WO2019058807A1 - Production method for latex composition - Google Patents

Production method for latex composition Download PDF

Info

Publication number
WO2019058807A1
WO2019058807A1 PCT/JP2018/029955 JP2018029955W WO2019058807A1 WO 2019058807 A1 WO2019058807 A1 WO 2019058807A1 JP 2018029955 W JP2018029955 W JP 2018029955W WO 2019058807 A1 WO2019058807 A1 WO 2019058807A1
Authority
WO
WIPO (PCT)
Prior art keywords
latex composition
latex
weight
carboxy
producing
Prior art date
Application number
PCT/JP2018/029955
Other languages
French (fr)
Japanese (ja)
Inventor
実紗 林
小出村 順司
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2019543475A priority Critical patent/JP7163924B2/en
Publication of WO2019058807A1 publication Critical patent/WO2019058807A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/38Thiocarbonic acids; Derivatives thereof, e.g. xanthates ; i.e. compounds containing -X-C(=X)- groups, X being oxygen or sulfur, at least one X being sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • C08L101/08Carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J113/00Adhesives based on rubbers containing carboxyl groups
    • C09J113/02Latex

Definitions

  • the present invention relates to a latex composition, which is capable of suppressing the occurrence of symptoms of delayed allergy (Type IV) in addition to immediate allergy (Type I), and further, a dip-molded product having excellent tensile strength and tear strength, etc.
  • a film-formed article such as a dip-formed article used in contact with the human body such as a teat, a balloon, a glove, a balloon, and a sack by dip-forming a latex composition containing a natural rubber latex.
  • a latex composition containing a natural rubber latex are known.
  • the latex of natural rubber contains a protein that causes symptoms of immediate type allergy (Type I) to the human body, there have been cases where there was a problem as a dip-molded body in direct contact with a mucous membrane or an organ in vivo. Therefore, studies have been made to remove proteins in the latex of natural rubber by purification or the like, or use a latex of synthetic rubber in place of the natural rubber.
  • Patent Document 1 discloses, as a dip-forming composition, a latex composition obtained by blending zinc oxide, sulfur and a vulcanization accelerator with a synthetic polyisoprene latex which is a synthetic rubber.
  • a vulcanization accelerator contained in a dip-molded product when it is a dip-molded product Because of this, when touching the human body, it may cause allergic symptoms of delayed type allergy (Type IV).
  • the present invention has been made in view of such circumstances, and is capable of suppressing the onset of symptoms of delayed allergy (Type IV) in addition to immediate allergy (Type I), and further, tensile strength and tearing.
  • a method for producing a latex composition capable of giving a film molded article such as a dip molded article excellent in strength, a method for producing a dip molded article using the latex composition obtained by such a production method, and adhesion An object of the present invention is to provide a method for producing an agent layer forming base material.
  • the present inventors found that the pH of the carboxy-modified polymer latex is such that a sulfur-based vulcanizing agent, a xanthogen compound, and an activator are mixed. It has been found that the above object can be achieved by ripening a latex composition which is less than 10 under predetermined conditions, and the present invention has been accomplished.
  • the pH of the latex composition after ripening in the ripening step is preferably 6 or more and less than 10.
  • a modification ratio by the carboxyl group in the carboxy modified polymer is (number of carboxyl groups / total number of monomer units of the carboxy modified polymer) ⁇ 100, 0.01 to 100 It is preferable that it is 10 mol%.
  • the content ratio of the xanthogen compound in the latex composition is 0 relative to 100 parts by weight of the carboxy-modified polymer in the latex composition. It is preferable that the amount be 0.1 to 10 parts by weight.
  • the xanthogen compound preferably contains at least zinc diisopropyl xanthate.
  • the latex composition it is preferable that in the preparation step, the latex composition contain two or more of the xanthogen compounds.
  • the metal compound is preferably zinc oxide.
  • the carboxy-modified polymer synthetic polyisoprene, styrene-isoprene-styrene block copolymer, or natural rubber from which a protein is removed, is treated with a monomer having a carboxyl group. It is preferable to use one obtained by denaturing.
  • a method for producing a dip-molded product comprising the step of dip-molding the latex composition obtained by the above-mentioned production method. Furthermore, according to the present invention, there is provided a method for producing an adhesive layer-formed substrate, comprising the step of forming on the substrate surface an adhesive layer formed using the latex composition obtained by the above-mentioned production method. Be done.
  • the present invention provides a method for producing a latex composition capable of giving a body, a method for producing a dip-molded article using the latex composition obtained by such a production method, and a method for producing an adhesive layer-formed substrate. be able to.
  • the method for producing a latex composition of the present invention comprises a latex of a carboxy-modified polymer, a sulfur-based vulcanizing agent, a xanthogen compound, and an activating agent, and a latex composition before aging having a pH of less than 10. And a ripening step of ripening by storing the latex composition before ripening at a temperature of 5 to 60 ° C. for half to 14 days.
  • the latex of the carboxy-modified polymer used in the present invention is a latex of a conjugated diene polymer or a carboxy-modified polymer obtained by modifying a natural rubber from which a protein is removed with a monomer having a carboxyl group.
  • the conjugated diene polymer is not particularly limited, and examples thereof include synthetic polyisoprene, styrene-isoprene-styrene block copolymer (SIS), nitrile group-containing conjugated diene copolymer, and the like. . Among these, those containing isoprene units such as synthetic polyisoprene and SIS are preferable, and synthetic polyisoprene is particularly preferable.
  • the synthetic polyisoprene may be a homopolymer of isoprene or may be a copolymer of isoprene and another ethylenically unsaturated monomer copolymerizable therewith. It may be polymerized.
  • the content of the isoprene unit in the synthetic polyisoprene is preferably 70% by weight or more based on all the monomer units since a flexible film is easily obtained and a film-formed product such as a dip-formed product having excellent tensile strength can be obtained. More preferably, it is 90% by weight or more, still more preferably 95% by weight or more, and particularly preferably 100% by weight (homopolymer of isoprene).
  • Examples of other ethylenically unsaturated monomers copolymerizable with isoprene include conjugated diene monomers other than isoprene such as butadiene, chloroprene and 1,3-pentadiene; acrylonitrile, methacrylonitrile, fumaronitrile, ⁇ - Ethylenically unsaturated nitrile monomers such as chloroacrylonitrile; vinyl aromatic monomers such as styrene, alkylstyrenes; methyl (meth) acrylate ("methyl acrylate and / or methyl methacrylate” meaning: Ethyl (meth) acrylate etc.), ethyl (meth) acrylate, butyl (meth) acrylate, ethylenic unsaturated carboxylic acid ester monomers such as 2-ethylhexyl (meth) acrylate; Can be mentioned.
  • conjugated diene monomers other than isoprene such
  • Synthetic polyisoprene can be prepared in an inert polymerization solvent using a conventionally known method, for example, using a Ziegler type polymerization catalyst consisting of trialkylaluminum-titanium tetrachloride, or an alkyllithium polymerization catalyst such as n-butyllithium or sec-butyllithium. It can be obtained by solution polymerization of isoprene and another copolymerizable ethylenically unsaturated monomer which is optionally used.
  • a Ziegler type polymerization catalyst consisting of trialkylaluminum-titanium tetrachloride, or an alkyllithium polymerization catalyst such as n-butyllithium or sec-butyllithium.
  • the polymer solution of synthetic polyisoprene obtained by solution polymerization may be used as it is for producing synthetic polyisoprene latex, but after taking solid synthetic polyisoprene from the polymer solution, it is dissolved in an organic solvent. It can also be used to make synthetic polyisoprene latex.
  • synthetic polyisoprene latex can be used for manufacture of the latex of the carboxy modified polymer used by this invention so that it may mention later.
  • impurities such as the residue of the polymerization catalyst remaining in the polymer solution may be removed.
  • an anti-aging agent described later may be added to the solution during or after polymerization.
  • commercially available solid synthetic polyisoprene can also be used.
  • the content ratio of cis-bonded units in isoprene units contained in the synthetic polyisoprene is preferably 70% by weight or more based on More preferably, it is 90% by weight or more, still more preferably 95% by weight or more.
  • the weight average molecular weight of the synthetic polyisoprene is preferably 10,000 to 5,000,000, more preferably 500,000 to 5,000,000, further preferably in terms of standard polystyrene by gel permeation chromatography analysis. Is 800,000 to 3,000,000.
  • the polymer Mooney viscosity (ML 1 + 4 at 100 ° C.) of the synthetic polyisoprene is preferably 50 to 80, more preferably 60 to 80, and still more preferably 70 to 80.
  • a synthetic polyisoprene latex for example, (1) emulsifying a solution or a fine suspension of a synthetic polyisoprene dissolved or finely dispersed in an organic solvent in the presence of an anionic surfactant in water And (2) isoprene alone or a mixture of isoprene and an ethylenically unsaturated monomer copolymerizable therewith with an anionic surfactant. And emulsion polymerization or suspension polymerization in the presence of an agent to directly produce a synthetic polyisoprene latex, but synthetic polyisoprene having a high proportion of cis-linking units in isoprene units can be used. , A method of producing the above (1) from the point that a film molded article such as a dip molded article excellent in mechanical properties such as tensile strength is easily obtained It is preferred.
  • Examples of the organic solvent used in the production method of the above (1) include aromatic hydrocarbon solvents such as benzene, toluene and xylene; alicyclic hydrocarbon solvents such as cyclopentane, cyclopentene, cyclohexane and cyclohexene; pentane, hexane, Aliphatic hydrocarbon solvents such as heptane; halogenated hydrocarbon solvents such as methylene chloride, chloroform and ethylene dichloride; and the like.
  • aromatic hydrocarbon solvents such as benzene, toluene and xylene
  • alicyclic hydrocarbon solvents such as cyclopentane, cyclopentene, cyclohexane and cyclohexene
  • pentane, hexane Aliphatic hydrocarbon solvents
  • halogenated hydrocarbon solvents such as methylene chloride, chloroform and ethylene dichloride
  • alicyclic hydrocarbon solvents are
  • the amount of the organic solvent used is preferably 2,000 parts by weight or less, more preferably 20 to 1,500 parts by weight, and still more preferably 500 to 1,500 parts by weight with respect to 100 parts by weight of the synthetic polyisoprene.
  • Fatty acid salts such as sodium laurate, potassium myristate, sodium palmitate, potassium oleate, sodium linolenate, sodium rosinate, etc .
  • dodecyl benzene sulfone Alkyl benzene sulfonates such as sodium acid sodium, potassium dodecyl benzene sulfonate, sodium decyl benzene sulfonate, potassium decyl benzene sulfonate, sodium cetyl benzene sulfonate, potassium cetyl benzene sulfonate
  • sodium di (2-ethylhexyl) sulfosuccinate, disodium Alkyl sulfosuccinates such as potassium (2-ethylhexyl) sulfosuccinate and sodium dioctyl sulfosuccinate
  • fatty acid salts alkyl benzene sulfonates, alkyl sulfosuccinates, alkyl sulfates and polyoxyethylene alkyl ether sulfates are preferable, and fatty acids and alkyl benzene sulfonates are particularly preferable.
  • alkylbenzene it is preferable to use a fatty acid salt in combination with at least one member selected from the group consisting of sulfonates, alkyl sulfosuccinates, alkyl sulfates and polyoxyethylene alkyl ether sulfates, preferably alkyl benzene sulfonates; It is particularly preferable to use a fatty acid salt in combination.
  • fatty acid salt sodium rosinate and potassium rosinate are preferable, and as the alkylbenzene sulfonate, sodium dodecylbenzene sulfonate and potassium dodecylbenzene sulfonate are preferable.
  • these surfactants may be used alone or in combination of two or more.
  • At least one selected from the group consisting of alkyl benzene sulfonate, alkyl sulfosuccinate, alkyl sulfate and polyoxyethylene alkyl ether sulfate and fatty acid salt may be used in combination.
  • Makes the resulting latex contain at least one selected from alkyl benzene sulfonate, alkyl sulfo succinate, alkyl sulfate and polyoxyethylene alkyl ether sulfate, and fatty acid salt .
  • a surfactant other than the anionic surfactant may be used in combination, and as the surfactant other than such an anionic surfactant, ⁇ , ⁇ -unfavorable.
  • Copolymerizable surfactants such as sulfo ester of saturated carboxylic acid, sulfate ester of ⁇ , ⁇ -unsaturated carboxylic acid, sulfoalkyl aryl ether and the like can be mentioned.
  • nonionicity such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester, etc. within the range not inhibiting the coagulation by the coagulant used in dip molding Surfactants may also be used in combination.
  • the amount of the anionic surfactant used in the method of the above (1) is preferably 0.1 to 50 parts by weight, more preferably 0.5 to 30 parts by weight, based on 100 parts by weight of the synthetic polyisoprene. is there.
  • the amount of the anionic surfactant used is too small, a large amount of aggregates may be generated at the time of emulsification, while if it is too large, foaming tends to occur, and pinholes are formed in a film molded article such as a dip molded article obtained. Can occur.
  • alkyl benzene sulfonate, alkyl sulfo succinate, alkyl sulfate ester salt and polyoxyethylene alkyl ether sulfate ester salt is used in combination with fatty acid salt as an anionic surfactant
  • the ratio by weight of “total of agents” is preferably in the range of 1: 1 to 10: 1, and more preferably in the range of 1: 1 to 7: 1.
  • the amount of water used in the production method of the above (1) is preferably 10 to 1,000 parts by weight, more preferably 30 to 500 parts by weight, most preferably 100 parts by weight of the synthetic polyisoprene solution in organic solvent. Is 50 to 100 parts by weight.
  • the types of water used include hard water, soft water, ion-exchanged water, distilled water, zeolite water and the like, and soft water, ion-exchanged water and distilled water are preferable.
  • An apparatus for emulsifying a solution or a fine suspension of synthetic polyisoprene dissolved or finely dispersed in an organic solvent in water in the presence of an anionic surfactant is generally commercially available as an emulsifying machine or dispersing machine.
  • the method for adding the anionic surfactant to the solution or fine suspension of the synthetic polyisoprene is not particularly limited, and it may be preliminarily carried out to either water or a solution or fine suspension of the synthetic polyisoprene, or both. It may be added, or may be added to the emulsion during the emulsification operation, may be added all at once, or may be added in portions.
  • batch-type emulsification such as trade name "homogenizer” (manufactured by IKA), trade name “Polytron” (manufactured by Kinematica), trade name “TK autohomomixer” (manufactured by Tokushu Kika Kogyo) Machine name: "TK pipeline homomixer” (manufactured by Tokushu Kika Kogyo Co., Ltd.), trade name “colloid mill” (manufactured by Shinko Pantec Co., Ltd.), trade name “Slasher” (manufactured by Japan Coke Industry Co., Ltd.), trade name " Trigonal wet pulverizer (made by Mitsui Miike Kako Co., Ltd.), trade name “Cavitron” (made by Eurotech Co., Ltd.), trade name “Milder” (manufactured by Pacific Kikko Co., Ltd.), trade name “Fine Flow Mill” (Pacific Kikko Co.,
  • an organic solvent from the emulsion obtained through emulsification operation.
  • a method of removing the organic solvent from the emulsion a method capable of adjusting the content of the organic solvent (preferably an alicyclic hydrocarbon solvent) in the resultant synthetic polyisoprene latex to 500 ppm by weight or less is preferable.
  • methods such as vacuum distillation, atmospheric distillation, steam distillation, and centrifugation can be employed.
  • the synthetic polyisoprene latex by removing the organic solvent from the emulsion obtained through the emulsification operation.
  • the total content of the alicyclic hydrocarbon solvent and the aromatic hydrocarbon solvent as the organic solvent in the resultant synthetic polyisoprene latex can be 500 ppm by weight or less
  • the method is not particularly limited as long as it is such a method, and methods such as vacuum distillation, atmospheric pressure distillation, steam distillation, centrifugation and the like can be adopted.
  • concentration operation may be performed by a method such as vacuum distillation, atmospheric pressure distillation, centrifugation, membrane concentration, etc.
  • centrifugal separation it is preferable to carry out centrifugal separation from the viewpoint that the solid content concentration of the synthetic polyisoprene latex can be increased and the residual amount of surfactant in the synthetic polyisoprene latex can be reduced.
  • Centrifugation is carried out, for example, using a continuous centrifugal separator, preferably 100 to 10,000 G, solid concentration of synthetic polyisoprene latex before centrifugation, preferably 2 to 15% by weight, centrifugation
  • the flow rate to be fed into the machine is preferably 500 to 1700 kg / hr, and the back pressure (gauge pressure) of the centrifuge is preferably 0.03 to 1.6 MPa.
  • synthetic polyisoprene latex can be obtained. And thereby, the residual amount of surfactant in synthetic polyisoprene latex can be reduced.
  • the solids concentration of the synthetic polyisoprene latex is preferably 30 to 70% by weight, more preferably 40 to 70% by weight. If the solid content concentration is too low, the solid content concentration of the latex composition to be described later becomes low, so the film thickness of the dip molded product to be described later becomes thin and it is easy to break. Conversely, if the solid concentration is too high, the viscosity of the synthetic polyisoprene latex may be high, which may make it difficult to transfer by piping or to stir in the mixing tank.
  • the volume average particle size of the synthetic polyisoprene latex is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 3 ⁇ m, and still more preferably 0.5 to 2.0 ⁇ m.
  • synthetic polyisoprene latex contains additives such as pH adjusters, antifoaming agents, preservatives, crosslinking agents, chelating agents, oxygen scavengers, dispersants, anti-aging agents, etc., which are usually blended in the field of latexes. You may mix
  • pH adjusters include hydroxides of alkali metals such as sodium hydroxide and potassium hydroxide; carbonates of alkali metals such as sodium carbonate and potassium carbonate; hydrogencarbonates of alkali metals such as sodium hydrogencarbonate; ammonia Organic amine compounds such as trimethylamine and triethanolamine; and the like, and hydroxides of alkali metals or ammonia are preferable.
  • the pH of the synthetic polyisoprene latex at this time is not particularly limited, but in the production method of the present invention, as described later, a synthetic polyisoprene latex or the like is used to form a latex composition, and the latex composition is When ripening under the conditions, the pH of the latex composition before ripening should be less than 10.
  • SIS styrene-isoprene-styrene block copolymer
  • SIS can be obtained by block copolymerization of isoprene and styrene in an inert polymerization solvent using an active organic metal such as n-butyllithium as an initiator and a method known in the art. And although the obtained polymer solution of SIS may be used as it is for production of SIS latex, after taking out solid SIS from the polymer solution, the solid SIS is dissolved in an organic solvent to obtain SIS. It can also be used for the production of latex. In addition, SIS latex can be used for manufacture of the latex of the carboxy modified polymer used by this invention so that it may mention later.
  • the method for producing SIS latex is not particularly limited, but a solution or fine suspension of SIS dissolved or finely dispersed in an organic solvent is emulsified in water in the presence of a surfactant, and the organic solvent is optionally removed Preferred is a method of producing SIS latex.
  • impurities such as the residue of the polymerization catalyst remaining in the polymer solution after synthesis may be removed.
  • an anti-aging agent described later may be added to the solution during or after polymerization.
  • commercially available solid SIS can be used.
  • organic solvent the same ones as in the case of the above-mentioned synthetic polyisoprene can be used, and aromatic hydrocarbon solvents and alicyclic hydrocarbon solvents are preferable, and cyclohexane and toluene are particularly preferable.
  • the amount of the organic solvent used is usually 50 to 2,000 parts by weight, preferably 80 to 1,000 parts by weight, more preferably 10 to 500 parts by weight, and still more preferably 150 to 300 parts by weight per 100 parts by weight of SIS. It is a weight part.
  • surfactant those similar to the above-mentioned synthetic polyisoprene can be exemplified, and an anionic surfactant is preferable, and sodium rosinate and sodium dodecylbenzene sulfonate are particularly preferable.
  • the amount of surfactant used is preferably 0.1 to 50 parts by weight, more preferably 0.5 to 30 parts by weight with respect to 100 parts by weight of SIS. If this amount is too small, the stability of the latex tends to be poor, and on the other hand, if it is too large, foaming tends to occur and problems may occur during dip molding.
  • the amount of water used in the method of producing SIS latex described above is preferably 10 to 1,000 parts by weight, more preferably 30 to 500 parts by weight, most preferably 50 parts by weight with respect to 100 parts by weight of the SIS organic solvent solution. It is up to 100 parts by weight.
  • the types of water used include hard water, soft water, ion-exchanged water, distilled water, zeolite water and the like.
  • polar solvents represented by alcohols such as methanol may be used in combination with water.
  • An apparatus for emulsifying an organic solvent solution or a fine suspension of SIS in water in the presence of a surfactant may be the same as in the case of the above-mentioned synthetic polyisoprene.
  • the addition method of the surfactant is not particularly limited, and may be added in advance to either or both of water and an organic solvent solution of SIS or a fine suspension, or both, during the emulsification operation. May be added to the emulsion, may be added all at once, or may be added separately.
  • the method for producing SIS latex described above it is preferable to obtain the SIS latex by removing the organic solvent from the emulsion obtained through the emulsification operation.
  • the method for removing the organic solvent from the emulsion is not particularly limited, and methods such as vacuum distillation, atmospheric distillation, steam distillation, centrifugation and the like can be employed.
  • a concentration operation may be performed by a method such as vacuum distillation, atmospheric pressure distillation, centrifugation, or membrane concentration.
  • the solids concentration of the SIS latex is preferably 30 to 70% by weight, more preferably 50 to 70% by weight. If the solid content concentration is too low, the solid content concentration of the latex composition to be described later will be low, and the film thickness of the dip-formed product will be thin and it will be easy to break. On the other hand, if the solid concentration is too high, the viscosity of the SIS latex becomes high, which makes it difficult to transfer by piping or to stir in the mixing tank.
  • SIS latex contains additives such as pH adjusters, antifoaming agents, preservatives, crosslinking agents, chelating agents, oxygen scavengers, dispersants, anti-aging agents, etc., which are usually blended in the field of latex. It is good.
  • As the pH adjuster those similar to the above-mentioned synthetic polyisoprene can be exemplified, and alkali metal hydroxide or ammonia is preferable.
  • the pH of the SIS latex at this time is not particularly limited, but in the production method of the present invention, as described later, a SIS latex or the like is used to form a latex composition, and the latex composition is aged under predetermined conditions. At this time, the pH of the latex composition before aging may be less than 10.
  • the content of styrene units in styrene blocks in SIS contained in the SIS latex thus obtained is preferably 70 to 100% by weight, more preferably 90 to 100% by weight, based on all monomer units. More preferably, it is 100% by weight.
  • the content of isoprene units in the isoprene block in SIS is preferably 70 to 100% by weight, more preferably 90 to 100% by weight, and still more preferably 100% by weight, based on all monomer units.
  • the content ratio of styrene unit and isoprene unit in SIS is usually 1:99 to 90:10, preferably 3:97 to 70:30, more preferably 5 in weight ratio of "styrene unit: isoprene unit". The preferred range is 95 to 50:50, more preferably 10:90 to 30:70.
  • the weight-average molecular weight of SIS is preferably 10,000 to 1,000,000, more preferably 50,000 to 50,000, still more preferably 100, in terms of standard polystyrene determined by gel permeation chromatography analysis. It is between 4,000 and 3,00,000.
  • the volume average particle size of the latex particles (SIS particles) in the SIS latex is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 3 ⁇ m, and still more preferably 0.5 to 2.0 ⁇ m.
  • conjugated diene polymer as described above, a nitrile group-containing conjugated diene copolymer can also be used.
  • the nitrile group-containing conjugated diene-based copolymer is a copolymer obtained by copolymerizing an ethylenically unsaturated nitrile monomer with a conjugated diene monomer, and in addition to these, it is used as needed. And a copolymer formed by copolymerizing another ethylenically unsaturated monomer copolymerizable therewith.
  • conjugated diene monomers examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-pentadiene and chloroprene. Be Among these, 1,3-butadiene and isoprene are preferable, and 1,3-butadiene is more preferable. These conjugated diene monomers can be used alone or in combination of two or more.
  • the content of the conjugated diene monomer unit formed by the conjugated diene monomer in the nitrile group-containing conjugated diene copolymer is preferably 56 to 78% by weight, more preferably 56 to 73% by weight More preferably, it is 56 to 68% by weight.
  • the ethylenically unsaturated nitrile monomer is not particularly limited as long as it is a nitrile group-containing ethylenically unsaturated monomer, but, for example, acrylonitrile, methacrylonitrile, fumaronitrile, ⁇ -chloroacrylonitrile, ⁇ -cyanoethyl acrylonitrile Etc. Among these, acrylonitrile and methacrylonitrile are preferable, and acrylonitrile is more preferable. These ethylenically unsaturated nitrile monomers can be used alone or in combination of two or more.
  • the content ratio of the ethylenically unsaturated nitrile monomer unit formed by the ethylenically unsaturated nitrile monomer in the nitrile group-containing conjugated diene copolymer is preferably 20 to 40% by weight, and more preferably Is 25 to 40% by weight, more preferably 30 to 40% by weight.
  • Examples of the conjugated diene monomer and other ethylenically unsaturated monomers copolymerizable with the ethylenically unsaturated nitrile monomer include, for example, an ethylenically unsaturated monomer which is an ethylenically unsaturated monomer containing a carboxyl group.
  • Saturated carboxylic acid monomers vinyl aromatic monomers such as styrene, alkylstyrenes and vinylnaphthalenes; fluoroalkyl vinyl ethers such as fluoroethyl vinyl ether; (meth) acrylamides, N-methylol (meth) acrylamides, N, N-dimethylol Ethylenically unsaturated amide monomers such as (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-propoxymethyl (meth) acrylamide; methyl (meth) acrylate, ethyl (meth) acrylate, (meth) Butyl acrylate, (meth) acrylic acid-2-ethyl Hexyl, trifluoroethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, dibutyl maleate, dibutyl fumarate, diethyl maleate, methoxy
  • the ethylenically unsaturated carboxylic acid monomer is not particularly limited as long as it is a carboxyl group-containing ethylenically unsaturated monomer, but, for example, a single amount of an ethylenically unsaturated monocarboxylic acid such as acrylic acid or methacrylic acid Body: Ethylenically unsaturated polyvalent carboxylic acid monomers such as itaconic acid, maleic acid, fumaric acid; Ethylenically unsaturated polyvalent carboxylic acid anhydrides such as maleic anhydride, citraconic acid; Monobutyl fumarate, Maleic acid And ethylenically unsaturated polyhydric carboxylic acid partial ester monomers such as monobutyl and mono-2-hydroxypropyl maleate; and the like.
  • Ethylenically unsaturated polyvalent carboxylic acid monomers such as itaconic acid, maleic acid, fumaric acid
  • ethylenically unsaturated monocarboxylic acids are preferable, and methacrylic acid is particularly preferable.
  • These ethylenically unsaturated carboxylic acid monomers can also be used as alkali metal salts or ammonium salts.
  • an ethylenically unsaturated carboxylic acid monomer can be used individually or in combination of 2 or more types.
  • the content ratio of the ethylenically unsaturated carboxylic acid monomer unit formed of the ethylenically unsaturated carboxylic acid monomer in the nitrile group-containing conjugated diene copolymer is preferably 2 to 5% by weight.
  • the obtained film molded product such as a dip molded product is excellent in feeling and elongation while making the tensile strength sufficient. can do.
  • the content ratio of other monomer units formed of other ethylenically unsaturated monomers in the nitrile group-containing conjugated diene copolymer is preferably 10% by weight or less, more preferably 5% by weight. % Or less, more preferably 3% by weight or less.
  • the nitrile group-containing conjugated diene-based copolymer can be obtained by copolymerizing a monomer mixture containing the above-mentioned monomers, but a method of copolymerizing by emulsion polymerization is preferable. A conventionally known method can be adopted as the emulsion polymerization method.
  • polymerization auxiliary materials such as an emulsifier, a polymerization initiator, a molecular weight modifier and the like can be used.
  • the addition method of these polymerization auxiliary materials is not particularly limited, and any method such as initial batch addition method, split addition method, continuous addition method may be used.
  • the emulsifier is not particularly limited.
  • nonionic emulsifiers such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester, etc .
  • potassium dodecyl benzene sulfonate dodecyl benzene
  • Anionic emulsifiers such as alkyl benzene sulfonates such as sodium sulfonate, higher alcohol sulfates, alkyl sulfosuccinates
  • cationic emulsifiers such as alkyl trimethyl ammonium chlorides, dialkyl ammonium chlorides and benzyl ammonium chlorides; ⁇ , ⁇ -unsaturated Sulfo esters of carboxylic acids, sulfate esters of ⁇ , ⁇ -unsaturated carboxylic acids, sulfoalkyl aryl ethers
  • a polymerizable emulsifier can be mentioned.
  • anionic emulsifiers are preferable, alkylbenzene sulfonates are more preferable, and potassium dodecylbenzenesulfonate and sodium dodecylbenzenesulfonate are particularly preferable.
  • These emulsifiers can be used alone or in combination of two or more.
  • the amount of the emulsifier used is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the monomer mixture.
  • the polymerization initiator is not particularly limited, and for example, inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, hydrogen peroxide and the like; diisopropylbenzene hydroperoxide, cumene hydroperoxide, t-Butyl hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, di-t-butyl peroxide, di- ⁇ - Organic peroxides such as cumyl peroxide, acetyl peroxide, isobutyryl peroxide, benzoyl peroxide; azo compounds such as azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, methyl azobisisobutyrate, etc.
  • inorganic peroxides such as sodium persulfate, potassium persul
  • the amount of the polymerization initiator used is preferably 0.01 to 10 parts by weight, more preferably 0.01 to 2 parts by weight, with respect to 100 parts by weight of the monomer mixture.
  • the peroxide initiator can be used as a redox polymerization initiator in combination with a reducing agent.
  • the reducing agent is not particularly limited, but is a compound containing a metal ion in a reduced state such as ferrous sulfate or cuprous naphthenate; a sulfonic acid compound such as sodium methanesulfonate; an amine compound such as dimethylaniline And the like. These reducing agents can be used alone or in combination of two or more.
  • the amount of the reducing agent used is preferably 3 to 1000 parts by weight with respect to 100 parts by weight of the peroxide.
  • the amount of water used in the emulsion polymerization is preferably 80 to 600 parts by weight, particularly preferably 100 to 200 parts by weight, with respect to 100 parts by weight of all the monomers used.
  • a method of adding monomers for example, a method of adding monomers to be used in a reaction vessel at once, a method of adding continuously or intermittently as polymerization progresses, a part of monomers is added The reaction may be carried out to a specific conversion rate, and then the remaining monomers may be continuously or intermittently added and polymerized, and any method may be employed.
  • the composition of the mixture may be constant or may be changed.
  • each monomer may be added to the reaction container after previously mixing various monomers to be used, or may be separately added to the reaction container.
  • a polymerization auxiliary material such as a chelating agent, a dispersing agent, a pH regulator, an oxygen scavenger, a particle size regulator and the like can be used, and the type and amount thereof are not particularly limited.
  • the polymerization temperature at the time of carrying out the emulsion polymerization is not particularly limited, but is usually 3 to 95 ° C., preferably 5 to 60 ° C.
  • the polymerization time is about 5 to 40 hours.
  • the monomer mixture is emulsion-polymerized, and when reaching a predetermined polymerization conversion rate, the polymerization reaction is stopped by cooling the polymerization system or adding a polymerization terminator.
  • the polymerization conversion rate at the time of terminating the polymerization reaction is preferably 90% by weight or more, more preferably 93% by weight or more.
  • the polymerization terminator is not particularly limited, and examples thereof include hydroxylamine, hydroxyamine sulfate, diethylhydroxylamine, hydroxyamine sulfonic acid and alkali metal salt thereof, sodium dimethyldithiocarbamate, hydroquinone derivative, catechol derivative, and hydroxydimethyl Aromatic hydroxy dithio carboxylic acids, such as benzene thio carboxylic acid, hydroxy diethyl benzene dithio carboxylic acid, hydroxy dibutyl benzene dithio carboxylic acid, and these alkali metal salts etc. are mentioned.
  • the amount of polymerization terminator used is preferably 0.05 to 2 parts by weight with respect to 100 parts by weight of the monomer mixture.
  • an anti-aging agent an antiseptic agent, an antibacterial agent, a dispersing agent, and the like may be appropriately added to the latex of the nitrile group-containing conjugated diene copolymer as needed.
  • the number average particle diameter of the latex of the nitrile group-containing conjugated diene copolymer is preferably 60 to 300 nm, more preferably 80 to 150 nm.
  • the particle size can be adjusted to a desired value by a method such as adjusting the amount of the emulsifier and the polymerization initiator used.
  • carboxy-modified polymer used in the present invention as described above, synthetic polyisoprene, styrene-isoprene-styrene block copolymer (SIS), nitrile group-containing conjugated diene copolymer and the like can be used. Not limited to these, a butadiene polymer, a styrene-butadiene copolymer, etc. may be used.
  • SIS styrene-isoprene-styrene block copolymer
  • nitrile group-containing conjugated diene copolymer and the like can be used.
  • a butadiene polymer, a styrene-butadiene copolymer, etc. may be used.
  • the butadiene polymer may be a homopolymer of 1,3-butadiene as a conjugated diene monomer, or another ethylenic non-copolymerizable with 1,3-butadiene as a conjugated diene monomer. It may be a copolymer obtained by copolymerizing a saturated monomer.
  • a styrene-butadiene copolymer is a copolymer obtained by copolymerizing styrene with 1,3-butadiene as a conjugated diene monomer, and in addition to these, it is used as needed. It may be a copolymer formed by copolymerizing another copolymerizable ethylenically unsaturated monomer.
  • a latex of a natural rubber from which proteins have been removed can also be used.
  • the latex of deproteinized natural rubber can be obtained by a known protein removing method such as a method of decomposing the protein in the natural rubber latex with, for example, a proteolytic enzyme or surfactant and removing it by washing, centrifugation or the like What is known as so-called "deproteinized natural rubber latex" can be used.
  • Carboxy-modified polymer constituting the latex of the carboxy-modified polymer used in the latex present invention carboxy-modified polymer, a conjugated diene polymer or deproteinized natural rubber as described above, be modified by a monomer having a carboxyl group It can be obtained by Alternatively, when a polymer containing an ethylenically unsaturated carboxylic acid monomer unit is used as a conjugated diene polymer, the conjugated diene polymer is modified with a monomer having a carboxyl group. Instead, the conjugated diene polymer can be used as it is as a carboxy-modified polymer.
  • the present invention by using a latex of a carboxy-modified polymer, generation of aggregates can be suppressed for the obtained latex composition, whereby a dip-molded product or the like can be obtained using the latex composition.
  • the defect rate of the film-formed body can be reduced.
  • the obtained latex composition can improve the tensile strength when it is formed into a film molded article such as a dip molded article.
  • the method for modifying a conjugated diene polymer or a deproteinized natural rubber with a monomer having a carboxyl group is not particularly limited.
  • a conjugated diene polymer or a deproteinized natural rubber having a carboxyl group may be used alone.
  • the method of graft-polymerizing a monomer in an aqueous phase is mentioned.
  • the method of graft polymerizing a monomer having a carboxyl group in the aqueous phase is not particularly limited, and a conventionally known method may be used, for example, a conjugated diene polymer or a latex of deproteinized natural rubber, After adding a monomer having a carboxyl group and a polymerization catalyst (graft polymerization catalyst) used for graft polymerization, a monomer having a carboxyl group in a conjugated diene polymer or deproteinized natural rubber in an aqueous phase The method of reacting is preferred.
  • graft polymerization catalyst graft polymerization catalyst
  • the graft polymerization catalyst is not particularly limited.
  • inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, hydrogen peroxide and the like; diisopropylbenzene hydroperoxide, cumene hydroperoxide, Organic peroxides such as t-butyl hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, di-t-butyl peroxide, isobutyryl peroxide, benzoyl peroxide; 2,2'- Although azo compounds such as azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, methyl azobisisobutyrate and the like can be mentioned, the tensile strength of a film molded product such as a dip molded product obtained is further improved Organic peroxides are preferred in terms of , 1,1,3,3-tetramethylbutyl hydroperoxide is particularly
  • the amount of the graft polymerization catalyst used varies depending on its type, but it is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight, per 100 parts by weight of the conjugated diene polymer or deproteinized natural rubber. It is a department. Moreover, it does not specifically limit as method to add a graft polymerization catalyst, Well-known addition methods, such as package addition, division
  • an organic peroxide When used as a graft polymerization catalyst, it can be used as a redox polymerization initiator in combination with a reducing agent.
  • the reducing agent is not particularly limited.
  • compounds containing metal ions in a reduced state such as ferrous sulfate and cuprous naphthenate; Sulfonic acid compounds such as sodium methanesulfonate; Amines such as dimethylaniline Compound; and the like.
  • One of these reducing agents may be used alone, or two or more thereof may be used in combination.
  • the addition amount of the organic peroxide is not particularly limited, it is preferably 0.01 to 3 parts by weight, more preferably 0.1 to 1 part by weight with respect to 100 parts by weight of the conjugated diene polymer or the deproteinized natural rubber. It is a department.
  • the addition amount of the reducing agent is not particularly limited, it is preferably 0.01 to 1 part by weight with respect to 1 part by weight of the organic peroxide.
  • the addition method of the organic peroxide and the reducing agent is not particularly limited, and known addition methods such as batch addition, divided addition, continuous addition and the like can be used, respectively.
  • the dispersant is not particularly limited. However, derivatives of aromatic sulfonic acids, fatty acid salts, alkylbenzene sulfonates, alkyl sulfosuccinates, alkyl sulfates, polyoxyethylene alkyl ether sulfates, monoalkyl phosphates, etc. Anionic surfactants are preferred, and derivatives of aromatic sulfonic acids are more preferred.
  • the dispersants may be used alone or in combination of two or more.
  • the derivative of the aromatic sulfonic acid is not particularly limited, but a compound represented by the following general formula (1) is preferable.
  • R 1 and R 2 are each independently a hydrogen atom or any organic group, and R 1 and R 2 may be bonded to each other to form a ring structure .
  • the organic group can be an R 1 and R 2, but not limited to, methyl group, ethyl group, n- propyl group, an isopropyl group, n- butyl group, an isobutyl group Alkyl groups having 1 to 30 carbon atoms, such as sec-butyl, t-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl and n-decyl; A cycloalkyl group having 3 to 30 carbon atoms such as cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl; and an aryl having 6 to 30 carbons such as phenyl, biphenyl, naphthyl and anthranyl.
  • These organic groups may have a substituent, and the position of the substituent can be any position.
  • the ring structure is not particularly limited, but an aromatic compound is preferable, and an aromatic compound having a benzene ring such as benzene and naphthalene is preferable. More preferred is naphthalene.
  • aromatic compound having a benzene ring such as benzene and naphthalene is preferable. More preferred is naphthalene.
  • These ring structures may have a substituent, and the position of the substituent may be any position.
  • R 1 and R 2 are mutually bonded to form a ring structure, What forms the benzene ring structure in the said General formula (1) is mentioned. More specifically, it is preferable to use a compound having a structure represented by the following general formula (2).
  • R 3 is a divalent hydrocarbon group which may have a substituent.
  • R 3 is not particularly limited as long as it is a divalent hydrocarbon group which may have a substituent, and is preferably an alkylene group having 1 to 10 carbon atoms, and a methylene group Is particularly preferred.
  • the structure represented by the said General formula (2) it is preferable to have the structure represented by the said General formula (2) repeatedly, and the repeating unit number of the structure represented by the said General formula (2) is not specifically limited Is preferably 10 to 100, more preferably 20 to 50.
  • the weight average molecular weight of the derivative of aromatic sulfonic acid is preferably 500 to 100,000, more preferably 3,000 to 50,000, and still more preferably 5,000 to 30,000.
  • the addition amount of the dispersant is not particularly limited, it is possible to more effectively suppress the generation of aggregates even when the solid concentration of the conjugated diene polymer or the latex of the deproteinized natural rubber is increased. More preferably, the amount is 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the conjugated diene polymer or deproteinized natural rubber contained in the latex.
  • the method for adding the dispersant to the conjugated diene polymer or the latex of deproteinized natural rubber is not particularly limited, and known addition methods such as batch addition, divided addition, continuous addition, and the like can be adopted.
  • the dispersant may be added directly to the latex, or an aqueous solution of the dispersant may be prepared beforehand, and the prepared aqueous solution of the dispersant may be added to the latex.
  • the reaction temperature for reacting the conjugated diene polymer or the deproteinized natural rubber with a monomer having a carboxyl group is not particularly limited, but is preferably 15 to 80 ° C., more preferably 30 to 50 ° C.
  • the reaction time for reacting a monomer having a carboxyl group may be appropriately set according to the above reaction temperature, but is preferably 30 to 300 minutes, more preferably 60 to 120 minutes.
  • the solid concentration of the conjugated diene polymer or latex of the deproteinized natural rubber when reacting a monomer having a carboxyl group is not particularly limited, but is preferably 5 to 60% by weight, more preferably 10 to 40. It is weight%.
  • Examples of the monomer having a carboxyl group include ethylenically unsaturated monocarboxylic acid monomers such as acrylic acid and methacrylic acid; and ethylenically unsaturated polyvalent acids such as itaconic acid, maleic acid, fumaric acid and butene tricarboxylic acid Carboxylic acid monomer; Partial ester monomer of ethylenically unsaturated polyvalent carboxylic acid such as monobutyl fumarate, monobutyl maleate, mono 2-hydroxypropyl maleate; Polyvalent carbon such as maleic anhydride, citraconic anhydride Acid anhydrides and the like can be mentioned, but from the viewpoint that the effect of the present invention becomes more remarkable, ethylenically unsaturated monocarboxylic acid monomers are preferable, and acrylic acid and methacrylic acid are particularly preferable. These monomers may be used alone or in combination of two or more. Further, the above-mentioned carboxyl group also includes those in the form of
  • the amount of the carboxyl group-containing monomer used is preferably 0.01 parts by weight to 100 parts by weight, more preferably 0.01 parts by weight to 100 parts by weight of the conjugated diene polymer or deproteinized natural rubber.
  • the amount is 40 parts by weight, more preferably 0.5 to 20 parts by weight.
  • the conversion of graft polymerization is preferably 95% by weight or more, more preferably 97% by weight or more.
  • the modification ratio of the carboxy-modified polymer by the monomer having a carboxyl group may be appropriately controlled depending on the purpose of use of the resulting latex composition, but is preferably 0.01 to 10 mol%, more preferably 0. 5 to 5 mol%.
  • the modification rate is represented by the following formula (i).
  • Modification rate (mol%) (X / Y) ⁇ 100 (i)
  • X represents the number of carboxyl groups in the carboxy-modified polymer
  • Y represents the total number of monomer units of the carboxy-modified polymer.
  • X can be determined by performing 1 H-NMR measurement on the carboxy-modified polymer. Further, Y can be determined by calculating (weight-average molecular weight (Mw) of carboxy-modified polymer) / (average molecular weight according to the content ratio of each monomer unit constituting the carboxy-modified polymer).
  • the latex of the carboxy modified polymer used in the present invention is added with a pH adjusting agent, an antifoaming agent, an antiseptic agent, a chelating agent, an oxygen scavenger, a dispersing agent, an antiaging agent, etc.
  • An agent may be blended.
  • pH adjusters include hydroxides of alkali metals such as sodium hydroxide and potassium hydroxide; carbonates of alkali metals such as sodium carbonate and potassium carbonate; hydrogencarbonates of alkali metals such as sodium hydrogencarbonate; ammonia Organic amine compounds such as trimethylamine and triethanolamine; and the like, and hydroxides of alkali metals or ammonia are preferable.
  • the pH of the latex of the carboxy modified polymer at this time is not particularly limited, but in the production method of the present invention, as described later, the latex of the carboxy modified polymer contains a xanthogen compound, an activator, and a sulfur system. When a vulcanizing agent is blended to form a latex composition and the latex composition is aged under predetermined conditions, the pH of the latex composition before aging may be less than 10.
  • concentration operation may be performed by a method such as vacuum distillation, atmospheric pressure distillation, centrifugation, membrane concentration, etc. It is preferable to perform centrifugation from the viewpoint that the residual amount of the anionic surfactant in the latex of the carboxy-modified polymer can be adjusted.
  • the latex of the carboxy-modified polymer after graft polymerization is centrifuged, it is preferable to add a pH adjuster in advance to set the pH of the latex to 7 or more, in order to improve the mechanical stability of the latex. Is more preferably 9 or more.
  • denaturation may be in the state of a salt.
  • the pH of the latex of the carboxy modified polymer even when the pH of the latex of the carboxy modified polymer is adjusted at this time, as described later, the xanthogen compound, the activator, and the latex of the carboxy modified polymer And when a sulfur-based vulcanizing agent is blended to form a latex composition, and the latex composition is aged under predetermined conditions, the pH of the latex composition before aging may be less than 10.
  • the solids concentration of the latex of the carboxy-modified polymer of the present invention is preferably 30 to 70% by weight, more preferably 40 to 70% by weight.
  • the content ratio of the monomer unit having a carboxyl group in the carboxy-modified polymer is the total unit amount The amount is preferably 0.01 to 50% by weight, more preferably 0.5 to 40% by weight, still more preferably 1 to 30% by weight, and particularly preferably 1 to 15% by weight, based on the body unit.
  • a xanthogen compound is blended in the latex of the carboxy modified polymer described above.
  • the xanthogen compound used in the present invention can act as a vulcanization accelerator by using it in combination with a sulfur-based vulcanizing agent described later. That is, when a sulfur-based vulcanizing agent is blended in the latex composition, and the carboxy-modified polymer in the latex composition is vulcanized with the sulfur-based vulcanizing agent to form a film molded article such as a dip molded article, The xanthogen compound acts as a vulcanization accelerator.
  • xanthogen compounds act as a vulcanization accelerator in a latex composition containing a sulfur-based vulcanizing agent, and after vulcanization is performed, alcohol and carbon disulfide are added by the heat applied at the time of vulcanization, etc. And so on.
  • a xanthogen compound is decomposed into alcohol, carbon disulfide and the like by heat (heat at about 100 to 130 ° C. when vulcanizing a carboxy-modified polymer) added when producing a film molded product, and further decomposed The components (alcohol and carbon disulfide etc.) generated by As a result, the resulting molded membrane has a reduced amount of residual xanthogen compound.
  • a vulcanization accelerator for example, a dithiocarbamate-based vulcanization accelerator, a thiazole-based vulcanization accelerator, etc. which has conventionally caused the occurrence of symptoms of delayed type allergy (Type IV) Since the xanthogen compound can be used as a vulcanization accelerator without reducing the residual amount of the xanthogen compound in a film molded article such as a dip molded product to be obtained, delay of the film molded article obtained can be obtained. It is possible to suppress the occurrence of symptoms of type allergy (Type IV).
  • the latex composition used in the present invention uses a synthetic rubber such as a conjugated diene polymer or a carboxy-modified polymer using a deproteinized natural rubber, natural rubber ( It is also possible to suppress the occurrence of the symptoms of immediate type allergy (Type I) caused by the protein contained in the natural rubber (not deproteinized).
  • xanthogen compounds used in the present invention include, but are not limited to, xanthogen acid, xanthogen acid salt, xanthogen disulfide (compound in which two xanthogen acids are linked via a sulfur atom etc.), xanthogen polysulfide And the like) compounds in which three or more xanthogenic acids are linked via a sulfur atom or the like.
  • the xanthogen acid salt is not particularly limited as long as it has a xanthogenic acid structure, and is not particularly limited.
  • a general formula (ROC ( S) S) x-Z (wherein R is linear or branched) Hydrocarbon, Z is a metal atom, and x is a number corresponding to the valence of Z, and is usually 1 to 4, preferably 2 to 4, particularly preferably 2.
  • xanthogenates may be used alone or in combination of two or more.
  • the xanthogen disulfide is a compound in which two xanthogenic acids are linked via a sulfur atom or the like, and is not particularly limited, but dimethyl xanthogen disulfide, diethyl xanthogen disulfide, diisopropyl xanthogen disulfide, dibutyl xanthogen disulfide, dimethyl xanthogen polysulfide, diethyl Examples thereof include xanthogen polysulfide, diisopropyl xanthogen polysulfide, dibutyl xanthogen polysulfide and the like, and among these, diisopropyl xanthogen disulfide and dibutyl xanthogen disulfide are preferable.
  • a xanthogen polysulfide is a compound in which three or more xanthogenic acids are linked via a sulfur atom or the like, and xanthogen trisulfide in which three xanthogenic acids are linked via sulfur, and four xanthogenic acids via sulfur And xanthogen pentasulfide, in which five xanthogen acids are linked via sulfur.
  • xanthogen compounds may be contained singly in the latex composition, but two or more kinds are preferably contained.
  • xanthogenic acid when xanthogenic acid is compounded into the latex composition, part of the compounded xanthogenic acid is present in the form of xanthogenate, and as a result, the latex composition contains two or more xanthogen compounds.
  • a part of xanthogenic acid blended into the latex composition may be present in the form of xanthogen disulfide or xanthogen polysulfide by the action of the sulfur-based vulcanizing agent in the latex composition.
  • any of xanthogen acid, xanthogenate, xanthogen disulfide and xanthogen polysulfide can be used. It may exist in some form.
  • the content ratio of the xanthogen compound (when the latex composition contains a plurality of xanthogen compounds, the content ratio of the total is 100 wt% of the carboxy modified polymer contained in the latex)
  • the amount is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 7 parts by weight, and still more preferably 0.5 to 5 parts by weight with respect to parts.
  • a vulcanization accelerator in addition to xanthogen compounds, compounds conventionally used as a vulcanization accelerator in the present invention, specifically, sulfur which causes the onset of symptoms of delayed allergy (Type IV)
  • a film-formed article such as a dip-formed product obtained after acting as a vulcanization accelerator (for example, a dithiocarbamate-based vulcanization accelerator, a thiazole-based vulcanization accelerator, etc.) containing It is preferable that the compound which remains in is substantially not contained.
  • the method of blending the xanthogen compound is not particularly limited as long as the latex of the carboxy-modified polymer and the xanthogen compound are finally mixed, and is not particularly limited.
  • the obtained latex of carboxy modified polymer is mixed with xanthogen compound in latex of carboxy modified polymer, and the solution or fine suspension of carboxy modified polymer dissolved or finely dispersed in organic solvent is xanthogen compound in advance.
  • the carboxy-modified polymer in which the xanthogen compound is blended is emulsified in water, and the organic solvent is optionally removed to obtain the carboxy-modified polymer in which the xanthogen compound is blended.
  • a latex of the carboxy modified polymer is obtained, and then a method of incorporating the xanthogen compound into the latex of the carboxy modified polymer is disclosed. preferable.
  • an activator is blended to the above-mentioned latex of the carboxy-modified polymer.
  • the carboxy-modified polymer in the latex composition is vulcanized with a sulfur-based vulcanizing agent using the latex composition obtained by adding an activating agent to the latex composition to dip
  • the activating agent acts as a vulcanization accelerator together with the xanthogen compound described above, and the activating agent itself crosslinks the carboxyl group of the carboxy-modified polymer as a crosslinking agent By acting, this further improves the tear strength of the film molded article such as the obtained dip molded article.
  • the metal compound is not particularly limited, and examples thereof include metal oxides and metal compounds containing at least one carbon atom.
  • the metal constituting the metal compound is not particularly limited, but a typical metal (Group 1 element, Group 2 element, Group 12 element, Group 13 element, Group 14 element, Group 15 element, Group 16) At least one element selected from the group consisting of an element, a group 17 element and a group 18 element) is preferable, and a group 2 element, a group 12 element, a group 13 element and a group 14 element are more preferable, Zinc, magnesium, calcium, aluminum and lead are more preferred, zinc, magnesium and calcium are particularly preferred, and zinc is most preferred. These metal compounds may be used alone or in combination of two or more.
  • the metal oxide is not particularly limited, but zinc oxide, magnesium oxide, titanium oxide, calcium oxide, lead oxide, iron oxide, from the viewpoint of further improving the tear strength of a film molded product such as a dip molded product to be obtained. Copper oxide, tin oxide, nickel oxide, chromium oxide, cobalt oxide and aluminum oxide are preferred, and zinc oxide is more preferred.
  • an organic metal compound is preferable from the viewpoint that the tear strength of a film molded product such as a dip molded product to be obtained is further improved.
  • carbonates, hydrogencarbonates and organic metal compounds are more preferred.
  • inorganic salts such as carbonates and hydrogen carbonates are particularly preferable from the viewpoint of excellent stability of the compound itself and excellent availability.
  • the content ratio of the activating agent in the latex composition used in the present invention is preferably 0.01 to 10 parts by weight, more preferably 0. 10 parts by weight with respect to 100 parts by weight of the carboxy-modified polymer contained in the latex composition. It is 1 to 5 parts by weight, more preferably 1 to 3 parts by weight.
  • the method of blending the activating agent may be any method as long as the latex of the carboxy-modified polymer and the activating agent are finally mixed, and is not particularly limited. After the latex of the carboxy modified polymer is obtained, there is a method of blending an activating agent with the latex of the carboxy modified polymer.
  • Sulfur-based vulcanizing agent In the preparation process of the present invention, a sulfur-based vulcanizing agent is added to the above-described carboxy-modified polymer latex in addition to the xanthogen compound and the activator.
  • the sulfur-based vulcanizing agent is not particularly limited.
  • sulfur such as powdery sulfur, sulfur dioxide, precipitated sulfur, colloidal sulfur, surface-treated sulfur, insoluble sulfur and the like; sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide And sulfur-containing compounds such as caprolactam disulfide (N, N'-dithio-bis (hexahydro-2H-azepinone-2)), phosphorus-containing polysulfides, polymeric polysulfides, and 2- (4'-morpholinodithio) benzothiazole It can be mentioned.
  • sulfur is preferably used.
  • the sulfur-based vulcanizing agent can be used singly or in combination of two or more.
  • the content of the sulfur-based vulcanizing agent is not particularly limited, but preferably 0.1 to 10 parts by weight, more preferably 0.2 to 3 parts by weight with respect to 100 parts by weight of the carboxy-modified polymer contained in the latex composition. It is a weight part.
  • Latex composition before ripening contains the latex of the carboxy-modified polymer described above, a xanthogen compound, an activator, and a sulfur-based vulcanizing agent. And the pH is less than 10.
  • a xanthogen compound, an activator, and a sulfur-based vulcanizing agent are mixed with the above-mentioned carboxy-modified polymer latex, and the pH is adjusted to less than 10 as necessary.
  • the latex composition before ripening thus obtained is aged by being stored for a half day (12 hours) to 14 days under the condition of a temperature of 5 to 60 ° C. Perform (pre-crosslinking).
  • the pH of the latex composition before aging may be less than 10 as described above, but is preferably 9.5 or less, more preferably 8.5 or less. If the pH of the latex composition before aging is too high, the tensile strength and tear strength of the resulting film molded article such as a dip molded article may be reduced.
  • the lower limit of the pH of the latex composition before aging is not particularly limited, but is preferably 6 or more, and more preferably 6.5 or more.
  • the latex composition of the present invention may be any one containing a latex of a carboxy-modified polymer, a xanthogen compound, an activating agent, and a sulfur-based vulcanizing agent.
  • the body may further contain a vulcanization accelerator as long as the onset of symptoms of delayed allergy (Type IV) can be suppressed.
  • vulcanization accelerator those commonly used in dip molding can be used, and examples thereof include diethyl dithiocarbamic acid, dibutyl dithiocarbamic acid, di-2-ethylhexyl dithiocarbamic acid, dicyclohexyl dithiocarbamic acid, diphenyl dithiocarbamic acid, and dibenzyl dithiocarbamic acid.
  • the latex composition of the present invention further comprises: antiaging agents; dispersing agents; reinforcing agents such as carbon black, silica and talc; fillers such as calcium carbonate and clay; UV absorbers; plasticizers; It can be blended as needed.
  • anti-aging agents examples include 2,6-di-4-methylphenol, 2,6-di-t-butylphenol, butylhydroxyanisole, 2,6-di-t-butyl- ⁇ -dimethylamino-p-cresol, Octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, styrenated phenol, 2,2'-methylene-bis (6- ⁇ -methyl-benzyl-p-cresol), 4, Butylation of 4'-methylenebis (2,6-di-t-butylphenol), 2,2'-methylene-bis (4-methyl-6-t-butylphenol), alkylated bisphenols, p-cresol and dicyclopentadiene Reaction products, etc., sulfur-free phenolic anti-aging agents such as; 2,2'-thiobis- (4-methyl-6-t-butylpheno) ), 4,4'-thiobis- (6-t-butyl-o-cresol
  • the content of the antiaging agent is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the carboxy-modified polymer.
  • the method of mixing various compounding agents into the latex composition of the present invention is not particularly limited.
  • a latex of a carboxy-modified polymer, a xanthogen compound, an activator, and a sulfur-based vulcanizing agent After obtaining the latex composition before ripening to be contained, a method of mixing various compounding agents to be blended with the latex composition before ripening as needed, using a dispersing machine such as a ball mill, a kneader or a disper, After preparing an aqueous dispersion of compounding components other than the latex of the carboxy-modified polymer using the above-mentioned disperser, a method of mixing the aqueous dispersion with the latex of the carboxy-modified polymer may, for example, be mentioned. In addition, at least a part of the various compounding agents may be blended after aging.
  • the solids concentration of the latex composition of the present invention is preferably 10 to 60% by weight, more preferably 10 to 55% by weight.
  • the temperature at which the ripening is carried out may be 5 to 60 ° C., preferably 10 to 50 ° C., and more preferably 10 to 45 ° C. If the temperature for aging is too low, the effect of enhancing the mechanical properties of the resulting film molded article such as a dip molded article may be insufficient. On the other hand, if the temperature for aging is too high, the tensile strength of the resulting film-formed article such as a dip-formed article may be reduced.
  • the aging time depends on the aging temperature, but may be half a day (12 hours) to 14 days, preferably half a day (12 hours) to 10 days, and more preferably half a day (12 hours) to 7 days. If the aging time is too short, the effect of enhancing the mechanical properties of the resulting film molded article such as a dip molded article may be insufficient. On the other hand, if the aging time is too long, the tensile strength of the resulting film molded article such as a dip molded article may be lowered.
  • the pH of the latex composition after aging is preferably 6 or more and less than 10, and more preferably 6 to 9.
  • the pH of the latex composition after aging is preferably 6 or more and less than 10, and more preferably 6 to 9.
  • the pH of the latex composition tends to decrease due to aging. That is, the pH of the latex composition after aging tends to be lower than the pH of the latex composition before aging.
  • the pH of the latex composition after aging is preferably in the above range, but the pH of the latex composition after aging is in the above range and If not, the pH may be adjusted to the above-mentioned range by adding a pH adjuster to the matured latex composition.
  • a pH adjuster may be added to the latex composition after aging in order to make the pH more appropriate.
  • the pH adjuster to be added to the latex composition after aging is not particularly limited, but, for example, hydroxides of alkali metals such as sodium hydroxide and potassium hydroxide; carbonates of alkali metals such as sodium carbonate and potassium carbonate And hydrogencarbonates of alkali metals such as sodium hydrogencarbonate; ammonia; organic amine compounds such as trimethylamine and triethanolamine; and the like, and hydroxides of alkali metals, ammonia and organic amine compounds are preferable.
  • These pH adjusters can be used alone or in combination of two or more.
  • the latex composition contains a latex of a carboxy-modified polymer, a xanthogen compound, an activator, and a sulfur-based vulcanizing agent, and has a pH of less than 10.
  • a latex of a carboxy-modified polymer a xanthogen compound, an activator, and a sulfur-based vulcanizing agent
  • a dip-formed body can be obtained by dip-forming the latex composition obtained by the above-mentioned production method of the present invention.
  • the mold In dip molding, the mold is immersed in a latex composition, the composition is deposited on the surface of the mold, then the mold is pulled out of the composition, and then the composition deposited on the surface of the mold is dried. is there.
  • the mold before being immersed in the latex composition may be preheated. Also, before immersing the mold in the latex composition, or after pulling up the mold from the latex composition, a coagulant can be used if desired.
  • the method of using the coagulant include a method of immersing the mold prior to immersion in the latex composition in a solution of the coagulant to attach the coagulant to the mold (anode adhesion immersion method), depositing the latex composition
  • anode adhesion immersion method There is a method of immersing the obtained mold in a coagulant solution (Tig condensation and immersion method) or the like, but the anode condensation and immersion method is preferable in that a dip-formed body with less thickness unevenness can be obtained.
  • the coagulant include metal halides such as barium chloride, calcium chloride, magnesium chloride, zinc chloride and aluminum chloride; nitrates such as barium nitrate, calcium nitrate and zinc nitrate; barium acetate, calcium acetate, zinc acetate etc
  • Water-soluble polyvalent metal salts such as salts; sulfates such as calcium sulfate, magnesium sulfate and aluminum sulfate; Among them, calcium salts are preferable, and calcium nitrate is more preferable.
  • These water-soluble polyvalent metal salts can be used alone or in combination of two or more.
  • the coagulant can usually be used as a solution of water, alcohol, or a mixture thereof, and is preferably used in the form of an aqueous solution.
  • the aqueous solution may further contain a water-soluble organic solvent such as methanol or ethanol or a nonionic surfactant.
  • concentration of the coagulant varies depending on the type of the water-soluble polyvalent metal salt, but is preferably 5 to 50% by weight, more preferably 10 to 30% by weight.
  • the mold After the mold is withdrawn from the latex composition, it is usually heated to dry the deposits formed on the mold.
  • the drying conditions may be selected appropriately.
  • Crosslinking of the dip-formed layer can be carried out usually by heat treatment at a temperature of 80 to 150 ° C., preferably for 10 to 130 minutes.
  • a heating method a method by external heating with infrared rays or heated air or internal heating with high frequency can be adopted. Among them, external heating by heating air is preferable.
  • the dip-formed layer is immersed in water, preferably warm water at 30 to 70 ° C.
  • water-soluble impurities eg, excess emulsifier, coagulant, etc.
  • the removal operation of the water-soluble impurities may be carried out after the dip molding layer is heat-treated, but it is preferable to be carried out before the heat treatment in that the water-soluble impurities can be removed more efficiently.
  • a dip molded body is obtained by desorbing a dip molding layer from the type
  • the desorption method it is possible to adopt a method of peeling off from the mold by hand or peeling by water pressure or pressure of compressed air. After desorption, heat treatment may be further performed at a temperature of 60 to 120 ° C. for 10 to 120 minutes.
  • the film thickness of the dip-formed product is preferably 0.03 to 0.50 mm, more preferably 0.05 to 0.40 mm, and particularly preferably 0.08 to 0.30 mm.
  • the dip-molded body obtained by the production method of the present invention is obtained by using the above-mentioned latex composition, it is possible to obtain tensile strength and tear strength while suppressing occurrence of symptoms of delayed allergy (Type IV).
  • Type IV delayed allergy
  • the film-formed body is a glove
  • the inorganic fine particles such as talc, calcium carbonate or the like, organic particles such as starch particles or the like are gloved in order to prevent adhesion on the contact surface of the film-formed bodies
  • the surface may be sprayed, an elastomer layer containing fine particles may be formed on the surface of the glove, or the surface layer of the glove may be chlorinated.
  • dip molded articles obtained by the production method of the present invention include nipples for baby bottles, syringes, tubes, water pillows, balloon sacks, catheters, medical supplies such as condoms, balloons, dolls, balls, etc.
  • Industrial products such as pressure-molding bags, gas storage bags, and the like;
  • Adhesive Composition In the present invention, the latex composition obtained by the above-mentioned production method of the present invention can be used as an adhesive composition.
  • the content (solid content) of the latex composition in the adhesive composition is preferably 5 to 60% by weight, more preferably 10 to 30% by weight.
  • the adhesive composition preferably comprises an adhesive resin in addition to the above-described latex composition.
  • the adhesive resin is not particularly limited.
  • resorcinol-formaldehyde resin, melamine resin, epoxy resin and isocyanate resin can be suitably used, and among these, resorcinol-formaldehyde resin is preferable.
  • the resorcinol-formaldehyde resin known ones (for example, those disclosed in JP-A-55-142635) can be used.
  • the reaction ratio of resorcin to formaldehyde is usually 1: 1 to 1: 5, preferably 1: 1 to 1: 3, in terms of a molar ratio of "resorcin: formaldehyde".
  • the adhesive composition may be a conventionally used 2,6-bis (2,4-dihydroxyphenylmethyl) -4-chlorophenol or the like.
  • Compounds, isocyanates, blocked isocyanates, ethylene ureas, polyepoxides, modified polyvinyl chloride resins and the like can be contained.
  • the adhesive composition can contain a vulcanization aid.
  • the incorporation of the vulcanization aid can improve the mechanical strength of the composite to be described later obtained using the adhesive composition.
  • Vulcanization aids include quinone dioximes such as p-quinone dioxime; methacrylic acid esters such as lauryl methacrylate and methyl methacrylate; DAF (diallyl fumarate), DAP (diallyl phthalate), TAC (triallyl cyanurate), And allyl compounds such as TAIC (triaryl isocyanurate); maleimide compounds such as bismaleimide, phenyl maleimide, N, N-m-phenylene dimaleimide; sulfur; and the like.
  • Adhesive Layer-Forming Substrate According to the production method of the present invention, the latex composition obtained by the production method of the present invention described above or the adhesive layer formed using the adhesive composition obtained using the same An adhesive layer forming base material can be obtained by forming on the base material surface.
  • a fiber base material can be used.
  • the type of fiber constituting the fiber base is not particularly limited, and examples thereof include vinylon fiber, polyester fiber, nylon, polyamide fiber such as aramid (aromatic polyamide), glass fiber, cotton, rayon and the like. These can be suitably selected according to the use.
  • the shape of the fiber substrate is not particularly limited, and examples thereof include staples, filaments, cords, ropes, woven fabrics (such as canvas), and the like, and can be appropriately selected according to the use.
  • the adhesive layer-forming substrate can be used as a substrate-rubber composite by adhering to rubber through the adhesive layer.
  • the base material-rubber composite is not particularly limited. For example, rubber using a cored rubber toothed belt using cords as a fiber base, rubber using a base cloth-like fiber base such as canvas A toothed belt etc. may be mentioned.
  • the method for obtaining the base material-rubber complex is not particularly limited.
  • the adhesive composition is attached to the base material by immersion treatment or the like to obtain an adhesive layer forming base material, and the adhesive layer forming base material is obtained Is placed on rubber and heated and pressurized.
  • Pressurization can be performed using a compression (press) molding machine, a metal roll, an injection molding machine, or the like.
  • the pressure of pressurization is preferably 0.5 to 20 MPa, more preferably 2 to 10 MPa.
  • the heating temperature is preferably 130 to 300 ° C., more preferably 150 to 250 ° C.
  • the heat and pressure treatment time is preferably 1 to 180 minutes, more preferably 5 to 120 minutes.
  • a base material-rubber-base material complex can be mentioned.
  • the substrate-rubber-substrate composite can be formed, for example, by combining a substrate (which may be a composite of two or more substrates) and a substrate-rubber composite. Specifically, a core wire as a base material, a rubber and a base fabric as a base material are overlapped (in this case, an adhesive composition is appropriately attached to the core wire and base cloth to be used as an adhesive layer forming base material) By applying pressure while heating, a substrate-rubber-substrate composite can be obtained.
  • the substrate-rubber composite using the adhesive layer-forming substrate obtained by the production method of the present invention is excellent in mechanical strength, abrasion resistance and water resistance, and therefore flat belts, V-belts,
  • the belt can be suitably used as a V-ribbed belt, a round belt, a square belt, a toothed belt or the like.
  • a base material-rubber complex obtained using the adhesive layer-forming base material obtained by the production method of the present invention is excellent in oil resistance and can be suitably used as a belt-in-oil belt.
  • the substrate-rubber composite obtained by using the adhesive layer-formed substrate of the present invention can be suitably used as a hose, a tube, a diaphragm and the like.
  • hose examples include single-pipe rubber hoses, multilayer rubber hoses, knitted reinforcement hoses and cloth wound reinforcement hoses.
  • a diaphragm a flat diaphragm, a rolling diaphragm, etc. are mentioned.
  • the base material-rubber complex using the adhesive layer forming base material obtained by the manufacturing method of the present invention can be used as industrial products such as a seal, a rubber roll, etc. besides the above applications.
  • the seals include moving site seals such as for rotation, swinging, and reciprocating, and fixed site seals.
  • Examples of the motion site seal include an oil seal, a piston seal, a mechanical seal, a boot, a dust cover, a diaphragm, an accumulator, and the like.
  • An O-ring, various gaskets, etc. are mentioned as a fixed part seal.
  • Examples of rubber rolls include rolls that are parts of OA equipment such as printing equipment and copying equipment; rolls for fiber processing such as stretching rolls for spinning and draft rolls for spinning; rolls for iron making such as bridle rolls, snubber rolls, steering rolls, etc. It can be mentioned.
  • the carboxy-modified polymer constituting the latex of the carboxy-modified polymer was subjected to 1 H-NMR measurement to determine the number of carboxyl groups in the carboxy-modified polymer. Next, based on the number of carboxyl groups determined, the modification ratio of the carboxyl group-containing compound was determined according to the following formula (i).
  • Modification rate (mol%) (X / Y) ⁇ 100 (i)
  • X represents the number of carboxyl groups in the carboxy-modified polymer
  • Y represents the total number of monomer units of the carboxy-modified polymer ((weight-average molecular weight of the carboxy-modified polymer (Mw)) / (Average molecular weight according to the content ratio of each monomer unit which comprises a carboxy modified polymer) is represented, respectively.
  • Production Example 1 Production of latex of carboxy-modified synthetic polyisoprene (A-1) Synthetic polyisoprene having a weight-average molecular weight of 1,300,000 (trade name "NIPOL IR 2200L", manufactured by Nippon Zeon Co., homopolymer of isoprene, cis-binding unit 98%) is mixed with cyclohexane and dissolved while raising the temperature to 60 ° C. with stirring, and a cyclohexane solution (a) of synthetic polyisoprene having a viscosity of 12,000 mPa ⁇ s measured by a B-type viscometer Adjusted (solids concentration 8% by weight).
  • A-1 Synthetic polyisoprene having a weight-average molecular weight of 1,300,000 (trade name "NIPOL IR 2200L", manufactured by Nippon Zeon Co., homopolymer of isoprene, cis-binding unit 98%) is mixed with
  • an anionic surfactant aqueous solution (b) having a concentration of 1.5% by weight 20 parts of sodium rosin acid was added to water, and the temperature was raised to 60 ° C. for dissolution to prepare an anionic surfactant aqueous solution (b) having a concentration of 1.5% by weight.
  • a mixer (trade name “Multi-line mixer MS26-MMR-5” is used so that the above cyclohexane solution (a) and the above anionic surfactant aqueous solution (b) have a weight ratio of 1: 1.5. .5 L "(manufactured by Satake Chemical Engineering Co., Ltd.), followed by mixing and emulsifying at a rotational speed of 4100 rpm using an emulsifying apparatus (trade name” Milder MDN 310 ", manufactured by Pacific Kiko Co., Ltd.) Liquid (c) was obtained.
  • an emulsifying apparatus (trade name” Milder MDN 310 ", manufactured by Pacific Kiko Co., Ltd.) Liquid (c) was obtained.
  • the total feed flow rate of the cyclohexane solution (a) and the anionic surfactant aqueous solution (b) was 2,000 kg / hr, the temperature was 60 ° C., and the back pressure (gauge pressure) was 0.5 MPa.
  • the emulsion (c) is heated to 80 ° C. under a reduced pressure of -0.01 to -0.09 MPa (gauge pressure), cyclohexane is distilled off, and an aqueous dispersion (d) of synthetic polyisoprene is obtained. Obtained.
  • an antifoaming agent (trade name "SM 5515", manufactured by Toray Dow Corning Co., Ltd.) was continuously added while spraying so that the amount was 300 ppm by weight with respect to the synthetic polyisoprene in the emulsion (c). .
  • SM 5515 manufactured by Toray Dow Corning Co., Ltd.
  • the obtained aqueous dispersion (d) of synthetic polyisoprene is subjected to 4,000 to 500 using a continuous centrifuge (trade name "SRG510", manufactured by Alfa Laval).
  • the mixture was centrifuged at 5,000 G to obtain a latex (e) of synthetic polyisoprene having a solid concentration of 56% by weight as a light liquid.
  • the conditions for centrifugation were 10% by weight solid concentration of the aqueous dispersion (d) before centrifugation, the flow rate during continuous centrifugation was 1300 kg / hr, and the back pressure (gauge pressure) of the centrifuge was 1. It was 5 MPa.
  • the obtained latex (e) of synthetic polyisoprene had a solid concentration of 60% by weight.
  • a latex (e) of synthetic polyisoprene to which a dispersant was added was charged in a nitrogen-substituted reaction container equipped with a stirrer, and the temperature was raised to 30 ° C. while stirring. Further, using another container, 3 parts of methacrylic acid as a carboxyl group-containing compound and 16 parts of distilled water were mixed to prepare a methacrylic acid diluted solution. The methacrylic acid diluted solution was added over 30 minutes into a reaction vessel heated to 30 ° C.
  • the carboxy-modified synthetic polyisoprene (A-1) was concentrated by a centrifuge to obtain a light solution with a solid concentration of 56%. Then, with respect to the obtained latex of the carboxy-modified synthetic polyisoprene (A-1), the modification ratio by the carboxyl group-containing compound was measured according to the above method, and the modification ratio was 0.5 mol%.
  • Production Example 2 Production of Latex of Carboxy-Modified Synthetic Polyisoprene (A-2)
  • a carboxy-modified synthetic polyisoprene having a solid concentration of 55% was prepared in the same manner as in Production Example 1 except that the amount of methacrylic acid used was changed from 3 parts to 5 parts.
  • a latex of (A-2) was obtained.
  • the obtained latex of the carboxy-modified synthetic polyisoprene (A-2) was measured for the degree of modification with a carboxyl group-containing compound according to the above-mentioned method, and the degree of modification was 1 mol%.
  • Example 1 Preparation of Latex Composition First, using sodium hydroxide, a styrene-maleic acid mono-sec-butyl ester-maleic acid monomethyl ester polymer (trade name "Scripset 550", manufactured by Hercules) was treated with sodium hydroxide to form carboxyl groups in the polymer. After 100% neutralization, an aqueous solution of sodium salt (concentration 10% by weight) was prepared. Then, this sodium salt aqueous solution was added to the latex of the carboxy-modified synthetic polyisoprene (A-1) obtained in Production Example 1 with respect to 100 parts of the carboxy-modified synthetic polyisoprene (A-1) in a solid content conversion of 0. The mixture was added to make 8 parts to obtain a mixture.
  • a styrene-maleic acid mono-sec-butyl ester-maleic acid monomethyl ester polymer (trade name "Scripset 550", manufactured by Hercules) was treated with sodium hydroxide to form
  • each combination agent so that it will become 1.5 parts of zinc oxide as an activator, 1.5 parts of sulfur, and 2 parts of antioxidants (brand name "Wingstay L", Goodyear company make) in conversion of solid content.
  • Water dispersion was added to obtain a latex composition.
  • the pH of the obtained latex composition was adjusted to 7.0 by adding an aqueous potassium hydroxide solution (concentration 5.0% by weight) as a pH adjuster (the pH of the latex composition before aging was 7). .0).
  • the obtained latex composition was aged in a constant temperature water bath adjusted to 30 ° C. for 48 hours.
  • the pH of the latex composition after aging was 6.7.
  • a commercially available ceramic hand mold (made by Shinko Co., Ltd.) was washed and preheated in an oven at 70 ° C., then 18 wt% calcium nitrate and 0.05 wt% polyoxyethylene lauryl ether ( It was immersed in an aqueous coagulant solution containing trade name "Emulgen 109P" (manufactured by Kao Corporation) for 5 seconds, and was taken out from the aqueous coagulant solution. Next, the hand mold was dried in an oven at 70 ° C. for 30 minutes or more to attach a coagulant to the hand mold, and the hand mold was coated with the coagulant.
  • the coagulant-coated hand was then removed from the oven and dipped in the aged latex composition described above for 10 seconds. Then, the hand mold was air-dried at room temperature for 10 minutes, and then immersed in warm water of 60 ° C. for 5 minutes to elute water-soluble impurities to form a dip mold layer in the hand mold. Thereafter, the dip-formed layer formed in the hand mold is crosslinked by heating in an oven at a temperature of 130 ° C. for 30 minutes, cooled to room temperature, sprayed with talc, and peeled from the hand mold, A dip molded body (rubber glove) was obtained. And each evaluation of tear strength and tensile strength was performed according to the said method about the obtained dip molding body (rubber glove). The results are shown in Table 1. In Table 1, the blending amount of the dispersant is described with respect to 100 parts of the synthetic polyisoprene before the carboxy modification.
  • Example 2 The latex composition as in Example 1, except that the pH of the latex composition before ripening is set to 8.0 by adjusting the addition amount of the pH adjuster (potassium hydroxide aqueous solution) to the latex composition before ripening Products and dip molded articles (rubber gloves) were produced and evaluated in the same manner.
  • the pH of the latex composition after aging was 7.5. The results are shown in Table 1.
  • Example 3 The latex composition is the same as in Example 1 except that the pH of the latex composition before ripening is set to 9.5 by adjusting the addition amount of the pH adjuster (potassium hydroxide aqueous solution) to the latex composition before ripening. Products and dip molded articles (rubber gloves) were produced and evaluated in the same manner. The pH of the latex composition after aging was 8.5. The results are shown in Table 1.
  • the pH adjuster potassium hydroxide aqueous solution
  • Example 4 A latex of carboxy-modified synthetic polyisoprene (A-2) obtained in Production Example 2 (carboxy-modified synthetic polyisoprene (A), instead of the latex of carboxy-modified synthetic polyisoprene (A-1) obtained in Production Example 1 2) Using 100 parts in terms of conversion, and further adjusting the amount of pH adjuster (potassium hydroxide aqueous solution) added to the latex composition before ripening, the pH of the latex composition before ripening is 9. A latex composition and a dip-formed product (rubber gloves) were produced in the same manner as in Example 1 except that No. 5 was used, and evaluations were made in the same manner. The pH of the latex composition after aging was 8.5. The results are shown in Table 1.
  • Comparative Example 1 The latex composition as in Example 1, except that the pH of the latex composition before ripening was 12.0 by adjusting the amount of the pH adjuster (potassium hydroxide aqueous solution) added to the latex composition before ripening. Products and dip molded articles (rubber gloves) were produced and evaluated in the same manner. The pH of the latex composition after aging was 9.5. The results are shown in Table 1.
  • Comparative example 2 When preparing a latex composition, aging is performed by not adding zinc diisopropyl xanthate as a xanthogen compound, and further adjusting the amount of pH adjuster (potassium hydroxide aqueous solution) added to the latex composition before aging.
  • a latex composition and a dip-molded product (rubber glove) were produced in the same manner as in Example 1 except that the pH of the previous latex composition was changed to 9.5, and evaluations were made in the same manner.
  • the pH of the latex composition after aging was 9.5. The results are shown in Table 1.
  • a latex composition containing a latex of a carboxy-modified polymer, a xanthogen compound, an activating agent, and a sulfur-based vulcanizing agent, and having a pH before aging of less than 10, is used as the latex composition.
  • the resulting dip-formed body was excellent in tear strength and tensile strength (Examples 1 to 4).
  • the dip molded article obtained when the latex composition is ripened and then formed into a dip-molded article has tear strength and tensile strength.
  • the dip-molded product produced using the obtained latex composition was inferior in tear strength and tensile strength (Comparative Example 2).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulding By Coating Moulds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

