WO2020129586A1 - Atmospheric booster device - Google Patents

Atmospheric booster device Download PDF

Info

Publication number
WO2020129586A1
WO2020129586A1 PCT/JP2019/046972 JP2019046972W WO2020129586A1 WO 2020129586 A1 WO2020129586 A1 WO 2020129586A1 JP 2019046972 W JP2019046972 W JP 2019046972W WO 2020129586 A1 WO2020129586 A1 WO 2020129586A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
power piston
pressure chamber
pneumatic booster
shell
Prior art date
Application number
PCT/JP2019/046972
Other languages
French (fr)
Japanese (ja)
Inventor
啓一 齋脇
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2020561256A priority Critical patent/JP7019076B2/en
Priority to CN201980081573.2A priority patent/CN113165625A/en
Publication of WO2020129586A1 publication Critical patent/WO2020129586A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/24Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being gaseous
    • B60T13/46Vacuum systems
    • B60T13/52Vacuum systems indirect, i.e. vacuum booster units
    • B60T13/563Vacuum systems indirect, i.e. vacuum booster units with multiple booster units, e.g. tandem booster units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/24Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being gaseous
    • B60T13/46Vacuum systems
    • B60T13/52Vacuum systems indirect, i.e. vacuum booster units
    • B60T13/569Vacuum systems indirect, i.e. vacuum booster units characterised by piston details, e.g. construction, mounting of diaphragm

