WO2020129452A1 - Measurement device and measurement method - Google Patents

Measurement device and measurement method Download PDF

Info

Publication number
WO2020129452A1
WO2020129452A1 PCT/JP2019/043730 JP2019043730W WO2020129452A1 WO 2020129452 A1 WO2020129452 A1 WO 2020129452A1 JP 2019043730 W JP2019043730 W JP 2019043730W WO 2020129452 A1 WO2020129452 A1 WO 2020129452A1
Authority
WO
WIPO (PCT)
Prior art keywords
working
current
group
working electrode
electrode
Prior art date
Application number
PCT/JP2019/043730
Other languages
French (fr)
Japanese (ja)
Inventor
宏太 宮川
Original Assignee
株式会社ヨコオ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヨコオ filed Critical 株式会社ヨコオ
Priority to JP2020561209A priority Critical patent/JPWO2020129452A1/en
Publication of WO2020129452A1 publication Critical patent/WO2020129452A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Definitions

  • the present invention relates to a measuring device and a measuring method for electrochemical measurement, and particularly to a measuring device and a measuring method for measuring a redox current.
  • Patent Document 1 describes an example of a measuring device using electrochemical measurement.
  • This measuring device includes a single reference electrode, a single counter electrode, and a plurality of working electrodes.
  • the reference electrode and the counter electrode are electrically connected to the potentiostat.
  • the plurality of working electrodes are electrically connected to the multiplexer.
  • the multiplexer sequentially switches the working electrode electrically connected to the potentiostat from the plurality of working electrodes.
  • One example of the object of the present invention is to reduce the number of current-voltage conversion circuits while reducing the number of times of switching the electrical connection of the working electrode-current-voltage conversion circuit.
  • Other objects of the present invention will be apparent from the description herein.
  • a measuring device for measuring a redox current A first switching circuit, A second switching circuit, A first group of working electrodes electrically connected to the first switching circuit; A second group of working electrodes electrically connected to the second switching circuit; Equipped with The first switching circuit sequentially switches the working electrodes electrically connected to the first current-voltage conversion circuit from the working electrodes of the first group, The second switching circuit sequentially switches the working electrodes electrically connected to the second current-voltage conversion circuit from the working electrodes of the second group,
  • the first group of working electrodes and the second group of working electrodes are a measuring device arranged in a common well.
  • Another aspect of the present invention is A measuring method for measuring a redox current,
  • the working electrodes electrically connected to the first current-voltage conversion circuit among the working electrodes of the first group located in the well and electrically connected to the first switching circuit are sequentially switched by the first switching circuit
  • the working electrodes electrically connected to the second current-voltage conversion circuit among the working electrodes of the second group located in the well and electrically connected to the second switching circuit are sequentially switched by the second switching circuit.
  • FIG. 3 is a sectional view taken along the line AA′ of FIG. 2. It is a figure for demonstrating the measuring method by a measuring device. It is a figure for demonstrating the detail of the block shown in FIG.
  • FIG. 6 is a sectional view taken along the line PP′ of FIG. 5. It is a figure for demonstrating the connection between a working electrode and a counter electrode in a well.
  • FIG. 1 is a circuit diagram of a measuring device 20 according to the embodiment.
  • FIG. 2 is a plan view of the element 10 according to the embodiment.
  • FIG. 3 is a sectional view taken along the line AA′ of FIG.
  • FIG. 4 is a diagram for explaining a measuring method by the measuring device 20.
  • the measuring device 20 measures a redox current.
  • the measuring device 20 includes a plurality of working electrode groups G (first working electrode Ga and second working electrode Gb) and a plurality of switching circuits 400 (first switching circuit 400a and second switching circuit 400b).
  • the first group of working electrodes Ga and the second group of working electrodes Gb are located in a common well (well 300) and are electrically connected to the first switching circuit 400a and the second switching circuit 400b, respectively.
  • the first switching circuit 400a electrically connects the working electrode Ga of the first group to the first current-voltage converting circuit 510a (one of the plurality of current-voltage converting circuits 510). 112 are sequentially switched.
  • the second switching circuit 400b is electrically connected to the second current-voltage conversion circuit 510b (another current-voltage conversion circuit of the plurality of current-voltage conversion circuits 510) from the second group of working electrodes Gb.
  • the working electrode 112 is sequentially switched.
  • the number of current-voltage conversion circuits 510 while reducing the number of times of switching the electrical connection between the working electrode 112 and the current-voltage conversion circuit 510.
  • the number of times the electrical connection between the working electrode 112 and the current-voltage conversion circuit 510 is switched is such that the working electrode Ga of the first group and the working electrode Gb of the second group are common. The number can be reduced as compared with the case where 400 is connected.
  • the number of current-voltage conversion circuits 510 is the same as the number of current-voltage conversion circuits 510 for each of the plurality of working electrodes 112 in the first group working electrode Ga and the second group working electrode Gb. It is possible to reduce the number as compared with the case where the switching circuit 400 is not provided, that is, the case where the switching circuit 400 is not provided. In particular, the greater the number of working electrodes 112 located in the common well (well 300), the more meaningful the above-mentioned configuration is. The number of working electrodes 112 located in the common well (well 300) may be four or more, for example.
  • the first switching circuit 400a may electrically connect the first working electrode 112a in the working electrode Ga of the first group to the first current-voltage conversion circuit 510a at the first timing, and after the first timing, At two timings, the second working electrode 112b in the first group of working electrodes Ga may be electrically connected to the first current-voltage conversion circuit 510a.
  • the second switching circuit 400b may electrically connect the third working electrode 112c in the second group of working electrodes Gb to the second current-voltage conversion circuit 510b at substantially the same timing as the first timing.
  • the fourth working electrode 112d in the second group of working electrodes Gb may be electrically connected to the second current-voltage conversion circuit 510b at substantially the same timing as the second timing.
  • the redox current of the first working electrode 112a and the redox current of the third working electrode 112c can be measured at substantially the same timing, and the redox current of the second working electrode 112b can be measured.
  • the redox current and the redox current of the fourth working electrode 112d can be measured at substantially the same timing.
  • the timing at which the third working electrode 112c is electrically connected to the second current-voltage conversion circuit 510b may not be exactly the same as the timing at which the first working electrode 112a is electrically connected to the first current-voltage conversion circuit 510a. Good.
  • the voltage applied by the controller 610 (which will be described later with reference to FIG. 1) from the timing when the first working electrode 112a is electrically connected to the first current-voltage conversion circuit 510a.
  • the third working electrode 112c may be electrically connected to the second current-voltage conversion circuit 510b before the change. The same applies to the timing when the fourth working electrode 112d is electrically connected to the second current-voltage conversion circuit 510b and the timing when the second working electrode 112b is electrically connected to the second current-voltage conversion circuit 510b.
  • the first working electrode 112a, the second working electrode 112b, the third working electrode 112c, and the fourth working electrode 112d are respectively a first distance D1, a second distance D2, a third distance D3, and a fourth distance from the counter electrode 212. D4 away.
  • the third distance D3 may be equal to or close to the first distance D1, and may be, for example, 80% or more and 120% or less, preferably 90% or more and 110% or less of the first distance D1.
  • the fourth distance D4 may be equal to or close to the second distance D2, and may be, for example, 80% or more and 120% or less, preferably 90% or more and 110% or less of the second distance D2.
  • the solution resistance in the well 300 depends on the distance between the working electrode 112 and the counter electrode 212.
  • the first working electrode 112a and the third working electrode 112c which are measured at substantially the same timing, are in the range of substantially the same distance from the counter electrode 212. Therefore, it is possible to suppress an error caused by the solution resistance between the measurement results of the first working electrode 112a and the third working electrode 112c. The same applies to the second working electrode 112b and the fourth working electrode 112d.
  • the counter electrode 212 may be located at the center of the first surface 102 of the substrate 100, as described later with reference to FIG.
  • the first working electrode 112a, the second working electrode 112b, the third working electrode 112c, and the fourth working electrode 112d are respectively a first distance D1 and a second distance D2 from the center of the first surface 102 of the substrate 100.
  • the measuring device 20 includes a plurality of working electrodes 112, a counter electrode 212, a reference electrode 222, a plurality of switching circuits 400, a potentiostat 500, a controller 610, and a plurality of measuring devices 620.
  • the redox current is measured by the plurality of working electrodes 112, the counter electrode 212, and the reference electrode 222.
  • the plurality of working electrodes 112, the counter electrode 212, and the reference electrode 222 are located in a common well (well 300) and constitute an electrochemical cell.
  • the measuring device 20 includes a plurality of working electrode groups G.
  • Each of the plurality of working electrode groups G includes a plurality of working electrodes 112.
  • Each of the plurality of working electrode groups G is electrically connected to each of the plurality of switching circuits 400.
  • the counter electrode 212, the reference electrode 222, and the plurality of switching circuits 400 are electrically connected to the potentiostat 500.
  • the potentiostat 500 includes a plurality of current-voltage conversion circuits 510, an operational amplifier 522, an operational amplifier 524, a resistor 526, and a resistor 528.
  • Each of the plurality of switching circuits 400 is electrically connected to each of the plurality of current-voltage conversion circuits 510.
  • Each of the plurality of switching circuits 400 sequentially switches the working electrode 112 electrically connected to the corresponding current-voltage conversion circuit 510 from the corresponding working electrode group G.
  • the current-voltage conversion circuit 510 converts a current (oxidation-reduction current) flowing from the working electrode 112 via the switching circuit 400 into a voltage.
  • the switching circuit 400 is a semiconductor switch, more specifically, an analog multiplexer.
  • the switching by the switching circuit 400 may be performed by, for example, a microcomputer mounted on the measuring device 20, or by a computer provided outside the measuring device 20 (for example, a desktop computer or a laptop computer). Good.
