WO2020129155A1 - Heat exchanger and refrigeration cycle device - Google Patents

Heat exchanger and refrigeration cycle device Download PDF

Info

Publication number
WO2020129155A1
WO2020129155A1 PCT/JP2018/046562 JP2018046562W WO2020129155A1 WO 2020129155 A1 WO2020129155 A1 WO 2020129155A1 JP 2018046562 W JP2018046562 W JP 2018046562W WO 2020129155 A1 WO2020129155 A1 WO 2020129155A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
side plate
header
heat transfer
transfer tube
Prior art date
Application number
PCT/JP2018/046562
Other languages
French (fr)
Japanese (ja)
Inventor
久登 森田
七種 哲二
アバスタリ
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201890001711.2U priority Critical patent/CN216432657U/en
Priority to PCT/JP2018/046562 priority patent/WO2020129155A1/en
Publication of WO2020129155A1 publication Critical patent/WO2020129155A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings

Definitions

  • the present invention relates to a heat exchanger and a refrigeration cycle device.
  • a heat exchanger including a heat transfer tube having a substantially flat cross section and a side plate has been known (for example, see Patent Document 1).
  • the heat transfer tube and the side plate of the heat exchanger of Patent Document 1 have a linear shape.
  • the present invention has been made in view of the above problems, and an object thereof is to obtain a heat exchanger having a bent portion in which the minor diameter portion of the flat heat transfer tube is inside the bend.
  • the heat exchanger according to the present invention has a bent portion in which the short-diameter portion of the flat-shaped heat-transfer tube having a cross-section having a short-diameter portion and a long-diameter portion is inside the bend, and the side plate fixed to the heat-transfer tube
  • the side plate has a board portion and a low-rigidity portion formed between the board portions and having a rigidity lower than that of the board portion along the direction in which the heat transfer tube extends. It is bent in the region including the rigid portion.
  • the heat exchanger of the present invention is bent in a region including one low-rigidity portion of the side plate, it is possible to reduce the force applied when the heat exchanger is bent.
  • FIG. 16 is a diagram schematically showing the CC cross section of FIG. 15. It is the figure which described typically the state before performing the bending process of the heat exchanger which concerns on Embodiment 2 of this invention.
  • FIG. 18 is a diagram schematically illustrating a DD cross section of FIG. 17. It is the modification 10 of FIG.
  • Embodiment 1 [Refrigeration cycle device]
  • FIG. 1 is a diagram schematically showing the external appearance of an outdoor unit of a refrigeration cycle apparatus according to Embodiment 1 of the present invention when viewed from the front.
  • FIG. 2 is a diagram schematically showing the AA cross section of FIG.
  • the outdoor unit 100 of the example of this embodiment is connected to an indoor unit (not shown) by a refrigerant pipe to form a refrigeration cycle apparatus.
  • the refrigeration cycle apparatus can be applied to a refrigeration apparatus that cools a cooling space such as a warehouse or an air conditioner that air-conditions a building or the like.
  • the outdoor unit 100 is a side-flow type outdoor unit 100 that blows out air in a substantially horizontal direction.
  • FIG. 1 is a diagram schematically showing the external appearance of an outdoor unit of a refrigeration cycle apparatus according to Embodiment 1 of the present invention when viewed from the front.
  • FIG. 2 is a diagram schematically showing the AA cross section of FIG.
  • the outdoor unit 100 of the example of this embodiment is connected to an indoor unit (not shown)
  • a heat exchange chamber 110 and a machine room 111 are formed inside the outdoor unit 100.
  • the machine room 111 is provided with a compressor and the like (not shown).
  • the heat exchange chamber 110 is provided with the heat exchanger 10 and the blower 102.
  • the blower 102 blows air to the heat exchanger 10.
  • the blower 102 blows air to promote heat exchange between the blown air and the fluid flowing inside the heat exchanger 10.
  • a fan guard 103 that covers the blower 102 is provided in front of the blower 102.
  • the heat exchanger 10 has headers 12 provided at both ends.
  • the fluid that is heat-exchanged in the heat exchanger 10 flows in from one header 12 and flows out from the other header 12, for example.
  • the heat exchanger 10 has a bent portion 180 in which the inner side 181 of the bend is concave and the outer side 182 of the bend is convex.
