WO2020129557A1 - Electrolytic water dispersing device, and blowing device - Google Patents

Electrolytic water dispersing device, and blowing device Download PDF

Info

Publication number
WO2020129557A1
WO2020129557A1 PCT/JP2019/046284 JP2019046284W WO2020129557A1 WO 2020129557 A1 WO2020129557 A1 WO 2020129557A1 JP 2019046284 W JP2019046284 W JP 2019046284W WO 2020129557 A1 WO2020129557 A1 WO 2020129557A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
gas
electrolyzed water
change
amount
Prior art date
Application number
PCT/JP2019/046284
Other languages
French (fr)
Japanese (ja)
Inventor
弘士 小原
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020561246A priority Critical patent/JP7345086B2/en
Priority to CN201980077099.6A priority patent/CN113167488B/en
Publication of WO2020129557A1 publication Critical patent/WO2020129557A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • A61L9/04Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air without heating
    • A61L9/12Apparatus, e.g. holders, therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present disclosure relates to an electrolytic water spraying device that generates and sprays electrolytic water, and a blower including the electrolytic water spraying device.
  • ⁇ It is known to use an electrolyzed water sprinkler that produces electrolyzed water containing hypochlorous acid by electrolysis and sprays it to remove bacteria, fungi, viruses, odors, etc. in the air.
  • Patent Document 1 As a method of detecting the amount of hypochlorous acid produced in an electrolyzed water spraying device, a method of detecting a solution concentration using an electrochemical method is known (Patent Document 1). There is also known a technique of detecting the type and concentration of gas by utilizing the output tendency of a plurality of gas sensors (Patent Document 2).
  • the present disclosure aims to provide an electrolyzed water spraying device capable of relatively easily and inexpensively determining the state of a generated gas such as hypochlorous acid.
  • the electrolytic water spraying device of the present disclosure has the following features. That is, the electrolyzed water spraying device of the present disclosure includes an electrolyzed water generation unit, a blower unit, a control unit, and a gas detection unit.
  • the electrolyzed water production unit produces electrolyzed water by a pair of electrodes.
  • the blower unit causes the electrolyzed water generated by the electrolyzed water generation unit to come into contact with the air sucked into the housing through the air inlet and blows the air through the air outlet.
  • the control unit controls the amount of electric power supplied to the pair of electrodes of the electrolyzed water producing unit and the amount of air from the blower unit.
  • the gas detection unit detects the gas containing the electrolyzed water generated by the electrolyzed water generation unit. Further, the gas detection unit outputs an output value according to the detected gas detected by the gas detection unit. The control unit also determines the state of the detected gas based on the output value output from the gas detection unit.
  • the state of the detected gas is determined based on the output value of the gas detection unit that detects the gas containing the electrolyzed water generated by the electrolyzed water generation unit. In this way, since it is possible to determine the state of the detected gas such as the amount of hypochlorous acid produced by one gas detection unit, it is possible to realize the electrolytic water spraying device relatively easily and inexpensively. There is.
  • FIG. 1 is a perspective view of an electrolytic water spraying device according to a first embodiment of the present disclosure.
  • FIG. 2 is a perspective view of the same electrolytic water spraying device.
  • FIG. 3 is a cross-sectional view of the same electrolytic water spraying device.
  • FIG. 4 is a cross-sectional view of the same electrolytic water spraying device.
  • FIG. 5 is a functional block diagram of the same electrolytic water spraying device.
  • FIG. 6A is a functional block diagram of the gas determination unit.
  • FIG. 6B is a flowchart showing the process of determining the state of the detected gas, which is performed by the gas determining unit.
  • FIG. 7A is a diagram showing the relationship between the energized state of a pair of electrodes and the elapsed time.
  • FIG. 7A is a diagram showing the relationship between the energized state of a pair of electrodes and the elapsed time.
  • FIG. 7B is a diagram showing an example of output values of the gas detection unit in the energized state of the pair of electrodes shown in FIG. 7A.
  • FIG. 7C is a diagram showing an example of an amount of change from the output value one cycle before when the output value of the gas detection unit shown in FIG. 7B is acquired in a constant cycle.
  • FIG. 8 is a schematic diagram showing an example of the appearance frequency of the amount of change during electrolysis under specific conditions.
  • FIG. 9 is a diagram showing an example of a plurality of threshold ranges and an addition value corresponding to the plurality of threshold ranges.
  • FIG. 10A is a diagram showing the relationship between the energized state of the electrodes and the elapsed time.
  • FIG. 10B is a diagram showing the relationship between the odor occurrence state and the elapsed time.
  • FIG. 10C is a diagram showing an example of the output value of the gas detection unit in the energized state and the odor generating state shown in FIGS. 10A and 10B.
  • FIG. 10D is a diagram showing an example of the amount of change from the output value one cycle before when the output value of the gas detection unit shown in FIG. 10C is acquired in a constant cycle.
  • FIG. 11 is a perspective view of the electrolyzed water spraying device according to the second embodiment of the present disclosure.
  • FIG. 12 is a perspective view of the same electrolytic water spraying device.
  • FIG. 13 is a cross-sectional view of the same electrolytic water spraying device.
  • FIG. 14 is a cross-sectional view of the same electrolytic water spraying device.
  • FIG. 15 is a functional block diagram of the electrolytic water spraying device.
  • FIG. 16 is a flowchart showing the detection gas state determination process executed by the control unit.
  • FIG. 17A is a diagram showing the relationship between the energized state of a pair of electrodes and the elapsed time.
  • FIG. 17B is a diagram showing an example of output values of the gas detection unit in the energized state of the pair of electrodes shown in FIG. 17A.
  • FIG. 17C is a diagram showing an example of the amount of change from the output value one cycle before when the output value of the gas detection unit shown in FIG. 17B is acquired in a constant cycle.
  • FIG. 17A is a diagram showing the relationship between the energized state of a pair of electrodes and the elapsed time.
  • FIG. 17B is a diagram showing an example of output values of the gas detection unit in the energized state of the pair of electrodes
  • FIG. 18 is a schematic diagram showing an example of the appearance frequency of the amount of change during electrolysis under specific conditions.
  • FIG. 19 is a diagram in which the amount of change for each cycle according to the output value of the gas detection unit is classified into a plurality of predetermined ranges.
  • FIG. 20A is a diagram showing the relationship between the energized state of the electrodes and the elapsed time.
  • FIG. 20B is a diagram showing the relationship between the odor occurrence state and the elapsed time.
  • FIG. 20C is a diagram showing an example of output values of the gas detection unit in the energized state and the odor generating state shown in FIGS. 20A and 20B.
  • FIG. 20D is a diagram showing an example of the amount of change from the output value one cycle before when the output value of the gas detection unit shown in FIG. 20C is acquired in a constant cycle.
  • the electrolyzed water spraying device includes an electrolyzed water generation unit, a blower unit, a control unit, and a gas detection unit.
  • the electrolyzed water production unit produces electrolyzed water by a pair of electrodes.
  • the blower unit causes the electrolyzed water generated by the electrolyzed water generation unit to come into contact with the air sucked into the housing through the air inlet and blows the air through the air outlet.
  • the control unit controls the amount of electric power supplied to the pair of electrodes of the electrolyzed water producing unit and the amount of air from the blower unit.
  • the gas detection unit detects the gas containing the electrolyzed water generated by the electrolyzed water generation unit.
  • the gas detection unit outputs an output value according to the detected gas detected by the gas detection unit.
  • the control unit determines the state of the detected gas based on the output value output from the gas detection unit.
  • the present electrolyzed water spraying device can determine the state of the detected gas of the active oxygen species contained in the electrolyzed water generated in the electrolyzed water generation unit, and therefore the generation of active oxygen species that differs depending on the environment in which the electrolyzed water sprayer is used. It can be used to determine the state of the detected gas such as the amount.
  • control unit includes a gas discriminating unit that discriminates the state of the detected gas, and the gas discriminating unit repeatedly acquires the output value output from the gas detecting unit in a constant cycle, and the change amount of the output value in each cycle. May be calculated, and the arithmetic unit may be configured to determine the state of the detected gas based on the amount of change.
  • the present electrolyzed water spraying device can determine the state based on the amount of change in the gas detector that shows different output tendencies depending on the active oxygen species, etc.
  • the state of the detected gas can be determined with relatively high accuracy.
  • the gas determination unit compares the change amount with one or more predetermined threshold ranges for each change amount in each cycle calculated by the calculation unit, and obtains the number of change amounts included in the predetermined threshold range.
  • the calculation unit may include a unit, and the calculation unit may determine the state of the detected gas based on the number of change amounts included in the predetermined threshold range acquired by the comparison unit.
  • the electrolyzed water spraying device is in a state based on the tendency of the appearance frequency when the active oxygen species to be detected are generated with respect to the amount of change in the gas detection section that shows a different output tendency depending on the active oxygen species. Can be identified. Therefore, it is possible to relatively accurately determine the state of the detected gas, such as the amount of active oxygen species produced, which varies depending on the environment in which the electrolyzed water spraying device is used.
  • the comparing unit compares the amount of change in each cycle calculated by the arithmetic unit with a plurality of predetermined threshold ranges that are different from each other, and determines the number of change amounts included in each of the plurality of predetermined threshold ranges. And the arithmetic unit may determine the state of the detected gas based on the added value stored corresponding to each of the plurality of predetermined threshold ranges.
  • the electrolytic water spraying device of the present invention is based on the tendency of the appearance frequency when the active oxygen species to be detected is generated, with respect to the amount of change in the gas detection section that shows different output tendencies depending on the active oxygen species.
  • the state can be determined from the result of weighting with the added value. Therefore, it is possible to accurately determine the amount of active oxygen species produced, which varies depending on the environment in which the electrolyzed water spraying device is used.
  • a plurality of predetermined threshold ranges may be changeable.
  • the electrolyzed water spraying device of the present invention can accurately determine the amount of active oxygen species produced, etc., which varies depending on the environment in which the electrolyzed water spraying device is used, even when there are characteristic fluctuations in the gas detection part or characteristic changes such as deterioration over time. can do.
  • the output value may be a voltage value.
  • the electrolytic water spraying device of the present disclosure may be applied to a blower.
  • FIG. 1 is a perspective view of the electrolytic water spraying device 100, and is a view of the electrolytic water spraying device 100 as seen from the front side.
  • FIG. 2 is a perspective view of the electrolytic water spraying device 100, and is a view of the electrolytic water spraying device 100 viewed from the front side with the panel 103 of FIG. 1 opened.
  • the electrolyzed water spraying device 100 includes a main body case 101 having a substantially box shape, and the main body case 101 has intake ports 102 having a substantially square shape on both side surfaces.
  • An openable air outlet 106 is provided on the top surface of the main body case 101. 1 and 2, the air outlet 106 is in a closed state.
  • a panel 103 that can be opened and closed is provided on the first main body side surface 101A, which is the right side surface (one side surface of the main body case 101) when viewed from the front surface side of the main body case 101.
  • An intake port 102 is provided in the panel 103.
  • a vertically long rectangular opening 104 appears as shown in FIG.
  • a water storage unit 114, a water supply unit 115, a tablet charging case 118a, and the like, which will be described later, can be taken out from the opening 104.
  • FIG. 3 is a cross-sectional view of the central portion of the electrolytic water spraying device 100 as viewed from the front, and is a view of the electrolytic water spraying device 100 as viewed from the right side.
  • FIG. 3 shows an air passage structure and the like created by the electrolyzed water spraying device 100.
  • FIG. 4 is a cross-sectional view of the right side of the electrolyzed water spraying device 100 taken in the vertical direction, as viewed from the right side of the electrolyzed water spraying device 100.
  • FIG. 4 shows a peripheral configuration regarding generation of electrolyzed water such as a tank member.
  • FIG. 5 is a functional block diagram showing the functions of the electrolytic water spraying device 100 in blocks.
  • the main body case 101 is provided with an electrolyzed water generating unit 105, a water supply unit 115, a spraying unit 119, and an air passage 108.
  • the electrolyzed water generation unit 105 includes a pair of electrodes 117 and a water storage unit 114.
  • the water storage unit 114 has a box shape with an open top, and has a structure capable of storing water.
  • the water storage unit 114 is arranged in the lower portion of the main body case 101, can be detached by sliding horizontally from the main body case 101, and can be taken out from the opening 104.
  • the water storage unit 114 stores the water supplied from the water supply unit 115.
  • the pair of electrodes 117 shown in FIG. 4 includes an electrode member (not shown), and the electrode member is installed so as to be immersed in the water in the water storage unit 114.
  • the pair of electrodes 117 electrochemically electrolyze the water containing chloride ions in the water storage section 114 by energizing the electrode members to generate electrolyzed water containing active oxygen species.
  • the active oxygen species are an oxygen molecule having a higher oxidation activity than normal oxygen and its related substances.
  • the active oxygen species include, for example, so-called narrowly defined active oxygen such as superoxide anion, singlet oxygen, hydroxy radical, or hydrogen peroxide, and so-called broadly defined active oxygen such as ozone and hypochlorous acid (hypohalous acid). including.
  • the pair of electrodes 117 has a period of energization for energizing the electrode members for electrolysis and a period of time after the energization is stopped, that is, a period of non-energization, which is a period of non-energization, as one period. Electrolyzed water is generated by repeating a plurality of times. By providing the electrode member with a non-energized time, the life of the electrode member can be extended. If the energization time is made longer than the non-energization time, electrolyzed water containing a larger amount of active oxygen species is generated per cycle.
  • non-energization time is made longer than the energization time, generation of active oxygen species per cycle can be suppressed. Further, if the amount of power during the energization time is increased, electrolyzed water containing a larger amount of active oxygen species is generated.
  • the electrolysis-promoting tablet charging section 118 is detachably provided on the tablet charging case 118a, a tablet charging member (not shown) provided in the tablet charging case 118a, and an upper portion of the tablet charging case 118a.
  • the tablet loading cover 118b is provided.
  • the tablet loading case 118a is configured to be removable from the opening 104. The user removes the tablet loading cover 118b from the taken-out tablet loading case 118a, so that the user can load the electrolytic promotion tablets into the tablet loading case 118a.
  • the electrolysis-promoting tablets loaded in the tablet loading case 118a are loaded into the water storage unit 114.
  • the electrolysis-promoting tablet feeding unit 118 rotates the tablet feeding member when feeding the electrolysis-promoting tablets to the water storage unit 114.
  • the electrolysis promoting tablets drop into the water storage unit 114 through a drop opening (not shown) on the bottom surface of the tablet charging case 118a.
  • the electrolysis-promoting tablet feeding unit 118 counts the number of electrolysis-promoting tablets that have dropped from the tablet feeding case 118a to the water storage unit 114, and if it is determined that one electrolysis-promoting tablet has dropped from the tablet feeding case 118a to the water storage unit 114, the tablet Stop the rotation of the dosing member.
  • water containing chloride ions is generated in the water storage portion 114.
  • an example of the electrolysis promoting tablet is sodium chloride.
  • the electrolyzed water spraying device 100 does not have to have the electrolysis-promoting tablet charging unit 118.
  • the electrolyzed water spraying device 100 may give a notification to the user to instruct the user to insert the electrolysis-promoting tablet by displaying or sounding, and may cause the user to directly put the electrolysis-promoting tablet into the water storage unit 114. ..
  • the electrolytic water spraying device 100 includes a gas detection unit 120 and a control unit 130, as shown in FIG.
  • the gas detection unit 120 detects a gas containing electrolyzed water generated by the pair of electrodes 117 and outputs an output value according to the detected gas.
  • the output value output by the gas detection unit 120 is a voltage value
  • Details of the gas detection unit 120 will be described later with reference to FIGS. 6A and 6B.
  • the control unit 130 is provided, for example, on the back side of the operation panel provided on the top surface of the main body case 101 (see FIG. 1), and controls the electrolytic water spraying device 100.
  • the control unit 130 controls the electrolysis of water by the pair of electrodes 117, and controls the charging of the electrolysis-promoting tablets by the electrolysis-promoting tablet charging unit 118.
  • the control unit 130 includes a gas discriminating unit 131, and uses the gas discriminating unit 131 to discriminate the state of the detected gas based on the output value of the detected gas output by the gas detecting unit 120. Details of the gas discriminating unit 131 will be described later with reference to FIGS. 6A and 6B.
  • the function of the control unit 130 is realized by a processor (not shown) executing a program stored in a memory (not shown).
  • the water supply section 115 is installed inside the main body case 101 on the side surface on the right side in a front view, has a structure detachable from the water storage section 114, and can be taken out from the opening 104.
  • the water supply unit 115 is attached to a tank holding unit 114 a provided on the bottom surface of the water storage unit 114.
  • the water supply unit 115 includes a tank 115a for storing water, and a lid 115b provided at an opening (not shown) of the tank 115a.
  • An opening/closing part (not shown) is provided at the center of the lid 115b, and when the opening/closing part is opened, the water in the tank 115a is supplied to the water storage part 114.
  • the opening/closing part is opened by the tank holding part 114a. That is, when water is poured into the tank 115a and attached to the tank holding portion 114a, the opening/closing portion is opened and water is supplied to the water storage portion 114, and water is stored in the water storage portion 114.
  • the water level in the water storage unit 114 rises and reaches the position of the lid 115b, the water supply stops because the opening of the tank 115a is sealed with water, and the water remains in the tank 115a.
  • the water in the tank 115a is supplied to the water storage unit 114. That is, the water level in the water storage section 114 is kept constant.
  • the electrolytic water spraying device 100 may not have the tank 115a as the water supply unit 115.
  • a line for supplying water to the electrolyzed water spraying device 100 is drawn from the tap water, and when the water level in the water storage section 114 drops, the water level in the water storage section 114 rises to a predetermined position. Water may be supplied.
  • the spraying unit 119 includes a blower unit 107 and a filter unit 116.
  • the blower unit 107 is provided in the center of the main body case 101, and includes a motor unit 109, a fan unit 110 rotated by the motor unit 109, and a scroll-shaped casing unit 111 surrounding them.
  • the motor section 109 is fixed to the casing section 111.
  • the fan unit 110 is a sirocco fan and is fixed to the rotating shaft 109a extending in the horizontal direction from the motor unit 109, and the motor unit 109 is fixed to the casing unit 111 as described above.
  • the rotation shaft 109a of the motor unit 109 extends from the front surface side of the body case 101 to the back surface side.
  • the casing portion 111 has a discharge port 112 on the upper surface side of the main body case 101 of the casing portion 111, and has a suction port 113 on the rear surface side of the main body case 101 of the casing portion 111.
  • the air volume of the blower unit 107 is determined based on the air volume set by the user. Based on the determined air volume, the control unit 130 controls the rotation amount of the motor unit 109.
  • the filter unit 116 is a member that brings the electrolyzed water stored in the water storage unit 114 into contact with the room air that has flowed into the main body case 101 (that is, inside the housing) by the blower unit 107.
  • the filter portion 116 is formed in a cylindrical shape, and has a filter 116a provided with a hole through which air can flow in the circumferential portion.
  • the filter 116a is rotatably built in the water storage unit 114 with the central axis of the filter 116a as the center of rotation so that one end of the filter 116a is immersed in the water of the water storage unit 114 to retain water.
  • the filter unit 116 is rotated by a drive unit (not shown) so that the electrolyzed water and the room air are brought into continuous contact with each other.
  • the air passage 108 connects the air inlet 102 and the air outlet 106, and is provided with a filter unit 116, a blower unit 107, and an air outlet 106 in order from the air inlet 102.
  • the fan unit 110 is rotated by the motor unit 109, the external air sucked from the intake port 102 and entering the air passage 108 is sequentially passed through the filter 116 a, the air blowing unit 107, and the air outlet 106, and then the electrolytic water spraying device 100. Is blown out of. Thereby, the electrolyzed water generated in the water storage unit 114 is sprayed to the outside.
  • the electrolyzed water spraying device 100 does not necessarily have to spray the electrolyzed water itself, but may spray the active oxygen species derived from the electrolyzed water (including volatilization) generated as a result.
  • FIG. 6A is a functional block diagram showing the functions of the gas discriminating unit 131 in blocks.
  • the gas discriminating unit 131 includes a comparing unit 132 and a calculating unit 133.
  • the gas determination unit 131 acquires an output value (voltage value) corresponding to the detected gas output from the gas detection unit 120 every predetermined time (for example, 1 second).
  • the calculation unit 133 acquires the change amount of the output value by calculating the difference between the output value of the gas detection unit 120 acquired at a certain time point and the output value of the gas detection unit 120 acquired a predetermined time before the certain time point. To do.
  • the calculation unit 133 acquires a plurality of change amounts by repeating this calculation every predetermined time. That is, the calculation unit 133 calculates the amount of change in the output value in each cycle.
  • the comparison unit 132 compares the amount of change in the output value of the gas detection unit 120 acquired by the calculation unit 133 with the magnitudes of the plurality of threshold ranges, and the acquired amount of change corresponds to which threshold range of the plurality of threshold ranges. Whether or not it is included is calculated, and the number of change amounts included in the threshold range is recorded.
  • the comparison unit 132 records the number of change amounts included in each of the plurality of threshold ranges by repeating this calculation and recording every predetermined time.
  • the calculation unit 133 performs a calculation of adding the addition value set corresponding to each of the plurality of threshold ranges to the number of change amounts included in each of the plurality of threshold ranges obtained by the comparison unit 132.
  • the state of the detected gas is determined using the added result. A specific method for determining the state of the detected gas will be described later with reference to FIGS. 7A to 9.
  • the plurality of threshold ranges and the added value set corresponding to each of the plurality of threshold ranges are stored in a memory (not shown), and the number of change amounts included in each of the plurality of threshold ranges is also stored in the memory. Recorded in.
  • the gas detector 120 is composed of, for example, a semiconductor gas sensor.
  • the gas sensor element is composed of a heater integrated with a metal oxide material. By applying power to the sensor, the metal oxide material is heated by the heater. In this gas sensor element, the gas is detected based on the change in resistance value caused by the detectable gas coming into contact with the metal oxide material. For example, in a clean atmosphere, the surface of the metal oxide material is affected by oxygen in the atmosphere, the movement of free electrons is restricted, and the conductivity decreases, so that the resistance value is high.
  • FIG. 6B is a flowchart showing the process of determining the state of the detected gas.
  • the gas determination unit 131 first repeatedly obtains the output value (voltage value as an example) output from the gas detection unit 120 every predetermined time (for example, 1 second) for a predetermined period (for example, 1 minute) (step S11). ).
  • the output value is acquired using, for example, an analog/digital (A/D) converter.
  • the calculation unit 133 calculates the amount of change in the output value of the gas detection unit 120 by calculating the difference between the output value acquired at step S11 at a certain time point and the output value acquired a predetermined time before the certain time point. By repeating this, a plurality of change amounts (change amounts at predetermined time intervals) are calculated (step S12).
  • the comparison unit 132 compares each of the plurality of changes obtained in step S12 with a plurality of threshold ranges, and records the number of changes in the threshold range that includes the changes. As a result, the number of change amounts included in each of the plurality of threshold ranges is acquired (step S13).
  • the calculation unit 133 adds an addition value corresponding to the threshold range to the number of change amounts included in each of the plurality of threshold ranges obtained in step S13 (step S14). Finally, the calculation unit 133 determines the state of the detected gas according to the calculated value after addition (step S15).
  • the output results obtained by the state determination are the type of detection gas, the presence or absence of detection gas, the concentration of detection gas, etc.
  • the value calculated by the calculation unit 133 obtained in step S14 with an arbitrary threshold value, it is possible to obtain the type of gas to be detected and the presence/absence of gas to be detected.
  • the density value as an output result by using a value correlated with the density as the added value added by the calculation unit 133 in step S14.
  • the calculation unit 133 calculates the amount of change in the output value for each predetermined time using the plurality of output values acquired for each predetermined time in Step S11 (Step S12), and the comparison unit 132 , The change amounts of the plurality of output values obtained in step S12 are compared with the plurality of threshold ranges (step S13).
  • the flowchart of the state determination process of the detected gas illustrated in FIG. 6B is an example.
  • the processing of steps S11 to S13 is changed as follows, and the changed processing of steps S11 to S13 is repeatedly executed every predetermined time for a predetermined period (or a certain number of times), and then the processing of steps S14 and S15 is performed.
  • step S11 is changed to a process of acquiring the output value output from the gas detection unit 120 only once, and step S12 is changed to the output value acquired in step S11 after the change and a predetermined time before that.
  • the difference between the acquired output values is calculated to change the processing to calculate the amount of change.
  • step S13 is changed to a process of comparing the change amount obtained in step S12 after the change with a plurality of threshold ranges. Then, by repeating the processing of steps S11 to S13 after this change for a predetermined period (for example, 1 minute) or a certain number of times (for example, 60 times) every predetermined time, the same as the processing result of step S13 shown in FIG. 6B is obtained.
  • the number of change amounts included in each of the plurality of threshold ranges can be acquired.
  • FIG. 7A to 7C show an example of the output value (voltage value) of the gas detection unit 120 and the amount of change thereof when the pair of electrodes 117 of the electrolyzed water generation unit 105 are energized to perform electrolysis.
  • the gas detection unit 120 is arranged in the vicinity of the electrolyzed water generating unit 105 or the like and has a configuration capable of detecting a gas containing hypochlorous acid due to electrolyzed water generated by the electrolyzed water generating unit 105.
  • the pair of electrodes 117 forming the electrolyzed water generating unit 105 are installed in the water storage unit 114.
  • FIG. 7A is a diagram showing an energized state and elapsed time of the pair of electrodes 117 of the electrolyzed water producing unit 105. Electrolysis is performed by passing a current through the pair of electrodes 117.
  • FIG. 7B is a diagram showing the output value of the gas detection unit 120 in the energized state of the pair of electrodes 117 shown in FIG. 7A.
  • FIG. 7C is a diagram showing an example of an amount of change from the output value one cycle before when the output value of the gas detection unit shown in FIG. 7B is acquired in a constant cycle.
  • the output of the gas detection unit 120 changes according to the detection gas containing hypochlorous acid produced by electrolyzed water.
  • a change amount that is a difference between an output value acquired at a certain time and an output value acquired a predetermined time before the certain time is obtained. This amount of change is shown in FIG. 7C.
  • FIG. 8 shows, as an example, the appearance frequency of the amount of change in the output value of the gas detection unit 120 acquired by the calculation unit 133 when electrolysis is performed under specific conditions while the electrodes are energized shown in FIG. 7A. ..
  • the results of long-term data acquisition under the same electrolysis conditions are shown, and the number of changes in the output value of the gas detection unit 120 with respect to the acquired data is shown.
  • the output tendency of the appearance frequency shows a similar tendency to some extent, although there is some variation when the positional relationship between the electrolyzed water production unit 105 and the gas detection unit 120 and the electrolysis production condition are determined.
  • FIG. 9 is a diagram showing an example of a plurality of threshold ranges and an added value according to the plurality of threshold ranges.
  • a plurality of threshold ranges with respect to the amount of change are set as follows.
  • the threshold range d2 indicates a region in which the amount of change is smaller than ⁇ 0.05V.
  • the threshold range c2 indicates a region in which the amount of change is ⁇ 0.05 V or more and less than ⁇ 0.02 V.
  • the threshold range b2 indicates a region in which the amount of change is ⁇ 0.02V or more and less than ⁇ 0.01V.
  • the threshold range a2 indicates a region in which the amount of change is ⁇ 0.01 V or more and less than 0 V.
  • the threshold range a1 indicates a region in which the amount of change is 0 V or more and less than +0.01 V.
  • the threshold range b1 indicates a region in which the amount of change is +0.01 V or more and less than +0.02 V.
  • the threshold range c1 indicates a region in which the amount of change is +0.02V or more and less than +0.05V.
  • the threshold range d1 indicates a region in which the amount of change is +0.05 V or more.
  • the frequency of appearance of the threshold range b1, the threshold range b2, and the threshold range c2 is high.
  • the peak of the appearance frequency in the threshold range is large in the threshold range b1 because the output value of the gas detection unit 120 changes with the detection gas containing hypochlorous acid generated by the electrolyzed water generated by the electrolyzed water generation unit 105. It has been confirmed experimentally that The appearance frequency of the specific threshold range increases depending on the installation positions of the electrolyzed water production unit 105 and the gas detection unit 120, the electrolysis production conditions, and the like. If the type or concentration of the detected gas changes, the output change tendency of the gas detection unit 120 changes.
  • the oxygen consumption on the surface of the metal oxide differs depending on the type and concentration of the generated gas.
  • the amount of change in the output value due to the detection gas containing hypochlorous acid due to the electrolyzed water generated by the electrolyzed water generation unit 105 shows the peak of the appearance frequency shown in the threshold range b1, as described above.
  • the calculation unit 133 calculates based on this tendency using the added value shown in FIG. 9.
  • the added value is set corresponding to each of a plurality of threshold ranges. That is, when the change amount of the gas detection unit 120 calculated by the calculation unit 133 is in the threshold range b1, 10 is added as the additional value.
  • the amount of change of the gas detection unit 120 calculated by the calculation unit 133 is outside the threshold range b1, it does not include hypochlorous acid due to the electrolyzed water generated by the electrolyzed water generation unit 105, and therefore the addition value of -1. Is added. In this way, by adding the change amount calculated by the calculation unit 133 and the added value corresponding to the threshold range, the concentration of hypochlorous acid in the electrolyzed water generated by the electrolyzed water generation unit 105 is accurately detected, It is possible to identify the detected gas.
  • the accuracy of detecting the concentration of hypochlorous acid is improved by increasing the added value with respect to the amount of change in the detection gas containing hypochlorous acid generated by the electrolyzed water generation unit 105. ing.
  • the concentration of hypochlorous acid in the electrolyzed water generated by the electrolyzed water generation unit 105 is high, the number of changes that change to the range of the threshold range b1 increases. The value of becomes even larger.
  • the type of the detected gas changes, the tendency of the appearance frequency changes, and the value after addition calculated by the calculation unit 133 becomes small. That is, the state of the detected gas can be discriminated by the magnitude of the value after the addition calculated by the calculation unit 133. Further, the value after addition calculated by the calculation unit 133 is compared with a specific comparison threshold value, and when it is equal to or larger than the specific threshold value, it can be determined that the gas to be detected exists. It is also possible to measure the concentration of the gas to be detected by a separate measuring device or the like and convert it into the concentration value by using the added value correlated with the concentration.
  • the case where there are eight threshold value ranges has been described, but it is also possible to set the voltage ranges of a plurality of threshold values to be narrower and to make a determination using more threshold values. Since the addition value is set more finely with respect to the tendency of the appearance frequency of the detection gas containing the electrolyzed water generated by the electrolyzed water generation unit 105, the gas to be detected can be detected with high accuracy.
  • the gas detection unit 120 may be shared for control according to the odor level of the usage environment.
  • the odor shown here is assumed to be, for example, odor caused by cigarette smoke.
  • the gas detection unit 120 needs to be arranged at a position where the odor component of the environment can be detected. For example, it can be realized by arranging in the air passage 108 or the like.
  • the gas detection unit 120 is used to detect the gas containing the electrolyzed water generated by the electrolyzed water generation unit 105, determine the odor level of the usage environment, and control the electrolyzed water spraying device 100 according to the odor level.
  • FIG. 10A to 10D show an example of the output of the gas detection unit 120 in the case where odor is generated in the usage environment in addition to the states of FIGS. 7A to 7C.
  • FIG. 10A is a diagram showing an energized state and elapsed time of the pair of electrodes 117 of the electrolyzed water producing unit 105. Electrolysis is performed by energizing the pair of electrodes 117 of the electrolyzed water producing unit 105.
  • FIG. 10B is a diagram showing a state of occurrence of odor in the usage environment and elapsed time.
  • FIG. 10C is a diagram showing the output value of the gas detection unit 120 in the energized state of the pair of electrodes 117 shown in FIG. 10A and the odor generation state shown in FIG.
  • FIG. 10D is a diagram showing an example of output values of the gas detection unit in the energized state and the odor generating state shown in FIG. 10C.
  • the output value of the gas detection unit 120 changed according to the detection gas containing the electrolyzed water generated by the electrolyzed water generation unit 105 and the output value due to the odor generation are superimposed and output.
  • the odor diffuses into the space, and the concentration becomes uniform over time in the space. For this reason, as shown in FIG. 10C, after the odor is generated, the gas detection unit 120 shows a stable output value to some extent.
  • FIG. 10D shows a change amount that is a difference between an output value acquired at a certain time point and an output value acquired a predetermined time period before a certain time point in a plurality of output values of the gas detection unit 120 acquired at every predetermined time period. Shows.
  • the change amount of the gas detection unit 120 shows the same output tendency regardless of the presence or absence of odor in the use environment. That is, the gas containing the electrolyzed water generated by the electrolyzed water generating unit 105 can be detected regardless of the odor generation. In other words, the odor of the usage environment can be determined using the gas detection unit 120. In the odor determination of the usage environment, the sharp output change of the gas detection unit 120 when the pair of electrodes 117 is in the energized state leads to a reduction in the detection accuracy of the odor determination. Therefore, for example, processing such as determination is performed excluding the output of the gas detection unit 120 when the pair of electrodes 117 is in the energized state.
  • the control unit 130 controls the input power to the pair of electrodes 117 of the electrolyzed water generating unit 105, the air volume of the air blowing unit 107, and the like.
  • the gas detection unit 120 detects the gas containing the electrolyzed water generated by the electrolyzed water generation unit 105 and determines the odor level of the usage environment.
  • multiple threshold ranges may be changeable by user operation. For example, when the gas detection unit 120 has deteriorated in sensitivity due to life etc., the amount of change in the output value of the gas detection unit 120 becomes small.
  • the sensitivity can be adjusted by adjusting the threshold range with respect to the sensitivity deterioration of the gas detection unit 120. It is possible to make settings suitable for the actual use environment, such as variations in manufacturing of the gas detection unit 120, deterioration of the service life, and effects due to differences in the use environment.
  • the sensitivity setting method may be configured such that a sensitivity setting switch is provided on the operation panel provided on the top surface of the main body case 101 and the user operates the switch. Further, as the set value, a plurality of fixed values determined experimentally may be set, or an arbitrary value may be set.
  • the calculation unit 133 obtains the amount of change from the output value of the gas detection unit 120 acquired every predetermined time, and the state of the detected gas is calculated based on the added value set for each of the plurality of threshold ranges.
  • this state determination result may be acquired every predetermined time, and the final detection gas state determination result may be calculated.
  • moving average processing for example, when the number of data to be averaged is 5, the processing is performed by averaging the past 5 data including the acquired data, and an output showing the tendency of data change from the past is obtained. It is a thing.
  • the gas containing the electrolyzed water generated by the electrolyzed water generation unit 105 is detected, the state of the electrolyzed water changes moderately with time, so that the moving average process appropriately changes the state of the electrolyzed water. Can be determined.
  • the state determination is performed using the data for each predetermined time, a sharp change occurs depending on the data used when performing the averaging process under the influence of the surrounding environment.
  • the state of the detection gas containing the electrolyzed water generated by the electrolyzed water generation unit 105 can be discriminated while suppressing the influence of the surrounding environment.
  • the amount of change is obtained from the output value of the gas detection unit 120 acquired by the gas determination unit 131 every predetermined time, and the state of the detected gas is determined based on the added value set for each of the plurality of threshold ranges.
  • the state of the detected gas may be determined from the output value of the gas detection unit 120 or the amount of change.
  • the output value of the gas detection unit 120 changes depending on the gas to be detected. That is, the output value and the amount of change of the gas detection unit 120 change according to the type and concentration of the detected gas. That is, it is possible to determine the possibility of the presence of the gas to be detected by comparing the output value and the change amount with a specific threshold value.
  • the state of the gas to be detected is determined by comparing the amount of change in the output value of the gas to be detected by the gas detection unit 120 with a plurality of predetermined threshold ranges. It can be realized with high accuracy.
