WO2020129561A1 - Laser annealing device - Google Patents

Laser annealing device Download PDF

Info

Publication number
WO2020129561A1
WO2020129561A1 PCT/JP2019/046421 JP2019046421W WO2020129561A1 WO 2020129561 A1 WO2020129561 A1 WO 2020129561A1 JP 2019046421 W JP2019046421 W JP 2019046421W WO 2020129561 A1 WO2020129561 A1 WO 2020129561A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light
incident
annealing apparatus
semiconductor
Prior art date
Application number
PCT/JP2019/046421
Other languages
French (fr)
Japanese (ja)
Inventor
後藤 順
卓哉 澤井
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Priority to KR1020217008102A priority Critical patent/KR20210102183A/en
Priority to CN201980076628.0A priority patent/CN113169054A/en
Publication of WO2020129561A1 publication Critical patent/WO2020129561A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation

Definitions

  • the present invention relates to a laser annealing device.
  • a thin film transistor (TFT: Thin Film Transistor) is used as a switching element for actively driving a thin display (FPD: Flat Panel Display) such as a liquid crystal display (LCD: Liquid Crystal Display) and an organic EL display (OLED: Organic Electroluminescence Display). It is used.
  • Amorphous silicon (a-Si: amorphous Silicon), polycrystalline silicon (P-Si: Polycrystalline Silicon), or the like is used as a material of a semiconductor layer of a thin film transistor (hereinafter referred to as a TFT).
  • Amorphous silicon has a low mobility, which is an index of electron mobility. For this reason, amorphous silicon cannot meet the demand for high mobility required for FPDs, which are becoming higher in density and definition. Therefore, as the switching element in the FPD, it is preferable to form the channel layer from polycrystalline silicon, which has significantly higher mobility than amorphous silicon.
  • an amorphous silicon film is irradiated with laser light by an excimer laser annealing (ELA) device using an excimer laser to recrystallize the amorphous silicon film.
  • ELA excimer laser annealing
  • ELA Excimer laser annealing
  • the ELA device has a problem that the generated output is strong and it is difficult to keep the phase (coherence) of the laser light in phase and the output constant.
  • strain point about 600° C.
  • DPSS Diode Pumped Solid State
  • a light source module a light source module, a first optical fiber, an optical fiber array as a second transmission system, a second optical system, and a homogenizing element are sequentially arranged.
  • the light source module includes a light source unit having a large number of emitters and a first coupling optical system. This light source module is configured to guide the laser oscillation light from the light source unit to the first optical fiber via the first coupling optical system.
  • the light source unit includes a large number of semiconductor-pumped solid-state lasers including a semiconductor laser, a laser medium (laser crystal), and a non-linear material (non-linear crystal).
  • a laser medium is excited by excitation light output from a semiconductor laser to form a fundamental wave, and the fundamental wave is wavelength-converted by a non-linear material, and the light is emitted to the first coupling optical system. It has become.
  • the laser light guided from the first coupling optical system to the first optical fiber is guided to the second optical fiber array.
  • the plurality of beams of laser light emitted from the second optical fiber array are guided to the homogenizing element by the second optical system and are homogenized.
  • the beam-shaped laser light emitted from the homogenizing element is shaped by the third optical system and irradiated onto the surface of the object to be processed.
  • the laser illuminator using the above-described semiconductor-pumped solid-state laser has a problem that the configuration becomes complicated and the manufacturing cost becomes high because it includes many light propagation paths such as optical fibers and light propagation members. Further, in the above laser illuminator, the length of the first optical fiber connecting the light source module to the respective second optical fiber arrays is different for each second optical fiber array. Therefore, there is a problem in that the output of the laser light emitted from the second optical fiber array is affected, and the output of the laser light differs for each second optical fiber array.
  • the numerical aperture (NA) at the end face of the active layer that emits laser light is large, and the laser light emitted from that end face is largely diffused. Therefore, in the above laser illuminating device, when introducing the excitation light emitted from the semiconductor laser into the narrow waveguide structure of the laser medium, a large introduction loss (decrease in incidence efficiency) easily occurs. is there. In addition, in the above-mentioned laser illuminator, since the laser light propagates through many light propagation members such as the laser medium, the nonlinear material, the first optical fiber, and the optical fiber array, the light propagation loss (including the coupling loss).
  • the above-mentioned laser illuminator has a problem that the optical propagation loss becomes larger as the number of optical fibers in the optical fiber array increases.
  • the above laser illuminating device since the output of the semiconductor laser as a single body is small, there is a problem that a desired illumination output cannot be obtained due to light propagation loss or the like.
  • a space for disposing the laser medium and the non-linear material is required in the light source module. Therefore, in this laser illuminator, there is a problem that the light source module tends to be large in size, and the light source modules cannot be integrated with high density.
  • the light source module is provided with a plurality of fiber lasers and the plurality of fiber lasers are coupled by a pump combiner can be considered.
  • a pump combiner when a pump combiner is used, heat generation is often remarkable, and there is a problem that the stability of the output laser is disturbed by the heat generation.
  • the present invention has been made in view of the above problems, the light propagation loss of the laser light is small, it is possible to uniform the desired laser output, good controllability of the laser irradiation conditions to the substrate to be processed, significantly. It is an object of the present invention to provide a laser annealing apparatus that can achieve various cost reductions.
  • an aspect of the present invention is a laser annealing apparatus that irradiates a surface of a substrate to be processed with a laser beam to perform an annealing process on the substrate to be processed.
  • a light source unit including a semiconductor laser that emits light, a light incident surface and a light emitting surface facing the light incident surface, the laser light directly emitted from the semiconductor laser is incident on the light incident surface, A homogenizing element for emitting a uniform laser beam from the light emitting surface; and an emitting side imaging system for projecting the laser beam emitted from the light emitting surface onto the surface of the substrate to be processed. It is a feature.
  • an incident side imaging system for making the entire beam of laser light directly emitted from the semiconductor laser incident only in the region of the light incident surface. It is preferable.
  • the light source section includes a plurality of the semiconductor lasers.
  • the light source unit includes a single semiconductor laser, and a plurality of beams of laser light directly emitted from the semiconductor laser are provided between the light source unit and the incident-side imaging system. It is preferable to provide a dispersion element that disperses.
  • the laser beam emitted from the emission-side imaging system is projected as a rectangular beam spot on the surface of the substrate to be processed.
  • the homogenizing element emits a laser beam of parallel light from the light emitting surface.
  • the homogenizing element is preferably selected from a rod integrator, a rod array, and a fly-eye lens.
  • the incident-side imaging system is an on-chip lens arranged on a laser light emitting end face of the active layer of the semiconductor laser.
  • the light source continuously oscillates laser light.
  • the laser annealing apparatus of the present invention the light propagation loss of the laser light is small, the desired laser output can be stably maintained, the controllability of the laser irradiation conditions on the substrate to be processed is good, and the cost is significantly reduced.
  • a laser annealing device using a semiconductor laser as a light source can be realized.
  • FIG. 1 is a schematic configuration diagram of a laser annealing apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating a state in which the surface of the amorphous silicon film is irradiated with a line beam by using the laser annealing apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a schematic configuration diagram showing a main part of a laser annealing apparatus according to the second embodiment of the present invention.
  • FIG. 4 is a schematic configuration diagram showing a main part of a laser annealing apparatus according to the third embodiment of the present invention.
  • FIG. 5 is a schematic configuration diagram showing a main part of a laser annealing apparatus according to the fourth embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram of a laser annealing apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating a state in which the surface of the amorphous silicon film is irradi
  • FIG. 6 is a perspective view showing a main part of a laser annealing apparatus according to the fifth embodiment of the present invention.
  • FIG. 7 is a schematic configuration diagram showing a main part of a laser annealing apparatus according to a sixth embodiment of the present invention.
  • FIG. 8 is a sectional explanatory view showing a semiconductor laser used for a light source section of a laser annealing apparatus according to a sixth embodiment of the present invention.
  • the substrate 10 to be processed is composed of a glass substrate 11 and an amorphous silicon film 12A as a film to be processed which is formed on substantially the entire surface of the glass substrate 11, Specifically, it becomes a TFT substrate.
  • a wiring pattern such as a gate line may be formed between the amorphous silicon film 12A and the glass substrate 11 depending on the structure of the TFT to be manufactured.
  • the amorphous silicon film 12A has a band-shaped processing-target region 13 set to extend in the scanning direction T.
  • the processing target area 13 is formed along the scanning direction T so as to connect a plurality of TFT formation target portions (not shown).
  • the width dimension W of the scheduled processing region 13 is set to be substantially the same as the width dimension of the channel layer of the TFT to be manufactured.
  • the laser annealing apparatus 1 includes a base 2 and a laser irradiation unit 3.
  • the laser irradiation unit 3 includes a light source unit 4, an entrance-side imaging system 5, a rod integrator 6 as a homogenizing element, and an exit-side imaging system 7.
  • the laser irradiation unit 3 is provided so as to be capable of scanning in the scanning direction T. That is, the substrate 10 to be processed on the base 2 does not move, but the laser irradiation unit 3 moves so that the amorphous silicon film 12A of the substrate 10 to be processed is annealed.
  • the substrate 10 is fixed in the present embodiment, the laser irradiation unit 3 may be fixed to scan the substrate 10 as a matter of course.
  • the light source unit 4 includes a plurality of (four in the present embodiment) semiconductor lasers 20.
  • the semiconductor laser 20 a GaN (gallium nitride)-based blue laser having a wavelength band of 400 to 500 nm is used. These semiconductor lasers 20 are arranged such that the light emitting surfaces for emitting laser light are located on the same plane. These semiconductor lasers 20 are arranged side by side in a state of being integrated on a straight line at equal intervals.
  • the semiconductor laser 20 is a CW laser that performs continuous oscillation (or continuous wave oscillation, CW: Continuous Wave) operation.
  • an imaging lens is used as the incident side imaging system 5.
  • the incident-side imaging system 5 is set so that the entire beam of laser light emitted from each of the four semiconductor lasers 20 is incident on a light incident surface 61 of the rod integrator 6 which will be described later.
  • the rod integrator 6 is composed of a rectangular parallelepiped glass rod, and has a light incident surface 61 that is an upper end surface (one end surface) in the vertical direction (longitudinal direction) and a lower end surface (the other end surface) in the vertical direction (longitudinal direction). It has a light emitting surface 62, a pair of side surfaces 63 parallel to each other, and a pair of side surfaces 64 parallel to each other. Further, in the rod integrator 6, the length in the up-down direction (longitudinal direction) is set to a dimension required to obtain uniform light. In the present embodiment, the distance between the pair of side surfaces 64 of the rod integrator 6 is set short and the distance between the other pair of side surfaces 63 is set long.
  • a rod array or fly-eye lens that is an aggregate of rod integrators may be used.
  • the numerical aperture (NA) at the end face of the active layer that emits the laser light is large, and the laser light emitted from the end face is largely diffused.
  • the distance between the semiconductor laser 20 and the incident-side imaging system 5 and the incident-side coupling are set so that the incident-side imaging system 5 can capture the laser light expanded and emitted from the semiconductor laser 20.
  • the diameter and focal length of the image forming lens forming the image system 5 are appropriately set.
  • the light emitting surfaces of the plurality of semiconductor lasers 20 are located on the same plane, and the semiconductor lasers 20 are arranged side by side in an integrated state. With such settings and the configuration of the light source unit 4, the entire beam of laser light emitted from the semiconductor laser 20 can be incident on the light incident surface 61 of the rod integrator 6 without leakage.