Definitions

  • the present invention relates to a pneumatic booster.
  • a constant pressure chamber and a variable pressure chamber are defined by a power piston in a housing having at least two shells, and a plunger arranged in a valve body connected to the power piston is moved by an input rod.
  • working gas atmospheric pressure
  • the valve device is opened and working gas (atmospheric pressure) is introduced into the variable pressure chamber to generate a pressure difference between the constant pressure chamber where the engine negative pressure is introduced and the variable pressure chamber.
  • working gas atmospheric pressure
  • Patent Document 1 discloses a pneumatic booster having such a structure, in which a circumferential direction regulating portion for positioning the shell in the circumferential direction is formed to facilitate positioning of the shell.
  • FIG. 7 shows a cross section around the outer peripheral portion of the power piston 100 of the pneumatic booster having the above-described structure.
  • the power piston 100 that defines the inside of the housing 102 into a constant pressure chamber 104 and a variable pressure chamber 106 has a diaphragm 108 having a thick portion 110 at the outer edge, and the thickness of the diaphragm 108 is increased.
  • the constant pressure chamber 104 and the variable pressure chamber 106 are sealed from the outside of the housing 102 to be airtight.
  • FIG. 7 shows a state in which a pressure difference is generated between the constant pressure chamber 104 and the variable pressure chamber 106 and the power piston 100 is advanced to the left side in FIG. 7.
  • the folded portion 108a of the diaphragm 108 of the power piston 100 or the like is caught, and there is a problem that negative pressure leaks from that portion.
  • Such a defect is an event to be detected in the airtight leak detection step of actually generating a pressure difference between the constant pressure chamber 104 and the variable pressure chamber 106 to check the airtight leak after the pneumatic booster is assembled. Is.
  • the power piston 100 advances and a part of the folded portion 108a of the diaphragm 108 influences the pressure difference.
  • the constant pressure chamber 104 becomes airtight even if the diaphragm 108 is caught. As described above, the airtightness is prevented by an unintended method, and there is a problem that the airtightness leak detection step cannot detect the leak.
  • the object of the present invention is to improve the detection accuracy of the airtight leak of the pneumatic booster and improve the reliability.
  • One embodiment of the present invention includes at least two shells and a power piston disposed between the two shells to define two chambers and having a diaphragm, the wall thickness of which constitutes an outer edge of the diaphragm.
  • a pneumatic booster that is housed between the outer peripheries of the two shells and seals the two chambers, wherein the power piston advances to cause a portion of the diaphragm to One of the two chambers formed by the shell disposed on the forward side and the power piston in a state of being in contact with the inner peripheral surface of the shell disposed on the forward side of the shell; It is characterized in that a communication portion is formed for communicating with the thick portion accommodation chamber in which the thick portion is accommodated.
  • FIG. 2 is a front view of a single diaphragm of the pneumatic booster of FIG. 1. It is sectional drawing which shows the thick part periphery of the diaphragm of the pneumatic booster of FIG. 1 in the state which the front power piston advanced. It is a front view of a single diaphragm of a pneumatic booster according to a second embodiment of the present invention. It is sectional drawing which shows the thick part periphery of the diaphragm in the state which the power piston advanced of the pneumatic booster which concerns on the 3rd Embodiment of this invention.
  • FIG. 11 is a cross-sectional view showing the vicinity of the thick portion of the diaphragm of the conventional pneumatic booster when the power piston has advanced.
  • FIG. 1 schematically shows a configuration of a pneumatic booster 50 according to a first embodiment of the present invention.
  • the pneumatic booster 50 according to the first embodiment of the present invention is of a tandem type including two power pistons 7 and 8, and includes a front shell 1 and a rear shell 2.
  • the inside of the housing 3 is divided into two chambers on the front side and the rear side by the center shell 4.
  • the front chamber is divided into a constant pressure chamber 9 and a variable pressure chamber 11 by a power piston 7 equipped with a diaphragm 5.
  • the rear chamber is partitioned into a constant pressure chamber 10 and a variable pressure chamber 12 by a power piston 8 having a diaphragm 6.
  • Each power piston 7, 8 has a structure supported by the valve body 13.
  • the thick portion 70 formed on the outer edge of the diaphragm 5 of the power piston 7 is accommodated in the annular thick portion accommodation chamber 72 formed between the outer peripheral portion of the front shell 1 and the outer peripheral portion of the center shell 4.
  • the constant pressure chamber 9 and the variable pressure chamber 11 are sealed from the outside of the housing 3 to be airtight (see also FIG. 3).
  • the thick portion 74 formed on the outer edge of the diaphragm 6 of the power piston 8 is accommodated in the annular thick portion accommodation chamber 76 formed between the outer peripheral portion of the center shell 4 and the outer peripheral portion of the rear shell 2.
  • the constant pressure chamber 10 and the variable pressure chamber 12 are sealed from the outside of the housing 3 to be airtight.
  • the valve body 13 is slidably and slidably inserted into the center shell 4 and the rear shell 2, and the rear end portion extends to the outside of the housing 3.
  • the rear shell 2 has a small-diameter cylindrical portion 2a in which the valve body 13 is inserted, and a dust boot 14 is attached to the small-diameter cylindrical portion 2a.
  • the dust boot 14 covers the hollow shaft portion 13b of the valve body 13 extending from the housing 3.
  • the valve body 13 includes a cup-shaped main body portion 13a and a hollow shaft portion 13b, which are connected to each other.
  • the main body portion 13a serves as a sliding portion for the center shell 4, and the hollow shaft portion 13b for the rear shell 2. Each is configured as a sliding portion.
  • a substantially cylindrical hollow boss portion 13c is formed on the cup-shaped bottom portion of the main body portion 13a.
  • two constant pressure chambers 9 and 10 are communicated with each other, and each constant pressure chamber 9 and 10 is connected to a valve device 22 provided in the hollow shaft portion 13b.
  • Passages 15a and 15b are provided.
  • the main body portion 13a of the valve body 13 is provided with a first atmosphere passage 16 that connects the rear pressure changing chamber 12 to the valve device 22 in the hollow shaft portion 13b.
  • a plurality of (two in the present embodiment) communication pipes 18 having a cylindrical shape are arranged in the constant pressure chamber 10 on the rear side.
  • a second atmosphere passage 17 that connects the front side with the variable pressure chamber 11 is provided.
  • one end of each of the communication pipes 18 is press-fitted and fixed to the center shell 4, and the other end thereof is hermetically and slidably inserted into the power piston 8 on the rear side to be close to the rear shell 2. It has been extended to the part.
  • a penetrating rod 41 is inserted into each of the communication pipes 18 so as to extend through the front shell 1 and the rear shell 2 in an airtight manner and the power piston 7 on the front side in an airtight manner.
  • Stud bolts 42 and 43 are integrally provided at both ends of the penetrating rod 41.
  • the stud bolts 42 and 43 are arranged upright on the rear surface of the rear shell 2 and the front surface of the front shell 1. There is.
  • the through rod 41 and the stud bolts 42 and 43 are provided at two intervals of 180 degrees in the circumferential direction, but the rear shell 2 and the front shell 1 are different in 90 degree phase from these stud bolts.
  • Two general-purpose stud bolts 44 are erected at the position.
  • an engine negative pressure is introduced into the front side constant pressure chamber 9 through a pipe joint 19 provided in the front shell 1, and this negative pressure is transmitted through the negative pressure passages 15a and 15b to the rear side. It is also introduced into the constant pressure chamber 10.
  • the valve device 22 interlocks with the input rod 24 as an input shaft that moves forward and backward with respect to the front shell 1 and the rear shell 2, and switches the variable pressure chambers 11 and 12 to communicate with the constant pressure chambers 9 and 10 or the outside air.
  • poppet valve 27 negative pressure valve 29, atmosphere valve 31, and valve spring 32.
  • the plunger 25 is fitted in the hollow inside of the hollow boss portion 13c of the valve body 13 so as to be slidable along the axial direction, and is connected to an input rod 24 that works together with a brake pedal (not shown).
  • the rear end of the poppet valve 27 is fixed to the inner peripheral surface of the hollow shaft portion 13b of the valve body 13 by a pressing member 26.
  • the negative pressure valve 29 is configured such that the outer peripheral edge portion of the front end portion of the poppet valve 27 and the negative pressure valve seat 28 formed on the inner peripheral surface of the hollow shaft portion 13b (hollow boss portion 13c) of the valve body 13 are in contact with each other. It is configured so as to be in contact with and separated from each other.
  • the atmosphere valve 31 is configured such that an inner peripheral edge portion of the front side end portion of the poppet valve 27 and an annular atmosphere valve seat 30 formed at the rear side end portion of the plunger 25 are in contact with and separated from each other. Is.
  • One end of the valve spring 32 is locked to the input rod 24 and constantly urges the poppet valve 27 in the valve closing direction.
  • a return spring 33 is interposed between the pressing member 26 and the input rod 24, and the plunger 25 is operated by the return spring 33 when the plunger 25 is inactive when there is no input from the brake pedal. The state where the atmosphere valve seat 30 is abutted against the inner peripheral edge of the front end of the poppet valve 27 is maintained.
  • a small diameter portion 60 having a diameter smaller than the inner diameter of the hollow inside of the hollow boss 13c is provided at the tip end portion of the plunger 25.
  • the tip end surface of the plunger 25 has a small diameter. It is composed of a first tip surface 25a located at the tip of the portion 60 and a second tip surface 25b that extends radially outward from the base end of the small diameter portion 60.
  • the first tip end surface 25a faces the reaction member 35, which will be described later, in contact with it, and the second tip end surface 25b faces the reaction member 64, which will be described later, in contact therewith.
  • an annular engaging groove 62 having a predetermined width is formed on the outer peripheral portion on the rear end side of the plunger 25.
  • a stop key 39 as a retracting end regulating member is inserted from the radial direction of the hollow boss portion 13c, that is, a substantially boundary portion between the main body portion 13a of the valve body 13 and the hollow shaft portion 13b.
  • one end of the stop key 39 projects into the hollow interior of the hollow boss portion 13c, and the other end projects into the rear-side transformer chamber 12, and one end of the stop key 39 that projects into the hollow interior of the hollow boss portion 13c.
  • the side is engaged with a locking groove 62 provided in the plunger 25 which is one component of the valve device 22.
  • the stop key 39 moves in the axial direction together with the valve body 13 or the input rod 24 to define the retracted ends of the valve body 13 and the input rod 24, and is provided in the small-diameter cylindrical portion 2 a of the rear shell 2.
  • the position in contact with the step portion 40 is the original position. Further, the stop key 39 regulates the relative movement amount between the valve body 13 and the plunger 25.
  • a counterbore portion 68 is formed at the tip end side opening of the hollow boss portion 13c of the valve body 13, and a reaction member 64 is slidable in the counterbore portion 68 along the axial direction. It is arranged.
  • the reaction force member 64 has an annular shape, and one surface 65 faces a reaction member 35, which will be described later, based on the sliding direction of the reaction force member 64, and a part of the other surface 66 is the first side of the plunger 25. 2 is opposed to the tip surface 25b.
  • the remaining portion of the other surface 66 of the reaction force member 64 faces the bearing surface of the counterbore portion 68 of the hollow boss portion 13c so as to be able to come into contact therewith.
  • a reaction member 35 made of an elastic body such as rubber and a large diameter portion 36a of the output rod 36 are arranged at the tip of the hollow boss portion 13c of the valve body 13, and the plunger 25 and the reaction force member 64 are provided. It can come into contact with the back surface of the reaction member 35.
  • a return spring 37 for returning the valve body 13 to its original position is provided in the cup-shaped main body 13a of the valve body 13 in the constant pressure chamber 9 on the front side.
  • the return spring 37 has one end on the front side on the rear part of the recess 1a of the front shell 1 and the other end on the rear side via a rod holder 38 on the cup bottom (hollow boss) of the main body 13a of the valve body 13.
  • the parts 13c) are arranged so as to be in contact with each other. That is, the rod holder 38 is pressed and fixed to the valve body 13 by the return spring 37.
  • the rod holder 38 has a cup portion 38a that partially covers the large-diameter portion 36a of the output rod 36 and a collar portion 38b with which the return spring 37 abuts, and the entire rod holder 38 is formed in a hat shape. ..
  • the space formed by the cup portion 38a of the rod holder 38 and the output rod 36 serves as a negative pressure passage 15c that connects the constant pressure chamber 9 to the valve device 22, and the insertion hole 47 and the rod portion of the output rod 36.
  • the annular space formed between 36 b and 36 b is a negative pressure passage 15 d that connects the constant pressure chamber 9 to the valve device 22. Further, the annular space formed between the outer periphery of the flange portion 38b of the rod holder 38 and the inner peripheral surface of the main body portion 13a of the valve body 13 serves as a negative pressure passage 15e connecting the constant pressure chamber 9 to the valve device 22.
  • the negative pressure passage 15 is composed of the respective negative pressure passages 15a, 15b, 15c, 15d and 15e, and the negative pressure passage 15 constitutes the communication passage in the present embodiment.
  • the valve body 13 is constantly urged by the return spring 37 toward the rear side (return direction).
  • the rod holder 38 also functions as a retainer that prevents the reaction member 35 and the output rod 36 from coming off the valve body 13.
  • FIG. 2 shows a front view of a single unit of the diaphragm 5 of the power piston 7.
  • the folded-back portion 78 of the diaphragm 5 is provided with a plurality of ridges 82 as communication portions 80 at intervals in the circumferential direction of the diaphragm 5. More specifically, these ridges 82 are provided in the region of the diaphragm 5 that comes into contact with the inner peripheral surface 1b of the front shell 1 when the power piston 7 is advanced, as will be described later with reference to FIG. ing.
  • each of the ridges 82 extends along the area of the diaphragm 5 that comes into contact with the inner peripheral surface 1b of the front shell 1 when the power piston 7 moves forward, in a direction orthogonal to the circumferential direction of the diaphragm 5 (in the plane of FIG. 3). It is formed so as to extend in the parallel direction) and project toward the constant pressure chamber 9 side.
  • the diaphragm 5 is provided with two insertion holes 84 into which the penetrating rod 41 is inserted and a mounting hole 86 into which the valve body 13 is mounted. Note that, as shown in FIG.
  • the diaphragm 6 of the power piston 8 is also provided with a plurality of ridges 82 as communication portions 80 at intervals in the circumferential direction of the diaphragm 6.
  • Each of these ridges 82 extends in a direction orthogonal to the circumferential direction of the diaphragm 6 along the region of the diaphragm 6 that comes into contact with the inner peripheral surface of the center shell 4 when the power piston 8 advances, and the constant pressure chamber It is formed so as to project toward the 10 side.
  • the pneumatic booster 50 is connected to a vehicle body (not shown) and a master cylinder (not shown) via stud bolts 42, 43 on both ends of the penetrating rod 41 and a general-purpose stud bolt 44.
  • a master cylinder (not shown) is coupled to the recess 1a provided in the front surface of the front shell 1.
  • the cylindrical body 48 of the master cylinder is hermetically inserted into the bottom of the recess 1a and extends into the main body 13a of the valve body 13.
  • the rod portion 36b of the output rod 36 extends into the cylindrical body 48 and is connected to the piston (not shown) of the master cylinder.
  • the operation of the pneumatic booster 50 according to the first embodiment of the present invention will be described.
  • the plunger 25 moves forward together with the input rod 24, and the atmosphere valve seat 30 at the rear end of the plunger 25 moves to the inner peripheral edge of the front end of the poppet valve 27.
  • the atmosphere valve 31 is opened apart from the part.
  • the atmosphere flows into the hollow shaft portion 13b of the valve body 13 through the silencer and the filter, and this atmosphere is introduced into the rear-side variable pressure chamber 12 through the first atmosphere passage 16 and the inside of the communication pipe 18. It is also introduced into the front-side variable pressure chamber 11 through the second atmosphere passage 17.
  • the input rod 24 retracts due to the spring force of the return spring 33, and the plunger 25 also retracts.
  • the atmosphere valve seat 30 of the plunger 25 comes into contact with the inner peripheral edge of the front side end of the poppet valve 27 to close the atmosphere valve 31, while the poppet valve 27 is lifted by the plunger 25 and the valve
  • the negative pressure valve 29 is opened apart from the negative pressure valve seat 28 of the body 13, and the negative pressure is changed through the negative pressure passages 15a and 15b and the first and second atmosphere passages 16 and 17 into the variable pressure chamber 11 on the front side and the rear side. Introduced in 12, the pressure difference is eliminated.
  • valve body 13 is retracted by the return spring 37 in the constant pressure chamber 9 on the front side, and the stop key 39 abutting on the valve body 13 is moved to the step portion 40 in the rear shell 2.
  • the negative pressure valve 29 is closed by returning to the abutting original position.
  • the pneumatic booster 50 as one of the inspection steps after the assembly, for example, when the atmospheric pressure is introduced into the variable pressure chamber 11, the negative pressure is applied to the constant pressure chamber 9. Pressure is applied and an airtight leak detection step is performed to check for airtight leaks.
  • a pressure difference is generated between the constant pressure chamber 9 and the variable pressure chamber 11 and the power piston 7 advances, as shown in FIG. 3, among the folded-back portions 78 of the diaphragm 5, the inner peripheral surface of the front shell 1 is formed. The area of the region facing 1b increases, and due to the pressure difference, the region abuts the inner peripheral surface 1b of the front shell 1.
  • a plurality of ridge portions 82 are formed at intervals in the circumferential direction of the diaphragm 5. Therefore, the portions of the diaphragm 5 located on both sides in the extending direction of the protruding portion 82 communicate with the constant pressure chamber 9 and the thick portion accommodation chamber 72 without contacting the inner peripheral surface 1b of the front shell 1. A passage is secured. As a result, when the folded-back portion 78 of the diaphragm 5 or the like is caught during the assembly of the pneumatic booster 50, the constant pressure chamber 9 is provided outside the housing 3 via the passage secured by the protruding portion 82. Airtight leak is detected in communication with.
  • the diaphragm 6 of the power piston 8 when the power piston 8 advances, the area of the folded portion of the diaphragm 6 facing the inner peripheral surface of the center shell 4 increases, and the pressure difference is further increased. Due to the influence, the region comes into contact with the inner peripheral surface of the center shell 4. However, in the region of the diaphragm 6 that abuts the inner peripheral surface of the center shell 4, since a plurality of protrusions 82 (communication portions 80) are formed at intervals in the circumferential direction of the diaphragm 6, the diaphragm 6 of the diaphragm 6 is formed.
  • the portions of the ridges 82 located on both sides in the extending direction are provided with passages that connect the constant pressure chamber 10 and the thick portion accommodation chamber 76 without contacting the inner peripheral surface of the center shell 4.
  • the power piston 7 is generated due to the pressure difference between the two chambers (the constant pressure chamber 9 and the variable pressure chamber 11).
  • a communication portion 80 is formed for communicating between one chamber 9 of the two chambers 9 and 11 and the thick portion accommodation chamber 72.
  • the power piston 7 moves forward so that a part of the diaphragm 5 is the inner circumference of the front shell 1 arranged on the forward side of the two shells 1, 4.
  • the constant pressure chamber 9 formed by the front shell 1 and the power piston 7 and the thick portion accommodating chamber 72 in which the thick portion 70 of the diaphragm 5 is accommodated are communicated with each other while being in contact with the surface 1b. ..
  • the communication portion 80 includes the center piston 4 and the power piston 8 in a state where the power piston 8 advances and a part of the diaphragm 6 is in contact with the inner peripheral surface of the center shell 4.
  • the constant pressure chamber 10 formed by the above is communicated with the thick portion accommodating chamber 76 in which the thick portion 74 of the diaphragm 6 is accommodated.
  • a negative pressure is applied to the constant pressure chambers 9 and 10 in a state where the atmospheric pressure is introduced into the variable pressure chambers 11 and 12, and the constant pressure chamber 9 is 10, a pressure difference is generated between the variable pressure chambers 11 and 12, the power pistons 7 and 8 move forward, and a part of the diaphragms 5 and 6 become the inner peripheral surface 1b of the front shell 1 (center shell 4).
  • the constant pressure chambers 9 and 10 can communicate with the thick-walled chambers 72 and 76.
  • the airtight leak detecting step described above is performed.
  • the airtight leak can be reliably detected.
  • the airtight leak detection accuracy of the pneumatic booster 50 can be increased, and the reliability can be improved.
  • the communication portion 80 causes the diaphragm 5 of the power piston 7 to move forward when the power piston 7 advances. It is a ridge portion 82 formed in a region in contact with the inner peripheral surface 1b of the front shell 1. As can be seen in FIG. 3, the ridge 82 extends along a region where the diaphragm 5 contacts the inner peripheral surface 1b of the front shell 1 in a direction orthogonal to the circumferential direction of the diaphragm 5 (parallel to the paper surface of FIG. 3). (I.e., different directions), and also protrudes toward the constant pressure chamber 9 side. Further, as shown in FIG.
  • the ridge portion 82 as the communicating portion 80 provided on the diaphragm 6 of the power piston 8 on the rear side has the diaphragm 6 and the inner peripheral surface of the center shell 4 when the power piston 8 advances.
  • the diaphragm 6 extends in a direction orthogonal to the circumferential direction of the diaphragm 6 (direction parallel to the paper surface of FIG. 1), and projects toward the constant pressure chamber 10 side.
  • the airtight leak detecting step a pressure difference is generated between the constant pressure chambers 9 and 10 and the variable pressure chambers 11 and 12, the power pistons 7 and 8 move forward, and part of the diaphragms 5 and 6 are moved. Even when the abutting contact with the inner peripheral surface 1b of the front shell 1 (center shell 4), at least the portions of the diaphragms 5 and 6 located on both sides in the extending direction of the ridge portion 82 of the front shell 1 (center shell 4). It is possible to form a passage that allows the constant pressure chambers 9 and 10 and the thick-walled chambers 72 and 76 to communicate with each other without contacting the inner peripheral surface 1b. Therefore, if the folded-back portions of the diaphragms 5 and 6 are engaged, the airtight leak can be detected more reliably in the airtight leak detection step, and the reliability can be further improved. ..
  • FIG. 4 shows a front view of a single body of the diaphragm 5 used in the pneumatic booster according to the second embodiment of the present invention.
  • a feature of the diaphragm 5 is that the folded-back portion 78 is provided with a plurality of concave streak portions 88 as communication portions 80 at intervals in the circumferential direction of the diaphragm 5. More specifically, these recessed portions 88 are provided in the region of the diaphragm 5 that comes into contact with the inner peripheral surface 1b of the front shell 1 when the power piston 7 is advanced as shown in FIG.
  • each of the recessed portions 88 extends along the region of the diaphragm 5 that comes into contact with the inner peripheral surface 1b of the front shell 1 when the power piston 7 moves forward, in a direction orthogonal to the circumferential direction of the diaphragm 5 (in the plane of FIG. 3). It is formed so as to extend in the parallel direction) and is recessed toward the variable pressure chamber 11 side.
  • a plurality of diaphragms 6 of the power piston 8 are provided as communicating portions 80 at intervals in the circumferential direction of the diaphragm 6.
  • the concave streak portion 88 is provided.
  • Each of these ridges 88 extends in the direction orthogonal to the circumferential direction of the diaphragm 6 along the region of the diaphragm 6 that comes into contact with the inner peripheral surface of the center shell 4 when the power piston 8 advances, and the variable pressure chamber It is formed so as to be recessed toward the 12 side.
  • the pneumatic booster according to the second embodiment of the present invention causes a pressure difference between the constant pressure chambers 9 and 10 and the variable pressure chambers 11 and 12 in the airtight leak detection step. Then, even if the power pistons 7 and 8 move forward and a part of the diaphragms 5 and 6 come into contact with the inner peripheral surface 1b of the front shell 1 (center shell 4), the inner surface of the recessed line portion 88 is It is possible to form a passage that communicates between the constant pressure chambers 9 and 10 and the thick portion storage chambers 72 and 76 without contacting the inner peripheral surface 1b of the center shell 4).
  • the communicating portion 80 is the convex portion 82
  • the folded portions of the diaphragms 5 and 6 and the like may be engaged. If so, the airtight leak can be detected more reliably in the airtight leak detection step, and the reliability can be further improved.
  • FIGS. 5 and 6 illustrate the vicinity of the thick portion 70 of the diaphragm 5 in the state where the power piston 7 is advanced in the pneumatic booster according to the third and fourth embodiments of the present invention. ing.
  • a ridge portion 90 is provided as the communication portion 80. The ridge portion 90 extends along the inner peripheral surface 1b of the front shell 1 in a direction orthogonal to the circumferential direction of the front shell 1 (direction parallel to the paper surface of FIG. 5) and faces the constant pressure chamber 9 side.
  • the pneumatic booster according to the third embodiment of the present invention is provided on the inner peripheral surface of the center shell 4 in a region where it abuts the folded portion of the diaphragm 6 when the power piston 8 advances.
  • a ridge portion 90 is provided as the communication portion 80. The ridge portion 90 extends along the inner peripheral surface of the center shell 4 in a direction orthogonal to the circumferential direction of the center shell 4 and is formed to project toward the constant pressure chamber 10 side.
  • the inner peripheral surface 1b of the front shell 1 comes into contact with the folded-back portion 78 of the diaphragm 5 when the power piston 7 advances.
  • a groove 92 is provided in the area as the communication portion 80.
  • the groove 92 extends along the inner peripheral surface 1b of the front shell 1 in the direction orthogonal to the circumferential direction of the front shell 1 (the direction parallel to the paper surface of FIG. 6) and extends toward the outside of the housing 3. It is formed in a concave shape.
  • the pneumatic booster according to the fourth embodiment of the present invention is provided in an area of the inner peripheral surface of the center shell 4 that abuts the folded portion of the diaphragm 6 when the power piston 8 advances.
  • a groove 92 is provided as the communication portion 80. The groove 92 extends along the inner peripheral surface of the center shell 4 in a direction orthogonal to the circumferential direction of the center shell 4, and is formed in a manner recessed toward the outside of the housing 3.
  • the pressure difference between the constant pressure chambers 9 and 10 and the variable pressure chambers 11 and 12 in the airtight leak detection step Occurs, the power pistons 7, 8 move forward, and even if a part of the diaphragms 5, 6 come into contact with the inner peripheral surface 1b of the front shell 1 (center shell 4), at least both sides in the extending direction of the ridge 90 are extended.
  • the diaphragm 5 is not in contact with the inner peripheral surface 1b of the front shell 1 (center shell 4) located on the inner surface of the front shell 1 (center shell 4) or the inner surface of the concave portion 92, and the constant pressure chambers 9 and 10 and the meat.
  • the ridges 82 and 90 and the ridges 88 and 92 provided on the diaphragms 5 and 6 and the shells 1 and 4 as the communication portion 80 are the diaphragms 5 and 6 and the shell 1. Although it is preferable to arrange them uniformly in the circumferential direction of 4, it may be arranged at any position. Further, the number of the ridges 82, 90 and the ridges 88, 92 may be plural or one for each of the diaphragms 5, 6 or the shells 1, 4. Further, as the communicating portion 80, the convex streak portions 82, 90 and the concave streak portions 88, 92 may simultaneously exist in one diaphragm 5, 6 or the shells 1, 4.
  • the lengths, widths, heights or depths of the ridges 82 and 90 and the ridges 88 and 92 are the same as those of the constant pressure chambers 9 and 10 when the power pistons 7 and 8 are advanced.
  • the size is set to an appropriate size so that a passage communicating with the partial accommodation chambers 72 and 76 can be secured.
  • the invention is applied to the tandem type pneumatic booster including the two power pistons 7 and 8, but is naturally applied to the pneumatic booster including one power piston. It is also possible.
  • the first aspect defines at least two shells (1, 2, 4) and two chambers (9, 10, 11, 12) arranged between the two shells (1, 2, 4). And a power piston (7, 8) having a diaphragm (5, 6), and a thick portion (70, 74) forming an outer edge of the diaphragm (5, 6).
  • a pneumatic booster (50) housed between the outer peripheries of the power pistons (7, 8) for sealing the two chambers (9, 10, 11, 12).
  • a communication portion (80) is formed for communicating between the chambers (9, 10) and the thick portion storage chambers (72, 76) in which the thick portions (70, 74) are stored. ..
  • a second aspect is the first aspect, wherein the two chambers (9, 10, 11, 12) include a shell (1, 4) arranged on the advance side and the power piston (7, 8). Constant pressure chamber (9, 10) formed by the power piston (7, 8) and the shell (2, 4) disposed on the side opposite to the forward side of the two shells (1, 2, 4). ) And a variable pressure chamber (11, 12) formed by a plunger (25) arranged in a valve body (13) connected to the power piston (7, 8) by an input rod (24). By moving it, the valve device (22) is opened to introduce working gas into the variable pressure chamber (11, 12), and between the constant pressure chamber (9, 10) and the variable pressure chamber (11, 12).
  • a pressure difference is generated, and the thrust force generated in the power piston (7, 8) by the pressure difference is applied to the output rod (36) via the reaction member (35), and the output rod (36) outputs the thrust.
  • a pneumatic booster (50) that transmits a part of the reaction force acting on the reaction member (35) to the input rod (24) via the plunger (25), and the communication section (80) is ,
  • the ridges (82, 90) are formed so as to extend in a direction orthogonal to the circumferential direction of the diaphragms (5, 6) and project toward the constant pressure chambers (9, 10). ..
  • a third aspect is the second aspect, wherein the ridge (82) is provided on the diaphragm (5, 6).
  • a 4th aspect is a 2nd aspect.
  • WHEREIN The said convex-line part (90) is provided in the shell (1, 4) arrange
  • a fifth aspect is the first aspect, wherein the two chambers (9, 10, 11, 12) include a shell (1, 4) arranged on the advance side and the power piston (7, 8). Constant pressure chamber (9, 10) formed by the power piston (7, 8) and the shell (2, 4) disposed on the side opposite to the forward side of the two shells (1, 2, 4). ) And a variable pressure chamber (11, 12) formed by a plunger (25) arranged in a valve body (13) connected to the power piston (7, 8) by an input rod (24). By moving it, the valve device (22) is opened to introduce working gas into the variable pressure chamber (11, 12), and between the constant pressure chamber (9, 10) and the variable pressure chamber (11, 12).
  • a pressure difference is generated, and the thrust force generated in the power piston (7, 8) by the pressure difference is applied to the output rod (36) via the reaction member (35), and the output rod (36) outputs the thrust.
  • a pneumatic booster (50) that transmits a part of the reaction force acting on the reaction member (35) to the input rod (24) via the plunger (25), and the communication section (80) is ,
  • a groove (88, 92) extending along a direction orthogonal to the circumferential direction of the diaphragm (5, 6) and formed to be recessed toward the variable pressure chamber (11, 12). ..
  • a sixth aspect is the fifth aspect, wherein the recessed portion (88) is provided on the diaphragm (5, 6).
  • the groove (92) is provided in the shell (1, 4) arranged on the advance side.
  • the present invention is not limited to the above-described embodiment, and various modifications are included.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Braking Systems And Boosters (AREA)

