5に示した撹拌翼70(接液面積率:45%)を備えた撹拌タンク30Cを用いて行った以外は、実施例1と同様にしてディップ成形体を得た。
[Example 3]
Dip in the same manner as in Example 1 except that the circulating emulsification step was performed using the stirring tank 30C equipped with the stirring blade 70 (wetted area ratio: 45%) shown in FIG. 5 instead of the stirring blade 50. A molded body was obtained.
[実施例4]
 脱溶媒工程を、撹拌翼50に代えて図4に示した撹拌翼60(接液面積率:15%)を備えた撹拌タンク30Bを用いて行った以外は、実施例1と同様にしてディップで成形体を得た。
[Example 4]
Dip in the same manner as in Example 1 except that the desolvation step was performed using a stirring tank 30B equipped with a stirring blade 60 (wetted area ratio: 15%) shown in FIG. 4 instead of the stirring blade 50. A molded body was obtained with.
[実施例5]
 脱溶媒工程を、撹拌翼50に代えて図6に示す2段パドル型の撹拌翼110(接液面積率:5%)を備えた撹拌タンク100を用いて行った以外は、実施例1と同様にしてディップ成形体を得た。
[Example 5]
Example 1 except that the desolvation step was performed using a stirring tank 100 equipped with a two-stage paddle type stirring blade 110 (wetted area ratio: 5%) shown in FIG. 6 instead of the stirring blade 50. Similarly, a dip molded body was obtained.
 図6に示す撹拌タンク100は、タンク本体101および図示せぬ蓋体を備え、また、前述のバッフル板90と同様の複数のバッフル板109を備えている。タンク本体101内には2つの撹拌翼110が配設され、それら撹拌翼110は回転軸104に上下方向に所定の間隔をあけて固定されている。 The stirring tank 100 shown in FIG. 6 includes a tank body 101 and a lid (not shown), and also includes a plurality of baffle plates 109 similar to the baffle plate 90 described above. Two stirring blades 110 are arranged in the tank main body 101, and these stirring blades 110 are fixed to the rotating shaft 104 at predetermined intervals in the vertical direction.
 撹拌翼110は本発明外の比較例に係る撹拌翼であって、回転軸104から左右方向に延びる板状であって、回転方向に対し概ね45°で傾斜し、かつ左右でその傾斜方向が互い違いとされた形状を有している。上記接液面積率:5%は、上下2つの撹拌翼110の接液面積率を合わせたものである。 The stirring blade 110 is a stirring blade according to a comparative example other than the present invention, has a plate shape extending in the left-right direction from the rotating shaft 104, is inclined at approximately 45° with respect to the rotation direction, and the inclination direction is right and left. It has a staggered shape. The liquid contact area ratio: 5% is the sum of the liquid contact area ratios of the two upper and lower stirring blades 110.
[比較例1]
 粗乳化工程、循環乳化工程、脱溶媒工程を、撹拌翼50に代えて図6に示した撹拌翼110を備えた撹拌タンク100を用いて行った以外は、実施例1と同様にしてディップ成形体を得た。
[Comparative Example 1]
Dip molding was performed in the same manner as in Example 1 except that the rough emulsification step, the circulation emulsification step, and the desolvation step were performed using the stirring tank 100 equipped with the stirring blade 110 shown in FIG. 6 instead of the stirring blade 50. Got the body
[比較例2]
 粗乳化工程、循環乳化工程、脱溶媒工程を、撹拌翼50に代えて図7に示すダブルリボン型の撹拌翼210(撹拌面の接液面積率:15%)を備えた撹拌タンク200を用いて行った以外は、実施例1と同様にしてディップ成形体を得た。
[Comparative example 2]
The rough tank emulsification step, the circulation emulsification step, and the desolvation step are replaced with the stirring blade 50, and the stirring tank 200 equipped with the double ribbon type stirring blade 210 (wetted area ratio of the stirring surface: 15%) shown in FIG. 7 is used. A dip-molded body was obtained in the same manner as in Example 1 except that the above procedure was performed.
 図7に示す撹拌タンク200は、タンク本体201および図示せぬ蓋体を備えている。撹拌翼210は、回転軸204により回転可能なようにタンク本体201内に配設されている。 The stirring tank 200 shown in FIG. 7 includes a tank main body 201 and a lid not shown. The stirring blade 210 is arranged in the tank body 201 so as to be rotatable by the rotating shaft 204.
 撹拌翼210は、本発明外の比較例に係る撹拌翼であって、2枚の帯状板からなるヘリカルリボン翼211が回転軸204を中心に軸方向からみて点対称となるように組み合わされて構成されたものである。2枚のヘリカルリボン翼211は、回転軸204の下端部が固定された底部フレーム221と、一対の側方フレーム222とによって互いに連結されている。 The stirring blade 210 is a stirring blade according to a comparative example other than the present invention, in which helical ribbon blades 211 composed of two strip-shaped plates are combined so as to be point-symmetrical when viewed in the axial direction around the rotation shaft 204. It is composed. The two helical ribbon wings 211 are connected to each other by a bottom frame 221 to which the lower end of the rotary shaft 204 is fixed and a pair of side frames 222.