  • the switching circuit 400 is not limited to the example shown in FIG. 1 and may be, for example, a relay circuit or a mechanical switch.
  • the current-voltage conversion circuit 510 includes an operational amplifier 512 and a resistor 514.
  • the resistor 514 is electrically connected between the output terminal and the inverting input terminal of the operational amplifier 512, and functions as a feedback resistor.
  • the non-inverting input terminal of the operational amplifier 512 is grounded.
  • the circuit structure of the current-voltage conversion circuit 510 is not limited to the example shown in FIG.
  • Each of the plurality of current-voltage conversion circuits 510 is connected to each of the plurality of measuring instruments 620.
  • the measuring device 620 measures the voltage output from the output terminal of the corresponding current-voltage conversion circuit 510.
  • the measuring device 620 is, for example, a voltmeter.
  • the counter electrode 212 is electrically connected to the output terminal of the operational amplifier 522.
  • the non-inverting input terminal of the operational amplifier 522 is grounded.
  • a voltage is input to the inverting input terminal of the operational amplifier 522 from the controller 610 (for example, a function generator) via the resistor 526.
  • the reference electrode 222 is connected to the inverting input terminal of the operational amplifier 522 via the operational amplifier 524 and the resistor 528.
  • the operational amplifier 524 functions as a voltage follower, the non-inverting input terminal of the operational amplifier 524 is electrically connected to the reference electrode 222, and the inverting input terminal of the operational amplifier 524 is electrically connected to the output terminal of the operational amplifier 524. It is connected.
  • the circuit structure of the potentiostat 500 is not limited to the example shown in FIG.
  • the element 10 is a chip.
  • the element 10 includes a substrate 100 and a wiring layer 120 (resist 122).
  • the substrate 100 has a first surface 102 and a second surface 104.
  • the wiring layer 120 is located on the first surface 102 of the substrate 100.
  • the conductive layer 110 (working electrode 112, terminal 114, and wiring 116) is located in the wiring layer 120.
  • the second surface 104 is on the opposite side of the first surface 102.
  • the well 300 is defined by the partition wall 302 on the first surface 102 side of the substrate 100.
  • a sample (solution) can be placed in the well 300.
  • the counter electrode 212 is held above the element 10. In this way, the counter electrode 212 can contact the sample in the well 300. The same applies to the reference electrode 222.
  • the substrate 100 (first surface 102) has a substantially quadrangular shape.
  • This quadrangle can be, for example, a rectangle.
  • the substrate 100 has a first side 106a, a second side 106b, a third side 106c, and a fourth side 106d.
  • the second side 106b is on the opposite side of the first side 106a.
  • the third side 106c is between the first side 106a and the second side 106b.
  • the fourth side 106d is on the opposite side of the third side 106c.
  • the quadrangle of the substrate 100 does not have to be a strict quadrangle, and may have, for example, sides with cuts or have rounded corners.
  • the substrate 100 may have a shape other than a quadrangle.
  • the element 10 includes a plurality of blocks B.
  • the element 10 includes eight blocks B.
  • the two blocks B are arranged along the first side 106a
  • the two blocks B are arranged along the second side 106b
  • the two blocks B are arranged along the third side 106c.
  • the two blocks B are arranged along the fourth side 106d.
  • the layout of the plurality of blocks B is not limited to the example shown in FIG.
  • Each of the plurality of blocks B includes a plurality of conductive layers 110.
  • each of the plurality of blocks B includes 15 conductive layers 110.
  • Each of the plurality of conductive layers 110 has a working electrode 112, a terminal 114, and a wiring 116.
  • the plurality of working electrodes 112 overlap the well 300.
  • the plurality of terminals 114 do not overlap the well 300 and are located outside the well 300.
  • Each of the plurality of wirings 116 connects each of the plurality of working electrodes 112 to each of the plurality of terminals 114.
  • the plurality of terminals 114 can be electrically connected to the switching circuit 400 (FIG. 1).
  • the switching circuit 400 may be arranged outside the substrate 100, for example.
  • the working electrode 112 can be electrically connected to the switching circuit 400 via the wiring 116 and the terminal 114.
  • the layout of the conductive layer 110 is not limited to the example shown in FIG.
  • the plurality of working electrodes 112 are arranged in a matrix of m rows and n columns (each of m and n is independently an integer). In the example shown in FIG. 2, 15 working electrodes 112 are arranged in a matrix of 3 rows and 5 columns. Further, the plurality of working electrodes 112 in each block B are arranged in a substantially same rule among the plurality of blocks B (for example, the number of rows and columns of the matrix or the spacing between the adjacent working electrodes 112). .. However, the layout of the plurality of working electrodes 112 is not limited to the example shown in FIG.
  • each of the plurality of blocks B includes two working electrode groups G.
  • One working electrode group G includes eight working electrodes 112, and another working electrode group G includes seven working electrodes 112.
  • One working electrode group G is electrically connected to one switching circuit 400 (FIG. 1), and the other one working electrode group G is electrically connected to another one switching circuit 400 (FIG. 1). It is connected to the.
  • the number of working electrode groups G in each block B is not limited to the example shown in FIG.
  • each block B may include only one working electrode group G, or may include three or more working electrode groups G.
  • the counter electrode 212 is located at the center of the first surface 102 of the substrate 100, and the reference electrode 222 is located off the center of the first surface 102 of the substrate 100.
  • the layout of the counter electrode 212 and the reference electrode 222 is not limited to the example shown in FIG.
  • Each of the plurality of switching circuits 400 sequentially switches the working electrodes 112 electrically connected to the corresponding current-voltage conversion circuit 510 from the corresponding working electrode group G at substantially the same timing.
  • the working electrodes 112 numbered 1 to 8 in the working electrode Ga of the first group are sequentially electrically connected to the first current-voltage conversion circuit 510a.
  • the second switching circuit 400b sequentially electrically connects the working electrodes 112 numbered 1 to 8 in the second group of working electrodes Gb to the second current-voltage conversion circuit 510b.
  • the working electrodes 112 numbered 1 to 8 in the working electrode Gb of the second group are respectively the working electrodes 112 numbered 1 to 8 in the working electrode Ga of the first group. Is electrically connected to the current-voltage conversion circuit 510 at substantially the same timing.
  • switching by the switching circuit 400 may be performed in the order of numbers 1 to 8 shown in FIG. 4, or may be performed in an order different from the order of numbers 1 to 8 shown in FIG.
  • the plurality of working electrodes 112 in each working electrode group G are arranged by substantially the same rule among the plurality of working electrode groups G (for example, the number of rows and columns of the matrix or the spacing between adjacent working electrodes 112). You can leave.
  • the working electrodes 112 numbered 1 to 8 in the working electrode Gb of the second group are the working electrodes 112 numbered 1 to 8 in the working electrode Ga of the first group. It is lined up with the substantially same rule.
  • the plurality of switching circuits 400 may electrically connect the working electrodes 112 located at substantially the same position in the working electrode group G to the current-voltage conversion circuit 510 at substantially the same timing.
  • the working electrodes 112 numbered 1 to 8 in the working electrode Gb of the second group are respectively the actions numbered 1 to 8 in the working electrode Ga of the first group.
  • the electrode 112 and the working electrode group G are relatively at substantially the same position in each working electrode group G.
  • FIG. 5 is a diagram for explaining the details of the block B shown in FIG.
  • FIG. 6 is a sectional view taken along line PP′ of FIG.
  • the element 10 includes a substrate 100, a conductive layer 110, and a wiring layer 120 (resist 122).
  • the substrate 100 is, for example, a glass substrate, a semiconductor substrate (for example, a silicon substrate), or a resin substrate.
  • the substrate 100 has a first surface 102 and a second surface 104.
  • the conductive layer 110 and the wiring layer 120 are located on the first surface 102 of the substrate 100.
  • the second surface 104 is on the opposite side of the first surface 102.
  • the conductive layer 110 is made of metal, for example.
  • the conductive layer 110 has a working electrode 112, a terminal 114, and a wiring 116.
  • the working electrode 112 and the terminal 114 are connected to each other via the wiring 116.
  • the structures of the working electrode 112 and the terminal 114 are not limited to the examples shown in FIGS. 5 and 6.
  • the terminal 114 may be located on the second surface 104 side of the substrate 100, and the first surface 102 of the substrate 100 may be provided through a through hole that penetrates the substrate 100 from the first surface 102 to the second surface 104. It may be electrically connected to the working electrode 112 on the side.
  • the resist 122 is made of, for example, an insulating material (for example, resin).
  • the resist 122 has an opening exposing at least a part of the working electrode 112 and an opening exposing at least a part of the terminal 114, and covers at least a part of the wiring 116.
  • the area of the portion of the working electrode 112 exposed from the resist 122 can be reduced, and can be, for example, 200,000 ⁇ m 2 or less.
  • the shape of the portion of the working electrode 112 exposed from the resist 122 may be a circle, and the diameter of the circle may be, for example, 500 ⁇ m or less.
  • FIG. 7 is a diagram for explaining the connection between the working electrode 112 and the counter electrode 212 in the well 300.
  • the connection between the working electrode 112 and the counter electrode 212 can be shown by an equivalent circuit shown in FIG.
  • the equivalent circuit shown in FIG. 7 includes a resistor 312, a resistor 314, and a capacitor 316.
  • the resistor 314 and the capacitor 316 are connected in parallel.
  • the resistor 312 is connected in series with a parallel circuit of the resistor 314 and the capacitor 316.
  • the resistor 312 corresponds to a solution resistance
  • the resistor 314 corresponds to a charge transfer resistor
  • the capacitor 316 corresponds to an electric double layer.
  • the resistance 312 (solution resistance) depends on the distance between the working electrode 112 and the counter electrode 212. Therefore, as described above, when the plurality of working electrodes 112 measured at substantially the same timing are in the range of the substantially same distance from the counter electrode 212, the solution between the measurement results of the plurality of working electrodes 112 is measured. The error due to the resistance can be suppressed.
  • the measuring device 20 can be used for various electrochemical measurements, particularly reversible electrochemical measurements.
  • the measuring device 20 may be used in a device that detects the degree of hybridization of a nucleic acid (for example, micro RNA (miRNA)) based on the measured redox current.
  • a nucleic acid for example, micro RNA (miRNA)
  • the measuring device 20 detects cyclic voltammetry (CV) before nucleic acid hybridization and CV after nucleic acid hybridization.
  • CV cyclic voltammetry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