  • the present disclosure has been described based on the first embodiment, the present disclosure is not limited to the first embodiment, and various improvements and modifications can be made without departing from the spirit of the present disclosure. This can be easily guessed.
  • the numerical values described in the first embodiment are examples, and it is naturally possible to adopt other numerical values.
  • An electrolyzed water spraying device that electrolyzes electrolyzed water to generate and spray electrolyzed water containing hypochlorous acid in order to remove bacteria, fungi, viruses, odors, etc. in the air.
  • Patent Document 1 As a method of detecting the amount of hypochlorous acid produced in an electrolyzed water spraying device, a method of detecting a solution concentration using an electrochemical method is known (Patent Document 1). There is also known a technique of detecting the type and concentration of gas by utilizing the output tendency of a plurality of gas sensors (Patent Document 2).
  • Patent Document 1 since the detection method described in Patent Document 1 requires the use of an electrode for detecting the solution concentration, there is a risk that the cost will increase. Further, in the case of detection using an electrochemical method, it is necessary to regularly wash the electrodes, which makes it difficult to maintain detection accuracy. Further, in the detection method described in Patent Document 2, it is necessary to use a plurality of gas sensors, which may increase the cost. That is, when the state (eg, concentration) of the generated gas such as hypochlorous acid is determined by the conventional method, there is a problem that it is relatively complicated and costly.
  • the present disclosure provides, for example, an electrolyzed water spraying device capable of relatively easily and inexpensively determining the state of a detected gas such as the presence or absence of gas such as hypochlorous acid and the amount of gas such as hypochlorous acid generated.
  • the purpose is to do.
  • the electrolytic water spraying device of the present disclosure has the following features. That is, the electrolyzed water spraying device of the present disclosure includes an electrolyzed water generation unit, a blower unit, a control unit, and a gas detection unit.
  • the electrolyzed water production unit produces electrolyzed water by a pair of electrodes.
  • the blower unit causes the electrolyzed water generated by the electrolyzed water generation unit to come into contact with the air sucked into the housing through the air inlet and blows the air through the air outlet.
  • the control unit controls the amount of electric power supplied to the pair of electrodes of the electrolyzed water producing unit and the amount of air from the blower unit.
  • the gas detection unit detects the gas containing the electrolyzed water generated by the electrolyzed water generation unit. Further, the gas detection unit outputs an output value according to the detected gas detected by the gas detection unit. Further, the control unit repeatedly acquires the output value output from the gas detection unit in a predetermined cycle for a predetermined period, calculates the change amount of the output value in each cycle, and the change amount for each change amount in each cycle. A plurality of predetermined ranges are compared, an integrated value that is the number of appearances of the amount of change in each predetermined range is calculated, and the state of the detected gas is determined based on the information of the calculated integrated value for each predetermined range. ..
  • the integrated value which is the appearance frequency of the amount of change in the output value of the gas detection unit that detects the gas containing the electrolyzed water generated in the electrolyzed water generation unit, for each predetermined range.
  • the state of the detected gas is determined based on the calculated and integrated value information.
  • the electrolyzed water spraying device includes an electrolyzed water generation unit that generates electrolyzed water by a pair of electrodes, and the electrolyzed water generated by the electrolyzed water generation unit, which is brought into contact with air sucked into the housing through an intake port and blows the water.
  • An air blower that blows air from the outlet, a controller that controls the amount of electric power that is applied to the pair of electrodes of the electrolyzed water generator and the air volume of the air blower, and detects the gas that contains the electrolyzed water generated by the electrolyzed water generator
  • a gas detection unit comprising: an electrolyzed water spraying device, wherein the gas detection unit outputs an output value corresponding to the detected gas detected by the gas detection unit, and the control unit outputs the output from the gas detection unit.
  • the output value is repeatedly acquired in a fixed cycle for a predetermined period, the change amount of the output value in each cycle is calculated, and for each change amount in each cycle, the change amount is compared with a plurality of predetermined ranges, and the predetermined range is determined.
  • An integrated value which is the number of appearances of the amount of change for each, is calculated, and the state of the detected gas is determined based on the information on the calculated integrated value for each predetermined range.
  • the present electrolyzed water sprinkling apparatus a plurality of calculated using the output value of the detection gas containing both the gas containing the active oxygen species and the by-product gas which is a by-product when the active oxygen species are generated. It is possible to determine the state of the detected gas based on the information of the integrated value for each predetermined range. That is, by using the information of the integrated value for each of a plurality of predetermined ranges, another gas whose output value of the gas detection section shows a tendency similar to that of the gas containing the active oxygen species is separated from the gas containing the active oxygen species.
  • control unit may be configured to determine the generation of a specific gas in the detected gas based on the ratio of the integrated value of the amount of change for each predetermined range.
  • the present electrolyzed water sprinkling apparatus a plurality of calculated using the output value of the detection gas containing both the gas containing the active oxygen species and the by-product gas which is a by-product when the active oxygen species are generated. It is possible to more accurately determine the generation of the active oxygen species based on the ratio of the integrated value for each predetermined range. That is, by using the ratio of the integrated value for each of a plurality of predetermined ranges, another gas whose output value of the gas detection section shows a tendency similar to that of the gas containing the active oxygen species is separated from the gas containing the active oxygen species.
  • the control unit may be configured to determine the concentration of a specific gas in the detected gas based on the integrated value of the amount of change for each predetermined range.
  • the integration for each of a plurality of predetermined ranges calculated using the output value of the detection gas that includes both the gas containing the active oxygen species and the by-product that is a by-product when the active oxygen species are generated.
  • the concentration (generation amount) of the active oxygen species can be more accurately determined based on the value.
  • the ratio of integrated values may be changeable.
  • a plurality of predetermined ranges may be configured to be changeable.
  • the amount of the gas containing the active oxygen species generated in the electrolyzed water generation unit can be calculated, so that it can be accurately calculated.
  • the amount of active oxygen species generated in the electrolyzed water generating unit can be calculated.
  • the output value may be a voltage value.
  • the electrolytic water spraying device of the present disclosure may be applied to a blower.
  • FIG. 11 is a perspective view of the electrolytic water spraying device 200, and is a view of the electrolytic water spraying device 200 seen from the front side.
  • 12 is a perspective view of the electrolytic water spraying device 200, and is a view of the electrolytic water spraying device 200 seen from the front side with the panel 203 of FIG. 11 opened.
  • the electrolyzed water spraying device 200 includes a substantially box-shaped main body case 201, and has substantially square-shaped intake ports 202 on both side surfaces of the main body case 201.
  • An openable air outlet 206 is provided on the top surface of the main body case 201. 11 and 12, the air outlet 206 is in a closed state.
  • a panel 203 that can be opened and closed is provided on the first main body side surface 201A that is the right side surface (one side surface of the main body case 201) when viewed from the front surface side of the main body case 201.
  • An intake port 102 is provided in the panel 203.
  • a vertically long rectangular opening 204 appears.
  • a water storage unit 214, a water supply unit 215, a tablet charging case 218a, etc., which will be described later, can be taken out from the opening 204.
  • FIG. 13 is a cross-sectional view in which the central portion of the electrolytic water spraying device 200 is vertically cut, and is a view of the electrolytic water spraying device 200 seen from the right side.
  • FIG. 13 shows an air passage structure and the like created by the electrolyzed water spraying device 200.
  • FIG. 14 is a cross-sectional view of the right side of the electrolyzed water spraying device 200 taken in a vertical direction, as viewed from the right side of the electrolyzed water spraying device 200.
  • FIG. 14 shows a peripheral configuration regarding generation of electrolyzed water such as a tank member.
  • FIG. 15 is a functional block diagram showing the functions of the electrolytic water spraying device 200 in blocks.
  • the main body case 201 is provided with an electrolyzed water generation unit 205, a water supply unit 215, a spraying unit 219, and an air passage 208.
  • the electrolyzed water generating unit 205 includes a pair of electrodes 217 and a water storage unit 214.
  • the water storage unit 214 has a box shape with an open top, and has a structure capable of storing water.
  • the water storage section 214 is arranged in the lower part of the main body case 201, is horizontally slidable from the main body case 201 and is attachable/detachable, and can be taken out from the opening 204.
  • the water storage unit 214 stores the water supplied from the water supply unit 215.
  • the pair of electrodes 217 shown in FIG. 14 includes an electrode member (not shown), and the electrode member is installed so as to be submerged in the water in the water storage unit 214.
  • the pair of electrodes 217 electrochemically electrolyzes the water containing chloride ions in the water storage section 214 by energizing the electrode members to generate electrolyzed water containing active oxygen species.
  • the active oxygen species are an oxygen molecule having a higher oxidation activity than normal oxygen and its related substances.
  • the active oxygen species include, for example, so-called narrowly defined active oxygen such as superoxide anion, singlet oxygen, hydroxy radical, or hydrogen peroxide, and so-called broadly defined active oxygen such as ozone and hypochlorous acid (hypohalous acid). including.
  • the pair of electrodes 217 has a period of energization for electrolyzing the electrode member and a period of time after the energization is stopped, that is, a period of non-energization that is a period of non-energization, as one period. Electrolyzed water is generated by repeating a plurality of times. By providing the electrode member with a non-energized time, the life of the electrode member can be extended. If the energization time is made longer than the non-energization time, electrolyzed water containing a larger amount of active oxygen species is generated per cycle. Further, if the non-energization time is made longer than the energization time, generation of active oxygen species per cycle can be suppressed. Further, if the amount of power during the energization time is increased, electrolyzed water containing a larger amount of active oxygen species is generated.
  • the electrolysis-promoting tablet charging section 218 is detachably provided on the tablet charging case 218a, a tablet charging member (not shown) provided in the tablet charging case 218a, and an upper portion of the tablet charging case 218a.
  • the tablet loading cover 218b is provided.
  • the tablet loading case 218a is configured to be removable from the opening 204. The user can load the electrolysis-promoting tablets into the tablet loading case 218a by removing the tablet loading cover 218b from the taken out tablet loading case 218a.
  • the electrolysis promoting tablets loaded in the tablet loading case 218a are loaded into the water storage unit 214.
  • the electrolysis-promoting tablet charging section 218 rotates the tablet charging member when charging the electrolysis-promoting tablet to the water storage section 214.
  • the electrolysis-promoting tablets drop into the water storage unit 214 through a drop opening (not shown) on the bottom surface of the tablet charging case 218a.
  • the electrolysis-promoting tablet charging unit 218 counts the number of electrolysis-promoting tablets that have dropped from the tablet charging case 218a to the water storage unit 214, and if it is determined that one electrolysis-promoting tablet has dropped from the tablet charging case 218a to the water storage unit 214, the tablet Stop the rotation of the dosing member.
  • water containing chloride ions is generated in the water storage section 214.
  • an example of the electrolysis promoting tablet is sodium chloride.
  • the electrolyzed water spraying device 200 does not have to include the electrolysis-promoting tablet feeding section 218.
  • the electrolyzed water spraying device 200 may give a notification to the user to instruct the user to insert the electrolysis-promoting tablet by displaying or sounding, and cause the user to directly put the electrolysis-promoting tablet into the water storage unit 214. ..
  • the electrolytic water spraying device 200 includes a gas detection unit 220 and a control unit 230, as shown in FIG.
  • the gas detection unit 220 detects a gas containing electrolyzed water generated by the pair of electrodes 217, and outputs an output value according to the detected gas.
  • the case where the output value output by the gas detection unit 220 is a voltage value will be described as an example. Details of the gas detector 220 will be described later.
  • the control unit 230 is provided, for example, on the back side of the operation panel provided on the top surface of the main body case 201 (see FIG. 11), and controls the electrolytic water spraying device 200.
  • the control unit 230 controls the electrolysis of water by the pair of electrodes 217 and also controls the charging of the electrolytically accelerated tablets by the electrolytically accelerated tablet charging unit 218.
  • the control unit 230 determines the state of the detection gas based on the output value of the detection gas output by the gas detection unit 220. Details of the determination of the state of the detected gas will be described later with reference to FIG.
  • the function of the control unit 230 is realized by a processor (not shown) executing a program stored in a memory (not shown).
  • the water supply unit 215 is installed on the right side surface inside the main body case 201 when viewed from the front, has a structure that can be attached to and detached from the water storage unit 214, and can be taken out from the opening 204.
  • the water supply part 215 is attached to a tank holding part 214 a provided on the bottom surface of the water storage part 214.
  • the water supply unit 215 includes a tank 215a for storing water, and a lid 215b provided at an opening (not shown) of the tank 215a.
  • An opening/closing section (not shown) is provided at the center of the lid 215b, and when the opening/closing section is opened, the water in the tank 215a is supplied to the water storage section 214.
  • the opening/closing part is opened by the tank holding part 214a. That is, when water is poured into the tank 215a and attached to the tank holding portion 214a, the opening/closing portion is opened and water is supplied to the water storage portion 214, and water is stored in the water storage portion 214.
  • the water level in the water storage unit 214 rises and reaches the position of the lid 215b, the water supply stops because the opening of the tank 215a is sealed with water, and the water remains inside the tank 215a, so that the water level in the water storage unit 214 changes. Whenever the water falls, the water in the tank 215a is supplied to the water storage unit 214. That is, the water level in the water storage unit 214 is kept constant.
  • the electrolyzed water spraying device 200 may not have the tank 215a as the water supply unit 215.
  • a line for supplying water to the electrolyzed water spraying device 200 is pulled from the tap water, and when the water level in the water storage section 214 decreases, the water level in the water storage section 214 rises to a predetermined position. Water may be supplied.
  • the spraying unit 219 includes a blower unit 207 and a filter unit 216.
  • the blower unit 207 is provided in the central portion of the main body case 201, and includes a motor unit 209, a fan unit 210 rotated by the motor unit 209, and a scroll-shaped casing unit 211 surrounding them.
  • the motor section 209 is fixed to the casing section 211.
  • the fan unit 210 is a sirocco fan and is fixed to the rotating shaft 209a extending in the horizontal direction from the motor unit 209, and the motor unit 209 is fixed to the casing unit 211 as described above.
  • the rotation shaft 209a of the motor unit 209 extends from the front surface side to the back surface side of the main body case 201.
  • the casing portion 211 includes a discharge port 212 on the upper surface side of the main body case 201 of the casing portion 211, and has a suction port 213 on the rear surface side of the main body case 201 of the casing portion 211.
  • the air volume of the blower unit 207 is determined based on the air volume set by the user.
  • the controller 230 controls the rotation amount of the motor unit 209 based on the determined air volume.
  • the filter unit 216 is a member that brings the electrolyzed water stored in the water storage unit 214 into contact with the room air that has flowed into the main body case 201 (that is, inside the housing) by the blower unit 207.
  • the filter portion 216 is formed in a cylindrical shape, and has a filter 216a provided with a hole through which air can flow in the circumferential portion.
  • the filter 216a is rotatably incorporated in the water storage unit 214 with the central axis of the filter 216a as the center of rotation so that one end thereof is immersed in the water of the water storage unit 214 to retain water.
  • the filter section 216 is rotated by a drive section (not shown), and has a structure in which electrolyzed water and indoor air are brought into continuous contact with each other.
  • the air passage 208 connects the intake port 202 and the outlet 206, and includes a filter unit 216, a blower unit 207, and an outlet 206 in order from the intake port 202.
  • the fan unit 210 When the fan unit 210 is rotated by the motor unit 209, the external air sucked from the intake port 202 and entering the air passage 208 sequentially passes through the filter 216a, the air blowing unit 207, and the air outlet 206, and then the electrolytic water spraying device 200. Is blown out of. Thereby, the electrolyzed water generated in the water storage unit 214 is sprayed to the outside.
  • the electrolyzed water sprinkling device 200 does not necessarily sprinkle the electrolyzed water itself, and may sprinkle the active oxygen species derived from the electrolyzed water (including volatilization) generated as a result.
  • the gas detector 220 is composed of, for example, a semiconductor gas sensor.
  • the gas sensor element is composed of a heater integrated with a metal oxide material. By applying power to the sensor, the metal oxide material is heated by the heater. This gas sensor element detects a change in resistance value caused by a detectable gas coming into contact with the metal oxide material. For example, in a clean atmosphere, the surface of the metal oxide material is affected by oxygen in the atmosphere, the movement of free electrons is restricted, and the conductivity decreases, so that the resistance value is high.
  • FIG. 16 is a flowchart showing the process of determining the state of the detected gas.
  • control unit 230 repeatedly acquires an output value (a voltage value as an example) output from the gas detection unit 220 for every predetermined period (for example, 1 second) for a predetermined period (for example, 1 minute) (step S21).
  • the output value is acquired using, for example, an A/D converter.
  • the control unit 230 calculates the difference between the output value acquired at step S21 at a certain time point and the output value acquired one cycle before the certain time point. By repeating this, the amount of change in the output value in each cycle is calculated (step S22).
  • control unit 230 compares each change amount in each cycle calculated in step S22 with a plurality of predetermined ranges (step S23).
  • control unit 230 calculates an integrated value, which is the number of appearances of the variation amount for each of a plurality of predetermined ranges, based on the comparison result of step S23 (step S24). Finally, the state of the detected gas is determined according to the integrated value for each of the plurality of predetermined ranges calculated in step S24 (step S25).
  • the output results obtained by the state determination are the type of detection gas, the presence or absence of detection gas, the concentration of detection gas, etc.
  • it is possible to determine the type of gas to be detected and the presence/absence of gas to be detected by determining whether or not the ratio of integrated values for each of a plurality of predetermined ranges calculated by the control unit 230 is a specific ratio. ..
  • the value of the integrated value is compared with a value correlated with the density to obtain the density value or the level of the density as an output result. Is also possible.
  • control unit 230 compares each change amount of the output value in each cycle calculated using the plurality of output values repeatedly acquired for each predetermined cycle for a predetermined period with a plurality of predetermined ranges. Then, it is explained that the integrated value for each predetermined range is calculated (steps S21 to S24).
  • the flowchart of the state determination process of the detected gas shown in FIG. 16 is an example, and for example, the processes of steps S21 to S24 are changed as follows, and the changed processes of steps S21 to S24 are performed at regular intervals.
  • the process of step S25 may be performed after repeatedly executing the period (or a certain number of times).
  • step S21 is changed to a process of acquiring the output value output from the gas detection unit 220 only once, and step S22 is changed to the output value acquired in the changed step S21 and one cycle before that.
  • the difference between the acquired output values is calculated to change the processing to calculate the amount of change.
  • step S23 is changed to a process of comparing the change amount obtained in the changed step S22 with a plurality of predetermined ranges.
  • step S24 an integrated value that is the number of appearances of the range including the change amount obtained in step S22 after the change is calculated from the plurality of predetermined ranges based on the comparison result of the step S23 after the change. Change to a process that does.
  • steps S21 to S24 after this change are repeatedly executed at regular intervals for a predetermined period (for example, 1 minute) or a fixed number of times (for example, 60 times).
  • a predetermined period for example, 1 minute
  • a fixed number of times for example, 60 times.
  • 17A to 17C show an example of an output value (voltage value) and a change amount of the gas detection unit 220 when the pair of electrodes 217 of the electrolyzed water generation unit 205 are energized to perform electrolysis.
  • the gas detection unit 220 is arranged in the vicinity of the electrolyzed water generating unit 205 or the like, and has a configuration capable of detecting a gas containing hypochlorous acid by the electrolyzed water generated by the electrolyzed water generating unit 205.
  • the pair of electrodes 217 that form the electrolyzed water generating unit 205 are installed in the water storage unit 214.
  • FIG. 17A is a diagram showing an energized state and elapsed time of the pair of electrodes 217 of the electrolyzed water producing unit 205. Electrolysis is performed by applying a current to the pair of electrodes 217.
  • FIG. 17B is a diagram showing the output value of the gas detection unit 220 in the energized state of the pair of electrodes 217 shown in FIG. 17A.
  • the output of the gas detection unit 220 changes according to the detection gas containing hypochlorous acid by the electrolyzed water. For a plurality of output values of the gas detection unit 220 acquired at regular intervals, a change amount that is a difference between an output value acquired at a certain time point and an output value acquired one cycle before the certain time point is obtained. This change amount is shown in FIG. 17C.
  • the output tendency as shown in FIG. 17B is because the gas detection unit 220 is installed at a position where the gas containing hypochlorous acid by the electrolyzed water generated by the electrolyzed water generation unit 205 can be detected. If this positional relationship is not satisfied, the gas detection unit 220 cannot detect a gas containing hypochlorous acid due to the electrolyzed water generated by the electrolyzed water generation unit 205, so the output of the gas detection unit 220 is a certain stable output. Will be shown.
  • the gas detection unit 220 When the gas detection unit 220 is located at a position where it can detect a gas containing hypochlorous acid due to the electrolyzed water generated by the electrolyzed water generation unit 205, the gas detection unit 220 is a detection gas containing a by-product such as a by-product gas.
  • the output tends to increase and decrease sharply due to. That is, the output of the gas detection unit 220 can be recognized as a gas containing a specific substance by making a predetermined change at regular intervals.
  • FIG. 18 shows an example of the appearance frequency of the amount of change in the output value of the gas detection unit 220 during a predetermined period when electrolysis is performed under specific conditions while the electrodes shown in FIG. 17A are energized.
  • the results of long-term data acquisition under the same electrolysis conditions are shown, and the number of times the amount of change in the output value of the gas detection unit 220 occurs with respect to the acquired data is shown.
  • the output tendency of the appearance frequency shows a similar tendency to some extent, although there is some variation when the positional relationship between the electrolyzed water producing unit 205 and the gas detecting unit 220 and the electrolysis producing condition are determined.
  • FIG. 19 is a diagram in which the amount of change in each cycle is classified into a plurality of predetermined ranges.
  • an integrated value that is the number of appearances of the change amount in each of the plurality of predetermined ranges is calculated.
  • a plurality of predetermined ranges are set as follows with respect to the amount of change.
  • the threshold range d2 indicates a region in which the amount of change is smaller than ⁇ 0.05V.
  • the threshold range c2 indicates a region in which the amount of change is ⁇ 0.05 V or more and less than ⁇ 0.02 V.
  • the threshold range b2 indicates a region in which the amount of change is ⁇ 0.02V or more and less than ⁇ 0.01V.
  • the threshold range a2 indicates a region in which the amount of change is ⁇ 0.01 V or more and less than 0 V.
  • the threshold range a1 indicates a region in which the amount of change is 0 V or more and less than +0.01 V.
  • the threshold range b1 indicates a region in which the amount of change is +0.01 V or more and less than +0.02 V.
  • the threshold range c1 indicates a region in which the amount of change is +0.02V or more and less than +0.05V.
  • the threshold range d1 indicates a region in which the amount of change is +0.05 V or more.
  • the appearance frequencies of the threshold range b1, the threshold range b2, and the threshold range c2 are high as the predetermined ranges.
  • the peak of the appearance frequency in the threshold range is the output of the gas detection unit 220 due to the detection gas containing hypochlorous acid generated by the electrolyzed water generated by the electrolyzed water generation unit 205 and the by-product by-product gas. The value changes. From this, it is experimentally confirmed that the peaks in the threshold range b1, the threshold range b2, and the threshold range c2 tend to increase.
  • the appearance frequency of the specific threshold range increases due to the installation positions of the electrolyzed water production unit 205 and the gas detection unit 220, the electrolysis generation conditions, the difference in the sensor characteristics of the gas detection unit 220, and the like.
  • the tendency of the output change of the output value of the gas detection unit 220 in a constant cycle changes.
  • the oxygen consumption on the surface of the metal oxide differs depending on the type and concentration of the generated gas. In this way, the type and concentration of the detected gas can be detected based on the tendency of the appearance frequency of the change amount calculated by the control unit 230.
  • the amount of change in the output value of the gas detection unit 220 due to the detection gas containing hypochlorous acid generated by the electrolyzed water generated by the electrolyzed water generation unit 205 and the by-product by-product gas is the threshold range b1 as described above.
  • the peaks of the appearance frequencies shown in the threshold range b2 and the threshold range c2 tend to increase.
  • the control unit 230 compares the tendency of the peak of such appearance frequency with a plurality of predetermined ranges shown in FIG. 19 to calculate an integrated value which is the number of appearances in each of the plurality of predetermined ranges. ..
  • the change amount of the gas detection unit 220 shows the tendency of the appearance frequency shown in FIG.
  • the integrated value for each of the plurality of predetermined ranges shows a tendency proportional to the area of each threshold range of FIG. 18.
  • the ratio of the integrated values of the plurality of predetermined ranges shows a proportional relationship with the area of each threshold value range of FIG. 18, if hypochlorous acid is present as the electrolyzed water generated by the electrolyzed water generating unit 205. Can be determined. This makes it possible to identify the detected gas.
  • the threshold value range b1 is the change amount of the output value due to the detection gas containing hypochlorous acid
  • the threshold value range b2 and the threshold value range c2 are the change amount of the output value due to the by-product gas that is a by-product. ..
  • hypochlorous acid and a secondary gas are generated under the assumed generation condition of electrolyzed water. It can be determined that there is. By-products are also produced at the same time when hypochlorous acid is produced. By carrying out the determination in consideration of the reaction of this by-product, it is possible to accurately determine the production of hypochlorous acid. That is, the ratio of the integrated value of the threshold range a1, the threshold range a2, the threshold range b1, the threshold range b2, the threshold range c1, the threshold range c2, the threshold range d1, and the threshold range d2 is proportional to the area of each threshold range of FIG.
  • the integrated values for each of the plurality of predetermined ranges calculated in the predetermined period are the threshold range d2 twice, the threshold range c2 30 times, the threshold range b2 20 times, the threshold range a2 once, and the threshold value
  • the range a1 is 3 times
  • the threshold range b1 is 40 times
  • the threshold range c1 is 5 times
  • the threshold range d1 is 1 time.
  • the ratio of the integrated values for each of the plurality of predetermined ranges indicates the relationship of the above ratios
  • the integrated value of the threshold range a1 is 3 times ⁇ 10%
  • the integrated value of the threshold range b1 is 40 times ⁇ 10%
  • the integrated value of the threshold range c1 is 5 times ⁇ 10%
  • the integrated value of the threshold range d1 is When it is ⁇ 10% once, it may be determined that the ratio of the integrated values in each of the plurality of predetermined ranges satisfies the relationship proportional to the area of each threshold range in FIG. That is, it may be determined that the electrolyzed water generated by the electrolyzed water generation unit 205 contains hypochlorous acid.
  • the detection gas containing hypochlorous acid generated by the electrolyzed water generated by the electrolyzed water generation unit 205 is calculated by comparing a plurality of changes calculated in a predetermined period with a plurality of predetermined ranges.
  • the accuracy of detecting the concentration of hypochlorous acid is improved by using the magnitude of the integrated value, which is the number of appearances of the variation amount for each of the predetermined ranges.
  • the concentration of hypochlorous acid by the electrolyzed water generated by the electrolyzed water generation unit 205 is higher than the condition of FIG. 18, hypochlorous acid and by-products are generated under the assumed electrolyzed water generation conditions. Therefore, the tendency of the appearance frequency shows a proportional relationship with the area of each threshold range in FIG. Therefore, the ratio of the integrated value, which is the number of appearances of the amount of change in each of the plurality of predetermined ranges, becomes equal.
  • the concentration of hypochlorous acid and byproducts increases, the frequency of appearance increases as a whole, and the integrated value, which is the number of appearances of the amount of change in each of a plurality of predetermined ranges, shows a large output value.
  • the size of the integrated value in each threshold range is compared with a specific comparison threshold value, and when it is equal to or greater than the specific threshold value, it is determined that the gas to be detected exists. it can.
  • the ratio of the integrated value of the threshold range a1, the threshold range a2, the threshold range b1, the threshold range b2, the threshold range c1, the threshold range c2, the threshold range d1, and the threshold range d2 is proportional to the area of each threshold range of FIG. Is determined.
  • the integrated value in each threshold range is larger than the specific threshold value set for each threshold range, it is determined that the gas to be detected exists.
  • the comparison threshold in each threshold range can be realized by setting the threshold set according to the condition of the hypochlorous acid concentration or the like.
  • the voltage range of each threshold range is set to be narrower as a plurality of predetermined ranges, and a larger number of predetermined ranges are set.
  • the determination may be performed according to the range.
  • hypochlorous acid or a by-product which is a by-product is set.
  • the gas to be detected can be accurately detected in consideration of the gas.
  • the predetermined range is determined by the ratio of the integrated value in all eight areas of the threshold ranges a1 to d2, but not all areas are used and only the integrated value of a specific area is used.
  • the state of the detected gas may be determined based on the ratio.
  • the tendency of the appearance frequency of the detection gas containing hypochlorous acid generated by the electrolyzed water generated by the electrolyzed water generation unit 205 is determined to some extent by the conditions of electrolysis, and therefore, for example, the threshold range b1, the threshold range b2, and the threshold range c2. Even if the determination is made using only the ratio of, it is possible to make the determination with a certain degree of accuracy.
  • the gas detection unit 220 may be shared for control according to the odor level of the usage environment.
  • the odor shown here is assumed to be, for example, odor caused by cigarette smoke.
  • the gas detection unit 220 needs to be arranged at a position where the odor component of the environment can be detected. For example, it can be realized by arranging in the air passage 208 or the like.
  • the gas detection unit 220 is used to detect the gas containing hypochlorous acid by the electrolyzed water generated by the electrolyzed water generation unit 205, determine the odor level of the usage environment, and the electrolyzed water spray device 200 according to the odor level. Control.
  • FIGS. 20A to 20D show an example of the output of the gas detection unit 220 when odor is generated in the usage environment in addition to the states of FIGS. 17A to 17C.
  • FIG. 20A is a diagram showing an energized state and elapsed time of the pair of electrodes 217 of the electrolyzed water producing unit 205. Electrolysis is performed by energizing the pair of electrodes 217 of the electrolyzed water producing unit 205.
  • FIG. 20B is a diagram showing a state of odor occurrence in the usage environment and the elapsed time.
  • 20C is a diagram showing the output value of the gas detection unit 220 in the energized state of the pair of electrodes 217 shown in FIG. 20A and the odor generation state shown in FIG.
  • the gas detector 220 shows a stable output value to some extent after the odor is generated.
  • the output of the gas detection unit 220 makes a sharp change due to the detection gas containing hypochlorous acid generated by the electrolyzed water in the electrolyzed water generation unit 205.
  • FIG. 20D shows a change amount, which is a difference between an output value acquired at a certain time point and an output value acquired one cycle before a certain time point, in a plurality of output values of the gas detection unit 220 acquired at every constant cycle. Shows.
  • the amount of change in the gas detection unit 220 shows the same output tendency regardless of the presence or absence of odor in the usage environment. That is, a gas containing hypochlorous acid due to the electrolyzed water generated by the electrolyzed water generation unit 205 can be detected regardless of the generation of odor. In other words, the odor of the usage environment can be determined using the gas detection unit 220. In the odor determination of the usage environment, the sharp output change of the gas detection unit 220 when the pair of electrodes 217 is in the energized state leads to a reduction in the detection accuracy of the odor determination.
  • processing such as determination is performed excluding the output of the gas detection unit 220 when the pair of electrodes 217 is in the energized state.
  • the influence of the detection gas containing hypochlorous acid due to the electrolyzed water generated by the electrolyzed water generation unit 205 can be reduced, and the odor level of the use environment can be determined.
  • the control unit 230 controls the input power to the pair of electrodes 217 of the electrolyzed water generating unit 205, the air volume of the air blowing unit 207, and the like.
  • the gas detection unit 220 detects the gas containing hypochlorous acid by the electrolyzed water generated by the electrolyzed water generation unit 205 and determines the odor level of the usage environment. Thereby, the control of the electrolytic water spraying device 200 according to the odor level of the use environment can be realized without providing an additional sensor while suppressing the cost increase.
  • the threshold range that determines a plurality of predetermined ranges may be changeable by a user operation or the like. For example, when the gas detector 220 deteriorates in sensitivity due to its life, the amount of change in the output value of the gas detector 220 decreases.
  • the sensitivity can be adjusted by adjusting the threshold value range with respect to the sensitivity deterioration of the gas detection unit 220. It is possible to make settings suitable for the actual use environment, such as manufacturing variations of the gas detection unit 220, deterioration of the service life, and influences due to differences in the use environment.
  • the sensitivity setting method may be performed by providing a sensitivity setting switch on the operation panel provided on the top surface of the main body case 201 and allowing the user to operate the switch. Further, as the set value, a plurality of fixed values determined experimentally may be set, or an arbitrary value may be set.
  • the integrated value ratio may be changeable.
  • the generation amount of the secondary gas of the detection gas differs depending on the energization state of the pair of electrodes 217 of the electrolyzed water generation unit 205. Specifically, there are a case where the pair of electrodes 217 of the electrolyzed water producing unit 205 are energized for electrolysis, and a case where the electrolysis is not performed by energizing them.
  • the gas detected by the gas detection unit 220 during energization and de-energization differs in the amount and presence or absence of by-products, which are by-products.
  • the ratio of the integrated values can be changed so that the detection can be performed accurately. ..
  • the method of setting the ratio of the integrated values may be set arbitrarily according to the type and characteristics of the sensor used in the gas detection unit 220. Further, the control unit 230 may automatically switch depending on the electrolyzed water generation state of the electrolyzed water spraying device 200 and the like.
  • the set value of the ratio of the integrated value may be a fixed value that is experimentally determined or an arbitrary value may be set.
  • the output value output from the gas detection unit 220 is repeatedly acquired for a predetermined period in a constant cycle, the change amount of the output value in each cycle is calculated, and the plurality of changes calculated in each cycle are calculated. Each quantity is compared to a plurality of predetermined ranges. Then, each of the calculated plurality of change amounts is classified into one of a plurality of predetermined ranges, an integrated value that is the number of appearances of the change amount in each predetermined range is calculated, and the calculated plurality of predetermined range integrated values are calculated.
  • the state of the detected gas is determined based on the value information, it is not limited to this. That is, this state determination result may be acquired every predetermined time, and the final detection gas state determination result may be calculated. By obtaining the state determination result of the detected gas at every predetermined time and performing the averaging process, it is possible to suppress the variation of the determination result, and thus it is possible to improve the determination accuracy.
  • moving average processing for example, when the number of data to be averaged is 5, the processing is performed by averaging the past 5 data including the acquired data, and an output showing the tendency of data change from the past is obtained. It is a thing.
  • a gas containing hypochlorous acid generated by the electrolyzed water generated by the electrolyzed water generation unit 205 is detected, the state of the electrolyzed water changes to a certain degree with time, and thus the moving average process is performed to obtain the electrolyzed water. The state change can be properly discriminated.
  • the output value is repeatedly acquired from the gas detection unit 220 in a predetermined cycle for a predetermined period, and the change amount of the output value in each cycle is calculated. Further, the calculated plurality of change amounts in each cycle are compared with a plurality of predetermined ranges, and an integrated value that is the number of appearances of the change amount in each of the plurality of predetermined ranges is calculated. By the discrimination based on the ratio of the integrated values in the plurality of predetermined ranges, the electrolytic water spraying device 200 can realize the state discrimination of the gas to be detected with high accuracy.
  • the electrolyzed water sprinkling device according to the present disclosure is useful as an electrolyzed water sprinkling device for removing (including inactivating) bacteria, fungi, viruses, odors, etc. in the air.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