Abstract

This atmospheric booster device has a connection part formed so as to connect a constant pressure chamber with a thick part storage chamber which stores a thick part in a state where a power piston advances and a part of a diaphragm abuts against the inner peripheral surface of a front shell. Thus, in a step for detecting airtightness leakage, a folding part or the like of the diaphragm is bitten-in during assembling of the atmospheric booster device even in the state where the power piston advances and a part of the diaphragm abuts against the inner peripheral surface of the front shell. If the airtight state of the constant pressure chamber is not maintained, a route which enables the constant pressure chamber to be connected with the outside of a housing via the thick part storage chamber is secured. Thus, detection of airtightness leakage can be ensured. As a result, the detection accuracy of the airtightness leakage can be improved, and reliability can be improved.

Description

気圧式倍力装置Pneumatic booster
 本発明は、気圧式倍力装置に関するものである。 The present invention relates to a pneumatic booster.
 気圧式倍力装置として、少なくとも2つのシェルを有するハウジング内をパワーピストンにより定圧室と変圧室とに画成し、パワーピストンに連結されたバルブボディ内に配置されたプランジャを入力ロッドによって移動させることにより、弁装置を開いて変圧室に作動気体(大気圧)を導入して、エンジン負圧が導入されている定圧室と変圧室との間に圧力差を発生させ、この圧力差によってパワーピストンに生じた推力を、リアクション部材を介して出力ロッドに作用させると共に、出力ロッドからリアクション部材に作用する出力反力の一部を、プランジャを介して入力ロッドに伝達する構造のものがある。例えば、特許文献1には、そのような構造の気圧式倍力装置において、シェルの周方向に対する位置決めを行うための周方向規制部を形成し、シェルの位置決めを容易にしたものが開示されている。 As a pneumatic booster, a constant pressure chamber and a variable pressure chamber are defined by a power piston in a housing having at least two shells, and a plunger arranged in a valve body connected to the power piston is moved by an input rod. As a result, the valve device is opened and working gas (atmospheric pressure) is introduced into the variable pressure chamber to generate a pressure difference between the constant pressure chamber where the engine negative pressure is introduced and the variable pressure chamber. There is a structure in which a thrust force generated in a piston is caused to act on an output rod via a reaction member, and a part of an output reaction force acting on the reaction member from the output rod is transmitted to an input rod via a plunger. For example, Patent Document 1 discloses a pneumatic booster having such a structure, in which a circumferential direction regulating portion for positioning the shell in the circumferential direction is formed to facilitate positioning of the shell. There is.
 又、図7には、上述したような構造の気圧式倍力装置の、パワーピストン100の外周部周辺の断面を示している。図7に示すように、ハウジング102内を定圧室104と変圧室106とに画成するパワーピストン100は、外縁に肉厚部110を有するダイヤフラム108を有しており、そのダイヤフラム108の肉厚部110が、シェル112の外周部とシェル114の外周部との間に収容されることで、定圧室104及び変圧室106をハウジング102の外部からシールして気密するようになっている。なお、図7には、定圧室104と変圧室106との間に圧力差を発生させて、パワーピストン100を図7における左側へ前進させた状態を示している。 Further, FIG. 7 shows a cross section around the outer peripheral portion of the power piston 100 of the pneumatic booster having the above-described structure. As shown in FIG. 7, the power piston 100 that defines the inside of the housing 102 into a constant pressure chamber 104 and a variable pressure chamber 106 has a diaphragm 108 having a thick portion 110 at the outer edge, and the thickness of the diaphragm 108 is increased. By accommodating the part 110 between the outer peripheral part of the shell 112 and the outer peripheral part of the shell 114, the constant pressure chamber 104 and the variable pressure chamber 106 are sealed from the outside of the housing 102 to be airtight. Note that FIG. 7 shows a state in which a pressure difference is generated between the constant pressure chamber 104 and the variable pressure chamber 106 and the power piston 100 is advanced to the left side in FIG. 7.
特開2018-127009号公報Japanese Patent Laid-Open No. 2018-127090
 ところで、上述したような気圧式倍力装置の組立時に、パワーピストン100のダイヤフラム108の折り返し部108a等が噛み込まれ、その部位から負圧が漏れる不具合が発生している。このような不具合は、気圧式倍力装置の組立後に、定圧室104と変圧室106との間に実際に圧力差を発生させて気密漏れをチェックする、気密漏れ検出工程において検出されるべき事象である。しかしながら、定圧室104と変圧室106との間に圧力差を発生させると、図7に示すように、パワーピストン100が前進して、ダイヤフラム108の折り返し部108aの一部が、圧力差の影響により引っ張られてシェル112の内周面に当接するため、ダイヤフラム108の噛み込みが発生していても、定圧室104が気密状態になってしまう。このように意図しない方法で気密されてしまうため、気密漏れ検出工程で検出できない問題があった。 By the way, at the time of assembling the pneumatic booster as described above, the folded portion 108a of the diaphragm 108 of the power piston 100 or the like is caught, and there is a problem that negative pressure leaks from that portion. Such a defect is an event to be detected in the airtight leak detection step of actually generating a pressure difference between the constant pressure chamber 104 and the variable pressure chamber 106 to check the airtight leak after the pneumatic booster is assembled. Is. However, when a pressure difference is generated between the constant pressure chamber 104 and the variable pressure chamber 106, as shown in FIG. 7, the power piston 100 advances and a part of the folded portion 108a of the diaphragm 108 influences the pressure difference. Since it is pulled by and comes into contact with the inner peripheral surface of the shell 112, the constant pressure chamber 104 becomes airtight even if the diaphragm 108 is caught. As described above, the airtightness is prevented by an unintended method, and there is a problem that the airtightness leak detection step cannot detect the leak.
 本発明の目的は、気圧式倍力装置の気密漏れの検出精度を高め、信頼性を向上することにある。 The object of the present invention is to improve the detection accuracy of the airtight leak of the pneumatic booster and improve the reliability.
 本発明の一実施形態は、少なくとも2つのシェルと、該2つのシェルの間に配置されて2つの室を画成し、ダイヤフラムを備えるパワーピストンとを含み、前記ダイヤフラムの外縁を構成する肉厚部が、前記2つのシェルの外周部の間に収容されて、前記2つの室をシールする気圧式倍力装置であって、前記パワーピストンが前進して前記ダイヤフラムの一部が、前記2つのシェルのうち前進側に配置されたシェルの内周面と当接した状態で、前記2つの室のうち前記前進側に配置されたシェルと前記パワーピストンとにより形成される一方の室と、前記肉厚部が収容された肉厚部収容室との間を連通するための、連通部が形成されていることを特徴とするものである。 One embodiment of the present invention includes at least two shells and a power piston disposed between the two shells to define two chambers and having a diaphragm, the wall thickness of which constitutes an outer edge of the diaphragm. Is a pneumatic booster that is housed between the outer peripheries of the two shells and seals the two chambers, wherein the power piston advances to cause a portion of the diaphragm to One of the two chambers formed by the shell disposed on the forward side and the power piston in a state of being in contact with the inner peripheral surface of the shell disposed on the forward side of the shell; It is characterized in that a communication portion is formed for communicating with the thick portion accommodation chamber in which the thick portion is accommodated.
 本発明の一実施形態によれば、気圧式倍力装置の気密漏れの検出精度を高め、信頼性を向上することが可能となる。 According to the embodiment of the present invention, it is possible to improve the detection accuracy of the airtight leak of the pneumatic booster and improve the reliability.
本発明の第1の実施の形態に係る気圧式倍力装置の全体構造を示す断面図である。It is sectional drawing which shows the whole structure of the pneumatic booster which concerns on the 1st Embodiment of this invention. 図1の気圧式倍力装置のダイヤフラム単体の正面図である。FIG. 2 is a front view of a single diaphragm of the pneumatic booster of FIG. 1. 図1の気圧式倍力装置の、前方側のパワーピストンが前進した状態におけるダイヤフラムの肉厚部周辺を示す断面図である。It is sectional drawing which shows the thick part periphery of the diaphragm of the pneumatic booster of FIG. 1 in the state which the front power piston advanced. 本発明の第2の実施の形態に係る気圧式倍力装置の、ダイヤフラム単体の正面図である。It is a front view of a single diaphragm of a pneumatic booster according to a second embodiment of the present invention. 本発明の第3の実施の形態に係る気圧式倍力装置の、パワーピストンが前進した状態におけるダイヤフラムの肉厚部周辺を示す断面図である。It is sectional drawing which shows the thick part periphery of the diaphragm in the state which the power piston advanced of the pneumatic booster which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る気圧式倍力装置の、パワーピストンが前進した状態におけるダイヤフラムの肉厚部周辺を示す断面図である。It is sectional drawing which shows the thick part periphery of the diaphragm of the pneumatic booster which concerns on the 4th Embodiment of this invention in the state which the power piston advanced. 従来の気圧式倍力装置の、パワーピストンが前進した状態におけるダイヤフラムの肉厚部周辺を示す断面図である。FIG. 11 is a cross-sectional view showing the vicinity of the thick portion of the diaphragm of the conventional pneumatic booster when the power piston has advanced.
 以下、実施の形態を図面に基づき説明する。なお、図1~図6において、共通する部分については同一の符号を付しており、又、図1、図3、図5及び図6において、各図の左側を前方側(フロント側)、右側を後方側(リヤ側)として図示している。
 図1は、本発明の第1の実施の形態に係る気圧式倍力装置50の構成を概略的に示している。図示のように、本発明の第1の実施の形態に係る気圧式倍力装置50は、2つのパワーピストン7、8を備えたタンデム型で構成されており、フロントシェル1とリヤシェル2とからなるハウジング3内を、センターシェル4によりフロント側及びリヤ側の2室に区画している。
Embodiments will be described below with reference to the drawings. 1 to 6, the common parts are denoted by the same reference numerals, and in FIGS. 1, 3, 5, and 6, the left side of each figure is the front side (front side), The right side is shown as the rear side (rear side).
FIG. 1 schematically shows a configuration of a pneumatic booster 50 according to a first embodiment of the present invention. As shown, the pneumatic booster 50 according to the first embodiment of the present invention is of a tandem type including two power pistons 7 and 8, and includes a front shell 1 and a rear shell 2. The inside of the housing 3 is divided into two chambers on the front side and the rear side by the center shell 4.
 更に、フロント側の室は、ダイヤフラム5を備えたパワーピストン7により、定圧室9と変圧室11とに区画されている。一方、リヤ側の室は、ダイヤフラム6を備えたパワーピストン8により、定圧室10と変圧室12とに区画されている。各パワーピストン7、8は、バルブボディ13に支持された構造となっている。又、パワーピストン7のダイヤフラム5の外縁に形成された肉厚部70が、フロントシェル1の外周部とセンターシェル4の外周部との間に形成された環状の肉厚部収容室72に収容されて、定圧室9及び変圧室11をハウジング3の外部からシールして気密している(図3も参照)。同様に、パワーピストン8のダイヤフラム6の外縁に形成された肉厚部74が、センターシェル4の外周部とリヤシェル2の外周部との間に形成された環状の肉厚部収容室76に収容されて、定圧室10及び変圧室12をハウジング3の外部からシールして気密している。 Furthermore, the front chamber is divided into a constant pressure chamber 9 and a variable pressure chamber 11 by a power piston 7 equipped with a diaphragm 5. On the other hand, the rear chamber is partitioned into a constant pressure chamber 10 and a variable pressure chamber 12 by a power piston 8 having a diaphragm 6. Each power piston 7, 8 has a structure supported by the valve body 13. Further, the thick portion 70 formed on the outer edge of the diaphragm 5 of the power piston 7 is accommodated in the annular thick portion accommodation chamber 72 formed between the outer peripheral portion of the front shell 1 and the outer peripheral portion of the center shell 4. Thus, the constant pressure chamber 9 and the variable pressure chamber 11 are sealed from the outside of the housing 3 to be airtight (see also FIG. 3). Similarly, the thick portion 74 formed on the outer edge of the diaphragm 6 of the power piston 8 is accommodated in the annular thick portion accommodation chamber 76 formed between the outer peripheral portion of the center shell 4 and the outer peripheral portion of the rear shell 2. Thus, the constant pressure chamber 10 and the variable pressure chamber 12 are sealed from the outside of the housing 3 to be airtight.
 バルブボディ13は、センターシェル4及びリヤシェル2に対して気密的にかつ摺動可能に挿通され、ハウジング3の外まで後端部が延びている。なお、リヤシェル2はバルブボディ13の挿通部分が小径筒部2aとして構成されており、この小径筒部2aにはダストブーツ14が装着されている。ダストブーツ14はバルブボディ13の、ハウジング3から延出する中空軸部13bを覆っている。バルブボディ13は、カップ状の本体部13aと中空軸部13bとが連設して構成されており、その本体部13aがセンターシェル4に対する摺動部として、その中空軸部13bがリヤシェル2に対する摺動部として、夫々構成されている。更に、本体部13aのカップ状の底部分には、略筒状の中空ボス部13cが形成されている。バルブボディ13の本体部13aには、2つの定圧室9と10とを相互に連通し、かつ、各定圧室9、10を中空軸部13b内に設けた弁装置22へ接続する、負圧通路15a、15bが設けられている。又、バルブボディ13の本体部13aには、リヤ側の変圧室12を中空軸部13b内の弁装置22へ接続する第1大気通路16が設けられている。 The valve body 13 is slidably and slidably inserted into the center shell 4 and the rear shell 2, and the rear end portion extends to the outside of the housing 3. The rear shell 2 has a small-diameter cylindrical portion 2a in which the valve body 13 is inserted, and a dust boot 14 is attached to the small-diameter cylindrical portion 2a. The dust boot 14 covers the hollow shaft portion 13b of the valve body 13 extending from the housing 3. The valve body 13 includes a cup-shaped main body portion 13a and a hollow shaft portion 13b, which are connected to each other. The main body portion 13a serves as a sliding portion for the center shell 4, and the hollow shaft portion 13b for the rear shell 2. Each is configured as a sliding portion. Further, a substantially cylindrical hollow boss portion 13c is formed on the cup-shaped bottom portion of the main body portion 13a. In the main body portion 13a of the valve body 13, two constant pressure chambers 9 and 10 are communicated with each other, and each constant pressure chamber 9 and 10 is connected to a valve device 22 provided in the hollow shaft portion 13b. Passages 15a and 15b are provided. Further, the main body portion 13a of the valve body 13 is provided with a first atmosphere passage 16 that connects the rear pressure changing chamber 12 to the valve device 22 in the hollow shaft portion 13b.
 一方、リヤ側の定圧室10内には、筒状の複数(本実施形態では2本)の連通管18が配設されており、各連通管18の内部には、リヤ側の変圧室12とフロント側の変圧室11とを連通する第2大気通路17が設けられている。又、各連通管18は、その一端部がセンターシェル4に圧入固定されると共に、その他端部がリヤ側のパワーピストン8に気密的にかつ摺動可能に挿通されて、リヤシェル2に近接する部位まで延ばされている。各連通管18内には、フロントシェル1とリヤシェル2とを気密的に貫通し、かつ、フロント側のパワーピストン7を気密的に貫通して延ばした、貫通ロッド41が挿入されている。この貫通ロッド41の両端部には、スタッドボルト42、43が一体的に設けられており、これらスタッドボルト42、43は、リヤシェル2の後面及びフロントシェル1の前面に直立する状態で配置されている。なお、この貫通ロッド41及びスタッドボルト42、43は、円周方向に180度間隔で2本設けられているが、リヤシェル2及びフロントシェル1には、これらのスタッドボルトと90度位相が異なった位置に、汎用のスタッドボルト44が2本立設されている。他方、フロント側の定圧室9には、フロントシェル1に設けた管継手19を通じて、例えばエンジン負圧が導入されるようになっており、この負圧は、負圧通路15a、15bを通じてリヤ側の定圧室10にも導入される。 On the other hand, in the constant pressure chamber 10 on the rear side, a plurality of (two in the present embodiment) communication pipes 18 having a cylindrical shape are arranged. A second atmosphere passage 17 that connects the front side with the variable pressure chamber 11 is provided. Further, one end of each of the communication pipes 18 is press-fitted and fixed to the center shell 4, and the other end thereof is hermetically and slidably inserted into the power piston 8 on the rear side to be close to the rear shell 2. It has been extended to the part. A penetrating rod 41 is inserted into each of the communication pipes 18 so as to extend through the front shell 1 and the rear shell 2 in an airtight manner and the power piston 7 on the front side in an airtight manner. Stud bolts 42 and 43 are integrally provided at both ends of the penetrating rod 41. The stud bolts 42 and 43 are arranged upright on the rear surface of the rear shell 2 and the front surface of the front shell 1. There is. The through rod 41 and the stud bolts 42 and 43 are provided at two intervals of 180 degrees in the circumferential direction, but the rear shell 2 and the front shell 1 are different in 90 degree phase from these stud bolts. Two general-purpose stud bolts 44 are erected at the position. On the other hand, for example, an engine negative pressure is introduced into the front side constant pressure chamber 9 through a pipe joint 19 provided in the front shell 1, and this negative pressure is transmitted through the negative pressure passages 15a and 15b to the rear side. It is also introduced into the constant pressure chamber 10.