A first group of working electrodes (Ga) and a second group of working electrodes (Gb) are positioned in the same well (well (300)) and are respectively connected electrically to a first switching circuit (400a) and second switching circuit (400b). The first switching circuit (400a) sequentially switches the working electrode (112), from among the first group of working electrodes (Ga), that is electrically connected to a first current-to-voltage conversion circuit (510a) (a single current-to-voltage conversion circuit from among a plurality of current-to-voltage conversion circuits (510)). The second switching circuit (400b) sequentially switches the working electrode (112), from among the second group of working electrodes (Gb), that is electrically connected to a second current-to-voltage conversion circuit (510b) (another single current-to-voltage conversion circuit from among the plurality of current-to-voltage conversion circuits (510)).

Description

計測装置及び計測方法Measuring device and measuring method
 本発明は、電気化学測定用の計測装置及び計測方法に関し、特に酸化還元電流を計測する計測装置及び計測方法に関する。 The present invention relates to a measuring device and a measuring method for electrochemical measurement, and particularly to a measuring device and a measuring method for measuring a redox current.
 電気化学測定を用いた計測では、作用電極、参照電極及び対向電極が用いられる。この電気化学測定では、作用電極に生じる電流(酸化還元電流)を計測する。 ㆍIn measurement using electrochemical measurement, working electrode, reference electrode and counter electrode are used. In this electrochemical measurement, the electric current (redox current) generated in the working electrode is measured.
 特許文献1には、電気化学測定を用いた計測装置の一例について記載されている。この計測装置は、単一の参照電極、単一の対向電極及び複数の作用電極を備えている。参照電極及び対向電極は、ポテンショスタットに電気的に接続されている。複数の作用電極は、マルチプレクサに電気的に接続されている。マルチプレクサは、複数の作用電極の中からポテンショスタットに電気的に接続する作用電極を順次切り替える。 Patent Document 1 describes an example of a measuring device using electrochemical measurement. This measuring device includes a single reference electrode, a single counter electrode, and a plurality of working electrodes. The reference electrode and the counter electrode are electrically connected to the potentiostat. The plurality of working electrodes are electrically connected to the multiplexer. The multiplexer sequentially switches the working electrode electrically connected to the potentiostat from the plurality of working electrodes.
国際公開第2007/000596号International Publication No. 2007/000596
 複数の作用電極の中からポテンショスタット内の電流電圧変換回路に電気的に接続する作用電極をスイッチング回路(例えば、マルチプレクサ)によって順次切り替える場合、作用電極の数が多いと、作用電極-電流電圧変換回路の電気的接続の切換え回数が増大する。一方、複数の作用電極のそれぞれを、スイッチング回路を介さないで、複数の電流電圧変換回路のそれぞれに直接接続すると、電流電圧変換回路の数が増大する。 When the working electrodes electrically connected to the current-voltage conversion circuit in the potentiostat among the plurality of working electrodes are sequentially switched by a switching circuit (for example, a multiplexer), if the number of working electrodes is large, working electrode-current-voltage conversion The number of times the circuit electrical connections are switched increases. On the other hand, if each of the plurality of working electrodes is directly connected to each of the plurality of current-voltage conversion circuits without a switching circuit, the number of current-voltage conversion circuits increases.
 本発明の目的の一例は、作用電極-電流電圧変換回路の電気的接続の切換えの回数を減少させつつ、電流電圧変換回路の数を減少させることにある。本発明の他の目的は、本明細書の記載から明らかになるであろう。 One example of the object of the present invention is to reduce the number of current-voltage conversion circuits while reducing the number of times of switching the electrical connection of the working electrode-current-voltage conversion circuit. Other objects of the present invention will be apparent from the description herein.
 本発明の一態様は、
 酸化還元電流を計測する計測装置であって、
 第1スイッチング回路と、
 第2スイッチング回路と、
 前記第1スイッチング回路に電気的に接続された第1群の作用電極と、
 前記第2スイッチング回路に電気的に接続された第2群の作用電極と、
を備え、
 前記第1スイッチング回路は、前記第1群の作用電極の中から第1電流電圧変換回路に電気的に接続する作用電極を順次切り替え、
 前記第2スイッチング回路は、前記第2群の作用電極の中から第2電流電圧変換回路に電気的に接続する作用電極を順次切り替え、
 前記第1群の作用電極及び前記第2群の作用電極は、共通のウェル内に配置される、計測装置である。
One aspect of the present invention is
A measuring device for measuring a redox current,
A first switching circuit,
A second switching circuit,
A first group of working electrodes electrically connected to the first switching circuit;
A second group of working electrodes electrically connected to the second switching circuit;
Equipped with
The first switching circuit sequentially switches the working electrodes electrically connected to the first current-voltage conversion circuit from the working electrodes of the first group,
The second switching circuit sequentially switches the working electrodes electrically connected to the second current-voltage conversion circuit from the working electrodes of the second group,
The first group of working electrodes and the second group of working electrodes are a measuring device arranged in a common well.
 本発明の他の一態様は、
 酸化還元電流を計測する計測方法であって、
 ウェル内に位置し、第1スイッチング回路に電気的に接続された第1群の作用電極の中から第1電流電圧変換回路に電気的に接続する作用電極を前記第1スイッチング回路によって順次切り替え、
 前記ウェル内に位置し、第2スイッチング回路に電気的に接続された第2群の作用電極の中から第2電流電圧変換回路に電気的に接続する作用電極を前記第2スイッチング回路によって順次切り替える、計測方法である
Another aspect of the present invention is
A measuring method for measuring a redox current,
The working electrodes electrically connected to the first current-voltage conversion circuit among the working electrodes of the first group located in the well and electrically connected to the first switching circuit are sequentially switched by the first switching circuit,
The working electrodes electrically connected to the second current-voltage conversion circuit among the working electrodes of the second group located in the well and electrically connected to the second switching circuit are sequentially switched by the second switching circuit. , Is the measurement method
 本発明の上記態様によれば、作用電極-電流電圧変換回路の電気的接続の切換えの回数を減少させつつ、電流電圧変換回路の数を減少させることができる。 According to the above aspect of the present invention, it is possible to reduce the number of current-voltage conversion circuits while reducing the number of times of switching the electrical connection of the working electrode-current-voltage conversion circuit.
実施形態に係る計測装置の回路図である。It is a circuit diagram of a measuring device concerning an embodiment. 実施形態に係る素子の平面図である。It is a top view of the element concerning an embodiment. 図2のA-A´断面図である。FIG. 3 is a sectional view taken along the line AA′ of FIG. 2. 計測装置による計測方法を説明するための図である。It is a figure for demonstrating the measuring method by a measuring device. 図2に示したブロックの詳細を説明するための図である。It is a figure for demonstrating the detail of the block shown in FIG. 図5のP-P´断面図である。FIG. 6 is a sectional view taken along the line PP′ of FIG. 5. ウェル内における作用電極-対向電極間接続を説明するための図である。It is a figure for demonstrating the connection between a working electrode and a counter electrode in a well.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Embodiments of the present invention will be described below with reference to the drawings. In all the drawings, the same constituents will be referred to with the same numerals, and the description thereof will not be repeated.
 図1は、実施形態に係る計測装置20の回路図である。図2は、実施形態に係る素子10の平面図である。図3は、図2のA-A´断面図である。図4は、計測装置20による計測方法を説明するための図である。 FIG. 1 is a circuit diagram of a measuring device 20 according to the embodiment. FIG. 2 is a plan view of the element 10 according to the embodiment. FIG. 3 is a sectional view taken along the line AA′ of FIG. FIG. 4 is a diagram for explaining a measuring method by the measuring device 20.
 図4を用いて、計測装置20の概要を説明する。計測装置20は、酸化還元電流を計測する。計測装置20は、複数の作用電極群G(第1群の作用電極Ga及び第2群の作用電極Gb)及び複数のスイッチング回路400(第1スイッチング回路400a及び第2スイッチング回路400b)を備えている。第1群の作用電極Ga及び第2群の作用電極Gbは、共通のウェル(ウェル300)内に位置しており、第1スイッチング回路400a及び第2スイッチング回路400bに電気的にそれぞれ接続されている。第1スイッチング回路400aは、第1群の作用電極Gaの中から第1電流電圧変換回路510a(複数の電流電圧変換回路510のうちの一の電流電圧変換回路)に電気的に接続する作用電極112を順次切り替える。第2スイッチング回路400bは、第2群の作用電極Gbの中から第2電流電圧変換回路510b(複数の電流電圧変換回路510のうちの他の一の電流電圧変換回路)に電気的に接続する作用電極112を順次切り替える。 An outline of the measuring device 20 will be described with reference to FIG. The measuring device 20 measures a redox current. The measuring device 20 includes a plurality of working electrode groups G (first working electrode Ga and second working electrode Gb) and a plurality of switching circuits 400 (first switching circuit 400a and second switching circuit 400b). There is. The first group of working electrodes Ga and the second group of working electrodes Gb are located in a common well (well 300) and are electrically connected to the first switching circuit 400a and the second switching circuit 400b, respectively. There is. The first switching circuit 400a electrically connects the working electrode Ga of the first group to the first current-voltage converting circuit 510a (one of the plurality of current-voltage converting circuits 510). 112 are sequentially switched. The second switching circuit 400b is electrically connected to the second current-voltage conversion circuit 510b (another current-voltage conversion circuit of the plurality of current-voltage conversion circuits 510) from the second group of working electrodes Gb. The working electrode 112 is sequentially switched.
 上述した構成によれば、作用電極112-電流電圧変換回路510の電気的接続の切換えの回数を減少させつつ、電流電圧変換回路510の数を減少させることができる。具体的には、上述した構成においては、作用電極112-電流電圧変換回路510の電気的接続の切換えの回数は、第1群の作用電極Ga及び第2群の作用電極Gbが共通のスイッチング回路400に接続している場合と比較して、少なくすることができる。さらに、上述した構成においては、電流電圧変換回路510の数は、第1群の作用電極Ga及び第2群の作用電極Gb内の複数の作用電極112のそれぞれが、複数の電流電圧変換回路510のそれぞれに直接接続している場合、すなわち、スイッチング回路400を設けない場合と比較して、少なくすることができる。特に、共通のウェル(ウェル300)内に位置する作用電極112の数が多いほど、上述した構成は有意義である。共通のウェル(ウェル300)内に位置する作用電極112の数は、例えば、4個以上にしてもよい。 According to the configuration described above, it is possible to reduce the number of current-voltage conversion circuits 510 while reducing the number of times of switching the electrical connection between the working electrode 112 and the current-voltage conversion circuit 510. Specifically, in the above-described configuration, the number of times the electrical connection between the working electrode 112 and the current-voltage conversion circuit 510 is switched is such that the working electrode Ga of the first group and the working electrode Gb of the second group are common. The number can be reduced as compared with the case where 400 is connected. Further, in the above-described configuration, the number of current-voltage conversion circuits 510 is the same as the number of current-voltage conversion circuits 510 for each of the plurality of working electrodes 112 in the first group working electrode Ga and the second group working electrode Gb. It is possible to reduce the number as compared with the case where the switching circuit 400 is not provided, that is, the case where the switching circuit 400 is not provided. In particular, the greater the number of working electrodes 112 located in the common well (well 300), the more meaningful the above-mentioned configuration is. The number of working electrodes 112 located in the common well (well 300) may be four or more, for example.