An electrolytic water dispersing device (100) is provided with an electrolytic water generating unit (105) for generating electrolytic water by means of a pair of electrodes (117), a blower unit (107) for causing the electrolytic water generated by the electrolytic water generating unit (105) to come into contact with air drawn into a housing from an intake port (102), and blowing the same from a blowout port (106), a control unit (130) for controlling an amount of electric power energizing the pair of electrodes (117) of the electrolytic water generating unit (105) and the airflow rate of the blower unit (107), and a gas detecting unit (120) for detecting gas containing the electrolytic water generated by the electrolytic water generating unit (105), wherein the gas detecting unit (120) outputs an output value corresponding to the detected gas detected by the gas detecting unit (120), and the control unit (130) determines the state of the detected gas on the basis of the output value output from the gas detecting unit (120).

Description

電解水散布装置及び送風装置Electrolyzed water spraying device and blower
 本開示は、電解水を生成して散布する電解水散布装置及び電解水散布装置を備えた送風装置に関する。 The present disclosure relates to an electrolytic water spraying device that generates and sprays electrolytic water, and a blower including the electrolytic water spraying device.
 空気中の細菌、真菌、ウイルス、臭い等の除去を行うために、電気分解により次亜塩素酸を含む電解水を生成して散布する電解水散布装置が知られている。 ㆍIt is known to use an electrolyzed water sprinkler that produces electrolyzed water containing hypochlorous acid by electrolysis and sprays it to remove bacteria, fungi, viruses, odors, etc. in the air.
 従来、電解水散布装置における次亜塩素酸の生成量の検出方法として、電気化学的方法を用いて溶液濃度を検出する方法などが知られている(特許文献1)。また、複数のガスセンサの出力傾向を利用して気体の種類や濃度を検知する技術も知られている(特許文献2)。 Conventionally, as a method of detecting the amount of hypochlorous acid produced in an electrolyzed water spraying device, a method of detecting a solution concentration using an electrochemical method is known (Patent Document 1). There is also known a technique of detecting the type and concentration of gas by utilizing the output tendency of a plurality of gas sensors (Patent Document 2).
特開2006-26214号公報JP, 2006-26214, A 特開2017-49057号公報JP, 2017-49057, A
 しかしながら、特許文献1に記載された検出方法では、溶液濃度の検出用の電極などを使用する必要があるため、コストアップするおそれがある。また、電気化学的方法を用いて検出する場合、電極の定期的な洗浄などが必要となり、検知精度の維持が難しいといった課題もある。さらに、特許文献2に記載された検出方法では、複数個のガスセンサを使用する必要があるため、コストアップするおそれがある。即ち、従来の方法により、生成した次亜塩素酸等の気体の状態(例えば濃度)を判別する場合、比較的煩雑でコストがかかるという問題がある。 However, in the detection method described in Patent Document 1, it is necessary to use electrodes for detecting the concentration of the solution, which may increase the cost. Further, in the case of detection using an electrochemical method, it is necessary to regularly wash the electrodes, which makes it difficult to maintain detection accuracy. Further, in the detection method described in Patent Document 2, it is necessary to use a plurality of gas sensors, which may increase the cost. That is, when the state (eg, concentration) of the generated gas such as hypochlorous acid is determined by the conventional method, there is a problem that it is relatively complicated and costly.
 本開示は、生成した次亜塩素酸等の気体の状態を、比較的簡易かつ安価に判別できる電解水散布装置を提供することを目的とする。 The present disclosure aims to provide an electrolyzed water spraying device capable of relatively easily and inexpensively determining the state of a generated gas such as hypochlorous acid.
 この目的を達成するために、本開示の電解水散布装置は、以下を特徴とするものである。即ち、本開示の電解水散布装置は、電解水生成部と、送風部と、制御部と、気体検知部とを備える。電解水生成部は、一対の電極によって電解水を生成する。送風部は、電解水生成部が生成した電解水を、吸気口から筐体内に吸い込んだ空気に接触させて吹出口から送風する。制御部は、電解水生成部の一対の電極に通電させる電力量及び送風部の風量を制御する。気体検知部は、電解水生成部で生成された電解水を含んだ気体を検知する。また、気体検知部は、気体検知部によって検知された検知気体に応じた出力値を出力する。また、制御部は、気体検知部から出力された出力値に基づいて、検知気体の状態を判別する。 In order to achieve this object, the electrolytic water spraying device of the present disclosure has the following features. That is, the electrolyzed water spraying device of the present disclosure includes an electrolyzed water generation unit, a blower unit, a control unit, and a gas detection unit. The electrolyzed water production unit produces electrolyzed water by a pair of electrodes. The blower unit causes the electrolyzed water generated by the electrolyzed water generation unit to come into contact with the air sucked into the housing through the air inlet and blows the air through the air outlet. The control unit controls the amount of electric power supplied to the pair of electrodes of the electrolyzed water producing unit and the amount of air from the blower unit. The gas detection unit detects the gas containing the electrolyzed water generated by the electrolyzed water generation unit. Further, the gas detection unit outputs an output value according to the detected gas detected by the gas detection unit. The control unit also determines the state of the detected gas based on the output value output from the gas detection unit.
 本開示の電解水散布装置によれば、電解水生成部で生成された電解水を含んだ気体を検知する気体検知部の出力値に基づいて、検知気体の状態判別を行う。このように、次亜塩素酸等の生成量といった検知気体の状態の判別を一つの気体検知部により行うことができるので、比較的簡易かつ安価に電解水散布装置を実現できるという効果を備えている。 According to the electrolyzed water spraying device of the present disclosure, the state of the detected gas is determined based on the output value of the gas detection unit that detects the gas containing the electrolyzed water generated by the electrolyzed water generation unit. In this way, since it is possible to determine the state of the detected gas such as the amount of hypochlorous acid produced by one gas detection unit, it is possible to realize the electrolytic water spraying device relatively easily and inexpensively. There is.
図1は、本開示の第1実施形態に係る電解水散布装置の斜視図である。FIG. 1 is a perspective view of an electrolytic water spraying device according to a first embodiment of the present disclosure. 図2は、同電解水散布装置の斜視図である。FIG. 2 is a perspective view of the same electrolytic water spraying device. 図3は、同電解水散布装置の断面図である。FIG. 3 is a cross-sectional view of the same electrolytic water spraying device. 図4は、同電解水散布装置の断面図である。FIG. 4 is a cross-sectional view of the same electrolytic water spraying device. 図5は、同電解水散布装置の機能ブロック図である。FIG. 5 is a functional block diagram of the same electrolytic water spraying device. 図6Aは、気体判別部の機能ブロック図である。FIG. 6A is a functional block diagram of the gas determination unit. 図6Bは、気体判別部で実行される検知気体の状態判別処理を示すフローチャートである。FIG. 6B is a flowchart showing the process of determining the state of the detected gas, which is performed by the gas determining unit. 図7Aは、一対の電極の通電状態と経過時間との関係を示す図である。FIG. 7A is a diagram showing the relationship between the energized state of a pair of electrodes and the elapsed time. 図7Bは、図7Aに示す一対の電極の通電状態における気体検知部の出力値の一例を示す図である。FIG. 7B is a diagram showing an example of output values of the gas detection unit in the energized state of the pair of electrodes shown in FIG. 7A. 図7Cは、図7Bに示す気体検知部の出力値を一定周期で取得したときの一周期前の出力値との変化量の一例を示す図である。FIG. 7C is a diagram showing an example of an amount of change from the output value one cycle before when the output value of the gas detection unit shown in FIG. 7B is acquired in a constant cycle. 図8は、特定の条件で電気分解しているときの変化量の出現頻度の一例を示す概略図である。FIG. 8 is a schematic diagram showing an example of the appearance frequency of the amount of change during electrolysis under specific conditions. 図9は、複数の閾値範囲と複数の閾値範囲に対応した加算値の一例を示す図である。FIG. 9 is a diagram showing an example of a plurality of threshold ranges and an addition value corresponding to the plurality of threshold ranges. 図10Aは、電極の通電状態と経過時間との関係を示す図である。FIG. 10A is a diagram showing the relationship between the energized state of the electrodes and the elapsed time. 図10Bは、ニオイ発生状態と経過時間との関係を示す図である。FIG. 10B is a diagram showing the relationship between the odor occurrence state and the elapsed time. 図10Cは、図10Aと図10Bに示す通電状態とニオイ発生状態における気体検知部の出力値の一例を示す図である。FIG. 10C is a diagram showing an example of the output value of the gas detection unit in the energized state and the odor generating state shown in FIGS. 10A and 10B. 図10Dは、図10Cに示す気体検知部の出力値を一定周期で取得したときの一周期前の出力値との変化量の一例を示す図である。FIG. 10D is a diagram showing an example of the amount of change from the output value one cycle before when the output value of the gas detection unit shown in FIG. 10C is acquired in a constant cycle. 図11は、本開示の第2実施形態に係る電解水散布装置の斜視図である。FIG. 11 is a perspective view of the electrolyzed water spraying device according to the second embodiment of the present disclosure. 図12は、同電解水散布装置の斜視図である。FIG. 12 is a perspective view of the same electrolytic water spraying device. 図13は、同電解水散布装置の断面図である。FIG. 13 is a cross-sectional view of the same electrolytic water spraying device. 図14は、同電解水散布装置の断面図である。FIG. 14 is a cross-sectional view of the same electrolytic water spraying device. 図15は、同電解水散布装置の機能ブロック図である。FIG. 15 is a functional block diagram of the electrolytic water spraying device. 図16は、制御部で実行される検知気体の状態判別処理を示すフローチャートである。FIG. 16 is a flowchart showing the detection gas state determination process executed by the control unit. 図17Aは、一対の電極の通電状態と経過時間との関係を示す図である。FIG. 17A is a diagram showing the relationship between the energized state of a pair of electrodes and the elapsed time. 図17Bは、図17Aに示す一対の電極の通電状態における気体検知部の出力値の一例を示す図である。FIG. 17B is a diagram showing an example of output values of the gas detection unit in the energized state of the pair of electrodes shown in FIG. 17A. 図17Cは、図17Bに示す気体検知部の出力値を一定周期で取得したときの一周期前の出力値との変化量の一例を示す図である。FIG. 17C is a diagram showing an example of the amount of change from the output value one cycle before when the output value of the gas detection unit shown in FIG. 17B is acquired in a constant cycle. 図18は、特定の条件で電気分解しているときの変化量の出現頻度の一例を示す概略図である。FIG. 18 is a schematic diagram showing an example of the appearance frequency of the amount of change during electrolysis under specific conditions. 図19は、気体検知部の出力値による周期毎の変化量を複数の所定の範囲に分類した図である。FIG. 19 is a diagram in which the amount of change for each cycle according to the output value of the gas detection unit is classified into a plurality of predetermined ranges. 図20Aは、電極の通電状態と経過時間との関係を示す図である。FIG. 20A is a diagram showing the relationship between the energized state of the electrodes and the elapsed time. 図20Bは、ニオイ発生状態と経過時間との関係を示す図である。FIG. 20B is a diagram showing the relationship between the odor occurrence state and the elapsed time. 図20Cは、図20Aと図20Bに示す通電状態とニオイ発生状態における気体検知部の出力値の一例を示す図である。FIG. 20C is a diagram showing an example of output values of the gas detection unit in the energized state and the odor generating state shown in FIGS. 20A and 20B. 図20Dは、図20Cに示す気体検知部の出力値を一定周期で取得したときの一周期前の出力値との変化量の一例を示す図である。FIG. 20D is a diagram showing an example of the amount of change from the output value one cycle before when the output value of the gas detection unit shown in FIG. 20C is acquired in a constant cycle.
 本開示に係る電解水散布装置は、電解水生成部と、送風部と、制御部と、気体検知部と、を備える。電解水生成部は、一対の電極によって電解水を生成する。送風部は、電解水生成部が生成した電解水を、吸気口から筐体内に吸い込んだ空気に接触させて吹出口から送風する。制御部は、電解水生成部の一対の電極に通電させる電力量及び送風部の風量を制御する。気体検知部は、電解水生成部で生成された電解水を含んだ気体を検知する。気体検知部は、気体検知部によって検知された検知気体に応じた出力値を出力する。制御部は、気体検知部から出力された出力値に基づいて、検知気体の状態を判別する。 The electrolyzed water spraying device according to the present disclosure includes an electrolyzed water generation unit, a blower unit, a control unit, and a gas detection unit. The electrolyzed water production unit produces electrolyzed water by a pair of electrodes. The blower unit causes the electrolyzed water generated by the electrolyzed water generation unit to come into contact with the air sucked into the housing through the air inlet and blows the air through the air outlet. The control unit controls the amount of electric power supplied to the pair of electrodes of the electrolyzed water producing unit and the amount of air from the blower unit. The gas detection unit detects the gas containing the electrolyzed water generated by the electrolyzed water generation unit. The gas detection unit outputs an output value according to the detected gas detected by the gas detection unit. The control unit determines the state of the detected gas based on the output value output from the gas detection unit.
 これにより、本電解水散布装置は、電解水生成部で生成された電解水に含まれる活性酸素種の検知気体の状態を判別できるため、電解水散布装置の使用環境により異なる活性酸素種の生成量といった検知気体の状態の判別に利用することができる。 As a result, the present electrolyzed water spraying device can determine the state of the detected gas of the active oxygen species contained in the electrolyzed water generated in the electrolyzed water generation unit, and therefore the generation of active oxygen species that differs depending on the environment in which the electrolyzed water sprayer is used. It can be used to determine the state of the detected gas such as the amount.
 また、制御部は、検知気体の状態を判別する気体判別部を備え、気体判別部は、気体検知部から出力された出力値を一定の周期で繰り返し取得し、各周期における出力値の変化量を算出し、変化量に基づいて検知気体の状態を判別する演算部を備えるという構成にしてもよい。 Further, the control unit includes a gas discriminating unit that discriminates the state of the detected gas, and the gas discriminating unit repeatedly acquires the output value output from the gas detecting unit in a constant cycle, and the change amount of the output value in each cycle. May be calculated, and the arithmetic unit may be configured to determine the state of the detected gas based on the amount of change.
 これにより、本電解水散布装置は、活性酸素種などによって異なる出力傾向を示す気体検知部の変化量に基づく状態判別ができるため、電解水散布装置の使用環境により異なる活性酸素種の生成量といった検知気体の状態を比較的精度良く判別することができる。 As a result, the present electrolyzed water spraying device can determine the state based on the amount of change in the gas detector that shows different output tendencies depending on the active oxygen species, etc. The state of the detected gas can be determined with relatively high accuracy.
 また、気体判別部は、演算部で算出した各周期における変化量それぞれについて、変化量と1以上の所定の閾値範囲とを比較し、所定の閾値範囲に含まれる変化量の個数を取得する比較部を備え、演算部は、比較部により取得された所定の閾値範囲に含まれる変化量の個数に基づいて検知気体の状態を判別するという構成にしてもよい。 In addition, the gas determination unit compares the change amount with one or more predetermined threshold ranges for each change amount in each cycle calculated by the calculation unit, and obtains the number of change amounts included in the predetermined threshold range. The calculation unit may include a unit, and the calculation unit may determine the state of the detected gas based on the number of change amounts included in the predetermined threshold range acquired by the comparison unit.
 これにより、本電解水散布装置は、活性酸素種などによって異なる出力傾向を示す気体検知部の変化量に対して、検知対象となる活性酸素種が生成されたときの出現頻度の傾向に基づく状態判別ができる。よって、電解水散布装置の使用環境により異なる活性酸素種の生成量といった検知気体の状態を比較的精度良く判別することができる。 As a result, the electrolyzed water spraying device is in a state based on the tendency of the appearance frequency when the active oxygen species to be detected are generated with respect to the amount of change in the gas detection section that shows a different output tendency depending on the active oxygen species. Can be identified. Therefore, it is possible to relatively accurately determine the state of the detected gas, such as the amount of active oxygen species produced, which varies depending on the environment in which the electrolyzed water spraying device is used.
 また、比較部は、演算部で算出した各周期における変化量それぞれについて、変化量と相互に異なる複数の所定の閾値範囲とを比較し、複数の所定の閾値範囲それぞれに含まれる変化量の個数を取得し、演算部は、複数の所定の閾値範囲それぞれに対応して記憶された加算値にも基づいて検知気体の状態を判別するという構成にしてもよい。 The comparing unit compares the amount of change in each cycle calculated by the arithmetic unit with a plurality of predetermined threshold ranges that are different from each other, and determines the number of change amounts included in each of the plurality of predetermined threshold ranges. And the arithmetic unit may determine the state of the detected gas based on the added value stored corresponding to each of the plurality of predetermined threshold ranges.
 これにより、本電解水散布装置は、活性酸素種などによって異なる出力傾向を示す気体検知部の変化量に対して、検知対象となる活性酸素種が生成されたときの出現頻度の傾向に基づいて加算値により重み付けした結果から状態判別できる。よって、電解水散布装置の使用環境により異なる活性酸素種の生成量などを精度良く判別することができる。 As a result, the electrolytic water spraying device of the present invention is based on the tendency of the appearance frequency when the active oxygen species to be detected is generated, with respect to the amount of change in the gas detection section that shows different output tendencies depending on the active oxygen species. The state can be determined from the result of weighting with the added value. Therefore, it is possible to accurately determine the amount of active oxygen species produced, which varies depending on the environment in which the electrolyzed water spraying device is used.
 また、複数の所定の閾値範囲は、変更可能であるという構成にしてもよい。 Alternatively, a plurality of predetermined threshold ranges may be changeable.
 これにより、本電解水散布装置は、気体検知部の特性ばらつきや経年劣化などの特性変動がある場合でも、電解水散布装置の使用環境により異なる活性酸素種の生成量などを比較的精度良く判別することができる。 As a result, the electrolyzed water spraying device of the present invention can accurately determine the amount of active oxygen species produced, etc., which varies depending on the environment in which the electrolyzed water spraying device is used, even when there are characteristic fluctuations in the gas detection part or characteristic changes such as deterioration over time. can do.
 また、出力値は、電圧値であるという構成にしてもよい。 Also, the output value may be a voltage value.
 また、本開示の電解水散布装置を送風装置に適用してもよい。 Also, the electrolytic water spraying device of the present disclosure may be applied to a blower.
 これにより、送風装置においても本開示記載の効果を実現できる。 With this, the effect described in the present disclosure can be realized even in the air blower.
 以下、本開示を実施するための形態について添付図面を参照して説明する。 Hereinafter, modes for carrying out the present disclosure will be described with reference to the accompanying drawings.
 (第1実施形態)
 まず、図1~図6Bを参照して、本開示の第1実施形態である電解水散布装置100について説明する。図1は、電解水散布装置100の斜視図であり、電解水散布装置100を前面側から見た図である。図2は、電解水散布装置100の斜視図であり、図1のパネル103を開いた状態で電解水散布装置100を前面側から見た図である。
(First embodiment)
First, with reference to FIG. 1 to FIG. 6B, an electrolytic water spraying device 100 according to a first embodiment of the present disclosure will be described. FIG. 1 is a perspective view of the electrolytic water spraying device 100, and is a view of the electrolytic water spraying device 100 as seen from the front side. FIG. 2 is a perspective view of the electrolytic water spraying device 100, and is a view of the electrolytic water spraying device 100 viewed from the front side with the panel 103 of FIG. 1 opened.
 図1、図2に示す通り、電解水散布装置100は、略箱形状の本体ケース101を備え、本体ケース101の両側面には略四角形状の吸気口102を有している。本体ケース101の天面には、開閉式の吹出口106が設けられている。図1、2では、吹出口106は閉じた状態である。 As shown in FIGS. 1 and 2, the electrolyzed water spraying device 100 includes a main body case 101 having a substantially box shape, and the main body case 101 has intake ports 102 having a substantially square shape on both side surfaces. An openable air outlet 106 is provided on the top surface of the main body case 101. 1 and 2, the air outlet 106 is in a closed state.
 本体ケース101の前面側から見て、右側の側面(本体ケース101の一方側の側面)である第1の本体側面101Aには、開閉可能なパネル103が設けられている。パネル103には、吸気口102が設けられている。パネル103を開くと、図2に示すように、縦長四角形状の開口104が現れる。開口104から、後述する貯水部114、給水部115、錠剤投入ケース118a等が取り出し可能に構成されている。 A panel 103 that can be opened and closed is provided on the first main body side surface 101A, which is the right side surface (one side surface of the main body case 101) when viewed from the front surface side of the main body case 101. An intake port 102 is provided in the panel 103. When the panel 103 is opened, a vertically long rectangular opening 104 appears as shown in FIG. A water storage unit 114, a water supply unit 115, a tablet charging case 118a, and the like, which will be described later, can be taken out from the opening 104.
 図3は、電解水散布装置100の正面視中央部分を縦方向に切った断面図であり、電解水散布装置100を右側から見た図である。図3は、電解水散布装置100が作る風路構成などを示している。図4は、電解水散布装置100の正面視右側を縦方向に切った断面図であり、電解水散布装置100における右側から見た図である。図4は、タンク部材などの電解水生成に関する周辺構成などを示している。図5は、電解水散布装置100の機能をブロックで示した機能ブロック図である。 FIG. 3 is a cross-sectional view of the central portion of the electrolytic water spraying device 100 as viewed from the front, and is a view of the electrolytic water spraying device 100 as viewed from the right side. FIG. 3 shows an air passage structure and the like created by the electrolyzed water spraying device 100. FIG. 4 is a cross-sectional view of the right side of the electrolyzed water spraying device 100 taken in the vertical direction, as viewed from the right side of the electrolyzed water spraying device 100. FIG. 4 shows a peripheral configuration regarding generation of electrolyzed water such as a tank member. FIG. 5 is a functional block diagram showing the functions of the electrolytic water spraying device 100 in blocks.
 図2~図5に示すように、本体ケース101内には、電解水生成部105と、給水部115と、散布部119と、風路108とが備えられている。電解水生成部105は、一対の電極117と、貯水部114を備えている。 As shown in FIGS. 2 to 5, the main body case 101 is provided with an electrolyzed water generating unit 105, a water supply unit 115, a spraying unit 119, and an air passage 108. The electrolyzed water generation unit 105 includes a pair of electrodes 117 and a water storage unit 114.
 図2、図3に示すように、貯水部114は、天面を開口した箱形状をしており、水を貯水できる構造となっている。貯水部114は、本体ケース101の下部に配置され、本体ケース101から水平方向にスライドして着脱可能となっており、開口104から取り出すことができる。貯水部114は、給水部115から供給される水を貯水する。 As shown in FIGS. 2 and 3, the water storage unit 114 has a box shape with an open top, and has a structure capable of storing water. The water storage unit 114 is arranged in the lower portion of the main body case 101, can be detached by sliding horizontally from the main body case 101, and can be taken out from the opening 104. The water storage unit 114 stores the water supplied from the water supply unit 115.
 図4に示す一対の電極117は、電極部材(図示せず)を備えており、この電極部材が貯水部114内の水に浸かるように設置される。一対の電極117は、この電極部材に通電することにより、貯水部114内の塩化物イオンを含む水を電気化学的に電気分解し、活性酸素種を含む電解水を生成させる。ここで、活性酸素種とは、通常の酸素よりも高い酸化活性を持つ酸素分子と、その関連物質のことである。活性酸素種は、例えば、スーパーオキシドアニオン、一重項酸素、ヒドロキシラジカル、或いは過酸化水素といった所謂狭義の活性酸素と、オゾン、次亜塩素酸(次亜ハロゲン酸)等といった所謂広義の活性酸素とを含む。 The pair of electrodes 117 shown in FIG. 4 includes an electrode member (not shown), and the electrode member is installed so as to be immersed in the water in the water storage unit 114. The pair of electrodes 117 electrochemically electrolyze the water containing chloride ions in the water storage section 114 by energizing the electrode members to generate electrolyzed water containing active oxygen species. Here, the active oxygen species are an oxygen molecule having a higher oxidation activity than normal oxygen and its related substances. The active oxygen species include, for example, so-called narrowly defined active oxygen such as superoxide anion, singlet oxygen, hydroxy radical, or hydrogen peroxide, and so-called broadly defined active oxygen such as ozone and hypochlorous acid (hypohalous acid). including.
 一対の電極117は、電極部材への電気分解するための通電を行う通電時間と、その通電停止後の時間、つまり通電を行っていない時間である非通電時間を一周期として、その一周期を複数回繰り返すことで、電解水を生成する。電極部材に対し、非通電時間を設けることで、電極部材の寿命を延ばすことができる。なお、非通電時間に対して通電時間を長くすれば、一周期当たりにおいてより多くの量の活性酸素種を含む電解水が生成される。また通電時間に対して非通電時間を長くすれば、一周期当たりの活性酸素種の生成が抑えられる。さらに、通電時間における電力量を大きくすれば、より多くの量の活性酸素種を含む電解水が生成される。 The pair of electrodes 117 has a period of energization for energizing the electrode members for electrolysis and a period of time after the energization is stopped, that is, a period of non-energization, which is a period of non-energization, as one period. Electrolyzed water is generated by repeating a plurality of times. By providing the electrode member with a non-energized time, the life of the electrode member can be extended. If the energization time is made longer than the non-energization time, electrolyzed water containing a larger amount of active oxygen species is generated per cycle. Further, if the non-energization time is made longer than the energization time, generation of active oxygen species per cycle can be suppressed. Further, if the amount of power during the energization time is increased, electrolyzed water containing a larger amount of active oxygen species is generated.
 電解促進錠剤投入部118は、図2に示すように、錠剤投入ケース118aと、錠剤投入ケース118a内に設けた錠剤投入部材(図示せず)と、錠剤投入ケース118aの上部に着脱自在に設けられた錠剤投入カバー118bとを備えている。錠剤投入ケース118aは、開口104から取り出し可能に構成される。ユーザは、取り出した錠剤投入ケース118aから錠剤投入カバー118bを外すことで、ユーザが錠剤投入ケース118a内に電解促進錠剤を装填できる。錠剤投入ケース118a内に装填された電解促進錠剤は、貯水部114へ投入されることになる。 As shown in FIG. 2, the electrolysis-promoting tablet charging section 118 is detachably provided on the tablet charging case 118a, a tablet charging member (not shown) provided in the tablet charging case 118a, and an upper portion of the tablet charging case 118a. The tablet loading cover 118b is provided. The tablet loading case 118a is configured to be removable from the opening 104. The user removes the tablet loading cover 118b from the taken-out tablet loading case 118a, so that the user can load the electrolytic promotion tablets into the tablet loading case 118a. The electrolysis-promoting tablets loaded in the tablet loading case 118a are loaded into the water storage unit 114.
 具体的には、電解促進錠剤投入部118は、電解促進錠剤を貯水部114へ投入する場合に、錠剤投入部材を回動させる。錠剤投入部材が回動すると、電解促進錠剤が錠剤投入ケース118aの底面の落下開口(図示せず)より貯水部114に落下する。電解促進錠剤投入部118は、錠剤投入ケース118aから貯水部114に落下した電解促進錠剤の個数をカウントし、錠剤投入ケース118aから貯水部114に電解促進錠剤が一錠落下したと判定すると、錠剤投入部材の回動を停止する。この電解促進錠剤が貯水部114内の水に溶け込むことにより、貯水部114内に塩化物イオンを含む水が生成される。なお、電解促進錠剤の一例は、塩化ナトリウムである。 Specifically, the electrolysis-promoting tablet feeding unit 118 rotates the tablet feeding member when feeding the electrolysis-promoting tablets to the water storage unit 114. When the tablet charging member rotates, the electrolysis promoting tablets drop into the water storage unit 114 through a drop opening (not shown) on the bottom surface of the tablet charging case 118a. The electrolysis-promoting tablet feeding unit 118 counts the number of electrolysis-promoting tablets that have dropped from the tablet feeding case 118a to the water storage unit 114, and if it is determined that one electrolysis-promoting tablet has dropped from the tablet feeding case 118a to the water storage unit 114, the tablet Stop the rotation of the dosing member. By dissolving the electrolysis-promoting tablets in the water in the water storage portion 114, water containing chloride ions is generated in the water storage portion 114. In addition, an example of the electrolysis promoting tablet is sodium chloride.
 なお、電解水散布装置100は、電解促進錠剤投入部118を有していなくてもよい。この場合は、電解水散布装置100が、ユーザに対して電解促進錠剤の投入を指示する報知を表示や発音によって行い、ユーザに電解促進錠剤を直接、貯水部114へ投入させるようにしてもよい。 Note that the electrolyzed water spraying device 100 does not have to have the electrolysis-promoting tablet charging unit 118. In this case, the electrolyzed water spraying device 100 may give a notification to the user to instruct the user to insert the electrolysis-promoting tablet by displaying or sounding, and may cause the user to directly put the electrolysis-promoting tablet into the water storage unit 114. ..
 また、電解水散布装置100は、図5に示すように、気体検知部120及び制御部130を備えている。 Further, the electrolytic water spraying device 100 includes a gas detection unit 120 and a control unit 130, as shown in FIG.
 気体検知部120は、一対の電極117で生成された電解水を含む気体を検知し、検知した気体に応じた出力値を出力する。なお、本実施形態では、気体検知部120が出力する出力値が電圧値である場合を例に説明する。気体検知部120の詳細については、図6A、図6Bを参照して後述する。 The gas detection unit 120 detects a gas containing electrolyzed water generated by the pair of electrodes 117 and outputs an output value according to the detected gas. In the present embodiment, the case where the output value output by the gas detection unit 120 is a voltage value will be described as an example. Details of the gas detection unit 120 will be described later with reference to FIGS. 6A and 6B.
 制御部130は、例えば、本体ケース101(図1参照)の天面に設けられた操作パネルの裏側に設けられ、電解水散布装置100の制御を行う。制御部130は、一対の電極117による水の電気分解を制御し、また電解促進錠剤投入部118による電解促進錠剤の投入を制御するものである。特に、制御部130は、気体判別部131を備え、気体検知部120により出力された検知気体の出力値に基づいて、気体判別部131を用いて検知気体の状態判別を行うものである。気体判別部131の詳細については、図6A、図6Bを参照して後述する。なお、制御部130の機能は、プロセッサ(図示せず)がメモリ(図示せず)に記憶されているプログラムを実行することで実現される。 The control unit 130 is provided, for example, on the back side of the operation panel provided on the top surface of the main body case 101 (see FIG. 1), and controls the electrolytic water spraying device 100. The control unit 130 controls the electrolysis of water by the pair of electrodes 117, and controls the charging of the electrolysis-promoting tablets by the electrolysis-promoting tablet charging unit 118. In particular, the control unit 130 includes a gas discriminating unit 131, and uses the gas discriminating unit 131 to discriminate the state of the detected gas based on the output value of the detected gas output by the gas detecting unit 120. Details of the gas discriminating unit 131 will be described later with reference to FIGS. 6A and 6B. The function of the control unit 130 is realized by a processor (not shown) executing a program stored in a memory (not shown).
 給水部115は、図2に示すように、本体ケース101内部の正面視右側の側面に設置され、貯水部114から着脱可能な構造となっており、開口104から取り出すことができる。給水部115は、貯水部114の底面に設けられたタンク保持部114aに装着されている。給水部115は、水を貯水するタンク115aと、タンク115aの開口(図示せず)に設けられた蓋115bとを備えている。蓋115bの中央には、開閉部(図示せず)が設けられており、この開閉部が開くと、タンク115a内の水が、貯水部114へ供給される。 As shown in FIG. 2, the water supply section 115 is installed inside the main body case 101 on the side surface on the right side in a front view, has a structure detachable from the water storage section 114, and can be taken out from the opening 104. The water supply unit 115 is attached to a tank holding unit 114 a provided on the bottom surface of the water storage unit 114. The water supply unit 115 includes a tank 115a for storing water, and a lid 115b provided at an opening (not shown) of the tank 115a. An opening/closing part (not shown) is provided at the center of the lid 115b, and when the opening/closing part is opened, the water in the tank 115a is supplied to the water storage part 114.
 具体的には、タンク115aの開口を下向きにして、タンク115aを貯水部114のタンク保持部114aに取り付けると、タンク保持部114aによって開閉部が開く。つまり、タンク115aに水を入れてタンク保持部114aに取り付けると、開閉部が開いて貯水部114に給水され、貯水部114内に水が溜まる。貯水部114内の水位が上昇して蓋115bのところまで到達すると、タンク115aの開口が水封されるので給水が停止し、タンク115aの内部には水が残り、貯水部114内の水位が下がった場合に都度、タンク115a内部の水が貯水部114に給水される。即ち、貯水部114内の水位は一定に保たれる。 Specifically, when the tank 115a is attached to the tank holding part 114a of the water storage part 114 with the opening of the tank 115a facing downward, the opening/closing part is opened by the tank holding part 114a. That is, when water is poured into the tank 115a and attached to the tank holding portion 114a, the opening/closing portion is opened and water is supplied to the water storage portion 114, and water is stored in the water storage portion 114. When the water level in the water storage unit 114 rises and reaches the position of the lid 115b, the water supply stops because the opening of the tank 115a is sealed with water, and the water remains in the tank 115a. Whenever the water falls, the water in the tank 115a is supplied to the water storage unit 114. That is, the water level in the water storage section 114 is kept constant.
 なお、電解水散布装置100は、給水部115としてタンク115aを有していなくてもよい。この場合は、電解水散布装置100に対して、水を供給するラインを水道よりひき、貯水部114内の水位が下がった場合に、貯水部114内の水位が所定位置に上昇するまで、水道水を供給するようにしてもよい。 Note that the electrolytic water spraying device 100 may not have the tank 115a as the water supply unit 115. In this case, a line for supplying water to the electrolyzed water spraying device 100 is drawn from the tap water, and when the water level in the water storage section 114 drops, the water level in the water storage section 114 rises to a predetermined position. Water may be supplied.
 図3に示すように、散布部119は、送風部107と、フィルター部116とを備える。送風部107は、本体ケース101の中央部に設けられ、モータ部109と、モータ部109により回転するファン部110と、それらを囲むスクロール形状のケーシング部111とを備えている。モータ部109は、ケーシング部111に固定されている。 As shown in FIG. 3, the spraying unit 119 includes a blower unit 107 and a filter unit 116. The blower unit 107 is provided in the center of the main body case 101, and includes a motor unit 109, a fan unit 110 rotated by the motor unit 109, and a scroll-shaped casing unit 111 surrounding them. The motor section 109 is fixed to the casing section 111.
 ファン部110は、シロッコファンであり、モータ部109から水平方向に延びた回転軸109aに固定され、モータ部109は、上述のようにケーシング部111に固定されている。モータ部109の回転軸109aは、本体ケース101の前面側から背面側に延びている。ケーシング部111は、ケーシング部111の本体ケース101における上面側に吐出口112を備え、ケーシング部111の本体ケース101における背面側に吸込口113を有している。 The fan unit 110 is a sirocco fan and is fixed to the rotating shaft 109a extending in the horizontal direction from the motor unit 109, and the motor unit 109 is fixed to the casing unit 111 as described above. The rotation shaft 109a of the motor unit 109 extends from the front surface side of the body case 101 to the back surface side. The casing portion 111 has a discharge port 112 on the upper surface side of the main body case 101 of the casing portion 111, and has a suction port 113 on the rear surface side of the main body case 101 of the casing portion 111.
 送風部107の風量は、ユーザの設定した風量に基づいて決定される。決定された風量に基づき、制御部130により、モータ部109の回転量が制御される。 The air volume of the blower unit 107 is determined based on the air volume set by the user. Based on the determined air volume, the control unit 130 controls the rotation amount of the motor unit 109.
 フィルター部116は、貯水部114に貯水された電解水と、送風部107によって本体ケース101内(即ち筐体内)に流入した室内空気とを接触させる部材である。フィルター部116は、円筒状に構成され、円周部分に空気が流通可能な孔を備えたフィルター116aを配置している。フィルター116aは、その一端が貯水部114の水に浸漬され、保水されるように、フィルター116aの中心軸を回転中心として貯水部114に回転自在に内蔵されている。そして、フィルター部116は、駆動部(図示しない)により回転され、電解水と室内空気を連続的に接触させる構造となっている。 The filter unit 116 is a member that brings the electrolyzed water stored in the water storage unit 114 into contact with the room air that has flowed into the main body case 101 (that is, inside the housing) by the blower unit 107. The filter portion 116 is formed in a cylindrical shape, and has a filter 116a provided with a hole through which air can flow in the circumferential portion. The filter 116a is rotatably built in the water storage unit 114 with the central axis of the filter 116a as the center of rotation so that one end of the filter 116a is immersed in the water of the water storage unit 114 to retain water. The filter unit 116 is rotated by a drive unit (not shown) so that the electrolyzed water and the room air are brought into continuous contact with each other.
 風路108は、吸気口102と吹出口106とを連通し、吸気口102から順に、フィルター部116、送風部107、吹出口106を備えている。モータ部109によってファン部110が回転すると、吸気口102から吸い込まれ風路108内に入った外部の空気は、順に、フィルター116a、送風部107、吹出口106を介して、電解水散布装置100の外部へ吹き出される。これにより、貯水部114にて生成された電解水が外部へ散布される。なお、電解水散布装置100は、必ずしも電解水そのものを撒くものでなくてもよく、結果的に生成した電解水由来(揮発を含む)の活性酸素種を散布するものであってもよい。 The air passage 108 connects the air inlet 102 and the air outlet 106, and is provided with a filter unit 116, a blower unit 107, and an air outlet 106 in order from the air inlet 102. When the fan unit 110 is rotated by the motor unit 109, the external air sucked from the intake port 102 and entering the air passage 108 is sequentially passed through the filter 116 a, the air blowing unit 107, and the air outlet 106, and then the electrolytic water spraying device 100. Is blown out of. Thereby, the electrolyzed water generated in the water storage unit 114 is sprayed to the outside. The electrolyzed water spraying device 100 does not necessarily have to spray the electrolyzed water itself, but may spray the active oxygen species derived from the electrolyzed water (including volatilization) generated as a result.
 図6A、図6Bを用いて、気体判別部131で検知気体を状態判別する方法について説明を行う。 A method for determining the state of the detected gas by the gas determination unit 131 will be described with reference to FIGS. 6A and 6B.
 図6Aは、気体判別部131の機能をブロックで示した機能ブロック図である。気体判別部131は、比較部132と演算部133により構成される。気体判別部131は、所定時間(例えば、1秒)毎に気体検知部120から出力されている検知気体に応じた出力値(電圧値)を取得する。演算部133は、ある時点において取得した気体検知部120の出力値とある時点よりも所定時間前に取得した気体検知部120の出力値との差分を計算することで出力値の変化量を取得する。演算部133は、この演算を所定時間毎に繰り返すことで、複数の変化量を取得する。即ち、演算部133は、各周期における出力値の変化量を算出することになる。 FIG. 6A is a functional block diagram showing the functions of the gas discriminating unit 131 in blocks. The gas discriminating unit 131 includes a comparing unit 132 and a calculating unit 133. The gas determination unit 131 acquires an output value (voltage value) corresponding to the detected gas output from the gas detection unit 120 every predetermined time (for example, 1 second). The calculation unit 133 acquires the change amount of the output value by calculating the difference between the output value of the gas detection unit 120 acquired at a certain time point and the output value of the gas detection unit 120 acquired a predetermined time before the certain time point. To do. The calculation unit 133 acquires a plurality of change amounts by repeating this calculation every predetermined time. That is, the calculation unit 133 calculates the amount of change in the output value in each cycle.