 ヘリカルリボン翼211の撹拌面は螺旋面をなし、回転方向に対して傾斜している。上記接液面積率:15%は、2つのヘリカルリボン翼211の接液面積率を合わせたものである。 The agitating surface of the helical ribbon blade 211 forms a spiral surface and is inclined with respect to the rotation direction. The liquid contact area ratio: 15% is the sum of the liquid contact area ratios of the two helical ribbon blades 211.
 上記実施例1~5および比較例1、2の製造方法について表1にまとめるとともに、評価を表1に併記した。表1において「浮遊物」は、循環乳化が終了した後、撹拌タンク内で乳化液を20分間静置して液面を観察した際に浮遊物の状態を観察した結果を示している。また、表1において「凝集物」は、脱溶媒工程後の乳化液に残存していたゴム成分の量を示している。また、機械的強度は、得られたディップ成形体の機械的強度であって、以下のように測定した。 The manufacturing methods of Examples 1 to 5 and Comparative Examples 1 and 2 are summarized in Table 1, and the evaluation is also shown in Table 1. In Table 1, "floating matter" indicates the result of observing the state of the floating matter when the emulsion was left standing in the stirring tank for 20 minutes after the circulation emulsification was completed and the liquid level was observed. In Table 1, "aggregate" indicates the amount of the rubber component remaining in the emulsion after the desolvation step. The mechanical strength is the mechanical strength of the obtained dip-molded article, and was measured as follows.
 ASTM D624-00に基づいて、ディップ成形体を、23℃、相対湿度50%の恒温恒湿室で24時間以上放置した後、ダンベル(商品名「Die C」、ダンベル社製)で打ち抜き、測定用の試験片を作製した。そして、当該試験片をテンシロン万能試験機(商品名「RTG-1210」、A&D社製)で引張速度500mm/minで引っ張り、破断直前の引張強度(単位:MPa)、破断直前の引張伸び(単位:%)、引裂強度(単位:N/mm)を測定した。 Based on ASTM D624-00, the dip molding was left in a constant temperature and humidity room at 23°C and 50% relative humidity for 24 hours or more, then punched out with a dumbbell (product name "Die C", dumbbell company) and measured. A test piece was prepared. Then, the test piece was pulled at a tensile speed of 500 mm/min with a Tensilon universal tester (trade name "RTG-1210", manufactured by A&D Co.), tensile strength (unit: MPa) immediately before breaking, tensile elongation (unit: immediately before breaking) :%) and tear strength (unit: N/mm) were measured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(評価)
 表1に示すように、乳化工程および脱溶媒工程で乳化液を平板状の撹拌翼で撹拌・混合した実施例1~4においては、平板状の撹拌翼で撹拌していない比較例1、2よりも浮遊物および凝集物が少なかった。したがって本発明によれば乳化が良好に行われ、得られるラテックスは凝集物の量が少ない高品質なものになることが確かめられた。実施例5は循環乳化工程で平板状の撹拌翼を用いなかったことにより、実施例1~4に比べると凝集物の量が若干多く、したがって乳化工程および脱溶媒工程の両方で平板状の撹拌翼を用いることが好ましい。
(Evaluation)
As shown in Table 1, in Examples 1 to 4 in which the emulsified liquid was stirred and mixed by the flat plate stirring blades in the emulsification step and the desolvation step, Comparative Examples 1 and 2 in which the flat plate stirring blades were not stirred Less floating and aggregates. Therefore, according to the present invention, it was confirmed that the emulsification was satisfactorily performed and the obtained latex had a high quality with a small amount of aggregates. Example 5 did not use a plate-shaped stirring blade in the circulation emulsification step, so that the amount of aggregates was slightly larger than that of Examples 1 to 4, and therefore plate-shaped stirring was performed in both the emulsification step and the desolvation step. It is preferable to use wings.
 また、ディップ成形体の機械的強度に関しても、実施例1~5は比較例1、2よりも優れており、本発明で製造されるラテックスから製造されるディップ成形体が強度に優れたものになることが確かめられた。 Also, with respect to the mechanical strength of the dip-molded article, Examples 1 to 5 are superior to Comparative Examples 1 and 2, and the dip-molded article produced from the latex produced by the present invention has excellent strength. Was confirmed.
 本発明は、原料の乳化工程において良好な乳化状態を得ることができるため、品質の向上を図ることができるラテックスの製造方法として有用である。 The present invention is useful as a latex production method capable of improving the quality because a good emulsified state can be obtained in the emulsification step of a raw material.
3 撹拌装置
4 乳化機
30、30B、30C 撹拌タンク(容器)
40 撹拌手段
50、60、70 撹拌翼
52、62、72 撹拌面
54 格子部 
3 Stirrer 4 Emulsifier 30, 30B, 30C Stirrer tank (container)
40 stirring means 50, 60, 70 stirring blades 52, 62, 72 stirring surface 54 lattice part