 第1スイッチング回路400aは、第1タイミングにおいて、第1群の作用電極Ga内の第1作用電極112aを第1電流電圧変換回路510aに電気的に接続してもよく、第1タイミング後の第2タイミングにおいて、第1群の作用電極Ga内の第2作用電極112bを第1電流電圧変換回路510aに電気的に接続してもよい。第2スイッチング回路400bは、第1タイミングと実質的に同一のタイミングにおいて、第2群の作用電極Gb内の第3作用電極112cを第2電流電圧変換回路510bに電気的に接続してもよく、第2タイミングと実質的に同一のタイミングにおいて、第2群の作用電極Gb内の第4作用電極112dを第2電流電圧変換回路510bに電気的に接続してもよい。 The first switching circuit 400a may electrically connect the first working electrode 112a in the working electrode Ga of the first group to the first current-voltage conversion circuit 510a at the first timing, and after the first timing, At two timings, the second working electrode 112b in the first group of working electrodes Ga may be electrically connected to the first current-voltage conversion circuit 510a. The second switching circuit 400b may electrically connect the third working electrode 112c in the second group of working electrodes Gb to the second current-voltage conversion circuit 510b at substantially the same timing as the first timing. The fourth working electrode 112d in the second group of working electrodes Gb may be electrically connected to the second current-voltage conversion circuit 510b at substantially the same timing as the second timing.
 上述した構成によれば、複数の作用電極112の多重測定を実現することができる。具体的には、上述した構成においては、第1作用電極112aの酸化還元電流及び第3作用電極112cの酸化還元電流を実質的に共通のタイミングにおいて測定することができ、第2作用電極112bの酸化還元電流及び第4作用電極112dの酸化還元電流を実質的に共通のタイミングにおいて測定することができる。 According to the configuration described above, it is possible to realize multiple measurement of a plurality of working electrodes 112. Specifically, in the above-described configuration, the redox current of the first working electrode 112a and the redox current of the third working electrode 112c can be measured at substantially the same timing, and the redox current of the second working electrode 112b can be measured. The redox current and the redox current of the fourth working electrode 112d can be measured at substantially the same timing.
 第3作用電極112cが第2電流電圧変換回路510bに電気的に接続するタイミングは、第1作用電極112aが第1電流電圧変換回路510aに電気的に接続するタイミングと厳密に同一でなくてもよい。例えば、第1スイッチング回路400aは、第1作用電極112aが第1電流電圧変換回路510aに電気的に接続するタイミングから、制御器610(図1を用いて後述する。)によって印加される電圧が変化するまでに、第3作用電極112cを第2電流電圧変換回路510bに電気的に接続してもよい。第4作用電極112dが第2電流電圧変換回路510bに電気的に接続するタイミング及び第2作用電極112bが第2電流電圧変換回路510bに電気的に接続するタイミングについても同様である。 The timing at which the third working electrode 112c is electrically connected to the second current-voltage conversion circuit 510b may not be exactly the same as the timing at which the first working electrode 112a is electrically connected to the first current-voltage conversion circuit 510a. Good. For example, in the first switching circuit 400a, the voltage applied by the controller 610 (which will be described later with reference to FIG. 1) from the timing when the first working electrode 112a is electrically connected to the first current-voltage conversion circuit 510a. The third working electrode 112c may be electrically connected to the second current-voltage conversion circuit 510b before the change. The same applies to the timing when the fourth working electrode 112d is electrically connected to the second current-voltage conversion circuit 510b and the timing when the second working electrode 112b is electrically connected to the second current-voltage conversion circuit 510b.
 第1作用電極112a、第2作用電極112b、第3作用電極112c及び第4作用電極112dは、対向電極212から、それぞれ、第1距離D1、第2距離D2、第3距離D3及び第4距離D4離れている。第3距離D3は、第1距離D1に等しく、又は近似していてもよく、例えば、第1距離D1の80%以上120%以下、好ましくは例えば90%以上110%以下であってもよい。第4距離D4は、第2距離D2に等しく、又は近似していてもよく、例えば、第2距離D2の80%以上120%以下、好ましくは例えば90%以上110%以下であってもよい。 The first working electrode 112a, the second working electrode 112b, the third working electrode 112c, and the fourth working electrode 112d are respectively a first distance D1, a second distance D2, a third distance D3, and a fourth distance from the counter electrode 212. D4 away. The third distance D3 may be equal to or close to the first distance D1, and may be, for example, 80% or more and 120% or less, preferably 90% or more and 110% or less of the first distance D1. The fourth distance D4 may be equal to or close to the second distance D2, and may be, for example, 80% or more and 120% or less, preferably 90% or more and 110% or less of the second distance D2.
 上述した構成によれば、実質的に同一のタイミングで測定される複数の作用電極112の測定結果間における溶液抵抗に起因した誤差を抑えることができる。具体的には、ウェル300内の溶液抵抗は、作用電極112及び対向電極212の間の距離に依存する。上述した構成において、実質的に同一のタイミングで測定される第1作用電極112a及び第3作用電極112cは、対向電極212から実質的に同一の距離の範囲にある。したがって、第1作用電極112a及び第3作用電極112cの測定結果間における溶液抵抗に起因した誤差を抑えることができる。第2作用電極112b及び第4作用電極112dについても同様である。 According to the configuration described above, it is possible to suppress an error caused by the solution resistance between the measurement results of the plurality of working electrodes 112 measured at substantially the same timing. Specifically, the solution resistance in the well 300 depends on the distance between the working electrode 112 and the counter electrode 212. In the above-described configuration, the first working electrode 112a and the third working electrode 112c, which are measured at substantially the same timing, are in the range of substantially the same distance from the counter electrode 212. Therefore, it is possible to suppress an error caused by the solution resistance between the measurement results of the first working electrode 112a and the third working electrode 112c. The same applies to the second working electrode 112b and the fourth working electrode 112d.
 図2を用いて後述するように、対向電極212は、基板100の第1面102の中心に位置させてもよい。この場合、第1作用電極112a、第2作用電極112b、第3作用電極112c及び第4作用電極112dは、基板100の第1面102の中心から、それぞれ、第1距離D1、第2距離D2、第3距離D3及び第4距離D4離れるようになる。この場合においても、実質的に同一のタイミングで測定される複数の作用電極112の測定結果間における溶液抵抗に起因した誤差を抑えることができる。 The counter electrode 212 may be located at the center of the first surface 102 of the substrate 100, as described later with reference to FIG. In this case, the first working electrode 112a, the second working electrode 112b, the third working electrode 112c, and the fourth working electrode 112d are respectively a first distance D1 and a second distance D2 from the center of the first surface 102 of the substrate 100. , The third distance D3 and the fourth distance D4. Even in this case, it is possible to suppress the error due to the solution resistance between the measurement results of the plurality of working electrodes 112 measured at substantially the same timing.
 図1を用いて、計測装置20の詳細を説明する。 Details of the measuring device 20 will be described with reference to FIG.
 計測装置20は、複数の作用電極112、対向電極212、参照電極222、複数のスイッチング回路400、ポテンショスタット500、制御器610及び複数の測定器620を備えている。複数の作用電極112、対向電極212及び参照電極222によって、酸化還元電流が計測される。 The measuring device 20 includes a plurality of working electrodes 112, a counter electrode 212, a reference electrode 222, a plurality of switching circuits 400, a potentiostat 500, a controller 610, and a plurality of measuring devices 620. The redox current is measured by the plurality of working electrodes 112, the counter electrode 212, and the reference electrode 222.
 複数の作用電極112、対向電極212及び参照電極222は、共通のウェル(ウェル300)内に位置しており、電気化学セルを構成している。 The plurality of working electrodes 112, the counter electrode 212, and the reference electrode 222 are located in a common well (well 300) and constitute an electrochemical cell.
 計測装置20は、複数の作用電極群Gを備えている。複数の作用電極群Gのそれぞれは、複数の作用電極112を含んでいる。複数の作用電極群Gのそれぞれは、複数のスイッチング回路400のそれぞれに電気的に接続されている。 The measuring device 20 includes a plurality of working electrode groups G. Each of the plurality of working electrode groups G includes a plurality of working electrodes 112. Each of the plurality of working electrode groups G is electrically connected to each of the plurality of switching circuits 400.
 対向電極212、参照電極222及び複数のスイッチング回路400は、ポテンショスタット500に電気的に接続されている。ポテンショスタット500は、複数の電流電圧変換回路510、オペアンプ522、オペアンプ524、抵抗526及び抵抗528を含んでいる。 The counter electrode 212, the reference electrode 222, and the plurality of switching circuits 400 are electrically connected to the potentiostat 500. The potentiostat 500 includes a plurality of current-voltage conversion circuits 510, an operational amplifier 522, an operational amplifier 524, a resistor 526, and a resistor 528.
 複数のスイッチング回路400のそれぞれは、複数の電流電圧変換回路510のそれぞれに電気的に接続されている。複数のスイッチング回路400のそれぞれは、対応する作用電極群Gの中から対応する電流電圧変換回路510に電気的に接続する作用電極112を順次切り替える。電流電圧変換回路510は、作用電極112からスイッチング回路400を介して流れた電流(酸化還元電流)を電圧に変換する。 Each of the plurality of switching circuits 400 is electrically connected to each of the plurality of current-voltage conversion circuits 510. Each of the plurality of switching circuits 400 sequentially switches the working electrode 112 electrically connected to the corresponding current-voltage conversion circuit 510 from the corresponding working electrode group G. The current-voltage conversion circuit 510 converts a current (oxidation-reduction current) flowing from the working electrode 112 via the switching circuit 400 into a voltage.
 図1に示す例において、スイッチング回路400は、半導体スイッチ、より具体的にはアナログマルチプレクサである。スイッチング回路400による切換えは、例えば、計測装置20に実装されたマイクロコンピュータによって行ってもよいし、又は計測装置20の外部に設けられたコンピュータ(例えば、デスクトップコンピュータ又はラップトップコンピュータ)によって行ってもよい。スイッチング回路400は、図1に示す例に限定されず、例えば、リレー回路又は機械スイッチであってもよい。 In the example shown in FIG. 1, the switching circuit 400 is a semiconductor switch, more specifically, an analog multiplexer. The switching by the switching circuit 400 may be performed by, for example, a microcomputer mounted on the measuring device 20, or by a computer provided outside the measuring device 20 (for example, a desktop computer or a laptop computer). Good. The switching circuit 400 is not limited to the example shown in FIG. 1 and may be, for example, a relay circuit or a mechanical switch.