  • the exit-side imaging system 7 is set so as to project the light exit surface 62 of the rod integrator 6 onto the surface of the amorphous silicon film 12A of the substrate 10 to be processed.
  • the beam spot BS of the laser beam LB emitted from the emission side imaging system 7 is projected on the surface of the amorphous silicon film 12A in an elongated rectangular shape.
  • the width dimension of the beam spot BS is set to be the same as the width dimension W of the scheduled processing region 13 on the substrate 10 to be processed.
  • a plurality of semiconductor lasers 20 continuously emit blue laser light having a wavelength band of 400 to 500 nm. Specifically, it is driven so as to continuously oscillate the laser beam over the entire scanning direction of the processing target region 13 on the substrate 10 to be processed.
  • the continuous irradiation is a concept including so-called pseudo continuous irradiation in which the laser light is continuously irradiated to the target area. That is, even if the laser light is a pulse laser, it may be included in this pseudo continuous irradiation if the pulse width is wide.
  • the output of each semiconductor laser 20 may be, for example, one having a low output of several W.
  • bundling a plurality of semiconductor lasers 20 as an array it is possible to stably obtain an output required for the annealing treatment, for example, several W to several tens W, and further more.
  • the laser light emitted from each of the plurality of semiconductor lasers 20 is directly incident on the rod integrator 6 via the incident side imaging system 5. Therefore, no coupling loss occurs as compared with the case where an optical fiber is used as in the conventional case.
  • the imaging lens of the incident-side imaging system 5 causes the entire beam of the laser light directly emitted from the semiconductor laser 20 to be present only within the region of the light incident surface 61 of the rod integrator 6. Make it incident without leakage.
  • the distance between the pair of side surfaces 64 of the rod integrator 6 is set short, and the distance between the other pair of side surfaces 63 is set long. Therefore, in the present embodiment, between the pair of side surfaces 64 having a short distance, the laser light incident from the light incident surface 61 tends toward the light emitting surface 62, and the total number of times of total reflection is likely to increase, The amount of laser light is sufficiently uniformized.
  • a part of the beam of the laser light that has entered the light incident surface 61 of the rod integrator 6 goes straight toward the light emitting surface 62 and is emitted as it is from the light emitting surface 62.
  • the light reaches either of the pair of side surfaces 63 of the rod integrator 6.
  • the incident laser light is totally reflected and folded.
  • the incident laser light is repeatedly totally reflected until it reaches the light emitting surface 62 of the rod integrator 6, and is emitted from the light emitting surface 62.
  • the beam of the laser light that has entered the rod integrator 6 is returned by the pair of side surfaces 63 of the rod integrator 6 and integrated, and the light emitting surface 62 emits the light.
  • the light intensities are averaged in the beam of the laser light, and a uniform light intensity distribution is obtained.
  • the light exit surface 62 of the rod integrator 6 is projected onto the surface of the substrate 10 to be processed. That is, as shown in FIG. 2, the emission-side imaging system 7 projects the beam of the laser light emitted from the light emission surface 62 of the rod integrator 6 onto the surface of the substrate 10 to be processed as a rectangular beam spot BS. ..
  • the substrate 10 to be processed is arranged on the base 2 and the laser irradiation unit 3 is moved in the scanning direction T so that the surface of the substrate 10 to be processed is Annealing processing can be performed on the processing target region 13 of the provided amorphous silicon film 12A.
  • the amorphous silicon film 12A is modified into a polycrystalline silicon film 12P.
  • the laser light emitted from the semiconductor laser 20 can be directly incident on the rod integrator 6 as the homogenizing element, so that the semiconductor laser 20 having a large numerical aperture (NA) is used. Can also reduce the light propagation loss of the laser light.
  • NA numerical aperture
  • the semiconductor laser 20 having stable output characteristics, a desired laser output can be stably maintained, and the controllability of the laser irradiation conditions on the substrate 10 to be processed is enhanced. be able to.
  • the inexpensive semiconductor laser 20 can be used as it is, so that a significant cost reduction can be achieved.
  • the number of arranged semiconductor lasers 20 and the number of turned-on semiconductor lasers 20 may be increased or decreased.
  • continuous oscillation (CW) drive of laser light enables the amorphous silicon film 12A to be annealed without fluctuation. Therefore, the crystal structure of the polycrystalline silicon film 12P can be optimized to obtain a high-quality polycrystalline silicon film, and a TFT substrate having a channel layer having high mobility can be manufactured.
  • the laser irradiation unit 3 can be configured to move with respect to the target substrate 10.
  • FPDs have been increasing in size, but it has been difficult to move the laser irradiation unit side in a conventional laser annealing apparatus having a large laser irradiation unit.
  • the conventional laser annealing apparatus has a problem that the footprint of the apparatus is increased by moving the large substrate 10 to be processed.
  • the substrate 10 to be processed is fixed and the laser irradiation unit 3 can be moved.
  • the laser irradiation unit 3 can be fixed to move the substrate 10 to be processed. Good.
  • the replacement cycle of the semiconductor laser 20 can be set to be long, and the replacement cost and maintenance cost of the light source unit 4 can be reduced by the conventional laser. It can be significantly reduced compared to the annealing device.
  • FIG. 3 is a schematic configuration diagram showing a laser annealing apparatus 1A according to the second embodiment of the present invention.
  • the laser annealing apparatus 1A according to the present embodiment includes one semiconductor laser 20, a dispersion element 8, a rod integrator 6 as a homogenizing element, and an emission side imaging system 7.
  • the semiconductor laser 20, the dispersive element 8, the incident-side imaging system 5, the rod integrator 6, and the emission-side imaging system 7 constitute the laser irradiation unit 3A.
  • the dispersion element 8 a diffusion plate, a diffractive optical element, a prism array, or the like can be used.
  • the laser light directly emitted from one semiconductor laser 20 is dispersed by the dispersive element 8 and the dispersive element 8 side is viewed from the incident side imaging system 5 side, it is apparent that a plurality of By dispersing the laser light as if it was emitted from the semiconductor laser 20, it is possible to make the laser light uniform.
  • Other configurations in the present embodiment are the same as the configurations of the laser annealing apparatus 1 according to the first embodiment described above, and the description thereof will be omitted.
  • the present embodiment it is possible to form the homogenized laser beam LB using the single semiconductor laser 20. Therefore, according to the present embodiment, it is possible to further reduce the weight and cost of the laser irradiation unit 3A.
  • Other effects of the present embodiment are similar to those of the laser annealing apparatus 1 according to the first embodiment.
  • FIG. 4 is a schematic configuration diagram showing a laser annealing apparatus 1B according to the third embodiment of the present invention.
  • the laser annealing apparatus 1B according to the present embodiment includes four semiconductor lasers 20, a rod integrator 6 as a homogenizing element, and an emission side imaging system 7.
  • the semiconductor laser 20, the rod integrator 6, and the emission-side imaging system 7 constitute the laser irradiation unit 3B.
  • the laser light emitted from the four semiconductor lasers 20 is set to directly enter the rod integrator 6.
  • the rod integrator 6 having the light incident surface 61 having a relatively large area is used in order to cause the laser light emitted from the four semiconductor lasers 20 to be incident on the light incident surface 61 without leakage.
  • Other configurations in the present embodiment are the same as the configurations of the laser annealing apparatus 1 according to the first embodiment described above, and the description thereof will be omitted.
  • the incident side imaging system 5 that constitutes the laser annealing apparatus 1 according to the first embodiment is not used, so the apparatus configuration can be further simplified.
  • the effect of this embodiment is similar to the effect of the first embodiment.
  • FIG. 5 is a schematic configuration diagram showing a laser annealing apparatus 1C according to the fourth embodiment of the present invention.
  • the laser annealing apparatus 1C according to the present embodiment includes a pair of semiconductor lasers 20, a pair of incident side imaging systems 5A corresponding to the respective semiconductor lasers 20, a rod integrator 6 as a homogenizing element, and an emitting side connection. And an image system 7.
  • the pair of semiconductor lasers 20, the pair of incident-side imaging systems 5A, the rod integrator 6, and the exit-side imaging system 7 constitute the laser irradiation unit 3C.
  • the laser beams emitted from the two semiconductor lasers 20 are set so as to be incident on the light incident surface 61 of the rod integrator 6 via the incident-side imaging system 5A without leaking.
  • Other configurations in the present embodiment are the same as the configurations of the laser annealing apparatus 1 according to the first embodiment described above, and the description thereof will be omitted.
  • the effect of this embodiment is similar to the effect of the first embodiment.
  • FIG. 6 is a schematic configuration diagram showing a laser annealing apparatus 1D according to the fifth embodiment of the present invention.
  • the laser annealing apparatus 1D according to the present embodiment includes a light source unit 4 including four semiconductor lasers 20, an incident side imaging system 5B corresponding to each semiconductor laser 20, a rod integrator 6 as a homogenizing element, The exit side imaging system 7 is provided.
  • the light source unit 4, the incident side image forming system 5B, the rod integrator 6, and the emitting side image forming system 7 constitute the laser irradiation unit 3D.
  • the laser beams emitted from the four semiconductor lasers 20 are set so as to be incident on the light incident surface 61 of the rod integrator 6 via the incident side imaging system 5B without leakage.
  • the four semiconductor lasers 20 are arranged and fixed in a line on the lower surface of the array substrate 41.
  • the incident side imaging system 5B is arranged so as to correspond to each semiconductor laser 20.
  • Other configurations in the present embodiment are the same as the configurations of the laser annealing apparatus 1 according to the first embodiment described above, and the description thereof will be omitted.
  • the effect of this embodiment is similar to the effect of the first embodiment.
  • FIG. 7 is a schematic configuration diagram showing a laser annealing apparatus 1E according to the sixth embodiment of the present invention.
  • the laser annealing apparatus 1E according to the present embodiment includes a light source unit 4 including four semiconductor lasers 20A, a rod integrator 6 as a homogenizing element, and an emission side imaging system 7.
  • the light source unit 4, the rod integrator 6, and the emission side imaging system 7 constitute the laser irradiation unit 3E.
  • the semiconductor laser 20A includes an on-chip lens 5C as an incident side image forming system.
  • the semiconductor laser 20A includes an n-side electrode 21, an n-type substrate 22, an n-type cladding layer 23, an active layer 24, a p-type cladding layer 25, and a p-side electrode 26, which are sequentially stacked. ..
  • a complete reflection film 27 is formed on one end side of the active layer 24.
  • the on-chip lens 5C is integrally formed on the reflection surface 24A on the other end side of the active layer 24.
  • the semiconductor laser 20A is integrally provided with the on-chip lens 5C, it is not necessary to separately provide an incident side imaging system, and the laser irradiation section 3E can be made into a compact structure.
  • the present embodiment it is easy to set so that the laser beams emitted from the four semiconductor lasers 20A respectively enter the light incident surface 61 of the rod integrator 6 via the on-chip lens 5C without leakage. ..
  • Other configurations in the present embodiment are the same as the configurations of the laser annealing apparatus 1 according to the first embodiment described above, and the description thereof will be omitted.
  • the effect of this embodiment is similar to the effect of the first embodiment.
  • the example in which the rectangular parallelepiped rod integrator 6 is used as the homogenizing element has been shown. You may use the optical element which performs. Further, as the rod integrator 6, it is also possible to use one having a structure in which the cross-sectional area gradually decreases from the light incident surface 61 toward the light emitting surface 62.
  • the number of semiconductor lasers 20 and 20A is 1, 2 and 4 has been described, but the number of semiconductor lasers 20 is not limited to this.
  • a configuration may be employed in which the output of the laser beam LB is increased by using a larger number of semiconductor lasers 20 and 20A.
  • the laser irradiation units 3, 3A, 3B, 3C, 3D, 3E are moved to fix the substrate 10 to be processed, but the substrate 10 is moved. Then, the laser irradiation units 3, 3A, 3B, 3C, 3D and 3E may be fixed in position.
  • the semiconductor lasers 20 and 20A are blue lasers, but the present invention is not limited to this, and semiconductor lasers of other wavelength bands may of course be applied.