 比較部132は、演算部133で取得した気体検知部120の出力値の変化量と複数の閾値範囲との大きさを比較し、取得した変化量が複数の閾値範囲のうちのどの閾値範囲に含まれるかを演算し、その閾値範囲に含まれる変化量の個数を記録する。比較部132は、この演算と記録を所定時間毎に繰り返すことで、複数の閾値範囲それぞれに含まれる変化量の個数を記録する。 The comparison unit 132 compares the amount of change in the output value of the gas detection unit 120 acquired by the calculation unit 133 with the magnitudes of the plurality of threshold ranges, and the acquired amount of change corresponds to which threshold range of the plurality of threshold ranges. Whether or not it is included is calculated, and the number of change amounts included in the threshold range is recorded. The comparison unit 132 records the number of change amounts included in each of the plurality of threshold ranges by repeating this calculation and recording every predetermined time.
 さらに、演算部133は、比較部132で得られた複数の閾値範囲毎に含まれる変化量の個数に対し、複数の閾値範囲毎に対応して設定された加算値を加算する演算を行う。加算した結果を用いて検知気体の状態判別を行う。具体的な検知気体の状態判別方法については図7A~図9を用いて後述する。なお、複数の閾値範囲及び複数の閾値範囲毎に対応して設定された加算値は、メモリ(図示せず)に記憶されており、複数の閾値範囲それぞれに含まれる変化量の個数もこのメモリに記録される。 Further, the calculation unit 133 performs a calculation of adding the addition value set corresponding to each of the plurality of threshold ranges to the number of change amounts included in each of the plurality of threshold ranges obtained by the comparison unit 132. The state of the detected gas is determined using the added result. A specific method for determining the state of the detected gas will be described later with reference to FIGS. 7A to 9. The plurality of threshold ranges and the added value set corresponding to each of the plurality of threshold ranges are stored in a memory (not shown), and the number of change amounts included in each of the plurality of threshold ranges is also stored in the memory. Recorded in.
 気体検知部120は、例えば半導体式ガスセンサにより構成される。ガスセンサ素子は、金属酸化物材料と一体化されたヒーターで構成されている。センサに電源印加することで、金属酸化物材料がヒーターにより加熱状態となる。このガスセンサ素子では、検知可能な気体が金属酸化物材料に接触することで生じる抵抗値変化に基づいて、気体を検出する。例えば、清浄大気中では、金属酸化物材料表面が大気中の酸素の影響を受けて自由電子の移動が制限され、導電率が低下するために高い抵抗値を示している。この状態で検知可能な気体が金属酸化物材料表面に接触すると、金属酸化物材料表面の酸素が消費され、それまで制限されていた自由電子の動きが開放され、導電率が高くなるために低い抵抗値を示す。この抵抗値の違いを電圧出力などに変換して取得することで、検知対象となる気体の検知が可能となる。 The gas detector 120 is composed of, for example, a semiconductor gas sensor. The gas sensor element is composed of a heater integrated with a metal oxide material. By applying power to the sensor, the metal oxide material is heated by the heater. In this gas sensor element, the gas is detected based on the change in resistance value caused by the detectable gas coming into contact with the metal oxide material. For example, in a clean atmosphere, the surface of the metal oxide material is affected by oxygen in the atmosphere, the movement of free electrons is restricted, and the conductivity decreases, so that the resistance value is high. When a detectable gas comes into contact with the surface of the metal oxide material in this state, oxygen on the surface of the metal oxide material is consumed, the movement of free electrons, which had been limited up to that point, is released, and the conductivity becomes high, so that the temperature is low. Indicates the resistance value. By converting the difference in the resistance value into a voltage output and acquiring the difference, the gas to be detected can be detected.
 図6Bは、検知気体の状態判別処理を示すフローチャートである。 FIG. 6B is a flowchart showing the process of determining the state of the detected gas.
 気体判別部131は、まず、所定時間(例えば、1秒)毎に気体検知部120から出力される出力値(一例として電圧値)を所定の期間(例えば、1分)繰り返し取得する(ステップS11)。出力値の取得は、例えばアナログ/デジタル(A/D)コンバータなどを用いて行う。 The gas determination unit 131 first repeatedly obtains the output value (voltage value as an example) output from the gas detection unit 120 every predetermined time (for example, 1 second) for a predetermined period (for example, 1 minute) (step S11). ). The output value is acquired using, for example, an analog/digital (A/D) converter.
 演算部133は、ステップS11で取得したある時点における出力値とある時点よりも所定時間前に取得した出力値の差分を計算することで、気体検知部120の出力値の変化量を算出する。これを繰り返すことで、複数の変化量(所定時間毎の変化量)を算出する(ステップS12)。 The calculation unit 133 calculates the amount of change in the output value of the gas detection unit 120 by calculating the difference between the output value acquired at step S11 at a certain time point and the output value acquired a predetermined time before the certain time point. By repeating this, a plurality of change amounts (change amounts at predetermined time intervals) are calculated (step S12).
 次に、比較部132は、ステップS12で得られた複数の変化量それぞれについて、複数の閾値範囲と比較し、その変化量が含まれる閾値範囲の変化量の個数を記録する。これにより、複数の閾値範囲それぞれに含まれる変化量の個数が取得される(ステップS13)。 Next, the comparison unit 132 compares each of the plurality of changes obtained in step S12 with a plurality of threshold ranges, and records the number of changes in the threshold range that includes the changes. As a result, the number of change amounts included in each of the plurality of threshold ranges is acquired (step S13).
 演算部133は、ステップS13で得られた複数の閾値範囲それぞれに含まれる変化量の個数に対し、閾値範囲に対応した加算値を加算する(ステップS14)。最後に、演算部133は、算出された加算後の値に応じて検知気体の状態判別を行う(ステップS15)。 The calculation unit 133 adds an addition value corresponding to the threshold range to the number of change amounts included in each of the plurality of threshold ranges obtained in step S13 (step S14). Finally, the calculation unit 133 determines the state of the detected gas according to the calculated value after addition (step S15).
 なお、状態判別により得られる出力結果は、検知気体の種類や、検知気体の有無、検知気体の濃度などである。例えば、ステップS14で得られる演算部133が算出した値に対して、任意の閾値と比較することで、検知気体の種類や検知したい気体の有無を得ることができる。また、ステップS14で演算部133が加算する加算値として濃度と相関のある値を用いることで、濃度値を出力結果として得ることも可能である。 Note that the output results obtained by the state determination are the type of detection gas, the presence or absence of detection gas, the concentration of detection gas, etc. For example, by comparing the value calculated by the calculation unit 133 obtained in step S14 with an arbitrary threshold value, it is possible to obtain the type of gas to be detected and the presence/absence of gas to be detected. Further, it is possible to obtain the density value as an output result by using a value correlated with the density as the added value added by the calculation unit 133 in step S14.
 また、図6Bでは、演算部133は、ステップS11で所定時間毎に取得された複数の出力値を用いて、所定時間毎の出力値の変化量を算出し(ステップS12)、比較部132は、ステップS12で得られた複数の出力値の変化量それぞれについて、複数の閾値範囲と比較する(ステップS13)ものとして説明した。しかしながら、図6Bに示す検知気体の状態判別処理のフローチャートは一例である。例えば、ステップS11~S13の処理を以下のように変更し、変更したステップS11~S13の処理を所定時間毎に所定の期間(あるいは一定回数)繰り返し実行した後にステップS14、S15の処理を行うようにしてもよい。即ち、ステップS11を、気体検知部120から出力される出力値を1回だけ取得する処理に変更し、ステップS12を、変更後のステップS11で取得された出力値とそれよりも所定時間前に取得された出力値の差分を算出することで変化量を算出する処理に変更する。また、ステップS13を、変更後のステップS12で得られた変化量と複数の閾値範囲と比較する処理に変更する。そして、この変更後のステップS11~S13の処理を所定時間毎に所定の期間(例えば1分)あるいは一定回数(例えば60回)繰り返し実行することで、図6Bに示すステップS13の処理結果と同様に、複数の閾値範囲それぞれに含まれる変化量の個数が取得できる。 Further, in FIG. 6B, the calculation unit 133 calculates the amount of change in the output value for each predetermined time using the plurality of output values acquired for each predetermined time in Step S11 (Step S12), and the comparison unit 132 , The change amounts of the plurality of output values obtained in step S12 are compared with the plurality of threshold ranges (step S13). However, the flowchart of the state determination process of the detected gas illustrated in FIG. 6B is an example. For example, the processing of steps S11 to S13 is changed as follows, and the changed processing of steps S11 to S13 is repeatedly executed every predetermined time for a predetermined period (or a certain number of times), and then the processing of steps S14 and S15 is performed. You may That is, step S11 is changed to a process of acquiring the output value output from the gas detection unit 120 only once, and step S12 is changed to the output value acquired in step S11 after the change and a predetermined time before that. The difference between the acquired output values is calculated to change the processing to calculate the amount of change. Further, step S13 is changed to a process of comparing the change amount obtained in step S12 after the change with a plurality of threshold ranges. Then, by repeating the processing of steps S11 to S13 after this change for a predetermined period (for example, 1 minute) or a certain number of times (for example, 60 times) every predetermined time, the same as the processing result of step S13 shown in FIG. 6B is obtained. In addition, the number of change amounts included in each of the plurality of threshold ranges can be acquired.
 図7A~図9を用いて、具体的に検知気体を状態判別する方法について説明する。 A method for specifically determining the state of the detected gas will be described with reference to FIGS. 7A to 9.
 図7A~図7Cは電解水生成部105の一対の電極117に通電し、電気分解を行っているときの気体検知部120の出力値(電圧値)とその変化量の一例を示している。気体検知部120は、電解水生成部105の近傍などに配置され、電解水生成部105で生成された電解水による次亜塩素酸を含む気体を検知できる構成である。電解水生成部105を構成する一対の電極117は、貯水部114内に設置される。図7Aは、電解水生成部105の一対の電極117の通電状態と経過時間を示す図である。一対の電極117に電流を流すことで電気分解を行う。図7Bは、図7Aに示す一対の電極117の通電状態における気体検知部120の出力値を示す図である。図7Cは、図7Bに示す気体検知部の出力値を一定周期で取得したときの一周期前の出力値との変化量の一例を示す図である。電気分解が行われると、気体検知部120は電解水による次亜塩素酸を含む検知気体に応じて出力が変化する。所定時間毎に取得した気体検知部120の複数の出力値において、ある時点において取得した出力値とある時点よりも所定時間前に取得された出力値との差分である変化量を求める。この変化量を図7Cで示している。 7A to 7C show an example of the output value (voltage value) of the gas detection unit 120 and the amount of change thereof when the pair of electrodes 117 of the electrolyzed water generation unit 105 are energized to perform electrolysis. The gas detection unit 120 is arranged in the vicinity of the electrolyzed water generating unit 105 or the like and has a configuration capable of detecting a gas containing hypochlorous acid due to electrolyzed water generated by the electrolyzed water generating unit 105. The pair of electrodes 117 forming the electrolyzed water generating unit 105 are installed in the water storage unit 114. FIG. 7A is a diagram showing an energized state and elapsed time of the pair of electrodes 117 of the electrolyzed water producing unit 105. Electrolysis is performed by passing a current through the pair of electrodes 117. FIG. 7B is a diagram showing the output value of the gas detection unit 120 in the energized state of the pair of electrodes 117 shown in FIG. 7A. FIG. 7C is a diagram showing an example of an amount of change from the output value one cycle before when the output value of the gas detection unit shown in FIG. 7B is acquired in a constant cycle. When electrolysis is performed, the output of the gas detection unit 120 changes according to the detection gas containing hypochlorous acid produced by electrolyzed water. For a plurality of output values of the gas detection unit 120 acquired every predetermined time, a change amount that is a difference between an output value acquired at a certain time and an output value acquired a predetermined time before the certain time is obtained. This amount of change is shown in FIG. 7C.
 図8は、図7Aに示す電極通電中において特定条件で電気分解を行ったときの、演算部133で取得した気体検知部120の出力値の変化量の出現頻度を一例として示したものである。同じ電気分解の条件で長時間データを取得した結果を示しており、気体検知部120の出力値の変化量が取得したデータに対して何個発生したかを示している。この出現頻度の出力傾向は、電解水生成部105と気体検知部120の位置関係や、電気分解の生成条件が決まると、多少のばらつきはあるがある程度同様の傾向を示す。 FIG. 8 shows, as an example, the appearance frequency of the amount of change in the output value of the gas detection unit 120 acquired by the calculation unit 133 when electrolysis is performed under specific conditions while the electrodes are energized shown in FIG. 7A. .. The results of long-term data acquisition under the same electrolysis conditions are shown, and the number of changes in the output value of the gas detection unit 120 with respect to the acquired data is shown. The output tendency of the appearance frequency shows a similar tendency to some extent, although there is some variation when the positional relationship between the electrolyzed water production unit 105 and the gas detection unit 120 and the electrolysis production condition are determined.
 図9は、複数の閾値範囲と複数の閾値範囲に応じた加算値の一例を示す図である。図8、図9に示すように、変化量に対する複数の閾値範囲を次のように設定する。閾値範囲d2は、変化量が-0.05Vより小さい領域を示す。閾値範囲c2は、変化量が-0.05V以上で-0.02Vより小さい領域を示す。閾値範囲b2は、変化量が-0.02V以上で-0.01Vより小さい領域を示す。閾値範囲a2は、変化量が-0.01V以上で0Vより小さい領域を示す。閾値範囲a1は、変化量が0V以上で+0.01Vより小さい領域を示す。閾値範囲b1は、変化量が+0.01V以上で+0.02Vより小さい領域を示す。閾値範囲c1は、変化量が+0.02V以上で+0.05Vより小さい領域を示す。閾値範囲d1は、変化量が+0.05V以上の領域を示す。 FIG. 9 is a diagram showing an example of a plurality of threshold ranges and an added value according to the plurality of threshold ranges. As shown in FIGS. 8 and 9, a plurality of threshold ranges with respect to the amount of change are set as follows. The threshold range d2 indicates a region in which the amount of change is smaller than −0.05V. The threshold range c2 indicates a region in which the amount of change is −0.05 V or more and less than −0.02 V. The threshold range b2 indicates a region in which the amount of change is −0.02V or more and less than −0.01V. The threshold range a2 indicates a region in which the amount of change is −0.01 V or more and less than 0 V. The threshold range a1 indicates a region in which the amount of change is 0 V or more and less than +0.01 V. The threshold range b1 indicates a region in which the amount of change is +0.01 V or more and less than +0.02 V. The threshold range c1 indicates a region in which the amount of change is +0.02V or more and less than +0.05V. The threshold range d1 indicates a region in which the amount of change is +0.05 V or more.
 図8では、閾値範囲b1と閾値範囲b2と閾値範囲c2の出現頻度が大きい。閾値範囲の出現頻度のピークは、電解水生成部105で生成された電解水による次亜塩素酸を含む検知気体で気体検知部120の出力値が変化することで、閾値範囲b1のピークが大きくなることが実験的に確認されている。電解水生成部105と気体検知部120の設置位置や、電気分解の生成条件などにより、特定の閾値範囲の出現頻度が大きくなる。なお、検知気体の種類や濃度などが変化すると、気体検知部120の出力変化の傾向が変わる。例えば、半導体式ガスセンサで考えると、金属酸化物表面の酸素の消費が、発生する気体の種類や濃度により異なる。このように、演算部133で算出した気体検知部120の変化量の出現頻度の差異に基づいて、検知気体の種類や濃度などの検出が可能となる。 In FIG. 8, the frequency of appearance of the threshold range b1, the threshold range b2, and the threshold range c2 is high. The peak of the appearance frequency in the threshold range is large in the threshold range b1 because the output value of the gas detection unit 120 changes with the detection gas containing hypochlorous acid generated by the electrolyzed water generated by the electrolyzed water generation unit 105. It has been confirmed experimentally that The appearance frequency of the specific threshold range increases depending on the installation positions of the electrolyzed water production unit 105 and the gas detection unit 120, the electrolysis production conditions, and the like. If the type or concentration of the detected gas changes, the output change tendency of the gas detection unit 120 changes. For example, in the case of a semiconductor gas sensor, the oxygen consumption on the surface of the metal oxide differs depending on the type and concentration of the generated gas. In this way, it is possible to detect the type and concentration of the detected gas based on the difference in the appearance frequency of the amount of change of the gas detection unit 120 calculated by the calculation unit 133.
 電解水生成部105で生成された電解水による次亜塩素酸を含む検知気体による出力値の変化量は、上述したように、閾値範囲b1で示す出現頻度のピークを示す。一例であるが、演算部133では、この傾向に基づいて図9で示す加算値を用いて演算を行う。複数の閾値範囲毎に対応して加算値を設定している。即ち、演算部133が算出した気体検知部120の変化量が閾値範囲b1のときに、10を加算値として加算する。また、演算部133が算出した気体検知部120の変化量が閾値範囲b1以外のときは、電解水生成部105で生成された電解水による次亜塩素酸を含まないので、-1の加算値を加算する。このように、演算部133が算出した変化量と閾値範囲に対応した加算値を加算することで、電解水生成部105で生成された電解水による次亜塩素酸の濃度を精度よく検出し、検知気体の識別が可能となる。 The amount of change in the output value due to the detection gas containing hypochlorous acid due to the electrolyzed water generated by the electrolyzed water generation unit 105 shows the peak of the appearance frequency shown in the threshold range b1, as described above. As an example, the calculation unit 133 calculates based on this tendency using the added value shown in FIG. 9. The added value is set corresponding to each of a plurality of threshold ranges. That is, when the change amount of the gas detection unit 120 calculated by the calculation unit 133 is in the threshold range b1, 10 is added as the additional value. Further, when the amount of change of the gas detection unit 120 calculated by the calculation unit 133 is outside the threshold range b1, it does not include hypochlorous acid due to the electrolyzed water generated by the electrolyzed water generation unit 105, and therefore the addition value of -1. Is added. In this way, by adding the change amount calculated by the calculation unit 133 and the added value corresponding to the threshold range, the concentration of hypochlorous acid in the electrolyzed water generated by the electrolyzed water generation unit 105 is accurately detected, It is possible to identify the detected gas.
 上述したように、設置位置や生成条件などが決まると出現頻度の傾向が同等になる。よって、電解水生成部105で生成された電解水による次亜塩素酸を含む検知気体の変化量に対して、加算値を大きくすることで、次亜塩素酸の濃度を検出する精度を向上させている。 As mentioned above, when the installation position and generation conditions are decided, the tendency of the appearance frequency becomes equal. Therefore, the accuracy of detecting the concentration of hypochlorous acid is improved by increasing the added value with respect to the amount of change in the detection gas containing hypochlorous acid generated by the electrolyzed water generation unit 105. ing.
 また、電解水生成部105で生成された電解水による次亜塩素酸の濃度が高い場合は、閾値範囲b1の範囲に変化する変化量の個数が増えるために、演算部133が演算した加算後の値がさらに大きくなる。一方、検知気体の種類が変わると出現頻度の傾向が変わり、演算部133が演算した加算後の値は小さくなる。即ち、この演算部133が演算した加算後の値の大きさにより、検知気体の状態判別が可能となる。また、演算部133が演算した加算後の値を特定の比較閾値と比較し、特定の閾値以上の場合に、検知対象とする気体が存在すると判別できる。また、検知対象とする気体の濃度を別途計測器などで計測し、濃度と相関のある加算値を用いることで濃度値に換算することも可能である。 Further, when the concentration of hypochlorous acid in the electrolyzed water generated by the electrolyzed water generation unit 105 is high, the number of changes that change to the range of the threshold range b1 increases. The value of becomes even larger. On the other hand, when the type of the detected gas changes, the tendency of the appearance frequency changes, and the value after addition calculated by the calculation unit 133 becomes small. That is, the state of the detected gas can be discriminated by the magnitude of the value after the addition calculated by the calculation unit 133. Further, the value after addition calculated by the calculation unit 133 is compared with a specific comparison threshold value, and when it is equal to or larger than the specific threshold value, it can be determined that the gas to be detected exists. It is also possible to measure the concentration of the gas to be detected by a separate measuring device or the like and convert it into the concentration value by using the added value correlated with the concentration.
 なお、上記の説明では、閾値範囲の領域が8個の場合で説明したが、複数の閾値範囲の電圧範囲をより狭く設定し、より多くの閾値範囲を用いた判別を行ってもよい。電解水生成部105で生成された電解水を含む検知気体による出現頻度の傾向に対して、より細かく加算値を設定するため、検知対象とする気体を精度良く検知できる。 Note that, in the above description, the case where there are eight threshold value ranges has been described, but it is also possible to set the voltage ranges of a plurality of threshold values to be narrower and to make a determination using more threshold values. Since the addition value is set more finely with respect to the tendency of the appearance frequency of the detection gas containing the electrolyzed water generated by the electrolyzed water generation unit 105, the gas to be detected can be detected with high accuracy.
 なお、使用環境のニオイレベルに応じた制御のために、気体検知部120を共用してもよい。ここで示すニオイとは、例えばタバコの煙によるニオイなどを想定している。この場合は、気体検知部120は、環境のニオイ成分を検知可能な位置に配置される必要がある。例えば、風路108などに配置することで実現できる。気体検知部120を用いて、電解水生成部105で生成した電解水を含む気体を検知しつつ、使用環境のニオイレベルを判定し、ニオイレベルに応じた電解水散布装置100の制御を行う。 Note that the gas detection unit 120 may be shared for control according to the odor level of the usage environment. The odor shown here is assumed to be, for example, odor caused by cigarette smoke. In this case, the gas detection unit 120 needs to be arranged at a position where the odor component of the environment can be detected. For example, it can be realized by arranging in the air passage 108 or the like. The gas detection unit 120 is used to detect the gas containing the electrolyzed water generated by the electrolyzed water generation unit 105, determine the odor level of the usage environment, and control the electrolyzed water spraying device 100 according to the odor level.
 図10A~図10Dは、図7A~7Cの状態に加えて使用環境にニオイ発生がある場合の気体検知部120の出力の一例を示している。図10Aは、電解水生成部105の一対の電極117の通電状態と経過時間を示す図である。電解水生成部105の一対の電極117に通電することで電気分解を行う。図10Bは、使用環境のニオイ発生の状態と経過時間を示す図である。図10Cは、図10Aに示す一対の電極117の通電状態及び図10Bに示すニオイの発生状態における気体検知部120の出力値を示す図である。図10Dは、図10Cに示す通電状態とニオイ発生状態における気体検知部の出力値の一例を示す図である。電解水生成部105で生成された電解水を含む検知気体に応じて変化した気体検知部120の出力値と、ニオイ発生による出力値が重畳して出力されている。使用環境にニオイが発生すると、ニオイが空間に拡散し、空間内で時間経過に伴い濃度が均一になる。このため、図10Cで示すようにニオイ発生後に、気体検知部120はある程度安定した出力値を示す。ここで、一対の電極117が通電状態になると、電解水生成部105で生成された電解水を含む検知気体により、気体検知部120の出力が急峻な変化をする。さらに、一対の電極117が非通電状態になると気体検知部120の出力値がニオイ発生時の出力レベルに戻り、ニオイ発生がなくなることで、図7Bと同等の出力値に戻る出力傾向を示す。図10Dは、所定時間毎に取得した気体検知部120の複数の出力値において、ある時点において取得した出力値とある時点よりも所定時間前に取得された出力値との差分である変化量を示している。 10A to 10D show an example of the output of the gas detection unit 120 in the case where odor is generated in the usage environment in addition to the states of FIGS. 7A to 7C. FIG. 10A is a diagram showing an energized state and elapsed time of the pair of electrodes 117 of the electrolyzed water producing unit 105. Electrolysis is performed by energizing the pair of electrodes 117 of the electrolyzed water producing unit 105. FIG. 10B is a diagram showing a state of occurrence of odor in the usage environment and elapsed time. FIG. 10C is a diagram showing the output value of the gas detection unit 120 in the energized state of the pair of electrodes 117 shown in FIG. 10A and the odor generation state shown in FIG. 10B. FIG. 10D is a diagram showing an example of output values of the gas detection unit in the energized state and the odor generating state shown in FIG. 10C. The output value of the gas detection unit 120 changed according to the detection gas containing the electrolyzed water generated by the electrolyzed water generation unit 105 and the output value due to the odor generation are superimposed and output. When the odor is generated in the environment of use, the odor diffuses into the space, and the concentration becomes uniform over time in the space. For this reason, as shown in FIG. 10C, after the odor is generated, the gas detection unit 120 shows a stable output value to some extent. Here, when the pair of electrodes 117 are energized, the output of the gas detection unit 120 makes a sharp change due to the detection gas containing the electrolyzed water generated by the electrolyzed water generation unit 105. Further, when the pair of electrodes 117 is in the non-energized state, the output value of the gas detection unit 120 returns to the output level when the odor is generated, and the odor is eliminated, so that the output value tends to return to the output value equivalent to that in FIG. 7B. FIG. 10D shows a change amount that is a difference between an output value acquired at a certain time point and an output value acquired a predetermined time period before a certain time point in a plurality of output values of the gas detection unit 120 acquired at every predetermined time period. Shows.
 図10Dと図7Cを比較すると、気体検知部120の変化量は使用環境のニオイの有無によらず同等の出力傾向を示している。つまり、ニオイ発生に関わらず電解水生成部105で生成された電解水を含む気体を検知できる。言い換えると、使用環境のニオイ判定を、気体検知部120を用いて行うことが可能である。使用環境のニオイ判定において、一対の電極117が通電状態である場合の気体検知部120の急峻な出力変化はニオイ判定の検知精度低下に繋がる。そのため、例えば、一対の電極117が通電状態である場合の気体検知部120の出力を除いて判定するなどの処理を行う。これにより、電解水生成部105で生成された電解水を含む検知気体の影響を低減し、使用環境のニオイレベルの判定が可能となる。このニオイレベル判定の結果に基づき、制御部130で電解水生成部105の一対の電極117への投入電力や、送風部107の風量などを制御する。気体検知部120で、電解水生成部105で生成した電解水を含む気体の検知と、使用環境のニオイレベル判定を行う。これにより、使用環境のニオイレベルに応じた電解水散布装置100の制御を、追加のセンサを設けることなく、コストアップを抑えつつ実現することができる。 Comparing FIG. 10D and FIG. 7C, the change amount of the gas detection unit 120 shows the same output tendency regardless of the presence or absence of odor in the use environment. That is, the gas containing the electrolyzed water generated by the electrolyzed water generating unit 105 can be detected regardless of the odor generation. In other words, the odor of the usage environment can be determined using the gas detection unit 120. In the odor determination of the usage environment, the sharp output change of the gas detection unit 120 when the pair of electrodes 117 is in the energized state leads to a reduction in the detection accuracy of the odor determination. Therefore, for example, processing such as determination is performed excluding the output of the gas detection unit 120 when the pair of electrodes 117 is in the energized state. As a result, the influence of the detection gas containing the electrolyzed water generated by the electrolyzed water generation unit 105 can be reduced, and the odor level of the use environment can be determined. Based on the result of the odor level determination, the control unit 130 controls the input power to the pair of electrodes 117 of the electrolyzed water generating unit 105, the air volume of the air blowing unit 107, and the like. The gas detection unit 120 detects the gas containing the electrolyzed water generated by the electrolyzed water generation unit 105 and determines the odor level of the usage environment. As a result, the control of the electrolytic water spraying device 100 according to the odor level of the use environment can be realized without providing an additional sensor while suppressing an increase in cost.
 なお、複数の閾値範囲はユーザ操作などで変更可能としてもよい。例えば、気体検知部120が寿命などで感度劣化すると、気体検知部120の出力値の変化量が小さくなる。気体検知部120の感度劣化に対して、閾値範囲を調整することで、感度調整が可能となる。気体検知部120の製造ばらつきや寿命劣化、使用環境の違いによる影響など、実際の使用環境に適した設定が可能となる。感度設定の方法は、本体ケース101の天面に設けられた操作パネルに感度設定用のスイッチを設け、ユーザが操作することで設定できるようにしてもよい。また、設定値は実験的に決めた複数の固定値を設定してもよいし、任意の値を設定できるようにしてもよい。 Note that multiple threshold ranges may be changeable by user operation. For example, when the gas detection unit 120 has deteriorated in sensitivity due to life etc., the amount of change in the output value of the gas detection unit 120 becomes small. The sensitivity can be adjusted by adjusting the threshold range with respect to the sensitivity deterioration of the gas detection unit 120. It is possible to make settings suitable for the actual use environment, such as variations in manufacturing of the gas detection unit 120, deterioration of the service life, and effects due to differences in the use environment. The sensitivity setting method may be configured such that a sensitivity setting switch is provided on the operation panel provided on the top surface of the main body case 101 and the user operates the switch. Further, as the set value, a plurality of fixed values determined experimentally may be set, or an arbitrary value may be set.
 なお、上述の説明では、演算部133は、所定時間毎に取得された気体検知部120の出力値から変化量を求め、複数の閾値範囲毎に設定された加算値に基づいて検知気体の状態判別を行ったが、これに限られない。即ち、この状態判別結果を所定時間毎に取得して、最終的な検知気体の状態判別結果を算出してもよい。検知気体の状態判別結果を所定時間毎に取得して平均化処理することで、判別結果のばらつきが抑制できるため、判別精度を向上させることが可能となる。 In the above description, the calculation unit 133 obtains the amount of change from the output value of the gas detection unit 120 acquired every predetermined time, and the state of the detected gas is calculated based on the added value set for each of the plurality of threshold ranges. Although the determination is made, it is not limited to this. That is, this state determination result may be acquired every predetermined time, and the final detection gas state determination result may be calculated. By obtaining the state determination result of the detected gas at every predetermined time and performing the averaging process, it is possible to suppress the variation of the determination result, and thus it is possible to improve the determination accuracy.
 また、平均処理の方法として、移動平均処理を用いることで、時間経過に対応した検知気体の状態判別結果の出力が可能である。移動平均処理は、例えば、平均化するデータ数が5個の場合、取得したデータを含む過去5個のデータを用いて平均化する処理で、過去からのデータ変化の傾向を表す出力が得られるものである。電解水生成部105で生成された電解水を含む気体を検知する場合は、電解水の状態が時間経過に対してある程度緩やかな変化であるため、移動平均処理によって電解水の状態変化を適切に判別できる。単純な平均化処理では所定時間毎のデータを用いた状態判別のため、周囲環境の影響を受けて平均化処理を行う際に使用するデータに依存して急峻な変化が発生してしまう。移動平均化処理により、周囲環境の影響を抑えて、電解水生成部105で生成された電解水を含む検知気体の状態判別が可能となる。 Also, by using moving average processing as the averaging method, it is possible to output the result of state determination of the detected gas corresponding to the passage of time. In the moving average processing, for example, when the number of data to be averaged is 5, the processing is performed by averaging the past 5 data including the acquired data, and an output showing the tendency of data change from the past is obtained. It is a thing. When the gas containing the electrolyzed water generated by the electrolyzed water generation unit 105 is detected, the state of the electrolyzed water changes moderately with time, so that the moving average process appropriately changes the state of the electrolyzed water. Can be determined. In the simple averaging process, since the state determination is performed using the data for each predetermined time, a sharp change occurs depending on the data used when performing the averaging process under the influence of the surrounding environment. By the moving averaging process, the state of the detection gas containing the electrolyzed water generated by the electrolyzed water generation unit 105 can be discriminated while suppressing the influence of the surrounding environment.
 なお、上述の説明では気体判別部131で所定時間毎に取得された気体検知部120の出力値から変化量を求め、複数の閾値範囲毎に設定された加算値に基づいて検知気体の状態判別を行ったが、気体検知部120の出力値や、変化量から検知気体の状態判別を行ってもよい。上述したように、気体検知部120の出力値は、検知対象の気体により変化する。即ち、気体検知部120の出力値や変化量は検知気体の種類や濃度などに応じた変化をすることになる。つまり、この出力値や変化量に対して、特定の閾値と比較して検知対象の気体の存在の可能性を判別することが可能である。 In the above description, the amount of change is obtained from the output value of the gas detection unit 120 acquired by the gas determination unit 131 every predetermined time, and the state of the detected gas is determined based on the added value set for each of the plurality of threshold ranges. However, the state of the detected gas may be determined from the output value of the gas detection unit 120 or the amount of change. As described above, the output value of the gas detection unit 120 changes depending on the gas to be detected. That is, the output value and the amount of change of the gas detection unit 120 change according to the type and concentration of the detected gas. That is, it is possible to determine the possibility of the presence of the gas to be detected by comparing the output value and the change amount with a specific threshold value.
 以上の通り、電解水散布装置100では、気体検知部120による検知対象の気体の出力値の変化量と予め定められた複数の閾値範囲とを比較することで、検知対象の気体の状態判別を高い精度で実現できる。 As described above, in the electrolyzed water spraying apparatus 100, the state of the gas to be detected is determined by comparing the amount of change in the output value of the gas to be detected by the gas detection unit 120 with a plurality of predetermined threshold ranges. It can be realized with high accuracy.
 以上、第1実施形態に基づき本開示を説明したが、本開示は上記第1実施形態に何ら限定されるものではなく、本開示の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、上記第1実施形態で挙げた数値は一例であり、他の数値を採用することは当然可能である。 Although the present disclosure has been described based on the first embodiment, the present disclosure is not limited to the first embodiment, and various improvements and modifications can be made without departing from the spirit of the present disclosure. This can be easily guessed. For example, the numerical values described in the first embodiment are examples, and it is naturally possible to adopt other numerical values.
 (第2実施形態)
 空気中の細菌、真菌、ウイルス、臭い等の除去を行うために、電気分解により次亜塩素酸を含む電解水を生成して散布する電解水散布装置が知られている。
(Second embodiment)
2. Description of the Related Art An electrolyzed water spraying device is known that electrolyzes electrolyzed water to generate and spray electrolyzed water containing hypochlorous acid in order to remove bacteria, fungi, viruses, odors, etc. in the air.
 従来、電解水散布装置における次亜塩素酸の生成量の検出方法として、電気化学的方法を用いて溶液濃度を検出する方法などが知られている(特許文献1)。また、複数のガスセンサの出力傾向を利用して気体の種類や濃度を検知する技術も知られている(特許文献2)。 Conventionally, as a method of detecting the amount of hypochlorous acid produced in an electrolyzed water spraying device, a method of detecting a solution concentration using an electrochemical method is known (Patent Document 1). There is also known a technique of detecting the type and concentration of gas by utilizing the output tendency of a plurality of gas sensors (Patent Document 2).
 しかしながら、特許文献1に記載された検出方法は、溶液濃度の検出用の電極などを使用する必要があるため、コストアップするおそれがある。また、電気化学的方法を用いて検出する場合、電極の定期的な洗浄などが必要となり、検知精度の維持が難しいといった課題もある。さらに、特許文献2に記載された検出方法では、複数個のガスセンサを使用する必要があるため、コストアップするおそれがある。即ち、従来の方法により、生成した次亜塩素酸等の気体の状態(例えば濃度)を判別する場合、比較的煩雑でコストがかかるという問題がある。 However, since the detection method described in Patent Document 1 requires the use of an electrode for detecting the solution concentration, there is a risk that the cost will increase. Further, in the case of detection using an electrochemical method, it is necessary to regularly wash the electrodes, which makes it difficult to maintain detection accuracy. Further, in the detection method described in Patent Document 2, it is necessary to use a plurality of gas sensors, which may increase the cost. That is, when the state (eg, concentration) of the generated gas such as hypochlorous acid is determined by the conventional method, there is a problem that it is relatively complicated and costly.
 本開示は、例えば、次亜塩素酸等の気体の生成の有無や生成した次亜塩素酸等の気体の生成量といった検知気体の状態を比較的簡易かつ安価に判別できる電解水散布装置を提供することを目的とする。 The present disclosure provides, for example, an electrolyzed water spraying device capable of relatively easily and inexpensively determining the state of a detected gas such as the presence or absence of gas such as hypochlorous acid and the amount of gas such as hypochlorous acid generated. The purpose is to do.
 この目的を達成するために、本開示の電解水散布装置は、以下を特徴とするものである。即ち、本開示の電解水散布装置は、電解水生成部と、送風部と、制御部と、気体検知部とを備える。電解水生成部は、一対の電極によって電解水を生成する。送風部は、電解水生成部が生成した電解水を、吸気口から筐体内に吸い込んだ空気に接触させて吹出口から送風する。制御部は、電解水生成部の一対の電極に通電させる電力量及び送風部の風量を制御する。気体検知部は、電解水生成部で生成された電解水を含んだ気体を検知する。また、気体検知部は、気体検知部によって検知された検知気体に応じた出力値を出力する。また、制御部は、気体検知部から出力された出力値を一定の周期で所定の期間繰り返し取得し、各周期における出力値の変化量を算出し、各周期における変化量それぞれについて、変化量と複数の所定の範囲とを比較し、所定の範囲毎の変化量の出現数である積算値を算出し、算出した所定の範囲毎の積算値の情報に基づいて、検知気体の状態を判別する。 In order to achieve this object, the electrolytic water spraying device of the present disclosure has the following features. That is, the electrolyzed water spraying device of the present disclosure includes an electrolyzed water generation unit, a blower unit, a control unit, and a gas detection unit. The electrolyzed water production unit produces electrolyzed water by a pair of electrodes. The blower unit causes the electrolyzed water generated by the electrolyzed water generation unit to come into contact with the air sucked into the housing through the air inlet and blows the air through the air outlet. The control unit controls the amount of electric power supplied to the pair of electrodes of the electrolyzed water producing unit and the amount of air from the blower unit. The gas detection unit detects the gas containing the electrolyzed water generated by the electrolyzed water generation unit. Further, the gas detection unit outputs an output value according to the detected gas detected by the gas detection unit. Further, the control unit repeatedly acquires the output value output from the gas detection unit in a predetermined cycle for a predetermined period, calculates the change amount of the output value in each cycle, and the change amount for each change amount in each cycle. A plurality of predetermined ranges are compared, an integrated value that is the number of appearances of the amount of change in each predetermined range is calculated, and the state of the detected gas is determined based on the information of the calculated integrated value for each predetermined range. ..