 図1に示す例において、電流電圧変換回路510は、オペアンプ512及び抵抗514を含んでいる。抵抗514は、オペアンプ512の出力端子及び反転入力端子の間に電気的に接続されており、帰還抵抗として機能している。オペアンプ512の非反転入力端子は、接地されている。ただし、電流電圧変換回路510の回路構造は、図1に示す例に限定されない。 In the example shown in FIG. 1, the current-voltage conversion circuit 510 includes an operational amplifier 512 and a resistor 514. The resistor 514 is electrically connected between the output terminal and the inverting input terminal of the operational amplifier 512, and functions as a feedback resistor. The non-inverting input terminal of the operational amplifier 512 is grounded. However, the circuit structure of the current-voltage conversion circuit 510 is not limited to the example shown in FIG.
 複数の電流電圧変換回路510のそれぞれは、複数の測定器620のそれぞれに接続されている。測定器620は、対応する電流電圧変換回路510の出力端子から出力された電圧を測定する。測定器620は、例えば、ボルトメータである。 Each of the plurality of current-voltage conversion circuits 510 is connected to each of the plurality of measuring instruments 620. The measuring device 620 measures the voltage output from the output terminal of the corresponding current-voltage conversion circuit 510. The measuring device 620 is, for example, a voltmeter.
 図2に示す例において、対向電極212は、オペアンプ522の出力端子に電気的に接続されている。オペアンプ522の非反転入力端子は、接地されている。オペアンプ522の反転入力端子には、抵抗526を介して制御器610(例えば、ファンクションジェネレータ)から電圧が入力される。参照電極222は、オペアンプ524及び抵抗528を介して、オペアンプ522の反転入力端子に接続されている。オペアンプ524は、ボルテージフォロワとして機能しており、オペアンプ524の非反転入力端子は、参照電極222に電気的に接続されており、オペアンプ524の反転入力端子は、オペアンプ524の出力端子に電気的に接続されている。ただし、ポテンショスタット500の回路構造は、図1に示す例に限定されない。 In the example shown in FIG. 2, the counter electrode 212 is electrically connected to the output terminal of the operational amplifier 522. The non-inverting input terminal of the operational amplifier 522 is grounded. A voltage is input to the inverting input terminal of the operational amplifier 522 from the controller 610 (for example, a function generator) via the resistor 526. The reference electrode 222 is connected to the inverting input terminal of the operational amplifier 522 via the operational amplifier 524 and the resistor 528. The operational amplifier 524 functions as a voltage follower, the non-inverting input terminal of the operational amplifier 524 is electrically connected to the reference electrode 222, and the inverting input terminal of the operational amplifier 524 is electrically connected to the output terminal of the operational amplifier 524. It is connected. However, the circuit structure of the potentiostat 500 is not limited to the example shown in FIG.
 図2及び図3を用いて、素子10及びその周辺の詳細を説明する。 Details of the element 10 and its surroundings will be described with reference to FIGS. 2 and 3.
 素子10は、チップである。素子10は、基板100及び配線層120(レジスト122)を備えている。基板100は、第1面102及び第2面104を有している。配線層120は、基板100の第1面102上に位置している。配線層120内には、導電層110(作用電極112、端子114及び配線116)が位置している。第2面104は、第1面102の反対側にある。 The element 10 is a chip. The element 10 includes a substrate 100 and a wiring layer 120 (resist 122). The substrate 100 has a first surface 102 and a second surface 104. The wiring layer 120 is located on the first surface 102 of the substrate 100. The conductive layer 110 (working electrode 112, terminal 114, and wiring 116) is located in the wiring layer 120. The second surface 104 is on the opposite side of the first surface 102.
 図3に示すように、基板100の第1面102側には、隔壁302によってウェル300が画定されている。ウェル300内には、試料(溶液)を入れることができる。 As shown in FIG. 3, the well 300 is defined by the partition wall 302 on the first surface 102 side of the substrate 100. A sample (solution) can be placed in the well 300.
 図3に示す例では、素子10の上方に対向電極212が保持されている。このようにして、対向電極212は、ウェル300内の試料に接触することができる。参照電極222についても、同様である。 In the example shown in FIG. 3, the counter electrode 212 is held above the element 10. In this way, the counter electrode 212 can contact the sample in the well 300. The same applies to the reference electrode 222.
 図2に示す例において、基板100(第1面102)は、実質的に四角形状を有している。この四角形は、例えば、矩形にすることができる。基板100は、第1辺106a、第2辺106b、第3辺106c及び第4辺106dを有している。第2辺106bは、第1辺106aの反対側にある。第3辺106cは、第1辺106a及び第2辺106bの間にある。第4辺106dは、第3辺106cの反対側にある。基板100の四角形は、厳密な四角形でなくてもよく、例えば、切片が形成された辺を有していてもよいし、又は丸まった角を有していてもよい。基板100は、四角形以外の形状を有していてもよい。 In the example shown in FIG. 2, the substrate 100 (first surface 102) has a substantially quadrangular shape. This quadrangle can be, for example, a rectangle. The substrate 100 has a first side 106a, a second side 106b, a third side 106c, and a fourth side 106d. The second side 106b is on the opposite side of the first side 106a. The third side 106c is between the first side 106a and the second side 106b. The fourth side 106d is on the opposite side of the third side 106c. The quadrangle of the substrate 100 does not have to be a strict quadrangle, and may have, for example, sides with cuts or have rounded corners. The substrate 100 may have a shape other than a quadrangle.
 素子10は、複数のブロックBを備えている。図2に示す例では、素子10は、8つのブロックBを備えている。詳細には、2つのブロックBが第1辺106aに沿って並んでおり、2つのブロックBが第2辺106bに沿って並んでおり、2つのブロックBが第3辺106cに沿って並んでおり、2つのブロックBが第4辺106dに沿って並んでいる。ただし、複数のブロックBのレイアウトは、図2に示す例に限定されない。 The element 10 includes a plurality of blocks B. In the example shown in FIG. 2, the element 10 includes eight blocks B. Specifically, the two blocks B are arranged along the first side 106a, the two blocks B are arranged along the second side 106b, and the two blocks B are arranged along the third side 106c. The two blocks B are arranged along the fourth side 106d. However, the layout of the plurality of blocks B is not limited to the example shown in FIG.
 複数のブロックBのそれぞれは、複数の導電層110を含んでいる。図2に示す例では、複数のブロックBのそれぞれは、15個の導電層110を含んでいる。複数の導電層110のそれぞれは、作用電極112、端子114及び配線116を有している。複数の作用電極112は、ウェル300と重なっている。複数の端子114は、ウェル300と重なっておらず、ウェル300の外側に位置している。複数の配線116のそれぞれは、複数の作用電極112のそれぞれを複数の端子114のそれぞれに接続している。複数の端子114は、スイッチング回路400(図1)に電気的に接続させることができる。スイッチング回路400は、例えば、基板100の外側に配置してもよい。作用電極112は、配線116及び端子114を介してスイッチング回路400に電気的に接続することができる。ただし、導電層110のレイアウトは、図2に示す例に限定されない。 Each of the plurality of blocks B includes a plurality of conductive layers 110. In the example shown in FIG. 2, each of the plurality of blocks B includes 15 conductive layers 110. Each of the plurality of conductive layers 110 has a working electrode 112, a terminal 114, and a wiring 116. The plurality of working electrodes 112 overlap the well 300. The plurality of terminals 114 do not overlap the well 300 and are located outside the well 300. Each of the plurality of wirings 116 connects each of the plurality of working electrodes 112 to each of the plurality of terminals 114. The plurality of terminals 114 can be electrically connected to the switching circuit 400 (FIG. 1). The switching circuit 400 may be arranged outside the substrate 100, for example. The working electrode 112 can be electrically connected to the switching circuit 400 via the wiring 116 and the terminal 114. However, the layout of the conductive layer 110 is not limited to the example shown in FIG.
 複数のブロックBのそれぞれにおいて、複数の作用電極112は、m行n列のマトリクス状に並んでいる(m及びnのそれぞれは、独立して、整数である。)。図2に示す例では、15個の作用電極112は、3行5列のマトリクス状に並んでいる。さらに、各ブロックBにおける複数の作用電極112は、複数のブロックB間において実質的に同一の規則(例えば、マトリクスの行及び列の数又は隣り合う作用電極112の間の間隔)で並んでいる。ただし、複数の作用電極112のレイアウトは、図2に示す例に限定されない。 In each of the plurality of blocks B, the plurality of working electrodes 112 are arranged in a matrix of m rows and n columns (each of m and n is independently an integer). In the example shown in FIG. 2, 15 working electrodes 112 are arranged in a matrix of 3 rows and 5 columns. Further, the plurality of working electrodes 112 in each block B are arranged in a substantially same rule among the plurality of blocks B (for example, the number of rows and columns of the matrix or the spacing between the adjacent working electrodes 112). .. However, the layout of the plurality of working electrodes 112 is not limited to the example shown in FIG.
 図2に示す例において、複数のブロックBのそれぞれは、2つの作用電極群Gを含んでいる。一の作用電極群Gは、8個の作用電極112を含んでおり、他の一の作用電極群Gは、7個の作用電極112を含んでいる。一の作用電極群Gは、一のスイッチング回路400(図1)に電気的に接続されており、他の一の作用電極群Gは、他の一のスイッチング回路400(図1)に電気的に接続されている。ただし、各ブロックB内における作用電極群Gの数は、図1に示す例に限定されない。例えば、各ブロックBは、作用電極群Gを一つのみ含んでいてもよいし、又は3個以上の作用電極群Gを含んでいてもよい。 In the example shown in FIG. 2, each of the plurality of blocks B includes two working electrode groups G. One working electrode group G includes eight working electrodes 112, and another working electrode group G includes seven working electrodes 112. One working electrode group G is electrically connected to one switching circuit 400 (FIG. 1), and the other one working electrode group G is electrically connected to another one switching circuit 400 (FIG. 1). It is connected to the. However, the number of working electrode groups G in each block B is not limited to the example shown in FIG. For example, each block B may include only one working electrode group G, or may include three or more working electrode groups G.
 図2に示す例では、対向電極212が基板100の第1面102の中心に位置しており、参照電極222が基板100の第1面102の中心からずれて位置している。ただし、対向電極212及び参照電極222のレイアウトは、図2に示す例に限定されない。 In the example shown in FIG. 2, the counter electrode 212 is located at the center of the first surface 102 of the substrate 100, and the reference electrode 222 is located off the center of the first surface 102 of the substrate 100. However, the layout of the counter electrode 212 and the reference electrode 222 is not limited to the example shown in FIG.
 図1、図2及び図4を用いて、計測装置20の詳細を説明する。 Details of the measuring device 20 will be described with reference to FIGS. 1, 2, and 4.