Claims (9)

  1.  ゴム、有機溶媒、水および乳化剤を含むゴム組成物を乳化して乳化液を得る乳化工程と、
     前記乳化液から前記有機溶媒を除去する脱溶媒工程と、を備えるラテックスの製造方法であって、
     前記乳化工程において、前記ゴム組成物を、撹拌物が貯留される容器と、該容器内に回転可能に設けられた撹拌手段と、を備えた撹拌装置で撹拌するようにし、
     前記撹拌手段は、その回転方向と略直交して撹拌物に対向する撹拌面を有する平板状の撹拌翼を含む構成であることを特徴とするラテックスの製造方法。
    An emulsification step of emulsifying a rubber composition containing rubber, an organic solvent, water and an emulsifier to obtain an emulsion.
    A method for producing a latex, comprising a desolvation step of removing the organic solvent from the emulsion,
    In the emulsification step, the rubber composition is stirred by a stirring device provided with a container in which a stirred product is stored, and a stirring means rotatably provided in the container,
    The method for producing latex, wherein the stirring unit includes a flat plate-shaped stirring blade having a stirring surface that is substantially orthogonal to the rotation direction and faces the stirring object.
  2.  ゴムと有機溶媒とを混合させたゴム溶液と、乳化剤水溶液とを混合することにより粗乳化状態の乳化液を得る粗乳化工程と、
     前記粗乳化工程で得られた粗乳化状態の乳化液を、乳化機を通じて循環してさらに乳化する循環乳化工程と、
     前記循環乳化工程を経て得られた乳化液から前記有機溶媒を除去する脱溶媒工程と、を備えるラテックスの製造方法であって、
     前記粗乳化工程および前記循環乳化工程のうちの少なくともいずれか一方の工程において、前記乳化液を、撹拌物が貯留される容器と、該容器内に回転可能に設けられた撹拌手段と、を備えた撹拌装置で撹拌するようにし、
     前記撹拌手段は、その回転方向と略直交して撹拌物に対向する撹拌面を有する平板状の撹拌翼を含む構成であることを特徴とするラテックスの製造方法。
    A rubber solution obtained by mixing rubber and an organic solvent, and a rough emulsification step of obtaining an emulsion in a rough emulsified state by mixing an emulsifier aqueous solution,
    Emulsion liquid in a coarse emulsified state obtained in the rough emulsification step, a circulation emulsification step of further emulsifying by circulating through an emulsifier,
    A method for producing a latex, comprising a desolvation step of removing the organic solvent from the emulsion obtained through the circulation emulsification step,
    In at least one of the rough emulsification step and the circulation emulsification step, the emulsion is provided with a container in which an agitated material is stored, and an agitating unit rotatably provided in the container. Agitating with a stirrer
    The method for producing latex, wherein the stirring unit includes a flat plate-shaped stirring blade having a stirring surface that is substantially orthogonal to the rotation direction and faces the stirring object.
  3.  前記脱溶媒工程において、前記乳化液を、撹拌物が貯留される容器と、該容器内に回転可能に設けられた撹拌手段と、を備えた撹拌装置で撹拌するようにし、
     前記撹拌手段は、その回転方向と略直交して撹拌物に対向する撹拌面を有する平板状の撹拌翼を含む構成であることを特徴とする請求項1または2に記載のラテックスの製造方法。
    In the desolvation step, the emulsion is stirred by a stirring device provided with a container in which a stirred product is stored, and a stirring means rotatably provided in the container,
    The method for producing latex according to claim 1 or 2, wherein the stirring means includes a plate-shaped stirring blade having a stirring surface that is substantially orthogonal to the rotation direction and faces the agitated object.
  4.  前記撹拌翼の前記撹拌面の面積が、前記容器内に貯留される前記撹拌物の断面積の10~60%であることを特徴とする請求項1~3のいずれかに記載のラテックスの製造方法。 The area of the agitation surface of the agitation blade is 10 to 60% of the cross-sectional area of the agitation product stored in the container, and the latex is produced according to any one of claims 1 to 3. Method.