Provided is a latex-composition production method comprising: a preparation step in which a latex composition comprising a latex of a carboxy-modified polymer, a sulfur-based vulcanizing agent, a xanthogen compound, and an activator and having a pH less than 10 is prepared; and a maturing step in which the latex composition is stored for a half day to 14 days under the conditions of a temperature of 5-60°C to thereby mature the latex composition.

Description

ラテックス組成物の製造方法Method of producing latex composition
 本発明は、ラテックス組成物に関し、即時型アレルギー(Type I)に加えて遅延型アレルギー(Type IV)の症状の発生を抑制可能であり、しかも、引張強度および引裂強度に優れたディップ成形体などの膜成形体を与えることができるラテックス組成物の製造方法、ならびに、このような製造方法により得られたラテックス組成物を用いたディップ成形体の製造方法、および接着剤層形成基材の製造方法に関する。 The present invention relates to a latex composition, which is capable of suppressing the occurrence of symptoms of delayed allergy (Type IV) in addition to immediate allergy (Type I), and further, a dip-molded product having excellent tensile strength and tear strength, etc. Method of producing a latex composition capable of providing a film molded article, a method of producing a dip molded article using the latex composition obtained by such a production method, and a method of producing an adhesive layer-formed substrate About.
 従来、天然ゴムのラテックスを含有するラテックス組成物をディップ成形して、乳首、風船、手袋、バルーン、サック等の人体と接触して使用されるディップ成形体などの膜成形体が得られることが知られている。しかしながら、天然ゴムのラテックスは、人体に即時型アレルギー(Type I)の症状を引き起こすような蛋白質を含有するため、生体粘膜又は臓器と直接接触するディップ成形体としては問題がある場合があった。そのため、天然ゴムのラテックス中の蛋白質を精製等により除去したり、天然ゴムに代えて合成ゴムのラテックスを用いたりする検討がされてきている。 Conventionally, it is possible to obtain a film-formed article such as a dip-formed article used in contact with the human body such as a teat, a balloon, a glove, a balloon, and a sack by dip-forming a latex composition containing a natural rubber latex. Are known. However, since the latex of natural rubber contains a protein that causes symptoms of immediate type allergy (Type I) to the human body, there have been cases where there was a problem as a dip-molded body in direct contact with a mucous membrane or an organ in vivo. Therefore, studies have been made to remove proteins in the latex of natural rubber by purification or the like, or use a latex of synthetic rubber in place of the natural rubber.
 たとえば、特許文献1には、ディップ成形用組成物として、合成ゴムである合成ポリイソプレンのラテックスに、酸化亜鉛、硫黄および加硫促進剤を配合してなるラテックス組成物が開示されている。しかしながら、この特許文献1の技術では、天然ゴムに由来する蛋白質による即時型アレルギー(Type I)の発生を防止できる一方で、ディップ成形体とした場合に、ディップ成形体に含まれる加硫促進剤が原因で、人体に触れた際に、遅延型アレルギー(Type IV)のアレルギー症状を発生させることがあった。 For example, Patent Document 1 discloses, as a dip-forming composition, a latex composition obtained by blending zinc oxide, sulfur and a vulcanization accelerator with a synthetic polyisoprene latex which is a synthetic rubber. However, while the technique of Patent Document 1 can prevent the occurrence of immediate allergy (Type I) due to a protein derived from natural rubber, a vulcanization accelerator contained in a dip-molded product when it is a dip-molded product Because of this, when touching the human body, it may cause allergic symptoms of delayed type allergy (Type IV).
国際公開第2014/129547号International Publication No. 2014/129547
 本発明は、このような実状に鑑みてなされたものであり、即時型アレルギー(Type I)に加えて遅延型アレルギー(Type IV)の症状の発生を抑制可能であり、しかも、引張強度および引裂強度に優れたディップ成形体などの膜成形体を与えることができるラテックス組成物の製造方法、ならびに、このような製造方法により得られたラテックス組成物を用いたディップ成形体の製造方法、および接着剤層形成基材の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and is capable of suppressing the onset of symptoms of delayed allergy (Type IV) in addition to immediate allergy (Type I), and further, tensile strength and tearing. A method for producing a latex composition capable of giving a film molded article such as a dip molded article excellent in strength, a method for producing a dip molded article using the latex composition obtained by such a production method, and adhesion An object of the present invention is to provide a method for producing an agent layer forming base material.
 本発明者等は、上記目的を達成するために鋭意検討を行った結果、カルボキシ変性重合体のラテックスに、硫黄系加硫剤と、キサントゲン化合物と、活性化剤とを配合してなるpHが10未満であるラテックス組成物を、所定の条件で熟成することにより、上記目的を達成できることを見出し、本発明を完成させるに至った。 As a result of intensive investigations to achieve the above object, the present inventors found that the pH of the carboxy-modified polymer latex is such that a sulfur-based vulcanizing agent, a xanthogen compound, and an activator are mixed. It has been found that the above object can be achieved by ripening a latex composition which is less than 10 under predetermined conditions, and the present invention has been accomplished.
 すなわち、本発明によれば、カルボキシ変性重合体のラテックスと、硫黄系加硫剤と、キサントゲン化合物と、活性化剤とを含有し、pHが10未満であるラテックス組成物を調製する調製工程と、前記ラテックス組成物を、温度5~60℃の条件で、半日~14日間貯蔵することで熟成を行う熟成工程と、を備えるラテックス組成物の製造方法が提供される。 That is, according to the present invention, there is provided a preparation process for preparing a latex composition containing a latex of carboxy modified polymer, a sulfur-based vulcanizing agent, a xanthogen compound, and an activator and having a pH of less than 10. Aging step, wherein the latex composition is aged by storing the latex composition at a temperature of 5 to 60 ° C. for half to 14 days.
 本発明のラテックス組成物の製造方法においては、前記熟成工程における熟成後の前記ラテックス組成物のpHを、6以上、10未満とすることが好ましい。
 本発明のラテックス組成物の製造方法においては、前記熟成工程における熟成後の前記ラテックス組成物に、pH調整剤を添加する工程をさらに備えることが好ましい。
 本発明のラテックス組成物の製造方法においては、前記pH調整剤として、アルカリ金属の水酸化物、アンモニア、および有機アミン化合物から選ばれる少なくとも1種を含むものを用いることが好ましい。
 本発明のラテックス組成物の製造方法においては、前記カルボキシ変性重合体におけるカルボキシル基による変性率が、(カルボキシル基の数/前記カルボキシ変性重合体の総モノマー単位数)×100で、0.01~10モル%であることが好ましい。
 本発明のラテックス組成物の製造方法においては、前記調製工程において、前記ラテックス組成物中における前記キサントゲン化合物の含有割合を、前記ラテックス組成物中の前記カルボキシ変性重合体100重量部に対して、0.01~10重量部とすることが好ましい。
 本発明のラテックス組成物の製造方法においては、前記キサントゲン化合物が、一般式(ROC(=S)S)x-Z(式中、Rは直鎖状または分岐状の炭化水素、Zは金属原子、xはZの原子価と一致する数である。)で表されるキサントゲン酸塩を少なくとも含有するものであることが好ましい。
 本発明のラテックス組成物の製造方法においては、前記キサントゲン化合物が、ジイソプロピルキサントゲン酸亜鉛を少なくとも含有するものであることが好ましい。
 本発明のラテックス組成物の製造方法においては、前記調製工程において、前記ラテックス組成物中に、2種以上の前記キサントゲン化合物を含有させることが好ましい。
 本発明のラテックス組成物の製造方法においては、前記活性化剤として、金属化合物を用いることが好ましい。
 本発明のラテックス組成物の製造方法においては、前記金属化合物が、酸化亜鉛であることが好ましい。
 本発明のラテックス組成物の製造方法においては、前記カルボキシ変性重合体として、合成ポリイソプレン、スチレン-イソプレン-スチレンブロック共重合体、または蛋白質を除去した天然ゴムを、カルボキシル基を有する単量体により変性することにより得られるものを用いることが好ましい。
In the method for producing a latex composition of the present invention, the pH of the latex composition after ripening in the ripening step is preferably 6 or more and less than 10.
In the method for producing a latex composition of the present invention, it is preferable to further include the step of adding a pH adjuster to the latex composition after aging in the aging step.
In the method for producing a latex composition of the present invention, it is preferable to use, as the pH adjuster, one containing at least one selected from an alkali metal hydroxide, ammonia, and an organic amine compound.
In the method for producing a latex composition according to the present invention, a modification ratio by the carboxyl group in the carboxy modified polymer is (number of carboxyl groups / total number of monomer units of the carboxy modified polymer) × 100, 0.01 to 100 It is preferable that it is 10 mol%.
In the method for producing a latex composition of the present invention, in the preparation step, the content ratio of the xanthogen compound in the latex composition is 0 relative to 100 parts by weight of the carboxy-modified polymer in the latex composition. It is preferable that the amount be 0.1 to 10 parts by weight.
In the method for producing a latex composition of the present invention, the xanthogen compound is represented by the general formula (ROC (= S) S) xZ (wherein R is a linear or branched hydrocarbon, and Z is a metal atom) And x is a number corresponding to the valence of Z.) and preferably at least containing a xanthogenate represented by
In the method for producing a latex composition of the present invention, the xanthogen compound preferably contains at least zinc diisopropyl xanthate.
In the method for producing a latex composition of the present invention, it is preferable that in the preparation step, the latex composition contain two or more of the xanthogen compounds.
In the method for producing a latex composition of the present invention, it is preferable to use a metal compound as the activating agent.
In the method for producing a latex composition of the present invention, the metal compound is preferably zinc oxide.
In the method for producing a latex composition of the present invention, as the carboxy-modified polymer, synthetic polyisoprene, styrene-isoprene-styrene block copolymer, or natural rubber from which a protein is removed, is treated with a monomer having a carboxyl group. It is preferable to use one obtained by denaturing.
 また、本発明によれば、上記の製造方法により得られたラテックス組成物をディップ成形する工程を備えるディップ成形体の製造方法が提供される。
 さらに、本発明によれば、上記の製造方法により得られたラテックス組成物を用いて形成される接着剤層を、基材表面に形成する工程を備える接着剤層形成基材の製造方法が提供される。
Further, according to the present invention, there is provided a method for producing a dip-molded product, comprising the step of dip-molding the latex composition obtained by the above-mentioned production method.
Furthermore, according to the present invention, there is provided a method for producing an adhesive layer-formed substrate, comprising the step of forming on the substrate surface an adhesive layer formed using the latex composition obtained by the above-mentioned production method. Be done.
 本発明によれば、即時型アレルギー(Type I)に加えて遅延型アレルギー(Type IV)の症状の発生を抑制可能であり、しかも、引張強度および引裂強度に優れたディップ成形体などの膜成形体を与えることができるラテックス組成物の製造方法、ならびに、このような製造方法により得られたラテックス組成物を用いたディップ成形体の製造方法、および接着剤層形成基材の製造方法を提供することができる。 According to the present invention, it is possible to suppress the occurrence of symptoms of delayed allergy (Type IV) in addition to immediate allergy (Type I), and further, to form a film such as a dip-molded product having excellent tensile strength and tear strength. The present invention provides a method for producing a latex composition capable of giving a body, a method for producing a dip-molded article using the latex composition obtained by such a production method, and a method for producing an adhesive layer-formed substrate. be able to.
 本発明のラテックス組成物の製造方法は、カルボキシ変性重合体のラテックスと、硫黄系加硫剤と、キサントゲン化合物と、活性化剤とを含有し、pHが10未満である熟成前のラテックス組成物を調製する調製工程と、前記熟成前のラテックス組成物を、温度5~60℃の条件で、半日~14日間貯蔵することで熟成を行う熟成工程と、を備える。 The method for producing a latex composition of the present invention comprises a latex of a carboxy-modified polymer, a sulfur-based vulcanizing agent, a xanthogen compound, and an activating agent, and a latex composition before aging having a pH of less than 10. And a ripening step of ripening by storing the latex composition before ripening at a temperature of 5 to 60 ° C. for half to 14 days.
 本発明で用いるカルボキシ変性重合体のラテックスは、共役ジエン系重合体、または、蛋白質を除去した天然ゴムを、カルボキシル基を有する単量体により変性して得られるカルボキシ変性重合体のラテックスである。 The latex of the carboxy-modified polymer used in the present invention is a latex of a conjugated diene polymer or a carboxy-modified polymer obtained by modifying a natural rubber from which a protein is removed with a monomer having a carboxyl group.
 共役ジエン系重合体
 共役ジエン系重合体としては、特に限定されないが、たとえば、合成ポリイソプレン、スチレン-イソプレン-スチレンブロック共重合体(SIS)、ニトリル基含有共役ジエン系共重合体などが挙げられる。これらのなかでも、合成ポリイソプレン、SISなどのイソプレン単位を含有するものが好ましく、合成ポリイソプレンが特に好ましい。
The conjugated diene polymer The conjugated diene polymer is not particularly limited, and examples thereof include synthetic polyisoprene, styrene-isoprene-styrene block copolymer (SIS), nitrile group-containing conjugated diene copolymer, and the like. . Among these, those containing isoprene units such as synthetic polyisoprene and SIS are preferable, and synthetic polyisoprene is particularly preferable.
 共役ジエン系重合体として合成ポリイソプレンを用いる場合には、合成ポリイソプレンは、イソプレンの単独重合体であってもよいし、イソプレンと共重合可能な他のエチレン性不飽和単量体とを共重合したものであってもよい。合成ポリイソプレン中のイソプレン単位の含有量は、柔軟で、引張強度に優れるディップ成形体などの膜成形体が得られやすいことから、全単量体単位に対して、好ましくは70重量%以上、より好ましくは90重量%以上、さらに好ましくは95重量%以上、特に好ましくは100重量%(イソプレンの単独重合体)である。 When synthetic polyisoprene is used as the conjugated diene polymer, the synthetic polyisoprene may be a homopolymer of isoprene or may be a copolymer of isoprene and another ethylenically unsaturated monomer copolymerizable therewith. It may be polymerized. The content of the isoprene unit in the synthetic polyisoprene is preferably 70% by weight or more based on all the monomer units since a flexible film is easily obtained and a film-formed product such as a dip-formed product having excellent tensile strength can be obtained. More preferably, it is 90% by weight or more, still more preferably 95% by weight or more, and particularly preferably 100% by weight (homopolymer of isoprene).
 イソプレンと共重合可能な他のエチレン性不飽和単量体としては、たとえば、ブタジエン、クロロプレン、1,3-ペンタジエン等のイソプレン以外の共役ジエン単量体;アクリロニトリル、メタクリロニトリル、フマロニトリル、α-クロロアクリロニトリル等のエチレン性不飽和ニトリル単量体;スチレン、アルキルスチレン等のビニル芳香族単量体;(メタ)アクリル酸メチル(「アクリル酸メチルおよび/またはメタクリル酸メチル」の意味であり、以下、(メタ)アクリル酸エチルなども同様。)、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸-2-エチルヘキシル等のエチレン性不飽和カルボン酸エステル単量体;などが挙げられる。これらのイソプレンと共重合可能な他のエチレン性不飽和単量体は、1種単独でも、複数種を併用してもよい。 Examples of other ethylenically unsaturated monomers copolymerizable with isoprene include conjugated diene monomers other than isoprene such as butadiene, chloroprene and 1,3-pentadiene; acrylonitrile, methacrylonitrile, fumaronitrile, α- Ethylenically unsaturated nitrile monomers such as chloroacrylonitrile; vinyl aromatic monomers such as styrene, alkylstyrenes; methyl (meth) acrylate ("methyl acrylate and / or methyl methacrylate" meaning: Ethyl (meth) acrylate etc.), ethyl (meth) acrylate, butyl (meth) acrylate, ethylenic unsaturated carboxylic acid ester monomers such as 2-ethylhexyl (meth) acrylate; Can be mentioned. These other ethylenically unsaturated monomers copolymerizable with isoprene may be used alone or in combination of two or more.
 合成ポリイソプレンは、従来公知の方法、たとえばトリアルキルアルミニウム-四塩化チタンからなるチーグラー系重合触媒やn-ブチルリチウム、sec-ブチルリチウムなどのアルキルリチウム重合触媒を用いて、不活性重合溶媒中で、イソプレンと、必要に応じて用いられる共重合可能な他のエチレン性不飽和単量体とを溶液重合して得ることができる。溶液重合により得られた合成ポリイソプレンの重合体溶液は、そのまま、合成ポリイソプレンラテックスの製造に用いてもよいが、該重合体溶液から固形の合成ポリイソプレンを取り出した後、有機溶媒に溶解して、合成ポリイソプレンラテックスの製造に用いることもできる。なお、合成ポリイソプレンラテックスは、後述するように、本発明で用いるカルボキシ変性重合体のラテックスの製造に用いることができる。
 上述した方法により合成ポリイソプレンの重合体溶液を得た場合には、重合体溶液中に残った重合触媒の残渣などの不純物を取り除いてもよい。また、重合中または重合後の溶液に、後述する老化防止剤を添加してもよい。また、市販の固形の合成ポリイソプレンを用いることもできる。
Synthetic polyisoprene can be prepared in an inert polymerization solvent using a conventionally known method, for example, using a Ziegler type polymerization catalyst consisting of trialkylaluminum-titanium tetrachloride, or an alkyllithium polymerization catalyst such as n-butyllithium or sec-butyllithium. It can be obtained by solution polymerization of isoprene and another copolymerizable ethylenically unsaturated monomer which is optionally used. The polymer solution of synthetic polyisoprene obtained by solution polymerization may be used as it is for producing synthetic polyisoprene latex, but after taking solid synthetic polyisoprene from the polymer solution, it is dissolved in an organic solvent. It can also be used to make synthetic polyisoprene latex. In addition, synthetic polyisoprene latex can be used for manufacture of the latex of the carboxy modified polymer used by this invention so that it may mention later.
When a polymer solution of synthetic polyisoprene is obtained by the method described above, impurities such as the residue of the polymerization catalyst remaining in the polymer solution may be removed. In addition, an anti-aging agent described later may be added to the solution during or after polymerization. Alternatively, commercially available solid synthetic polyisoprene can also be used.
 合成ポリイソプレン中のイソプレン単位としては、イソプレンの結合状態により、シス結合単位、トランス結合単位、1,2-ビニル結合単位、3,4-ビニル結合単位の4種類が存在する。得られるディップ成形体などの膜成形体の引張強度向上の観点から、合成ポリイソプレンに含まれるイソプレン単位中のシス結合単位の含有割合は、全イソプレン単位に対して、好ましくは70重量%以上、より好ましくは90重量%以上、さらに好ましくは95重量%以上である。 As isoprene units in the synthetic polyisoprene, there are four types of cis bond units, trans bond units, 1,2-vinyl bond units and 3,4-vinyl bond units depending on the bond state of isoprene. From the viewpoint of improving the tensile strength of a film-formed product such as a dip-formed product to be obtained, the content ratio of cis-bonded units in isoprene units contained in the synthetic polyisoprene is preferably 70% by weight or more based on More preferably, it is 90% by weight or more, still more preferably 95% by weight or more.
 合成ポリイソプレンの重量平均分子量は、ゲル・パーミーエーション・クロマトグラフィー分析による標準ポリスチレン換算で、好ましくは10,000~5,000,000、より好ましくは500,000~5,000,000、さらに好ましくは800,000~3,000,000である。合成ポリイソプレンの重量平均分子量を上記範囲とすることにより、ディップ成形体などの膜成形体の引張強度が向上するとともに、合成ポリイソプレンラテックスが製造しやすくなる傾向がある。 The weight average molecular weight of the synthetic polyisoprene is preferably 10,000 to 5,000,000, more preferably 500,000 to 5,000,000, further preferably in terms of standard polystyrene by gel permeation chromatography analysis. Is 800,000 to 3,000,000. By setting the weight average molecular weight of the synthetic polyisoprene in the above range, the tensile strength of a film molded article such as a dip molded article tends to be improved, and the synthetic polyisoprene latex tends to be easily produced.
 また、合成ポリイソプレンのポリマー・ムーニー粘度(ML1+4、100℃)は、好ましくは50~80、より好ましくは60~80、さらに好ましくは70~80である。 The polymer Mooney viscosity (ML 1 + 4 at 100 ° C.) of the synthetic polyisoprene is preferably 50 to 80, more preferably 60 to 80, and still more preferably 70 to 80.
 合成ポリイソプレンラテックスを得るための方法としては、たとえば、(1)有機溶媒に溶解または微分散した合成ポリイソプレンの溶液または微細懸濁液を、アニオン性界面活性剤の存在下に、水中で乳化し、必要により有機溶媒を除去して、合成ポリイソプレンラテックスを製造する方法、(2)イソプレン単独または、イソプレンとそれと共重合可能なエチレン性不飽和単量体との混合物を、アニオン性界面活性剤の存在下に、乳化重合もしくは懸濁重合して、直接、合成ポリイソプレンラテックスを製造する方法、が挙げられるが、イソプレン単位中のシス結合単位の割合が高い合成ポリイソプレンを用いることができ、引張強度等の機械的特性に優れるディップ成形体などの膜成形体が得られやすい点から、上記(1)の製造方法が好ましい。 As a method for obtaining a synthetic polyisoprene latex, for example, (1) emulsifying a solution or a fine suspension of a synthetic polyisoprene dissolved or finely dispersed in an organic solvent in the presence of an anionic surfactant in water And (2) isoprene alone or a mixture of isoprene and an ethylenically unsaturated monomer copolymerizable therewith with an anionic surfactant. And emulsion polymerization or suspension polymerization in the presence of an agent to directly produce a synthetic polyisoprene latex, but synthetic polyisoprene having a high proportion of cis-linking units in isoprene units can be used. , A method of producing the above (1) from the point that a film molded article such as a dip molded article excellent in mechanical properties such as tensile strength is easily obtained It is preferred.
 上記(1)の製造方法で用いる有機溶媒としては、たとえば、ベンゼン、トルエン、キシレン等の芳香族炭化水素溶媒;シクロペンタン、シクロペンテン、シクロヘキサン、シクロヘキセン等の脂環族炭化水素溶媒;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶媒;塩化メチレン、クロロホルム、二塩化エチレン等のハロゲン化炭化水素溶媒;等を挙げることができる。これらのうち、脂環族炭化水素溶媒が好ましく、シクロヘキサンが特に好ましい。 Examples of the organic solvent used in the production method of the above (1) include aromatic hydrocarbon solvents such as benzene, toluene and xylene; alicyclic hydrocarbon solvents such as cyclopentane, cyclopentene, cyclohexane and cyclohexene; pentane, hexane, Aliphatic hydrocarbon solvents such as heptane; halogenated hydrocarbon solvents such as methylene chloride, chloroform and ethylene dichloride; and the like. Among these, alicyclic hydrocarbon solvents are preferable, and cyclohexane is particularly preferable.
 なお、有機溶媒の使用量は、合成ポリイソプレン100重量部に対して、好ましくは2,000重量部以下、より好ましくは20~1,500重量部、更に好ましくは500~1500重量部である。  The amount of the organic solvent used is preferably 2,000 parts by weight or less, more preferably 20 to 1,500 parts by weight, and still more preferably 500 to 1,500 parts by weight with respect to 100 parts by weight of the synthetic polyisoprene.
 上記(1)の製造方法で用いるアニオン性界面活性剤としては、たとえば、ラウリン酸ナトリウム、ミリスチン酸カリウム、パルミチン酸ナトリウム、オレイン酸カリウム、リノレン酸ナトリウム、ロジン酸ナトリウム等の脂肪酸塩;ドデシルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸カリウム、デシルベンゼンスルホン酸ナトリウム、デシルベンゼンスルホン酸カリウム、セチルベンゼンスルホン酸ナトリウム、セチルベンゼンスルホン酸カリウム等のアルキルベンゼンスルホン酸塩;ジ(2-エチルヘキシル)スルホコハク酸ナトリウム、ジ(2-エチルヘキシル)スルホコハク酸カリウム、ジオクチルスルホコハク酸ナトリウム等のアルキルスルホコハク酸塩;ラウリル硫酸ナトリウム、ラウリル硫酸カリウム等のアルキル硫酸エステル塩;ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシエチレンラウリルエーテル硫酸カリウム等のポリオキシエチレンアルキルエーテル硫酸エステル塩;ラウリルリン酸ナトリウム、ラウリルリン酸カリウム等のモノアルキルリン酸塩;等が挙げられる。 As an anionic surfactant used by the manufacturing method of said (1), For example, Fatty acid salts, such as sodium laurate, potassium myristate, sodium palmitate, potassium oleate, sodium linolenate, sodium rosinate, etc .; dodecyl benzene sulfone Alkyl benzene sulfonates such as sodium acid sodium, potassium dodecyl benzene sulfonate, sodium decyl benzene sulfonate, potassium decyl benzene sulfonate, sodium cetyl benzene sulfonate, potassium cetyl benzene sulfonate; sodium di (2-ethylhexyl) sulfosuccinate, disodium Alkyl sulfosuccinates such as potassium (2-ethylhexyl) sulfosuccinate and sodium dioctyl sulfosuccinate; sodium lauryl sulfate, potassium lauryl sulfate and the like Alkyl sulfate ester salt; polyoxyethylene lauryl ether sodium sulfate, polyoxyethylene lauryl ether potassium sulfate, etc. polyoxyethylene alkyl ether sulfate ester salt; sodium lauryl phosphate, monoalkyl phosphate such as potassium lauryl phosphate; It can be mentioned.
 これらアニオン性界面活性剤の中でも、脂肪酸塩、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩が好ましく、脂肪酸塩およびアルキルベンゼンスルホン酸塩が特に好ましい。 Among these anionic surfactants, fatty acid salts, alkyl benzene sulfonates, alkyl sulfosuccinates, alkyl sulfates and polyoxyethylene alkyl ether sulfates are preferable, and fatty acids and alkyl benzene sulfonates are particularly preferable.
 また、合成ポリイソプレン由来の、微量に残留する重合触媒(特に、アルミニウムとチタニウム)をより効率的に除去でき、ラテックス組成物を製造する際における、凝集物の発生が抑制されることから、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩からなる群から選ばれる少なくとも1種と、脂肪酸塩とを併用して用いることが好ましく、アルキルベンゼンスルホン酸塩と、脂肪酸塩とを併用して用いることが特に好ましい。ここで、脂肪酸塩としては、ロジン酸ナトリウムおよびロジン酸カリウムが好ましく、また、アルキルベンゼンスルホン酸塩としては、ドデシルベンゼンスルホン酸ナトリウムおよびドデシルベンゼンスルホン酸カリウムが好ましい。また、これらの界面活性剤は、1種単独でも2種以上を併用してもよい。 In addition, since a small amount of residual polymerization catalyst (in particular, aluminum and titanium) derived from synthetic polyisoprene can be removed more efficiently, and the formation of aggregates is suppressed when producing a latex composition, alkylbenzene It is preferable to use a fatty acid salt in combination with at least one member selected from the group consisting of sulfonates, alkyl sulfosuccinates, alkyl sulfates and polyoxyethylene alkyl ether sulfates, preferably alkyl benzene sulfonates; It is particularly preferable to use a fatty acid salt in combination. Here, as the fatty acid salt, sodium rosinate and potassium rosinate are preferable, and as the alkylbenzene sulfonate, sodium dodecylbenzene sulfonate and potassium dodecylbenzene sulfonate are preferable. In addition, these surfactants may be used alone or in combination of two or more.
 なお、上述したように、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩からなる群から選ばれる少なくとも1種と、脂肪酸塩とを併用して用いることにより、得られるラテックスが、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩の中から選ばれた少なくとも1種と、脂肪酸塩とを含有するものとなる。 In addition, as described above, at least one selected from the group consisting of alkyl benzene sulfonate, alkyl sulfosuccinate, alkyl sulfate and polyoxyethylene alkyl ether sulfate and fatty acid salt may be used in combination. Makes the resulting latex contain at least one selected from alkyl benzene sulfonate, alkyl sulfo succinate, alkyl sulfate and polyoxyethylene alkyl ether sulfate, and fatty acid salt .
 また、上記(1)の製造方法においては、アニオン性界面活性剤以外の界面活性剤を併用してもよく、このようなアニオン性界面活性剤以外の界面活性剤としては、α,β-不飽和カルボン酸のスルホエステル、α,β-不飽和カルボン酸のサルフェートエステル、スルホアルキルアリールエーテル等の共重合性の界面活性剤が挙げられる。 In addition, in the production method of the above (1), a surfactant other than the anionic surfactant may be used in combination, and as the surfactant other than such an anionic surfactant, α, β-unfavorable. Copolymerizable surfactants such as sulfo ester of saturated carboxylic acid, sulfate ester of α, β-unsaturated carboxylic acid, sulfoalkyl aryl ether and the like can be mentioned.
 さらに、ディップ成形する際に使用する凝固剤による凝固を阻害しない範囲であれば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンソルビタンアルキルエステル等の非イオン性界面活性剤も併用してもよい。 Furthermore, nonionicity such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester, etc. within the range not inhibiting the coagulation by the coagulant used in dip molding Surfactants may also be used in combination.
 上記(1)の製造方法で用いるアニオン性界面活性剤の使用量は、合成ポリイソプレン100重量部に対して、好ましくは0.1~50重量部、より好ましくは0.5~30重量部である。なお、2種類以上の界面活性剤を用いる場合においては、これらの合計の使用量を上記範囲とすることが好ましい。すなわち、たとえば、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩の中から選ばれた少なくとも1種と、脂肪酸塩とを併用する場合には、これらの使用量の合計を上記範囲とすることが好ましい。アニオン性界面活性剤の使用量が少なすぎると、乳化時に凝集物が多量に発生するおそれがあり、逆に多すぎると、発泡しやすくなり、得られるディップ成形体などの膜成形体にピンホールが発生する可能性がある。 The amount of the anionic surfactant used in the method of the above (1) is preferably 0.1 to 50 parts by weight, more preferably 0.5 to 30 parts by weight, based on 100 parts by weight of the synthetic polyisoprene. is there. In addition, when using 2 or more types of surfactant, it is preferable to make the usage-amount of these sum total into the said range. That is, for example, when a fatty acid salt is used in combination with at least one selected from alkyl benzene sulfonate, alkyl sulfosuccinate, alkyl sulfate and polyoxyethylene alkyl ether sulfate, these compounds may be used. It is preferable to make the total of usage-amount into the said range. If the amount of the anionic surfactant used is too small, a large amount of aggregates may be generated at the time of emulsification, while if it is too large, foaming tends to occur, and pinholes are formed in a film molded article such as a dip molded article obtained. Can occur.
 また、アニオン性界面活性剤として、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩の中から選ばれた少なくとも1種と、脂肪酸塩とを併用する場合には、これらの使用割合を、「脂肪酸塩」:「アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩の中から選ばれた少なくとも1種の界面活性剤の合計」の重量比で、1:1~10:1の範囲とすることが好ましく、1:1~7:1の範囲とすることがより好ましい。アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩の中から選ばれた少なくとも1種の界面活性剤の使用割合が多すぎると、合成ポリイソプレンの取り扱い時に泡立ちが激しくなるおそれがあり、これにより、長時間の静置や、消泡剤の添加などの操作が必要になり、作業性の悪化およびコストアップに繋がるおそれがある。 In addition, when at least one selected from alkyl benzene sulfonate, alkyl sulfo succinate, alkyl sulfate ester salt and polyoxyethylene alkyl ether sulfate ester salt is used in combination with fatty acid salt as an anionic surfactant For these, at least one surface activity selected from among these proportions of “fatty acid salt”: “alkyl benzene sulfonate, alkyl sulfo succinate, alkyl sulfate ester salt and polyoxyethylene alkyl ether sulfate ester salt” The ratio by weight of “total of agents” is preferably in the range of 1: 1 to 10: 1, and more preferably in the range of 1: 1 to 7: 1. When the proportion of at least one surfactant selected from among alkyl benzene sulfonate, alkyl sulfo succinate, alkyl sulfate and polyoxyethylene alkyl ether sulfate is too large, synthetic polyisoprene may be handled There is a possibility that the foaming may be intense, and this requires operations such as long time standing and addition of an antifoaming agent, which may lead to deterioration of workability and cost increase.
 上記(1)の製造方法で使用する水の量は、合成ポリイソプレンの有機溶媒溶液100重量部に対して、好ましくは10~1,000重量部、より好ましくは30~500重量部、最も好ましくは50~100重量部である。使用する水の種類としては、硬水、軟水、イオン交換水、蒸留水、ゼオライトウォーターなどが挙げられ、軟水、イオン交換水および蒸留水が好ましい。 The amount of water used in the production method of the above (1) is preferably 10 to 1,000 parts by weight, more preferably 30 to 500 parts by weight, most preferably 100 parts by weight of the synthetic polyisoprene solution in organic solvent. Is 50 to 100 parts by weight. The types of water used include hard water, soft water, ion-exchanged water, distilled water, zeolite water and the like, and soft water, ion-exchanged water and distilled water are preferable.
 有機溶媒に溶解または微分散した合成ポリイソプレンの溶液または微細懸濁液を、アニオン性界面活性剤の存在下、水中で乳化する装置は、一般に乳化機または分散機として市販されているものであれば特に限定されず使用できる。合成ポリイソプレンの溶液または微細懸濁液に、アニオン性界面活性剤を添加する方法としては、特に限定されず、予め、水もしくは合成ポリイソプレンの溶液または微細懸濁液のいずれか、あるいは両方に添加してもよいし、乳化操作を行っている最中に、乳化液に添加してもよく、一括添加しても、分割添加してもよい。 An apparatus for emulsifying a solution or a fine suspension of synthetic polyisoprene dissolved or finely dispersed in an organic solvent in water in the presence of an anionic surfactant is generally commercially available as an emulsifying machine or dispersing machine. For example, it can be used without particular limitation. The method for adding the anionic surfactant to the solution or fine suspension of the synthetic polyisoprene is not particularly limited, and it may be preliminarily carried out to either water or a solution or fine suspension of the synthetic polyisoprene, or both. It may be added, or may be added to the emulsion during the emulsification operation, may be added all at once, or may be added in portions.
 乳化装置としては、たとえば、商品名「ホモジナイザー」(IKA社製)、商品名「ポリトロン」(キネマティカ社製)、商品名「TKオートホモミキサー」(特殊機化工業社製)等のバッチ式乳化機;商品名「TKパイプラインホモミキサー」(特殊機化工業社製)、商品名「コロイドミル」(神鋼パンテック社製)、商品名「スラッシャー」(日本コークス工業社製)、商品名「トリゴナル湿式微粉砕機」(三井三池化工機社製)、商品名「キャビトロン」(ユーロテック社製)、商品名「マイルダー」(太平洋機工社製)、商品名「ファインフローミル」(太平洋機工社製)等の連続式乳化機;商品名「マイクロフルイダイザー」(みずほ工業社製)、商品名「ナノマイザー」(ナノマイザー社製)、商品名「APVガウリン」(ガウリン社製)等の高圧乳化機;商品名「膜乳化機」(冷化工業社製)等の膜乳化機;商品名「バイブロミキサー」(冷化工業社製)等の振動式乳化機;商品名「超音波ホモジナイザー」(ブランソン社製)等の超音波乳化機;等が挙げられる。なお、乳化装置による乳化操作の条件は、特に限定されず、所望の分散状態になるように、処理温度、処理時間などを適宜選定すればよい。 As an emulsification apparatus, for example, batch-type emulsification such as trade name "homogenizer" (manufactured by IKA), trade name "Polytron" (manufactured by Kinematica), trade name "TK autohomomixer" (manufactured by Tokushu Kika Kogyo) Machine name: "TK pipeline homomixer" (manufactured by Tokushu Kika Kogyo Co., Ltd.), trade name "colloid mill" (manufactured by Shinko Pantec Co., Ltd.), trade name "Slasher" (manufactured by Japan Coke Industry Co., Ltd.), trade name " Trigonal wet pulverizer (made by Mitsui Miike Kako Co., Ltd.), trade name "Cavitron" (made by Eurotech Co., Ltd.), trade name "Milder" (manufactured by Pacific Kikko Co., Ltd.), trade name "Fine Flow Mill" (Pacific Kikko Co., Ltd.) Product name "Microfluidizer" (Mizuho Industry Co., Ltd.), trade name "Nanomizer" (Nanomizer Co., Ltd.), trade name "APV Gaulin" (GAV) High-pressure emulsifying machines such as Lynn; Membrane emulsifying machines such as "membrane emulsifying machine" (Colding Industry Co., Ltd.); Vibrating emulsifying machines such as "Vibromixer" (Cold Industry) An ultrasonic emulsifying machine such as trade name "Ultrasonicizer" (manufactured by Branson Co.); The conditions for the emulsification operation by the emulsification device are not particularly limited, and the treatment temperature, treatment time, and the like may be appropriately selected so as to achieve a desired dispersion state.
 上記(1)の製造方法においては、乳化操作を経て得られた乳化物から、有機溶媒を除去することが望ましい。
 乳化物から有機溶媒を除去する方法としては、得られる合成ポリイソプレンラテックス中における、有機溶媒(好ましくは脂環族炭化水素溶媒)の含有量を500重量ppm以下とすることのできる方法が好ましく、たとえば、減圧蒸留、常圧蒸留、水蒸気蒸留、遠心分離等の方法を採用することができる。
In the manufacturing method of said (1), it is desirable to remove an organic solvent from the emulsion obtained through emulsification operation.
As a method of removing the organic solvent from the emulsion, a method capable of adjusting the content of the organic solvent (preferably an alicyclic hydrocarbon solvent) in the resultant synthetic polyisoprene latex to 500 ppm by weight or less is preferable. For example, methods such as vacuum distillation, atmospheric distillation, steam distillation, and centrifugation can be employed.