 弁装置22は、フロントシェル1及びリヤシェル2に対して進退する入力軸としての入力ロッド24に連動して、変圧室11、12を定圧室9、10或いは外気に連通切換するものであり、プランジャ25、ポペット弁27、負圧弁29、大気弁31及び弁ばね32から構成されている。プランジャ25は、バルブボディ13の中空ボス部13cの中空内部に、軸方向に沿って摺動可能に嵌装され、かつ、ブレーキペダル(図示略)と連動する入力ロッド24に連結されている。ポペット弁27は、そのリヤ側端部が、バルブボディ13の中空軸部13bの内周面に対して、押え部材26により固定されている。 The valve device 22 interlocks with the input rod 24 as an input shaft that moves forward and backward with respect to the front shell 1 and the rear shell 2, and switches the variable pressure chambers 11 and 12 to communicate with the constant pressure chambers 9 and 10 or the outside air. 25, poppet valve 27, negative pressure valve 29, atmosphere valve 31, and valve spring 32. The plunger 25 is fitted in the hollow inside of the hollow boss portion 13c of the valve body 13 so as to be slidable along the axial direction, and is connected to an input rod 24 that works together with a brake pedal (not shown). The rear end of the poppet valve 27 is fixed to the inner peripheral surface of the hollow shaft portion 13b of the valve body 13 by a pressing member 26.
 負圧弁29は、ポペット弁27のフロント側端部の外周縁部と、バルブボディ13の中空軸部13b(中空ボス部13c)の内周面に形成された負圧用弁座28とが、当接・離間して構成されるものである。大気弁31は、ポペット弁27のフロント側端部の内周縁部と、プランジャ25のリヤ側端部に形成された環状の大気用弁座30とが、当接・離間して構成されるものである。弁ばね32は、入力ロッド24に一端が係止され、常時、ポペット弁27を閉弁方向へ付勢している。なお、押え部材26と入力ロッド24との間には、戻しばね33が介装されており、プランジャ25は、ブレーキペダルからの入力がない非作動時には、この戻しばね33により、そのリヤ側端部の大気用弁座30をポペット弁27のフロント側端部の内周縁部に当接させる状態を、維持するようになっている。 The negative pressure valve 29 is configured such that the outer peripheral edge portion of the front end portion of the poppet valve 27 and the negative pressure valve seat 28 formed on the inner peripheral surface of the hollow shaft portion 13b (hollow boss portion 13c) of the valve body 13 are in contact with each other. It is configured so as to be in contact with and separated from each other. The atmosphere valve 31 is configured such that an inner peripheral edge portion of the front side end portion of the poppet valve 27 and an annular atmosphere valve seat 30 formed at the rear side end portion of the plunger 25 are in contact with and separated from each other. Is. One end of the valve spring 32 is locked to the input rod 24 and constantly urges the poppet valve 27 in the valve closing direction. A return spring 33 is interposed between the pressing member 26 and the input rod 24, and the plunger 25 is operated by the return spring 33 when the plunger 25 is inactive when there is no input from the brake pedal. The state where the atmosphere valve seat 30 is abutted against the inner peripheral edge of the front end of the poppet valve 27 is maintained.
 プランジャ25の先端部には、中空ボス部13cの中空内部の内径より小さい径の小径部60が設けられており、この小径部60が設けられていることで、プランジャ25の先端面は、小径部60の先端に位置する第1の先端面25aと、小径部60の基端から放射方向外側へ延びる第2の先端面25bとで構成されている。第1の先端面25aは、後述するリアクション部材35に当接可能に対向しており、第2の先端面25bは、後述する反力部材64に当接可能に対向している。更に、プランジャ25の後端側の外周部には、本実施形態では環状の所定幅の係止溝62が形成されている。 A small diameter portion 60 having a diameter smaller than the inner diameter of the hollow inside of the hollow boss 13c is provided at the tip end portion of the plunger 25. By providing the small diameter portion 60, the tip end surface of the plunger 25 has a small diameter. It is composed of a first tip surface 25a located at the tip of the portion 60 and a second tip surface 25b that extends radially outward from the base end of the small diameter portion 60. The first tip end surface 25a faces the reaction member 35, which will be described later, in contact with it, and the second tip end surface 25b faces the reaction member 64, which will be described later, in contact therewith. Further, in the present embodiment, an annular engaging groove 62 having a predetermined width is formed on the outer peripheral portion on the rear end side of the plunger 25.
 バルブボディ13の本体部13aと中空軸部13bとの略境界部分、すなわち、中空ボス部13cには、その半径方向から後退端規定部材としてのストップキー39が挿入されている。この状態で、ストップキー39は、その一端側が中空ボス部13cの中空内部に突出すると共に、その他端側がリヤ側の変圧室12内に突出しており、中空ボス部13cの中空内部に突出した一端側が、弁装置22の一構成であるプランジャ25に設けられた係止溝62に係入されている。このストップキー39は、バルブボディ13又は入力ロッド24と共に軸方向に沿って移動し、バルブボディ13及び入力ロッド24の後退端を規定するものであり、リヤシェル2の小径筒部2aに設けられた段差部40に当接する位置が原位置となる。更に、ストップキー39によって、バルブボディ13とプランジャ25との間の相対移動量が規制されるようになっている。 A stop key 39 as a retracting end regulating member is inserted from the radial direction of the hollow boss portion 13c, that is, a substantially boundary portion between the main body portion 13a of the valve body 13 and the hollow shaft portion 13b. In this state, one end of the stop key 39 projects into the hollow interior of the hollow boss portion 13c, and the other end projects into the rear-side transformer chamber 12, and one end of the stop key 39 that projects into the hollow interior of the hollow boss portion 13c. The side is engaged with a locking groove 62 provided in the plunger 25 which is one component of the valve device 22. The stop key 39 moves in the axial direction together with the valve body 13 or the input rod 24 to define the retracted ends of the valve body 13 and the input rod 24, and is provided in the small-diameter cylindrical portion 2 a of the rear shell 2. The position in contact with the step portion 40 is the original position. Further, the stop key 39 regulates the relative movement amount between the valve body 13 and the plunger 25.
 又、バルブボディ13の中空ボス部13cの先端側開口部には、座繰り部68が形成されており、この座繰り部68内に、軸方向に沿って摺動可能に反力部材64が配置されている。反力部材64は、本実施形態では環状をなし、その摺動方向を基準として、一方の面65が後述するリアクション部材35に対向しており、他方の面66の一部がプランジャ25の第2の先端面25bに対向している。なお、反力部材64の他方の面66の残りの部分は、中空ボス部13cの座繰り部68の座面に当接可能に対向している。一方、バルブボディ13の中空ボス部13cの先端には、ゴム等の弾性体からなるリアクション部材35と、出力ロッド36の大径部36aとが配置されており、プランジャ25及び反力部材64がリアクション部材35の背面に当接可能となっている。 Further, a counterbore portion 68 is formed at the tip end side opening of the hollow boss portion 13c of the valve body 13, and a reaction member 64 is slidable in the counterbore portion 68 along the axial direction. It is arranged. In the present embodiment, the reaction force member 64 has an annular shape, and one surface 65 faces a reaction member 35, which will be described later, based on the sliding direction of the reaction force member 64, and a part of the other surface 66 is the first side of the plunger 25. 2 is opposed to the tip surface 25b. The remaining portion of the other surface 66 of the reaction force member 64 faces the bearing surface of the counterbore portion 68 of the hollow boss portion 13c so as to be able to come into contact therewith. On the other hand, a reaction member 35 made of an elastic body such as rubber and a large diameter portion 36a of the output rod 36 are arranged at the tip of the hollow boss portion 13c of the valve body 13, and the plunger 25 and the reaction force member 64 are provided. It can come into contact with the back surface of the reaction member 35.
 フロント側の定圧室9内で、バルブボディ13のカップ状の本体部13a内には、バルブボディ13を原位置に戻すためのリターンスプリング37が配設されている。このリターンスプリング37は、そのフロント側の一端をフロントシェル1の凹部1aの後背部に、そのリヤ側の他端を、ロッドホルダ38を介してバルブボディ13の本体部13aのカップ底(中空ボス部13c)に、夫々当接させる状態で配置されている。すなわち、ロッドホルダ38は、リターンスプリング37によってバルブボディ13に押圧固定されている。 A return spring 37 for returning the valve body 13 to its original position is provided in the cup-shaped main body 13a of the valve body 13 in the constant pressure chamber 9 on the front side. The return spring 37 has one end on the front side on the rear part of the recess 1a of the front shell 1 and the other end on the rear side via a rod holder 38 on the cup bottom (hollow boss) of the main body 13a of the valve body 13. The parts 13c) are arranged so as to be in contact with each other. That is, the rod holder 38 is pressed and fixed to the valve body 13 by the return spring 37.
 又、ロッドホルダ38は、出力ロッド36の大径部36aを部分的に覆うカップ部38aと、リターンスプリング37が当接するつば部38bとを有しており、全体がハット状に形成されている。カップ部38aの底面部38cには、その中央部に、出力ロッド36のロッド部36bが挿通される、ロッド部36bの外径よりも大きい径の挿通孔47が形成されている。ロッドホルダ38のカップ部38aと出力ロッド36とで形成される空間は、定圧室9を弁装置22へ接続する負圧通路15cとなっており、又、挿通孔47と出力ロッド36のロッド部36bとの間に形成される環状空間は、定圧室9を弁装置22へ接続する負圧通路15dとなっている。更に、ロッドホルダ38のつば部38bの外周と、バルブボディ13の本体部13aの内周面との間に形成される環状空間が、定圧室9を弁装置22へ接続する負圧通路15eとなっている。ここで、負圧通路15は、各負圧通路15a、15b、15c、15d及び15eから構成されており、負圧通路15によって、本実施形態における連通路が構成されている。そして、バルブボディ13は、リターンスプリング37により、常時リヤ側(戻り方向)へ付勢されている。なお、ロッドホルダ38は、リアクション部材35及び出力ロッド36が、バルブボディ13から離脱することを抑制する抜止めとしても機能している。 The rod holder 38 has a cup portion 38a that partially covers the large-diameter portion 36a of the output rod 36 and a collar portion 38b with which the return spring 37 abuts, and the entire rod holder 38 is formed in a hat shape. .. An insertion hole 47 having a diameter larger than the outer diameter of the rod portion 36b, into which the rod portion 36b of the output rod 36 is inserted, is formed in the central portion of the bottom surface portion 38c of the cup portion 38a. The space formed by the cup portion 38a of the rod holder 38 and the output rod 36 serves as a negative pressure passage 15c that connects the constant pressure chamber 9 to the valve device 22, and the insertion hole 47 and the rod portion of the output rod 36. The annular space formed between 36 b and 36 b is a negative pressure passage 15 d that connects the constant pressure chamber 9 to the valve device 22. Further, the annular space formed between the outer periphery of the flange portion 38b of the rod holder 38 and the inner peripheral surface of the main body portion 13a of the valve body 13 serves as a negative pressure passage 15e connecting the constant pressure chamber 9 to the valve device 22. Has become. Here, the negative pressure passage 15 is composed of the respective negative pressure passages 15a, 15b, 15c, 15d and 15e, and the negative pressure passage 15 constitutes the communication passage in the present embodiment. The valve body 13 is constantly urged by the return spring 37 toward the rear side (return direction). The rod holder 38 also functions as a retainer that prevents the reaction member 35 and the output rod 36 from coming off the valve body 13.
 ここで、図2には、パワーピストン7のダイヤフラム5の単体の正面図を示している。図示のように、このダイヤフラム5の折り返し部78には、連通部80として、ダイヤフラム5の周方向に間隔を空けて複数の凸条部82が設けられている。より詳しくは、これらの凸条部82は、図3も参照して、後述するようにパワーピストン7が前進した状態において、フロントシェル1の内周面1bと当接するダイヤフラム5の領域に設けられている。又、凸条部82の各々は、パワーピストン7の前進時にフロントシェル1の内周面1bと当接するダイヤフラム5の領域に沿って、ダイヤフラム5の周方向と直交する方向(図3の紙面と平行な方向)に延び、かつ、定圧室9側に向かって突出する態様で形成されている。又、図2に示すように、ダイヤフラム5には、各々に貫通ロッド41が挿入される2つの挿入孔84と、バルブボディ13が取り付けられる取付孔86とが設けられている。なお、図1に示すように、パワーピストン8のダイヤフラム6にも、連通部80として、ダイヤフラム6の周方向に間隔を空けて複数の凸条部82が設けられている。これらの凸条部82の各々は、パワーピストン8の前進時にセンターシェル4の内周面と当接するダイヤフラム6の領域に沿って、ダイヤフラム6の周方向と直交する方向に延び、かつ、定圧室10側に向かって突出する態様で形成されている。 Here, FIG. 2 shows a front view of a single unit of the diaphragm 5 of the power piston 7. As shown in the figure, the folded-back portion 78 of the diaphragm 5 is provided with a plurality of ridges 82 as communication portions 80 at intervals in the circumferential direction of the diaphragm 5. More specifically, these ridges 82 are provided in the region of the diaphragm 5 that comes into contact with the inner peripheral surface 1b of the front shell 1 when the power piston 7 is advanced, as will be described later with reference to FIG. ing. In addition, each of the ridges 82 extends along the area of the diaphragm 5 that comes into contact with the inner peripheral surface 1b of the front shell 1 when the power piston 7 moves forward, in a direction orthogonal to the circumferential direction of the diaphragm 5 (in the plane of FIG. 3). It is formed so as to extend in the parallel direction) and project toward the constant pressure chamber 9 side. Further, as shown in FIG. 2, the diaphragm 5 is provided with two insertion holes 84 into which the penetrating rod 41 is inserted and a mounting hole 86 into which the valve body 13 is mounted. Note that, as shown in FIG. 1, the diaphragm 6 of the power piston 8 is also provided with a plurality of ridges 82 as communication portions 80 at intervals in the circumferential direction of the diaphragm 6. Each of these ridges 82 extends in a direction orthogonal to the circumferential direction of the diaphragm 6 along the region of the diaphragm 6 that comes into contact with the inner peripheral surface of the center shell 4 when the power piston 8 advances, and the constant pressure chamber It is formed so as to project toward the 10 side.
 なお、本気圧式倍力装置50は、貫通ロッド41の両端側のスタッドボルト42、43及び汎用のスタッドボルト44を介して、車体(図示略)及びマスタシリンダ(図示略)に結合される。このとき、図1に示すように、フロントシェル1の前面に設けられた凹部1aにマスタシリンダ(図示略)が結合される。マスタシリンダの円筒状体48が凹部1aの底部に気密的に挿通されバルブボディ13の本体部13a内に延設される。そして、出力ロッド36のロッド部36bが円筒状体48内に延びて、マスタシリンダのピストン(図示略)に連結される。 The pneumatic booster 50 is connected to a vehicle body (not shown) and a master cylinder (not shown) via stud bolts 42, 43 on both ends of the penetrating rod 41 and a general-purpose stud bolt 44. At this time, as shown in FIG. 1, a master cylinder (not shown) is coupled to the recess 1a provided in the front surface of the front shell 1. The cylindrical body 48 of the master cylinder is hermetically inserted into the bottom of the recess 1a and extends into the main body 13a of the valve body 13. Then, the rod portion 36b of the output rod 36 extends into the cylindrical body 48 and is connected to the piston (not shown) of the master cylinder.
 続いて、本発明の第1の実施の形態に係る気圧式倍力装置50の作用を説明する。
 図1を参照して、ブレーキペダルが踏み込まれると、入力ロッド24と共にプランジャ25が前進し、プランジャ25のリヤ側端部の大気用弁座30が、ポペット弁27のフロント側端部の内周縁部から離間して、大気弁31が開かれる。これにより、大気が、サイレンサ及びフィルタを通してバルブボディ13の中空軸部13b内に流入し、この大気は、第1大気通路16を経てリヤ側の変圧室12に導入されると共に、連通管18内の第2大気通路17を通じてフロント側の変圧室11にも導入される。この結果、大気が導入されたフロント側及びリヤ側の変圧室11、12と、負圧が導入されているフロント側及びリヤ側の定圧室9、10との間に、速やかに圧力差が発生する。そして、この圧力差により、フロント側及びリヤ側のパワーピストン7、8が推進し、その推力が、バルブボディ13の中空ボス部13cの先端から、リアクション部材35及び出力ロッド36を経て、マスタシリンダ側へ出力される。
Next, the operation of the pneumatic booster 50 according to the first embodiment of the present invention will be described.
With reference to FIG. 1, when the brake pedal is depressed, the plunger 25 moves forward together with the input rod 24, and the atmosphere valve seat 30 at the rear end of the plunger 25 moves to the inner peripheral edge of the front end of the poppet valve 27. The atmosphere valve 31 is opened apart from the part. As a result, the atmosphere flows into the hollow shaft portion 13b of the valve body 13 through the silencer and the filter, and this atmosphere is introduced into the rear-side variable pressure chamber 12 through the first atmosphere passage 16 and the inside of the communication pipe 18. It is also introduced into the front-side variable pressure chamber 11 through the second atmosphere passage 17. As a result, a pressure difference is promptly generated between the front and rear pressure changing chambers 11 and 12 in which the atmosphere is introduced and the front and rear constant pressure chambers 9 and 10 in which the negative pressure is introduced. To do. Then, due to this pressure difference, the power pistons 7 and 8 on the front side and the rear side are propelled, and the thrust force from the tip of the hollow boss portion 13c of the valve body 13 via the reaction member 35 and the output rod 36 to the master cylinder. Is output to the side.