Abstract

The present invention comprises: a light source unit provided with a semiconductor laser that emits a laser beam; an equalizing element that includes a light incidence surface and a light emission surface facing the light incidence surface, and that is configured so that a laser beam which is directly projected from the semiconductor laser is incident on the light incidence surface and the equalized laser beam is emitted from the light emission surface; and an emission-side image forming system that projects the light emission surface of the equalizing element to a surface of a substrate to be processed.

Description

レーザアニール装置Laser annealing equipment
 本発明は、レーザアニール装置に関する。 The present invention relates to a laser annealing device.
 薄膜トランジスタ(TFT:Thin Film Transistor)は、液晶ディスプレイ(LCD:Liquid Crystal Display)、有機ELディスプレイ(OLED:Organic Electroluminescence Display)などの薄型ディスプレイ(FPD:Flat Panel Display)をアクティブ駆動するためのスイッチング素子として用いられている。薄膜トランジスタ(以下、TFTという)の半導体層の材料としては、非晶質シリコン(a-Si:amorphous Silicon)や、多結晶シリコン(P-Si:Polycrystalline Silicon)などが用いられている。 A thin film transistor (TFT: Thin Film Transistor) is used as a switching element for actively driving a thin display (FPD: Flat Panel Display) such as a liquid crystal display (LCD: Liquid Crystal Display) and an organic EL display (OLED: Organic Electroluminescence Display). It is used. Amorphous silicon (a-Si: amorphous Silicon), polycrystalline silicon (P-Si: Polycrystalline Silicon), or the like is used as a material of a semiconductor layer of a thin film transistor (hereinafter referred to as a TFT).
 非晶質シリコンは、電子の動き易さの指標である移動度が低い。このため、非晶質シリコンでは、さらに高密度・高精細化が進むFPDで要求される高移動度の要求には対応しきれない。そこで、FPDにおけるスイッチング素子としては、非晶質シリコンよりも移動度が大幅に高い多結晶シリコンでチャネル層を形成することが好ましい。多結晶シリコン膜を形成する方法としては、エキシマレーザを使ったエキシマレーザアニール(ELA:Excimer Laser Annealing)装置で、非晶質シリコン膜にレーザ光を照射し、非晶質シリコンを再結晶化させて多結晶シリコンを形成する方法がある。 Amorphous silicon has a low mobility, which is an index of electron mobility. For this reason, amorphous silicon cannot meet the demand for high mobility required for FPDs, which are becoming higher in density and definition. Therefore, as the switching element in the FPD, it is preferable to form the channel layer from polycrystalline silicon, which has significantly higher mobility than amorphous silicon. As a method for forming a polycrystalline silicon film, an amorphous silicon film is irradiated with laser light by an excimer laser annealing (ELA) device using an excimer laser to recrystallize the amorphous silicon film. There is a method for forming polycrystalline silicon.
 エキシマレーザアニール(以下、ELAという)装置は特殊なガスを使ったガスレーザであり、設備コストならびに維持コストが高いという問題がある。また、ELA装置は、発生出力が強く、レーザ光の位相のそろい具合(コヒーレンス)や出力を一定の状態に保つことが難しいとう問題がある。ガラス基板(歪点:約600℃)を用いたFPDの製造では、ガラス基板に影響を与えるような高温の処理を行うことができない。そこで、FPDの製造においてELA装置を用いる場合は、パルスレーザを用いている。 Excimer laser annealing (hereinafter referred to as ELA) equipment is a gas laser that uses a special gas, and has the problem of high equipment costs and maintenance costs. Further, the ELA device has a problem that the generated output is strong and it is difficult to keep the phase (coherence) of the laser light in phase and the output constant. In manufacturing an FPD using a glass substrate (strain point: about 600° C.), it is not possible to perform a high-temperature treatment that affects the glass substrate. Therefore, when an ELA device is used in the manufacture of FPD, a pulse laser is used.
 近年、半導体励起固体レーザ(DPSS:Diode Pumped Solid State)を利用したレーザ照明装置が提案されている(特許文献1参照)。このレーザ照明装置では、光源モジュールと、第一の光ファイバと、第二の伝送系としての光ファイバアレイと、第二の光学系と、均一化要素と、が順次配置されている。上記光源モジュールは、多数のエミッタを有する光源ユニットと、第一のカップリング光学系と、を備える。この光源モジュールは、光源ユニットからのレーザ発振光を第一のカップリング光学系を介して第一の光ファイバに導く構成になっている。 Recently, a laser illuminator using a semiconductor pumped solid state laser (DPSS: Diode Pumped Solid State) has been proposed (see Patent Document 1). In this laser illuminator, a light source module, a first optical fiber, an optical fiber array as a second transmission system, a second optical system, and a homogenizing element are sequentially arranged. The light source module includes a light source unit having a large number of emitters and a first coupling optical system. This light source module is configured to guide the laser oscillation light from the light source unit to the first optical fiber via the first coupling optical system.
 上記光源ユニットは、半導体レーザとレーザ媒質(レーザ結晶)と非線形材料(非線形結晶)とでなる半導体励起固体レーザを多数備えている。この光源ユニットでは、半導体レーザより出力された励起光でレーザ媒質を励起して基本波を形成し、この基本波を非線形材料で波長変換した光を、第一のカップリング光学系へ出射する構成になっている。第一のカップリング光学系から第一の光ファイバに導かれたレーザ光は、第二の光ファイバアレイに導かれる。第二の光ファイバアレイから出射された複数のビームのレーザ光は、第二の光学系によって均一化素子に導かれて均一化される。均一化素子から出射したビーム状のレーザ光は、第三の光学系で成形されて被処理物の表面に照射される構成になっている。 The light source unit includes a large number of semiconductor-pumped solid-state lasers including a semiconductor laser, a laser medium (laser crystal), and a non-linear material (non-linear crystal). In this light source unit, a laser medium is excited by excitation light output from a semiconductor laser to form a fundamental wave, and the fundamental wave is wavelength-converted by a non-linear material, and the light is emitted to the first coupling optical system. It has become. The laser light guided from the first coupling optical system to the first optical fiber is guided to the second optical fiber array. The plurality of beams of laser light emitted from the second optical fiber array are guided to the homogenizing element by the second optical system and are homogenized. The beam-shaped laser light emitted from the homogenizing element is shaped by the third optical system and irradiated onto the surface of the object to be processed.
特許第4948650号公報Japanese Patent No. 4948650
 しかしながら、上述の半導体励起固体レーザを用いたレーザ照明装置では、多くの光ファイバなどの光伝搬経路および光伝搬部材を備えるため、構成が複雑となり、製造コストが高くなるという問題がある。また、上述のレーザ照明装置では、光源モジュールからそれぞれの第二の光ファイバアレイまでを結ぶ第一の光ファイバの長さが、第二の光ファイバアレイ毎に異なる長さとなる。このため、第二の光ファイバアレイから出射されるレーザ光の出力に影響があり、第二の光ファイバアレイ毎にレーザ光の出力が異なるという問題がある。 However, the laser illuminator using the above-described semiconductor-pumped solid-state laser has a problem that the configuration becomes complicated and the manufacturing cost becomes high because it includes many light propagation paths such as optical fibers and light propagation members. Further, in the above laser illuminator, the length of the first optical fiber connecting the light source module to the respective second optical fiber arrays is different for each second optical fiber array. Therefore, there is a problem in that the output of the laser light emitted from the second optical fiber array is affected, and the output of the laser light differs for each second optical fiber array.
 特に、半導体レーザでは、レーザ光を出射する活性層の端面での開口数(NA)が大きく、その端面から出射されるレーザ光は大きく拡散する。このため、上述のレーザ照明装置では、半導体レーザから出射された励起光をレーザ媒質の狭い導波路構造内へ導入する際に、大きな導入ロス(入射効率の低下)が発生し易くなるという課題がある。加えて、上述のレーザ照明装置では、レーザ媒質、非線形材料、第一の光ファイバ、光ファイバアレイなどの多くの光伝搬部材中をレーザ光が伝搬するため、光伝搬ロス(結合損失も含む)が大きくなるという課題がある。さらに、上述のレーザ照明装置では、光ファイバアレイにおける光ファイバの数が多くなればさらに光伝搬ロスが大きくなるという課題がある。特に、上述のレーザ照明装置では、半導体レーザの単体としての出力が小さいため、光伝搬ロスなどにより、所望の照明出力が得られなくなるという課題がある。上述のレーザ照明装置では、光源モジュールにレーザ媒質と非線形材料とを配置するスペースを要する。このため、このレーザ照明装置では、光源モジュールが大型化し易く、光源モジュールを高い密度で集積させることができないという課題がある。そこで、光源モジュールを複数のファイバレーザを備える構成にして、これら複数のファイバレーザをポンプコンバイナで結合させる構成が考えられる。しかし、ポンプコンバイナを用いると、発熱が顕著になることが多くなり、発熱により出力レーザの安定性が乱れるという課題がある。 In particular, in semiconductor lasers, the numerical aperture (NA) at the end face of the active layer that emits laser light is large, and the laser light emitted from that end face is largely diffused. Therefore, in the above laser illuminating device, when introducing the excitation light emitted from the semiconductor laser into the narrow waveguide structure of the laser medium, a large introduction loss (decrease in incidence efficiency) easily occurs. is there. In addition, in the above-mentioned laser illuminator, since the laser light propagates through many light propagation members such as the laser medium, the nonlinear material, the first optical fiber, and the optical fiber array, the light propagation loss (including the coupling loss). The problem is that Further, the above-mentioned laser illuminator has a problem that the optical propagation loss becomes larger as the number of optical fibers in the optical fiber array increases. In particular, in the above laser illuminating device, since the output of the semiconductor laser as a single body is small, there is a problem that a desired illumination output cannot be obtained due to light propagation loss or the like. In the above laser illuminator, a space for disposing the laser medium and the non-linear material is required in the light source module. Therefore, in this laser illuminator, there is a problem that the light source module tends to be large in size, and the light source modules cannot be integrated with high density. Therefore, a configuration in which the light source module is provided with a plurality of fiber lasers and the plurality of fiber lasers are coupled by a pump combiner can be considered. However, when a pump combiner is used, heat generation is often remarkable, and there is a problem that the stability of the output laser is disturbed by the heat generation.