 上記(1)の方法においては、乳化操作を経て得られた乳化物から、有機溶媒を除去して、合成ポリイソプレンラテックスを得ることが望ましい。乳化物から有機溶媒を除去する方法は、得られる合成ポリイソプレンラテックス中における、有機溶媒としての脂環族炭化水素溶媒および芳香族炭化水素溶媒の合計含有量を500重量ppm以下とすることができるような方法であれば、特に限定されず、減圧蒸留、常圧蒸留、水蒸気蒸留、遠心分離等の方法を採用することができる。 In the method of (1) above, it is desirable to obtain the synthetic polyisoprene latex by removing the organic solvent from the emulsion obtained through the emulsification operation. In the method of removing the organic solvent from the emulsion, the total content of the alicyclic hydrocarbon solvent and the aromatic hydrocarbon solvent as the organic solvent in the resultant synthetic polyisoprene latex can be 500 ppm by weight or less The method is not particularly limited as long as it is such a method, and methods such as vacuum distillation, atmospheric pressure distillation, steam distillation, centrifugation and the like can be adopted.
 さらに、有機溶媒を除去した後、必要に応じ、合成ポリイソプレンラテックスの固形分濃度を上げるために、減圧蒸留、常圧蒸留、遠心分離、膜濃縮等の方法で濃縮操作を施してもよく、特に、合成ポリイソプレンラテックスの固形分濃度を上げるとともに、合成ポリイソプレンラテックス中の界面活性剤の残留量を低減することができるという観点より、遠心分離を行うことが好ましい。 Furthermore, after removing the organic solvent, if necessary, in order to increase the solid concentration of the synthetic polyisoprene latex, concentration operation may be performed by a method such as vacuum distillation, atmospheric pressure distillation, centrifugation, membrane concentration, etc. In particular, it is preferable to carry out centrifugal separation from the viewpoint that the solid content concentration of the synthetic polyisoprene latex can be increased and the residual amount of surfactant in the synthetic polyisoprene latex can be reduced.
 遠心分離は、たとえば、連続遠心分離機を用いて、遠心力を、好ましくは100~10,000G、遠心分離前の合成ポリイソプレンラテックスの固形分濃度を、好ましくは2~15重量%、遠心分離機に送り込む流速を、好ましくは500~1700Kg/hr、遠心分離機の背圧(ゲージ圧)を、好ましくは0.03~1.6MPaの条件にて実施することが好ましく、遠心分離後の軽液として、合成ポリイソプレンラテックスを得ることができる。そして、これにより、合成ポリイソプレンラテックス中における、界面活性剤の残留量を低減することができる。 Centrifugation is carried out, for example, using a continuous centrifugal separator, preferably 100 to 10,000 G, solid concentration of synthetic polyisoprene latex before centrifugation, preferably 2 to 15% by weight, centrifugation The flow rate to be fed into the machine is preferably 500 to 1700 kg / hr, and the back pressure (gauge pressure) of the centrifuge is preferably 0.03 to 1.6 MPa. As a liquid, synthetic polyisoprene latex can be obtained. And thereby, the residual amount of surfactant in synthetic polyisoprene latex can be reduced.
 合成ポリイソプレンラテックスの固形分濃度は、好ましくは30~70重量%、より好ましくは40~70重量%である。固形分濃度が低すぎると、後述するラテックス組成物の固形分濃度が低くなるために、後述するディップ成形体の膜厚が薄くなり破れ易くなる。逆に固形分濃度が高すぎると、合成ポリイソプレンラテックスの粘度が高くなり、配管での移送や調合タンク内での撹拌が困難になる場合がある。 The solids concentration of the synthetic polyisoprene latex is preferably 30 to 70% by weight, more preferably 40 to 70% by weight. If the solid content concentration is too low, the solid content concentration of the latex composition to be described later becomes low, so the film thickness of the dip molded product to be described later becomes thin and it is easy to break. Conversely, if the solid concentration is too high, the viscosity of the synthetic polyisoprene latex may be high, which may make it difficult to transfer by piping or to stir in the mixing tank.
 合成ポリイソプレンラテックスの体積平均粒子径は、好ましくは0.1~10μm、より好ましくは0.5~3μm、さらに好ましくは0.5~2.0μmである。この体積平均粒子径を上記範囲とすることにより、ラテックス粘度が適度なものとなり取り扱いやすくなるとともに、合成ポリイソプレンラテックスを貯蔵した際に、ラテックス表面に皮膜が生成することを抑制できる。 The volume average particle size of the synthetic polyisoprene latex is preferably 0.1 to 10 μm, more preferably 0.5 to 3 μm, and still more preferably 0.5 to 2.0 μm. By setting the volume average particle diameter in the above range, the latex viscosity becomes appropriate and the handling becomes easy, and it is possible to suppress the formation of a film on the latex surface when the synthetic polyisoprene latex is stored.
 また、合成ポリイソプレンラテックスには、ラテックスの分野で通常配合される、pH調整剤、消泡剤、防腐剤、架橋剤、キレート剤、酸素捕捉剤、分散剤、老化防止剤等の添加剤を配合してもよい。
 pH調整剤としては、たとえば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩;炭酸水素ナトリウムなどのアルカリ金属の炭酸水素塩;アンモニア;トリメチルアミン、トリエタノールアミンなどの有機アミン化合物;等が挙げられるが、アルカリ金属の水酸化物またはアンモニアが好ましい。なお、この際における合成ポリイソプレンラテックスのpHは特に限定されないが、本発明の製造方法においては、後述するように、合成ポリイソプレンラテックス等を用いてラテックス組成物とし、該ラテックス組成物を所定の条件で熟成させる際に、熟成前のラテックス組成物のpHが、10未満となっていればよい。
In addition, synthetic polyisoprene latex contains additives such as pH adjusters, antifoaming agents, preservatives, crosslinking agents, chelating agents, oxygen scavengers, dispersants, anti-aging agents, etc., which are usually blended in the field of latexes. You may mix | blend.
Examples of pH adjusters include hydroxides of alkali metals such as sodium hydroxide and potassium hydroxide; carbonates of alkali metals such as sodium carbonate and potassium carbonate; hydrogencarbonates of alkali metals such as sodium hydrogencarbonate; ammonia Organic amine compounds such as trimethylamine and triethanolamine; and the like, and hydroxides of alkali metals or ammonia are preferable. The pH of the synthetic polyisoprene latex at this time is not particularly limited, but in the production method of the present invention, as described later, a synthetic polyisoprene latex or the like is used to form a latex composition, and the latex composition is When ripening under the conditions, the pH of the latex composition before ripening should be less than 10.
 また、共役ジエン系重合体としては、上述したように、スチレン-イソプレン-スチレンブロック共重合体(SIS)を用いることもできる。なお、SISにおいては、「S」はスチレンブロック、「I」はイソプレンブロックをそれぞれ表す。 In addition, as the conjugated diene polymer, as described above, a styrene-isoprene-styrene block copolymer (SIS) can also be used. In SIS, "S" represents a styrene block and "I" represents an isoprene block.
 SISは、従来公知の方法、たとえばn-ブチルリチウムなどの活性有機金属を開始剤として、不活性重合溶媒中で、イソプレンとスチレンとをブロック共重合して得ることができる。そして、得られたSISの重合体溶液は、SISラテックスの製造にそのまま用いてもよいが、該重合体溶液から固形のSISを取り出した後、その固形のSISを有機溶媒に溶解して、SISラテックスの製造に用いることもできる。なお、SISラテックスは、後述するように、本発明で用いるカルボキシ変性重合体のラテックスの製造に用いることができる。SISラテックスの製造方法としては、特に限定されないが、有機溶媒に溶解または微分散したSISの溶液または微細懸濁液を、界面活性剤の存在下に、水中で乳化し、必要により有機溶媒を除去して、SISラテックスを製造する方法が好ましい。
 この際、合成した後に重合体溶液中に残った重合触媒の残渣などの不純物を取り除いてもよい。また、重合中または重合後の溶液に、後述する老化防止剤を添加してもよい。また、市販の固形のSISを用いることもできる。 
SIS can be obtained by block copolymerization of isoprene and styrene in an inert polymerization solvent using an active organic metal such as n-butyllithium as an initiator and a method known in the art. And although the obtained polymer solution of SIS may be used as it is for production of SIS latex, after taking out solid SIS from the polymer solution, the solid SIS is dissolved in an organic solvent to obtain SIS. It can also be used for the production of latex. In addition, SIS latex can be used for manufacture of the latex of the carboxy modified polymer used by this invention so that it may mention later. The method for producing SIS latex is not particularly limited, but a solution or fine suspension of SIS dissolved or finely dispersed in an organic solvent is emulsified in water in the presence of a surfactant, and the organic solvent is optionally removed Preferred is a method of producing SIS latex.
At this time, impurities such as the residue of the polymerization catalyst remaining in the polymer solution after synthesis may be removed. In addition, an anti-aging agent described later may be added to the solution during or after polymerization. Alternatively, commercially available solid SIS can be used.
 有機溶媒としては、上記合成ポリイソプレンの場合と同様のものを使用することができ、芳香族炭化水素溶媒および脂環族炭化水素溶媒が好ましく、シクロヘキサンおよびトルエンが特に好ましい。
 なお、有機溶媒の使用量は、SIS100重量部に対して、通常50~2,000重量部、好ましくは80~1,000重量部、より好ましくは10~500重量部、さらに好ましくは150~300重量部である。
As the organic solvent, the same ones as in the case of the above-mentioned synthetic polyisoprene can be used, and aromatic hydrocarbon solvents and alicyclic hydrocarbon solvents are preferable, and cyclohexane and toluene are particularly preferable.
The amount of the organic solvent used is usually 50 to 2,000 parts by weight, preferably 80 to 1,000 parts by weight, more preferably 10 to 500 parts by weight, and still more preferably 150 to 300 parts by weight per 100 parts by weight of SIS. It is a weight part.
 界面活性剤としては、上記合成ポリイソプレンの場合と同様のものを例示することができ、アニオン性界面活性剤が好適であり、ロジン酸ナトリウムおよびドデシルベンゼンスルホン酸ナトリウムが特に好ましい。 As the surfactant, those similar to the above-mentioned synthetic polyisoprene can be exemplified, and an anionic surfactant is preferable, and sodium rosinate and sodium dodecylbenzene sulfonate are particularly preferable.
 界面活性剤の使用量は、SIS100重量部に対して、好ましくは0.1~50重量部、より好ましくは0.5~30重量部である。この量が少なすぎると、ラテックスの安定性が劣る傾向にあり、逆に多すぎると、発泡しやすくなり、ディップ成形時に問題が起きる可能性がある。 The amount of surfactant used is preferably 0.1 to 50 parts by weight, more preferably 0.5 to 30 parts by weight with respect to 100 parts by weight of SIS. If this amount is too small, the stability of the latex tends to be poor, and on the other hand, if it is too large, foaming tends to occur and problems may occur during dip molding.
 上述したSISラテックスの製造方法で使用する水の量は、SISの有機溶媒溶液100重量部に対して、好ましくは10~1,000重量部、より好ましくは30~500重量部、最も好ましくは50~100重量部である。使用する水の種類としては、硬水、軟水、イオン交換水、蒸留水、ゼオライトウォーターなどが挙げられる。また、メタノールなどのアルコールに代表される極性溶媒を水と併用してもよい。 The amount of water used in the method of producing SIS latex described above is preferably 10 to 1,000 parts by weight, more preferably 30 to 500 parts by weight, most preferably 50 parts by weight with respect to 100 parts by weight of the SIS organic solvent solution. It is up to 100 parts by weight. The types of water used include hard water, soft water, ion-exchanged water, distilled water, zeolite water and the like. In addition, polar solvents represented by alcohols such as methanol may be used in combination with water.
 SISの有機溶媒溶液または微細懸濁液を、界面活性剤の存在下、水中で乳化する装置は、上記合成ポリイソプレンの場合と同様のものを例示することができる。そして、界面活性剤の添加方法は、特に限定されず、予め水もしくはSISの有機溶媒溶液または微細懸濁液のいずれか、あるいは両方に添加してもよいし、乳化操作を行っている最中に、乳化液に添加してもよく、一括添加しても、分割添加してもよい。 An apparatus for emulsifying an organic solvent solution or a fine suspension of SIS in water in the presence of a surfactant may be the same as in the case of the above-mentioned synthetic polyisoprene. The addition method of the surfactant is not particularly limited, and may be added in advance to either or both of water and an organic solvent solution of SIS or a fine suspension, or both, during the emulsification operation. May be added to the emulsion, may be added all at once, or may be added separately.
 上述したSISラテックスの製造方法においては、乳化操作を経て得られた乳化物から、有機溶媒を除去して、SISラテックスを得ることが好ましい。乳化物から有機溶媒を除去する方法は、特に限定されず、減圧蒸留、常圧蒸留、水蒸気蒸留、遠心分離等の方法を採用することができる。 In the method for producing SIS latex described above, it is preferable to obtain the SIS latex by removing the organic solvent from the emulsion obtained through the emulsification operation. The method for removing the organic solvent from the emulsion is not particularly limited, and methods such as vacuum distillation, atmospheric distillation, steam distillation, centrifugation and the like can be employed.
 また、有機溶媒を除去した後、必要に応じ、SISラテックスの固形分濃度を上げるために、減圧蒸留、常圧蒸留、遠心分離、膜濃縮等の方法で濃縮操作を施してもよい。 In addition, after removing the organic solvent, if necessary, in order to increase the solid content concentration of the SIS latex, a concentration operation may be performed by a method such as vacuum distillation, atmospheric pressure distillation, centrifugation, or membrane concentration.
 SISラテックスの固形分濃度は、好ましくは30~70重量%、より好ましくは50~70重量%である。固形分濃度が低すぎると、後述するラテックス組成物の固形分濃度が低くなるためディップ成形体の膜厚が薄くなり破れ易くなる。逆に固形分濃度が高すぎると、SISラテックスの粘度が高くなり、配管での移送や調合タンク内での撹拌が難しくなる。 The solids concentration of the SIS latex is preferably 30 to 70% by weight, more preferably 50 to 70% by weight. If the solid content concentration is too low, the solid content concentration of the latex composition to be described later will be low, and the film thickness of the dip-formed product will be thin and it will be easy to break. On the other hand, if the solid concentration is too high, the viscosity of the SIS latex becomes high, which makes it difficult to transfer by piping or to stir in the mixing tank.
 また、SISラテックスには、ラテックスの分野で通常配合される、pH調整剤、消泡剤、防腐剤、架橋剤、キレート剤、酸素捕捉剤、分散剤、老化防止剤等の添加剤を配合しても良い。pH調整剤としては、上記合成ポリイソプレンの場合と同様のものを例示することができ、アルカリ金属の水酸化物またはアンモニアが好ましい。なお、この際におけるSISラテックスのpHは特に限定されないが、本発明の製造方法においては、後述するように、SISラテックス等を用いてラテックス組成物とし、該ラテックス組成物を所定の条件で熟成させる際に、熟成前のラテックス組成物のpHが、10未満となっていればよい。 In addition, SIS latex contains additives such as pH adjusters, antifoaming agents, preservatives, crosslinking agents, chelating agents, oxygen scavengers, dispersants, anti-aging agents, etc., which are usually blended in the field of latex. It is good. As the pH adjuster, those similar to the above-mentioned synthetic polyisoprene can be exemplified, and alkali metal hydroxide or ammonia is preferable. The pH of the SIS latex at this time is not particularly limited, but in the production method of the present invention, as described later, a SIS latex or the like is used to form a latex composition, and the latex composition is aged under predetermined conditions. At this time, the pH of the latex composition before aging may be less than 10.
 このようにして得られるSISラテックスに含まれる、SIS中のスチレンブロックにおけるスチレン単位の含有量は、全単量体単位に対して、好ましくは70~100重量%、より好ましくは90~100重量%、さらに好ましくは100重量%である。
 また、SIS中のイソプレンブロックにおけるイソプレン単位の含有量は、全単量体単位に対して、好ましくは70~100重量%、より好ましくは90~100重量%、さらに好ましくは100重量%である。
 なお、SIS中のスチレン単位とイソプレン単位の含有割合は、「スチレン単位:イソプレン単位」の重量比で、通常1:99~90:10、好ましくは3:97~70:30、より好ましくは5:95~50:50、さらに好ましくは10:90~30:70の範囲である。
The content of styrene units in styrene blocks in SIS contained in the SIS latex thus obtained is preferably 70 to 100% by weight, more preferably 90 to 100% by weight, based on all monomer units. More preferably, it is 100% by weight.
The content of isoprene units in the isoprene block in SIS is preferably 70 to 100% by weight, more preferably 90 to 100% by weight, and still more preferably 100% by weight, based on all monomer units.
The content ratio of styrene unit and isoprene unit in SIS is usually 1:99 to 90:10, preferably 3:97 to 70:30, more preferably 5 in weight ratio of "styrene unit: isoprene unit". The preferred range is 95 to 50:50, more preferably 10:90 to 30:70.
 SISの重量平均分子量は、ゲル・パーミーエーション・クロマトグラフィー分析による標準ポリスチレン換算で、好ましくは10,000~1,000,000、より好ましくは50,000~5,00,000、さらに好ましくは100,000~3,00,000である。SISの重量平均分子量を上記範囲とすることにより、ディップ成形体などの膜成形体の引張強度と柔軟性のバランスが向上するとともに、SISのラテックスが製造しやすくなる傾向がある。 The weight-average molecular weight of SIS is preferably 10,000 to 1,000,000, more preferably 50,000 to 50,000, still more preferably 100, in terms of standard polystyrene determined by gel permeation chromatography analysis. It is between 4,000 and 3,00,000. By setting the weight-average molecular weight of SIS in the above range, the balance between the tensile strength and the flexibility of a film-formed body such as a dip-formed body is improved, and the SIS latex tends to be easily produced.
 SISラテックス中のラテックス粒子(SIS粒子)の体積平均粒子径は、好ましくは0.1~10μm、より好ましくは0.5~3μm、さらに好ましくは0.5~2.0μmである。ラテックス粒子の体積平均粒子径を上記範囲とすることにより、ラテックス粘度が適度なものとなり取り扱いやすくなるとともに、SISラテックスを貯蔵した際に、ラテックス表面に皮膜が生成することを抑制できる。 The volume average particle size of the latex particles (SIS particles) in the SIS latex is preferably 0.1 to 10 μm, more preferably 0.5 to 3 μm, and still more preferably 0.5 to 2.0 μm. By setting the volume average particle diameter of the latex particles in the above range, the latex viscosity becomes appropriate and it becomes easy to handle, and it is possible to suppress the formation of a film on the latex surface when the SIS latex is stored.
 また、共役ジエン系重合体としては、上述したように、ニトリル基含有共役ジエン系共重合体を用いることもできる。 In addition, as the conjugated diene polymer, as described above, a nitrile group-containing conjugated diene copolymer can also be used.
 ニトリル基含有共役ジエン系共重合体は、共役ジエン単量体にエチレン性不飽和ニトリル単量体を共重合してなる共重合体であり、これらに加えて、必要に応じて用いられる、これらと共重合可能な他のエチレン性不飽和単量体を共重合してなる共重合体であってもよい。 The nitrile group-containing conjugated diene-based copolymer is a copolymer obtained by copolymerizing an ethylenically unsaturated nitrile monomer with a conjugated diene monomer, and in addition to these, it is used as needed. And a copolymer formed by copolymerizing another ethylenically unsaturated monomer copolymerizable therewith.
 共役ジエン単量体としては、たとえば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ペンタジエンおよびクロロプレンなどが挙げられる。これらのなかでも、1,3-ブタジエンおよびイソプレンが好ましく、1,3-ブタジエンがより好ましい。これらの共役ジエン単量体は、単独で、または2種以上を組合せて用いることができる。ニトリル基含有共役ジエン系共重合体中における、共役ジエン単量体により形成される共役ジエン単量体単位の含有割合は、好ましくは56~78重量%であり、より好ましくは56~73重量%、さらに好ましくは56~68重量%である。共役ジエン単量体単位の含有量を上記範囲とすることにより、得られるディップ成形体などの膜成形体を、引張強度を十分なものとしながら、風合いおよび伸びにより優れたものとすることができる。 Examples of conjugated diene monomers include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-pentadiene and chloroprene. Be Among these, 1,3-butadiene and isoprene are preferable, and 1,3-butadiene is more preferable. These conjugated diene monomers can be used alone or in combination of two or more. The content of the conjugated diene monomer unit formed by the conjugated diene monomer in the nitrile group-containing conjugated diene copolymer is preferably 56 to 78% by weight, more preferably 56 to 73% by weight More preferably, it is 56 to 68% by weight. By setting the content of the conjugated diene monomer unit in the above range, the resulting film molded product such as a dip molded product can be made more excellent in texture and elongation while maintaining sufficient tensile strength. .
 エチレン性不飽和ニトリル単量体としては、ニトリル基を含有するエチレン性不飽和単量体であれば特に限定されないが、たとえば、アクリロニトリル、メタクリロニトリル、フマロニトリル、α-クロロアクリロニトリル、α-シアノエチルアクリロニトリルなどが挙げられる。なかでも、アクリロニトリルおよびメタクリロニトリルが好ましく、アクリロニトリルがより好ましい。これらのエチレン性不飽和ニトリル単量体は、単独で、または2種以上を組合せて用いることができる。ニトリル基含有共役ジエン系共重合体中における、エチレン性不飽和ニトリル単量体により形成されるエチレン性不飽和ニトリル単量体単位の含有割合は、好ましくは20~40重量%であり、より好ましくは25~40重量%、さらに好ましくは30~40重量%である。エチレン性不飽和ニトリル単量体単位の含有量を上記範囲とすることにより、得られるディップ成形体などの膜成形体を、引張強度を十分なものとしながら、風合いおよび伸びにより優れたものとすることができる。 The ethylenically unsaturated nitrile monomer is not particularly limited as long as it is a nitrile group-containing ethylenically unsaturated monomer, but, for example, acrylonitrile, methacrylonitrile, fumaronitrile, α-chloroacrylonitrile, α-cyanoethyl acrylonitrile Etc. Among these, acrylonitrile and methacrylonitrile are preferable, and acrylonitrile is more preferable. These ethylenically unsaturated nitrile monomers can be used alone or in combination of two or more. The content ratio of the ethylenically unsaturated nitrile monomer unit formed by the ethylenically unsaturated nitrile monomer in the nitrile group-containing conjugated diene copolymer is preferably 20 to 40% by weight, and more preferably Is 25 to 40% by weight, more preferably 30 to 40% by weight. By setting the content of the ethylenically unsaturated nitrile monomer units in the above range, the resulting film molded product such as a dip molded product is made more excellent in texture and elongation while maintaining sufficient tensile strength. be able to.
 共役ジエン単量体およびエチレン性不飽和ニトリル単量体と共重合可能なその他のエチレン性不飽和単量体としては、たとえば、カルボキシル基を含有するエチレン性不飽和単量体であるエチレン性不飽和カルボン酸単量体;スチレン、アルキルスチレン、ビニルナフタレン等のビニル芳香族単量体;フルオロエチルビニルエーテル等のフルオロアルキルビニルエーテル;(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N,N-ジメチロール(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-プロポキシメチル(メタ)アクリルアミド等のエチレン性不飽和アミド単量体;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸トリフルオロエチル、(メタ)アクリル酸テトラフルオロプロピル、マレイン酸ジブチル、フマル酸ジブチル、マレイン酸ジエチル、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸メトキシエトキシエチル、(メタ)アクリル酸シアノメチル、(メタ)アクリル酸-2-シアノエチル、(メタ)アクリル酸-1-シアノプロピル、(メタ)アクリル酸-2-エチル-6-シアノヘキシル、(メタ)アクリル酸-3-シアノプロピル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、グリシジル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステル単量体;ジビニルベンゼン、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトール(メタ)アクリレート等の架橋性単量体;などを挙げることができる。これらのエチレン性不飽和単量体は単独で、または2種以上を組み合わせて使用することができる。 Examples of the conjugated diene monomer and other ethylenically unsaturated monomers copolymerizable with the ethylenically unsaturated nitrile monomer include, for example, an ethylenically unsaturated monomer which is an ethylenically unsaturated monomer containing a carboxyl group. Saturated carboxylic acid monomers; vinyl aromatic monomers such as styrene, alkylstyrenes and vinylnaphthalenes; fluoroalkyl vinyl ethers such as fluoroethyl vinyl ether; (meth) acrylamides, N-methylol (meth) acrylamides, N, N-dimethylol Ethylenically unsaturated amide monomers such as (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-propoxymethyl (meth) acrylamide; methyl (meth) acrylate, ethyl (meth) acrylate, (meth) Butyl acrylate, (meth) acrylic acid-2-ethyl Hexyl, trifluoroethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, dibutyl maleate, dibutyl fumarate, diethyl maleate, methoxymethyl (meth) acrylate, ethoxyethyl (meth) acrylate, (meth ) Methoxyethoxyethyl acrylate, cyanomethyl (meth) acrylate, 2-cyanoethyl (meth) acrylate, 1-cyanopropyl (meth) acrylate, 2-ethyl-6-cyanohexyl (meth) acrylate, Ethylenically unsaturated carboxylic acid esters such as 3-cyanopropyl (meth) acrylate, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, glycidyl (meth) acrylate, dimethylaminoethyl (meth) acrylate and the like Mer; divinylben And the like; down, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, crosslinking monomer, such as pentaerythritol (meth) acrylate. These ethylenically unsaturated monomers can be used alone or in combination of two or more.
 エチレン性不飽和カルボン酸単量体としては、カルボキシル基を含有するエチレン性不飽和単量体であれば特に限定されないが、たとえば、アクリル酸、メタクリル酸などのエチレン性不飽和モノカルボン酸単量体;イタコン酸、マレイン酸、フマル酸等のエチレン性不飽和多価カルボン酸単量体;無水マレイン酸、無水シトラコン酸等のエチレン性不飽和多価カルボン酸無水物;フマル酸モノブチル、マレイン酸モノブチル、マレイン酸モノ-2-ヒドロキシプロピル等のエチレン性不飽和多価カルボン酸部分エステル単量体;などが挙げられる。これらのなかでも、エチレン性不飽和モノカルボン酸が好ましく、メタクリル酸が特に好ましい。これらのエチレン性不飽和カルボン酸単量体はアルカリ金属塩またはアンモニウム塩として用いることもできる。また、エチレン性不飽和カルボン酸単量体は単独で、または2種以上を組合せて用いることができる。ニトリル基含有共役ジエン系共重合体中における、エチレン性不飽和カルボン酸単量体により形成されるエチレン性不飽和カルボン酸単量体単位の含有割合は、好ましくは2~5重量%であり、より好ましくは2~4.5重量%、さらに好ましくは2.5~4.5重量%である。エチレン性不飽和カルボン酸単量体単位の含有量を上記範囲とすることにより、得られるディップ成形体などの膜成形体を、引張強度を十分なものとしながら、風合いおよび伸びにより優れたものとすることができる。 The ethylenically unsaturated carboxylic acid monomer is not particularly limited as long as it is a carboxyl group-containing ethylenically unsaturated monomer, but, for example, a single amount of an ethylenically unsaturated monocarboxylic acid such as acrylic acid or methacrylic acid Body: Ethylenically unsaturated polyvalent carboxylic acid monomers such as itaconic acid, maleic acid, fumaric acid; Ethylenically unsaturated polyvalent carboxylic acid anhydrides such as maleic anhydride, citraconic acid; Monobutyl fumarate, Maleic acid And ethylenically unsaturated polyhydric carboxylic acid partial ester monomers such as monobutyl and mono-2-hydroxypropyl maleate; and the like. Among these, ethylenically unsaturated monocarboxylic acids are preferable, and methacrylic acid is particularly preferable. These ethylenically unsaturated carboxylic acid monomers can also be used as alkali metal salts or ammonium salts. Moreover, an ethylenically unsaturated carboxylic acid monomer can be used individually or in combination of 2 or more types. The content ratio of the ethylenically unsaturated carboxylic acid monomer unit formed of the ethylenically unsaturated carboxylic acid monomer in the nitrile group-containing conjugated diene copolymer is preferably 2 to 5% by weight. More preferably, it is 2 to 4.5% by weight, still more preferably 2.5 to 4.5% by weight. By setting the content of the ethylenically unsaturated carboxylic acid monomer unit in the above range, the obtained film molded product such as a dip molded product is excellent in feeling and elongation while making the tensile strength sufficient. can do.
 ニトリル基含有共役ジエン系共重合体中における、その他のエチレン性不飽和単量体により形成されるその他の単量体単位の含有割合は、好ましくは10重量%以下であり、より好ましくは5重量%以下、さらに好ましくは3重量%以下である。 The content ratio of other monomer units formed of other ethylenically unsaturated monomers in the nitrile group-containing conjugated diene copolymer is preferably 10% by weight or less, more preferably 5% by weight. % Or less, more preferably 3% by weight or less.
 ニトリル基含有共役ジエン系共重合体は、上述した単量体を含有してなる単量体混合物を共重合することにより得られるが、乳化重合により共重合する方法が好ましい。乳化重合方法としては、従来公知の方法を採用することができる。 The nitrile group-containing conjugated diene-based copolymer can be obtained by copolymerizing a monomer mixture containing the above-mentioned monomers, but a method of copolymerizing by emulsion polymerization is preferable. A conventionally known method can be adopted as the emulsion polymerization method.
 上述した単量体を含有してなる単量体混合物を乳化重合する際には、通常用いられる、乳化剤、重合開始剤、分子量調整剤等の重合副資材を使用することができる。これら重合副資材の添加方法は特に限定されず、初期一括添加法、分割添加法、連続添加法などいずれの方法でもよい。 In emulsion polymerization of a monomer mixture containing the above-described monomer, commonly used polymerization auxiliary materials such as an emulsifier, a polymerization initiator, a molecular weight modifier and the like can be used. The addition method of these polymerization auxiliary materials is not particularly limited, and any method such as initial batch addition method, split addition method, continuous addition method may be used.
 乳化剤としては、特に限定されないが、たとえば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンソルビタンアルキルエステル等の非イオン性乳化剤;ドデシルベンゼンスルホン酸カリウム、ドデシルベンゼンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸塩、高級アルコール硫酸エステル塩、アルキルスルホコハク酸塩等のアニオン性乳化剤;アルキルトリメチルアンモニウムクロライド、ジアルキルアンモニウムクロライド、ベンジルアンモニウムクロライド等のカチオン性乳化剤;α,β-不飽和カルボン酸のスルホエステル、α,β-不飽和カルボン酸のサルフェートエステル、スルホアルキルアリールエーテル等の共重合性乳化剤などを挙げることができる。なかでも、アニオン性乳化剤が好ましく、アルキルベンゼンスルホン酸塩がより好ましく、ドデシルベンゼンスルホン酸カリウムおよびドデシルベンゼンスルホン酸ナトリウムが特に好ましい。これらの乳化剤は、単独で、または2種以上を組合せて用いることができる。乳化剤の使用量は、単量体混合物100重量部に対して、好ましくは0.1~10重量部である。 The emulsifier is not particularly limited. For example, nonionic emulsifiers such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester, etc .; potassium dodecyl benzene sulfonate, dodecyl benzene Anionic emulsifiers such as alkyl benzene sulfonates such as sodium sulfonate, higher alcohol sulfates, alkyl sulfosuccinates; cationic emulsifiers such as alkyl trimethyl ammonium chlorides, dialkyl ammonium chlorides and benzyl ammonium chlorides; α, β-unsaturated Sulfo esters of carboxylic acids, sulfate esters of α, β-unsaturated carboxylic acids, sulfoalkyl aryl ethers, etc. Or the like can be mentioned a polymerizable emulsifier. Among them, anionic emulsifiers are preferable, alkylbenzene sulfonates are more preferable, and potassium dodecylbenzenesulfonate and sodium dodecylbenzenesulfonate are particularly preferable. These emulsifiers can be used alone or in combination of two or more. The amount of the emulsifier used is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the monomer mixture.
 重合開始剤としては、特に限定されないが、たとえば、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、過リン酸カリウム、過酸化水素等の無機過酸化物;ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、ジ-α-クミルパーオキサイド、アセチルパーオキサイド、イソブチリルパーオキサイド、ベンゾイルパーオキサイド等の有機過酸化物;アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロニトリル、アゾビスイソ酪酸メチル等のアゾ化合物;などを挙げることができる。これらの重合開始剤は、それぞれ単独で、または2種類以上を組み合わせて使用することができる。重合開始剤の使用量は、単量体混合物100重量部に対して、好ましくは0.01~10重量部、より好ましくは0.01~2重量部である。 The polymerization initiator is not particularly limited, and for example, inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, hydrogen peroxide and the like; diisopropylbenzene hydroperoxide, cumene hydroperoxide, t-Butyl hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, di-t-butyl peroxide, di-α- Organic peroxides such as cumyl peroxide, acetyl peroxide, isobutyryl peroxide, benzoyl peroxide; azo compounds such as azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, methyl azobisisobutyrate, etc. Can be mentionedThese polymerization initiators can be used alone or in combination of two or more. The amount of the polymerization initiator used is preferably 0.01 to 10 parts by weight, more preferably 0.01 to 2 parts by weight, with respect to 100 parts by weight of the monomer mixture.
 また、過酸化物開始剤は還元剤との組み合わせで、レドックス系重合開始剤として使用することができる。この還元剤としては、特に限定されないが、硫酸第一鉄、ナフテン酸第一銅等の還元状態にある金属イオンを含有する化合物;メタンスルホン酸ナトリウム等のスルホン酸化合物;ジメチルアニリン等のアミン化合物;などが挙げられる。これらの還元剤は単独で、または2種以上を組合せて用いることができる。還元剤の使用量は、過酸化物100重量部に対して3~1000重量部であることが好ましい。 Also, the peroxide initiator can be used as a redox polymerization initiator in combination with a reducing agent. The reducing agent is not particularly limited, but is a compound containing a metal ion in a reduced state such as ferrous sulfate or cuprous naphthenate; a sulfonic acid compound such as sodium methanesulfonate; an amine compound such as dimethylaniline And the like. These reducing agents can be used alone or in combination of two or more. The amount of the reducing agent used is preferably 3 to 1000 parts by weight with respect to 100 parts by weight of the peroxide.
 乳化重合する際に使用する水の量は、使用する全単量体100重量部に対して、80~600重量部が好ましく、100~200重量部が特に好ましい。 The amount of water used in the emulsion polymerization is preferably 80 to 600 parts by weight, particularly preferably 100 to 200 parts by weight, with respect to 100 parts by weight of all the monomers used.
 単量体の添加方法としては、たとえば、反応容器に使用する単量体を一括して添加する方法、重合の進行に従って連続的または断続的に添加する方法、単量体の一部を添加して特定の転化率まで反応させ、その後、残りの単量体を連続的または断続的に添加して重合する方法等が挙げられ、いずれの方法を採用してもよい。単量体を混合して連続的または断続的に添加する場合、混合物の組成は、一定としても、あるいは変化させてもよい。また、各単量体は、使用する各種単量体を予め混合してから反応容器に添加しても、あるいは別々に反応容器に添加してもよい。 As a method of adding monomers, for example, a method of adding monomers to be used in a reaction vessel at once, a method of adding continuously or intermittently as polymerization progresses, a part of monomers is added The reaction may be carried out to a specific conversion rate, and then the remaining monomers may be continuously or intermittently added and polymerized, and any method may be employed. When the monomers are mixed and added continuously or intermittently, the composition of the mixture may be constant or may be changed. In addition, each monomer may be added to the reaction container after previously mixing various monomers to be used, or may be separately added to the reaction container.
 さらに、必要に応じて、キレート剤、分散剤、pH調整剤、脱酸素剤、粒子径調整剤等の重合副資材を用いることもでき、これらは種類、使用量とも特に限定されない。 Furthermore, if necessary, a polymerization auxiliary material such as a chelating agent, a dispersing agent, a pH regulator, an oxygen scavenger, a particle size regulator and the like can be used, and the type and amount thereof are not particularly limited.
 乳化重合を行う際の重合温度は、特に限定されないが、通常、3~95℃、好ましくは5~60℃である。重合時間は5~40時間程度である。 The polymerization temperature at the time of carrying out the emulsion polymerization is not particularly limited, but is usually 3 to 95 ° C., preferably 5 to 60 ° C. The polymerization time is about 5 to 40 hours.
 以上のように単量体混合物を乳化重合し、所定の重合転化率に達した時点で、重合系を冷却したり、重合停止剤を添加したりして、重合反応を停止する。重合反応を停止する際の重合転化率は、好ましくは90重量%以上、より好ましくは93重量%以上である。 As described above, the monomer mixture is emulsion-polymerized, and when reaching a predetermined polymerization conversion rate, the polymerization reaction is stopped by cooling the polymerization system or adding a polymerization terminator. The polymerization conversion rate at the time of terminating the polymerization reaction is preferably 90% by weight or more, more preferably 93% by weight or more.
 重合停止剤としては、特に限定されないが、たとえば、ヒドロキシルアミン、ヒドロキシアミン硫酸塩、ジエチルヒドロキシルアミン、ヒドロキシアミンスルホン酸およびそのアルカリ金属塩、ジメチルジチオカルバミン酸ナトリウム、ハイドロキノン誘導体、カテコール誘導体、ならびに、ヒドロキシジメチルベンゼンチオカルボン酸、ヒドロキシジエチルベンゼンジチオカルボン酸、ヒドロキシジブチルベンゼンジチオカルボン酸などの芳香族ヒドロキシジチオカルボン酸およびこれらのアルカリ金属塩などが挙げられる。重合停止剤の使用量は、単量体混合物100重量部に対して、好ましくは0.05~2重量部である。 The polymerization terminator is not particularly limited, and examples thereof include hydroxylamine, hydroxyamine sulfate, diethylhydroxylamine, hydroxyamine sulfonic acid and alkali metal salt thereof, sodium dimethyldithiocarbamate, hydroquinone derivative, catechol derivative, and hydroxydimethyl Aromatic hydroxy dithio carboxylic acids, such as benzene thio carboxylic acid, hydroxy diethyl benzene dithio carboxylic acid, hydroxy dibutyl benzene dithio carboxylic acid, and these alkali metal salts etc. are mentioned. The amount of polymerization terminator used is preferably 0.05 to 2 parts by weight with respect to 100 parts by weight of the monomer mixture.
 重合反応を停止した後、所望により、未反応の単量体を除去し、固形分濃度やpHを調整することで、ニトリル基含有共役ジエン系共重合体のラテックスを得ることができる。 After termination of the polymerization reaction, if necessary, unreacted monomers are removed, and the solid content concentration and pH are adjusted, whereby a latex of a nitrile group-containing conjugated diene copolymer can be obtained.