 一方、ブレーキペダルへの踏力が解放されると、入力ロッド24が戻しばね33のばね力によって後退すると共に、プランジャ25も後退する。これにより、プランジャ25の大気用弁座30が、ポペット弁27のフロント側端部の内周縁部に当接して大気弁31が閉じられる一方で、ポペット弁27がプランジャ25により持ち上げられて、バルブボディ13の負圧用弁座28から離間して負圧弁29が開き、負圧通路15a、15b及び第1、第2大気通路16、17を通じて、負圧がフロント側及びリヤ側の変圧室11、12に導入されて、圧力差が解消される。その後、入力ロッド24と時間差をおいて、バルブボディ13がフロント側の定圧室9内のリターンスプリング37により後退して、バルブボディ13に当接したストップキー39がリヤシェル2内の段差部40に当接する原位置に復帰して、負圧弁29が閉じられる。 On the other hand, when the depression force on the brake pedal is released, the input rod 24 retracts due to the spring force of the return spring 33, and the plunger 25 also retracts. As a result, the atmosphere valve seat 30 of the plunger 25 comes into contact with the inner peripheral edge of the front side end of the poppet valve 27 to close the atmosphere valve 31, while the poppet valve 27 is lifted by the plunger 25 and the valve The negative pressure valve 29 is opened apart from the negative pressure valve seat 28 of the body 13, and the negative pressure is changed through the negative pressure passages 15a and 15b and the first and second atmosphere passages 16 and 17 into the variable pressure chamber 11 on the front side and the rear side. Introduced in 12, the pressure difference is eliminated. Then, with a time lag from the input rod 24, the valve body 13 is retracted by the return spring 37 in the constant pressure chamber 9 on the front side, and the stop key 39 abutting on the valve body 13 is moved to the step portion 40 in the rear shell 2. The negative pressure valve 29 is closed by returning to the abutting original position.
 他方、本発明の第1の実施の形態に係る気圧式倍力装置50は、その組立後の検査工程の1つとして、例えば変圧室11に大気圧が導入された状態で定圧室9に負圧がかけられ、気密漏れを検査する気密漏れ検出工程が行われる。この際、定圧室9と変圧室11との間に圧力差が発生し、パワーピストン7が前進すると、図3に示すように、ダイヤフラム5の折り返し部78のうち、フロントシェル1の内周面1bに対向する領域の面積が増大し、更に圧力差の影響でその領域がフロントシェル1の内周面1bに当接する。ここで、フロントシェル1の内周面1bと当接するダイヤフラム5の領域には、ダイヤフラム5の周方向に間隔を空けて複数の凸条部82(連通部80)が形成されている。このため、ダイヤフラム5の、凸条部82の延在方向両側に位置する部位は、フロントシェル1の内周面1bと接触せずに、定圧室9と肉厚部収容室72とを連通する通路が確保される。これにより、気圧式倍力装置50の組立時にダイヤフラム5の折り返し部78等の噛み込みが発生していた場合は、凸条部82により確保された通路を介して定圧室9がハウジング3の外部と連通し、気密漏れが検出される。 On the other hand, in the pneumatic booster 50 according to the first embodiment of the present invention, as one of the inspection steps after the assembly, for example, when the atmospheric pressure is introduced into the variable pressure chamber 11, the negative pressure is applied to the constant pressure chamber 9. Pressure is applied and an airtight leak detection step is performed to check for airtight leaks. At this time, when a pressure difference is generated between the constant pressure chamber 9 and the variable pressure chamber 11 and the power piston 7 advances, as shown in FIG. 3, among the folded-back portions 78 of the diaphragm 5, the inner peripheral surface of the front shell 1 is formed. The area of the region facing 1b increases, and due to the pressure difference, the region abuts the inner peripheral surface 1b of the front shell 1. Here, in the region of the diaphragm 5 that contacts the inner peripheral surface 1b of the front shell 1, a plurality of ridge portions 82 (communication portions 80) are formed at intervals in the circumferential direction of the diaphragm 5. Therefore, the portions of the diaphragm 5 located on both sides in the extending direction of the protruding portion 82 communicate with the constant pressure chamber 9 and the thick portion accommodation chamber 72 without contacting the inner peripheral surface 1b of the front shell 1. A passage is secured. As a result, when the folded-back portion 78 of the diaphragm 5 or the like is caught during the assembly of the pneumatic booster 50, the constant pressure chamber 9 is provided outside the housing 3 via the passage secured by the protruding portion 82. Airtight leak is detected in communication with.
 又、パワーピストン8のダイヤフラム6についても同様であり、パワーピストン8が前進すると、ダイヤフラム6の折り返し部のうち、センターシェル4の内周面に対向する領域の面積が増大し、更に圧力差の影響でその領域がセンターシェル4の内周面に当接する。しかしながら、センターシェル4の内周面と当接するダイヤフラム6の領域には、ダイヤフラム6の周方向に間隔を空けて複数の凸条部82(連通部80)が形成されているため、ダイヤフラム6の、凸条部82の延在方向両側の位置する部位は、センターシェル4の内周面と接触せずに、定圧室10と肉厚部収容室76とを連通する通路が確保される。これにより、気圧式倍力装置50の組立時にダイヤフラム6の折り返し部等の噛み込みが発生していた場合は、凸条部82により確保された通路を介して定圧室10がハウジング3の外部と連通し、気密漏れが検出される。 The same applies to the diaphragm 6 of the power piston 8, and when the power piston 8 advances, the area of the folded portion of the diaphragm 6 facing the inner peripheral surface of the center shell 4 increases, and the pressure difference is further increased. Due to the influence, the region comes into contact with the inner peripheral surface of the center shell 4. However, in the region of the diaphragm 6 that abuts the inner peripheral surface of the center shell 4, since a plurality of protrusions 82 (communication portions 80) are formed at intervals in the circumferential direction of the diaphragm 6, the diaphragm 6 of the diaphragm 6 is formed. The portions of the ridges 82 located on both sides in the extending direction are provided with passages that connect the constant pressure chamber 10 and the thick portion accommodation chamber 76 without contacting the inner peripheral surface of the center shell 4. As a result, if the folded-back portion of the diaphragm 6 or the like is caught at the time of assembling the pneumatic booster 50, the constant pressure chamber 10 is connected to the outside of the housing 3 via the passage secured by the convex strip 82. Communication, airtight leak is detected.
 以上説明したように、本発明の第1の実施の形態に係る気圧式倍力装置50は、2つの室(定圧室9及び変圧室11)の間に圧力差が発生することでパワーピストン7が前進した以下のような状態において、2つの室9、11のうち一方の室9と肉厚部収容室72との間を連通するための、連通部80が形成されているものである。具体的に、連通部80は、図3に示すように、パワーピストン7が前進してダイヤフラム5の一部が、2つのシェル1、4のうち前進側に配置されたフロントシェル1の内周面1bと当接した状態で、フロントシェル1とパワーピストン7とにより形成される定圧室9と、ダイヤフラム5の肉厚部70が収容された肉厚部収容室72とを連通させるものである。或いは、連通部80は、図1を参照して、パワーピストン8が前進してダイヤフラム6の一部が、センターシェル4の内周面と当接した状態で、センターシェル4とパワーピストン8とにより形成される定圧室10と、ダイヤフラム6の肉厚部74が収容された肉厚部収容室76とを連通させるものである。 As described above, in the pneumatic booster 50 according to the first embodiment of the present invention, the power piston 7 is generated due to the pressure difference between the two chambers (the constant pressure chamber 9 and the variable pressure chamber 11). In the following state in which the chamber has advanced, a communication portion 80 is formed for communicating between one chamber 9 of the two chambers 9 and 11 and the thick portion accommodation chamber 72. Specifically, as shown in FIG. 3, in the communication portion 80, the power piston 7 moves forward so that a part of the diaphragm 5 is the inner circumference of the front shell 1 arranged on the forward side of the two shells 1, 4. The constant pressure chamber 9 formed by the front shell 1 and the power piston 7 and the thick portion accommodating chamber 72 in which the thick portion 70 of the diaphragm 5 is accommodated are communicated with each other while being in contact with the surface 1b. .. Alternatively, as shown in FIG. 1, the communication portion 80 includes the center piston 4 and the power piston 8 in a state where the power piston 8 advances and a part of the diaphragm 6 is in contact with the inner peripheral surface of the center shell 4. The constant pressure chamber 10 formed by the above is communicated with the thick portion accommodating chamber 76 in which the thick portion 74 of the diaphragm 6 is accommodated.
 これにより、気圧式倍力装置50を組み立てた後に行う気密漏れ検出工程において、例えば変圧室11、12に大気圧が導入された状態で定圧室9、10に負圧がかけられ、定圧室9、10と変圧室11、12との間に圧力差が発生し、パワーピストン7、8が前進して、ダイヤフラム5、6の一部がフロントシェル1(センターシェル4)の内周面1bと当接した状態でも、定圧室9、10と肉厚部収容室72、76との間を連通させることができる。このため、気圧式倍力装置50の組立時にダイヤフラム5、6の折り返し部等が噛み込まれて、定圧室9、10の気密状態が保たれていない状態であれば、上述した気密漏れ検出工程において、定圧室9、10が肉厚部収容室72、76を介してハウジング3の外部と連通するような経路が確保されるため、気密漏れを確実に検出することができる。これにより、気圧式倍力装置50の気密漏れの検出精度を高めることができ、信頼性を向上することが可能となる。 As a result, in the airtight leak detection step performed after the pneumatic booster 50 is assembled, for example, a negative pressure is applied to the constant pressure chambers 9 and 10 in a state where the atmospheric pressure is introduced into the variable pressure chambers 11 and 12, and the constant pressure chamber 9 is 10, a pressure difference is generated between the variable pressure chambers 11 and 12, the power pistons 7 and 8 move forward, and a part of the diaphragms 5 and 6 become the inner peripheral surface 1b of the front shell 1 (center shell 4). Even in the abutting state, the constant pressure chambers 9 and 10 can communicate with the thick- walled chambers 72 and 76. Therefore, if the folded portions of the diaphragms 5 and 6 are bitten during the assembly of the pneumatic booster 50 and the constant pressure chambers 9 and 10 are not kept airtight, the airtight leak detecting step described above is performed. In the above, since the path through which the constant pressure chambers 9 and 10 communicate with the outside of the housing 3 via the thick- walled chambers 72 and 76 is ensured, the airtight leak can be reliably detected. As a result, the airtight leak detection accuracy of the pneumatic booster 50 can be increased, and the reliability can be improved.
 更に、本発明の第1の実施の形態に係る気圧式倍力装置50は、図2及び図3に示すように、連通部80が、パワーピストン7のダイヤフラム5の、パワーピストン7の前進時にフロントシェル1の内周面1bと当接する領域に形成された、凸条部82であるものである。この凸条部82は、図3で確認できるように、ダイヤフラム5がフロントシェル1の内周面1bと当接する領域に沿って、ダイヤフラム5の周方向と直交する方向(図3の紙面と平行な方向)に延びており、又、定圧室9側に向かって突出している。更に、図1に示すように、後方側のパワーピストン8のダイヤフラム6に設けられた連通部80としての凸条部82は、パワーピストン8の前進時にダイヤフラム6がセンターシェル4の内周面と当接する領域に沿って、ダイヤフラム6の周方向と直交する方向(図1の紙面と平行な方向)に延びており、又、定圧室10側に向かって突出している。 Further, in the pneumatic booster 50 according to the first embodiment of the present invention, as shown in FIG. 2 and FIG. 3, the communication portion 80 causes the diaphragm 5 of the power piston 7 to move forward when the power piston 7 advances. It is a ridge portion 82 formed in a region in contact with the inner peripheral surface 1b of the front shell 1. As can be seen in FIG. 3, the ridge 82 extends along a region where the diaphragm 5 contacts the inner peripheral surface 1b of the front shell 1 in a direction orthogonal to the circumferential direction of the diaphragm 5 (parallel to the paper surface of FIG. 3). (I.e., different directions), and also protrudes toward the constant pressure chamber 9 side. Further, as shown in FIG. 1, the ridge portion 82 as the communicating portion 80 provided on the diaphragm 6 of the power piston 8 on the rear side has the diaphragm 6 and the inner peripheral surface of the center shell 4 when the power piston 8 advances. Along the contacting area, the diaphragm 6 extends in a direction orthogonal to the circumferential direction of the diaphragm 6 (direction parallel to the paper surface of FIG. 1), and projects toward the constant pressure chamber 10 side.
 上記のような構成により、気密漏れ検出工程において、定圧室9、10と変圧室11、12との間に圧力差が発生してパワーピストン7、8が前進し、ダイヤフラム5、6の一部がフロントシェル1(センターシェル4)の内周面1bと当接しても、少なくとも凸条部82の延在方向両側に位置するダイヤフラム5、6の部位が、フロントシェル1(センターシェル4)の内周面1bと接触せずに、定圧室9、10と肉厚部収容室72、76との間を連通させる通路を形成することができる。このため、ダイヤフラム5、6の折り返し部等が噛み込まれた状態であれば、気密漏れ検出工程において気密漏れをより確実に検出することができ、信頼性をより一層向上することが可能となる。 With the above-described configuration, in the airtight leak detecting step, a pressure difference is generated between the constant pressure chambers 9 and 10 and the variable pressure chambers 11 and 12, the power pistons 7 and 8 move forward, and part of the diaphragms 5 and 6 are moved. Even when the abutting contact with the inner peripheral surface 1b of the front shell 1 (center shell 4), at least the portions of the diaphragms 5 and 6 located on both sides in the extending direction of the ridge portion 82 of the front shell 1 (center shell 4). It is possible to form a passage that allows the constant pressure chambers 9 and 10 and the thick- walled chambers 72 and 76 to communicate with each other without contacting the inner peripheral surface 1b. Therefore, if the folded-back portions of the diaphragms 5 and 6 are engaged, the airtight leak can be detected more reliably in the airtight leak detection step, and the reliability can be further improved. ..
 続いて、図4には、本発明の第2の実施の形態に係る気圧式倍力装置で用いられる、ダイヤフラム5の単体の正面図を示している。このダイヤフラム5の特徴は、折り返し部78に、連通部80として、ダイヤフラム5の周方向に間隔を空けて複数の凹条部88が設けられていることである。より詳しくは、これらの凹条部88は、図3に示したようにパワーピストン7が前進した状態において、フロントシェル1の内周面1bと当接するダイヤフラム5の領域に設けられている。又、凹条部88の各々は、パワーピストン7の前進時にフロントシェル1の内周面1bと当接するダイヤフラム5の領域に沿って、ダイヤフラム5の周方向と直交する方向(図3の紙面と平行な方向)に延び、かつ、変圧室11側に向かって窪んだ態様で形成されている。更に、図示は控えるが、本発明の第2の実施の形態に係る気圧式倍力装置は、パワーピストン8のダイヤフラム6にも、連通部80として、ダイヤフラム6の周方向に間隔を空けて複数の凹条部88が設けられている。これらの凹条部88の各々は、パワーピストン8の前進時にセンターシェル4の内周面と当接するダイヤフラム6の領域に沿って、ダイヤフラム6の周方向と直交する方向に延び、かつ、変圧室12側に向かって窪んだ態様で形成されている。 Next, FIG. 4 shows a front view of a single body of the diaphragm 5 used in the pneumatic booster according to the second embodiment of the present invention. A feature of the diaphragm 5 is that the folded-back portion 78 is provided with a plurality of concave streak portions 88 as communication portions 80 at intervals in the circumferential direction of the diaphragm 5. More specifically, these recessed portions 88 are provided in the region of the diaphragm 5 that comes into contact with the inner peripheral surface 1b of the front shell 1 when the power piston 7 is advanced as shown in FIG. Further, each of the recessed portions 88 extends along the region of the diaphragm 5 that comes into contact with the inner peripheral surface 1b of the front shell 1 when the power piston 7 moves forward, in a direction orthogonal to the circumferential direction of the diaphragm 5 (in the plane of FIG. 3). It is formed so as to extend in the parallel direction) and is recessed toward the variable pressure chamber 11 side. Further, although not shown, in the pneumatic booster according to the second embodiment of the present invention, a plurality of diaphragms 6 of the power piston 8 are provided as communicating portions 80 at intervals in the circumferential direction of the diaphragm 6. The concave streak portion 88 is provided. Each of these ridges 88 extends in the direction orthogonal to the circumferential direction of the diaphragm 6 along the region of the diaphragm 6 that comes into contact with the inner peripheral surface of the center shell 4 when the power piston 8 advances, and the variable pressure chamber It is formed so as to be recessed toward the 12 side.
 上記のような構成により、本発明の第2の実施の形態に係る気圧式倍力装置は、気密漏れ検出工程において、定圧室9、10と変圧室11、12との間に圧力差が発生してパワーピストン7、8が前進し、ダイヤフラム5、6の一部がフロントシェル1(センターシェル4)の内周面1bと当接しても、凹条部88の内側面はフロントシェル1(センターシェル4)の内周面1bと接触せずに、定圧室9、10と肉厚部収容室72、76との間を連通させる通路を形成することができる。このため、連通部80が凸条部82である本発明の第1の実施の形態に係る気圧式倍力装置50と同様に、ダイヤフラム5、6の折り返し部等が噛み込まれた状態であれば、気密漏れ検出工程において気密漏れをより確実に検出することができ、信頼性をより一層向上することが可能となる。 With the configuration as described above, the pneumatic booster according to the second embodiment of the present invention causes a pressure difference between the constant pressure chambers 9 and 10 and the variable pressure chambers 11 and 12 in the airtight leak detection step. Then, even if the power pistons 7 and 8 move forward and a part of the diaphragms 5 and 6 come into contact with the inner peripheral surface 1b of the front shell 1 (center shell 4), the inner surface of the recessed line portion 88 is It is possible to form a passage that communicates between the constant pressure chambers 9 and 10 and the thick portion storage chambers 72 and 76 without contacting the inner peripheral surface 1b of the center shell 4). Therefore, as in the pneumatic booster 50 according to the first embodiment of the present invention in which the communicating portion 80 is the convex portion 82, the folded portions of the diaphragms 5 and 6 and the like may be engaged. If so, the airtight leak can be detected more reliably in the airtight leak detection step, and the reliability can be further improved.