 本発明は、上記の課題に鑑みてなされたものであって、レーザ光の光伝搬ロスが小さく、所望のレーザ出力を均一化でき、被処理基板へのレーザ照射条件の制御性がよく、大幅な低コスト化を達成できるレーザアニール装置を提供することを目的とする。 The present invention has been made in view of the above problems, the light propagation loss of the laser light is small, it is possible to uniform the desired laser output, good controllability of the laser irradiation conditions to the substrate to be processed, significantly. It is an object of the present invention to provide a laser annealing apparatus that can achieve various cost reductions.
 上述した課題を解決し、目的を達成するために、本発明の態様は、レーザビームを被処理基板の表面に照射して被処理基板に対してアニール処理を行うレーザアニール装置であって、レーザ光を出射する半導体レーザを備える光源部と、光入射面と当該光入射面に対向する光出射面とを有し、前記光入射面に前記半導体レーザから直接出射されたレーザ光が入射され、前記光出射面から均一化されたレーザビームを出射する均一化素子と、前記光出射面から出射されたレーザビームを、被処理基板の表面へ投影する出射側結像系と、を備えることを特徴とする。 In order to solve the above problems and to achieve the object, an aspect of the present invention is a laser annealing apparatus that irradiates a surface of a substrate to be processed with a laser beam to perform an annealing process on the substrate to be processed. A light source unit including a semiconductor laser that emits light, a light incident surface and a light emitting surface facing the light incident surface, the laser light directly emitted from the semiconductor laser is incident on the light incident surface, A homogenizing element for emitting a uniform laser beam from the light emitting surface; and an emitting side imaging system for projecting the laser beam emitted from the light emitting surface onto the surface of the substrate to be processed. It is a feature.
 上記態様としては、前記光源部と前記均一化素子との間に、前記半導体レーザから直接出射されたレーザ光のビーム全体を前記光入射面の領域内のみに入射させる入射側結像系を備えることが好ましい。 As the above aspect, between the light source section and the homogenizing element, there is provided an incident side imaging system for making the entire beam of laser light directly emitted from the semiconductor laser incident only in the region of the light incident surface. It is preferable.
 上記態様としては、前記光源部は、複数の前記半導体レーザを備えることが好ましい。 In the above aspect, it is preferable that the light source section includes a plurality of the semiconductor lasers.
 上記態様としては、前記光源部は、単一の前記半導体レーザを備え、前記光源部と前記入射側結像系との間に、前記半導体レーザから直接出射されたレーザ光のビームを複数のビームに分散させる分散素子を備えることが好ましい。 In the above aspect, the light source unit includes a single semiconductor laser, and a plurality of beams of laser light directly emitted from the semiconductor laser are provided between the light source unit and the incident-side imaging system. It is preferable to provide a dispersion element that disperses.
 上記態様としては、前記出射側結像系から出射されるレーザビームは、前記被処理基板の表面に矩形状のビームスポットで投影されることが好ましい。 In the above aspect, it is preferable that the laser beam emitted from the emission-side imaging system is projected as a rectangular beam spot on the surface of the substrate to be processed.
 上記態様としては、前記均一化素子は、前記光出射面から平行光でなるレーザビームを出射することが好ましい。 In the above aspect, it is preferable that the homogenizing element emits a laser beam of parallel light from the light emitting surface.
 上記態様としては、前記均一化素子は、ロッドインテグレータ、ロッドアレイ、フライアイレンズから選ばれることが好ましい。 In the above aspect, the homogenizing element is preferably selected from a rod integrator, a rod array, and a fly-eye lens.
 上記態様としては、前記入射側結像系は、前記半導体レーザの活性層のレーザ光出射端面に配されたオンチップレンズであることが好ましい。 In the above aspect, it is preferable that the incident-side imaging system is an on-chip lens arranged on a laser light emitting end face of the active layer of the semiconductor laser.
 上記態様としては、前記光源は、レーザ光を連続発振することが好ましい。 In the above aspect, it is preferable that the light source continuously oscillates laser light.
 本発明に係るレーザアニール装置によれば、レーザ光の光伝搬ロスが小さく、所望のレーザ出力を安定して維持でき、被処理基板へのレーザ照射条件の制御性がよく、大幅な低コスト化を達成できる、半導体レーザを光源とするレーザアニール装置を実現することができる。 According to the laser annealing apparatus of the present invention, the light propagation loss of the laser light is small, the desired laser output can be stably maintained, the controllability of the laser irradiation conditions on the substrate to be processed is good, and the cost is significantly reduced. A laser annealing device using a semiconductor laser as a light source can be realized.
図1は、本発明の第1の実施の形態に係るレーザアニール装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a laser annealing apparatus according to a first embodiment of the present invention. 図2は、本発明の第1の実施の形態に係るレーザアニール装置を用いてラインビームを非晶質シリコン膜の表面に照射した状態を説明する斜視図である。FIG. 2 is a perspective view illustrating a state in which the surface of the amorphous silicon film is irradiated with a line beam by using the laser annealing apparatus according to the first embodiment of the present invention. 図3は、本発明の第2の実施の形態に係るレーザアニール装置の要部を示す概略構成図である。FIG. 3 is a schematic configuration diagram showing a main part of a laser annealing apparatus according to the second embodiment of the present invention. 図4は、本発明の第3の実施の形態に係るレーザアニール装置の要部を示す概略構成図である。FIG. 4 is a schematic configuration diagram showing a main part of a laser annealing apparatus according to the third embodiment of the present invention. 図5は、本発明の第4の実施の形態に係るレーザアニール装置の要部を示す概略構成図である。FIG. 5 is a schematic configuration diagram showing a main part of a laser annealing apparatus according to the fourth embodiment of the present invention. 図6は、本発明の第5の実施の形態に係るレーザアニール装置の要部を示す斜視図である。FIG. 6 is a perspective view showing a main part of a laser annealing apparatus according to the fifth embodiment of the present invention. 図7は、本発明の第6の実施の形態に係るレーザアニール装置の要部を示す概略構成図である。FIG. 7 is a schematic configuration diagram showing a main part of a laser annealing apparatus according to a sixth embodiment of the present invention. 図8は、本発明の第6の実施の形態に係るレーザアニール装置の光源部に用いる半導体レーザを示す断面説明図である。FIG. 8 is a sectional explanatory view showing a semiconductor laser used for a light source section of a laser annealing apparatus according to a sixth embodiment of the present invention.
 以下に、本発明の実施の形態に係るレーザアニール装置の詳細を図面に基づいて説明する。但し、図面は模式的なものであり、各部材の寸法や寸法の比率や形状などは現実のものと異なることに留意すべきである。また、図面相互間においても互いの寸法の関係や比率や形状が異なる部分が含まれている。 The details of the laser annealing apparatus according to the embodiment of the present invention will be described below with reference to the drawings. However, it should be noted that the drawings are schematic and the dimensions, ratios of dimensions, and shapes of the respective members are different from the actual ones. In addition, the drawings include portions having different dimensional relationships, ratios, and shapes.
[第1の実施の形態]
 ここで、レーザアニール装置の構成の説明に先駆けて、レーザアニール装置でアニール処理を行う被処理基板の一例について説明する。図1および図2に示すように、被処理基板10は、ガラス基板11と、このガラス基板11の表面に略全面に形成された被処理膜としての非晶質シリコン膜12Aとでなり、最終的にはTFT基板となる。なお、非晶質シリコン膜12Aとガラス基板11との間には、作製するTFTの構造によってはゲート線などの配線パターンが形成されていてもよい。
[First Embodiment]
Here, prior to the description of the configuration of the laser annealing apparatus, an example of the substrate to be annealed by the laser annealing apparatus will be described. As shown in FIGS. 1 and 2, the substrate 10 to be processed is composed of a glass substrate 11 and an amorphous silicon film 12A as a film to be processed which is formed on substantially the entire surface of the glass substrate 11, Specifically, it becomes a TFT substrate. A wiring pattern such as a gate line may be formed between the amorphous silicon film 12A and the glass substrate 11 depending on the structure of the TFT to be manufactured.
 図2に示すように、非晶質シリコン膜12Aには、帯状の処理予定領域13が走査方向Tに延びるように設定されている。この処理予定領域13は、走査方向Tに沿って、図示しない複数のTFT形成予定部を繋ぐように形成されている。この処理予定領域13の幅寸法Wは、作製するTFTのチャネル層の幅寸法と略同じ寸法に設定されている。 As shown in FIG. 2, the amorphous silicon film 12A has a band-shaped processing-target region 13 set to extend in the scanning direction T. The processing target area 13 is formed along the scanning direction T so as to connect a plurality of TFT formation target portions (not shown). The width dimension W of the scheduled processing region 13 is set to be substantially the same as the width dimension of the channel layer of the TFT to be manufactured.
(レーザアニール装置の概略構成)
 以下、図1を用いて、本実施の形態に係るレーザアニール装置1の概略構成を説明する。レーザアニール装置1は、基台2と、レーザ照射部3と、を備える。レーザ照射部3は、光源部4と、入射側結像系5と、均一化素子としてのロッドインテグレータ6と、出射側結像系7と、を備える。
(Schematic configuration of laser annealing device)
Hereinafter, the schematic configuration of the laser annealing apparatus 1 according to the present embodiment will be described with reference to FIG. The laser annealing apparatus 1 includes a base 2 and a laser irradiation unit 3. The laser irradiation unit 3 includes a light source unit 4, an entrance-side imaging system 5, a rod integrator 6 as a homogenizing element, and an exit-side imaging system 7.
 本実施の形態では、図1に示すように、レーザ照射部3を走査方向Tに走査可能に設けられている。すなわち、基台2上の被処理基板10は移動せず、レーザ照射部3が移動して被処理基板10の非晶質シリコン膜12Aにアニール処理を施すようになっている。なお、本実施の形態では、被処理基板10を固定する構成としたが、レーザ照射部3を固定して、被処理基板10を走査する構成としても勿論よい。 In the present embodiment, as shown in FIG. 1, the laser irradiation unit 3 is provided so as to be capable of scanning in the scanning direction T. That is, the substrate 10 to be processed on the base 2 does not move, but the laser irradiation unit 3 moves so that the amorphous silicon film 12A of the substrate 10 to be processed is annealed. Although the substrate 10 is fixed in the present embodiment, the laser irradiation unit 3 may be fixed to scan the substrate 10 as a matter of course.