 また、ニトリル基含有共役ジエン系共重合体のラテックスには、必要に応じて、老化防止剤、防腐剤、抗菌剤、分散剤などを適宜添加してもよい。 In addition, an anti-aging agent, an antiseptic agent, an antibacterial agent, a dispersing agent, and the like may be appropriately added to the latex of the nitrile group-containing conjugated diene copolymer as needed.
 ニトリル基含有共役ジエン系共重合体のラテックスの数平均粒子径は、好ましくは60~300nm、より好ましくは80~150nmである。粒子径は、乳化剤および重合開始剤の使用量を調節するなどの方法により、所望の値に調整することができる。 The number average particle diameter of the latex of the nitrile group-containing conjugated diene copolymer is preferably 60 to 300 nm, more preferably 80 to 150 nm. The particle size can be adjusted to a desired value by a method such as adjusting the amount of the emulsifier and the polymerization initiator used.
 本発明で用いるカルボキシ変性重合体としては、上述したように、合成ポリイソプレン、スチレン-イソプレン-スチレンブロック共重合体(SIS)、ニトリル基含有共役ジエン系共重合体などを用いることができるが、これらに限定されず、ブタジエン重合体、スチレン-ブタジエン共重合体などを用いてもよい。 As the carboxy-modified polymer used in the present invention, as described above, synthetic polyisoprene, styrene-isoprene-styrene block copolymer (SIS), nitrile group-containing conjugated diene copolymer and the like can be used. Not limited to these, a butadiene polymer, a styrene-butadiene copolymer, etc. may be used.
 ブタジエン重合体は、共役ジエン単量体としての1,3-ブタジエンの単独重合体であってもよいし、共役ジエン単量体としての1,3-ブタジエンと共重合可能な他のエチレン性不飽和単量体とを共重合してなる共重合体であってもよい。 The butadiene polymer may be a homopolymer of 1,3-butadiene as a conjugated diene monomer, or another ethylenic non-copolymerizable with 1,3-butadiene as a conjugated diene monomer. It may be a copolymer obtained by copolymerizing a saturated monomer.
 また、スチレン-ブタジエン共重合体は、共役ジエン単量体としての1,3-ブタジエンにスチレンを共重合してなる共重合体であり、これらに加えて、必要に応じて用いられる、これらと共重合可能な他のエチレン性不飽和単量体を共重合してなる共重合体であってもよい。 Moreover, a styrene-butadiene copolymer is a copolymer obtained by copolymerizing styrene with 1,3-butadiene as a conjugated diene monomer, and in addition to these, it is used as needed. It may be a copolymer formed by copolymerizing another copolymerizable ethylenically unsaturated monomer.
 さらに、本発明においては、上述した共役ジエン系重合体のラテックス以外に、蛋白質を除去した天然ゴム(脱蛋白質天然ゴム)のラテックスを用いることもできる。脱蛋白質天然ゴムのラテックスとしては、天然ゴムラテックス中の蛋白質を、例えば蛋白質分解酵素や界面活性剤などにより分解し、洗浄や遠心分離などにより除去する方法などの、公知の蛋白質除去法により得られる、いわゆる「脱蛋白質天然ゴムラテックス」として知られているものを用いることができる。
 また、脱蛋白質天然ゴムのラテックスとしては、上述した共役ジエン系重合体のラテックスの固形分濃度と同範囲の固形分濃度に調整したものを用いるのが好ましく、同様の添加剤を添加して調製したものを用いてもよい。
Furthermore, in the present invention, in addition to the latex of the conjugated diene polymer described above, a latex of a natural rubber (deproteinized natural rubber) from which proteins have been removed can also be used. The latex of deproteinized natural rubber can be obtained by a known protein removing method such as a method of decomposing the protein in the natural rubber latex with, for example, a proteolytic enzyme or surfactant and removing it by washing, centrifugation or the like What is known as so-called "deproteinized natural rubber latex" can be used.
Moreover, it is preferable to use what was adjusted to solid content concentration of the same range as solid content concentration of the latex of the conjugated diene type polymer mentioned above as latex of deproteinized natural rubber, and it adds and adds the same additive. You may use what was.
 カルボキシ変性重合体のラテックス
 本発明で用いるカルボキシ変性重合体のラテックスを構成するカルボキシ変性重合体は、上述した共役ジエン系重合体または脱蛋白質天然ゴムを、カルボキシル基を有する単量体により変性することにより得ることができる。あるいは、共役ジエン系重合体として、エチレン性不飽和カルボン酸単量体単位を含有する重合体を用いる場合には、該共役ジエン系重合体に対してカルボキシル基を有する単量体による変性を行うことなく、該共役ジエン系重合体を、そのままカルボキシ変性重合体として用いることができる。
Carboxy-modified polymer constituting the latex of the carboxy-modified polymer used in the latex present invention carboxy-modified polymer, a conjugated diene polymer or deproteinized natural rubber as described above, be modified by a monomer having a carboxyl group It can be obtained by Alternatively, when a polymer containing an ethylenically unsaturated carboxylic acid monomer unit is used as a conjugated diene polymer, the conjugated diene polymer is modified with a monomer having a carboxyl group. Instead, the conjugated diene polymer can be used as it is as a carboxy-modified polymer.
 本発明によれば、カルボキシ変性重合体のラテックスを用いることにより、得られるラテックス組成物について、凝集物の発生を抑制することができ、これにより、該ラテックス組成物を用いてディップ成形体などの膜成形体を製造する場合における、膜成形体の欠陥率を低減することができる。さらに、カルボキシ変性重合体のラテックスを用いることにより、得られるラテックス組成物は、ディップ成形体などの膜成形体とした場合に、引張強度を向上させることができる。 According to the present invention, by using a latex of a carboxy-modified polymer, generation of aggregates can be suppressed for the obtained latex composition, whereby a dip-molded product or the like can be obtained using the latex composition. In the case of producing a film-formed body, the defect rate of the film-formed body can be reduced. Furthermore, by using a latex of a carboxy-modified polymer, the obtained latex composition can improve the tensile strength when it is formed into a film molded article such as a dip molded article.
 共役ジエン系重合体または脱蛋白質天然ゴムを、カルボキシル基を有する単量体により変性する方法としては、特に限定されないが、たとえば、共役ジエン系重合体または脱蛋白質天然ゴムに、カルボキシル基を有する単量体を水相中でグラフト重合する方法が挙げられる。カルボキシル基を有する単量体を水相中でグラフト重合する方法としては、特に限定されず、従来公知の方法を用いればよいが、たとえば、共役ジエン系重合体または脱蛋白質天然ゴムのラテックスに、カルボキシル基を有する単量体と、グラフト重合に用いる重合触媒(グラフト重合触媒)とを添加した後、水相中で、共役ジエン系重合体または脱蛋白質天然ゴムに、カルボキシル基を有する単量体を反応させる方法が好ましい。 The method for modifying a conjugated diene polymer or a deproteinized natural rubber with a monomer having a carboxyl group is not particularly limited. For example, a conjugated diene polymer or a deproteinized natural rubber having a carboxyl group may be used alone. The method of graft-polymerizing a monomer in an aqueous phase is mentioned. The method of graft polymerizing a monomer having a carboxyl group in the aqueous phase is not particularly limited, and a conventionally known method may be used, for example, a conjugated diene polymer or a latex of deproteinized natural rubber, After adding a monomer having a carboxyl group and a polymerization catalyst (graft polymerization catalyst) used for graft polymerization, a monomer having a carboxyl group in a conjugated diene polymer or deproteinized natural rubber in an aqueous phase The method of reacting is preferred.
 グラフト重合触媒としては、特に限定されないが、たとえば、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、過リン酸カリウム、過酸化水素等の無機過酸化物;ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、イソブチリルパーオキサイド、ベンゾイルパーオキサイド等の有機過酸化物;2,2’-アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロニトリル、アゾビスイソ酪酸メチル等のアゾ化合物;等を挙げることができるが、得られるディップ成形体などの膜成形体の引張強度がより向上するという観点から、有機過酸化物が好ましく、1,1,3,3-テトラメチルブチルハイドロパーオキサイドが特に好ましい。これらのグラフト重合触媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The graft polymerization catalyst is not particularly limited. For example, inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, hydrogen peroxide and the like; diisopropylbenzene hydroperoxide, cumene hydroperoxide, Organic peroxides such as t-butyl hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, di-t-butyl peroxide, isobutyryl peroxide, benzoyl peroxide; 2,2'- Although azo compounds such as azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, methyl azobisisobutyrate and the like can be mentioned, the tensile strength of a film molded product such as a dip molded product obtained is further improved Organic peroxides are preferred in terms of , 1,1,3,3-tetramethylbutyl hydroperoxide is particularly preferred. One of these graft polymerization catalysts may be used alone, or two or more thereof may be used in combination.
 グラフト重合触媒の使用量は、その種類によって異なるが、共役ジエン系重合体または脱蛋白質天然ゴム100重量部に対して、好ましくは0.1~10重量部、より好ましくは0.2~5重量部である。また、グラフト重合触媒を添加する方法としては、特に限定されず、一括添加、分割添加、連続添加等の公知の添加方法を採用することができる。 The amount of the graft polymerization catalyst used varies depending on its type, but it is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight, per 100 parts by weight of the conjugated diene polymer or deproteinized natural rubber. It is a department. Moreover, it does not specifically limit as method to add a graft polymerization catalyst, Well-known addition methods, such as package addition, division | segmentation addition, continuous addition, are employable.
 また、グラフト重合触媒として有機過酸化物を用いる場合には、還元剤との組み合わせで、レドックス系重合開始剤として使用することができる。還元剤としては、特に限定されないが、たとえば、硫酸第一鉄、ナフテン酸第一銅等の還元状態にある金属イオンを含有する化合物;メタンスルホン酸ナトリウム等のスルホン酸化合物;ジメチルアニリン等のアミン化合物;等が挙げられる。これらの還元剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。  When an organic peroxide is used as a graft polymerization catalyst, it can be used as a redox polymerization initiator in combination with a reducing agent. The reducing agent is not particularly limited. For example, compounds containing metal ions in a reduced state such as ferrous sulfate and cuprous naphthenate; Sulfonic acid compounds such as sodium methanesulfonate; Amines such as dimethylaniline Compound; and the like. One of these reducing agents may be used alone, or two or more thereof may be used in combination.
 有機過酸化物の添加量は、特に限定されないが、共役ジエン系重合体または脱蛋白質天然ゴム100重量部に対して、好ましくは0.01~3重量部、より好ましくは0.1~1重量部である。 Although the addition amount of the organic peroxide is not particularly limited, it is preferably 0.01 to 3 parts by weight, more preferably 0.1 to 1 part by weight with respect to 100 parts by weight of the conjugated diene polymer or the deproteinized natural rubber. It is a department.
 還元剤の添加量は、特に限定されないが、有機過酸化物1重量部に対して0.01~1重量部であることが好ましい。 Although the addition amount of the reducing agent is not particularly limited, it is preferably 0.01 to 1 part by weight with respect to 1 part by weight of the organic peroxide.
 有機過酸化物および還元剤の添加方法は、特に限定されず、それぞれ、一括添加、分割添加、連続添加等の公知の添加方法を用いることができる。 The addition method of the organic peroxide and the reducing agent is not particularly limited, and known addition methods such as batch addition, divided addition, continuous addition and the like can be used, respectively.
 共役ジエン系重合体または脱蛋白質天然ゴムに、カルボキシル基を有する単量体を反応させる際には、分散剤の存在下で反応を行うことが好ましい。 When reacting a monomer having a carboxyl group with a conjugated diene polymer or deproteinized natural rubber, it is preferable to carry out the reaction in the presence of a dispersant.
 分散剤としては、特に限定されないが、芳香族スルホン酸の誘導体、脂肪酸塩、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、モノアルキルリン酸塩などのアニオン性界面活性剤が好ましく、芳香族スルホン酸の誘導体がより好ましい。なお、上記分散剤は、それぞれ単独で、あるいは2種類以上を組み合わせて使用することができる。 The dispersant is not particularly limited. However, derivatives of aromatic sulfonic acids, fatty acid salts, alkylbenzene sulfonates, alkyl sulfosuccinates, alkyl sulfates, polyoxyethylene alkyl ether sulfates, monoalkyl phosphates, etc. Anionic surfactants are preferred, and derivatives of aromatic sulfonic acids are more preferred. The dispersants may be used alone or in combination of two or more.
 芳香族スルホン酸の誘導体としては、特に限定されないが、下記一般式(1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000001
 (上記一般式(1)中、RおよびRは、それぞれ独立して、水素原子または任意の有機基であり、RおよびRは互いに結合して環構造を形成していてもよい。)
The derivative of the aromatic sulfonic acid is not particularly limited, but a compound represented by the following general formula (1) is preferable.
Figure JPOXMLDOC01-appb-C000001
(In the above general formula (1), R 1 and R 2 are each independently a hydrogen atom or any organic group, and R 1 and R 2 may be bonded to each other to form a ring structure .)
 RおよびRが互いに結合しない場合に、RおよびRとなりうる有機基としては、特に限定されないが、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基などの炭素数1~30のアルキル基;シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基などの炭素数3~30のシクロアルキル基;フェニル基、ビフェニル基、ナフチル基、アントラニル基などの炭素数6~30のアリール基;メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、フェノキシ基などの炭素数1~30のアルコキシ基;などが挙げられる。なお、これらの有機基は、置換基を有していてもよく、該置換基の位置としては、任意の位置とすることができる。 When the R 1 and R 2 are not bonded to each other, as the organic group can be an R 1 and R 2, but not limited to, methyl group, ethyl group, n- propyl group, an isopropyl group, n- butyl group, an isobutyl group Alkyl groups having 1 to 30 carbon atoms, such as sec-butyl, t-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl and n-decyl; A cycloalkyl group having 3 to 30 carbon atoms such as cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl; and an aryl having 6 to 30 carbons such as phenyl, biphenyl, naphthyl and anthranyl. A methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, t -An alkoxy group having 1 to 30 carbon atoms such as butoxy group, n-pentyloxy group, n-hexyloxy group, phenoxy group and the like; These organic groups may have a substituent, and the position of the substituent can be any position.
 また、RおよびRが互いに結合して環構造を形成する場合には、環構造としては、特に限定されないが、芳香族化合物が好ましく、ベンゼン、ナフタレンなどのベンゼン環を有する芳香族化合物がより好ましく、ナフタレンが特に好ましい。なお、これらの環構造は、置換基を有していてもよく、該置換基の位置としては、任意の位置とすることができる。 Further, when R 1 and R 2 bond to each other to form a ring structure, the ring structure is not particularly limited, but an aromatic compound is preferable, and an aromatic compound having a benzene ring such as benzene and naphthalene is preferable. More preferred is naphthalene. These ring structures may have a substituent, and the position of the substituent may be any position.
 本発明においては、芳香族スルホン酸の誘導体としては、上記一般式(1)で表される化合物の中でも、特に好ましいものとして、RおよびRが互いに結合して環構造を形成して、上記一般式(1)においてベンゼン環構造を形成しているものが挙げられる。より具体的には、下記一般式(2)で表される構造を有する化合物を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000002
 (上記一般式(2)中、Rは、置換基を有していてもよい2価の炭化水素基である。)
In the present invention, among the compounds represented by the above general formula (1), among the compounds represented by the above general formula (1), as a derivative of the aromatic sulfonic acid, R 1 and R 2 are mutually bonded to form a ring structure, What forms the benzene ring structure in the said General formula (1) is mentioned. More specifically, it is preferable to use a compound having a structure represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000002
(In the above general formula (2), R 3 is a divalent hydrocarbon group which may have a substituent.)
 上記一般式(2)において、Rは、置換基を有していてもよい2価の炭化水素基であればよく、特に限定されないが、炭素数1~10のアルキレン基が好ましく、メチレン基が特に好ましい。 In the general formula (2), R 3 is not particularly limited as long as it is a divalent hydrocarbon group which may have a substituent, and is preferably an alkylene group having 1 to 10 carbon atoms, and a methylene group Is particularly preferred.
 また、芳香族スルホン酸の誘導体としては、上記一般式(2)で表される構造を繰り返して有することが好ましく、上記一般式(2)で表される構造の繰り返し単位数は、特に限定されないが、好ましくは10~100個、より好ましくは20~50個である。 Moreover, as a derivative of aromatic sulfonic acid, it is preferable to have the structure represented by the said General formula (2) repeatedly, and the repeating unit number of the structure represented by the said General formula (2) is not specifically limited Is preferably 10 to 100, more preferably 20 to 50.
 芳香族スルホン酸の誘導体の重量平均分子量は、好ましくは500~100,000、より好ましくは3,000~50,000、さらに好ましくは5,000~30,000である。 The weight average molecular weight of the derivative of aromatic sulfonic acid is preferably 500 to 100,000, more preferably 3,000 to 50,000, and still more preferably 5,000 to 30,000.
 分散剤の添加量は、特に限定されないが、共役ジエン系重合体または脱蛋白質天然ゴムのラテックスの固形分濃度を高くした場合においても、凝集物の発生をより有効に抑制することがでるという観点より、ラテックスに含まれる共役ジエン系重合体または脱蛋白質天然ゴム100重量部に対して、好ましくは0.01~10重量部、より好ましくは0.1~5重量部である。 Although the addition amount of the dispersant is not particularly limited, it is possible to more effectively suppress the generation of aggregates even when the solid concentration of the conjugated diene polymer or the latex of the deproteinized natural rubber is increased. More preferably, the amount is 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the conjugated diene polymer or deproteinized natural rubber contained in the latex.
 分散剤を、共役ジエン系重合体または脱蛋白質天然ゴムのラテックスに添加する方法としては、特に限定されず、一括添加、分割添加、連続添加等の公知の添加方法を採用することができる。また、分散剤は、直接、ラテックスに添加してもよいし、予め分散剤の水溶液を調製し、調製した分散剤の水溶液をラテックスに添加してもよい。 The method for adding the dispersant to the conjugated diene polymer or the latex of deproteinized natural rubber is not particularly limited, and known addition methods such as batch addition, divided addition, continuous addition, and the like can be adopted. The dispersant may be added directly to the latex, or an aqueous solution of the dispersant may be prepared beforehand, and the prepared aqueous solution of the dispersant may be added to the latex.
 共役ジエン系重合体または脱蛋白質天然ゴムにカルボキシル基を有する単量体を反応させる際の反応温度は、特に限定されないが、好ましくは15~80℃、より好ましくは30~50℃である。カルボキシル基を有する単量体を反応させる際の反応時間は、上記反応温度に応じて適宜設定すればよいが、好ましくは30~300分間、より好ましくは60~120分間である。 The reaction temperature for reacting the conjugated diene polymer or the deproteinized natural rubber with a monomer having a carboxyl group is not particularly limited, but is preferably 15 to 80 ° C., more preferably 30 to 50 ° C. The reaction time for reacting a monomer having a carboxyl group may be appropriately set according to the above reaction temperature, but is preferably 30 to 300 minutes, more preferably 60 to 120 minutes.
 カルボキシル基を有する単量体を反応させる際における、共役ジエン系重合体または脱蛋白質天然ゴムのラテックスの固形分濃度は、特に限定されないが、好ましくは5~60重量%、より好ましくは10~40重量%である。 The solid concentration of the conjugated diene polymer or latex of the deproteinized natural rubber when reacting a monomer having a carboxyl group is not particularly limited, but is preferably 5 to 60% by weight, more preferably 10 to 40. It is weight%.
 カルボキシル基を有する単量体としては、たとえば、アクリル酸、メタクリル酸等のエチレン性不飽和モノカルボン酸単量体;イタコン酸、マレイン酸、フマル酸、ブテントリカルボン酸等のエチレン性不飽和多価カルボン酸単量体;フマル酸モノブチル、マレイン酸モノブチル、マレイン酸モノ2-ヒドロキシプロピル等のエチレン性不飽和多価カルボン酸の部分エステル単量体;無水マレイン酸、無水シトラコン酸等の多価カルボン酸無水物;などを挙げることができるが、本発明の効果がより一層顕著になることから、エチレン性不飽和モノカルボン酸単量体が好ましく、アクリル酸およびメタクリル酸が特に好ましい。なお、これらの単量体は1種単独でも、2種以上を併用して用いてもよい。
 また、上記カルボキシル基は、アルカリ金属やアンモニア等との塩になっているものも含まれる。
Examples of the monomer having a carboxyl group include ethylenically unsaturated monocarboxylic acid monomers such as acrylic acid and methacrylic acid; and ethylenically unsaturated polyvalent acids such as itaconic acid, maleic acid, fumaric acid and butene tricarboxylic acid Carboxylic acid monomer; Partial ester monomer of ethylenically unsaturated polyvalent carboxylic acid such as monobutyl fumarate, monobutyl maleate, mono 2-hydroxypropyl maleate; Polyvalent carbon such as maleic anhydride, citraconic anhydride Acid anhydrides and the like can be mentioned, but from the viewpoint that the effect of the present invention becomes more remarkable, ethylenically unsaturated monocarboxylic acid monomers are preferable, and acrylic acid and methacrylic acid are particularly preferable. These monomers may be used alone or in combination of two or more.
Further, the above-mentioned carboxyl group also includes those in the form of a salt with an alkali metal, ammonia or the like.
 カルボキシル基を有する単量体の使用量は、共役ジエン系重合体または脱蛋白質天然ゴム100重量部に対して、好ましくは0.01重量部~100重量部、より好ましくは0.01重量部~40重量部、さらに好ましくは0.5重量部~20重量部である。カルボキシル基を有する単量体の使用量を上記範囲とすることにより、得られるラテックス組成物の粘度がより適度なものとなり、移送しやすくなるとともに、得られるラテックス組成物を用いて形成されるディップ成形体などの膜成形体の引張強度がより向上する。 The amount of the carboxyl group-containing monomer used is preferably 0.01 parts by weight to 100 parts by weight, more preferably 0.01 parts by weight to 100 parts by weight of the conjugated diene polymer or deproteinized natural rubber. The amount is 40 parts by weight, more preferably 0.5 to 20 parts by weight. By setting the amount of the monomer having a carboxyl group to be in the above range, the viscosity of the obtained latex composition becomes more appropriate, and it becomes easy to transfer, and the dip formed using the obtained latex composition The tensile strength of a film molded body such as a molded body is further improved.
 カルボキシル基を有する単量体をラテックスに添加する方法としては、特に限定されず、一括添加、分割添加、連続添加等の公知の添加方法を採用することができる。 It does not specifically limit as method to add the monomer which has a carboxyl group to latex, Well-known addition methods, such as package addition, division | segmentation addition, continuous addition, are employable.
 グラフト重合の転化率は、好ましくは95重量%以上、より好ましくは97重量%以上である。グラフト重合の転化率を上記範囲とすることにより、得られるディップ成形体などの膜成形体の引張強度がより向上する。 The conversion of graft polymerization is preferably 95% by weight or more, more preferably 97% by weight or more. By setting the conversion rate of graft polymerization in the above range, the tensile strength of a formed film such as a dip-formed product to be obtained is further improved.
 カルボキシ変性重合体におけるカルボキシル基を有する単量体による変性率は、得られるラテックス組成物の使用目的に応じて適宜制御すればよいが、好ましくは0.01~10モル%、より好ましくは0.5~5モル%である。なお、変性率は、下記式(i)で表される。
 変性率(モル%)=(X/Y)×100   ・・・(i)
 なお、上記式(i)においては、Xは、カルボキシ変性重合体中におけるカルボキシル基の数を、Yは、カルボキシ変性重合体の総モノマー単位数をそれぞれ表す。Xは、カルボキシ変性重合体について、H-NMR測定を行うことにより求めることができる。また、Yは、(カルボキシ変性重合体の重量平均分子量(Mw))/(カルボキシ変性重合体を構成する各モノマー単位の含有割合に応じた平均分子量)を計算することにより求めることができる。
The modification ratio of the carboxy-modified polymer by the monomer having a carboxyl group may be appropriately controlled depending on the purpose of use of the resulting latex composition, but is preferably 0.01 to 10 mol%, more preferably 0. 5 to 5 mol%. The modification rate is represented by the following formula (i).
Modification rate (mol%) = (X / Y) × 100 (i)
In the above formula (i), X represents the number of carboxyl groups in the carboxy-modified polymer, and Y represents the total number of monomer units of the carboxy-modified polymer. X can be determined by performing 1 H-NMR measurement on the carboxy-modified polymer. Further, Y can be determined by calculating (weight-average molecular weight (Mw) of carboxy-modified polymer) / (average molecular weight according to the content ratio of each monomer unit constituting the carboxy-modified polymer).
 本発明で用いるカルボキシ変性重合体のラテックスには、ラテックスの分野で通常配合される、pH調整剤、消泡剤、防腐剤、キレート化剤、酸素捕捉剤、分散剤、老化防止剤等の添加剤を配合してもよい。 The latex of the carboxy modified polymer used in the present invention is added with a pH adjusting agent, an antifoaming agent, an antiseptic agent, a chelating agent, an oxygen scavenger, a dispersing agent, an antiaging agent, etc. An agent may be blended.
 pH調整剤としては、例えば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩;炭酸水素ナトリウムなどのアルカリ金属の炭酸水素塩;アンモニア;トリメチルアミン、トリエタノールアミンなどの有機アミン化合物;等が挙げられるが、アルカリ金属の水酸化物またはアンモニアが好ましい。なお、この際におけるカルボキシ変性重合体のラテックスのpHは特に限定されないが、本発明の製造方法においては、後述するように、カルボキシ変性重合体のラテックスに、キサントゲン化合物、活性化剤、および硫黄系加硫剤を配合してラテックス組成物とし、該ラテックス組成物を所定の条件で熟成させる際に、熟成前のラテックス組成物のpHが、10未満となっていればよい。 Examples of pH adjusters include hydroxides of alkali metals such as sodium hydroxide and potassium hydroxide; carbonates of alkali metals such as sodium carbonate and potassium carbonate; hydrogencarbonates of alkali metals such as sodium hydrogencarbonate; ammonia Organic amine compounds such as trimethylamine and triethanolamine; and the like, and hydroxides of alkali metals or ammonia are preferable. The pH of the latex of the carboxy modified polymer at this time is not particularly limited, but in the production method of the present invention, as described later, the latex of the carboxy modified polymer contains a xanthogen compound, an activator, and a sulfur system. When a vulcanizing agent is blended to form a latex composition and the latex composition is aged under predetermined conditions, the pH of the latex composition before aging may be less than 10.
 また、グラフト重合した後、必要に応じ、カルボキシ変性重合体のラテックスの固形分濃度を上げるために、減圧蒸留、常圧蒸留、遠心分離、膜濃縮等の方法で濃縮操作を施してもよいが、カルボキシ変性重合体のラテックス中のアニオン性界面活性剤の残留量を調整することができるという観点より、遠心分離を行うことが好ましい。 After the graft polymerization, if necessary, in order to increase the solid concentration of the latex of the carboxy-modified polymer, concentration operation may be performed by a method such as vacuum distillation, atmospheric pressure distillation, centrifugation, membrane concentration, etc. It is preferable to perform centrifugation from the viewpoint that the residual amount of the anionic surfactant in the latex of the carboxy-modified polymer can be adjusted.
 グラフト重合後のカルボキシ変性重合体のラテックスを遠心分離機にかける場合、ラテックスの機械的安定性の向上のため、予めpH調整剤を添加してラテックスのpHを7以上としておくことが好ましく、pHを9以上としておくことがより好ましい。なお、ラテックスのpHを調整した際に、変性により導入したカルボキシル基は、塩の状態になっていてもよい。なお、本発明の製造方法においては、この際にカルボキシ変性重合体のラテックスのpHを調整した場合であっても、後述するように、カルボキシ変性重合体のラテックスに、キサントゲン化合物、活性化剤、および硫黄系加硫剤を配合してラテックス組成物とし、該ラテックス組成物を所定の条件で熟成させる際に、熟成前のラテックス組成物のpHが、10未満となっていればよい。 When the latex of the carboxy-modified polymer after graft polymerization is centrifuged, it is preferable to add a pH adjuster in advance to set the pH of the latex to 7 or more, in order to improve the mechanical stability of the latex. Is more preferably 9 or more. In addition, when pH of latex is adjusted, the carboxyl group introduce | transduced by modification | denaturation may be in the state of a salt. In the production method of the present invention, even when the pH of the latex of the carboxy modified polymer is adjusted at this time, as described later, the xanthogen compound, the activator, and the latex of the carboxy modified polymer And when a sulfur-based vulcanizing agent is blended to form a latex composition, and the latex composition is aged under predetermined conditions, the pH of the latex composition before aging may be less than 10.
 本発明のカルボキシ変性重合体のラテックスの固形分濃度は、好ましくは30~70重量%、より好ましくは40~70重量%である。固形分濃度を上記範囲とすることにより、ラテックス中における凝集物の発生をより有効に抑制することができるとともに、ラテックスを貯蔵した際における重合体粒子の分離をより有効に抑制することができる。 The solids concentration of the latex of the carboxy-modified polymer of the present invention is preferably 30 to 70% by weight, more preferably 40 to 70% by weight. By setting the solid content concentration in the above range, generation of aggregates in the latex can be more effectively suppressed, and separation of polymer particles when storing the latex can be more effectively suppressed.
 また、カルボキシ変性重合体中のカルボキシル基を有する単量体単位の含有割合(共重合により重合体中に含有されることとなるカルボキシル基を有する単量体単位の含有割合)は、全単量体単位に対して、好ましくは0.01~50重量%、より好ましくは0.5~40重量%、さらに好ましくは1~30重量%、特に好ましくは1~15重量%である。カルボキシル基を有する単量体単位の含有割合を上記範囲とすることにより、得られるラテックス組成物の機械的安定性がより向上し、さらに、得られるラテックス組成物を用いて形成されるディップ成形体の柔軟性および引張強度がより向上する。 Further, the content ratio of the monomer unit having a carboxyl group in the carboxy-modified polymer (the content ratio of the monomer unit having a carboxyl group to be contained in the polymer by copolymerization) is the total unit amount The amount is preferably 0.01 to 50% by weight, more preferably 0.5 to 40% by weight, still more preferably 1 to 30% by weight, and particularly preferably 1 to 15% by weight, based on the body unit. By making the content ratio of the monomer unit having a carboxyl group into the above range, the mechanical stability of the obtained latex composition is further improved, and further, a dip-formed body formed using the obtained latex composition Flexibility and tensile strength are further improved.
 キサントゲン化合物
 本発明の調製工程においては、上述したカルボキシ変性重合体のラテックスに、キサントゲン化合物を配合する。
Xantogen Compound In the preparation process of the present invention, a xanthogen compound is blended in the latex of the carboxy modified polymer described above.
 本発明で用いるキサントゲン化合物は、後述する硫黄系加硫剤と組み合わせて用いることで、加硫促進剤として作用することができる。すなわち、ラテックス組成物に、硫黄系加硫剤を配合し、ラテックス組成物中のカルボキシ変性重合体を硫黄系加硫剤により加硫して、ディップ成形体などの膜成形体とする場合に、キサントゲン化合物は、加硫促進剤として作用する。また、キサントゲン化合物は、硫黄系加硫剤が配合されたラテックス組成物中において、加硫促進剤として作用し、加硫が行われた後に、加硫時に加わる熱等により、アルコールおよび二硫化炭素等に分解されるものである。たとえば、キサントゲン化合物は、膜成形体を製造する際に加わる熱(カルボキシ変性重合体を加硫させる際における100~130℃程度の熱)によって、アルコールおよび二硫化炭素等に分解され、さらに、分解により生成した成分(アルコールおよび二硫化炭素等)が揮発する。これにより、得られる膜成形体は、キサントゲン化合物の残留量が低減されたものとなる。本発明によれば、従来、遅延型アレルギー(Type IV)の症状の発生原因となっていた加硫促進剤(たとえば、ジチオカルバミン酸塩系加硫促進剤、チアゾール系加硫促進剤など)を使用することなく、キサントゲン化合物を加硫促進剤として使用し、これにより、得られるディップ成形体などの膜成形体におけるキサントゲン化合物の残留量を低減させることができるため、得られる膜成形体について、遅延型アレルギー(Type IV)の症状の発生を抑制することが可能となる。しかも、本発明で用いるラテックス組成物においては、共役ジエン系重合体等の合成ゴムまたは脱蛋白質天然ゴムを用いたカルボキシ変性重合体を使用しているため、得られる膜成形体について、天然ゴム(脱蛋白質処理をしていない天然ゴム)に含まれる蛋白質に起因する即時型アレルギー(Type I)の症状の発生をも抑制することができる。 The xanthogen compound used in the present invention can act as a vulcanization accelerator by using it in combination with a sulfur-based vulcanizing agent described later. That is, when a sulfur-based vulcanizing agent is blended in the latex composition, and the carboxy-modified polymer in the latex composition is vulcanized with the sulfur-based vulcanizing agent to form a film molded article such as a dip molded article, The xanthogen compound acts as a vulcanization accelerator. In addition, xanthogen compounds act as a vulcanization accelerator in a latex composition containing a sulfur-based vulcanizing agent, and after vulcanization is performed, alcohol and carbon disulfide are added by the heat applied at the time of vulcanization, etc. And so on. For example, a xanthogen compound is decomposed into alcohol, carbon disulfide and the like by heat (heat at about 100 to 130 ° C. when vulcanizing a carboxy-modified polymer) added when producing a film molded product, and further decomposed The components (alcohol and carbon disulfide etc.) generated by As a result, the resulting molded membrane has a reduced amount of residual xanthogen compound. According to the present invention, a vulcanization accelerator (for example, a dithiocarbamate-based vulcanization accelerator, a thiazole-based vulcanization accelerator, etc.) which has conventionally caused the occurrence of symptoms of delayed type allergy (Type IV) Since the xanthogen compound can be used as a vulcanization accelerator without reducing the residual amount of the xanthogen compound in a film molded article such as a dip molded product to be obtained, delay of the film molded article obtained can be obtained. It is possible to suppress the occurrence of symptoms of type allergy (Type IV). Moreover, since the latex composition used in the present invention uses a synthetic rubber such as a conjugated diene polymer or a carboxy-modified polymer using a deproteinized natural rubber, natural rubber ( It is also possible to suppress the occurrence of the symptoms of immediate type allergy (Type I) caused by the protein contained in the natural rubber (not deproteinized).
 本発明で用いるキサントゲン化合物としては、特に限定されないが、たとえば、キサントゲン酸、キサントゲン酸塩、キサントゲン二硫化物(2つのキサントゲン酸が硫黄原子等を介して結合された化合物)、キサントゲン多硫化物(3以上のキサントゲン酸が硫黄原子等を介して結合された化合物)などが挙げられる。 Examples of xanthogen compounds used in the present invention include, but are not limited to, xanthogen acid, xanthogen acid salt, xanthogen disulfide (compound in which two xanthogen acids are linked via a sulfur atom etc.), xanthogen polysulfide And the like) compounds in which three or more xanthogenic acids are linked via a sulfur atom or the like.
 キサントゲン酸塩としては、キサントゲン酸構造を有するものであればよく、特に限定されないが、たとえば、一般式(ROC(=S)S)x-Z(ここで、Rは直鎖状または分岐状の炭化水素、Zは金属原子である。xはZの原子価と一致する数で、通常1~4、好ましくは2~4、特に好ましくは2である。)で表される化合物が挙げられる。 The xanthogen acid salt is not particularly limited as long as it has a xanthogenic acid structure, and is not particularly limited. For example, a general formula (ROC (= S) S) x-Z (wherein R is linear or branched) Hydrocarbon, Z is a metal atom, and x is a number corresponding to the valence of Z, and is usually 1 to 4, preferably 2 to 4, particularly preferably 2.
 上記一般式(ROC(=S)S)x-Zで表されるキサントゲン酸塩としては、特に限定されないが、たとえば、ジメチルキサントゲン酸亜鉛、ジエチルキサントゲン酸亜鉛、ジプロピルキサントゲン酸亜鉛、ジイソプロピルキサントゲン酸亜鉛、ジブチルキサントゲン酸亜鉛、ジペンチルキサントゲン酸亜鉛、ジヘキシルキサントゲン酸亜鉛、ジヘプチルキサントゲン酸亜鉛、ジオクチルキサントゲン酸亜鉛、ジ(2-エチルヘキシル)キサントゲン酸亜鉛、ジデシルキサントゲン酸亜鉛、ジドデシルキサントゲン酸亜鉛、ジメチルキサントゲン酸カリウム、エチルキサントゲン酸カリウム、プロピルキサントゲン酸カリウム、イソプロピルキサントゲン酸カリウム、ブチルキサントゲン酸カリウム、ペンチルキサントゲン酸カリウム、ヘキシルキサントゲン酸カリウム、ヘプチルキサントゲン酸カリウム、オクチルキサントゲン酸カリウム、2-エチルヘキシルキサントゲン酸カリウム、デシルキサントゲン酸カリウム、ドデシルキサントゲン酸カリウム、メチルキサントゲン酸ナトリウム、エチルキサントゲン酸ナトリウム、プロピルキサントゲン酸ナトリウム、イソプロピルキサントゲン酸ナトリウム、ブチルキサントゲン酸ナトリウム、ペンチルキサントゲン酸ナトリウム、ヘキシルキサントゲン酸ナトリウム、ヘプチルキサントゲン酸ナトリウム、オクチルキサントゲン酸ナトリウム、2-エチルヘキシルキサントゲン酸ナトリウム、デシルキサントゲン酸ナトリウム、ドデシルキサントゲン酸ナトリウム等が挙げられる。これらのなかでも、上記一般式(ROC(=S)S)x-Zにおけるxが2以上であるキサントゲン酸塩が好ましく、イソプロピルキサントゲン酸塩類、ブチルキサントゲン酸塩類がより好ましく、ジイソプロピルキサントゲン酸亜鉛、ジブチルキサントゲン酸亜鉛が特に好ましい。これらのキサントゲン酸塩は、1種単独でも、複数種を併用してもよい。 The xanthate represented by the above general formula (ROC (= S) S) x-Z is not particularly limited, and examples thereof include zinc dimethyl xanthate, zinc diethyl xanthate, zinc dipropyl xanthate, and diisopropyl xanthate Zinc, zinc dibutylxanthogenate, zinc dipentylxanthogenate, zinc dihexylxanthogenate, zinc diheptylxanthogenate, zinc dioctylxanthogenate, zinc di (2-ethylhexyl) xanthogenate, zinc didecylxanthogenate, zinc dodecylxanthogenate, Potassium dimethylxanthate, potassium ethylxanthate, potassium propylxanthate, potassium isopropylxanthate, potassium butylxanthate, potassium pentylxanthate, Potassium xyl xanthogenate, potassium heptyl xanthogenate, potassium octyl xanthogenate, potassium 2-ethylhexyl xanthogenate, potassium decyl xanthate, potassium dodecyl xanthate, sodium methyl xanthogenate, sodium ethyl xanthogenate, sodium propyl xanthogenate, isopropyl xanthate Sodium, sodium butylxanthogenate, sodium pentylxanthogenate, sodium hexylxanthogenate, sodium heptylxanthogenate, sodium octylxanthogenate, sodium 2-ethylhexylxanthogenate, sodium decylxanthogenate, sodium dodecylxanthogenate and the like. Among these, xanthogenates in which x in the general formula (ROC (= S) S) x-Z is 2 or more are preferable, isopropyl xanthogens and butyl xanthates are more preferable, zinc diisopropyl xanthate, Particularly preferred is zinc dibutyl xanthate. These xanthogenates may be used alone or in combination of two or more.