 更に、図5及び図6には、本発明の第3及び第4の実施の形態に係る気圧式倍力装置の、パワーピストン7が前進した状態におけるダイヤフラム5の肉厚部70周辺を図示している。まず、図5に示す本発明の第3の実施の形態に係る気圧式倍力装置では、フロントシェル1の内周面1bの、パワーピストン7の前進時にダイヤフラム5の折り返し部78と当接する領域に、連通部80として凸条部90が設けられている。この凸条部90は、フロントシェル1の内周面1bに沿って、フロントシェル1の周方向と直交する方向(図5の紙面と平行な方向)に延び、かつ、定圧室9側に向かって突出する態様で形成されている。又、図示は控えるが、本発明の第3の実施の形態に係る気圧式倍力装置は、センターシェル4の内周面の、パワーピストン8の前進時にダイヤフラム6の折り返し部と当接する領域に、連通部80として凸条部90が設けられている。この凸条部90は、センターシェル4の内周面に沿って、センターシェル4の周方向と直交する方向に延び、かつ、定圧室10側に向かって突出する態様で形成されている。 Further, FIGS. 5 and 6 illustrate the vicinity of the thick portion 70 of the diaphragm 5 in the state where the power piston 7 is advanced in the pneumatic booster according to the third and fourth embodiments of the present invention. ing. First, in the pneumatic booster according to the third embodiment of the present invention shown in FIG. 5, a region of the inner peripheral surface 1b of the front shell 1 that comes into contact with the folded-back portion 78 of the diaphragm 5 when the power piston 7 advances. A ridge portion 90 is provided as the communication portion 80. The ridge portion 90 extends along the inner peripheral surface 1b of the front shell 1 in a direction orthogonal to the circumferential direction of the front shell 1 (direction parallel to the paper surface of FIG. 5) and faces the constant pressure chamber 9 side. Are formed so as to project. Further, although not shown, the pneumatic booster according to the third embodiment of the present invention is provided on the inner peripheral surface of the center shell 4 in a region where it abuts the folded portion of the diaphragm 6 when the power piston 8 advances. A ridge portion 90 is provided as the communication portion 80. The ridge portion 90 extends along the inner peripheral surface of the center shell 4 in a direction orthogonal to the circumferential direction of the center shell 4 and is formed to project toward the constant pressure chamber 10 side.
 次に、図6に示す本発明の第4の実施の形態に係る気圧式倍力装置では、フロントシェル1の内周面1bの、パワーピストン7の前進時にダイヤフラム5の折り返し部78と当接する領域に、連通部80として凹条部92が設けられている。この凹条部92は、フロントシェル1の内周面1bに沿って、フロントシェル1の周方向と直交する方向(図6の紙面と平行な方向)に延び、かつ、ハウジング3の外部に向かって窪んだ態様で形成されている。又、図示は控えるが、本発明の第4の実施の形態に係る気圧式倍力装置は、センターシェル4の内周面の、パワーピストン8の前進時にダイヤフラム6の折り返し部と当接する領域に、連通部80として凹条部92が設けられている。この凹条部92は、センターシェル4の内周面に沿って、センターシェル4の周方向と直交する方向に延び、かつ、ハウジング3の外部に向かって窪んだ態様で形成されている。 Next, in the pneumatic booster according to the fourth embodiment of the present invention shown in FIG. 6, the inner peripheral surface 1b of the front shell 1 comes into contact with the folded-back portion 78 of the diaphragm 5 when the power piston 7 advances. A groove 92 is provided in the area as the communication portion 80. The groove 92 extends along the inner peripheral surface 1b of the front shell 1 in the direction orthogonal to the circumferential direction of the front shell 1 (the direction parallel to the paper surface of FIG. 6) and extends toward the outside of the housing 3. It is formed in a concave shape. Further, although not shown, the pneumatic booster according to the fourth embodiment of the present invention is provided in an area of the inner peripheral surface of the center shell 4 that abuts the folded portion of the diaphragm 6 when the power piston 8 advances. A groove 92 is provided as the communication portion 80. The groove 92 extends along the inner peripheral surface of the center shell 4 in a direction orthogonal to the circumferential direction of the center shell 4, and is formed in a manner recessed toward the outside of the housing 3.
 上述したような構成の本発明の第3及び第4の実施の形態に係る気圧式倍力装置は、気密漏れ検出工程において、定圧室9、10と変圧室11、12との間に圧力差が発生してパワーピストン7、8が前進し、ダイヤフラム5、6の一部がフロントシェル1(センターシェル4)の内周面1bと当接しても、少なくとも凸条部90の延在方向両側に位置するフロントシェル1(センターシェル4)の内周面1bの部位には、或いは、凹条部92を内側面には、ダイヤフラム5、6が接触せずに、定圧室9、10と肉厚部収容室72、76との間を連通させる通路を形成することができる。このため、本発明の第1及び第2の実施の形態に係る気圧式倍力装置と同様に、ダイヤフラム5、6の折り返し部等が噛み込まれた状態であれば、気密漏れ検出工程において気密漏れをより確実に検出することができ、信頼性をより一層向上することが可能となる。 In the pneumatic boosters according to the third and fourth embodiments of the present invention having the above-described configuration, the pressure difference between the constant pressure chambers 9 and 10 and the variable pressure chambers 11 and 12 in the airtight leak detection step. Occurs, the power pistons 7, 8 move forward, and even if a part of the diaphragms 5, 6 come into contact with the inner peripheral surface 1b of the front shell 1 (center shell 4), at least both sides in the extending direction of the ridge 90 are extended. The diaphragm 5 is not in contact with the inner peripheral surface 1b of the front shell 1 (center shell 4) located on the inner surface of the front shell 1 (center shell 4) or the inner surface of the concave portion 92, and the constant pressure chambers 9 and 10 and the meat. It is possible to form a passage that communicates with the thick part accommodation chambers 72 and 76. Therefore, as in the pneumatic boosters according to the first and second embodiments of the present invention, if the folded-back portions of the diaphragms 5 and 6 are engaged, the airtightness is detected in the airtightness leak detection step. Leakage can be detected more reliably, and reliability can be further improved.
 ここで、上述した各実施の形態において、連通部80として、ダイヤフラム5、6やシェル1、4に設けられる凸条部82、90及び凹条部88、92は、ダイヤフラム5、6やシェル1、4の周方向に均一に配置することが好ましいが、任意位置に配置してもよい。又、凸条部82、90及び凹条部88、92の数量は、ダイヤフラム5、6又はシェル1、4毎に、複数であってもよく1つであってもよい。更に、連通部80として、凸条部82、90と凹条部88、92とが、1つのダイヤフラム5、6やシェル1、4に同時に存在していてもよい。加えて、凸条部82、90及び凹条部88、92の、長さ、幅、高さ又は深さ等は、パワーピストン7、8が前進した状態で、定圧室9、10と肉厚部収容室72、76とを連通する通路が確保できるような、適切な大きさに設定される。
 なお、各実施の形態では、2つのパワーピストン7、8を備えたタンデム型の気圧式倍力装置に適用されたが、当然ながら、1つのパワーピストンを備えた気圧式倍力装置に適用することも可能である。
Here, in each of the above-described embodiments, the ridges 82 and 90 and the ridges 88 and 92 provided on the diaphragms 5 and 6 and the shells 1 and 4 as the communication portion 80 are the diaphragms 5 and 6 and the shell 1. Although it is preferable to arrange them uniformly in the circumferential direction of 4, it may be arranged at any position. Further, the number of the ridges 82, 90 and the ridges 88, 92 may be plural or one for each of the diaphragms 5, 6 or the shells 1, 4. Further, as the communicating portion 80, the convex streak portions 82, 90 and the concave streak portions 88, 92 may simultaneously exist in one diaphragm 5, 6 or the shells 1, 4. In addition, the lengths, widths, heights or depths of the ridges 82 and 90 and the ridges 88 and 92 are the same as those of the constant pressure chambers 9 and 10 when the power pistons 7 and 8 are advanced. The size is set to an appropriate size so that a passage communicating with the partial accommodation chambers 72 and 76 can be secured.
In each embodiment, the invention is applied to the tandem type pneumatic booster including the two power pistons 7 and 8, but is naturally applied to the pneumatic booster including one power piston. It is also possible.
 以上説明した、本実施形態に基づく気圧式倍力装置50として、例えば、以下に述べる態様のものが考えられる。
 第1の態様は、少なくとも2つのシェル(1、2、4)と、該2つのシェル(1、2、4)の間に配置されて2つの室(9、10、11、12)を画成し、ダイヤフラム(5、6)を備えるパワーピストン(7、8)とを含み、前記ダイヤフラム(5、6)の外縁を構成する肉厚部(70、74)が、前記2つのシェル(1、2、4)の外周部の間に収容されて、前記2つの室(9、10、11、12)をシールする気圧式倍力装置(50)であって、前記パワーピストン(7、8)が前進して前記ダイヤフラム(5、6)の一部が、前記2つのシェル(1、2、4)のうち前進側に配置されたシェル(1、4)の内周面(1b)と当接した状態で、前記2つの室(9、10、11、12)のうち前記前進側に配置されたシェル(1、4)と前記パワーピストン(7、8)とにより形成される一方の室(9、10)と、前記肉厚部(70、74)が収容された肉厚部収容室(72、76)との間を連通するための、連通部(80)が形成されている。
As the pneumatic booster 50 based on this embodiment described above, for example, the following modes are conceivable.
The first aspect defines at least two shells (1, 2, 4) and two chambers (9, 10, 11, 12) arranged between the two shells (1, 2, 4). And a power piston (7, 8) having a diaphragm (5, 6), and a thick portion (70, 74) forming an outer edge of the diaphragm (5, 6). A pneumatic booster (50) housed between the outer peripheries of the power pistons (7, 8) for sealing the two chambers (9, 10, 11, 12). ) Moves forward, and a part of the diaphragm (5, 6) becomes the inner peripheral surface (1b) of the shell (1, 4) arranged on the forward side of the two shells (1, 2, 4). One of the two chambers (9, 10, 11, 12) formed by the shells (1, 4) arranged on the forward side and the power piston (7, 8) in the abutting state. A communication portion (80) is formed for communicating between the chambers (9, 10) and the thick portion storage chambers (72, 76) in which the thick portions (70, 74) are stored. ..
 第2の態様は、第1の態様において、前記2つの室(9、10、11、12)は、前記前進側に配置されたシェル(1、4)と前記パワーピストン(7、8)とにより形成される定圧室(9、10)、及び、前記2つのシェル(1、2、4)のうち前進側と反対側に配置されたシェル(2、4)と前記パワーピストン(7、8)とにより形成される変圧室(11、12)であり、前記パワーピストン(7、8)に連結されたバルブボディ(13)内に配置されたプランジャ(25)を、入力ロッド(24)によって移動させることにより、弁装置(22)を開いて前記変圧室(11、12)に作動気体を導入して、前記定圧室(9、10)と前記変圧室(11、12)との間に圧力差を発生させ、該圧力差によって前記パワーピストン(7、8)に生じた推力を、リアクション部材(35)を介して出力ロッド(36)に作用させると共に、該出力ロッド(36)から前記リアクション部材(35)に作用する反力の一部を、前記プランジャ(25)を介して前記入力ロッド(24)に伝達する気圧式倍力装置(50)であり、前記連通部(80)は、前記ダイヤフラム(5、6)の、前記パワーピストン(7、8)の前進時に前記前進側に配置されたシェル(1、4)の内周面(1b)と当接する領域に、該領域に沿って前記ダイヤフラム(5、6)の周方向と直交する方向に延びると共に、前記定圧室(9、10)側に向かって突出する態様で形成された、凸条部(82、90)である。 A second aspect is the first aspect, wherein the two chambers (9, 10, 11, 12) include a shell (1, 4) arranged on the advance side and the power piston (7, 8). Constant pressure chamber (9, 10) formed by the power piston (7, 8) and the shell (2, 4) disposed on the side opposite to the forward side of the two shells (1, 2, 4). ) And a variable pressure chamber (11, 12) formed by a plunger (25) arranged in a valve body (13) connected to the power piston (7, 8) by an input rod (24). By moving it, the valve device (22) is opened to introduce working gas into the variable pressure chamber (11, 12), and between the constant pressure chamber (9, 10) and the variable pressure chamber (11, 12). A pressure difference is generated, and the thrust force generated in the power piston (7, 8) by the pressure difference is applied to the output rod (36) via the reaction member (35), and the output rod (36) outputs the thrust. A pneumatic booster (50) that transmits a part of the reaction force acting on the reaction member (35) to the input rod (24) via the plunger (25), and the communication section (80) is , A region of the diaphragm (5, 6) that comes into contact with the inner peripheral surface (1b) of the shell (1, 4) arranged on the forward side when the power piston (7, 8) advances, The ridges (82, 90) are formed so as to extend in a direction orthogonal to the circumferential direction of the diaphragms (5, 6) and project toward the constant pressure chambers (9, 10). ..
 第3の態様は、第2の態様において、前記凸条部(82)は、前記ダイヤフラム(5、6)に設けられる。
 第4の態様は、第2の態様において、前記凸条部(90)は、前記前進側に配置されたシェル(1、4)に設けられる。
A third aspect is the second aspect, wherein the ridge (82) is provided on the diaphragm (5, 6).
A 4th aspect is a 2nd aspect. WHEREIN: The said convex-line part (90) is provided in the shell (1, 4) arrange|positioned at the said advance side.
 第5の態様は、第1の態様において、前記2つの室(9、10、11、12)は、前記前進側に配置されたシェル(1、4)と前記パワーピストン(7、8)とにより形成される定圧室(9、10)、及び、前記2つのシェル(1、2、4)のうち前進側と反対側に配置されたシェル(2、4)と前記パワーピストン(7、8)とにより形成される変圧室(11、12)であり、前記パワーピストン(7、8)に連結されたバルブボディ(13)内に配置されたプランジャ(25)を、入力ロッド(24)によって移動させることにより、弁装置(22)を開いて前記変圧室(11、12)に作動気体を導入して、前記定圧室(9、10)と前記変圧室(11、12)との間に圧力差を発生させ、該圧力差によって前記パワーピストン(7、8)に生じた推力を、リアクション部材(35)を介して出力ロッド(36)に作用させると共に、該出力ロッド(36)から前記リアクション部材(35)に作用する反力の一部を、前記プランジャ(25)を介して前記入力ロッド(24)に伝達する気圧式倍力装置(50)であり、前記連通部(80)は、前記ダイヤフラム(5、6)の、前記パワーピストン(7、8)の前進時に前記前進側に配置されたシェル(1、4)の内周面(1b)と当接する領域に、該領域に沿って前記ダイヤフラム(5、6)の周方向と直交する方向に延びると共に、前記変圧室(11、12)側に向かって窪む態様で形成された、凹条部(88、92)である。 A fifth aspect is the first aspect, wherein the two chambers (9, 10, 11, 12) include a shell (1, 4) arranged on the advance side and the power piston (7, 8). Constant pressure chamber (9, 10) formed by the power piston (7, 8) and the shell (2, 4) disposed on the side opposite to the forward side of the two shells (1, 2, 4). ) And a variable pressure chamber (11, 12) formed by a plunger (25) arranged in a valve body (13) connected to the power piston (7, 8) by an input rod (24). By moving it, the valve device (22) is opened to introduce working gas into the variable pressure chamber (11, 12), and between the constant pressure chamber (9, 10) and the variable pressure chamber (11, 12). A pressure difference is generated, and the thrust force generated in the power piston (7, 8) by the pressure difference is applied to the output rod (36) via the reaction member (35), and the output rod (36) outputs the thrust. A pneumatic booster (50) that transmits a part of the reaction force acting on the reaction member (35) to the input rod (24) via the plunger (25), and the communication section (80) is , A region of the diaphragm (5, 6) that comes into contact with the inner peripheral surface (1b) of the shell (1, 4) arranged on the forward side when the power piston (7, 8) advances, A groove (88, 92) extending along a direction orthogonal to the circumferential direction of the diaphragm (5, 6) and formed to be recessed toward the variable pressure chamber (11, 12). ..
 第6の態様は、第5の態様において、前記凹条部(88)は、前記ダイヤフラム(5、6)に設けられる。
 第7の態様は、第5の態様において、前記凹条部(92)は、前記前進側に配置されたシェル(1、4)に設けられる。
A sixth aspect is the fifth aspect, wherein the recessed portion (88) is provided on the diaphragm (5, 6).
In a seventh aspect according to the fifth aspect, the groove (92) is provided in the shell (1, 4) arranged on the advance side.
 尚、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 It should be noted that the present invention is not limited to the above-described embodiment, and various modifications are included. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add/delete/replace other configurations with respect to a part of the configurations of the respective embodiments.
 本願は、2018年12月19日付出願の日本国特許出願第2018-237558号に基づく優先権を主張する。2018年12月19日付出願の日本国特許出願第2018-237558号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。 The present application claims priority based on Japanese Patent Application No. 2018-237558 filed on December 19, 2018. The entire disclosure of Japanese Patent Application No. 2018-237558, filed December 19, 2018, including the specification, claims, drawings, and abstract, is incorporated herein by reference in its entirety.
 1:フロントシェル、1b:内周面、2:リヤシェル、4:センターシェル、5、6:ダイヤフラム、7、8:パワーピストン、9、10:定圧室、11、12:変圧室、13:バルブボディ、22:弁装置、24:入力ロッド、25:プランジャ、35:リアクション部材、36:出力ロッド、50:気圧式倍力装置、70、74:肉厚部、72、76:肉厚部収容室、78:折り返し部、80:連通部、82、90:凸条部、88、92:凹条部 1: front shell, 1b: inner peripheral surface, 2: rear shell, 4: center shell, 5, 6: diaphragm, 7, 8: power piston, 9, 10: constant pressure chamber, 11, 12: variable pressure chamber, 13: valve Body, 22: valve device, 24: input rod, 25: plunger, 35: reaction member, 36: output rod, 50: pneumatic booster, 70, 74: thick portion, 72, 76: thick portion accommodation Chamber, 78: folded portion, 80: communicating portion, 82, 90: convex strip portion, 88, 92: concave strip portion