  • the inside 181 of the bend is a portion where the curvature is large, and the outside 182 of the bend is a portion where the curvature is small.
  • the heat exchanger 10 has a one-time bending shape having one bending portion 180.
  • FIG. 3 is a diagram schematically showing the state before bending the heat exchanger shown in FIG. 2.
  • the heat exchanger 10 includes a header 12, heat transfer tubes 14, fins 16 and side plates 18.
  • the heat exchanger 10 of the example of this embodiment is an aluminum heat exchanger in which the header 12, the heat transfer tubes 14, the fins 16 and the side plates 18 are made of aluminum.
  • the heat exchanger 10 in the example of this embodiment is not limited to the one formed of aluminum.
  • the heat transfer tube 14 has a fluid flowing therein.
  • the heat transfer tube 14 communicates with the inside of the header 12.
  • the heat transfer tube 14 is brazed to the header 12 with the tip of the heat transfer tube 14 inserted into the header 12.
  • a plurality of heat transfer tubes 14 are stacked along the stacking direction.
  • the heat exchanger 10 in the example of FIG. 3 is a parallel flow heat exchanger in which the fluid flows in parallel to the plurality of heat transfer tubes 14.
  • the heat exchanger 10 of the example of this embodiment is not limited to the parallel flow heat exchanger.
  • FIG. 4 is a diagram schematically showing a cross section of the heat transfer tube shown in FIG.
  • FIG. 5 is a first modification of FIG.
  • the heat transfer tube 14 has a flat cross section having a short diameter portion 14A and a long diameter portion 14B.
  • the heat transfer tube 14 has a single flow path 14-1 inside.
  • the heat transfer tube 14 may have a plurality of flow paths 14-2 inside, as shown in FIG.
  • the side plate 18 shown in FIG. 3 protects the heat transfer tubes 14 and the fins 16.
  • the side plate 18 is a plate-shaped member provided so as to suppress deformation of the heat transfer tube 14 and the fins 16.
  • the side plates 18 are provided, for example, on both sides of the heat transfer tube 14 in the stacking direction.
  • the side plate 18 is fixed to the heat transfer tube 14 via the fin 16.
  • the side plate 18 and the fin 16 are fixed by brazing, for example, and the fin 16 and the heat transfer tube 14 are fixed by brazing, for example.
  • the side plate 18 may be fixed to the heat transfer tube 14 by brazing or the like without using the fin 16. Both ends of the side plate 18 are fixed to the header 12 by brazing or the like.
  • both ends of the side plate 18 are not inserted into the header 12. Both ends of the side plate 18 may be inserted into the header 12.
  • the fins 16 increase the heat exchange efficiency of the heat exchanger 10 by increasing the surface area for exchanging heat with the air.
  • the fin 16 is, for example, a corrugated fin having a corrugated shape with continuous irregularities.
  • the fins 16 are provided between the stacked heat transfer tubes 14 or between the heat transfer tubes 14 and the side plates 18.
  • FIG. 6 is a diagram schematically showing the external appearance of the heat exchanger shown in FIG. 3 when viewed from above.
  • the side plate 18 has a substrate portion 18A and a low-rigidity portion 18B along the direction in which the side plate 18 extends, that is, the direction in which the heat transfer tube 14 extends.
  • the low-rigidity portion 18B is provided between the substrate portion 18A and the substrate portion 18A.
  • the low-rigidity portion 18B is formed to have a lower rigidity than the substrate portion 18A.
  • the heat exchanger 10 has a single-bent shape as shown in FIG. Specifically, the short diameter portion 14A shown in FIG. 4 is bent so as to be the inside 181 of the bend shown in FIG.
  • the heat exchanger 10 is bent with the header 12, the heat transfer tubes 14, the fins 16 and the side plates 18 fixed. Therefore, when the heat exchanger 10 is bent, the stress obtained by adding the compressive stress generated on the inner side 181 of bending and the tensile stress generated on the outer side 182 of bending of each of the heat transfer tube 14, the fin 16 and the side plate 18 is applied. Occurs.
  • the side plate 18 is a plate-shaped member having high rigidity as compared with the heat transfer tubes 14 and the fins 16, and therefore has a large force required for bending.
  • an inner cutout 180-a and an outer cutout 180-b are provided in the low-rigidity portion 18B that serves as the bent portion 180 of the side plate 18.
  • the inner notch 180-a has a notch shape provided in the bent inner side 181 of the side plate 18.
  • the outer cutout 180-b has a cutout shape provided on the bent outer side 182 of the side plate 18.