 キサントゲン二硫化物は、2つのキサントゲン酸が硫黄原子等を介して結合された化合物であり、特に限定されないが、ジメチルキサントゲンジスルフィド、ジエチルキサントゲンジスルフィド、ジイソプロピルキサントゲンジスルフィド、ジブチルキサントゲンジスルフィド、ジメチルキサントゲンポリスルフィド、ジエチルキサントゲンポリスルフィド、ジイソプロピルキサントゲンポリスルフィド、ジブチルキサントゲンポリスルフィドなどが挙げられ、これらのなかでも、ジイソプロピルキサントゲンジスルフィド、ジブチルキサントゲンジスルフィドが好ましい。 The xanthogen disulfide is a compound in which two xanthogenic acids are linked via a sulfur atom or the like, and is not particularly limited, but dimethyl xanthogen disulfide, diethyl xanthogen disulfide, diisopropyl xanthogen disulfide, dibutyl xanthogen disulfide, dimethyl xanthogen polysulfide, diethyl Examples thereof include xanthogen polysulfide, diisopropyl xanthogen polysulfide, dibutyl xanthogen polysulfide and the like, and among these, diisopropyl xanthogen disulfide and dibutyl xanthogen disulfide are preferable.
 キサントゲン多硫化物は、3以上のキサントゲン酸が硫黄原子等を介して結合された化合物であり、3つのキサントゲン酸が硫黄を介して結合されたキサントゲン三硫化物、4つのキサントゲン酸が硫黄を介して結合されたキサントゲン四硫化物、5つのキサントゲン酸が硫黄を介して結合されたキサントゲン五硫化物などが挙げられる。 A xanthogen polysulfide is a compound in which three or more xanthogenic acids are linked via a sulfur atom or the like, and xanthogen trisulfide in which three xanthogenic acids are linked via sulfur, and four xanthogenic acids via sulfur And xanthogen pentasulfide, in which five xanthogen acids are linked via sulfur.
 なお、これらのキサントゲン化合物は、ラテックス組成物に、1種単独で含まれていてもよいが、2種以上が含まれていることが好ましい。たとえば、ラテックス組成物にキサントゲン酸を配合した場合には、配合したキサントゲン酸の一部が、キサントゲン酸塩の形態で存在することで、結果として、ラテックス組成物に2種以上のキサントゲン化合物が含まれることになってもよい。あるいは、ラテックス組成物に配合したキサントゲン酸の一部が、ラテックス組成物中の硫黄系加硫剤の作用により、キサントゲン二硫化物やキサントゲン多硫化物の形態で存在してもよい。同様に、ラテックス組成物にキサントゲン酸塩、キサントゲン二硫化物またはキサントゲン多硫化物を配合した場合においても、これらは、それぞれ、キサントゲン酸、キサントゲン酸塩、キサントゲン二硫化物、キサントゲン多硫化物のいずれかの形態で存在してもよい。 These xanthogen compounds may be contained singly in the latex composition, but two or more kinds are preferably contained. For example, when xanthogenic acid is compounded into the latex composition, part of the compounded xanthogenic acid is present in the form of xanthogenate, and as a result, the latex composition contains two or more xanthogen compounds. You may be Alternatively, a part of xanthogenic acid blended into the latex composition may be present in the form of xanthogen disulfide or xanthogen polysulfide by the action of the sulfur-based vulcanizing agent in the latex composition. Similarly, when xanthogenate, xanthogen disulfide or xanthogen polysulfide is added to the latex composition, any of xanthogen acid, xanthogenate, xanthogen disulfide and xanthogen polysulfide can be used. It may exist in some form.
 本発明で用いるラテックス組成物中における、キサントゲン化合物の含有割合(ラテックス組成物中に複数のキサントゲン化合物が含まれる場合には、その合計の含有割合)は、ラテックスに含まれるカルボキシ変性重合体100重量部に対して、好ましくは0.01~10重量部、より好ましくは0.1~7重量部、さらに好ましくは0.5~5重量部である。キサントゲン化合物の含有割合を上記範囲とすることにより、得られるディップ成形体などの膜成形体について、遅延型アレルギー(Type IV)の症状の発生を抑制しながら、引張強度をより向上させることができる。 In the latex composition used in the present invention, the content ratio of the xanthogen compound (when the latex composition contains a plurality of xanthogen compounds, the content ratio of the total is 100 wt% of the carboxy modified polymer contained in the latex) The amount is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 7 parts by weight, and still more preferably 0.5 to 5 parts by weight with respect to parts. By setting the content ratio of the xanthogen compound in the above range, the tensile strength can be further improved while suppressing the occurrence of symptoms of delayed allergy (Type IV) for a film molded product such as a dip molded product obtained. .
 なお、本発明においては、ラテックス組成物には、キサントゲン化合物以外に、加硫促進剤として従来使用されている化合物、具体的には、遅延型アレルギー(Type IV)の症状の発生原因となる硫黄を含有する加硫促進剤(たとえば、ジチオカルバミン酸塩系加硫促進剤、チアゾール系加硫促進剤など)であって、加硫促進剤として作用した後に、得られるディップ成形体などの膜成形体に残留してしまう化合物が、実質的に含まれていないことが好ましい。 In the present invention, in addition to xanthogen compounds, compounds conventionally used as a vulcanization accelerator in the present invention, specifically, sulfur which causes the onset of symptoms of delayed allergy (Type IV) A film-formed article such as a dip-formed product obtained after acting as a vulcanization accelerator (for example, a dithiocarbamate-based vulcanization accelerator, a thiazole-based vulcanization accelerator, etc.) containing It is preferable that the compound which remains in is substantially not contained.
 本発明で用いるラテックス組成物においては、キサントゲン化合物の配合方法は、最終的にカルボキシ変性重合体のラテックスとキサントゲン化合物とが混合した状態となる方法であればよく、特に限定されないが、たとえば、上述したカルボキシ変性重合体のラテックスを得た後、カルボキシ変性重合体のラテックスにキサントゲン化合物を配合する方法、有機溶媒に溶解または微分散したカルボキシ変性重合体の溶液または微細懸濁液に、予めキサントゲン化合物を配合した後、キサントゲン化合物が配合されたカルボキシ変性重合体の溶液または微細懸濁液を、水中で乳化し、必要により有機溶媒を除去することで、キサントゲン化合物が配合されたカルボキシ変性重合体のラテックスを得る方法などが挙げられる。これらのなかでも、キサントゲン化合物が溶解しやすく、キサントゲン化合物の配合がより容易であるという観点より、カルボキシ変性重合体のラテックスを得た後、カルボキシ変性重合体のラテックスにキサントゲン化合物を配合する方法が好ましい。 In the latex composition used in the present invention, the method of blending the xanthogen compound is not particularly limited as long as the latex of the carboxy-modified polymer and the xanthogen compound are finally mixed, and is not particularly limited. The obtained latex of carboxy modified polymer is mixed with xanthogen compound in latex of carboxy modified polymer, and the solution or fine suspension of carboxy modified polymer dissolved or finely dispersed in organic solvent is xanthogen compound in advance. Of the carboxy-modified polymer in which the xanthogen compound is blended is emulsified in water, and the organic solvent is optionally removed to obtain the carboxy-modified polymer in which the xanthogen compound is blended. Methods such as obtaining latex can be mentioned. Among these, from the viewpoint of easy dissolution of the xanthogen compound and easier incorporation of the xanthogen compound, a latex of the carboxy modified polymer is obtained, and then a method of incorporating the xanthogen compound into the latex of the carboxy modified polymer is disclosed. preferable.
 活性化剤
 本発明の調製工程においては、上述したカルボキシ変性重合体のラテックスに、キサントゲン化合物に加えて、活性化剤を配合する。
Activator In the preparation process of the present invention, in addition to the xanthogen compound, an activator is blended to the above-mentioned latex of the carboxy-modified polymer.
 本発明によれば、ラテックス組成物に、活性化剤を配合することにより、得られるラテックス組成物を用いて、ラテックス組成物中のカルボキシ変性重合体を硫黄系加硫剤により加硫してディップ成形体などの膜成形体とする際に、活性化剤が、上述したキサントゲン化合物とともに加硫促進剤として作用し、しかも、活性化剤自体がカルボキシ変性重合体のカルボキシル基を架橋する架橋剤として作用し、これにより、得られるディップ成形体などの膜成形体の引裂強度がより向上する。 According to the present invention, the carboxy-modified polymer in the latex composition is vulcanized with a sulfur-based vulcanizing agent using the latex composition obtained by adding an activating agent to the latex composition to dip In forming a film molded article such as a molded article, the activating agent acts as a vulcanization accelerator together with the xanthogen compound described above, and the activating agent itself crosslinks the carboxyl group of the carboxy-modified polymer as a crosslinking agent By acting, this further improves the tear strength of the film molded article such as the obtained dip molded article.
 活性化剤としては、特に限定されないが、得られるディップ成形体などの膜成形体の引裂強度がより向上するという観点より、金属化合物を用いることが好ましい。金属化合物としては、特に限定されないが、たとえば、金属酸化物、炭素原子を少なくとも1つ含有する金属化合物などが挙げられる。金属化合物を構成する金属としては、特に限定されないが、典型金属(第1族元素、第2族元素、第12族元素、第13族元素、第14族元素、第15族元素、第16族元素、第17族元素、および第18族元素からなる群から選ばれる少なくとも1種の元素)が好ましく、第2族元素、第12族元素、第13族元素、第14族元素がより好ましく、亜鉛、マグネシウム、カルシウム、アルミニウム、鉛がさらに好ましく、亜鉛、マグネシウム、カルシウムが特に好ましく、亜鉛が最も好ましい。これらの金属化合物は、1種単独でも、複数種を併用してもよい。 Although it does not specifically limit as an activator, It is preferable to use a metallic compound from a viewpoint that the tearing strength of film | membrane moldings, such as a dip molding obtained, improves more. The metal compound is not particularly limited, and examples thereof include metal oxides and metal compounds containing at least one carbon atom. The metal constituting the metal compound is not particularly limited, but a typical metal (Group 1 element, Group 2 element, Group 12 element, Group 13 element, Group 14 element, Group 15 element, Group 16) At least one element selected from the group consisting of an element, a group 17 element and a group 18 element) is preferable, and a group 2 element, a group 12 element, a group 13 element and a group 14 element are more preferable, Zinc, magnesium, calcium, aluminum and lead are more preferred, zinc, magnesium and calcium are particularly preferred, and zinc is most preferred. These metal compounds may be used alone or in combination of two or more.
 金属酸化物としては、特に限定されないが、得られるディップ成形体などの膜成形体の引裂強度がより向上するという観点より、酸化亜鉛、酸化マグネシウム、酸化チタン、酸化カルシウム、鉛酸化物、酸化鉄、酸化銅、酸化錫、酸化ニッケル、酸化クロム、酸化コバルト、および酸化アルミニウムが好ましく、酸化亜鉛がより好ましい。 The metal oxide is not particularly limited, but zinc oxide, magnesium oxide, titanium oxide, calcium oxide, lead oxide, iron oxide, from the viewpoint of further improving the tear strength of a film molded product such as a dip molded product to be obtained. Copper oxide, tin oxide, nickel oxide, chromium oxide, cobalt oxide and aluminum oxide are preferred, and zinc oxide is more preferred.
 炭素原子を少なくとも1つ含有する金属化合物としては、得られるディップ成形体などの膜成形体の引裂強度がより向上するという観点より、炭酸塩、炭酸水素塩、水酸化物、有機金属化合物が好ましく、炭酸塩、炭酸水素塩、有機金属化合物がより好ましい。これらのなかでも、化合物自体の安定性に優れ、入手容易性にも優れるという観点より、炭酸塩、炭酸水素塩などの無機塩が特に好ましい。 As a metal compound containing at least one carbon atom, a carbonate, a hydrogencarbonate, a hydroxide, an organic metal compound is preferable from the viewpoint that the tear strength of a film molded product such as a dip molded product to be obtained is further improved. And carbonates, hydrogencarbonates and organic metal compounds are more preferred. Among these, inorganic salts such as carbonates and hydrogen carbonates are particularly preferable from the viewpoint of excellent stability of the compound itself and excellent availability.
 本発明で用いるラテックス組成物中における、活性化剤の含有割合は、ラテックス組成物に含まれるカルボキシ変性重合体100重量部に対して、好ましくは0.01~10重量部、より好ましくは0.1~5重量部、さらに好ましくは1~3重量部である。活性化剤の含有割合を上記範囲とすることにより、得られるディップ成形体などの膜成形体の引裂強度をより向上させることができる。 The content ratio of the activating agent in the latex composition used in the present invention is preferably 0.01 to 10 parts by weight, more preferably 0. 10 parts by weight with respect to 100 parts by weight of the carboxy-modified polymer contained in the latex composition. It is 1 to 5 parts by weight, more preferably 1 to 3 parts by weight. By making the content rate of an activator into the said range, the tearing strength of film molded bodies, such as a dip molded body obtained, can be improved more.
 本発明で用いるラテックス組成物においては、活性化剤の配合方法は、最終的にカルボキシ変性重合体のラテックスと活性化剤とが混合した状態となる方法であればよく、特に限定されないが、たとえば、カルボキシ変性重合体のラテックスを得た後、カルボキシ変性重合体のラテックスに活性化剤を配合する方法などが挙げられる。 In the latex composition used in the present invention, the method of blending the activating agent may be any method as long as the latex of the carboxy-modified polymer and the activating agent are finally mixed, and is not particularly limited. After the latex of the carboxy modified polymer is obtained, there is a method of blending an activating agent with the latex of the carboxy modified polymer.
 硫黄系加硫剤
 本発明の調製工程においては、上述したカルボキシ変性重合体のラテックスに、キサントゲン化合物、および活性化剤に加えて、硫黄系加硫剤を配合する。
Sulfur-based vulcanizing agent In the preparation process of the present invention, a sulfur-based vulcanizing agent is added to the above-described carboxy-modified polymer latex in addition to the xanthogen compound and the activator.
 硫黄系加硫剤としては、特に限定されないが、たとえば、粉末硫黄、硫黄華、沈降硫黄、コロイド硫黄、表面処理硫黄、不溶性硫黄等の硫黄;塩化硫黄、二塩化硫黄、モルホリン・ジスルフィド、アルキルフェノールジスルフィド、カプロラクタムジスルフィド(N,N’-ジチオ-ビス(ヘキサヒドロ-2H-アゼピノン-2))、含りんポリスルフィド、高分子多硫化物、2-(4’-モルホリノジチオ)ベンゾチアゾール等の硫黄含有化合物が挙げられる。これらのなかでも、硫黄が好ましく使用できる。硫黄系加硫剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。 The sulfur-based vulcanizing agent is not particularly limited. For example, sulfur such as powdery sulfur, sulfur dioxide, precipitated sulfur, colloidal sulfur, surface-treated sulfur, insoluble sulfur and the like; sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide And sulfur-containing compounds such as caprolactam disulfide (N, N'-dithio-bis (hexahydro-2H-azepinone-2)), phosphorus-containing polysulfides, polymeric polysulfides, and 2- (4'-morpholinodithio) benzothiazole It can be mentioned. Among these, sulfur is preferably used. The sulfur-based vulcanizing agent can be used singly or in combination of two or more.
 硫黄系加硫剤の含有量は、特に限定されないが、ラテックス組成物に含まれるカルボキシ変性重合体100重量部に対して、好ましくは0.1~10重量部、より好ましくは0.2~3重量部である。硫黄系加硫剤の含有量を上記範囲とすることにより、得られるディップ成形体などの膜成形体において、遅延型アレルギー(Type IV)の症状の発生を抑制しながら、引張強度をより高めることができる。 The content of the sulfur-based vulcanizing agent is not particularly limited, but preferably 0.1 to 10 parts by weight, more preferably 0.2 to 3 parts by weight with respect to 100 parts by weight of the carboxy-modified polymer contained in the latex composition. It is a weight part. By setting the content of the sulfur-based vulcanizing agent in the above range, it is possible to further increase the tensile strength while suppressing the occurrence of symptoms of delayed allergy (Type IV) in a film molded product such as a dip molded product obtained. Can.
 熟成前のラテックス組成物
 本発明の調製工程において、調製する熟成前のラテックス組成物は、上述したカルボキシ変性重合体のラテックスと、キサントゲン化合物と、活性化剤と、硫黄系加硫剤とを含有し、pHが10未満である組成物である。熟成前のラテックス組成物は、上述したカルボキシ変性重合体のラテックスに、キサントゲン化合物と、活性化剤と、硫黄系加硫剤とを配合し、必要に応じて、pHを10未満に調整することで得ることができる。
Latex composition before ripening The latex composition before ripening prepared in the preparation process of the present invention contains the latex of the carboxy-modified polymer described above, a xanthogen compound, an activator, and a sulfur-based vulcanizing agent. And the pH is less than 10. In the latex composition before ripening, a xanthogen compound, an activator, and a sulfur-based vulcanizing agent are mixed with the above-mentioned carboxy-modified polymer latex, and the pH is adjusted to less than 10 as necessary. Can be obtained by
 本発明のラテックス組成物の製造方法においては、このようにして得られる熟成前のラテックス組成物に対して、温度5~60℃の条件で、半日(12時間)~14日間貯蔵することで熟成(前架橋)を行う。熟成前のラテックス組成物のpHは、上述した10未満であればよいが、9.5以下が好ましく、8.5以下がより好ましい。熟成前のラテックス組成物のpHが高すぎると、得られるディップ成形体などの膜成形体の引張強度および引裂強度が低下してしまう。なお、熟成前のラテックス組成物のpHの下限は、特に限定されないが、6以上が好ましく、6.5以上がより好ましい。 In the method for producing the latex composition of the present invention, the latex composition before ripening thus obtained is aged by being stored for a half day (12 hours) to 14 days under the condition of a temperature of 5 to 60 ° C. Perform (pre-crosslinking). The pH of the latex composition before aging may be less than 10 as described above, but is preferably 9.5 or less, more preferably 8.5 or less. If the pH of the latex composition before aging is too high, the tensile strength and tear strength of the resulting film molded article such as a dip molded article may be reduced. The lower limit of the pH of the latex composition before aging is not particularly limited, but is preferably 6 or more, and more preferably 6.5 or more.
 本発明のラテックス組成物は、カルボキシ変性重合体のラテックスと、キサントゲン化合物と、活性化剤と、硫黄系加硫剤とを含有するものであればよいが、得られるディップ成形体などの膜成形体において、遅延型アレルギー(Type IV)の症状の発生を抑制可能な範囲であれば、さらに加硫促進剤を含有してもよい。 The latex composition of the present invention may be any one containing a latex of a carboxy-modified polymer, a xanthogen compound, an activating agent, and a sulfur-based vulcanizing agent. The body may further contain a vulcanization accelerator as long as the onset of symptoms of delayed allergy (Type IV) can be suppressed.
 加硫促進剤としては、ディップ成形において通常用いられるものを使用することができ、たとえば、ジエチルジチオカルバミン酸、ジブチルジチオカルバミン酸、ジ-2-エチルヘキシルジチオカルバミン酸、ジシクロヘキシルジチオカルバミン酸、ジフェニルジチオカルバミン酸、ジベンジルジチオカルバミン酸などのジチオカルバミン酸類およびそれらの亜鉛塩;2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾール亜鉛、2-メルカプトチアゾリン、ジベンゾチアジル・ジスルフィド、2-(2,4-ジニトロフェニルチオ)ベンゾチアゾール、2-(N,N-ジエチルチオ・カルバイルチオ)ベンゾチアゾール、2-(2,6-ジメチル-4-モルホリノチオ)ベンゾチアゾール、2-(4′-モルホリノ・ジチオ)ベンゾチアゾール、4-モルホニリル-2-ベンゾチアジル・ジスルフィド、1,3-ビス(2-ベンゾチアジル・メルカプトメチル)ユリアなどが挙げられるが、ジエチルジチオカルバミン酸亜鉛、2ジブチルジチオカルバミン酸亜鉛、2-メルカプトベンゾチアゾール亜鉛が好ましい。加硫促進剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。 As the vulcanization accelerator, those commonly used in dip molding can be used, and examples thereof include diethyl dithiocarbamic acid, dibutyl dithiocarbamic acid, di-2-ethylhexyl dithiocarbamic acid, dicyclohexyl dithiocarbamic acid, diphenyl dithiocarbamic acid, and dibenzyl dithiocarbamic acid. Acid and other dithiocarbamic acids and zinc salts thereof; 2-mercaptobenzothiazole, 2-mercaptobenzothiazole zinc, 2-mercaptothiazoline, dibenzothiazyl disulfide, 2- (2,4-dinitrophenylthio) benzothiazole, 2 -(N, N-diethylthio carbylthio) benzothiazole, 2- (2,6-dimethyl-4-morpholinothio) benzothiazole, 2- (4'-morpholino dithio) Examples include benzothiazole, 4-morpholinyl-2-benzothiazyl disulfide, 1,3-bis (2-benzothiazyl, mercaptomethyl) urea and the like, but zinc diethyl dithiocarbamate, zinc dibutyl dithiocarbamate, zinc 2-mercaptobenzothiazole Is preferred. The vulcanization accelerator can be used singly or in combination of two or more.
 本発明のラテックス組成物には、さらに、老化防止剤;分散剤;カーボンブラック、シリカ、タルク等の補強剤;炭酸カルシウム、クレー等の充填剤;紫外線吸収剤;可塑剤;等の配合剤を必要に応じて配合することができる。 The latex composition of the present invention further comprises: antiaging agents; dispersing agents; reinforcing agents such as carbon black, silica and talc; fillers such as calcium carbonate and clay; UV absorbers; plasticizers; It can be blended as needed.
 老化防止剤としては、2,6-ジ-4-メチルフェノール、2,6-ジ-t-ブチルフェノール、ブチルヒドロキシアニソール、2,6-ジ-t-ブチル-α-ジメチルアミノ-p-クレゾール、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、スチレン化フェノール、2,2’-メチレン-ビス(6-α-メチル-ベンジル-p-クレゾール)、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、アルキル化ビスフェノール、p-クレゾールとジシクロペンタジエンのブチル化反応生成物、などの硫黄原子を含有しないフェノール系老化防止剤;2,2’-チオビス-(4-メチル-6-t-ブチルフェノール)、4,4’-チオビス-(6-t-ブチル-o-クレゾール)、2,6-ジ-t-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノールなどのチオビスフェノール系老化防止剤;トリス(ノニルフェニル)ホスファイト、ジフェニルイソデシルホスファイト、テトラフェニルジプロピレングリコール・ジホスファイトなどの亜燐酸エステル系老化防止剤;チオジプロピオン酸ジラウリルなどの硫黄エステル系老化防止剤;フェニル-α-ナフチルアミン、フェニル-β-ナフチルアミン、p-(p-トルエンスルホニルアミド)-ジフェニルアミン、4,4’―(α,α-ジメチルベンジル)ジフェニルアミン、N,N-ジフェニル-p-フェニレンジアミン、N-イソプロピル-N’-フェニル-p-フェニレンジアミン、ブチルアルデヒド-アニリン縮合物などのアミン系老化防止剤;6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリンなどのキノリン系老化防止剤;2,5-ジ-(t-アミル)ハイドロキノンなどのハイドロキノン系老化防止剤;などが挙げられる。これらの老化防止剤は、1種単独で、または2種以上を併用することができる。 Examples of anti-aging agents include 2,6-di-4-methylphenol, 2,6-di-t-butylphenol, butylhydroxyanisole, 2,6-di-t-butyl-α-dimethylamino-p-cresol, Octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, styrenated phenol, 2,2'-methylene-bis (6-α-methyl-benzyl-p-cresol), 4, Butylation of 4'-methylenebis (2,6-di-t-butylphenol), 2,2'-methylene-bis (4-methyl-6-t-butylphenol), alkylated bisphenols, p-cresol and dicyclopentadiene Reaction products, etc., sulfur-free phenolic anti-aging agents such as; 2,2'-thiobis- (4-methyl-6-t-butylpheno) ), 4,4'-thiobis- (6-t-butyl-o-cresol), 2,6-di-t-butyl-4- (4,6-bis (octylthio) -1,3,5 Thiobisphenol based antioxidants such as (triazin-2-ylamino) phenol; phosphorous acid based antioxidants such as tris (nonylphenyl) phosphite, diphenyl isodecyl phosphite, and tetraphenyl dipropylene glycol diphosphite; Sulfur ester antioxidants such as dilauryl propionate; phenyl-α-naphthylamine, phenyl-β-naphthylamine, p- (p-toluenesulfonylamide) -diphenylamine, 4,4 ′-(α, α-dimethylbenzyl) diphenylamine , N, N-Diphenyl-p-phenylenediamine, N-isopropyl-N ' Amine antioxidants such as phenyl-p-phenylenediamine and butyraldehyde aniline condensate; quinoline antioxidants such as 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline; 2,5 -Hydroquinone antioxidants such as di- (t-amyl) hydroquinone; and the like. These anti-aging agents can be used alone or in combination of two or more.
 老化防止剤の含有量は、カルボキシ変性重合体100重量部に対して、好ましくは0.05~10重量部、より好ましくは0.1~5重量部である。 The content of the antiaging agent is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the carboxy-modified polymer.
 本発明のラテックス組成物に各種配合剤を混合する方法としては、特に限定されないが、たとえば、上述したようにしてカルボキシ変性重合体のラテックス、キサントゲン化合物、活性化剤、および硫黄系加硫剤を含有する熟成前のラテックス組成物を得た後、ボールミル、ニーダー、ディスパー等の分散機を用いて、熟成前のラテックス組成物に、必要に応じて配合される各種配合剤を混合する方法や、上記の分散機を用いて、カルボキシ変性重合体のラテックス以外の配合成分の水性分散液を調製した後、該水性分散液を、カルボキシ変性重合体のラテックスに混合する方法などが挙げられる。また、各種配合剤のうち少なくとも一部については、熟成後に配合してもよい。 The method of mixing various compounding agents into the latex composition of the present invention is not particularly limited. For example, as described above, a latex of a carboxy-modified polymer, a xanthogen compound, an activator, and a sulfur-based vulcanizing agent After obtaining the latex composition before ripening to be contained, a method of mixing various compounding agents to be blended with the latex composition before ripening as needed, using a dispersing machine such as a ball mill, a kneader or a disper, After preparing an aqueous dispersion of compounding components other than the latex of the carboxy-modified polymer using the above-mentioned disperser, a method of mixing the aqueous dispersion with the latex of the carboxy-modified polymer may, for example, be mentioned. In addition, at least a part of the various compounding agents may be blended after aging.
 なお、本発明のラテックス組成物の固形分濃度は、好ましくは10~60重量%、より好ましくは10~55重量%である。 The solids concentration of the latex composition of the present invention is preferably 10 to 60% by weight, more preferably 10 to 55% by weight.
 熟成を行う際の温度は、5~60℃であればよく、10~50℃が好ましく、10~45℃がより好ましい。熟成の温度が低すぎると、得られるディップ成形体などの膜成形体の機械的特性を高めるという効果が不十分となってしまう場合がある。一方、熟成の温度が高すぎると、得られるディップ成形体などの膜成形体の引張強度が低下してしまう場合がある。 The temperature at which the ripening is carried out may be 5 to 60 ° C., preferably 10 to 50 ° C., and more preferably 10 to 45 ° C. If the temperature for aging is too low, the effect of enhancing the mechanical properties of the resulting film molded article such as a dip molded article may be insufficient. On the other hand, if the temperature for aging is too high, the tensile strength of the resulting film-formed article such as a dip-formed article may be reduced.
 熟成する時間は、熟成の温度にも依存するが、半日(12時間)~14日間であればよく、半日(12時間)~10日間が好ましく、半日(12時間)~7日間がより好ましい。熟成する時間が短すぎると、得られるディップ成形体などの膜成形体の機械的特性を高めるという効果が不十分となってしまう場合がある。一方、熟成の時間が長すぎると、得られるディップ成形体などの膜成形体の引張強度が低下してしまう場合がある。 The aging time depends on the aging temperature, but may be half a day (12 hours) to 14 days, preferably half a day (12 hours) to 10 days, and more preferably half a day (12 hours) to 7 days. If the aging time is too short, the effect of enhancing the mechanical properties of the resulting film molded article such as a dip molded article may be insufficient. On the other hand, if the aging time is too long, the tensile strength of the resulting film molded article such as a dip molded article may be lowered.
 熟成後のラテックス組成物のpHは、6以上、10未満が好ましく、6~9がより好ましい。熟成後のラテックス組成物のpHを上記範囲とすることにより、得られるディップ成形体などの膜成形体の引張強度および引裂強度をより向上させることができる。 The pH of the latex composition after aging is preferably 6 or more and less than 10, and more preferably 6 to 9. By setting the pH of the latex composition after aging to the above range, it is possible to further improve the tensile strength and the tear strength of the obtained film molded article such as a dip molded article.
 なお、本発明で用いるラテックス組成物においては、キサントゲン化合物が含まれていることで、熟成によってラテックス組成物のpHが低下する傾向にある。すなわち、熟成後のラテックス組成物のpHは、熟成前のラテックス組成物のpHよりも低くなる傾向にある。ここで、熟成によってラテックス組成物のpHが変動した際においては、そのまま熟成後のラテックス組成物のpHが上記範囲となっていることが好ましいが、熟成後のラテックス組成物のpHが上記範囲となっていない場合には、熟成後のラテックス組成物に対してpH調整剤を添加することで、pHを上記範囲に調整してもよい。また、熟成後のラテックス組成物のpHが上記範囲にある場合でも、pHをより適度なものとするために、熟成後のラテックス組成物に対してpH調整剤を添加してもよい。 In the latex composition used in the present invention, since the xanthogen compound is contained, the pH of the latex composition tends to decrease due to aging. That is, the pH of the latex composition after aging tends to be lower than the pH of the latex composition before aging. Here, when the pH of the latex composition fluctuates due to aging, the pH of the latex composition after aging is preferably in the above range, but the pH of the latex composition after aging is in the above range and If not, the pH may be adjusted to the above-mentioned range by adding a pH adjuster to the matured latex composition. In addition, even when the pH of the latex composition after aging is in the above range, a pH adjuster may be added to the latex composition after aging in order to make the pH more appropriate.
 熟成後のラテックス組成物に添加するpH調整剤としては、特に限定されないが、たとえば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩;炭酸水素ナトリウムなどのアルカリ金属の炭酸水素塩;アンモニア;トリメチルアミン、トリエタノールアミンなどの有機アミン化合物;等が挙げられるが、アルカリ金属の水酸化物、アンモニアまたは有機アミン化合物が好ましい。これらのpH調整剤は、1種単独で、または2種以上を併用することができる。 The pH adjuster to be added to the latex composition after aging is not particularly limited, but, for example, hydroxides of alkali metals such as sodium hydroxide and potassium hydroxide; carbonates of alkali metals such as sodium carbonate and potassium carbonate And hydrogencarbonates of alkali metals such as sodium hydrogencarbonate; ammonia; organic amine compounds such as trimethylamine and triethanolamine; and the like, and hydroxides of alkali metals, ammonia and organic amine compounds are preferable. These pH adjusters can be used alone or in combination of two or more.
 本発明のラテックス組成物の製造方法によれば、ラテックス組成物を、カルボキシ変性重合体のラテックスと、キサントゲン化合物と、活性化剤と、硫黄系加硫剤とを含有し、pHが10未満であるものとすることにより、得られるディップ成形体などの膜成形体を、遅延型アレルギー(Type IV)の症状の発生を抑制しながら、引張強度および引裂強度にも優れるものとすることができる。 According to the method for producing a latex composition of the present invention, the latex composition contains a latex of a carboxy-modified polymer, a xanthogen compound, an activator, and a sulfur-based vulcanizing agent, and has a pH of less than 10. By setting it as a certain thing, it can be made excellent also in tensile strength and tear strength, controlling generation | occurrence | production of the symptom of a delayed type allergy (Type IV), such as film molded objects, such as a dip molded object obtained.
 ディップ成形体
 本発明のディップ成形体の製造方法においては、上述した本発明の製造方法により得られるラテックス組成物をディップ成形することによりディップ成形体を得ることができる。ディップ成形は、ラテックス組成物に型を浸漬し、型の表面に当該組成物を沈着させ、次に型を当該組成物から引き上げ、その後、型の表面に沈着した当該組成物を乾燥させる方法である。なお、ラテックス組成物に浸漬される前の型は予熱しておいてもよい。また、型をラテックス組成物に浸漬する前、または、型をラテックス組成物から引き上げた後、必要に応じて凝固剤を使用できる。
Dip-Molded Body In the method for producing a dip-formed body of the present invention, a dip-formed body can be obtained by dip-forming the latex composition obtained by the above-mentioned production method of the present invention. In dip molding, the mold is immersed in a latex composition, the composition is deposited on the surface of the mold, then the mold is pulled out of the composition, and then the composition deposited on the surface of the mold is dried. is there. The mold before being immersed in the latex composition may be preheated. Also, before immersing the mold in the latex composition, or after pulling up the mold from the latex composition, a coagulant can be used if desired.
 凝固剤の使用方法の具体例としては、ラテックス組成物に浸漬する前の型を凝固剤の溶液に浸漬して型に凝固剤を付着させる方法(アノード凝着浸漬法)、ラテックス組成物を沈着させた型を凝固剤溶液に浸漬する方法(ティーグ凝着浸漬法)などがあるが、厚みムラの少ないディップ成形体が得られる点で、アノード凝着浸漬法が好ましい。 Specific examples of the method of using the coagulant include a method of immersing the mold prior to immersion in the latex composition in a solution of the coagulant to attach the coagulant to the mold (anode adhesion immersion method), depositing the latex composition There is a method of immersing the obtained mold in a coagulant solution (Tig condensation and immersion method) or the like, but the anode condensation and immersion method is preferable in that a dip-formed body with less thickness unevenness can be obtained.
 凝固剤の具体例としては、塩化バリウム、塩化カルシウム、塩化マグネシウム、塩化亜鉛、塩化アルミニウムなどのハロゲン化金属;硝酸バリウム、硝酸カルシウム、硝酸亜鉛などの硝酸塩;酢酸バリウム、酢酸カルシウム、酢酸亜鉛など酢酸塩;硫酸カルシウム、硫酸マグネシウム、硫酸アルミニウムなどの硫酸塩;などの水溶性多価金属塩である。なかでも、カルシウム塩が好ましく、硝酸カルシウムがより好ましい。これらの水溶性多価金属塩は、1種単独で、または2種以上を併用することができる。 Specific examples of the coagulant include metal halides such as barium chloride, calcium chloride, magnesium chloride, zinc chloride and aluminum chloride; nitrates such as barium nitrate, calcium nitrate and zinc nitrate; barium acetate, calcium acetate, zinc acetate etc Water-soluble polyvalent metal salts such as salts; sulfates such as calcium sulfate, magnesium sulfate and aluminum sulfate; Among them, calcium salts are preferable, and calcium nitrate is more preferable. These water-soluble polyvalent metal salts can be used alone or in combination of two or more.
 凝固剤は、通常、水、アルコール、またはそれらの混合物の溶液として使用することができ、好ましくは水溶液の状態で使用する。この水溶液は、さらにメタノール、エタノールなどの水溶性有機溶媒やノニオン性界面活性剤を含有していてもよい。凝固剤の濃度は、水溶性多価金属塩の種類によっても異なるが、好ましくは5~50重量%、より好ましくは10~30重量%である。 The coagulant can usually be used as a solution of water, alcohol, or a mixture thereof, and is preferably used in the form of an aqueous solution. The aqueous solution may further contain a water-soluble organic solvent such as methanol or ethanol or a nonionic surfactant. The concentration of the coagulant varies depending on the type of the water-soluble polyvalent metal salt, but is preferably 5 to 50% by weight, more preferably 10 to 30% by weight.
 型をラテックス組成物から引き上げた後、通常、加熱して型上に形成された沈着物を乾燥させる。乾燥条件は適宜選択すればよい。 After the mold is withdrawn from the latex composition, it is usually heated to dry the deposits formed on the mold. The drying conditions may be selected appropriately.
 次いで、加熱して、型上に形成されたディップ成形層を架橋させる。ディップ成形層の架橋は、通常、80~150℃の温度で、好ましくは10~130分の加熱処理を施すことにより行うことができる。加熱の方法としては、赤外線や加熱空気による外部加熱または高周波による内部加熱による方法が採用できる。なかでも、加熱空気による外部加熱が好ましい。なお、加熱処理を施す前に、ディップ成形層を、水、好ましくは30~70℃の温水に、1~60分程度浸漬し、水溶性不純物(たとえば、余剰の乳化剤や凝固剤等)を除去してもよい。水溶性不純物の除去操作は、ディップ成形層を加熱処理した後に行なってもよいが、より効率的に水溶性不純物を除去できる点から、加熱処理前に行なうことが好ましい。 Then, it is heated to crosslink the dip-formed layer formed on the mold. Crosslinking of the dip-formed layer can be carried out usually by heat treatment at a temperature of 80 to 150 ° C., preferably for 10 to 130 minutes. As a heating method, a method by external heating with infrared rays or heated air or internal heating with high frequency can be adopted. Among them, external heating by heating air is preferable. Before the heat treatment, the dip-formed layer is immersed in water, preferably warm water at 30 to 70 ° C. for about 1 to 60 minutes to remove water-soluble impurities (eg, excess emulsifier, coagulant, etc.) You may The removal operation of the water-soluble impurities may be carried out after the dip molding layer is heat-treated, but it is preferable to be carried out before the heat treatment in that the water-soluble impurities can be removed more efficiently.
 そして、ディップ成形層をディップ成形用型から脱着することによって、ディップ成形体が得られる。脱着方法としては、手で成形用型から剥したり、水圧や圧縮空気の圧力により剥したりする方法を採用することができる。なお、脱着後、更に60~120℃の温度で、10~120分の加熱処理を行なってもよい。 And a dip molded body is obtained by desorbing a dip molding layer from the type | mold for dip molding. As the desorption method, it is possible to adopt a method of peeling off from the mold by hand or peeling by water pressure or pressure of compressed air. After desorption, heat treatment may be further performed at a temperature of 60 to 120 ° C. for 10 to 120 minutes.
 ディップ成形体の膜厚は、好ましくは0.03~0.50mm、より好ましくは0.05~0.40mm、特に好ましくは0.08~0.30mmである。 The film thickness of the dip-formed product is preferably 0.03 to 0.50 mm, more preferably 0.05 to 0.40 mm, and particularly preferably 0.08 to 0.30 mm.