 図1に示すように、光源部4は、複数の(本実施の形態では4つの)半導体レーザ20を備える。本実施の形態では、半導体レーザ20として、波長帯域が400~500nmのGaN(窒化ガリウム)系の青色レーザを用いる。これら半導体レーザ20は、レーザ光を出射する光出射面が、同一平面上に位置するように配置されている。これらの半導体レーザ20は、一直線上に等間隔に集積された状態で並ぶように配置されている。本実施の形態では、半導体レーザ20は、連続発振(または連続波発振、CW:Continuous Wave)動作を行うCWレーザである。 As shown in FIG. 1, the light source unit 4 includes a plurality of (four in the present embodiment) semiconductor lasers 20. In this embodiment, as the semiconductor laser 20, a GaN (gallium nitride)-based blue laser having a wavelength band of 400 to 500 nm is used. These semiconductor lasers 20 are arranged such that the light emitting surfaces for emitting laser light are located on the same plane. These semiconductor lasers 20 are arranged side by side in a state of being integrated on a straight line at equal intervals. In the present embodiment, the semiconductor laser 20 is a CW laser that performs continuous oscillation (or continuous wave oscillation, CW: Continuous Wave) operation.
 本実施の形態では、入射側結像系5として結像レンズを用いる。この入射側結像系5は、4つの半導体レーザ20からそれぞれ出射されたレーザ光のビーム全体をロッドインテグレータ6の後述する光入射面61に入射させるように設定されている。 In this embodiment, an imaging lens is used as the incident side imaging system 5. The incident-side imaging system 5 is set so that the entire beam of laser light emitted from each of the four semiconductor lasers 20 is incident on a light incident surface 61 of the rod integrator 6 which will be described later.
 ロッドインテグレータ6は、直方体形状のガラスロッドで構成され、上下方向(長手方向)の上端面(一端面)である光入射面61と、上下方向(長手方向)の下端面(他端面)である光出射面62と、互いに平行な一対の側面63と、互いに平行な一対の側面64と、を有する。また、ロッドインテグレータ6では、上下方向(長手方向)の長さが、光の均一化を得るために必要な寸法に設定されている。本実施の形態においては、ロッドインテグレータ6の一対の側面64同士の距離が短く、他の一対の側面63同士の距離が長く設定されている。なお、本実施の形態においては、均一化素子としてロッドインテグレータ6を用いるが、ロッドインテグレータの集合体でなるロッドアレイやフライアイレンズなどを用いてもよい。 The rod integrator 6 is composed of a rectangular parallelepiped glass rod, and has a light incident surface 61 that is an upper end surface (one end surface) in the vertical direction (longitudinal direction) and a lower end surface (the other end surface) in the vertical direction (longitudinal direction). It has a light emitting surface 62, a pair of side surfaces 63 parallel to each other, and a pair of side surfaces 64 parallel to each other. Further, in the rod integrator 6, the length in the up-down direction (longitudinal direction) is set to a dimension required to obtain uniform light. In the present embodiment, the distance between the pair of side surfaces 64 of the rod integrator 6 is set short and the distance between the other pair of side surfaces 63 is set long. Although the rod integrator 6 is used as the homogenizing element in the present embodiment, a rod array or fly-eye lens that is an aggregate of rod integrators may be used.
 なお、半導体レーザ20では、レーザ光を出射する活性層の端面での開口数(NA)が大きく、その端面から出射されるレーザ光は大きく拡散する。しかし、本実施の形態では、入射側結像系5が半導体レーザ20から拡がって出射されるレーザ光を捕捉できるように、半導体レーザ20と入射側結像系5との距離、ならびに入射側結像系5を構成する結像レンズの径寸法および焦点距離などを適宜設定している。加えて、本実施の形態では、複数の半導体レーザ20の光出射面を同一平面上に位置させ、しかも半導体レーザ20を集積した状態で並ぶように配置している。このような設定や光源部4の構成により、半導体レーザ20から出射されたレーザ光のビーム全体を、ロッドインテグレータ6の光入射面61に漏れなく入射させることが可能となる。 In the semiconductor laser 20, the numerical aperture (NA) at the end face of the active layer that emits the laser light is large, and the laser light emitted from the end face is largely diffused. However, in the present embodiment, the distance between the semiconductor laser 20 and the incident-side imaging system 5 and the incident-side coupling are set so that the incident-side imaging system 5 can capture the laser light expanded and emitted from the semiconductor laser 20. The diameter and focal length of the image forming lens forming the image system 5 are appropriately set. In addition, in the present embodiment, the light emitting surfaces of the plurality of semiconductor lasers 20 are located on the same plane, and the semiconductor lasers 20 are arranged side by side in an integrated state. With such settings and the configuration of the light source unit 4, the entire beam of laser light emitted from the semiconductor laser 20 can be incident on the light incident surface 61 of the rod integrator 6 without leakage.
 出射側結像系7は、ロッドインテグレータ6の光出射面62を被処理基板10の非晶質シリコン膜12Aの表面に投影するように設定されている。なお、図2に示すように、本実施の形態では、出射側結像系7から出射されるレーザビームLBの非晶質シリコン膜12Aの表面に投影されるビームスポットBSが細長い矩形状となるように設定されている。図2に示すように、ビームスポットBSの幅寸法は、被処理基板10における処理予定領域13の幅寸法Wと同一となるように設定されている。 The exit-side imaging system 7 is set so as to project the light exit surface 62 of the rod integrator 6 onto the surface of the amorphous silicon film 12A of the substrate 10 to be processed. Note that, as shown in FIG. 2, in the present embodiment, the beam spot BS of the laser beam LB emitted from the emission side imaging system 7 is projected on the surface of the amorphous silicon film 12A in an elongated rectangular shape. Is set. As shown in FIG. 2, the width dimension of the beam spot BS is set to be the same as the width dimension W of the scheduled processing region 13 on the substrate 10 to be processed.
(レーザアニール装置の作用および動作)
 本実施の形態に係るレーザアニール装置1においては、複数の半導体レーザ20から波長帯域が400~500nmの青色のレーザ光を連続照射する。具体的には、被処理基板10における処理予定領域13の走査方向全体に亘って連続的にレーザ光を発振するように駆動する。そして、処理予定領域13が島状に点在する場合は、その処理予定領域13を走査する間に連続的にレーザ光を発振する駆動を行う。ここで、連続照射とは、目的領域に対して連続してレーザ光を照射する所謂疑似連続照射も含む概念である。つまり、レーザ光がパルスレーザであっても、パルス幅が広ければこの疑似連続照射に含まれる場合がある。
(Operation and operation of laser annealing device)
In the laser annealing apparatus 1 according to the present embodiment, a plurality of semiconductor lasers 20 continuously emit blue laser light having a wavelength band of 400 to 500 nm. Specifically, it is driven so as to continuously oscillate the laser beam over the entire scanning direction of the processing target region 13 on the substrate 10 to be processed. When the processing target areas 13 are scattered in an island shape, the laser light is continuously oscillated while scanning the processing target areas 13. Here, the continuous irradiation is a concept including so-called pseudo continuous irradiation in which the laser light is continuously irradiated to the target area. That is, even if the laser light is a pulse laser, it may be included in this pseudo continuous irradiation if the pulse width is wide.
 本実施の形態では、個々の半導体レーザ20の出力としては、例えば、出力の低い数Wのものを用いることができる。複数の半導体レーザ20をアレイとして束ねることによりアニール処理に必要な、例えば、数Wから数十W、さらにはそれ以上の出力を安定して得ることができる。 In the present embodiment, the output of each semiconductor laser 20 may be, for example, one having a low output of several W. By bundling a plurality of semiconductor lasers 20 as an array, it is possible to stably obtain an output required for the annealing treatment, for example, several W to several tens W, and further more.
 レーザアニール装置1においては、複数の半導体レーザ20からそれぞれ出射されたレーザ光が、入射側結像系5を介してロッドインテグレータ6へ直接的に入射される。このため、従来のように光ファイバを用いる場合に比べて結合損失が発生しない。加えて、レーザアニール装置1においては、入射側結像系5の結像レンズが、半導体レーザ20から直接出射されたレーザ光のビーム全体を、ロッドインテグレータ6の光入射面61の領域内のみに漏れなく入射させる。 In the laser annealing apparatus 1, the laser light emitted from each of the plurality of semiconductor lasers 20 is directly incident on the rod integrator 6 via the incident side imaging system 5. Therefore, no coupling loss occurs as compared with the case where an optical fiber is used as in the conventional case. In addition, in the laser annealing apparatus 1, the imaging lens of the incident-side imaging system 5 causes the entire beam of the laser light directly emitted from the semiconductor laser 20 to be present only within the region of the light incident surface 61 of the rod integrator 6. Make it incident without leakage.
 本実施の形態においては、ロッドインテグレータ6の一対の側面64同士の距離が短く、他の一対の側面63同士の距離が長く設定されている。したがって、本実施の形態においては、距離の短い一対の側面64同士の間では、光入射面61から入射したレーザ光が光出射面62に向けて、全反射が繰り返される回数が多くなり易く、レーザ光の光量は十分に均一化される。 In the present embodiment, the distance between the pair of side surfaces 64 of the rod integrator 6 is set short, and the distance between the other pair of side surfaces 63 is set long. Therefore, in the present embodiment, between the pair of side surfaces 64 having a short distance, the laser light incident from the light incident surface 61 tends toward the light emitting surface 62, and the total number of times of total reflection is likely to increase, The amount of laser light is sufficiently uniformized.
 ロッドインテグレータ6の光入射面61に入射したレーザ光のビームの一部は、光出射面62へ向けて直進して光出射面62からそのまま出射されるが、所定以上の入射角を持ったレーザ光は、ロッドインテグレータ6の一対の側面63のいずれかに到達する。ロッドインテグレータ6の一対の側面63のいずれかでは、入射したレーザ光は全反射して折り返される。本実施の形態では、一対の側面63同士は平行であるため、入射したレーザ光はロッドインテグレータ6の光出射面62に到達するまで全反射を繰り返して、光出射面62から出射する。このため、ロッドインテグレータ6に入射したレーザ光のビームは、ロッドインテグレータ6の一対の側面63で折り返され積算されて光出射面62が出射する。この積算により、ロッドインテグレータ6の光出射面62では、レーザ光のビーム内で光強度が平均化されて均一な光強度分布になる。 A part of the beam of the laser light that has entered the light incident surface 61 of the rod integrator 6 goes straight toward the light emitting surface 62 and is emitted as it is from the light emitting surface 62. The light reaches either of the pair of side surfaces 63 of the rod integrator 6. At any one of the pair of side surfaces 63 of the rod integrator 6, the incident laser light is totally reflected and folded. In the present embodiment, since the pair of side surfaces 63 are parallel to each other, the incident laser light is repeatedly totally reflected until it reaches the light emitting surface 62 of the rod integrator 6, and is emitted from the light emitting surface 62. Therefore, the beam of the laser light that has entered the rod integrator 6 is returned by the pair of side surfaces 63 of the rod integrator 6 and integrated, and the light emitting surface 62 emits the light. By this integration, on the light emitting surface 62 of the rod integrator 6, the light intensities are averaged in the beam of the laser light, and a uniform light intensity distribution is obtained.