 複数のスイッチング回路400のそれぞれは、対応する作用電極群Gの中から、対応する電流電圧変換回路510に電気的に接続する作用電極112を実質的に同一のタイミングで順次切り替える。例えば、図4において、第1スイッチング回路400aは、第1群の作用電極Ga内の1~8の番号が付された作用電極112を、順次、第1電流電圧変換回路510aに電気的に接続させ、第2スイッチング回路400bは、第2群の作用電極Gb内の1~8の番号が付された作用電極112を、順次、第2電流電圧変換回路510bに電気的に接続させる。この例において、第2群の作用電極Gb内の1~8の番号が付された作用電極112は、それぞれ、第1群の作用電極Ga内の1~8の番号が付された作用電極112と実質的に同一のタイミングで電流電圧変換回路510に電気的に接続される。この例において、スイッチング回路400による切換えは、図4に示した1~8の番号の順に行ってもよいし、又は図4に示した1~8の番号の順と異なる順に行ってもよい。 Each of the plurality of switching circuits 400 sequentially switches the working electrodes 112 electrically connected to the corresponding current-voltage conversion circuit 510 from the corresponding working electrode group G at substantially the same timing. For example, in FIG. 4, in the first switching circuit 400a, the working electrodes 112 numbered 1 to 8 in the working electrode Ga of the first group are sequentially electrically connected to the first current-voltage conversion circuit 510a. Then, the second switching circuit 400b sequentially electrically connects the working electrodes 112 numbered 1 to 8 in the second group of working electrodes Gb to the second current-voltage conversion circuit 510b. In this example, the working electrodes 112 numbered 1 to 8 in the working electrode Gb of the second group are respectively the working electrodes 112 numbered 1 to 8 in the working electrode Ga of the first group. Is electrically connected to the current-voltage conversion circuit 510 at substantially the same timing. In this example, switching by the switching circuit 400 may be performed in the order of numbers 1 to 8 shown in FIG. 4, or may be performed in an order different from the order of numbers 1 to 8 shown in FIG.
 各作用電極群Gにおける複数の作用電極112は、複数の作用電極群G間において実質的に同一の規則(例えば、マトリクスの行及び列の数又は隣り合う作用電極112の間の間隔)で並んでいてもよい。例えば、図4において、第2群の作用電極Gb内の1~8の番号が付された作用電極112は、第1群の作用電極Ga内の1~8の番号が付された作用電極112と実質的に同一の規則で並んでいる。 The plurality of working electrodes 112 in each working electrode group G are arranged by substantially the same rule among the plurality of working electrode groups G (for example, the number of rows and columns of the matrix or the spacing between adjacent working electrodes 112). You can leave. For example, in FIG. 4, the working electrodes 112 numbered 1 to 8 in the working electrode Gb of the second group are the working electrodes 112 numbered 1 to 8 in the working electrode Ga of the first group. It is lined up with the substantially same rule.
 複数のスイッチング回路400は、作用電極群G内において相対的に実質的に同一の位置にある作用電極112を実質的に同一のタイミングで電流電圧変換回路510に電気的に接続してもよい。例えば、図4において、第2群の作用電極Gb内の1~8の番号が付された作用電極112は、それぞれ、第1群の作用電極Ga内の1~8の番号が付された作用電極112と、各作用電極群G内において相対的に実質的に同一の位置にある。 The plurality of switching circuits 400 may electrically connect the working electrodes 112 located at substantially the same position in the working electrode group G to the current-voltage conversion circuit 510 at substantially the same timing. For example, in FIG. 4, the working electrodes 112 numbered 1 to 8 in the working electrode Gb of the second group are respectively the actions numbered 1 to 8 in the working electrode Ga of the first group. The electrode 112 and the working electrode group G are relatively at substantially the same position in each working electrode group G.
 図5は、図2に示したブロックBの詳細を説明するための図である。図6は、図5のP-P´断面図である。 FIG. 5 is a diagram for explaining the details of the block B shown in FIG. FIG. 6 is a sectional view taken along line PP′ of FIG.
 素子10は、基板100、導電層110及び配線層120(レジスト122)を備えている。 The element 10 includes a substrate 100, a conductive layer 110, and a wiring layer 120 (resist 122).
 基板100は、例えば、ガラス基板、半導体基板(例えば、シリコン基板)又は樹脂基板である。 The substrate 100 is, for example, a glass substrate, a semiconductor substrate (for example, a silicon substrate), or a resin substrate.
 基板100は、第1面102及び第2面104を有している。導電層110及び配線層120(レジスト122)は、基板100の第1面102上に位置している。第2面104は、第1面102の反対側にある。 The substrate 100 has a first surface 102 and a second surface 104. The conductive layer 110 and the wiring layer 120 (resist 122) are located on the first surface 102 of the substrate 100. The second surface 104 is on the opposite side of the first surface 102.
 導電層110は、例えば、金属からなっている。 The conductive layer 110 is made of metal, for example.
 導電層110は、作用電極112、端子114及び配線116を有している。作用電極112及び端子114は、配線116を介して互いに接続されている。ただし、作用電極112及び端子114の構造は、図5及び図6に示す例に限定されない。例えば、端子114は、基板100の第2面104側に位置していてもよく、基板100を第1面102から第2面104にかけて貫通するスルーホールを介して、基板100の第1面102側の作用電極112に電気的に接続されていてもよい。 The conductive layer 110 has a working electrode 112, a terminal 114, and a wiring 116. The working electrode 112 and the terminal 114 are connected to each other via the wiring 116. However, the structures of the working electrode 112 and the terminal 114 are not limited to the examples shown in FIGS. 5 and 6. For example, the terminal 114 may be located on the second surface 104 side of the substrate 100, and the first surface 102 of the substrate 100 may be provided through a through hole that penetrates the substrate 100 from the first surface 102 to the second surface 104. It may be electrically connected to the working electrode 112 on the side.
 レジスト122は、例えば、絶縁材料(例えば、樹脂)からなっている。 The resist 122 is made of, for example, an insulating material (for example, resin).
 レジスト122は、作用電極112の少なくとも一部分を露出する開口及び端子114の少なくとも一部露出する開口を有しており、配線116の少なくとも一部分を覆っている。 The resist 122 has an opening exposing at least a part of the working electrode 112 and an opening exposing at least a part of the terminal 114, and covers at least a part of the wiring 116.
 作用電極112のうちのレジスト122から露出された部分の面積は、小さくすることができ、例えば200000μm以下にすることができる。図5に示すように、作用電極112のうちのレジスト122から露出された部分の形状は円にしてもよく、円の直径は、例えば、500μm以下にしてもよい。 The area of the portion of the working electrode 112 exposed from the resist 122 can be reduced, and can be, for example, 200,000 μm 2 or less. As shown in FIG. 5, the shape of the portion of the working electrode 112 exposed from the resist 122 may be a circle, and the diameter of the circle may be, for example, 500 μm or less.
 図7は、ウェル300内における作用電極112-対向電極212間接続を説明するための図である。 FIG. 7 is a diagram for explaining the connection between the working electrode 112 and the counter electrode 212 in the well 300.
 作用電極112-対向電極212間接続は、図7に示す等価回路によって示すことができる。図7に示す等価回路は、抵抗312、抵抗314及びキャパシタ316を含んでいる。抵抗314及びキャパシタ316は、並列に接続されている。抵抗312は、抵抗314及びキャパシタ316の並列回路に直列に接続されている。抵抗312は、溶液抵抗に相当し、抵抗314は、電荷移動抵抗に相当し、キャパシタ316は、電気二重層に相当する。 The connection between the working electrode 112 and the counter electrode 212 can be shown by an equivalent circuit shown in FIG. The equivalent circuit shown in FIG. 7 includes a resistor 312, a resistor 314, and a capacitor 316. The resistor 314 and the capacitor 316 are connected in parallel. The resistor 312 is connected in series with a parallel circuit of the resistor 314 and the capacitor 316. The resistor 312 corresponds to a solution resistance, the resistor 314 corresponds to a charge transfer resistor, and the capacitor 316 corresponds to an electric double layer.
 抵抗312(溶液抵抗)は、作用電極112及び対向電極212の間の距離に依存する。したがって、上述したように、実質的に同一のタイミングで測定される複数の作用電極112が対向電極212から実質的に同一の距離の範囲にある場合、複数の作用電極112の測定結果間における溶液抵抗に起因した誤差を抑えることができる。 The resistance 312 (solution resistance) depends on the distance between the working electrode 112 and the counter electrode 212. Therefore, as described above, when the plurality of working electrodes 112 measured at substantially the same timing are in the range of the substantially same distance from the counter electrode 212, the solution between the measurement results of the plurality of working electrodes 112 is measured. The error due to the resistance can be suppressed.
 計測装置20は、様々な電気化学測定、特に、可逆系電気化学系測定に使用することができる。例えば、計測装置20は、計測した酸化還元電流に基づいて、核酸(例えば、マイクロRNA(miRNA))のハイブリダイゼーション度合を検出する装置に使用してもよい。この場合、計測装置20は、核酸のハイブリダイゼーション前のサイクリックボルタンメトリ(CV)及び核酸のハイブリダイゼーション後のCVを検出する。 The measuring device 20 can be used for various electrochemical measurements, particularly reversible electrochemical measurements. For example, the measuring device 20 may be used in a device that detects the degree of hybridization of a nucleic acid (for example, micro RNA (miRNA)) based on the measured redox current. In this case, the measuring device 20 detects cyclic voltammetry (CV) before nucleic acid hybridization and CV after nucleic acid hybridization.
 CVの検出においては、実質的に同一のタイミングで測定される複数の作用電極112が対向電極212から実質的に同一の距離の範囲にある場合、複数の作用電極112の測定結果間における溶液抵抗に起因した誤差を抑えることができる。 In the detection of CV, when the plurality of working electrodes 112 measured at substantially the same timing are in the range of the substantially same distance from the counter electrode 212, the solution resistance between the measurement results of the plurality of working electrodes 112 is measured. It is possible to suppress the error caused by.
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 The embodiments of the present invention have been described above with reference to the drawings, but these are examples of the present invention, and various configurations other than the above may be adopted.
 この出願は、2018年12月18日に出願された日本出願特願2018-236307号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims the priority right based on Japanese Patent Application No. 2018-236307 filed on December 18, 2018, and incorporates all the disclosure thereof.
10 素子
20 計測装置
100 基板
102 第1面
104 第2面
106a 第1辺
106b 第2辺
106c 第3辺
106d 第4辺
110 導電層
112 作用電極
112a 第1作用電極
112b 第2作用電極
112c 第3作用電極
112d 第4作用電極
114 端子
116 配線
120 配線層
122 レジスト
212 対向電極
222 参照電極
300 ウェル
302 隔壁
312 抵抗
314 抵抗
316 キャパシタ
400 スイッチング回路
400a 第1スイッチング回路
400b 第2スイッチング回路
500 ポテンショスタット
510 電流電圧変換回路
510a 第1電流電圧変換回路
510b 第2電流電圧変換回路
512 オペアンプ
514 抵抗
522 オペアンプ
524 オペアンプ
526 抵抗
528 抵抗
610 制御器
620 測定器
B ブロック
D1 第1距離
D2 第2距離
D3 第3距離
D4 第4距離
G 作用電極群
Ga 第1群の作用電極
Gb 第2群の作用電極
10 element 20 measuring device 100 substrate 102 first surface 104 second surface 106a first side 106b second side 106c third side 106d fourth side 110 conductive layer 112 working electrode 112a first working electrode 112b second working electrode 112c third Working electrode 112d Fourth working electrode 114 Terminal 116 Wiring 120 Wiring layer 122 Resist 212 Counter electrode 222 Reference electrode 300 Well 302 Partition wall 312 Resistance 314 Resistance 316 Capacitor 400 Switching circuit 400a First switching circuit 400b Second switching circuit 500 Potentiostat 510 Current Voltage conversion circuit 510a First current-voltage conversion circuit 510b Second current-voltage conversion circuit 512 Op amp 514 Resistor 522 Opamp 524 Opamp 526 Resistor 528 Resistor 610 Controller 620 Measuring device B block D1 First distance D2 Second distance D3 Third distance D4 Fourth distance G Working electrode group Ga Working electrode of first group Gb Working electrode of second group