 本発明の製造方法により得られるディップ成形体は、上述したラテックス組成物を用いて得られるものであるため、遅延型アレルギー(Type IV)の症状の発生を抑制しながら、引張強度および引裂強度にも優れるものであり、たとえば、手袋として特に好適に用いることができる。膜成形体が手袋である場合、膜成形体同士の接触面における密着を防止し、着脱の際の滑りをよくするために、タルク、炭酸カルシウムなどの無機微粒子または澱粉粒子などの有機微粒子を手袋表面に散布したり、微粒子を含有するエラストマー層を手袋表面に形成したり、手袋の表面層を塩素化したりしてもよい。 Since the dip-molded body obtained by the production method of the present invention is obtained by using the above-mentioned latex composition, it is possible to obtain tensile strength and tear strength while suppressing occurrence of symptoms of delayed allergy (Type IV). Are also excellent and, for example, can be particularly suitably used as gloves. When the film-formed body is a glove, the inorganic fine particles such as talc, calcium carbonate or the like, organic particles such as starch particles or the like are gloved in order to prevent adhesion on the contact surface of the film-formed bodies The surface may be sprayed, an elastomer layer containing fine particles may be formed on the surface of the glove, or the surface layer of the glove may be chlorinated.
 また、本発明の製造方法により得られるディップ成形体は、上記手袋の他にも、哺乳瓶用乳首、スポイト、チューブ、水枕、バルーンサック、カテーテル、コンドームなどの医療用品;風船、人形、ボールなどの玩具;加圧成形用バック、ガス貯蔵用バックなどの工業用品;指サックなどにも用いることができる。 In addition to the above-mentioned gloves, dip molded articles obtained by the production method of the present invention include nipples for baby bottles, syringes, tubes, water pillows, balloon sacks, catheters, medical supplies such as condoms, balloons, dolls, balls, etc. Industrial products such as pressure-molding bags, gas storage bags, and the like;
 接着剤組成物
 本発明においては、上述した本発明の製造方法により得られるラテックス組成物を、接着剤組成物として用いることができる。
Adhesive Composition In the present invention, the latex composition obtained by the above-mentioned production method of the present invention can be used as an adhesive composition.
 接着剤組成物中におけるラテックス組成物の含有量(固形分量)は、好ましくは5~60重量%、より好ましくは10~30重量%である。 The content (solid content) of the latex composition in the adhesive composition is preferably 5 to 60% by weight, more preferably 10 to 30% by weight.
 接着剤組成物は、上述したラテックス組成物に加えて、接着剤樹脂を含有してなることが好ましい。接着剤樹脂としては、特に限定されないが、たとえば、レゾルシン-ホルムアルデヒド樹脂、メラミン樹脂、エポキシ樹脂及びイソシアネート樹脂を好適に使用することができ、これらのなかでも、レゾルシン-ホルムアルデヒド樹脂が好ましい。レゾルシン-ホルムアルデヒド樹脂は、公知のもの(例えば、特開昭55-142635号公報に開示のもの)が使用できる。レゾルシンとホルムアルデヒドとの反応比率は、「レゾルシン:ホルムアルデヒド」のモル比で、通常、1:1~1:5、好ましくは1:1~1:3である。 The adhesive composition preferably comprises an adhesive resin in addition to the above-described latex composition. The adhesive resin is not particularly limited. For example, resorcinol-formaldehyde resin, melamine resin, epoxy resin and isocyanate resin can be suitably used, and among these, resorcinol-formaldehyde resin is preferable. As the resorcinol-formaldehyde resin, known ones (for example, those disclosed in JP-A-55-142635) can be used. The reaction ratio of resorcin to formaldehyde is usually 1: 1 to 1: 5, preferably 1: 1 to 1: 3, in terms of a molar ratio of "resorcin: formaldehyde".
 また、接着剤組成物の接着力をさらに高めるために、接着剤組成物には、従来から使用されている2,6-ビス(2,4-ジヒドロキシフェニルメチル)-4-クロロフェノール又は類似の化合物、イソシアネート、ブロックイソシアネート、エチレン尿素、ポリエポキシド、変性ポリ塩化ビニル樹脂等を含有させることができる。 Also, to further enhance the adhesion of the adhesive composition, the adhesive composition may be a conventionally used 2,6-bis (2,4-dihydroxyphenylmethyl) -4-chlorophenol or the like. Compounds, isocyanates, blocked isocyanates, ethylene ureas, polyepoxides, modified polyvinyl chloride resins and the like can be contained.
 さらに、接着剤組成物には、加硫助剤を含有させることができる。加硫助剤を含有させることにより、接着剤組成物を用いて得られる後述する複合体の機械的強度を向上させることができる。加硫助剤としては、p-キノンジオキシム等のキノンジオキシム;ラウリルメタクリレートやメチルメタクリレート等のメタクリル酸エステル;DAF(ジアリルフマレート)、DAP(ジアリルフタレート)、TAC(トリアリルシアヌレート)、TAIC(トリアリルイソシアヌレート)等のアリル化合物;ビスマレイミド、フェニルマレイミド、N,N-m-フェニレンジマレイミド等のマレイミド化合物;硫黄;等を挙げることができる。 Furthermore, the adhesive composition can contain a vulcanization aid. The incorporation of the vulcanization aid can improve the mechanical strength of the composite to be described later obtained using the adhesive composition. Vulcanization aids include quinone dioximes such as p-quinone dioxime; methacrylic acid esters such as lauryl methacrylate and methyl methacrylate; DAF (diallyl fumarate), DAP (diallyl phthalate), TAC (triallyl cyanurate), And allyl compounds such as TAIC (triaryl isocyanurate); maleimide compounds such as bismaleimide, phenyl maleimide, N, N-m-phenylene dimaleimide; sulfur; and the like.
 接着剤層形成基材
 本発明の製造方法によれば、上述の本発明の製造方法により得られるラテックス組成物またはこれを用いて得られる接着剤組成物を用いて形成される接着剤層を、基材表面に形成することで接着剤層形成基材を得ることができる。
Adhesive Layer-Forming Substrate According to the production method of the present invention, the latex composition obtained by the production method of the present invention described above or the adhesive layer formed using the adhesive composition obtained using the same An adhesive layer forming base material can be obtained by forming on the base material surface.
 基材としては、特に限定されないが、たとえば繊維基材を用いることができる。繊維基材を構成する繊維の種類は、特に限定されず、たとえば、ビニロン繊維、ポリエステル繊維、ナイロン、アラミド(芳香族ポリアミド)等のポリアミド繊維、ガラス繊維、綿、レーヨン等が挙げられる。これらは、その用途に応じて、適宜選定することができる。繊維基材の形状は特に限定されず、たとえば、ステープル、フィラメント、コード状、ロープ状、織布(帆布等)等を挙げることができ、その用途に応じて適宜選定することができる。たとえば、接着剤層形成基材は、接着剤層を介して、ゴムと接着することにより、基材-ゴム複合体として用いることができる。基材-ゴム複合体としては、特に限定されないが、たとえば、繊維基材としてコード状のものを用いた芯線入りのゴム製歯付きベルト、帆布等の基布状の繊維基材を用いたゴム製歯付きベルト等が挙げられる。 Although it does not specifically limit as a base material, For example, a fiber base material can be used. The type of fiber constituting the fiber base is not particularly limited, and examples thereof include vinylon fiber, polyester fiber, nylon, polyamide fiber such as aramid (aromatic polyamide), glass fiber, cotton, rayon and the like. These can be suitably selected according to the use. The shape of the fiber substrate is not particularly limited, and examples thereof include staples, filaments, cords, ropes, woven fabrics (such as canvas), and the like, and can be appropriately selected according to the use. For example, the adhesive layer-forming substrate can be used as a substrate-rubber composite by adhering to rubber through the adhesive layer. The base material-rubber composite is not particularly limited. For example, rubber using a cored rubber toothed belt using cords as a fiber base, rubber using a base cloth-like fiber base such as canvas A toothed belt etc. may be mentioned.
 基材-ゴム複合体を得る方法としては、特に限定されないが、たとえば、浸漬処理等により接着剤組成物を基材に付着させて接着剤層形成基材を得て、接着剤層形成基材をゴム上に載置し、これを加熱および加圧する方法が挙げられる。加圧は、圧縮(プレス)成形機、金属ロール、射出成形機等を用いて行なうことができる。加圧の圧力は、好ましくは0.5~20MPa、より好ましくは2~10MPaである。加熱の温度は、好ましくは130~300℃、より好ましくは150~250℃である。加熱および加圧の処理時間は、好ましくは1~180分、より好ましくは5~120分である。加熱および加圧する方法により、ゴムの成形、および接着剤層形成基材とゴムとの接着を、同時に行なうことができるようになる。なお、加圧に用いる圧縮機の型の内面やロールの表面には、目的とする基材-ゴム複合体のゴムに所望の表面形状を付与するための型を形成させておくことが好ましい。 The method for obtaining the base material-rubber complex is not particularly limited. For example, the adhesive composition is attached to the base material by immersion treatment or the like to obtain an adhesive layer forming base material, and the adhesive layer forming base material is obtained Is placed on rubber and heated and pressurized. Pressurization can be performed using a compression (press) molding machine, a metal roll, an injection molding machine, or the like. The pressure of pressurization is preferably 0.5 to 20 MPa, more preferably 2 to 10 MPa. The heating temperature is preferably 130 to 300 ° C., more preferably 150 to 250 ° C. The heat and pressure treatment time is preferably 1 to 180 minutes, more preferably 5 to 120 minutes. By the method of heating and pressing, molding of the rubber and adhesion of the adhesive layer-formed substrate to the rubber can be simultaneously performed. In addition, it is preferable to form a mold for imparting a desired surface shape to the rubber of the target base material-rubber complex on the inner surface of the mold of the compressor used for pressurization and the surface of the roll.
 また、基材-ゴム複合体の一態様として、基材-ゴム-基材複合体を挙げることができる。基材-ゴム-基材複合体は、たとえば、基材(2種以上の基材の複合体であってもよい。)と基材-ゴム複合体とを組み合わせて形成することができる。具体的には、基材としての芯線、ゴムおよび基材としての基布を重ね(このとき、芯線および基布には、接着剤組成物を適宜付着させて接着剤層形成基材としておく)、加熱しながら加圧することにより、基材-ゴム-基材複合体を得ることができる。 Further, as one embodiment of the base material-rubber complex, a base material-rubber-base material complex can be mentioned. The substrate-rubber-substrate composite can be formed, for example, by combining a substrate (which may be a composite of two or more substrates) and a substrate-rubber composite. Specifically, a core wire as a base material, a rubber and a base fabric as a base material are overlapped (in this case, an adhesive composition is appropriately attached to the core wire and base cloth to be used as an adhesive layer forming base material) By applying pressure while heating, a substrate-rubber-substrate composite can be obtained.
 本発明の製造方法により得られる接着剤層形成基材を用いた基材-ゴム複合体は、機械的強度、耐摩耗性および耐水性に優れたものであり、そのため、平ベルト、Vベルト、Vリブドベルト、丸ベルト、角ベルト、歯付ベルト等のベルトとして好適に用いることができる。また、本発明の製造方法により得られる接着剤層形成基材を用いて得られる基材-ゴム複合体は、耐油性に優れ、油中ベルトとして好適に用いることができる。さらに、本発明の接着剤層形成基材を用いて得られる基材-ゴム複合体は、ホース、チューブ、ダイアフラム等にも好適に使用できる。ホースとしては、単管ゴムホース、多層ゴムホース、編上式補強ホース、布巻式補強ホース等が挙げられる。ダイアフラムとしては、平形ダイアフラム、転動形ダイアフラム等が挙げられる。 The substrate-rubber composite using the adhesive layer-forming substrate obtained by the production method of the present invention is excellent in mechanical strength, abrasion resistance and water resistance, and therefore flat belts, V-belts, The belt can be suitably used as a V-ribbed belt, a round belt, a square belt, a toothed belt or the like. In addition, a base material-rubber complex obtained using the adhesive layer-forming base material obtained by the production method of the present invention is excellent in oil resistance and can be suitably used as a belt-in-oil belt. Furthermore, the substrate-rubber composite obtained by using the adhesive layer-formed substrate of the present invention can be suitably used as a hose, a tube, a diaphragm and the like. Examples of the hose include single-pipe rubber hoses, multilayer rubber hoses, knitted reinforcement hoses and cloth wound reinforcement hoses. As a diaphragm, a flat diaphragm, a rolling diaphragm, etc. are mentioned.
 本発明の製造方法により得られる接着剤層形成基材を用いた基材-ゴム複合体は、上記の用途以外にも、シール、ゴムロール等の工業用製品として用いることができる。シールとしては、回転用、揺動用、往復動等の運動部位シールと固定部位シールが挙げられる。運動部位シールとしては、オイルシール、ピストンシール、メカニカルシール、ブーツ、ダストカバー、ダイアフラム、アキュムレータ等が挙げられる。固定部位シールとしては、Oリング、各種ガスケット等が挙げられる。ゴムロールとしては、印刷機器、コピー機器等のOA機器の部品であるロール;紡糸用延伸ロール、紡績用ドラフトロール等の繊維加工用ロール;ブライドルロール、スナバロール、ステアリングロール等の製鉄用ロール;等が挙げられる。 The base material-rubber complex using the adhesive layer forming base material obtained by the manufacturing method of the present invention can be used as industrial products such as a seal, a rubber roll, etc. besides the above applications. The seals include moving site seals such as for rotation, swinging, and reciprocating, and fixed site seals. Examples of the motion site seal include an oil seal, a piston seal, a mechanical seal, a boot, a dust cover, a diaphragm, an accumulator, and the like. An O-ring, various gaskets, etc. are mentioned as a fixed part seal. Examples of rubber rolls include rolls that are parts of OA equipment such as printing equipment and copying equipment; rolls for fiber processing such as stretching rolls for spinning and draft rolls for spinning; rolls for iron making such as bridle rolls, snubber rolls, steering rolls, etc. It can be mentioned.
 以下、実施例により本発明が詳細に説明されるが、本発明はこれらの実施例に限定されない。なお、以下の「部」は、特に断りのない限り、重量基準である。また、各種の物性は以下のように測定した。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited to these examples. In addition, the following "parts" is a basis of weight unless there is particular notice. Moreover, various physical properties were measured as follows.
 固形分濃度
 アルミ皿(重量:X1)に試料2gを精秤し(重量:X2)、これを105℃の熱風乾燥器内で2時間乾燥させた。次いで、デシケーター内で冷却した後、アルミ皿ごと重量を測定し(重量:X3)、下記の計算式にしたがって、固形分濃度を算出した。
 固形分濃度(重量%)=(X3-X1)×100/X2
A 2 g sample was precisely weighed (weight: X2) in a solid concentration aluminum dish (weight: X1) and dried in a hot air drier at 105 ° C. for 2 hours. Then, after cooling in a desiccator, the weight of each aluminum dish was measured (weight: X3), and the solid content concentration was calculated according to the following formula.
Solid content concentration (% by weight) = (X3-X1) × 100 / X2
 変性率
 カルボキシ変性重合体のラテックスを構成するカルボキシ変性重合体について、H-NMR測定を行うことにより、カルボキシ変性重合体中におけるカルボキシル基の数を求めた。次いで、求めたカルボキシル基の数に基づいて、下記式(i)にしたがって、カルボキシル基含有化合物による変性率を求めた。
 変性率(モル%)=(X/Y)×100   ・・・(i)
 なお、上記式(i)において、Xは、カルボキシ変性重合体中におけるカルボキシル基の数を、Yは、カルボキシ変性重合体の総モノマー単位数((カルボキシ変性重合体の重量平均分子量(Mw))/(カルボキシ変性重合体を構成する各モノマー単位の含有割合に応じた平均分子量))をそれぞれ表す。
Modification Rate The carboxy-modified polymer constituting the latex of the carboxy-modified polymer was subjected to 1 H-NMR measurement to determine the number of carboxyl groups in the carboxy-modified polymer. Next, based on the number of carboxyl groups determined, the modification ratio of the carboxyl group-containing compound was determined according to the following formula (i).
Modification rate (mol%) = (X / Y) × 100 (i)
In the above formula (i), X represents the number of carboxyl groups in the carboxy-modified polymer, and Y represents the total number of monomer units of the carboxy-modified polymer ((weight-average molecular weight of the carboxy-modified polymer (Mw)) / (Average molecular weight according to the content ratio of each monomer unit which comprises a carboxy modified polymer) is represented, respectively.
 ディップ成形体の引裂強度
 ASTM D624-00に基づいて、ディップ成形体を、23℃、相対湿度50%の恒温恒湿室で24時間以上放置した後、ダンベル(商品名「Die C」、ダンベル社製)で打ち抜き、引裂強度測定用の試験片を作製した。当該試験片をテンシロン万能試験機(商品名「RTG-1210」、A&D社製)で引張速度500mm/minで引っ張り、引裂強度(単位:N/mm)を測定した。
Tear Strength of Dip-Formed Body Based on ASTM D624-00, after leaving the dip-formed body in a constant temperature and humidity room at 23 ° C. and 50% relative humidity for 24 hours or more, a dumbbell (trade name “Die C”, Dumbbell Inc. And punched out to prepare a test piece for tear strength measurement. The test piece was pulled at a tensile speed of 500 mm / min with a TENSILON universal testing machine (trade name “RTG-1210”, manufactured by A & D Co., Ltd.) to measure the tear strength (unit: N / mm).
 ディップ成形体の引張強度
 ASTM D412に基づいて、ディップ成形体を、ダンベル(商品名「スーパーダンベル(型式:SDMK-100C)」、ダンベル社製)で打ち抜き、引張強度測定用試験片を作製した。当該試験片をテンシロン万能試験機(商品名「RTG-1210」、オリエンテック社製)で引張速度500mm/minで引っ張り、破断直前の引張強度(単位:MPa)を測定した。
Tensile Strength of Dip-Formed Body Based on ASTM D412, the dip-formed body was punched with a dumbbell (trade name "Super Dumbbell (Model: SDMK-100C)" manufactured by Dumbbell Co., Ltd.) to prepare a test piece for tensile strength measurement. The test piece was pulled at a tensile speed of 500 mm / min with a TENSILON universal testing machine (trade name “RTG-1210”, manufactured by Orientec Co., Ltd.), and the tensile strength (unit: MPa) immediately before breaking was measured.
 製造例1
 カルボキシ変性合成ポリイソプレン(A-1)のラテックスの製造
 重量平均分子量が1,300,000である合成ポリイソプレン(商品名「NIPOL IR2200L」、日本ゼオン社製、イソプレンの単独重合体、シス結合単位量98%)をシクロヘキサンと混合し、攪拌しながら温度を60℃に昇温して溶解し、B形粘度計で測定した粘度が12,000mPa・sの合成ポリイソプレンのシクロヘキサン溶液(a)を調整した(固形分濃度8重量%)。
Production Example 1
Production of latex of carboxy-modified synthetic polyisoprene (A-1) Synthetic polyisoprene having a weight-average molecular weight of 1,300,000 (trade name "NIPOL IR 2200L", manufactured by Nippon Zeon Co., homopolymer of isoprene, cis-binding unit 98%) is mixed with cyclohexane and dissolved while raising the temperature to 60 ° C. with stirring, and a cyclohexane solution (a) of synthetic polyisoprene having a viscosity of 12,000 mPa · s measured by a B-type viscometer Adjusted (solids concentration 8% by weight).
 一方、ロジン酸ナトリウム20部を水に添加し、温度を60℃に昇温して溶解し、濃度1.5重量%のアニオン性界面活性剤水溶液(b)を調整した。 On the other hand, 20 parts of sodium rosin acid was added to water, and the temperature was raised to 60 ° C. for dissolution to prepare an anionic surfactant aqueous solution (b) having a concentration of 1.5% by weight.
 次に、上記シクロヘキサン溶液(a)と、上記アニオン性界面活性剤水溶液(b)とを、重量比で1:1.5となるように、ミキサー(商品名「マルチラインミキサーMS26-MMR-5.5L」、佐竹化学機械工業社製)を用いて混合し、続いて、乳化装置(商品名「マイルダーMDN310」、太平洋機工社製)を用いて、回転数4100rpmで混合及び乳化して、乳化液(c)を得た。なお、その際、シクロヘキサン溶液(a)とアニオン性界面活性剤水溶液(b)の合計のフィード流速は2,000kg/hr、温度は60℃、背圧(ゲージ圧)は0.5MPaとした。 Next, a mixer (trade name “Multi-line mixer MS26-MMR-5” is used so that the above cyclohexane solution (a) and the above anionic surfactant aqueous solution (b) have a weight ratio of 1: 1.5. .5 L "(manufactured by Satake Chemical Engineering Co., Ltd.), followed by mixing and emulsifying at a rotational speed of 4100 rpm using an emulsifying apparatus (trade name" Milder MDN 310 ", manufactured by Pacific Kiko Co., Ltd.) Liquid (c) was obtained. At this time, the total feed flow rate of the cyclohexane solution (a) and the anionic surfactant aqueous solution (b) was 2,000 kg / hr, the temperature was 60 ° C., and the back pressure (gauge pressure) was 0.5 MPa.
 次いで、乳化液(c)を、-0.01~-0.09MPa(ゲージ圧)の減圧下で80℃に加温し、シクロヘキサンを留去し、合成ポリイソプレンの水分散液(d)を得た。その際、消泡剤(商品名「SM5515」、東レ・ダウコーニング社製)を、乳化液(c)中の合成ポリイソプレンに対して300重量ppmの量になるよう、噴霧しながら連続添加した。なお、シクロヘキサンを留去する際には、乳化液(c)がタンクの容積の70体積%以下になるように調整し、かつ、攪拌翼として3段の傾斜パドル翼を用い、60rpmでゆっくり攪拌を実施した。 Next, the emulsion (c) is heated to 80 ° C. under a reduced pressure of -0.01 to -0.09 MPa (gauge pressure), cyclohexane is distilled off, and an aqueous dispersion (d) of synthetic polyisoprene is obtained. Obtained. At that time, an antifoaming agent (trade name "SM 5515", manufactured by Toray Dow Corning Co., Ltd.) was continuously added while spraying so that the amount was 300 ppm by weight with respect to the synthetic polyisoprene in the emulsion (c). . When distilling off cyclohexane, adjust the emulsion (c) to 70% by volume or less of the volume of the tank, and slowly stir at 60 rpm using a 3-stage inclined paddle blade as a stirring blade. Carried out.
 そして、シクロヘキサンの留去が完了した後、得られた合成ポリイソプレンの水分散液(d)を、連続遠心分離機(商品名「SRG510」、アルファラバル社製)を用いて、4,000~5,000Gで遠心分離し、軽液としての固形分濃度56重量%の合成ポリイソプレンのラテックス(e)を得た。なお、遠心分離の条件は、遠心分離前の水分散液(d)の固形分濃度10重量%、連続遠心分離時の流速は1300kg/hr、遠心分離機の背圧(ゲージ圧)は1.5MPaとした。得られた合成ポリイソプレンのラテックス(e)は、固形分濃度が60重量%であった。 Then, after evaporation of cyclohexane is completed, the obtained aqueous dispersion (d) of synthetic polyisoprene is subjected to 4,000 to 500 using a continuous centrifuge (trade name "SRG510", manufactured by Alfa Laval). The mixture was centrifuged at 5,000 G to obtain a latex (e) of synthetic polyisoprene having a solid concentration of 56% by weight as a light liquid. The conditions for centrifugation were 10% by weight solid concentration of the aqueous dispersion (d) before centrifugation, the flow rate during continuous centrifugation was 1300 kg / hr, and the back pressure (gauge pressure) of the centrifuge was 1. It was 5 MPa. The obtained latex (e) of synthetic polyisoprene had a solid concentration of 60% by weight.
 次いで、得られた合成ポリイソプレンのラテックス(e)中の合成ポリイソプレン100部に対して、蒸留水130部を添加して希釈した。そして、合成ポリイソプレンのラテックス(e)に、合成ポリイソプレン100部に対して、分散剤としてのβ-ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩(商品名「デモールT-45」、花王社製)0.8部を合成ポリイソプレン100部に対し4部の蒸留水で希釈したものを5分間かけて添加した。次いで、分散剤を添加した合成ポリイソプレンのラテックス(e)を、窒素置換された攪拌機付き反応容器に仕込み、撹拌しながら温度を30℃にまで加温した。また、別の容器を用い、カルボキシル基含有化合物としてのメタクリル酸3部と蒸留水16部とを混合してメタクリル酸希釈液を調整した。このメタクリル酸希釈液を、30℃にまで加温した反応容器内に、30分間かけて添加した。 Next, 130 parts of distilled water was added to dilute 100 parts of the synthetic polyisoprene in the obtained latex (e) of the synthetic polyisoprene. And sodium salt of β-naphthalenesulfonic acid formalin condensation product as a dispersing agent with respect to synthetic polyisoprene latex (e) and 100 parts of synthetic polyisoprene (trade name "Demol T-45", manufactured by Kao Corporation) A solution of 0.8 parts diluted with 4 parts of distilled water to 100 parts of synthetic polyisoprene was added over 5 minutes. Subsequently, a latex (e) of synthetic polyisoprene to which a dispersant was added was charged in a nitrogen-substituted reaction container equipped with a stirrer, and the temperature was raised to 30 ° C. while stirring. Further, using another container, 3 parts of methacrylic acid as a carboxyl group-containing compound and 16 parts of distilled water were mixed to prepare a methacrylic acid diluted solution. The methacrylic acid diluted solution was added over 30 minutes into a reaction vessel heated to 30 ° C.
 さらに、別の容器を用い、蒸留水7部、ナトリウムホルムアルデヒドスルホキシレート(商品名「SFS」、三菱ガス化学社製)0.32部、硫酸第一鉄(商品名「フロストFe」、中部キレスト社製)0.01部からなる溶液(f)を調整した。この溶液(f)を反応容器内に移した後、1,1,3,3-テトラメチルブチルハイドロパーオキサイド(商品名「パーオクタH」、日本油脂社製)0.5部を添加して30℃で1時間反応させることで、カルボキシ変性合成ポリイソプレン(A-1)のラテックスを得た。次いでカルボキシ変性合成ポリイソプレン(A-1)を遠心分離機にて濃縮して固形分濃度56%の軽液を得た。そして、得られたカルボキシ変性合成ポリイソプレン(A-1)のラテックスについて、上記方法にしたがってカルボキシル基含有化合物による変性率を測定したところ、変性率は0.5モル%であった。 Furthermore, 7 parts of distilled water, 0.32 parts of sodium formaldehyde sulfoxylate (trade name "SFS", manufactured by Mitsubishi Gas Chemical Co., Ltd.), ferrous sulfate (trade name "Frost Fe", Chubu Kirest, using another container. The solution (f) which consists of 0.01 part of company make) was adjusted. After this solution (f) is transferred into the reaction vessel, 0.5 parts of 1,1,3,3-tetramethylbutyl hydroperoxide (trade name "Perocta H", manufactured by Nippon Oil and Fats Co., Ltd.) is added, The reaction at 1 ° C. for 1 hour gave a latex of carboxy-modified synthetic polyisoprene (A-1). Next, the carboxy-modified synthetic polyisoprene (A-1) was concentrated by a centrifuge to obtain a light solution with a solid concentration of 56%. Then, with respect to the obtained latex of the carboxy-modified synthetic polyisoprene (A-1), the modification ratio by the carboxyl group-containing compound was measured according to the above method, and the modification ratio was 0.5 mol%.
 製造例2
 カルボキシ変性合成ポリイソプレン(A-2)のラテックスの製造
 メタクリル酸の使用量を3部から5部に変更した以外は、製造例1と同様にして、固形分濃度55%のカルボキシ変性合成ポリイソプレン(A-2)のラテックスを得た。得られたカルボキシ変性合成ポリイソプレン(A-2)のラテックスについて、上記方法にしたがってカルボキシル基含有化合物による変性率を測定したところ、変性率は1モル%であった。
Production Example 2
Production of Latex of Carboxy-Modified Synthetic Polyisoprene (A-2) A carboxy-modified synthetic polyisoprene having a solid concentration of 55% was prepared in the same manner as in Production Example 1 except that the amount of methacrylic acid used was changed from 3 parts to 5 parts. A latex of (A-2) was obtained. The obtained latex of the carboxy-modified synthetic polyisoprene (A-2) was measured for the degree of modification with a carboxyl group-containing compound according to the above-mentioned method, and the degree of modification was 1 mol%.
 実施例1
 ラテックス組成物の調製
 まず、スチレン-マレイン酸モノ-sec-ブチルエステル-マレイン酸モノメチルエステル重合体(商品名「Scripset550」、Hercules社製)を、水酸化ナトリウムを用い、重合体中のカルボキシル基を100%中和して、ナトリウム塩水溶液(濃度10重量%)を調製した。そして、このナトリウム塩水溶液を、製造例1で得られたカルボキシ変性合成ポリイソプレン(A-1)のラテックスに、カルボキシ変性合成ポリイソプレン(A-1)100部に対して固形分換算で0.8部になるようにして添加し、混合物を得た。
Example 1
Preparation of Latex Composition First, using sodium hydroxide, a styrene-maleic acid mono-sec-butyl ester-maleic acid monomethyl ester polymer (trade name "Scripset 550", manufactured by Hercules) was treated with sodium hydroxide to form carboxyl groups in the polymer. After 100% neutralization, an aqueous solution of sodium salt (concentration 10% by weight) was prepared. Then, this sodium salt aqueous solution was added to the latex of the carboxy-modified synthetic polyisoprene (A-1) obtained in Production Example 1 with respect to 100 parts of the carboxy-modified synthetic polyisoprene (A-1) in a solid content conversion of 0. The mixture was added to make 8 parts to obtain a mixture.
 そして、得られた混合物を攪拌しながら、混合物中のカルボキシ変性合成ポリイソプレン(A-1)100部に対して、キサントゲン化合物としてのジイソプロピルキサントゲン酸亜鉛2部を添加した。 Then, while stirring the obtained mixture, 2 parts of zinc diisopropyl xanthate as a xanthogen compound was added to 100 parts of the carboxy-modified synthetic polyisoprene (A-1) in the mixture.
 次いで、固形分換算で、活性化剤としての酸化亜鉛1.5部、硫黄1.5部、老化防止剤(商品名「Wingstay L」、グッドイヤー社製)2部となるように、各配合剤の水分散液を添加して、ラテックス組成物を得た。得られたラテックス組成物について、pH調整剤としての水酸化カリウム水溶液(濃度5.0重量%)を添加することにより、pHを7.0に調整した(熟成前のラテックス組成物のpHを7.0とした)。 Subsequently, each combination agent so that it will become 1.5 parts of zinc oxide as an activator, 1.5 parts of sulfur, and 2 parts of antioxidants (brand name "Wingstay L", Goodyear company make) in conversion of solid content. Water dispersion was added to obtain a latex composition. The pH of the obtained latex composition was adjusted to 7.0 by adding an aqueous potassium hydroxide solution (concentration 5.0% by weight) as a pH adjuster (the pH of the latex composition before aging was 7). .0).
 そして、得られたラテックス組成物を、30℃に調整された恒温水槽で48時間熟成した。熟成後のラテックス組成物のpHは、6.7であった。 Then, the obtained latex composition was aged in a constant temperature water bath adjusted to 30 ° C. for 48 hours. The pH of the latex composition after aging was 6.7.
 ディップ成形体の製造
 市販のセラミック製手型(シンコー社製)を洗浄し、70℃のオーブン内で予備加熱した後、18重量%の硝酸カルシウムおよび0.05重量%のポリオキシエチレンラウリルエーテル(商品名「エマルゲン109P」、花王社製)を含有する凝固剤水溶液に5秒間浸漬し、凝固剤水溶液から取り出した。次いで、手型を70℃のオーブン内で30分以上乾燥させることで、手型に凝固剤を付着させて、手型を凝固剤により被覆した。
Production of Dip Molded Product A commercially available ceramic hand mold (made by Shinko Co., Ltd.) was washed and preheated in an oven at 70 ° C., then 18 wt% calcium nitrate and 0.05 wt% polyoxyethylene lauryl ether ( It was immersed in an aqueous coagulant solution containing trade name "Emulgen 109P" (manufactured by Kao Corporation) for 5 seconds, and was taken out from the aqueous coagulant solution. Next, the hand mold was dried in an oven at 70 ° C. for 30 minutes or more to attach a coagulant to the hand mold, and the hand mold was coated with the coagulant.
 その後、凝固剤で被覆された手型を、オーブンから取り出し、上述した熟成後のラテックス組成物に10秒間浸漬した。次いで、この手型を、室温で10分間風乾してから、60℃の温水中に5分間浸漬して水溶性不純物を溶出させて、手型にディップ成形層を形成した。その後、手型に形成したディップ成形層を、オーブンにより温度130℃、30分間の条件で加熱することにより架橋させた後、室温まで冷却し、タルクを散布してから手型から剥離して、ディップ成形体(ゴム手袋)を得た。そして、得られたディップ成形体(ゴム手袋)について、上記方法にしたがって、引裂強度および引張強度の各評価を行った。結果を表1に示す。なお、表1においては、分散剤の配合量は、カルボキシ変性を行う前の合成ポリイソプレン100部に対する量を記載した。 The coagulant-coated hand was then removed from the oven and dipped in the aged latex composition described above for 10 seconds. Then, the hand mold was air-dried at room temperature for 10 minutes, and then immersed in warm water of 60 ° C. for 5 minutes to elute water-soluble impurities to form a dip mold layer in the hand mold. Thereafter, the dip-formed layer formed in the hand mold is crosslinked by heating in an oven at a temperature of 130 ° C. for 30 minutes, cooled to room temperature, sprayed with talc, and peeled from the hand mold, A dip molded body (rubber glove) was obtained. And each evaluation of tear strength and tensile strength was performed according to the said method about the obtained dip molding body (rubber glove). The results are shown in Table 1. In Table 1, the blending amount of the dispersant is described with respect to 100 parts of the synthetic polyisoprene before the carboxy modification.
 実施例2
 熟成前のラテックス組成物に対するpH調整剤(水酸化カリウム水溶液)の添加量を調整することで、熟成前のラテックス組成物のpHを8.0とした以外は、実施例1と同様にラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。なお、熟成後のラテックス組成物のpHは7.5であった。結果を表1に示す。
Example 2
The latex composition as in Example 1, except that the pH of the latex composition before ripening is set to 8.0 by adjusting the addition amount of the pH adjuster (potassium hydroxide aqueous solution) to the latex composition before ripening Products and dip molded articles (rubber gloves) were produced and evaluated in the same manner. The pH of the latex composition after aging was 7.5. The results are shown in Table 1.
 実施例3
 熟成前のラテックス組成物に対するpH調整剤(水酸化カリウム水溶液)の添加量を調整することで、熟成前のラテックス組成物のpHを9.5とした以外は、実施例1と同様にラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。なお、熟成後のラテックス組成物のpHは8.5であった。結果を表1に示す。
Example 3
The latex composition is the same as in Example 1 except that the pH of the latex composition before ripening is set to 9.5 by adjusting the addition amount of the pH adjuster (potassium hydroxide aqueous solution) to the latex composition before ripening. Products and dip molded articles (rubber gloves) were produced and evaluated in the same manner. The pH of the latex composition after aging was 8.5. The results are shown in Table 1.
 実施例4
 製造例1で得られたカルボキシ変性合成ポリイソプレン(A-1)のラテックスに代えて、製造例2で得られたカルボキシ変性合成ポリイソプレン(A-2)のラテックス(カルボキシ変性合成ポリイソプレン(A-2)換算で100部)を使用し、さらに、熟成前のラテックス組成物に対するpH調整剤(水酸化カリウム水溶液)の添加量を調整することで、熟成前のラテックス組成物のpHを9.5とした以外は、実施例1と同様にラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。なお、熟成後のラテックス組成物のpHは8.5であった。結果を表1に示す。
Example 4
A latex of carboxy-modified synthetic polyisoprene (A-2) obtained in Production Example 2 (carboxy-modified synthetic polyisoprene (A), instead of the latex of carboxy-modified synthetic polyisoprene (A-1) obtained in Production Example 1 2) Using 100 parts in terms of conversion, and further adjusting the amount of pH adjuster (potassium hydroxide aqueous solution) added to the latex composition before ripening, the pH of the latex composition before ripening is 9. A latex composition and a dip-formed product (rubber gloves) were produced in the same manner as in Example 1 except that No. 5 was used, and evaluations were made in the same manner. The pH of the latex composition after aging was 8.5. The results are shown in Table 1.
 比較例1
 熟成前のラテックス組成物に対するpH調整剤(水酸化カリウム水溶液)の添加量を調整することで、熟成前のラテックス組成物のpHを12.0とした以外は、実施例1と同様にラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。なお、熟成後のラテックス組成物のpHは9.5であった。結果を表1に示す。
Comparative Example 1
The latex composition as in Example 1, except that the pH of the latex composition before ripening was 12.0 by adjusting the amount of the pH adjuster (potassium hydroxide aqueous solution) added to the latex composition before ripening. Products and dip molded articles (rubber gloves) were produced and evaluated in the same manner. The pH of the latex composition after aging was 9.5. The results are shown in Table 1.
 比較例2
 ラテックス組成物を調製する際に、キサントゲン化合物としてのジイソプロピルキサントゲン酸亜鉛を添加せず、さらに、熟成前のラテックス組成物に対するpH調整剤(水酸化カリウム水溶液)の添加量を調整することで、熟成前のラテックス組成物のpHを9.5とした以外は、実施例1と同様にラテックス組成物およびディップ成形体(ゴム手袋)を製造し、同様に評価を行った。なお、熟成後のラテックス組成物のpHは9.5であった。結果を表1に示す。
Comparative example 2
When preparing a latex composition, aging is performed by not adding zinc diisopropyl xanthate as a xanthogen compound, and further adjusting the amount of pH adjuster (potassium hydroxide aqueous solution) added to the latex composition before aging. A latex composition and a dip-molded product (rubber glove) were produced in the same manner as in Example 1 except that the pH of the previous latex composition was changed to 9.5, and evaluations were made in the same manner. The pH of the latex composition after aging was 9.5. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1より、カルボキシ変性重合体のラテックスと、キサントゲン化合物と、活性化剤と、硫黄系加硫剤とを含有し、熟成前のpHを10未満としたラテックス組成物は、該ラテックス組成物を熟成した後、ディップ成形体とした場合に、得られるディップ成形体が、引裂強度および引張強度に優れるものであった(実施例1~4)。 From Table 1, a latex composition containing a latex of a carboxy-modified polymer, a xanthogen compound, an activating agent, and a sulfur-based vulcanizing agent, and having a pH before aging of less than 10, is used as the latex composition. When it was made into a dip-formed body after aging, the resulting dip-formed body was excellent in tear strength and tensile strength (Examples 1 to 4).
 一方、熟成前のラテックス組成物のpHが10以上であったラテックス組成物は、該ラテックス組成物を熟成した後、ディップ成形体とした場合に、得られるディップ成形体が、引裂強度および引張強度に劣るものとなってしまった(比較例1)。
 また、キサントゲン化合物を配合しなかった場合には、得られるラテックス組成物を用いて製造されたディップ成形体は、引裂強度および引張強度に劣るものとなってしまった(比較例2)。
On the other hand, in the case of a latex composition in which the pH of the latex composition before ripening is 10 or more, the dip molded article obtained when the latex composition is ripened and then formed into a dip-molded article has tear strength and tensile strength. (Comparative example 1).
Moreover, when the xanthogen compound was not blended, the dip-molded product produced using the obtained latex composition was inferior in tear strength and tensile strength (Comparative Example 2).