 出射側結像系7では、ロッドインテグレータ6の光出射面62を被処理基板10の表面へ投影する。すなわち、図2に示すように、出射側結像系7は、ロッドインテグレータ6の光出射面62から出射されたレーザ光のビームを被処理基板10の表面に矩形状のビームスポットBSとして投影する。 In the exit side imaging system 7, the light exit surface 62 of the rod integrator 6 is projected onto the surface of the substrate 10 to be processed. That is, as shown in FIG. 2, the emission-side imaging system 7 projects the beam of the laser light emitted from the light emission surface 62 of the rod integrator 6 onto the surface of the substrate 10 to be processed as a rectangular beam spot BS. ..
 アニール処理の手順としては、図1に示すように、基台2の上には被処理基板10を配置し、レーザ照射部3を走査方向Tへ移動させることにより、被処理基板10の表面に設けられた非晶質シリコン膜12Aの処理予定領域13へアニール処理が可能になる。図2に示すように、レーザビームLBが走査方向Tに移動することにより、非晶質シリコン膜12Aは多結晶シリコン膜12Pに改質される。 As a procedure of the annealing treatment, as shown in FIG. 1, the substrate 10 to be processed is arranged on the base 2 and the laser irradiation unit 3 is moved in the scanning direction T so that the surface of the substrate 10 to be processed is Annealing processing can be performed on the processing target region 13 of the provided amorphous silicon film 12A. As shown in FIG. 2, as the laser beam LB moves in the scanning direction T, the amorphous silicon film 12A is modified into a polycrystalline silicon film 12P.
 以下、本実施の形態に係るレーザアニール装置1の効果について説明する。本実施の形態によれば、半導体レーザ20で出射されるレーザ光を直接的に均一化素子としてのロッドインテグレータ6へ入射させることができるため、開口数(NA)の大きい半導体レーザ20を用いてもレーザ光の光伝搬ロスを小さくすることができる。 The effects of the laser annealing apparatus 1 according to this embodiment will be described below. According to the present embodiment, the laser light emitted from the semiconductor laser 20 can be directly incident on the rod integrator 6 as the homogenizing element, so that the semiconductor laser 20 having a large numerical aperture (NA) is used. Can also reduce the light propagation loss of the laser light.
 また、本実施の形態によれば、安定な出力特性を持つ半導体レーザ20を直接用いることにより、所望のレーザ出力を安定して維持でき、被処理基板10へのレーザ照射条件の制御性を高めることができる。また、本実施の形態では、従来のELA装置や固体レーザアニール装置に比較して、安価な半導体レーザ20がそのまま使えるようになるため、大幅な低コスト化を達成できる。本実施の形態によれば、アニール出力の設定を変えたい場合は、半導体レーザ20の配置個数や点灯個数を増減すればよい。 Further, according to the present embodiment, by directly using the semiconductor laser 20 having stable output characteristics, a desired laser output can be stably maintained, and the controllability of the laser irradiation conditions on the substrate 10 to be processed is enhanced. be able to. Further, in the present embodiment, as compared with the conventional ELA apparatus and solid-state laser annealing apparatus, the inexpensive semiconductor laser 20 can be used as it is, so that a significant cost reduction can be achieved. According to the present embodiment, when it is desired to change the setting of the annealing output, the number of arranged semiconductor lasers 20 and the number of turned-on semiconductor lasers 20 may be increased or decreased.
 また、本実施の形態のように、レーザ光を連続発振(CW)駆動することにより、非晶質シリコン膜12Aに対して変動のないアニール処理を行うとこが可能となる。このため、多結晶シリコン膜12Pの結晶構造を最適化して良質な多結晶シリコン膜とすることが可能となり、高い移動度を持つチャネル層を有するTFT基板の製造が可能となる。 Further, as in the present embodiment, continuous oscillation (CW) drive of laser light enables the amorphous silicon film 12A to be annealed without fluctuation. Therefore, the crystal structure of the polycrystalline silicon film 12P can be optimized to obtain a high-quality polycrystalline silicon film, and a TFT substrate having a channel layer having high mobility can be manufactured.
 さらに、本実施の形態によれば、本来小型の半導体レーザ20と均一化素子などとを組み合わせたことにより、レーザ照射部3の軽量化を達成できる。このため、本実施の形態によれば、被処理基板10に対してレーザ照射部3が移動する構成とすることができる。
近年、FPDの大型化が進んでいるが、従来のような大型のレーザ照射部を備えたレーザアニール装置では、レーザ照射部側の移動が困難であった。従来のレーザアニール装置では、大型の被処理基板10を移動することで装置のフットプリントが大きくなるという課題を抱えている。なお、本実施の形態では、被処理基板10を固定してレーザ照射部3を移動可能としたが、逆にレーザ照射部3を固定して被処理基板10を移動可能とする構成としても勿論よい。
Furthermore, according to the present embodiment, by combining the originally small semiconductor laser 20 with the homogenizing element, the weight of the laser irradiation section 3 can be reduced. Therefore, according to the present embodiment, the laser irradiation unit 3 can be configured to move with respect to the target substrate 10.
In recent years, FPDs have been increasing in size, but it has been difficult to move the laser irradiation unit side in a conventional laser annealing apparatus having a large laser irradiation unit. The conventional laser annealing apparatus has a problem that the footprint of the apparatus is increased by moving the large substrate 10 to be processed. In the present embodiment, the substrate 10 to be processed is fixed and the laser irradiation unit 3 can be moved. However, conversely, the laser irradiation unit 3 can be fixed to move the substrate 10 to be processed. Good.
 また、本実施の形態によれば、寿命が5000時間以上の半導体レーザ20を用いることができるため、半導体レーザ20の交換周期も長く設定でき、光源部4の交換コストや維持コストも従来のレーザアニール装置に比較して大幅に下げることができる。 Further, according to the present embodiment, since the semiconductor laser 20 having a life of 5000 hours or more can be used, the replacement cycle of the semiconductor laser 20 can be set to be long, and the replacement cost and maintenance cost of the light source unit 4 can be reduced by the conventional laser. It can be significantly reduced compared to the annealing device.
[第2の実施の形態]
 図3は、本発明の第2の実施の形態に係るレーザアニール装置1Aを示す概略構成図である。本実施の形態に係るレーザアニール装置1Aは、1つの半導体レーザ20と、分散素子8と、均一化素子としてのロッドインテグレータ6と、出射側結像系7と、を備える。本実施の形態では、半導体レーザ20と、分散素子8と、入射側結像系5と、ロッドインテグレータ6と、出射側結像系7と、でレーザ照射部3Aを構成している。分散素子8としては、拡散板、回折光学素子、プリズムアレイなどを用いることができる。
[Second Embodiment]
FIG. 3 is a schematic configuration diagram showing a laser annealing apparatus 1A according to the second embodiment of the present invention. The laser annealing apparatus 1A according to the present embodiment includes one semiconductor laser 20, a dispersion element 8, a rod integrator 6 as a homogenizing element, and an emission side imaging system 7. In the present embodiment, the semiconductor laser 20, the dispersive element 8, the incident-side imaging system 5, the rod integrator 6, and the emission-side imaging system 7 constitute the laser irradiation unit 3A. As the dispersion element 8, a diffusion plate, a diffractive optical element, a prism array, or the like can be used.
 本実施の形態では、1つの半導体レーザ20から直接出射されたレーザ光を分散素子8で分散させて、入射側結像系5側から分散素子8側を見たときに、見かけ上、複数の半導体レーザ20からレーザ光を照射されたように分散させることで、レーザ光の均一化を図ることができる。本実施の形態における他の構成は、上記第1の実施の形態に係るレーザアニール装置1の構成と同様であるため説明を省略する。 In the present embodiment, when the laser light directly emitted from one semiconductor laser 20 is dispersed by the dispersive element 8 and the dispersive element 8 side is viewed from the incident side imaging system 5 side, it is apparent that a plurality of By dispersing the laser light as if it was emitted from the semiconductor laser 20, it is possible to make the laser light uniform. Other configurations in the present embodiment are the same as the configurations of the laser annealing apparatus 1 according to the first embodiment described above, and the description thereof will be omitted.
 本実施の形態によれば、単一の半導体レーザ20を用いて均一化されたレーザビームLBを形成することができる。このため、本実施の形態によれば、さらなるレーザ照射部3Aの軽量化と低価格化を達成することができる。本実施の形態における他の効果は、上記第1の実施の形態に係るレーザアニール装置1の効果と同様である。 According to the present embodiment, it is possible to form the homogenized laser beam LB using the single semiconductor laser 20. Therefore, according to the present embodiment, it is possible to further reduce the weight and cost of the laser irradiation unit 3A. Other effects of the present embodiment are similar to those of the laser annealing apparatus 1 according to the first embodiment.
[第3の実施の形態]
 図4は、本発明の第3の実施の形態に係るレーザアニール装置1Bを示す概略構成図である。本実施の形態に係るレーザアニール装置1Bは、4つの半導体レーザ20と、均一化素子としてのロッドインテグレータ6と、出射側結像系7と、を備える。本実施の形態では、半導体レーザ20と、ロッドインテグレータ6と、出射側結像系7と、でレーザ照射部3Bを構成している。
[Third Embodiment]
FIG. 4 is a schematic configuration diagram showing a laser annealing apparatus 1B according to the third embodiment of the present invention. The laser annealing apparatus 1B according to the present embodiment includes four semiconductor lasers 20, a rod integrator 6 as a homogenizing element, and an emission side imaging system 7. In this embodiment, the semiconductor laser 20, the rod integrator 6, and the emission-side imaging system 7 constitute the laser irradiation unit 3B.
 本実施の形態では、4つの半導体レーザ20から出射されたレーザ光が直接ロッドインテグレータ6へ入射するように設定されている。本実施の形態では、4つの半導体レーザ20から出射されたレーザ光を漏れなく光入射面61へ入射させるために、比較的面積の大きな光入射面61有するロッドインテグレータ6を用いている。本実施の形態における他の構成は、上記第1の実施の形態に係るレーザアニール装置1の構成と同様であるため説明を省略する。 In this embodiment, the laser light emitted from the four semiconductor lasers 20 is set to directly enter the rod integrator 6. In the present embodiment, the rod integrator 6 having the light incident surface 61 having a relatively large area is used in order to cause the laser light emitted from the four semiconductor lasers 20 to be incident on the light incident surface 61 without leakage. Other configurations in the present embodiment are the same as the configurations of the laser annealing apparatus 1 according to the first embodiment described above, and the description thereof will be omitted.