Claims (7)

  1.  気圧式倍力装置であって、該気圧式倍力装置は、
     少なくとも2つのシェルと、
     該2つのシェルの間に配置されて2つの室を画成し、ダイヤフラムを備えるパワーピストンとを含み、
     前記ダイヤフラムの外縁を構成する肉厚部が、前記2つのシェルの外周部の間に収容されて、前記2つの室をシールしており、
     前記パワーピストンが前進して前記ダイヤフラムの一部が、前記2つのシェルのうち前進側に配置されたシェルの内周面と当接した状態で、前記2つの室のうち前記前進側に配置されたシェルと前記パワーピストンとにより形成される一方の室と、前記肉厚部が収容された肉厚部収容室との間を連通するための、連通部が形成されていることを特徴とする気圧式倍力装置。
    A pneumatic booster, the pneumatic booster comprising:
    At least two shells,
    A power piston having a diaphragm disposed between the two shells to define two chambers,
    A thick portion forming the outer edge of the diaphragm is housed between the outer peripheral portions of the two shells to seal the two chambers,
    The power piston is moved forward and a part of the diaphragm is disposed on the forward side of the two chambers in a state of being in contact with an inner peripheral surface of a shell of the two shells disposed on the forward side. And a communicating portion for communicating between one chamber formed by the shell and the power piston and the thick-walled chamber containing the thick-walled portion. Pneumatic booster.
  2.  請求項1記載の気圧式倍力装置において、
     前記2つの室は、前記前進側に配置されたシェルと前記パワーピストンとにより形成される定圧室、及び、前記2つのシェルのうち前進側と反対側に配置されたシェルと前記パワーピストンとにより形成される変圧室であり、
     前記パワーピストンに連結されたバルブボディ内に配置されたプランジャを、入力ロッドによって移動させることにより、弁装置を開いて前記変圧室に作動気体を導入して、前記定圧室と前記変圧室との間に圧力差を発生させ、該圧力差によって前記パワーピストンに生じた推力を、リアクション部材を介して出力ロッドに作用させると共に、該出力ロッドから前記リアクション部材に作用する反力の一部を、前記プランジャを介して前記入力ロッドに伝達しており、
     前記連通部は、前記ダイヤフラムの、前記パワーピストンの前進時に前記前進側に配置されたシェルの内周面と当接する領域に、該領域に沿って前記ダイヤフラムの周方向と直交する方向に延びると共に、前記定圧室側に向かって突出する態様で形成された、凸条部であることを特徴とする気圧式倍力装置。
    The pneumatic booster according to claim 1,
    The two chambers are a constant pressure chamber formed by the shell arranged on the advance side and the power piston, and a shell arranged on the opposite side to the advance side of the two shells and the power piston. Is a transformer room that is formed,
    By moving the plunger arranged in the valve body connected to the power piston by the input rod, the valve device is opened to introduce the working gas into the variable pressure chamber, and the constant pressure chamber and the variable pressure chamber are connected. A pressure difference is generated between them, and a thrust force generated in the power piston due to the pressure difference is caused to act on the output rod via the reaction member, and a part of the reaction force acting on the reaction member from the output rod, Is transmitted to the input rod through the plunger,
    The communication portion extends in a region of the diaphragm that abuts the inner peripheral surface of the shell disposed on the forward side when the power piston moves forward, and extends in a direction orthogonal to the circumferential direction of the diaphragm along the region. The pneumatic booster is characterized in that it is a ridge portion formed so as to project toward the constant pressure chamber side.
  3.  請求項2に記載の気圧式倍力装置において、
     前記凸条部は、前記ダイヤフラムに設けられることを特徴とする気圧式倍力装置。
    The pneumatic booster according to claim 2,
    The pneumatic booster, wherein the ridge portion is provided on the diaphragm.
  4.  請求項2に記載の気圧式倍力装置において、
     前記凸条部は、前記前進側に配置されたシェルに設けられることを特徴とする気圧式倍力装置。
    The pneumatic booster according to claim 2,
    The pneumatic booster, wherein the convex portion is provided on the shell arranged on the forward side.
  5.  請求項1記載の気圧式倍力装置において、
     前記2つの室は、前記前進側に配置されたシェルと前記パワーピストンとにより形成される定圧室、及び、前記2つのシェルのうち前進側と反対側に配置されたシェルと前記パワーピストンとにより形成される変圧室であり、
     前記パワーピストンに連結されたバルブボディ内に配置されたプランジャを、入力ロッドによって移動させることにより、弁装置を開いて前記変圧室に作動気体を導入して、前記定圧室と前記変圧室との間に圧力差を発生させ、該圧力差によって前記パワーピストンに生じた推力を、リアクション部材を介して出力ロッドに作用させると共に、該出力ロッドから前記リアクション部材に作用する反力の一部を、前記プランジャを介して前記入力ロッドに伝達しており、
     前記連通部は、前記ダイヤフラムの、前記パワーピストンの前進時に前記前進側に配置されたシェルの内周面と当接する領域に、該領域に沿って前記ダイヤフラムの周方向と直交する方向に延びると共に、前記変圧室側に向かって窪む態様で形成された、凹条部であることを特徴とする気圧式倍力装置。
    The pneumatic booster according to claim 1,
    The two chambers are a constant pressure chamber formed by the shell arranged on the advance side and the power piston, and a shell arranged on the opposite side to the advance side of the two shells and the power piston. Is a transformer room that is formed,
    By moving the plunger arranged in the valve body connected to the power piston by the input rod, the valve device is opened to introduce the working gas into the variable pressure chamber, and the constant pressure chamber and the variable pressure chamber are connected. A pressure difference is generated between them, and a thrust force generated in the power piston due to the pressure difference is caused to act on the output rod via the reaction member, and a part of the reaction force acting on the reaction member from the output rod, Is transmitted to the input rod through the plunger,
    The communication portion extends in a region of the diaphragm that abuts the inner peripheral surface of the shell disposed on the forward side when the power piston moves forward, and extends in a direction orthogonal to the circumferential direction of the diaphragm along the region. The pneumatic booster, which is a concave streak portion formed to be recessed toward the variable pressure chamber side.
  6.  請求項5に記載の気圧式倍力装置において、
     前記凹条部は、前記ダイヤフラムに設けられることを特徴とする気圧式倍力装置。
    The pneumatic booster according to claim 5,
    The pneumatic booster, wherein the recessed portion is provided on the diaphragm.
  7.  請求項5に記載の気圧式倍力装置において、
     前記凹条部は、前記前進側に配置されたシェルに設けられることを特徴とする気圧式倍力装置。
    The pneumatic booster according to claim 5,
    The pneumatic booster, wherein the recessed portion is provided in the shell arranged on the forward side.
PCT/JP2019/046972 2018-12-19 2019-12-02 Atmospheric booster device WO2020129586A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020561256A JP7019076B2 (en) 2018-12-19 2019-12-02 Barometric booster
CN201980081573.2A CN113165625A (en) 2018-12-19 2019-12-02 Pneumatic booster