Claims (14)

  1.  カルボキシ変性重合体のラテックスと、硫黄系加硫剤と、キサントゲン化合物と、活性化剤とを含有し、pHが10未満であるラテックス組成物を調製する調製工程と、
     前記ラテックス組成物を、温度5~60℃の条件で、半日~14日間貯蔵することで熟成を行う熟成工程と、を備えるラテックス組成物の製造方法。
    Preparing a latex composition containing a carboxy-modified polymer latex, a sulfur-based vulcanizing agent, a xanthogen compound, and an activator, and having a pH of less than 10.
    Aging step, wherein the latex composition is aged by storing the latex composition at a temperature of 5 to 60 ° C. for half a day to 14 days.
  2.  前記熟成工程における熟成後の前記ラテックス組成物のpHを、6以上、10未満とする請求項1に記載のラテックス組成物の製造方法。 The method for producing a latex composition according to claim 1, wherein the pH of the latex composition after aging in the aging step is set to 6 or more and less than 10.
  3.  前記熟成工程における熟成後の前記ラテックス組成物に、pH調整剤を添加する工程をさらに備える請求項1または2に記載のラテックス組成物の製造方法。 3. The method for producing a latex composition according to claim 1, further comprising the step of adding a pH adjuster to the latex composition after aging in the aging step.
  4.  前記pH調整剤として、アルカリ金属の水酸化物、アンモニア、および有機アミン化合物から選ばれる少なくとも1種を含むものを用いる請求項3に記載のラテックス組成物の製造方法。 The method for producing a latex composition according to claim 3, wherein one containing at least one selected from an alkali metal hydroxide, ammonia, and an organic amine compound is used as the pH adjuster.
  5.  前記カルボキシ変性重合体におけるカルボキシル基による変性率が、(カルボキシル基の数/前記カルボキシ変性重合体の総モノマー単位数)×100で、0.01~10モル%である請求項1~4のいずれかに記載のラテックス組成物の製造方法。 The rate of modification by carboxyl group in the carboxy-modified polymer is (0.01 to 10 mol%) by (number of carboxyl groups / total number of monomer units of the carboxy-modified polymer) × 100. The manufacturing method of the latex composition as described in.
  6.  前記調製工程において、前記ラテックス組成物中における前記キサントゲン化合物の含有割合を、前記ラテックス組成物中の前記カルボキシ変性重合体100重量部に対して、0.01~10重量部とする請求項1~5のいずれかに記載のラテックス組成物の製造方法。 In the preparation process, the content ratio of the xanthogen compound in the latex composition is 0.01 to 10 parts by weight with respect to 100 parts by weight of the carboxy-modified polymer in the latex composition. The manufacturing method of the latex composition in any one of 5.
  7.  前記キサントゲン化合物が、一般式(ROC(=S)S)x-Z(式中、Rは直鎖状または分岐状の炭化水素、Zは金属原子、xはZの原子価と一致する数である。)で表されるキサントゲン酸塩を少なくとも含有する請求項1~6のいずれかに記載のラテックス組成物の製造方法。 The xanthogen compound is represented by the general formula (ROC (= S) S) x-Z (wherein R is a linear or branched hydrocarbon, Z is a metal atom, and x is a number corresponding to the valence of Z. The method for producing a latex composition according to any one of claims 1 to 6, which comprises at least a xanthogenate represented by
  8.  前記キサントゲン化合物が、ジイソプロピルキサントゲン酸亜鉛を少なくとも含有する請求項1~7のいずれかに記載のラテックス組成物の製造方法。 The method for producing a latex composition according to any one of claims 1 to 7, wherein the xanthogen compound contains at least zinc diisopropyl xanthate.
  9.  前記調製工程において、前記ラテックス組成物中に、2種以上の前記キサントゲン化合物を含有させる請求項1~8のいずれかに記載のラテックス組成物の製造方法。 The method for producing a latex composition according to any one of claims 1 to 8, wherein two or more xanthogen compounds are contained in the latex composition in the preparation step.
  10.  前記活性化剤として、金属化合物を用いる請求項1~9のいずれかに記載のラテックス組成物の製造方法。 The method for producing a latex composition according to any one of claims 1 to 9, wherein a metal compound is used as the activating agent.
  11.  前記金属化合物が、酸化亜鉛である請求項10に記載のラテックス組成物の製造方法。 The method for producing a latex composition according to claim 10, wherein the metal compound is zinc oxide.
  12.  前記カルボキシ変性重合体として、合成ポリイソプレン、スチレン-イソプレン-スチレンブロック共重合体、または蛋白質を除去した天然ゴムを、カルボキシル基を有する単量体により変性することにより得られるものを用いる請求項1~11のいずれかに記載のラテックス組成物の製造方法。 As the carboxy modified polymer, one obtained by modifying synthetic polyisoprene, styrene-isoprene-styrene block copolymer, or natural rubber from which a protein is removed with a monomer having a carboxyl group is used. 11. The method for producing a latex composition according to any one of to 11.
  13.  請求項1~12のいずれかに記載の製造方法により得られたラテックス組成物をディップ成形する工程を備えるディップ成形体の製造方法。 A method for producing a dip-formed product, comprising the step of dip-forming the latex composition obtained by the method according to any one of claims 1 to 12.
  14.  請求項1~12のいずれかに記載の製造方法により得られたラテックス組成物を用いて形成される接着剤層を、基材表面に形成する工程を備える接着剤層形成基材の製造方法。 A method for producing an adhesive layer-formed substrate comprising the step of forming an adhesive layer formed using the latex composition obtained by the production method according to any one of claims 1 to 12 on the surface of the substrate.
PCT/JP2018/029955 2017-09-22 2018-08-09 Production method for latex composition WO2019058807A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019543475A JP7163924B2 (en) 2017-09-22 2018-08-09 Method for producing latex composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017182154 2017-09-22
JP2017-182154 2017-09-22