 本開示の電解水散布装置によれば、電解水生成部で生成された電解水を含んだ気体を検知する気体検知部の出力値の変化量の出現頻度である積算値を所定の範囲毎に算出し、算出した積算値の情報に基づいて、検知気体の状態判別を行う。これにより、例えば、次亜塩素酸等の生成の有無や、生成した次亜塩素酸等の生成量といった検知気体の状態を比較的簡易かつ安価に判別することができるという効果を備えている。 According to the electrolyzed water spraying device of the present disclosure, the integrated value, which is the appearance frequency of the amount of change in the output value of the gas detection unit that detects the gas containing the electrolyzed water generated in the electrolyzed water generation unit, for each predetermined range. The state of the detected gas is determined based on the calculated and integrated value information. As a result, for example, the presence or absence of the formation of hypochlorous acid or the like and the state of the detected gas such as the amount of the generated hypochlorous acid or the like can be determined relatively easily and inexpensively.
 本開示に係る電解水散布装置は、一対の電極によって電解水を生成する電解水生成部と、電解水生成部が生成した電解水を、吸気口から筐体内に吸い込んだ空気に接触させて吹出口から送風する送風部と、電解水生成部の一対の電極に通電させる電力量及び送風部の風量を制御する制御部と、電解水生成部で生成された電解水を含んだ気体を検知する気体検知部と、を備えた電解水散布装置であって、気体検知部は、気体検知部によって検知された検知気体に応じた出力値を出力し、制御部は、気体検知部から出力された出力値を一定の周期で所定の期間繰り返し取得し、各周期における出力値の変化量を算出し、各周期における変化量それぞれについて、変化量と複数の所定の範囲とを比較し、所定の範囲毎の変化量の出現数である積算値を算出し、算出した所定の範囲毎の積算値の情報に基づいて、検知気体の状態を判別する。 The electrolyzed water spraying device according to the present disclosure includes an electrolyzed water generation unit that generates electrolyzed water by a pair of electrodes, and the electrolyzed water generated by the electrolyzed water generation unit, which is brought into contact with air sucked into the housing through an intake port and blows the water. An air blower that blows air from the outlet, a controller that controls the amount of electric power that is applied to the pair of electrodes of the electrolyzed water generator and the air volume of the air blower, and detects the gas that contains the electrolyzed water generated by the electrolyzed water generator A gas detection unit, comprising: an electrolyzed water spraying device, wherein the gas detection unit outputs an output value corresponding to the detected gas detected by the gas detection unit, and the control unit outputs the output from the gas detection unit. The output value is repeatedly acquired in a fixed cycle for a predetermined period, the change amount of the output value in each cycle is calculated, and for each change amount in each cycle, the change amount is compared with a plurality of predetermined ranges, and the predetermined range is determined. An integrated value, which is the number of appearances of the amount of change for each, is calculated, and the state of the detected gas is determined based on the information on the calculated integrated value for each predetermined range.
 これにより、本電解水散布装置は、活性酸素種を含んだ気体と活性酸素種が発生する際の副生成物である副次気体との両方を含む検知気体の出力値を用いて算出した複数の所定の範囲毎の積算値の情報に基づいて検知気体の状態を判別し得る。即ち、複数の所定の範囲毎の積算値の情報を用いることで、気体検知部の出力値が活性酸素種を含んだ気体と似た傾向を示す別の気体を、活性酸素種を含んだ気体と誤判別してしまうことを抑制できる。また、活性酸素種を含んだ気体が低濃度で判別精度が低くなる場合においても、活性酸素種と副次気体との両方の出力を考慮することでより正確に活性酸素種が生成しているかを判別することができる。 Thereby, the present electrolyzed water sprinkling apparatus, a plurality of calculated using the output value of the detection gas containing both the gas containing the active oxygen species and the by-product gas which is a by-product when the active oxygen species are generated. It is possible to determine the state of the detected gas based on the information of the integrated value for each predetermined range. That is, by using the information of the integrated value for each of a plurality of predetermined ranges, another gas whose output value of the gas detection section shows a tendency similar to that of the gas containing the active oxygen species is separated from the gas containing the active oxygen species. It is possible to prevent erroneous determination as Even if the gas containing active oxygen species has a low concentration and the discrimination accuracy is low, whether the active oxygen species are generated more accurately by considering the outputs of both the active oxygen species and the secondary gas. Can be determined.
 また、制御部は、所定の範囲毎の変化量の積算値の比率に基づいて、検知気体内における特定の気体の生成を判別するという構成にしてもよい。 Also, the control unit may be configured to determine the generation of a specific gas in the detected gas based on the ratio of the integrated value of the amount of change for each predetermined range.
 これにより、本電解水散布装置は、活性酸素種を含んだ気体と活性酸素種が発生する際の副生成物である副次気体との両方を含む検知気体の出力値を用いて算出した複数の所定の範囲毎の積算値の比率に基づいてより正確に活性酸素種の生成を判別し得る。即ち、複数の所定の範囲毎の積算値の比率を用いることで、気体検知部の出力値が活性酸素種を含んだ気体と似た傾向を示す別の気体を、活性酸素種を含んだ気体と誤判別してしまうことを抑制できる。また、活性酸素種を含んだ気体が低濃度で判別精度が低くなる場合においても、活性酸素種と副次気体の両方の出力を考慮して判別することでより正確に活性酸素種の生成を判別することができる。 Thereby, the present electrolyzed water sprinkling apparatus, a plurality of calculated using the output value of the detection gas containing both the gas containing the active oxygen species and the by-product gas which is a by-product when the active oxygen species are generated. It is possible to more accurately determine the generation of the active oxygen species based on the ratio of the integrated value for each predetermined range. That is, by using the ratio of the integrated value for each of a plurality of predetermined ranges, another gas whose output value of the gas detection section shows a tendency similar to that of the gas containing the active oxygen species is separated from the gas containing the active oxygen species. It is possible to prevent erroneous determination as Even when the gas containing active oxygen species has a low concentration and the discrimination accuracy is low, the generation of active oxygen species can be more accurately performed by discriminating by considering the outputs of both the active oxygen species and the secondary gas. Can be determined.
 また、制御部は、所定の範囲毎の変化量の積算値に基づいて、検知気体内における特定の気体の濃度を判別するという構成にしてもよい。 The control unit may be configured to determine the concentration of a specific gas in the detected gas based on the integrated value of the amount of change for each predetermined range.
 これにより、活性酸素種を含んだ気体と活性酸素種が発生する際の副生成物である副次気体との両方を含む検知気体の出力値を用いて算出した複数の所定の範囲毎の積算値に基づいてより正確に活性酸素種の濃度(発生量)を判別し得る。 As a result, the integration for each of a plurality of predetermined ranges calculated using the output value of the detection gas that includes both the gas containing the active oxygen species and the by-product that is a by-product when the active oxygen species are generated. The concentration (generation amount) of the active oxygen species can be more accurately determined based on the value.
 また、積算値の比率は、変更可能であるという構成にしてもよい。 Also, the ratio of integrated values may be changeable.
 これにより、電解水生成部の生成条件の違いや、気体検知部の特性ばらつきなどの特性変動がある場合でも、電解水生成部で生成された活性酸素種を含んだ気体の発生量の算出を行うことができるため、正確に電解水生成部で生成された活性酸素種の発生量を算出することができる。 This allows calculation of the amount of gas containing active oxygen species generated in the electrolyzed water generation unit, even if there are characteristic changes such as differences in the generation conditions of the electrolyzed water generation unit or variations in the characteristics of the gas detection unit. Since it can be performed, it is possible to accurately calculate the generation amount of the active oxygen species generated in the electrolyzed water generation unit.
 また、複数の所定の範囲は、変更可能であるという構成にしてもよい。 Also, a plurality of predetermined ranges may be configured to be changeable.
 これにより、気体検知部の特性ばらつきや経年劣化などの特性変動がある場合でも、電解水生成部で生成された活性酸素種を含んだ気体の発生量の算出を行うことができるため、正確に電解水生成部で生成された活性酸素種の発生量を算出することができる。 As a result, even if there is a characteristic variation of the gas detection unit or a characteristic change such as deterioration over time, the amount of the gas containing the active oxygen species generated in the electrolyzed water generation unit can be calculated, so that it can be accurately calculated. The amount of active oxygen species generated in the electrolyzed water generating unit can be calculated.
 また、出力値は、電圧値であるという構成にしてもよい。 Also, the output value may be a voltage value.
 また、本開示の電解水散布装置を送風装置に適用してもよい。 Also, the electrolytic water spraying device of the present disclosure may be applied to a blower.
 これにより、送風装置においても本開示記載の効果を実現できる。 With this, the effect described in the present disclosure can be realized even in the air blower.
 以下、本開示を実施するための形態について添付図面を参照して説明する。なお、以下の第2実施形態は、本開示を具体化した一例であって本開示の技術的範囲を限定するものではない。また、全図面を通して、同一の部位については同一の符号を付して説明を省略している。さらに、各図面において、本開示に直接には関係しない各部の詳細については説明を省略している。 Hereinafter, modes for carrying out the present disclosure will be described with reference to the accompanying drawings. Note that the following second embodiment is an example in which the present disclosure is embodied and does not limit the technical scope of the present disclosure. In addition, the same reference numerals are given to the same portions throughout the drawings, and the description thereof is omitted. Furthermore, in each drawing, the description of the details of each unit not directly related to the present disclosure is omitted.
 まず、図11~16を参照して、本開示の第2実施形態である電解水散布装置200について説明する。図11は、電解水散布装置200の斜視図であり、電解水散布装置200を前面側から見た図である。図12は、電解水散布装置200の斜視図であり、図11のパネル203を開いた状態で電解水散布装置200を前面側から見た図である。 First, with reference to FIGS. 11 to 16, an electrolytic water spraying device 200 according to a second embodiment of the present disclosure will be described. FIG. 11 is a perspective view of the electrolytic water spraying device 200, and is a view of the electrolytic water spraying device 200 seen from the front side. 12 is a perspective view of the electrolytic water spraying device 200, and is a view of the electrolytic water spraying device 200 seen from the front side with the panel 203 of FIG. 11 opened.
 図11、12に示す通り、電解水散布装置200は、略箱形状の本体ケース201を備え、本体ケース201の両側面には略四角形状の吸気口202を有している。本体ケース201の天面には、開閉式の吹出口206が設けられている。図11、12では、吹出口206は閉じた状態である。 As shown in FIGS. 11 and 12, the electrolyzed water spraying device 200 includes a substantially box-shaped main body case 201, and has substantially square-shaped intake ports 202 on both side surfaces of the main body case 201. An openable air outlet 206 is provided on the top surface of the main body case 201. 11 and 12, the air outlet 206 is in a closed state.
 本体ケース201の前面側から見て、右側の側面(本体ケース201の一方側の側面)である第1の本体側面201Aには、開閉可能なパネル203が設けられている。このパネル203には、吸気口102が設けられている。パネル203を開くと、図12に示すように、縦長四角形状の開口204が現れる。開口204から、後述する貯水部214、給水部215、錠剤投入ケース218a等が取り出し可能に構成されている。 A panel 203 that can be opened and closed is provided on the first main body side surface 201A that is the right side surface (one side surface of the main body case 201) when viewed from the front surface side of the main body case 201. An intake port 102 is provided in the panel 203. When the panel 203 is opened, as shown in FIG. 12, a vertically long rectangular opening 204 appears. A water storage unit 214, a water supply unit 215, a tablet charging case 218a, etc., which will be described later, can be taken out from the opening 204.
 図13は、電解水散布装置200の正面視中央部分を縦方向に切った断面図であり、電解水散布装置200を右側から見た図である。図13は、電解水散布装置200が作る風路構成などを示している。図14は、電解水散布装置200の正面視右側を縦方向に切った断面図であり、電解水散布装置200における右側から見た図である。図14は、タンク部材などの電解水生成に関する周辺構成などを示している。図15は、電解水散布装置200の機能をブロックで示した機能ブロック図である。 FIG. 13 is a cross-sectional view in which the central portion of the electrolytic water spraying device 200 is vertically cut, and is a view of the electrolytic water spraying device 200 seen from the right side. FIG. 13 shows an air passage structure and the like created by the electrolyzed water spraying device 200. FIG. 14 is a cross-sectional view of the right side of the electrolyzed water spraying device 200 taken in a vertical direction, as viewed from the right side of the electrolyzed water spraying device 200. FIG. 14 shows a peripheral configuration regarding generation of electrolyzed water such as a tank member. FIG. 15 is a functional block diagram showing the functions of the electrolytic water spraying device 200 in blocks.
 図12~15に示すように、本体ケース201内には、電解水生成部205と、給水部215と、散布部219と、風路208とが備えられている。電解水生成部205は、一対の電極217と、貯水部214を備えている。 As shown in FIGS. 12 to 15, the main body case 201 is provided with an electrolyzed water generation unit 205, a water supply unit 215, a spraying unit 219, and an air passage 208. The electrolyzed water generating unit 205 includes a pair of electrodes 217 and a water storage unit 214.
 図12、13に示すように、貯水部214は、天面を開口した箱形状をしており、水を貯水できる構造となっている。貯水部214は、本体ケース201の下部に配置され、本体ケース201から水平方向にスライドして着脱可能となっており、開口204から取り出すことができる。貯水部214は、給水部215から供給される水を貯水する。 As shown in FIGS. 12 and 13, the water storage unit 214 has a box shape with an open top, and has a structure capable of storing water. The water storage section 214 is arranged in the lower part of the main body case 201, is horizontally slidable from the main body case 201 and is attachable/detachable, and can be taken out from the opening 204. The water storage unit 214 stores the water supplied from the water supply unit 215.
 図14に示す一対の電極217は、電極部材(図示せず)を備えており、この電極部材が貯水部214内の水に浸かるように設置される。一対の電極217は、この電極部材に通電することにより、貯水部214内の塩化物イオンを含む水を電気化学的に電気分解し、活性酸素種を含む電解水を生成させる。ここで、活性酸素種とは、通常の酸素よりも高い酸化活性を持つ酸素分子と、その関連物質のことである。活性酸素種は、例えば、スーパーオキシドアニオン、一重項酸素、ヒドロキシラジカル、或いは過酸化水素といった所謂狭義の活性酸素と、オゾン、次亜塩素酸(次亜ハロゲン酸)等といった所謂広義の活性酸素とを含む。 The pair of electrodes 217 shown in FIG. 14 includes an electrode member (not shown), and the electrode member is installed so as to be submerged in the water in the water storage unit 214. The pair of electrodes 217 electrochemically electrolyzes the water containing chloride ions in the water storage section 214 by energizing the electrode members to generate electrolyzed water containing active oxygen species. Here, the active oxygen species are an oxygen molecule having a higher oxidation activity than normal oxygen and its related substances. The active oxygen species include, for example, so-called narrowly defined active oxygen such as superoxide anion, singlet oxygen, hydroxy radical, or hydrogen peroxide, and so-called broadly defined active oxygen such as ozone and hypochlorous acid (hypohalous acid). including.
 一対の電極217は、電極部材への電気分解するための通電を行う通電時間と、その通電停止後の時間、つまり通電を行っていない時間である非通電時間を一周期として、その一周期を複数回繰り返すことで、電解水を生成する。電極部材に対し、非通電時間を設けることで、電極部材の寿命を延ばすことができる。なお、非通電時間に対して通電時間を長くすれば、一周期当たりにおいてより多くの量の活性酸素種を含む電解水が生成される。また通電時間に対して非通電時間を長くすれば、一周期当たりの活性酸素種の生成が抑えられる。さらに、通電時間における電力量を大きくすれば、より多くの量の活性酸素種を含む電解水が生成される。 The pair of electrodes 217 has a period of energization for electrolyzing the electrode member and a period of time after the energization is stopped, that is, a period of non-energization that is a period of non-energization, as one period. Electrolyzed water is generated by repeating a plurality of times. By providing the electrode member with a non-energized time, the life of the electrode member can be extended. If the energization time is made longer than the non-energization time, electrolyzed water containing a larger amount of active oxygen species is generated per cycle. Further, if the non-energization time is made longer than the energization time, generation of active oxygen species per cycle can be suppressed. Further, if the amount of power during the energization time is increased, electrolyzed water containing a larger amount of active oxygen species is generated.
 電解促進錠剤投入部218は、図12に示すように、錠剤投入ケース218aと、錠剤投入ケース218a内に設けた錠剤投入部材(図示せず)と、錠剤投入ケース218aの上部に着脱自在に設けられた錠剤投入カバー218bとを備えている。錠剤投入ケース218aは、開口204から取り出し可能に構成される。ユーザは、取り出した錠剤投入ケース218aから錠剤投入カバー218bを外すことで、ユーザが錠剤投入ケース218a内に電解促進錠剤を装填できる。錠剤投入ケース218a内に装填された電解促進錠剤は、貯水部214へ投入されることになる。 As shown in FIG. 12, the electrolysis-promoting tablet charging section 218 is detachably provided on the tablet charging case 218a, a tablet charging member (not shown) provided in the tablet charging case 218a, and an upper portion of the tablet charging case 218a. The tablet loading cover 218b is provided. The tablet loading case 218a is configured to be removable from the opening 204. The user can load the electrolysis-promoting tablets into the tablet loading case 218a by removing the tablet loading cover 218b from the taken out tablet loading case 218a. The electrolysis promoting tablets loaded in the tablet loading case 218a are loaded into the water storage unit 214.
 具体的には、電解促進錠剤投入部218は、電解促進錠剤を貯水部214へ投入する場合に、錠剤投入部材を回動させる。錠剤投入部材が回動すると、電解促進錠剤が錠剤投入ケース218aの底面の落下開口(図示せず)より貯水部214に落下する。電解促進錠剤投入部218は、錠剤投入ケース218aから貯水部214に落下した電解促進錠剤の個数をカウントし、錠剤投入ケース218aから貯水部214に電解促進錠剤が一錠落下したと判定すると、錠剤投入部材の回動を停止する。この電解促進錠剤が貯水部214内の水に溶け込むことにより、貯水部214内に塩化物イオンを含む水が生成される。なお、電解促進錠剤の一例は、塩化ナトリウムである。 Specifically, the electrolysis-promoting tablet charging section 218 rotates the tablet charging member when charging the electrolysis-promoting tablet to the water storage section 214. When the tablet charging member rotates, the electrolysis-promoting tablets drop into the water storage unit 214 through a drop opening (not shown) on the bottom surface of the tablet charging case 218a. The electrolysis-promoting tablet charging unit 218 counts the number of electrolysis-promoting tablets that have dropped from the tablet charging case 218a to the water storage unit 214, and if it is determined that one electrolysis-promoting tablet has dropped from the tablet charging case 218a to the water storage unit 214, the tablet Stop the rotation of the dosing member. By dissolving the electrolysis promoting tablets in the water in the water storage section 214, water containing chloride ions is generated in the water storage section 214. In addition, an example of the electrolysis promoting tablet is sodium chloride.
 なお、電解水散布装置200は、電解促進錠剤投入部218を有していなくてもよい。この場合は、電解水散布装置200が、ユーザに対して電解促進錠剤の投入を指示する報知を表示や発音によって行い、ユーザに電解促進錠剤を直接、貯水部214へ投入させるようにしてもよい。 Note that the electrolyzed water spraying device 200 does not have to include the electrolysis-promoting tablet feeding section 218. In this case, the electrolyzed water spraying device 200 may give a notification to the user to instruct the user to insert the electrolysis-promoting tablet by displaying or sounding, and cause the user to directly put the electrolysis-promoting tablet into the water storage unit 214. ..
 また、電解水散布装置200は、図15に示すように、気体検知部220及び制御部230を備えている。 Further, the electrolytic water spraying device 200 includes a gas detection unit 220 and a control unit 230, as shown in FIG.
 気体検知部220は、一対の電極217で生成された電解水を含む気体を検知し、検知した気体に応じた出力値を出力する。なお、本実施形態では、気体検知部220が出力する出力値が電圧値である場合を例に説明する。気体検知部220の詳細については、後述する。 The gas detection unit 220 detects a gas containing electrolyzed water generated by the pair of electrodes 217, and outputs an output value according to the detected gas. In the present embodiment, the case where the output value output by the gas detection unit 220 is a voltage value will be described as an example. Details of the gas detector 220 will be described later.
 制御部230は、例えば、本体ケース201(図11参照)の天面に設けられた操作パネルの裏側に設けられ、電解水散布装置200の制御を行う。制御部230は、一対の電極217による水の電気分解を制御し、また電解促進錠剤投入部218による電解促進錠剤の投入を制御するものである。特に、制御部230は、気体検知部220により出力された検知気体の出力値に基づいて、検知気体の状態判別を行うものである。この検知気体の状態判別の詳細については、図16を参照して後述する。なお、制御部230の機能は、プロセッサ(図示せず)がメモリ(図示せず)に記憶されているプログラムを実行することで実現される。 The control unit 230 is provided, for example, on the back side of the operation panel provided on the top surface of the main body case 201 (see FIG. 11), and controls the electrolytic water spraying device 200. The control unit 230 controls the electrolysis of water by the pair of electrodes 217 and also controls the charging of the electrolytically accelerated tablets by the electrolytically accelerated tablet charging unit 218. In particular, the control unit 230 determines the state of the detection gas based on the output value of the detection gas output by the gas detection unit 220. Details of the determination of the state of the detected gas will be described later with reference to FIG. The function of the control unit 230 is realized by a processor (not shown) executing a program stored in a memory (not shown).
 給水部215は、図12に示すように、本体ケース201内部の正面視右側の側面に設置され、貯水部214から着脱可能な構造となっており、開口204から取り出すことができる。給水部215は、貯水部214の底面に設けられたタンク保持部214aに装着されている。給水部215は、水を貯水するタンク215aと、タンク215aの開口(図示せず)に設けられた蓋215bとを備えている。蓋215bの中央には、開閉部(図示せず)が設けられており、この開閉部が開くと、タンク215a内の水が、貯水部214へ供給される。 As shown in FIG. 12, the water supply unit 215 is installed on the right side surface inside the main body case 201 when viewed from the front, has a structure that can be attached to and detached from the water storage unit 214, and can be taken out from the opening 204. The water supply part 215 is attached to a tank holding part 214 a provided on the bottom surface of the water storage part 214. The water supply unit 215 includes a tank 215a for storing water, and a lid 215b provided at an opening (not shown) of the tank 215a. An opening/closing section (not shown) is provided at the center of the lid 215b, and when the opening/closing section is opened, the water in the tank 215a is supplied to the water storage section 214.
 具体的には、タンク215aの開口を下向きにして、タンク215aを貯水部214のタンク保持部214aに取り付けると、タンク保持部214aによって開閉部が開く。つまり、タンク215aに水を入れてタンク保持部214aに取り付けると、開閉部が開いて貯水部214に給水され、貯水部214内に水が溜まる。貯水部214内の水位が上昇して蓋215bのところまで到達すると、タンク215aの開口が水封されるので給水が停止し、タンク215aの内部には水が残り、貯水部214内の水位が下がった場合に都度、タンク215a内部の水が貯水部214に給水される。即ち、貯水部214内の水位は一定に保たれる。 Specifically, when the tank 215a is attached to the tank holding part 214a of the water storage part 214 with the opening of the tank 215a facing downward, the opening/closing part is opened by the tank holding part 214a. That is, when water is poured into the tank 215a and attached to the tank holding portion 214a, the opening/closing portion is opened and water is supplied to the water storage portion 214, and water is stored in the water storage portion 214. When the water level in the water storage unit 214 rises and reaches the position of the lid 215b, the water supply stops because the opening of the tank 215a is sealed with water, and the water remains inside the tank 215a, so that the water level in the water storage unit 214 changes. Whenever the water falls, the water in the tank 215a is supplied to the water storage unit 214. That is, the water level in the water storage unit 214 is kept constant.
 なお、電解水散布装置200は、給水部215としてタンク215aを有していなくてもよい。この場合は、電解水散布装置200に対して、水を供給するラインを水道よりひき、貯水部214内の水位が下がった場合に、貯水部214内の水位が所定位置に上昇するまで、水道水を供給するようにしてもよい。 Note that the electrolyzed water spraying device 200 may not have the tank 215a as the water supply unit 215. In this case, a line for supplying water to the electrolyzed water spraying device 200 is pulled from the tap water, and when the water level in the water storage section 214 decreases, the water level in the water storage section 214 rises to a predetermined position. Water may be supplied.
 図13に示すように、散布部219は、送風部207と、フィルター部216とを備える。送風部207は、本体ケース201の中央部に設けられ、モータ部209と、モータ部209により回転するファン部210と、それらを囲むスクロール形状のケーシング部211とを備えている。モータ部209は、ケーシング部211に固定されている。 As shown in FIG. 13, the spraying unit 219 includes a blower unit 207 and a filter unit 216. The blower unit 207 is provided in the central portion of the main body case 201, and includes a motor unit 209, a fan unit 210 rotated by the motor unit 209, and a scroll-shaped casing unit 211 surrounding them. The motor section 209 is fixed to the casing section 211.
 ファン部210は、シロッコファンであり、モータ部209から水平方向に延びた回転軸209aに固定され、モータ部209は、上述のようにケーシング部211に固定されている。モータ部209の回転軸209aは、本体ケース201の前面側から背面側に延びている。ケーシング部211は、ケーシング部211の本体ケース201における上面側に吐出口212を備え、ケーシング部211の本体ケース201における背面側に吸込口213を有している。 The fan unit 210 is a sirocco fan and is fixed to the rotating shaft 209a extending in the horizontal direction from the motor unit 209, and the motor unit 209 is fixed to the casing unit 211 as described above. The rotation shaft 209a of the motor unit 209 extends from the front surface side to the back surface side of the main body case 201. The casing portion 211 includes a discharge port 212 on the upper surface side of the main body case 201 of the casing portion 211, and has a suction port 213 on the rear surface side of the main body case 201 of the casing portion 211.
 送風部207の風量は、ユーザの設定した風量に基づいて決定される。決定された風量に基づき、制御部230により、モータ部209の回転量が制御される。 The air volume of the blower unit 207 is determined based on the air volume set by the user. The controller 230 controls the rotation amount of the motor unit 209 based on the determined air volume.
 フィルター部216は、貯水部214に貯水された電解水と、送風部207によって本体ケース201内(即ち筐体内)に流入した室内空気とを接触させる部材である。フィルター部216は、円筒状に構成され、円周部分に空気が流通可能な孔を備えたフィルター216aを配置している。フィルター216aは、その一端が貯水部214の水に浸漬され、保水されるように、フィルター216aの中心軸を回転中心として貯水部214に回転自在に内蔵されている。そして、フィルター部216は、駆動部(図示しない)により回転され、電解水と室内空気を連続的に接触させる構造となっている。 The filter unit 216 is a member that brings the electrolyzed water stored in the water storage unit 214 into contact with the room air that has flowed into the main body case 201 (that is, inside the housing) by the blower unit 207. The filter portion 216 is formed in a cylindrical shape, and has a filter 216a provided with a hole through which air can flow in the circumferential portion. The filter 216a is rotatably incorporated in the water storage unit 214 with the central axis of the filter 216a as the center of rotation so that one end thereof is immersed in the water of the water storage unit 214 to retain water. The filter section 216 is rotated by a drive section (not shown), and has a structure in which electrolyzed water and indoor air are brought into continuous contact with each other.
 風路208は、吸気口202と吹出口206とを連通し、吸気口202から順に、フィルター部216、送風部207、吹出口206を備えている。モータ部209によってファン部210が回転すると、吸気口202から吸い込まれ風路208内に入った外部の空気は、順に、フィルター216a、送風部207、吹出口206を介して、電解水散布装置200の外部へ吹き出される。これにより、貯水部214にて生成された電解水が外部へ散布される。なお、電解水散布装置200は、必ずしも電解水そのものを撒くものでなくてもよく、結果的に生成した電解水由来(揮発を含む)の活性酸素種を散布するものであってもよい。 The air passage 208 connects the intake port 202 and the outlet 206, and includes a filter unit 216, a blower unit 207, and an outlet 206 in order from the intake port 202. When the fan unit 210 is rotated by the motor unit 209, the external air sucked from the intake port 202 and entering the air passage 208 sequentially passes through the filter 216a, the air blowing unit 207, and the air outlet 206, and then the electrolytic water spraying device 200. Is blown out of. Thereby, the electrolyzed water generated in the water storage unit 214 is sprayed to the outside. The electrolyzed water sprinkling device 200 does not necessarily sprinkle the electrolyzed water itself, and may sprinkle the active oxygen species derived from the electrolyzed water (including volatilization) generated as a result.
 気体検知部220は、例えば半導体式ガスセンサにより構成される。ガスセンサ素子は、金属酸化物材料と一体化されたヒーターで構成されている。センサに電源印加することで、金属酸化物材料がヒーターにより加熱状態となる。このガスセンサ素子では、検知可能な気体が金属酸化物材料に接触することで生じる抵抗値変化を検出する。例えば、清浄大気中では、金属酸化物材料表面が大気中の酸素の影響を受けて自由電子の移動が制限され、導電率が低下するために高い抵抗値を示している。この状態で検知可能な気体が金属酸化物材料表面に接触すると、金属酸化物材料表面の酸素が消費され、それまで制限されていた自由電子の動きが開放され、導電率が高くなるために低い抵抗値を示す。この抵抗値の違いを電圧出力などに変換して取得することで、検知対象となる気体の検知が可能となる。 The gas detector 220 is composed of, for example, a semiconductor gas sensor. The gas sensor element is composed of a heater integrated with a metal oxide material. By applying power to the sensor, the metal oxide material is heated by the heater. This gas sensor element detects a change in resistance value caused by a detectable gas coming into contact with the metal oxide material. For example, in a clean atmosphere, the surface of the metal oxide material is affected by oxygen in the atmosphere, the movement of free electrons is restricted, and the conductivity decreases, so that the resistance value is high. When a detectable gas comes into contact with the surface of the metal oxide material in this state, oxygen on the surface of the metal oxide material is consumed, the movement of free electrons, which had been limited up to that point, is released, and the conductivity becomes high, so that the temperature is low. Indicates the resistance value. By converting the difference in the resistance value into a voltage output and acquiring the difference, the gas to be detected can be detected.
 図16を用いて、検知気体を状態判別する方法について説明を行う。図16は、検知気体の状態判別処理を示すフローチャートである。 A method for determining the state of the detected gas will be described with reference to FIG. FIG. 16 is a flowchart showing the process of determining the state of the detected gas.
 制御部230は、まず、一定の周期(例えば、1秒)毎に気体検知部220から出力される出力値(一例として電圧値)を所定の期間(例えば、1分)繰り返し取得する(ステップS21)。出力値の取得は、例えばA/Dコンバータなどを用いて行う。 First, the control unit 230 repeatedly acquires an output value (a voltage value as an example) output from the gas detection unit 220 for every predetermined period (for example, 1 second) for a predetermined period (for example, 1 minute) (step S21). ). The output value is acquired using, for example, an A/D converter.
 制御部230は、ステップS21で取得したある時点における出力値とある時点よりも一周期前に取得した出力値の差分を計算する。これを繰り返すことで、各周期における出力値の変化量を算出する(ステップS22)。 The control unit 230 calculates the difference between the output value acquired at step S21 at a certain time point and the output value acquired one cycle before the certain time point. By repeating this, the amount of change in the output value in each cycle is calculated (step S22).
 次に、制御部230は、ステップS22で算出した各周期における変化量それぞれについて、複数の所定の範囲と比較する(ステップS23)。 Next, the control unit 230 compares each change amount in each cycle calculated in step S22 with a plurality of predetermined ranges (step S23).
 続いて、制御部230は、ステップS23の比較結果に基づいて複数の所定の範囲毎の変化量の出現数である積算値を算出する(ステップS24)。最後に、ステップS24で算出した複数の所定の範囲毎の積算値に応じて検知気体の状態判別を行う(ステップS25)。 Subsequently, the control unit 230 calculates an integrated value, which is the number of appearances of the variation amount for each of a plurality of predetermined ranges, based on the comparison result of step S23 (step S24). Finally, the state of the detected gas is determined according to the integrated value for each of the plurality of predetermined ranges calculated in step S24 (step S25).
 なお、状態判別により得られる出力結果は、検知気体の種類や、検知気体の有無、検知気体の濃度などである。例えば、制御部230で算出された複数の所定の範囲毎の積算値の比率が、特定の比率であるかどうかを判定することで検知気体の種類や検知したい気体の有無を判別することができる。また、複数の所定の範囲毎の積算値の比率に加えて、積算値の値を濃度と相関のある値と比較することで、濃度値や濃度の大きさのレベルなどを出力結果として得ることも可能である。 Note that the output results obtained by the state determination are the type of detection gas, the presence or absence of detection gas, the concentration of detection gas, etc. For example, it is possible to determine the type of gas to be detected and the presence/absence of gas to be detected by determining whether or not the ratio of integrated values for each of a plurality of predetermined ranges calculated by the control unit 230 is a specific ratio. .. Further, in addition to the ratio of the integrated value for each of a plurality of predetermined ranges, the value of the integrated value is compared with a value correlated with the density to obtain the density value or the level of the density as an output result. Is also possible.
 また、図16では、制御部230は、一定の周期毎に所定の期間繰り返し取得された複数の出力値を用いて算出した各周期における出力値の変化量それぞれについて、複数の所定の範囲と比較し、所定の範囲毎の積算値を算出するものとして説明した(ステップS21~S24)。しかしながら、図16に示す検知気体の状態判別処理のフローチャートは一例であり、例えば、ステップS21~S24の処理を以下のように変更し、変更したステップS21~S24の処理を一定の周期毎に所定の期間(あるいは一定回数)繰り返し実行した後にステップS25の処理を行うようにしてもよい。即ち、ステップS21を、気体検知部220から出力される出力値を1回だけ取得する処理に変更し、ステップS22を、変更後のステップS21で取得された出力値とそれよりも一周期前に取得された出力値の差分を算出することで変化量を算出する処理に変更する。また、ステップS23を、変更後のステップS22で得られた変化量と複数の所定の範囲と比較する処理に変更する。また、ステップS24を、変更後のステップS23の比較結果に基づいて、複数の所定の範囲のうち、変更後のステップS22で得られた変化量が含まれる範囲の出現数である積算値を算出する処理に変更する。そして、この変更後のステップS21~S24の処理を一定周期毎に所定の期間(例えば1分)あるいは一定回数(例えば60回)繰り返し実行する。これにより、図16に示すステップS22~S24の処理結果と同様に、各周期における出力値の変化量を算出し、各周期における変化量それぞれについて、複数の所定の範囲とを比較し、複数の所定の範囲毎の変化量の出現数である積算値を算出することできる。 In addition, in FIG. 16, the control unit 230 compares each change amount of the output value in each cycle calculated using the plurality of output values repeatedly acquired for each predetermined cycle for a predetermined period with a plurality of predetermined ranges. Then, it is explained that the integrated value for each predetermined range is calculated (steps S21 to S24). However, the flowchart of the state determination process of the detected gas shown in FIG. 16 is an example, and for example, the processes of steps S21 to S24 are changed as follows, and the changed processes of steps S21 to S24 are performed at regular intervals. The process of step S25 may be performed after repeatedly executing the period (or a certain number of times). That is, step S21 is changed to a process of acquiring the output value output from the gas detection unit 220 only once, and step S22 is changed to the output value acquired in the changed step S21 and one cycle before that. The difference between the acquired output values is calculated to change the processing to calculate the amount of change. Further, the step S23 is changed to a process of comparing the change amount obtained in the changed step S22 with a plurality of predetermined ranges. In step S24, an integrated value that is the number of appearances of the range including the change amount obtained in step S22 after the change is calculated from the plurality of predetermined ranges based on the comparison result of the step S23 after the change. Change to a process that does. Then, the processes of steps S21 to S24 after this change are repeatedly executed at regular intervals for a predetermined period (for example, 1 minute) or a fixed number of times (for example, 60 times). With this, similarly to the processing results of steps S22 to S24 shown in FIG. 16, the change amount of the output value in each cycle is calculated, the change amount in each cycle is compared with a plurality of predetermined ranges, and a plurality of predetermined ranges are compared. It is possible to calculate an integrated value that is the number of appearances of the amount of change for each predetermined range.
 図17A~19を用いて、具体的に検知気体を状態判別する方法について説明する。図17A~17Cは電解水生成部205の一対の電極217に通電し、電気分解を行っているときの気体検知部220の出力値(電圧値)と変化量の一例を示している。気体検知部220は、電解水生成部205の近傍などに配置され、電解水生成部205で生成された電解水による次亜塩素酸を含む気体を検知できる構成である。電解水生成部205を構成する一対の電極217は、貯水部214内に設置される。図17Aは、電解水生成部205の一対の電極217の通電状態と経過時間を示す図である。一対の電極217に電流を流すことで電気分解を行う。図17Bは、図17Aに示す一対の電極217の通電状態における気体検知部220の出力値を示す図である。電気分解が行われると、気体検知部220は電解水による次亜塩素酸を含む検知気体に応じて出力が変化する。一定の周期毎に取得した気体検知部220の複数の出力値において、ある時点において取得した出力値とある時点よりも一周期前に取得された出力値との差分である変化量を求める。この変化量を図17Cで示している。 A method for specifically determining the state of the detected gas will be described with reference to FIGS. 17A to 19. 17A to 17C show an example of an output value (voltage value) and a change amount of the gas detection unit 220 when the pair of electrodes 217 of the electrolyzed water generation unit 205 are energized to perform electrolysis. The gas detection unit 220 is arranged in the vicinity of the electrolyzed water generating unit 205 or the like, and has a configuration capable of detecting a gas containing hypochlorous acid by the electrolyzed water generated by the electrolyzed water generating unit 205. The pair of electrodes 217 that form the electrolyzed water generating unit 205 are installed in the water storage unit 214. FIG. 17A is a diagram showing an energized state and elapsed time of the pair of electrodes 217 of the electrolyzed water producing unit 205. Electrolysis is performed by applying a current to the pair of electrodes 217. FIG. 17B is a diagram showing the output value of the gas detection unit 220 in the energized state of the pair of electrodes 217 shown in FIG. 17A. When the electrolysis is performed, the output of the gas detection unit 220 changes according to the detection gas containing hypochlorous acid by the electrolyzed water. For a plurality of output values of the gas detection unit 220 acquired at regular intervals, a change amount that is a difference between an output value acquired at a certain time point and an output value acquired one cycle before the certain time point is obtained. This change amount is shown in FIG. 17C.