Claims (8)

  1.  酸化還元電流を計測する計測装置であって、
     第1スイッチング回路と、
     第2スイッチング回路と、
     前記第1スイッチング回路に電気的に接続された第1群の作用電極と、
     前記第2スイッチング回路に電気的に接続された第2群の作用電極と、
    を備え、
     前記第1スイッチング回路は、前記第1群の作用電極の中から第1電流電圧変換回路に電気的に接続する作用電極を順次切り替え、
     前記第2スイッチング回路は、前記第2群の作用電極の中から第2電流電圧変換回路に電気的に接続する作用電極を順次切り替え、
     前記第1群の作用電極及び前記第2群の作用電極は、共通のウェル内に配置されている、計測装置。
    A measuring device for measuring a redox current,
    A first switching circuit,
    A second switching circuit,
    A first group of working electrodes electrically connected to the first switching circuit;
    A second group of working electrodes electrically connected to the second switching circuit;
    Equipped with
    The first switching circuit sequentially switches the working electrodes electrically connected to the first current-voltage conversion circuit from the working electrodes of the first group,
    The second switching circuit sequentially switches the working electrodes electrically connected to the second current-voltage conversion circuit from the working electrodes of the second group,
    The measuring device, wherein the first group of working electrodes and the second group of working electrodes are arranged in a common well.
  2.  前記第1スイッチング回路は、第1タイミングにおいて、前記第1群の作用電極内の第1作用電極を前記第1電流電圧変換回路に電気的に接続し、第2タイミングにおいて、前記第1群の作用電極内の第2作用電極を前記第1電流電圧変換回路に電気的に接続し、
     前記第2スイッチング回路は、前記第1タイミングと実質的に同一のタイミングにおいて、前記第2群の作用電極内の第3作用電極を前記第2電流電圧変換回路に電気的に接続し、前記第2タイミングと実質的に同一のタイミングにおいて、前記第2群の作用電極内の第4作用電極を電気的に前記第2電流電圧変換回路に接続する、請求項1に記載の計測装置。
    The first switching circuit electrically connects the first working electrode in the working electrodes of the first group to the first current-voltage conversion circuit at a first timing, and the first switching electrode of the first group at a second timing. Electrically connecting a second working electrode in the working electrode to the first current-voltage conversion circuit;
    The second switching circuit electrically connects the third working electrode in the working electrodes of the second group to the second current-voltage conversion circuit at substantially the same timing as the first timing, The measuring device according to claim 1, wherein the fourth working electrode in the working electrodes of the second group is electrically connected to the second current-voltage conversion circuit at substantially the same timing as two timings.
  3.  前記第1作用電極は、対向電極から第1距離離れており、
     前記第2作用電極は、前記対向電極から第2距離離れており、
     前記第3作用電極は、前記対向電極から、前記第1距離の80%以上120%以下の第3距離離れており、
     前記第4作用電極は、前記対向電極から、前記第2距離の80%以上120%以下の第4距離離れている、請求項2に記載の計測装置。
    The first working electrode is separated from the counter electrode by a first distance,
    The second working electrode is separated from the counter electrode by a second distance,
    The third working electrode is separated from the counter electrode by a third distance of 80% or more and 120% or less of the first distance,
    The measuring device according to claim 2, wherein the fourth working electrode is away from the counter electrode by a fourth distance that is 80% or more and 120% or less of the second distance.
  4.  前記第1作用電極、前記第2作用電極、前記第3作用電極及び前記第4作用電極は、基板の第1面上に位置しており、
     前記第1作用電極は、前記基板の前記第1面の中心から第1距離離れており、
     前記第2作用電極は、前記基板の前記第1面の前記中心から第2距離離れており、
     前記第3作用電極は、前記基板の前記第1面の前記中心から、前記第1距離の80%以上120%以下の第3距離離れており、
     前記第4作用電極は、前記基板の前記第1面の前記中心から、前記第2距離の80%以上120%以下の第4距離離れている、請求項2に記載の計測装置。
    The first working electrode, the second working electrode, the third working electrode and the fourth working electrode are located on the first surface of the substrate,
    The first working electrode is separated from the center of the first surface of the substrate by a first distance,
    The second working electrode is spaced a second distance from the center of the first surface of the substrate;
    The third working electrode is away from the center of the first surface of the substrate by a third distance that is 80% or more and 120% or less of the first distance,
    The measurement device according to claim 2, wherein the fourth working electrode is away from the center of the first surface of the substrate by a fourth distance that is 80% or more and 120% or less of the second distance.
  5.  前記第2群の作用電極は、前記第1群の作用電極と実質的に同一の規則で並んでいる、請求項1から4までのいずれか一項に記載の計測装置。 The measuring device according to any one of claims 1 to 4, wherein the working electrodes of the second group are arranged in substantially the same rule as the working electrodes of the first group.
  6.  一つの対向電極、一つの参照電極、前記第1群の作用電極及び前記第2群の作用電極によって前記酸化還元電流を計測する、請求項1から5までのいずれか一項に記載の計測装置。 The measuring device according to any one of claims 1 to 5, wherein the redox current is measured by one counter electrode, one reference electrode, the first group of working electrodes, and the second group of working electrodes. ..
  7.  前記酸化還元電流に基づいて、核酸のハイブリダイゼーション度合を検出する、請求項1から6までのいずれか一項に記載の計測装置。 The measuring device according to any one of claims 1 to 6, which detects the degree of hybridization of nucleic acid based on the redox current.
  8.  酸化還元電流を計測する計測方法であって、
     ウェル内に位置し、第1スイッチング回路に電気的に接続された第1群の作用電極の中から第1電流電圧変換回路に電気的に接続する作用電極を前記第1スイッチング回路によって順次切り替え、
     前記ウェル内に位置し、第2スイッチング回路に電気的に接続された第2群の作用電極の中から第2電流電圧変換回路に電気的に接続する作用電極を前記第2スイッチング回路によって順次切り替える、計測方法。
    A measuring method for measuring a redox current,
    The working electrodes electrically connected to the first current-voltage conversion circuit among the working electrodes of the first group located in the well and electrically connected to the first switching circuit are sequentially switched by the first switching circuit,
    The working electrodes electrically connected to the second current-voltage conversion circuit among the working electrodes of the second group located in the well and electrically connected to the second switching circuit are sequentially switched by the second switching circuit. , Measuring method.
PCT/JP2019/043730 2018-12-18 2019-11-07 Measurement device and measurement method WO2020129452A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020561209A JPWO2020129452A1 (en) 2018-12-18 2019-11-07 Measuring device and measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-236307 2018-12-18
JP2018236307 2018-12-18