  5.  前記撹拌翼は、格子状の構造を有する格子部を備えることを特徴とする請求項1~4のいずれかに記載のラテックスの製造方法。 The method for producing latex according to any one of claims 1 to 4, wherein the stirring blade includes a lattice portion having a lattice structure.
  6.  前記粗乳化工程では、前記ゴム溶液と前記乳化剤水溶液とを、前記乳化機を用いて連続的に混合する工程を含むことを特徴とする請求項2に記載のラテックスの製造方法。 The method for producing a latex according to claim 2, wherein the rough emulsification step includes a step of continuously mixing the rubber solution and the emulsifier aqueous solution using the emulsifier.
  7.  請求項1~6のいずれかに記載の製造方法によって製造されたラテックスに架橋剤を添加してラテックス組成物を得、該ラテックス組成物を用いて膜成形体を成形することを特徴とする膜成形体の製造方法。 A film comprising a latex produced by the production method according to any one of claims 1 to 6 to which a cross-linking agent is added to obtain a latex composition, and a film molded body is formed using the latex composition. Method for producing molded body.
  8.  請求項1~6のいずれかに記載の製造方法によって製造されたラテックスに架橋剤を添加してラテックス組成物を得、該ラテックス組成物を用いてディップ成形体を成形することを特徴とするディップ成形体の製造方法。 A dip characterized by adding a cross-linking agent to the latex produced by the production method according to any one of claims 1 to 6 to obtain a latex composition, and using the latex composition to form a dip-molded article. Method for producing molded body.
  9.  請求項1~6のいずれかに記載の製造方法によって製造されたラテックスに架橋剤を添加してラテックス組成物を得、該ラテックス組成物を接着剤層として基材の表面に形成することを特徴とする接着剤層形成基材の製造方法。  A cross-linking agent is added to the latex produced by the production method according to any one of claims 1 to 6 to obtain a latex composition, and the latex composition is formed as an adhesive layer on the surface of a substrate. And a method for producing an adhesive layer-forming substrate. 
PCT/JP2019/048424 2018-12-20 2019-12-11 Latex production method, and methods for producing film molded body, dip molded body and adhesive layer-formed substrate using latex obtained using said production method WO2020129765A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217017675A KR20210104694A (en) 2018-12-20 2019-12-11 Method for producing latex and method for producing film-formed article, dip-molded article, and substrate for forming an adhesive layer using the latex obtained by the production method
BR112021011428-9A BR112021011428B1 (en) 2018-12-20 2019-12-11 METHOD FOR PRODUCING A LATEX AND METHODS FOR PRODUCING A MEMBRANE MOLDED BODY, IMMERSION MOLDED BODY AND ADHESIVE LAYER FORMING SUBSTRATE USING LATEX OBTAINED BY THE METHOD FOR PRODUCING LATEX
JP2020561337A JP7359160B2 (en) 2018-12-20 2019-12-11 A method for producing latex, and a method for producing a film molded article, a dip molded article, and an adhesive layer forming base material using the latex obtained by the manufacturing method.
CN201980081519.8A CN113166429A (en) 2018-12-20 2019-12-11 Method for producing latex, and method for producing film-formed article, dip-formed article, and adhesive layer-forming base material using latex obtained by the production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-238653 2018-12-20
JP2018238653 2018-12-20