 本実施の形態では、上記第1の実施の形態に係るレーザアニール装置1を構成する入射側結像系5を用いないため、装置構成をさらに簡素化できる。本実施の形態の効果は、上記第1の実施の形態の効果と同様である。 In the present embodiment, the incident side imaging system 5 that constitutes the laser annealing apparatus 1 according to the first embodiment is not used, so the apparatus configuration can be further simplified. The effect of this embodiment is similar to the effect of the first embodiment.
[第4の実施の形態]
 図5は、本発明の第4の実施の形態に係るレーザアニール装置1Cを示す概略構成図である。本実施の形態に係るレーザアニール装置1Cは、一対の半導体レーザ20と、それぞれの半導体レーザ20に対応する一対の入射側結像系5Aと、均一化素子としてのロッドインテグレータ6と、出射側結像系7と、を備える。本実施の形態では、一対の半導体レーザ20と、一対の入射側結像系5Aと、ロッドインテグレータ6と、出射側結像系7と、でレーザ照射部3Cを構成している。
[Fourth Embodiment]
FIG. 5 is a schematic configuration diagram showing a laser annealing apparatus 1C according to the fourth embodiment of the present invention. The laser annealing apparatus 1C according to the present embodiment includes a pair of semiconductor lasers 20, a pair of incident side imaging systems 5A corresponding to the respective semiconductor lasers 20, a rod integrator 6 as a homogenizing element, and an emitting side connection. And an image system 7. In this embodiment, the pair of semiconductor lasers 20, the pair of incident-side imaging systems 5A, the rod integrator 6, and the exit-side imaging system 7 constitute the laser irradiation unit 3C.
 本実施の形態では、2つの半導体レーザ20から出射されたレーザ光がそれぞれ入射側結像系5Aを介してロッドインテグレータ6への光入射面61に漏れなく入射するように設定されている。本実施の形態における他の構成は、上記第1の実施の形態に係るレーザアニール装置1の構成と同様であるため説明を省略する。本実施の形態の効果は、上記第1の実施の形態の効果と同様である。 In this embodiment, the laser beams emitted from the two semiconductor lasers 20 are set so as to be incident on the light incident surface 61 of the rod integrator 6 via the incident-side imaging system 5A without leaking. Other configurations in the present embodiment are the same as the configurations of the laser annealing apparatus 1 according to the first embodiment described above, and the description thereof will be omitted. The effect of this embodiment is similar to the effect of the first embodiment.
[第5の実施の形態]
 図6は、本発明の第5の実施の形態に係るレーザアニール装置1Dを示す概略構成図である。本実施の形態に係るレーザアニール装置1Dは、4つの半導体レーザ20を備える光源部4と、それぞれの半導体レーザ20に対応する入射側結像系5Bと、均一化素子としてのロッドインテグレータ6と、出射側結像系7と、を備える。本実施の形態では、光源部4と、入射側結像系5Bと、ロッドインテグレータ6と、出射側結像系7と、でレーザ照射部3Dを構成している。
[Fifth Embodiment]
FIG. 6 is a schematic configuration diagram showing a laser annealing apparatus 1D according to the fifth embodiment of the present invention. The laser annealing apparatus 1D according to the present embodiment includes a light source unit 4 including four semiconductor lasers 20, an incident side imaging system 5B corresponding to each semiconductor laser 20, a rod integrator 6 as a homogenizing element, The exit side imaging system 7 is provided. In the present embodiment, the light source unit 4, the incident side image forming system 5B, the rod integrator 6, and the emitting side image forming system 7 constitute the laser irradiation unit 3D.
 本実施の形態では、4つの半導体レーザ20から出射されたレーザ光がそれぞれ入射側結像系5Bを介してロッドインテグレータ6の光入射面61に漏れなく入射するように設定されている。図6に示すように、4つの半導体レーザ20はアレイ基板41の下面に一列に配置、固定されている。入射側結像系5Bは、それぞれの半導体レーザ20に対応するように配置されている。本実施の形態における他の構成は、上記第1の実施の形態に係るレーザアニール装置1の構成と同様であるため説明を省略する。本実施の形態の効果は、上記第1の実施の形態の効果と同様である。 In this embodiment, the laser beams emitted from the four semiconductor lasers 20 are set so as to be incident on the light incident surface 61 of the rod integrator 6 via the incident side imaging system 5B without leakage. As shown in FIG. 6, the four semiconductor lasers 20 are arranged and fixed in a line on the lower surface of the array substrate 41. The incident side imaging system 5B is arranged so as to correspond to each semiconductor laser 20. Other configurations in the present embodiment are the same as the configurations of the laser annealing apparatus 1 according to the first embodiment described above, and the description thereof will be omitted. The effect of this embodiment is similar to the effect of the first embodiment.
[第6の実施の形態]
 図7は、本発明の第6の実施の形態に係るレーザアニール装置1Eを示す概略構成図である。本実施の形態に係るレーザアニール装置1Eは、4つの半導体レーザ20Aを備える光源部4と、均一化素子としてのロッドインテグレータ6と、出射側結像系7と、を備える。本実施の形態では、光源部4と、ロッドインテグレータ6と、出射側結像系7と、でレーザ照射部3Eを構成している。
[Sixth Embodiment]
FIG. 7 is a schematic configuration diagram showing a laser annealing apparatus 1E according to the sixth embodiment of the present invention. The laser annealing apparatus 1E according to the present embodiment includes a light source unit 4 including four semiconductor lasers 20A, a rod integrator 6 as a homogenizing element, and an emission side imaging system 7. In the present embodiment, the light source unit 4, the rod integrator 6, and the emission side imaging system 7 constitute the laser irradiation unit 3E.
 図7および図8に示すように、本実施の形態では、半導体レーザ20Aが、入射側結像系としてのオンチップレンズ5Cを備えている。図8に示すように、半導体レーザ20Aは、順次積層されたn側電極21、n型基板22、n型クラッド層23、活性層24、p型クラッド層25、p側電極26を備えている。活性層24の一端側には完全反射膜27が形成されている。一方、活性層24の他端側の反射面24Aにオンチップレンズ5Cが一体に形成されている。 As shown in FIGS. 7 and 8, in the present embodiment, the semiconductor laser 20A includes an on-chip lens 5C as an incident side image forming system. As shown in FIG. 8, the semiconductor laser 20A includes an n-side electrode 21, an n-type substrate 22, an n-type cladding layer 23, an active layer 24, a p-type cladding layer 25, and a p-side electrode 26, which are sequentially stacked. .. A complete reflection film 27 is formed on one end side of the active layer 24. On the other hand, the on-chip lens 5C is integrally formed on the reflection surface 24A on the other end side of the active layer 24.
 本実施の形態では、半導体レーザ20Aにオンチップレンズ5Cが一体に設けられているため、入射側結像系を別途設ける必要がなく、レーザ照射部3Eをコンパクトな構造にできる。 In the present embodiment, since the semiconductor laser 20A is integrally provided with the on-chip lens 5C, it is not necessary to separately provide an incident side imaging system, and the laser irradiation section 3E can be made into a compact structure.
 また、本実施の形態では、4つの半導体レーザ20Aから出射されたレーザ光がそれぞれオンチップレンズ5Cを介してロッドインテグレータ6の光入射面61に漏れなく入射するように設定することが容易である。本実施の形態における他の構成は、上記第1の実施の形態に係るレーザアニール装置1の構成と同様であるため説明を省略する。本実施の形態の効果は、上記第1の実施の形態の効果と同様である。 Further, in the present embodiment, it is easy to set so that the laser beams emitted from the four semiconductor lasers 20A respectively enter the light incident surface 61 of the rod integrator 6 via the on-chip lens 5C without leakage. .. Other configurations in the present embodiment are the same as the configurations of the laser annealing apparatus 1 according to the first embodiment described above, and the description thereof will be omitted. The effect of this embodiment is similar to the effect of the first embodiment.
[その他の実施の形態]
 以上、実施の形態について説明したが、この実施の形態の開示の一部をなす論述および図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例および運用技術が明らかとなろう。
[Other Embodiments]
Although the embodiments have been described above, it should not be understood that the description and drawings forming part of the disclosure of the embodiments limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.
 例えば、上記第1から第6の実施の形態においては、均一化素子として直方体形状のロッドインテグレータ6を用いた例を示したが、これに変えてロッドアレイやフライアイレンズなどの光の均一化を行う光学素子を用いてもよい。また、ロッドインテグレータ6としては、光入射面61から光出射面62に向かうに従って断面積が漸次小さくなるような構造のものを用いることも可能である。 For example, in the above-described first to sixth embodiments, the example in which the rectangular parallelepiped rod integrator 6 is used as the homogenizing element has been shown. You may use the optical element which performs. Further, as the rod integrator 6, it is also possible to use one having a structure in which the cross-sectional area gradually decreases from the light incident surface 61 toward the light emitting surface 62.
 上記の第1から第6の実施の形態では、半導体レーザ20,20Aの数が、1,2,4の場合について説明したが、半導体レーザ20の数は、これに限定されるものではなく、さらに多数の半導体レーザ20,20Aを用いてレーザビームLBの出力を高めた構成としてもよい。 In the above-described first to sixth embodiments, the case where the number of semiconductor lasers 20 and 20A is 1, 2 and 4 has been described, but the number of semiconductor lasers 20 is not limited to this. A configuration may be employed in which the output of the laser beam LB is increased by using a larger number of semiconductor lasers 20 and 20A.
 上記第1から第6の実施の形態では、レーザ照射部3,3A,3B,3C,3D,3Eを移動させて、被処理基板10を位置固定する構成としたが、被処理基板10が移動して、レーザ照射部3,3A,3B,3C,3D,3Eが位置固定された構成としてもよい。 In the first to sixth embodiments, the laser irradiation units 3, 3A, 3B, 3C, 3D, 3E are moved to fix the substrate 10 to be processed, but the substrate 10 is moved. Then, the laser irradiation units 3, 3A, 3B, 3C, 3D and 3E may be fixed in position.
 上記第1から第6の実施の形態では、半導体レーザ20,20Aを青色レーザとしたが、これに限定されるものではなく、他の波長帯域の半導体レーザを適用して勿論よい。 In the first to sixth embodiments described above, the semiconductor lasers 20 and 20A are blue lasers, but the present invention is not limited to this, and semiconductor lasers of other wavelength bands may of course be applied.
 1,1A,1B,1C,1D,1E レーザアニール装置
 2 基台
 3,3A,3B,3C,3D,3E レーザ照射部
 4 光源部
 5,5A,5B 入射側結像系
 5C オンチップレンズ
 6 ロッドインテグレータ(均一化素子)
 7 出射側結像系
 8 分散素子
 10 被処理基板
 12A 非晶質シリコン膜
 12P 多結晶シリコン膜
 13 処理予定領域
 20,20A 半導体レーザ
 24 活性層
 24A 反射面
 27 完全反射膜
 41 アレイ基板
 61 光入射面
 62 光出射面
 63 側面
 64 側面
 BS ビームスポット
 LB レーザビーム
 T 走査方向
 