Publications (1)

Publication Number Publication Date
WO2020129452A1 true WO2020129452A1 (en) 2020-06-25

Family

ID=71101233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043730 WO2020129452A1 (en) 2018-12-18 2019-11-07 Measurement device and measurement method

Country Status (2)

Country Link
JP (1) JPWO2020129452A1 (en)
WO (1) WO2020129452A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007514175A (en) * 2003-12-15 2007-05-31 ジーンオーム サイエンシーズ、インク. Multiplex electrochemical detection system and method
JP2009510446A (en) * 2005-09-29 2009-03-12 コンビマトリックス・コーポレイション Method and apparatus for measuring binding events on electrode microarrays
JP2010529007A (en) * 2007-05-25 2010-08-26 ウニベルシダッド アウトノマ デ マドリッド Electrochemical detection of nucleic acid sequences
JP2011099867A (en) * 2002-07-31 2011-05-19 Toshiba Corp Base sequence automatic analyzer
JP2012047536A (en) * 2010-08-25 2012-03-08 Nagoya Univ Current detection device
WO2017154801A1 (en) * 2016-03-11 2017-09-14 パナソニックIpマネジメント株式会社 Electrochemical measurement system, electrochemical measurement device, and electrochemical measurement method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099867A (en) * 2002-07-31 2011-05-19 Toshiba Corp Base sequence automatic analyzer
JP2007514175A (en) * 2003-12-15 2007-05-31 ジーンオーム サイエンシーズ、インク. Multiplex electrochemical detection system and method
JP2009510446A (en) * 2005-09-29 2009-03-12 コンビマトリックス・コーポレイション Method and apparatus for measuring binding events on electrode microarrays
JP2010529007A (en) * 2007-05-25 2010-08-26 ウニベルシダッド アウトノマ デ マドリッド Electrochemical detection of nucleic acid sequences
JP2012047536A (en) * 2010-08-25 2012-03-08 Nagoya Univ Current detection device
WO2017154801A1 (en) * 2016-03-11 2017-09-14 パナソニックIpマネジメント株式会社 Electrochemical measurement system, electrochemical measurement device, and electrochemical measurement method

Also Published As

Publication number Publication date
JPWO2020129452A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
CN101084447B (en) System for testing and burning in of integrated circuits
Beccherelli et al. Design of a very large chemical sensor system for mimicking biological olfaction
JP7188983B2 (en) conductivity sensor
US9425385B2 (en) Vertical hall effect device
CN105701441B (en) Sensing method and circuit of fingerprint sensor
US4587481A (en) Arrangement for testing micro interconnections and a method for operating the same
CN109037211B (en) Capacitor array structure
JP2006523872A (en) Position detection device
US20170236996A1 (en) Three 3-contact vertical hall sensor elements connected in a ring and related devices, systems, and methods
JP4807455B2 (en) Semiconductor device
CN105701440A (en) fingerprint sensor with electrostatic protection
JP2016025355A (en) Electrostatic capacitance test structure and electrostatic capacitance test method for monitoring thickness of dielectric
JP5529611B2 (en) Semiconductor device and resistance measuring method
WO2020129452A1 (en) Measurement device and measurement method
US20070296401A1 (en) Interleaved Differential Multiplexer
JP4731157B2 (en) Traveling wave grid for separation, transport and concentration of biomolecules
US20190022647A1 (en) Biological sample analysis chip, biological sample analyzer and biological sample analysis method
TWI671524B (en) Liquid sensing apparatus and method of manufacturing the same
JP5193635B2 (en) Semiconductor device
TWI632377B (en) Probe card, secondary battery and inspection method
CN115979504A (en) Novel on-chip miniature vacuum sensor and manufacturing method thereof
US20180238822A1 (en) Gas sensing apparatus and a manufacturing process thereof
EP3428632A1 (en) Electrochemical measurement system, electrochemical measurement device, and electrochemical measurement method
CN108519519A (en) A kind of resistance measurement method and electric resistance measuring apparatus
TW202215048A (en) An electrowetting-on-dielectric device and a method for detecting a circuit of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898778

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561209

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898778

Country of ref document: EP

Kind code of ref document: A1