Publications (1)

Publication Number Publication Date
WO2020129765A1 true WO2020129765A1 (en) 2020-06-25

Family

ID=71100454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048424 WO2020129765A1 (en) 2018-12-20 2019-12-11 Latex production method, and methods for producing film molded body, dip molded body and adhesive layer-formed substrate using latex obtained using said production method

Country Status (4)

Country Link
JP (1) JP7359160B2 (en)
KR (1) KR20210104694A (en)
CN (1) CN113166429A (en)
WO (1) WO2020129765A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116328668A (en) * 2021-12-22 2023-06-27 创技公司株式会社 Solvent removing device and method for manufacturing microsphere using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114307810A (en) * 2021-12-27 2022-04-12 华东理工大学 Dissolving and emulsifying integrated device and method for preparing butyl bromide latex

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60229971A (en) * 1984-04-28 1985-11-15 Nitto Electric Ind Co Ltd Production of o/w emulsion type of rubber tackifier
JPH0137173B2 (en) * 1985-02-28 1989-08-04 Sumitomo Heavy Industries
JPH04215829A (en) * 1990-06-15 1992-08-06 Sumitomo Heavy Ind Ltd Stirring apparatus
JPH1033966A (en) * 1996-07-26 1998-02-10 Nippon Zeon Co Ltd Stirring blade, stirring apparatus, and polymerizing reaction method
JP2001170467A (en) * 1999-12-20 2001-06-26 Mitsubishi Rayon Co Ltd Stirring blade, stirring unit and method of producing polymer using the same
JP2002326024A (en) * 2001-05-08 2002-11-12 Sumitomo Heavy Ind Ltd External circulation agitating device and method for controlling external circulating load
JP2006087979A (en) * 2004-09-21 2006-04-06 Shi Mechanical & Equipment Inc Agitator
WO2008117620A1 (en) * 2007-03-27 2008-10-02 Zeon Corporation Rubber latex, rubber latex for dip molding, and dip-molded article
WO2017154736A1 (en) * 2016-03-10 2017-09-14 日本ゼオン株式会社 Synthetic rubber latex and method for manufacturing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2001776C2 (en) 2008-07-07 2010-01-11 Kraton Polymers Us Llc Process for the preparation of an artificial latex.
WO2017159534A1 (en) * 2016-03-15 2017-09-21 日本ゼオン株式会社 Method for producing polymer latex