1, 1A, 1B, 1C, 1D, 1E Laser annealing device 2 Base 3, 3A, 3B, 3C, 3D, 3E Laser irradiation part 4 Light source part 5, 5A, 5B Incident side imaging system 5C On-chip lens 6 Rod Integrator (uniformizing element)
7 Ejection-side imaging system 8 Dispersion element 10 Processed substrate 12A Amorphous silicon film 12P Polycrystalline silicon film 13 Planned region 20, 20A Semiconductor laser 24 Active layer 24A Reflective surface 27 Completely reflective film 41 Array substrate 61 Light incident surface 62 light emitting surface 63 side surface 64 side surface BS beam spot LB laser beam T scanning direction

Claims (9)

  1.  レーザビームを被処理基板の表面に照射して被処理基板に対してアニール処理を行うレーザアニール装置であって、
     レーザ光を出射する半導体レーザを備える光源部と、
     光入射面と当該光入射面に対向する光出射面とを有し、前記光入射面に前記半導体レーザから直接出射されたレーザ光が入射され、前記光出射面から均一化されたレーザビームを出射する均一化素子と、
     前記光出射面から出射されたレーザビームを、被処理基板の表面へ投影する出射側結像系と、
     を備えるレーザアニール装置。
    A laser annealing apparatus for irradiating a surface of a substrate to be processed with a laser beam to perform an annealing process on the substrate to be processed,
    A light source unit including a semiconductor laser that emits laser light,
    It has a light incident surface and a light emitting surface facing the light incident surface, the laser light directly emitted from the semiconductor laser is incident on the light incident surface, and a uniform laser beam is emitted from the light emitting surface. A homogenizing element for emitting,
    An emission side imaging system for projecting the laser beam emitted from the light emission surface onto the surface of the substrate to be processed,
    A laser annealing apparatus comprising.
  2.  前記光源部と前記均一化素子との間に、前記半導体レーザから直接出射されたレーザ光のビーム全体を前記光入射面の領域内のみに入射させる入射側結像系を備える 請求項1に記載のレーザアニール装置。 The incident-side imaging system that makes the entire beam of laser light directly emitted from the semiconductor laser incident only in the region of the light incident surface is provided between the light source unit and the homogenizing element. Laser annealing equipment.
  3.  前記光源部は、複数の前記半導体レーザを備える
     請求項1または請求項2に記載のレーザアニール装置。
    The laser annealing apparatus according to claim 1, wherein the light source unit includes a plurality of the semiconductor lasers.
  4.  前記光源部は、単一の前記半導体レーザを備え、
     前記光源部と前記入射側結像系との間に、前記半導体レーザから直接出射されたレーザ光のビームを複数のビームに分散させる分散素子を備える
     請求項2に記載のレーザアニール装置。
    The light source unit includes a single semiconductor laser,
    The laser annealing apparatus according to claim 2, further comprising: a dispersion element that disperses a beam of laser light directly emitted from the semiconductor laser into a plurality of beams between the light source unit and the incident-side imaging system.
  5.  前記出射側結像系から出射されるレーザビームは、前記被処理基板の表面に矩形状のビームスポットで投影される
     請求項1から請求項4のいずれか一項に記載のレーザアニール装置。
    The laser annealing device according to any one of claims 1 to 4, wherein the laser beam emitted from the emission side imaging system is projected on the surface of the substrate to be processed with a rectangular beam spot.
  6.  前記均一化素子は、前記光出射面から平行光でなるレーザビームを出射する 請求項1から請求項5のいずれか一項に記載のレーザアニール装置。 The laser annealing apparatus according to any one of claims 1 to 5, wherein the homogenizing element emits a laser beam of parallel light from the light emitting surface.
  7.  前記均一化素子は、ロッドインテグレータ、ロッドアレイ、フライアイレンズから選ばれる
     請求項1から請求項5のいずれか一項に記載のレーザアニール装置。
    The laser annealing apparatus according to any one of claims 1 to 5, wherein the homogenizing element is selected from a rod integrator, a rod array, and a fly's eye lens.
  8.  前記入射側結像系は、前記半導体レーザの活性層のレーザ光出射端面に配されたオンチップレンズである
     請求項2または請求項4に記載のレーザアニール装置。
    The laser annealing apparatus according to claim 2, wherein the incident-side imaging system is an on-chip lens arranged on a laser light emitting end face of an active layer of the semiconductor laser.
  9.  前記光源は、レーザ光を連続発振する
     請求項1から請求項8のいずれか一項に記載のレーザアニール装置。
     
    The laser annealing device according to claim 1, wherein the light source continuously oscillates laser light.
PCT/JP2019/046421 2018-12-17 2019-11-27 Laser annealing device WO2020129561A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217008102A KR20210102183A (en) 2018-12-17 2019-11-27 laser annealing device
CN201980076628.0A CN113169054A (en) 2018-12-17 2019-11-27 Laser annealing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-235432 2018-12-17
JP2018235432A JP7140384B2 (en) 2018-12-17 2018-12-17 Laser annealing equipment

Publications (1)

Publication Number Publication Date
WO2020129561A1 true WO2020129561A1 (en) 2020-06-25

Family

ID=71101685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046421 WO2020129561A1 (en) 2018-12-17 2019-11-27 Laser annealing device

Country Status (5)

Country Link
JP (1) JP7140384B2 (en)
KR (1) KR20210102183A (en)
CN (1) CN113169054A (en)
TW (1) TW202032669A (en)
WO (1) WO2020129561A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113618660A (en) * 2021-09-09 2021-11-09 北京闻亭泰科技术发展有限公司 Integrating rod clamping device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200497A (en) * 2002-12-19 2004-07-15 Sony Corp Light emitting device and laser annealing device
JP2008227122A (en) * 2007-03-13 2008-09-25 Sumitomo Heavy Ind Ltd Laser-annealing method and laser-annealing device
JP2012009872A (en) * 2011-07-11 2012-01-12 Ricoh Co Ltd Illuminating optical system, exposure equipment, and projector
JP2012220589A (en) * 2011-04-05 2012-11-12 V Technology Co Ltd Laser illumination device
WO2017029729A1 (en) * 2015-08-19 2017-02-23 ギガフォトン株式会社 Laser device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948650B1 (en) 1968-11-25 1974-12-23

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200497A (en) * 2002-12-19 2004-07-15 Sony Corp Light emitting device and laser annealing device
JP2008227122A (en) * 2007-03-13 2008-09-25 Sumitomo Heavy Ind Ltd Laser-annealing method and laser-annealing device
JP2012220589A (en) * 2011-04-05 2012-11-12 V Technology Co Ltd Laser illumination device
JP2012009872A (en) * 2011-07-11 2012-01-12 Ricoh Co Ltd Illuminating optical system, exposure equipment, and projector
WO2017029729A1 (en) * 2015-08-19 2017-02-23 ギガフォトン株式会社 Laser device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113618660A (en) * 2021-09-09 2021-11-09 北京闻亭泰科技术发展有限公司 Integrating rod clamping device

Also Published As

Publication number Publication date
CN113169054A (en) 2021-07-23
KR20210102183A (en) 2021-08-19
JP7140384B2 (en) 2022-09-21
JP2020098824A (en) 2020-06-25
TW202032669A (en) 2020-09-01

Similar Documents

Publication Publication Date Title
JP4698460B2 (en) Laser annealing equipment
US7615722B2 (en) Amorphous silicon crystallization using combined beams from optically pumped semiconductor lasers
US8105435B2 (en) Beam homogenizer and laser irradiation apparatus and method of manufacturing semiconductor device
US7365285B2 (en) Laser annealing method and apparatus
US7924892B2 (en) Fiber amplifier based light source for semiconductor inspection
US8125703B2 (en) Wavelength converter and image display with wavelength converter
US7109435B2 (en) Beam irradiator and laser anneal device
WO2006109730A1 (en) Laser light source and optical device
JP5805719B2 (en) Optical system
US20100238959A1 (en) Solid-state laser device and image display device
US20040241923A1 (en) Laser annealing apparatus and laser annealing method
KR20210114400A (en) Diode Pumped Solid State Laser Device for Laser Annealing
WO2020129561A1 (en) Laser annealing device
US8294979B2 (en) Wavelength conversion device and image display apparatus using the same
US7586971B2 (en) External-cavity laser light source apparatus and laser light emission module
JP2010118409A (en) Laser annealing apparatus and laser annealing method
US8517542B2 (en) Laser illumination device, illumination method, semiconductor element manufacturing method, projection display device, and image display method using the projection display device
WO2010035348A1 (en) Semiconductor manufacturing apparatus
JP2003347236A (en) Laser irradiation device
JP2001148345A (en) Illuminating optical system, method and apparatus for exposing by using the system
JP2004064064A (en) Laser annealing device
US7851724B2 (en) Laser exposure apparatus and laser annealing apparatus
JP2008053317A (en) Irradiation optical system
WO2021039920A1 (en) Laser annealing device, and laser annealing method
JP2013055111A (en) Laser beam synthesizer, laser annealing device, and laser annealing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898544

Country of ref document: EP

Kind code of ref document: A1