 図17Bのような出力傾向を示すのは、気体検知部220が電解水生成部205で生成された電解水による次亜塩素酸を含む気体を検知できる位置に設置されているためである。この位置関係にない場合、気体検知部220は電解水生成部205で生成された電解水による次亜塩素酸を含む気体を検知できないため、気体検知部220の出力はある一定の安定した出力を示すことになる。気体検知部220が電解水生成部205で生成された電解水による次亜塩素酸を含む気体を検知できる位置にある場合、気体検知部220が副生成物である副次気体などを含む検知気体による影響で、出力が急峻に増減する傾向を示す。すなわち、気体検知部220の出力が、一定の周期毎に所定の変化をすることで、特定の物質を含んだ気体であると認識することができる。 The output tendency as shown in FIG. 17B is because the gas detection unit 220 is installed at a position where the gas containing hypochlorous acid by the electrolyzed water generated by the electrolyzed water generation unit 205 can be detected. If this positional relationship is not satisfied, the gas detection unit 220 cannot detect a gas containing hypochlorous acid due to the electrolyzed water generated by the electrolyzed water generation unit 205, so the output of the gas detection unit 220 is a certain stable output. Will be shown. When the gas detection unit 220 is located at a position where it can detect a gas containing hypochlorous acid due to the electrolyzed water generated by the electrolyzed water generation unit 205, the gas detection unit 220 is a detection gas containing a by-product such as a by-product gas. The output tends to increase and decrease sharply due to. That is, the output of the gas detection unit 220 can be recognized as a gas containing a specific substance by making a predetermined change at regular intervals.
 図18は、図17Aに示す電極通電中において特定条件で電気分解を行ったときの、所定の期間における気体検知部220の出力値の変化量の出現頻度を一例として示したものである。同じ電気分解の条件で長時間データを取得した結果を示しており、気体検知部220の出力値の変化量が取得したデータに対して何回発生したかを示している。この出現頻度の出力傾向は、電解水生成部205と気体検知部220の位置関係や、電気分解の生成条件が決まると、多少のばらつきはあるがある程度同様の傾向を示す。 FIG. 18 shows an example of the appearance frequency of the amount of change in the output value of the gas detection unit 220 during a predetermined period when electrolysis is performed under specific conditions while the electrodes shown in FIG. 17A are energized. The results of long-term data acquisition under the same electrolysis conditions are shown, and the number of times the amount of change in the output value of the gas detection unit 220 occurs with respect to the acquired data is shown. The output tendency of the appearance frequency shows a similar tendency to some extent, although there is some variation when the positional relationship between the electrolyzed water producing unit 205 and the gas detecting unit 220 and the electrolysis producing condition are determined.
 図19は、各周期における変化量を複数の所定の範囲に分類した図である。所定の期間において算出された複数の変化量それぞれについて、図19の複数の所定の範囲と比較することで、複数の所定の範囲毎の変化量の出現数である積算値を算出する。一例として、図18、図19に示すように、変化量に対して、複数の所定の範囲を次のように設定する。閾値範囲d2は、変化量が-0.05Vより小さい領域を示す。閾値範囲c2は、変化量が-0.05V以上で-0.02Vより小さい領域を示す。閾値範囲b2は、変化量が-0.02V以上で-0.01Vより小さい領域を示す。閾値範囲a2は、変化量が-0.01V以上で0Vより小さい領域を示す。閾値範囲a1は、変化量が0V以上で+0.01Vより小さい領域を示す。閾値範囲b1は、変化量が+0.01V以上で+0.02Vより小さい領域を示す。閾値範囲c1は、変化量が+0.02V以上で+0.05Vより小さい領域を示す。閾値範囲d1は、変化量が+0.05V以上の領域を示す。 FIG. 19 is a diagram in which the amount of change in each cycle is classified into a plurality of predetermined ranges. By comparing each of the plurality of change amounts calculated in the predetermined period with the plurality of predetermined ranges in FIG. 19, an integrated value that is the number of appearances of the change amount in each of the plurality of predetermined ranges is calculated. As an example, as shown in FIGS. 18 and 19, a plurality of predetermined ranges are set as follows with respect to the amount of change. The threshold range d2 indicates a region in which the amount of change is smaller than −0.05V. The threshold range c2 indicates a region in which the amount of change is −0.05 V or more and less than −0.02 V. The threshold range b2 indicates a region in which the amount of change is −0.02V or more and less than −0.01V. The threshold range a2 indicates a region in which the amount of change is −0.01 V or more and less than 0 V. The threshold range a1 indicates a region in which the amount of change is 0 V or more and less than +0.01 V. The threshold range b1 indicates a region in which the amount of change is +0.01 V or more and less than +0.02 V. The threshold range c1 indicates a region in which the amount of change is +0.02V or more and less than +0.05V. The threshold range d1 indicates a region in which the amount of change is +0.05 V or more.
 図18の例では、所定の範囲として、閾値範囲b1と閾値範囲b2と閾値範囲c2の出現頻度が大きい。一例であるが、閾値範囲の出現頻度のピークは、電解水生成部205で生成された電解水による次亜塩素酸を含む検知気体と副生成物である副次気体によって気体検知部220の出力値が変化する。これにより、閾値範囲b1と閾値範囲b2と閾値範囲c2のピークが大きくなる傾向を示すことが実験的に確認されている。電解水生成部205と気体検知部220の設置位置や、電気分解の生成条件、気体検知部220のセンサ特性の違いなどにより、特定の閾値範囲の出現頻度が大きくなる。また一方で、検知気体の種類や濃度などが変化すると、気体検知部220の一定の周期における出力値の出力変化の傾向が変わる。例えば、半導体式ガスセンサで考えると、金属酸化物表面の酸素の消費が、発生する気体の種類や濃度により異なる。このように、制御部230で算出した変化量の出現頻度の傾向に基づいて、検知気体の種類や濃度などの検出が可能となる。 In the example of FIG. 18, the appearance frequencies of the threshold range b1, the threshold range b2, and the threshold range c2 are high as the predetermined ranges. As an example, the peak of the appearance frequency in the threshold range is the output of the gas detection unit 220 due to the detection gas containing hypochlorous acid generated by the electrolyzed water generated by the electrolyzed water generation unit 205 and the by-product by-product gas. The value changes. From this, it is experimentally confirmed that the peaks in the threshold range b1, the threshold range b2, and the threshold range c2 tend to increase. The appearance frequency of the specific threshold range increases due to the installation positions of the electrolyzed water production unit 205 and the gas detection unit 220, the electrolysis generation conditions, the difference in the sensor characteristics of the gas detection unit 220, and the like. On the other hand, when the type or concentration of the detected gas changes, the tendency of the output change of the output value of the gas detection unit 220 in a constant cycle changes. For example, in the case of a semiconductor gas sensor, the oxygen consumption on the surface of the metal oxide differs depending on the type and concentration of the generated gas. In this way, the type and concentration of the detected gas can be detected based on the tendency of the appearance frequency of the change amount calculated by the control unit 230.
 電解水生成部205で生成された電解水による次亜塩素酸を含む検知気体と副生成物である副次気体による気体検知部220の出力値の変化量は、上述したように、閾値範囲b1と閾値範囲b2と閾値範囲c2で示す出現頻度のピークが多くなる傾向を示す。制御部230は、このような出現頻度のピークの傾向に対して、図19で示す複数の所定の範囲と比較することで、複数の所定の範囲毎の出現数である積算値の算出を行う。気体検知部220の変化量が図18で示す出現頻度の傾向を示す場合、複数の所定の範囲毎の積算値は、図18の各閾値範囲の面積と比例する傾向を示す。複数の所定の範囲の積算値の比率が、図18の各閾値範囲の面積と比例の関係性を示す場合に、電解水生成部205で生成された電解水として、次亜塩素酸が存在すると判別できる。これにより検知気体の識別が可能となる。具体的な例として、閾値範囲b1が次亜塩素酸を含む検知気体による出力値の変化量で、閾値範囲b2と閾値範囲c2が副生成物である副次気体による出力値の変化量とする。複数の所定の範囲毎の積算値の比率が図18の各閾値範囲の面積に比例する関係を示すことで、想定された電解水の生成条件で次亜塩素酸と副次気体が生成されていると判別できる。次亜塩素酸の生成時には副生成物も同時に生成される。この副生成物の反応も考慮した判別を行うことで、次亜塩素酸の生成を正確に判別することができる。つまり、閾値範囲a1、閾値範囲a2、閾値範囲b1、閾値範囲b2、閾値範囲c1、閾値範囲c2、閾値範囲d1、閾値範囲d2の積算値の比率が図18の各閾値範囲の面積と比例した比率を示す場合に、電解水生成部205で生成された電解水として、次亜塩素酸が含まれるかどうかを判別できる。図18を例として複数の所定の範囲毎の積算値の具体例を示す。図18では、所定の期間において算出した複数の所定の範囲毎の積算値は、閾値範囲d2は2回、閾値範囲c2は30回、閾値範囲b2は20回、閾値範囲a2は1回、閾値範囲a1は3回、閾値範囲b1は40回、閾値範囲c1は5回、閾値範囲d1は1回である。前述したように、複数の所定の範囲毎の積算値の比率が、上記の比率の関係性を示す場合、電解水生成部205で生成された電解水として、次亜塩素酸が含まれるかと判別できる。なお、比率の関係性を有するかの判別は、複数の所定の範囲に対して任意のばらつき範囲を設定して判別してもよい。例えば、閾値範囲d2の積算値が2回±10%、閾値範囲c2の積算値が30回±10%、閾値範囲b2の積算値が20回±10%、閾値範囲a2の積算値が1回±10%、閾値範囲a1の積算値が3回±10%、閾値範囲b1の積算値が40回±10%、閾値範囲c1の積算値が5回±10%、閾値範囲d1の積算値が1回±10%であるとき、複数の所定の範囲毎の積算値の比率が、図18の各閾値範囲の面積と比例した関係性を満たすと判別してもよい。即ち、電解水生成部205で生成された電解水として、次亜塩素酸が含まれると判別してもよい。 As described above, the amount of change in the output value of the gas detection unit 220 due to the detection gas containing hypochlorous acid generated by the electrolyzed water generated by the electrolyzed water generation unit 205 and the by-product by-product gas is the threshold range b1 as described above. And the peaks of the appearance frequencies shown in the threshold range b2 and the threshold range c2 tend to increase. The control unit 230 compares the tendency of the peak of such appearance frequency with a plurality of predetermined ranges shown in FIG. 19 to calculate an integrated value which is the number of appearances in each of the plurality of predetermined ranges. .. When the change amount of the gas detection unit 220 shows the tendency of the appearance frequency shown in FIG. 18, the integrated value for each of the plurality of predetermined ranges shows a tendency proportional to the area of each threshold range of FIG. 18. When the ratio of the integrated values of the plurality of predetermined ranges shows a proportional relationship with the area of each threshold value range of FIG. 18, if hypochlorous acid is present as the electrolyzed water generated by the electrolyzed water generating unit 205. Can be determined. This makes it possible to identify the detected gas. As a specific example, the threshold value range b1 is the change amount of the output value due to the detection gas containing hypochlorous acid, and the threshold value range b2 and the threshold value range c2 are the change amount of the output value due to the by-product gas that is a by-product. .. By showing the relationship that the ratio of the integrated value for each of the plurality of predetermined ranges is proportional to the area of each threshold value range in FIG. 18, hypochlorous acid and a secondary gas are generated under the assumed generation condition of electrolyzed water. It can be determined that there is. By-products are also produced at the same time when hypochlorous acid is produced. By carrying out the determination in consideration of the reaction of this by-product, it is possible to accurately determine the production of hypochlorous acid. That is, the ratio of the integrated value of the threshold range a1, the threshold range a2, the threshold range b1, the threshold range b2, the threshold range c1, the threshold range c2, the threshold range d1, and the threshold range d2 is proportional to the area of each threshold range of FIG. When the ratio is indicated, it can be determined whether or not hypochlorous acid is contained in the electrolyzed water generated by the electrolyzed water generating unit 205. A specific example of the integrated value for each of a plurality of predetermined ranges will be described with reference to FIG. In FIG. 18, the integrated values for each of the plurality of predetermined ranges calculated in the predetermined period are the threshold range d2 twice, the threshold range c2 30 times, the threshold range b2 20 times, the threshold range a2 once, and the threshold value The range a1 is 3 times, the threshold range b1 is 40 times, the threshold range c1 is 5 times, and the threshold range d1 is 1 time. As described above, when the ratio of the integrated values for each of the plurality of predetermined ranges indicates the relationship of the above ratios, it is determined whether hypochlorous acid is included as the electrolyzed water generated by the electrolyzed water generating unit 205. it can. It should be noted that the determination of whether there is a relationship of the ratio may be performed by setting an arbitrary variation range for a plurality of predetermined ranges. For example, the integrated value of the threshold range d2 is ±10% twice, the integrated value of the threshold range c2 is 30 ±10%, the integrated value of the threshold range b2 is 20 ±10%, and the integrated value of the threshold range a2 is once. ±10%, the integrated value of the threshold range a1 is 3 times ±10%, the integrated value of the threshold range b1 is 40 times ±10%, the integrated value of the threshold range c1 is 5 times ±10%, the integrated value of the threshold range d1 is When it is ±10% once, it may be determined that the ratio of the integrated values in each of the plurality of predetermined ranges satisfies the relationship proportional to the area of each threshold range in FIG. That is, it may be determined that the electrolyzed water generated by the electrolyzed water generation unit 205 contains hypochlorous acid.
 上述したように、設置位置や生成条件などが決まると出現頻度の傾向が同等になる。よって、電解水生成部205で生成された電解水による次亜塩素酸を含む検知気体により、所定の期間において算出された複数の変化量と複数の所定の範囲とを比較して算出した、複数の所定の範囲毎の変化量の出現数である積算値の大きさを用いることで、次亜塩素酸の濃度を検出する精度を向上させている。一例として、図18で示す出現頻度の傾向を示す場合に、特定の濃度で次亜塩素酸が生成されていると仮定して説明を行う。電解水生成部205で生成された電解水による次亜塩素酸の濃度が図18の条件よりも高い場合、想定された電解水の生成条件で次亜塩素酸と副生成物が生成されていることから、出現頻度の傾向は図18の各閾値範囲の面積と比例の関係を示す。そのため、複数の所定の範囲毎の変化量の出現数である積算値の比率は同等になる。ただし、次亜塩素酸や副生成物の濃度が高くなるため、全体的に出現頻度が大きくなり、複数の所定の範囲毎の変化量の出現数である積算値が大きな出力値を示す。一方、検知気体の種類が異なる場合や次亜塩素酸の濃度が低い場合は、出現頻度の傾向が変わり、各閾値範囲における積算値の比率の関係性が次亜塩素酸の濃度が高い場合と異なる出力を示すことになる。また、各閾値範囲における積算値が小さく特定の気体の検出が困難になる。このように、複数の所定の範囲毎の変化量の出現数である積算値の比率に加え、積算値の大きさを用いることで、次亜塩素酸の生成量を正確に判別することができる。 As mentioned above, when the installation position and generation conditions are decided, the tendency of the appearance frequency becomes equal. Therefore, the detection gas containing hypochlorous acid generated by the electrolyzed water generated by the electrolyzed water generation unit 205 is calculated by comparing a plurality of changes calculated in a predetermined period with a plurality of predetermined ranges. The accuracy of detecting the concentration of hypochlorous acid is improved by using the magnitude of the integrated value, which is the number of appearances of the variation amount for each of the predetermined ranges. As an example, when the tendency of the appearance frequency shown in FIG. 18 is shown, the description will be made assuming that hypochlorous acid is generated at a specific concentration. When the concentration of hypochlorous acid by the electrolyzed water generated by the electrolyzed water generation unit 205 is higher than the condition of FIG. 18, hypochlorous acid and by-products are generated under the assumed electrolyzed water generation conditions. Therefore, the tendency of the appearance frequency shows a proportional relationship with the area of each threshold range in FIG. Therefore, the ratio of the integrated value, which is the number of appearances of the amount of change in each of the plurality of predetermined ranges, becomes equal. However, since the concentration of hypochlorous acid and byproducts increases, the frequency of appearance increases as a whole, and the integrated value, which is the number of appearances of the amount of change in each of a plurality of predetermined ranges, shows a large output value. On the other hand, when the type of detected gas is different or when the concentration of hypochlorous acid is low, the tendency of the appearance frequency changes, and the relationship of the ratio of integrated values in each threshold range is high when the concentration of hypochlorous acid is high. Will show different output. In addition, the integrated value in each threshold range is small, making it difficult to detect a specific gas. Thus, by using the magnitude of the integrated value in addition to the ratio of the integrated value that is the number of appearances of the amount of change in each of a plurality of predetermined ranges, it is possible to accurately determine the amount of hypochlorous acid produced. ..
 また、各閾値範囲における積算値の比率に加えて、各閾値範囲における積算値の大きさを特定の比較閾値と比較し、特定の閾値以上となる場合に、検知対象とする気体が存在すると判別できる。まず、閾値範囲a1、閾値範囲a2、閾値範囲b1、閾値範囲b2、閾値範囲c1、閾値範囲c2、閾値範囲d1、閾値範囲d2の積算値の比率が、図18の各閾値範囲の面積と比例の関係を示すかを判定する。さらに、各閾値範囲における積算値が、各閾値範囲に対して設定された特定の閾値より大きい場合に、検知対象とする気体が存在すると判別する。 Further, in addition to the ratio of the integrated value in each threshold range, the size of the integrated value in each threshold range is compared with a specific comparison threshold value, and when it is equal to or greater than the specific threshold value, it is determined that the gas to be detected exists. it can. First, the ratio of the integrated value of the threshold range a1, the threshold range a2, the threshold range b1, the threshold range b2, the threshold range c1, the threshold range c2, the threshold range d1, and the threshold range d2 is proportional to the area of each threshold range of FIG. Is determined. Furthermore, when the integrated value in each threshold range is larger than the specific threshold value set for each threshold range, it is determined that the gas to be detected exists.
 また、検知対象とする気体の濃度を別途計測器などで計測し、濃度と相関のある比較閾値と比較することで濃度値に換算することも可能である。この場合、各閾値範囲における比較閾値は、次亜塩素酸濃度の条件などに応じて設定された閾値を設定することで実現できる。 It is also possible to measure the concentration of the gas to be detected with a separate measuring device and compare it with a comparison threshold that correlates with the concentration to convert it into a concentration value. In this case, the comparison threshold in each threshold range can be realized by setting the threshold set according to the condition of the hypochlorous acid concentration or the like.
 なお、上記の説明では、所定の範囲として閾値範囲a1~d2の8個の領域の場合で説明したが、複数の所定の範囲として各閾値範囲の電圧範囲をより狭く設定し、より多くの所定の範囲による判定を行ってもよい。電解水生成部205で生成された電解水による次亜塩素酸を含む検知気体による出現頻度の傾向に対して、細かく所定の範囲を設定するため、次亜塩素酸や副生成物である副次気体も考慮し、検知対象とする気体を精度良く検知できる。 In the above description, the case of eight areas of the threshold ranges a1 to d2 as the predetermined range has been described, but the voltage range of each threshold range is set to be narrower as a plurality of predetermined ranges, and a larger number of predetermined ranges are set. The determination may be performed according to the range. In order to finely set a predetermined range for the tendency of the appearance frequency of the detection gas containing hypochlorous acid generated by the electrolyzed water generated by the electrolyzed water generation unit 205, hypochlorous acid or a by-product which is a by-product is set. The gas to be detected can be accurately detected in consideration of the gas.
 なお、上記の説明では、所定の範囲として閾値範囲a1~d2の8個全ての領域における積算値の比率で判定したが、全ての領域を使用せずに、特定の領域の積算値だけを用いた比率から検知気体の状態判別を行ってもよい。電解水生成部205で生成された電解水による次亜塩素酸を含む検知気体による出現頻度の傾向は、電気分解の条件などである程度決まるため、例えば、閾値範囲b1と閾値範囲b2と閾値範囲c2の比率のみを用いた判定でも、ある程度精度良く判別することが可能である。 In the above description, the predetermined range is determined by the ratio of the integrated value in all eight areas of the threshold ranges a1 to d2, but not all areas are used and only the integrated value of a specific area is used. The state of the detected gas may be determined based on the ratio. The tendency of the appearance frequency of the detection gas containing hypochlorous acid generated by the electrolyzed water generated by the electrolyzed water generation unit 205 is determined to some extent by the conditions of electrolysis, and therefore, for example, the threshold range b1, the threshold range b2, and the threshold range c2. Even if the determination is made using only the ratio of, it is possible to make the determination with a certain degree of accuracy.
 なお、使用環境のニオイレベルに応じた制御のために、気体検知部220を共用してもよい。ここで示すニオイとは、例えばタバコの煙によるニオイなどを想定している。この場合は、気体検知部220は、環境のニオイ成分を検知可能な位置に配置される必要がある。例えば、風路208などに配置することで実現できる。気体検知部220を用いて、電解水生成部205で生成した電解水による次亜塩素酸を含む気体を検知しつつ、使用環境のニオイレベルを判定し、ニオイレベルに応じた電解水散布装置200の制御を行う。 The gas detection unit 220 may be shared for control according to the odor level of the usage environment. The odor shown here is assumed to be, for example, odor caused by cigarette smoke. In this case, the gas detection unit 220 needs to be arranged at a position where the odor component of the environment can be detected. For example, it can be realized by arranging in the air passage 208 or the like. The gas detection unit 220 is used to detect the gas containing hypochlorous acid by the electrolyzed water generated by the electrolyzed water generation unit 205, determine the odor level of the usage environment, and the electrolyzed water spray device 200 according to the odor level. Control.
 図20A~20Dは、図17A~17Cの状態に加えて使用環境にニオイ発生がある場合の気体検知部220の出力の一例を示している。図20Aは、電解水生成部205の一対の電極217の通電状態と経過時間を示す図である。電解水生成部205の一対の電極217に通電することで電気分解を行う。図20Bは、使用環境のニオイ発生の状態と経過時間を示す図である。図20Cは、図20Aに示す一対の電極217の通電状態及び図20Bに示すニオイの発生状態における気体検知部220の出力値を示す図である。電解水生成部205で生成された電解水による次亜塩素酸を含む検知気体に応じて変化した気体検知部220の出力値と、ニオイ発生による出力値が重畳して出力されている。使用環境にニオイが発生すると、ニオイが空間に拡散し、空間内で時間経過に伴い濃度が均一になる。このため、図20Cで示すようにニオイ発生後に、気体検知部220はある程度安定した出力値を示す。ここで、一対の電極217が通電状態になると、電解水生成部205で生成された電解水による次亜塩素酸を含む検知気体により、気体検知部220の出力が急峻な変化をする。さらに、一対の電極217が非通電状態になると気体検知部220の出力値がニオイ発生時の出力レベルに戻り、ニオイ発生がなくなることで、図17Bと同等の出力値に戻る出力傾向を示す。図20Dは、一定周期毎に取得した気体検知部220の複数の出力値において、ある時点において取得した出力値とある時点よりも一周期前に取得された出力値との差分である変化量を示している。 FIGS. 20A to 20D show an example of the output of the gas detection unit 220 when odor is generated in the usage environment in addition to the states of FIGS. 17A to 17C. FIG. 20A is a diagram showing an energized state and elapsed time of the pair of electrodes 217 of the electrolyzed water producing unit 205. Electrolysis is performed by energizing the pair of electrodes 217 of the electrolyzed water producing unit 205. FIG. 20B is a diagram showing a state of odor occurrence in the usage environment and the elapsed time. 20C is a diagram showing the output value of the gas detection unit 220 in the energized state of the pair of electrodes 217 shown in FIG. 20A and the odor generation state shown in FIG. 20B. The output value of the gas detection unit 220 changed according to the detection gas containing hypochlorous acid generated by the electrolyzed water generated by the electrolyzed water generation unit 205 and the output value due to the generation of odor are superimposed and output. When the odor is generated in the environment of use, the odor diffuses into the space, and the concentration becomes uniform over time in the space. Therefore, as shown in FIG. 20C, the gas detector 220 shows a stable output value to some extent after the odor is generated. Here, when the pair of electrodes 217 are energized, the output of the gas detection unit 220 makes a sharp change due to the detection gas containing hypochlorous acid generated by the electrolyzed water in the electrolyzed water generation unit 205. Further, when the pair of electrodes 217 is in the non-energized state, the output value of the gas detection unit 220 returns to the output level when the odor is generated, and the odor is eliminated, so that the output value tends to return to the same output value as in FIG. 17B. FIG. 20D shows a change amount, which is a difference between an output value acquired at a certain time point and an output value acquired one cycle before a certain time point, in a plurality of output values of the gas detection unit 220 acquired at every constant cycle. Shows.
 図20Dと図17Cを比較すると、気体検知部220の変化量は使用環境のニオイの有無によらず同等の出力傾向を示している。つまり、ニオイ発生に関わらず電解水生成部205で生成された電解水による次亜塩素酸を含む気体を検知できる。言い換えると、使用環境のニオイ判定を、気体検知部220を用いて行うことが可能である。使用環境のニオイ判定において、一対の電極217が通電状態である場合の気体検知部220の急峻な出力変化はニオイ判定の検知精度低下に繋がる。そのため、例えば、一対の電極217が通電状態である場合の気体検知部220の出力を除いて判定するなどの処理を行う。これにより、電解水生成部205で生成された電解水による次亜塩素酸を含む検知気体の影響を低減し、使用環境のニオイレベルの判定が可能となる。このニオイレベル判定の結果に基づき、制御部230で電解水生成部205の一対の電極217への投入電力や、送風部207の風量などを制御する。気体検知部220で、電解水生成部205で生成した電解水による次亜塩素酸を含む気体の検知と、使用環境のニオイレベル判定を行う。これにより、使用環境のニオイレベルに応じた電解水散布装置200の制御を、追加のセンサを設けることなく、コストアップを抑えつつ実現することができる。 Comparing FIG. 20D and FIG. 17C, the amount of change in the gas detection unit 220 shows the same output tendency regardless of the presence or absence of odor in the usage environment. That is, a gas containing hypochlorous acid due to the electrolyzed water generated by the electrolyzed water generation unit 205 can be detected regardless of the generation of odor. In other words, the odor of the usage environment can be determined using the gas detection unit 220. In the odor determination of the usage environment, the sharp output change of the gas detection unit 220 when the pair of electrodes 217 is in the energized state leads to a reduction in the detection accuracy of the odor determination. Therefore, for example, processing such as determination is performed excluding the output of the gas detection unit 220 when the pair of electrodes 217 is in the energized state. As a result, the influence of the detection gas containing hypochlorous acid due to the electrolyzed water generated by the electrolyzed water generation unit 205 can be reduced, and the odor level of the use environment can be determined. Based on the result of the odor level determination, the control unit 230 controls the input power to the pair of electrodes 217 of the electrolyzed water generating unit 205, the air volume of the air blowing unit 207, and the like. The gas detection unit 220 detects the gas containing hypochlorous acid by the electrolyzed water generated by the electrolyzed water generation unit 205 and determines the odor level of the usage environment. Thereby, the control of the electrolytic water spraying device 200 according to the odor level of the use environment can be realized without providing an additional sensor while suppressing the cost increase.
 なお、複数の所定の範囲を決める閾値範囲はユーザ操作などで変更可能としてもよい。例えば、気体検知部220が寿命などで感度劣化すると、気体検知部220の出力値の変化量が小さくなる。気体検知部220の感度劣化に対して、閾値範囲を調整することで、感度調整が可能となる。気体検知部220の製造ばらつきや寿命劣化、使用環境の違いによる影響など、実際の使用環境に適した設定が可能となる。感度設定の方法は、本体ケース201の天面に設けられた操作パネルに感度設定用のスイッチを設け、ユーザが操作することで設定できるようにしてもよい。また、設定値は実験的に決めた複数の固定値を設定してもよいし、任意の値を設定できるようにしてもよい。 Note that the threshold range that determines a plurality of predetermined ranges may be changeable by a user operation or the like. For example, when the gas detector 220 deteriorates in sensitivity due to its life, the amount of change in the output value of the gas detector 220 decreases. The sensitivity can be adjusted by adjusting the threshold value range with respect to the sensitivity deterioration of the gas detection unit 220. It is possible to make settings suitable for the actual use environment, such as manufacturing variations of the gas detection unit 220, deterioration of the service life, and influences due to differences in the use environment. The sensitivity setting method may be performed by providing a sensitivity setting switch on the operation panel provided on the top surface of the main body case 201 and allowing the user to operate the switch. Further, as the set value, a plurality of fixed values determined experimentally may be set, or an arbitrary value may be set.
 なお、積算値の比率は変更可能としてもよい。例えば、電解水散布装置200として、電解水生成部205の一対の電極217の通電状態により、検知気体の副次気体の生成量が異なる。具体的には、電解水生成部205の一対の電極217に通電して電気分解する場合と、非通電状態にして電気分解しない動作の場合である。通電時と非通電時の気体検知部220で検知される気体は、副生成物である副次気体の生成量や有無などが異なる。そのため、積算値の比率を変更可能とすることで、電解水生成部205の一対の電極217への通電状態などが異なる場合でも精度良く検知することができる。また、気体検知部220の製造ばらつきや寿命劣化、使用環境の違いによる影響などで、センサ特性が変動する場合なども、積算値の比率を変更可能とすることで、精度良く検知することができる。積算値の比率の設定方法は、気体検知部220に使用するセンサの種類や特性などに応じて任意に設定できるようにしてもよい。また、制御部230が、電解水散布装置200の電解水生成状態などに応じて、自動的に切り替えてもよい。積算値の比率の設定値は、実験的に決めた固定値を設定してもよいし、任意の値を設定できるようにしてもよい。 Note that the integrated value ratio may be changeable. For example, in the electrolyzed water spraying device 200, the generation amount of the secondary gas of the detection gas differs depending on the energization state of the pair of electrodes 217 of the electrolyzed water generation unit 205. Specifically, there are a case where the pair of electrodes 217 of the electrolyzed water producing unit 205 are energized for electrolysis, and a case where the electrolysis is not performed by energizing them. The gas detected by the gas detection unit 220 during energization and de-energization differs in the amount and presence or absence of by-products, which are by-products. Therefore, by making it possible to change the ratio of the integrated values, it is possible to accurately detect even when the energization state of the pair of electrodes 217 of the electrolyzed water producing unit 205 is different. Further, even when the sensor characteristics are changed due to manufacturing variations of the gas detection unit 220, deterioration of life, influences of differences in use environment, etc., the ratio of the integrated value can be changed so that the detection can be performed accurately. .. The method of setting the ratio of the integrated values may be set arbitrarily according to the type and characteristics of the sensor used in the gas detection unit 220. Further, the control unit 230 may automatically switch depending on the electrolyzed water generation state of the electrolyzed water spraying device 200 and the like. The set value of the ratio of the integrated value may be a fixed value that is experimentally determined or an arbitrary value may be set.
 なお、上述の説明では、一定の周期で所定の期間、気体検知部220から出力された出力値を繰り返し取得し、各周期における出力値の変化量を算出し、各周期において算出した複数の変化量それぞれを、複数の所定の範囲と比較している。そして、算出した複数の変化量それぞれを複数の所定の範囲のいずれかに分類し、所定の範囲毎の変化量の出現数である積算値を算出し、算出した複数の所定の範囲毎の積算値の情報に基づいて検知気体の状態判別を行ったが、これに限られない。即ち、この状態判別結果を所定時間毎に取得して、最終的な検知気体の状態判別結果を算出してもよい。検知気体の状態判別結果を所定時間毎に取得して平均化処理することで、判別結果のばらつきが抑制できるため、判別精度を向上させることが可能となる。 In the above description, the output value output from the gas detection unit 220 is repeatedly acquired for a predetermined period in a constant cycle, the change amount of the output value in each cycle is calculated, and the plurality of changes calculated in each cycle are calculated. Each quantity is compared to a plurality of predetermined ranges. Then, each of the calculated plurality of change amounts is classified into one of a plurality of predetermined ranges, an integrated value that is the number of appearances of the change amount in each predetermined range is calculated, and the calculated plurality of predetermined range integrated values are calculated. Although the state of the detected gas is determined based on the value information, it is not limited to this. That is, this state determination result may be acquired every predetermined time, and the final detection gas state determination result may be calculated. By obtaining the state determination result of the detected gas at every predetermined time and performing the averaging process, it is possible to suppress the variation of the determination result, and thus it is possible to improve the determination accuracy.
 また、平均処理の方法として、移動平均処理を用いることで、時間経過に対応した検知気体の状態判別結果の出力が可能である。移動平均処理は、例えば、平均化するデータ数が5個の場合、取得したデータを含む過去5個のデータを用いて平均化する処理で、過去からのデータ変化の傾向を表す出力が得られるものである。電解水生成部205で生成された電解水による次亜塩素酸を含む気体を検知する場合は、電解水の状態が時間経過に対してある程度緩やかな変化であるため、移動平均処理によって電解水の状態変化を適切に判別できる。単純な平均化処理では所定時間毎のデータを用いた状態判別のため、周囲環境の影響を受けて平均化処理を行う際に使用するデータに依存して急峻な変化が発生してしまう。移動平均化処理により、周囲環境の影響を抑えて、電解水生成部205で生成された電解水による次亜塩素酸を含む検知気体の状態判別が可能となる。 Also, by using moving average processing as the averaging method, it is possible to output the result of state determination of the detected gas corresponding to the passage of time. In the moving average processing, for example, when the number of data to be averaged is 5, the processing is performed by averaging the past 5 data including the acquired data, and an output showing the tendency of data change from the past is obtained. It is a thing. When a gas containing hypochlorous acid generated by the electrolyzed water generated by the electrolyzed water generation unit 205 is detected, the state of the electrolyzed water changes to a certain degree with time, and thus the moving average process is performed to obtain the electrolyzed water. The state change can be properly discriminated. In the simple averaging process, since the state determination is performed using the data for each predetermined time, a sharp change occurs depending on the data used when performing the averaging process under the influence of the surrounding environment. By the moving averaging process, it is possible to suppress the influence of the surrounding environment and determine the state of the detection gas containing hypochlorous acid by the electrolyzed water generated by the electrolyzed water generating unit 205.
 以上の通り、電解水散布装置200では、気体検知部220から出力値を一定の周期で所定の期間繰り返し取得し、各周期における出力値の変化量を算出する。さらに、算出した各周期における複数の変化量と予め定められた複数の所定の範囲とを比較し、複数の所定の範囲毎の変化量の出現数である積算値を算出する。この複数の所定の範囲における積算値の比率に基づく判別により、電解水散布装置200では、検知対象の気体の状態判別を高い精度で実現できる。 As described above, in the electrolyzed water spraying device 200, the output value is repeatedly acquired from the gas detection unit 220 in a predetermined cycle for a predetermined period, and the change amount of the output value in each cycle is calculated. Further, the calculated plurality of change amounts in each cycle are compared with a plurality of predetermined ranges, and an integrated value that is the number of appearances of the change amount in each of the plurality of predetermined ranges is calculated. By the discrimination based on the ratio of the integrated values in the plurality of predetermined ranges, the electrolytic water spraying device 200 can realize the state discrimination of the gas to be detected with high accuracy.
 以上、実施形態に基づき本開示を説明したが、本開示は上記実施形態に何ら限定されるものではなく、本開示の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、上記各実施形態で挙げた数値は一例であり、他の数値を採用することは当然可能である。 Although the present disclosure has been described above based on the embodiments, the present disclosure is not limited to the above embodiments, and various modifications can be easily made without departing from the gist of the present disclosure. It can be guessed. For example, the numerical values mentioned in each of the above embodiments are examples, and it is naturally possible to adopt other numerical values.
 本開示に係る電解水散布装置は、空気中の細菌、真菌、ウイルス、臭い等の除去(不活性化を含む)を行う電解水散布装置として有用である。 The electrolyzed water sprinkling device according to the present disclosure is useful as an electrolyzed water sprinkling device for removing (including inactivating) bacteria, fungi, viruses, odors, etc. in the air.
 100  電解水散布装置
 101  本体ケース
 101A  第1の本体側面
 102  吸気口
 103  パネル
 104  開口
 105  電解水生成部
 106  吹出口
 107  送風部
 108  風路
 109  モータ部
 109a  回転軸
 110  ファン部
 111  ケーシング部
 112  吐出口
 113  吸込口
 114  貯水部
 114a  タンク保持部
 115  給水部
 115a  タンク
 115b  蓋
 116  フィルター部
 116a  フィルター
 117  一対の電極
 118  電解促進錠剤投入部
 118a  錠剤投入ケース
 118b  錠剤投入カバー
 119  散布部
 120  気体検知部
 130  制御部
 131  気体判別部
 132  比較部
 133  演算部
 200  電解水散布装置
 201  本体ケース
 201A  第1の本体側面
 202  吸気口
 203  パネル
 204  開口
 205  電解水生成部
 206  吹出口
 207  送風部
 208  風路
 209  モータ部
 209a  回転軸
 210  ファン部
 211  ケーシング部
 212  吐出口
 213  吸込口
 214  貯水部
 214a  タンク保持部
 215  給水部
 215a  タンク
 215b  蓋
 216  フィルター部
 216a  フィルター
 217  一対の電極
 218  電解促進錠剤投入部
 218a  錠剤投入ケース
 218b  錠剤投入カバー
 219  散布部
 220  気体検知部
 230  制御部
100 Electrolyzed Water Dispersing Device 101 Main Body Case 101A First Main Body Side Surface 102 Intake Port 103 Panel 104 Opening 105 Electrolyzed Water Generating Unit 106 Blowing Out Port 107 Blower Port 108 Air Path 109 Motor Unit 109a Rotating Shaft 110 Fan Unit 111 Casing Unit 112 Discharge Port 113 Suction Port 114 Water Storage Section 114a Tank Holding Section 115 Water Supply Section 115a Tank 115b Lid 116 Filter Section 116a Filter 117 Pair of Electrodes 118 Electrolysis Promoting Tablet Loading Section 118a Tablet Input Case 118b Tablet Input Cover 119 Spraying Section 120 Gas Detection Section 130 Control Section 131 Gas Discrimination Unit 132 Comparison Unit 133 Calculation Unit 200 Electrolyzed Water Dispersing Device 201 Main Body Case 201A First Main Body Side Surface 202 Intake Port 203 Panel 204 Opening 205 Electrolyzed Water Generation Unit 206 Air Blow Port 207 Air Path 209 Motor Unit 209a Rotation Shaft 210 Fan part 211 Casing part 212 Discharge port 213 Suction port 214 Water storage part 214a Tank holding part 215 Water supply part 215a Tank 215b Lid 216 Filter part 216a Filter 217 Pair of electrodes 218 Electrolysis promoting tablet input part 218a Tablet input case 218b Tablet input cover 219 Spraying unit 220 Gas detection unit 230 Control unit