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60229971A (en) * 1984-04-28 1985-11-15 Nitto Electric Ind Co Ltd Production of o/w emulsion type of rubber tackifier
JPH0137173B2 (en) * 1985-02-28 1989-08-04 Sumitomo Heavy Industries
JPH04215829A (en) * 1990-06-15 1992-08-06 Sumitomo Heavy Ind Ltd Stirring apparatus
JPH1033966A (en) * 1996-07-26 1998-02-10 Nippon Zeon Co Ltd Stirring blade, stirring apparatus, and polymerizing reaction method
JP2001170467A (en) * 1999-12-20 2001-06-26 Mitsubishi Rayon Co Ltd Stirring blade, stirring unit and method of producing polymer using the same
JP2002326024A (en) * 2001-05-08 2002-11-12 Sumitomo Heavy Ind Ltd External circulation agitating device and method for controlling external circulating load
JP2006087979A (en) * 2004-09-21 2006-04-06 Shi Mechanical & Equipment Inc Agitator
WO2008117620A1 (en) * 2007-03-27 2008-10-02 Zeon Corporation Rubber latex, rubber latex for dip molding, and dip-molded article
WO2017154736A1 (en) * 2016-03-10 2017-09-14 日本ゼオン株式会社 Synthetic rubber latex and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116328668A (en) * 2021-12-22 2023-06-27 创技公司株式会社 Solvent removing device and method for manufacturing microsphere using the same
CN116328668B (en) * 2021-12-22 2024-03-26 创技公司株式会社 Solvent removing device and method for manufacturing microsphere using the same

Also Published As

Publication number Publication date
KR20210104694A (en) 2021-08-25
BR112021011428A2 (en) 2021-08-31
JP7359160B2 (en) 2023-10-11
CN113166429A (en) 2021-07-23
JPWO2020129765A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
JP6947162B2 (en) Latex of synthetic rubber and its manufacturing method
TWI624478B (en) Method for producing synthetic isoprene polymer latex
JP6816728B2 (en) Method for producing polymer latex
EP3587462B1 (en) Modified polymer latex production method
WO2017159534A1 (en) Method for producing polymer latex
WO2020129765A1 (en) Latex production method, and methods for producing film molded body, dip molded body and adhesive layer-formed substrate using latex obtained using said production method
WO2019039523A1 (en) Latex composition
JP6879218B2 (en) Method for producing polymer latex
WO2020129766A1 (en) Method for producing latex and method for producing molded object using said latex
TW201623350A (en) Dip-molding synthetic polyisoprene latex, dip-molding composition, and dip-molded body
WO2019058807A1 (en) Production method for latex composition
CN112654671B (en) Xanthan acid compound dispersion, conjugated diene polymer latex composition, and film-molded body
JP2020100738A (en) Method for producing modified polyisoprene latex
JP7259837B2 (en) LATEX OF ACID-MODIFIED CONJUGATED DIENE-BASED POLYMER AND METHOD FOR PRODUCING THE SAME
EP4112685A1 (en) Latex composition
JP6984610B2 (en) Synthetic polyisoprene latex
BR112021011428B1 (en) METHOD FOR PRODUCING A LATEX AND METHODS FOR PRODUCING A MEMBRANE MOLDED BODY, IMMERSION MOLDED BODY AND ADHESIVE LAYER FORMING SUBSTRATE USING LATEX OBTAINED BY THE METHOD FOR PRODUCING LATEX
JP6984609B2 (en) Manufacturing method of synthetic polyisoprene latex
JP2019065064A (en) Production method of polymer latex

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898792

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561337

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021011428

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112021011428

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210611

122 Ep: pct application non-entry in european phase

Ref document number: 19898792

Country of ref document: EP

Kind code of ref document: A1