Publications (1)

Publication Number Publication Date
WO2019058807A1 true WO2019058807A1 (en) 2019-03-28

Family

ID=65811373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029955 WO2019058807A1 (en) 2017-09-22 2018-08-09 Production method for latex composition

Country Status (2)

Country Link
JP (1) JP7163924B2 (en)
WO (1) WO2019058807A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166724A1 (en) * 2020-02-20 2021-08-26 日本ゼオン株式会社 Method for producing latex composition
WO2021166725A1 (en) * 2020-02-20 2021-08-26 日本ゼオン株式会社 Latex composition production method
EP4112264A4 (en) * 2020-02-27 2024-04-10 Zeon Corp Method for producing dip-molded article

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5440835A (en) * 1977-09-05 1979-03-31 Kuraray Co Ltd Manufacturing of pressure-sensitive adhesive tape or sheet
WO2006057392A1 (en) * 2004-11-29 2006-06-01 Zeon Corporation Composition for dip forming and dip-formed molding
WO2014148178A1 (en) * 2013-03-19 2014-09-25 日本エイアンドエル株式会社 Copolymer latex for adhesive and adhesive composition
JP2016000821A (en) * 2010-06-25 2016-01-07 アレジアンス、コーポレイション Vulcanization composition having reduced allergen potential
JP2016525164A (en) * 2013-07-16 2016-08-22 スキンプロテクト コーポレイション スンディリアン ブルハド Elastomer film-forming composition and articles made from the elastomer film
WO2017130889A1 (en) * 2016-01-27 2017-08-03 日本ゼオン株式会社 Latex composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8087412B2 (en) 2008-05-01 2012-01-03 Ansell Healthcare Products Llc Dip-formed synthetic polyisoprene latex articles with improved intraparticle and interparticle crosslinks
JP2012040767A (en) 2010-08-19 2012-03-01 Denki Kagaku Kogyo Kk Laminate
JP6006326B2 (en) 2012-01-18 2016-10-12 エルジー・ケム・リミテッド Latex composition for dip molding
JP6206482B2 (en) 2013-02-22 2017-10-04 日本ゼオン株式会社 Dip molding latex, dip molding composition and dip molding
US10280291B2 (en) 2014-12-25 2019-05-07 Zeon Corporation Dip-forming latex composition and dip-formed article
JP2016141691A (en) 2015-01-29 2016-08-08 日本ゼオン株式会社 Composition for dip molding and dip molded body
JP6622028B2 (en) 2015-08-21 2019-12-18 Toyo Tire株式会社 Rubber wet masterbatch manufacturing method, rubber composition manufacturing method, and tire manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5440835A (en) * 1977-09-05 1979-03-31 Kuraray Co Ltd Manufacturing of pressure-sensitive adhesive tape or sheet
WO2006057392A1 (en) * 2004-11-29 2006-06-01 Zeon Corporation Composition for dip forming and dip-formed molding
JP2016000821A (en) * 2010-06-25 2016-01-07 アレジアンス、コーポレイション Vulcanization composition having reduced allergen potential
WO2014148178A1 (en) * 2013-03-19 2014-09-25 日本エイアンドエル株式会社 Copolymer latex for adhesive and adhesive composition
JP2016525164A (en) * 2013-07-16 2016-08-22 スキンプロテクト コーポレイション スンディリアン ブルハド Elastomer film-forming composition and articles made from the elastomer film
WO2017130889A1 (en) * 2016-01-27 2017-08-03 日本ゼオン株式会社 Latex composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166724A1 (en) * 2020-02-20 2021-08-26 日本ゼオン株式会社 Method for producing latex composition
WO2021166725A1 (en) * 2020-02-20 2021-08-26 日本ゼオン株式会社 Latex composition production method
EP4112264A4 (en) * 2020-02-27 2024-04-10 Zeon Corp Method for producing dip-molded article

Also Published As

Publication number Publication date
JPWO2019058807A1 (en) 2020-11-05
JP7163924B2 (en) 2022-11-01

Similar Documents

Publication Publication Date Title
US11898024B2 (en) Latex composition
JP7127649B2 (en) latex composition
JP5472286B2 (en) DIP MOLDING COMPOSITION AND DIP MOLDED BODY
WO2017154736A1 (en) Synthetic rubber latex and method for manufacturing same
JP7163924B2 (en) Method for producing latex composition
US11976180B2 (en) Xanthogen compound dispersion, conjugated-diene-based polymer latex composition, and film molded body
JP7435457B2 (en) Latex composition and membrane molded product
JP7092144B2 (en) Method for manufacturing polymer latex
WO2021171993A1 (en) Latex composition
JP7259837B2 (en) LATEX OF ACID-MODIFIED CONJUGATED DIENE-BASED POLYMER AND METHOD FOR PRODUCING THE SAME
WO2021171994A1 (en) Method for producing dip-molded article
WO2019003743A1 (en) Latex composition
US20230070718A1 (en) Latex composition production method
WO2023026782A1 (en) Latex composition and dip-molded body
US20240067813A1 (en) Method for producing molded body
US20230103092A1 (en) Method for producing latex composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858948

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019543475

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18858948

Country of ref document: EP

Kind code of ref document: A1