Claims (12)

  1.  一対の電極によって電解水を生成する電解水生成部と、
     前記電解水生成部が生成した前記電解水を、吸気口から筐体内に吸い込んだ空気に接触させて吹出口から送風する送風部と、
     前記電解水生成部の前記一対の電極に通電させる電力量及び前記送風部の風量を制御する制御部と、
     前記電解水生成部で生成された前記電解水を含んだ気体を検知する気体検知部と、を備え、
     前記気体検知部は、前記気体検知部によって検知された検知気体に応じた出力値を出力し、
     前記制御部は、前記気体検知部から出力された前記出力値に基づいて、前記検知気体の状態を判別する
     ことを特徴とする電解水散布装置。
    An electrolyzed water production unit that produces electrolyzed water by a pair of electrodes,
    A blowing unit that blows the electrolyzed water generated by the electrolyzed water generation unit from the air outlet by bringing the electrolyzed water into contact with the air sucked into the housing from the air inlet.
    A control unit that controls the amount of electric power to be applied to the pair of electrodes of the electrolyzed water generating unit and the air amount of the blower unit,
    A gas detection unit for detecting a gas containing the electrolyzed water generated by the electrolyzed water generation unit,
    The gas detection unit outputs an output value according to the detection gas detected by the gas detection unit,
    The control unit determines the state of the detected gas based on the output value output from the gas detection unit.
  2.  前記制御部は、前記検知気体の状態を判別する気体判別部を備え、
     前記気体判別部は、前記気体検知部から出力された前記出力値を一定の周期で繰り返し取得し、各周期における前記出力値の変化量を算出し、前記変化量に基づいて前記検知気体の状態を判別する演算部を備える
     ことを特徴とする請求項1に記載の電解水散布装置。
    The control unit includes a gas determination unit that determines the state of the detected gas,
    The gas determination unit repeatedly acquires the output value output from the gas detection unit in a constant cycle, calculates the amount of change in the output value in each cycle, and the state of the detected gas based on the amount of change. The electrolyzed water spraying device according to claim 1, further comprising: a calculation unit that determines
  3.  前記気体判別部は、前記演算部で算出した各周期における前記変化量それぞれについて、前記変化量と1以上の所定の閾値範囲とを比較し、前記所定の閾値範囲に含まれる前記変化量の個数を取得する比較部を備え、
     前記演算部は、前記比較部により取得された前記所定の閾値範囲に含まれる前記変化量の個数に基づいて前記検知気体の状態を判別する
     ことを特徴とする請求項2に記載の電解水散布装置。
    The gas determination unit compares the change amount with one or more predetermined threshold ranges for each of the change amounts in each cycle calculated by the calculation unit, and determines the number of the change amounts included in the predetermined threshold range. Is equipped with a comparison unit that acquires
    The electrolysis water spraying according to claim 2, wherein the arithmetic unit determines the state of the detected gas based on the number of the change amounts included in the predetermined threshold range acquired by the comparison unit. apparatus.
  4.  前記比較部は、前記演算部で算出した各周期における前記変化量それぞれについて、前記変化量と相互に異なる複数の前記所定の閾値範囲とを比較し、複数の前記所定の閾値範囲それぞれに含まれる前記変化量の個数を取得し、
     前記演算部は、複数の前記所定の閾値範囲それぞれに対応して記憶された加算値にも基づいて前記検知気体の状態を判別する
     ことを特徴とする請求項3に記載の電解水散布装置。
    The comparison unit compares each of the change amounts in each cycle calculated by the calculation unit with the plurality of predetermined threshold ranges different from each other and is included in each of the plurality of predetermined threshold ranges. Obtaining the number of changes,
    The electrolyzed water spraying device according to claim 3, wherein the arithmetic unit determines the state of the detected gas based on the added value stored corresponding to each of the plurality of predetermined threshold ranges.
  5.  複数の前記所定の閾値範囲は、変更可能である
     ことを特徴とする請求項4に記載の電解水散布装置。
    The plurality of the predetermined threshold ranges can be changed. The electrolyzed water spraying device according to claim 4, wherein the predetermined threshold range is changeable.
  6.  前記制御部は、前記気体検知部から出力された前記出力値を一定の周期で所定の期間繰り返し取得し、各周期における前記出力値の変化量を算出し、各周期における前記変化量それぞれについて、前記変化量と複数の所定の範囲とを比較し、前記所定の範囲毎の前記変化量の出現数である積算値を算出し、算出した前記所定の範囲毎の前記積算値の情報に基づいて、前記検知気体の状態を判別する
     ことを特徴とする請求項1に記載の電解水散布装置。
    The control unit repeatedly acquires the output value output from the gas detection unit for a predetermined period at a constant cycle, calculates a change amount of the output value in each cycle, and for each of the change amounts in each cycle, Comparing the amount of change with a plurality of predetermined ranges, calculating an integrated value that is the number of appearances of the amount of change for each of the predetermined ranges, based on the information of the calculated integrated value for each of the predetermined ranges The electrolytic water spraying device according to claim 1, wherein the state of the detected gas is determined.
  7.  前記制御部は、前記所定の範囲毎の前記変化量の前記積算値の比率に基づいて、前記検知気体内における特定の気体の生成を判別する
     ことを特徴とする請求項6に記載の電解水散布装置。
    The electrolyzed water according to claim 6, wherein the control unit determines generation of a specific gas in the detection gas based on a ratio of the integrated value of the change amount for each of the predetermined ranges. Spraying device.
  8.  前記制御部は、前記所定の範囲毎の前記変化量の前記積算値に基づいて、前記検知気体内における特定の気体の濃度を判別する
     ことを特徴とする請求項6又は請求項7に記載の電解水散布装置。
    The control unit determines the concentration of a specific gas in the detection gas based on the integrated value of the change amount for each of the predetermined ranges. Electrolytic water spraying device.
  9.  前記積算値の比率は、変更可能であることを特徴とする請求項7又は請求項8に記載の電解水散布装置。 The electrolytic water spraying device according to claim 7 or 8, wherein the ratio of the integrated value is changeable.
  10.  前記複数の所定の範囲は、変更可能であることを特徴とする請求項6~9のいずれかに記載の電解水散布装置。 The electrolytic water spraying device according to any one of claims 6 to 9, wherein the plurality of predetermined ranges can be changed.
  11.  前記出力値は、電圧値である
     ことを特徴とする請求項1~10のいずれか1項に記載の電解水散布装置。
    The electrolytic water spraying device according to any one of claims 1 to 10, wherein the output value is a voltage value.
  12. 請求項1~11のいずれか1項に記載の電解水散布装置を備える
     ことを特徴とする送風装置。
    An air blower comprising the electrolytic water spraying device according to any one of claims 1 to 11.
PCT/JP2019/046284 2018-12-17 2019-11-27 Electrolytic water dispersing device, and blowing device WO2020129557A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020561246A JP7345086B2 (en) 2018-12-17 2019-11-27 Electrolyzed water spray equipment and blower equipment
CN201980077099.6A CN113167488B (en) 2018-12-17 2019-11-27 Electrolytic water dispersing device and air blowing device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-235504 2018-12-17
JP2018235504 2018-12-17
JP2019084861 2019-04-26
JP2019-084861 2019-04-26