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018237558 2018-12-19
JP2018-237558 2018-12-19

Publications (1)

Publication Number Publication Date
WO2020129586A1 true WO2020129586A1 (en) 2020-06-25

Family

ID=71100254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046972 WO2020129586A1 (en) 2018-12-19 2019-12-02 Atmospheric booster device

Country Status (3)

Country Link
JP (1) JP7019076B2 (en)
CN (1) CN113165625A (en)
WO (1) WO2020129586A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137665U (en) * 1984-03-30 1985-09-12 アイシン精機株式会社 booster
JPH0396959U (en) * 1990-01-24 1991-10-04

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137665U (en) * 1984-03-30 1985-09-12 アイシン精機株式会社 booster
JPH0396959U (en) * 1990-01-24 1991-10-04

Also Published As

Publication number Publication date
CN113165625A (en) 2021-07-23
JPWO2020129586A1 (en) 2021-09-27
JP7019076B2 (en) 2022-02-14

Similar Documents

Publication Publication Date Title
JP4991716B2 (en) Diaphragm for air brake booster
US20130192456A1 (en) Brake servo
WO2020129586A1 (en) Atmospheric booster device
JP4461320B2 (en) Pneumatic booster
US7089846B2 (en) Negative pressure type booster device
JP2010126091A (en) Master cylinder
JP6188549B2 (en) Clutch booster
JP7152371B2 (en) brake actuator
US9457780B2 (en) Negative pressure type booster device
JP5212798B2 (en) Pneumatic booster
JP6179425B2 (en) Pneumatic booster
JP4461309B2 (en) Brake actuator and its components
JP6387564B2 (en) Pneumatic booster
US4148190A (en) Master cylinder
JP2020011609A (en) Pneumatic booster
WO2017131015A1 (en) Negative pressure multiplier
JP4380389B2 (en) Negative pressure booster
JP2550356Y2 (en) Pneumatic booster
JP3554985B2 (en) Pneumatic booster
JP2902844B2 (en) Pneumatic booster
JP2513354Y2 (en) Pneumatic booster
US20050016172A1 (en) Brake booster device
JP2006341791A (en) Negative pressure type booster
JPH0537730Y2 (en)
JPH0733003A (en) Pressure type booster

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898546

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561256

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898546

Country of ref document: EP

Kind code of ref document: A1