Publications (1)

Publication Number Publication Date
WO2020129557A1 true WO2020129557A1 (en) 2020-06-25

Family

ID=71101439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046284 WO2020129557A1 (en) 2018-12-17 2019-11-27 Electrolytic water dispersing device, and blowing device

Country Status (3)

Country Link
JP (1) JP7345086B2 (en)
CN (1) CN113167488B (en)
WO (1) WO2020129557A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115477341A (en) * 2021-06-16 2022-12-16 俞海燕 Filter equipment and safe farming systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347261A (en) * 1989-07-14 1991-02-28 Takeda Chem Ind Ltd Treating apparatus with ozone
JPH04288163A (en) * 1991-02-14 1992-10-13 Takeda Chem Ind Ltd Deodorizing method and apparatus
JPH05157714A (en) * 1991-12-06 1993-06-25 Figaro Eng Inc Air-conditioning control device
WO2016157383A1 (en) * 2015-03-30 2016-10-06 三菱電機株式会社 Air purifier
JP2017169613A (en) * 2016-03-18 2017-09-28 株式会社東芝 Mobile Autonomous Robot

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100215757B1 (en) * 1996-02-29 1999-08-16 다카노 야스아키 Air cleaner
JP2000275202A (en) * 1999-03-25 2000-10-06 Daikin Ind Ltd Gas detecting device
US6843835B2 (en) * 2001-03-27 2005-01-18 The Procter & Gamble Company Air cleaning apparatus and method for cleaning air
TW477420U (en) * 2001-07-06 2002-02-21 King Can Industry Corp Air quality regulator
JP2003028466A (en) * 2001-07-19 2003-01-29 Sanyo Electric Co Ltd Humidifier
US6805787B2 (en) * 2001-09-07 2004-10-19 Severn Trent Services-Water Purification Solutions, Inc. Method and system for generating hypochlorite
JP2006097960A (en) * 2004-09-29 2006-04-13 Matsushita Electric Ind Co Ltd Air purifier, air cleaner, and humidifier
JP2006325926A (en) * 2005-05-26 2006-12-07 Shinryu Ko Atomizer of electrolyzed disinfection water
JP4956092B2 (en) * 2006-08-25 2012-06-20 三洋電機株式会社 Air conditioner
CN101367570B (en) * 2007-08-17 2013-11-20 株式会社北越 Subacid electrolysis water generating method and apparatus
JP2009058160A (en) * 2007-08-30 2009-03-19 Sanyo Electric Co Ltd Electrolyzed water mist generating unit for air cleaner
US8470143B2 (en) * 2010-01-26 2013-06-25 Daniel Moroni Tucker Advanced chlorine generating system
CN203757902U (en) * 2013-11-21 2014-08-06 郑平林 System device for purifying and adjusting indoor air environment
JP6731710B2 (en) * 2015-08-31 2020-07-29 新コスモス電機株式会社 Gas analysis system and gas analysis method
JP6879545B2 (en) * 2017-03-15 2021-06-02 株式会社タニタ Biogas detectors, methods, and programs
CN108878151B (en) * 2017-05-09 2021-03-26 东莞市东阳光电容器有限公司 700-750V aluminum electrolytic capacitor electrolyte
CN108593571A (en) * 2018-03-12 2018-09-28 宁夏天元锰业有限公司 A kind of detection method of automatic detection electrolyte manganese ion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347261A (en) * 1989-07-14 1991-02-28 Takeda Chem Ind Ltd Treating apparatus with ozone
JPH04288163A (en) * 1991-02-14 1992-10-13 Takeda Chem Ind Ltd Deodorizing method and apparatus
JPH05157714A (en) * 1991-12-06 1993-06-25 Figaro Eng Inc Air-conditioning control device
WO2016157383A1 (en) * 2015-03-30 2016-10-06 三菱電機株式会社 Air purifier
JP2017169613A (en) * 2016-03-18 2017-09-28 株式会社東芝 Mobile Autonomous Robot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115477341A (en) * 2021-06-16 2022-12-16 俞海燕 Filter equipment and safe farming systems

Also Published As

Publication number Publication date
CN113167488A (en) 2021-07-23
JPWO2020129557A1 (en) 2021-11-11
CN113167488B (en) 2023-01-06
JP7345086B2 (en) 2023-09-15

Similar Documents

Publication Publication Date Title
JP7113163B2 (en) Electrolytic water spray device
JP4712915B1 (en) Electrolytic device and method for producing slightly acidic electrolyzed water
JP2019024811A (en) Electrolytic water spraying system
US20230330296A1 (en) Space cleaning device and space cleaning system using same
WO2020129557A1 (en) Electrolytic water dispersing device, and blowing device
JP2021135011A (en) Air conditioner
JP6990825B2 (en) Space sterilizer
JP6956314B2 (en) Electrolyzed water sprayer
JP6964215B2 (en) Electrolyzed water sprayer
JP4878855B2 (en) Air sterilization apparatus and control method
WO2019021634A1 (en) Electrolyzed water spraying device
JP7113166B2 (en) Electrolytic water spray device
WO2011065289A1 (en) Water supply tank and electrolytic device provided with same
JP5004173B2 (en) Humidifier
JP2011218001A (en) Hand washer
JP2011007508A (en) Method for measuring concentration of free residual chlorine, and method for generating hypochlorous acid using the same
WO2022018944A1 (en) Electrolytic water spraying device
JP7312938B2 (en) Electrolytic water spray device
JP2008167963A (en) Air filtering apparatus
JP7312936B2 (en) Electrolytic water spraying device and blower using the same
JP2020110337A (en) Electrolytic water spraying device
CN111032206B (en) Electrolytic acceleration tablet feeding device and electrolytic water spraying device
JP7312937B2 (en) Electrolytic water spraying device and blower using the same
JP4878835B2 (en) Air sterilization apparatus and control method
CN215780268U (en) Sterilizing machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900314

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561246

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19900314

Country of ref document: EP

Kind code of ref document: A1