  • the cross section has the minor diameter portion 14A and the major diameter portion 14B, and the minor diameter portion 14A of the flat heat transfer tube 14 is bent inside 181. It has a section 180.
  • the heat exchanger 10 includes a side plate 18 fixed to the heat transfer tube 14, and the side plate 18 is provided between the substrate portion 18A and the substrate portion 18A along the direction in which the heat transfer tube 14 extends. It has a low-rigidity portion 18B formed to have a rigidity lower than that of the portion 18A. Then, the heat exchanger 10 is bent in a region including one low-rigidity portion 18B.
  • the heat exchanger 10 Since the heat exchanger 10 is bent in the region including the one low-rigidity portion 18B provided on the side plate 18, it is possible to reduce the stress acting when the heat exchanger 10 is bent. By reducing the stress that acts when the heat exchanger 10 is bent, it is possible to apply a load having an appropriate orientation or magnitude to the heat exchanger 10. By applying an appropriate load to the heat exchanger 10, the shape of the heat exchanger 10 can be made highly accurate. Further, by applying an appropriate load to the heat exchanger 10, it is possible to reduce the risk of damage to the heat exchanger 10 due to an abnormal force acting when the heat exchanger 10 is bent.
  • the heat exchanger 10 has one low-rigidity portion 18B provided on the side plate 18, the bending position of the heat exchanger 10 is set to the low-rigidity portion 18B, and the shape of the heat exchanger 10 is changed. High accuracy can be achieved. Further, by providing the low-rigidity portion 18B only on the bent portion 180, the protection of the heat transfer tubes 14 and the fins 16 by the substrate portion 18A of the side plate 18 can be ensured.
  • the substrate portion 18A and the low-rigidity portion 18B can be formed of different materials, and the rigidity of the low-rigidity portion 18B can be made lower than the rigidity of the substrate portion 18A.
  • FIG. 7 shows a modification 2 of FIG.
  • FIG. 8 is a modification 3 of FIG.
  • the low-rigidity portion 18B may have the inner cutout 180-a or the outer cutout 180-b.
  • the inner cutout 180-a by providing the inner cutout 180-a, it is possible to reduce the compressive stress when the heat exchanger 10 is bent.
  • the outer cutouts 180-b by providing the outer cutouts 180-b, the tensile stress when the heat exchanger 10 is bent can be reduced.
  • the inner cutout 180-a may be adopted when the purpose is to greatly reduce the stress.
  • the reduction of stress when bending the heat exchanger 10 is because the effect of reducing the compressive stress is larger than the effect of reducing the tensile stress.
  • FIG. 9 is a modified example 4 of FIG.
  • the low-rigidity portion 18B has a plurality of slits 180-c having cuts on the inside 181 of the bend of the side plate 18. It is preferable that the slits 180-c have a shape in which a gap is increased in a direction in which the heat exchanger 10 is bent before bending the heat exchanger 10 so as to be the inside 181 of the bending.
  • the slit 180-c and providing the low-rigidity portion 18B the area for processing the side plate 18 can be reduced, so that the reduction of the strength of the side plate 18 can be suppressed and the side plate 18 can be suppressed.
  • the processing cost can be reduced, and the reduction of the function of protecting the heat transfer tubes 14 and the fins 16 can be suppressed.
  • FIG. 9 an example in which the slit 180-c is provided in the portion of the inner cutout 180-a that is the inner side 181 of the bend has been described, but the inner cutout 180-a is omitted and the side plate 18 is omitted. Alternatively, only the slit 180-c may be provided in the portion that becomes the inner side 181 of the bend.
  • FIG. 10 shows a modified example 5 of FIG.
  • FIG. 11 is a modification 6 of FIG.
  • the low-rigidity portion 18B has holes 180-d and 180-e provided in the side plate 18.
  • the hole forming the low-rigidity portion 18B is, for example, as shown in FIG. 10, a long hole-shaped hole 180-d having a major axis along the direction in which the side plate 18 extends, or as shown in FIG. It is a hole 180-e having a long hole shape having a short diameter along the long side of the plate 18.
  • the shape of the hole forming the low-rigidity portion 18B is not particularly limited, and may be, for example, an ellipse, a perfect circle, a rectangle, or the like.
  • the hole forming the low-rigidity portion 18B may be one hole, but by having a structure having a plurality of holes, it is possible to appropriately disperse the force and obtain an appropriate strength.
  • FIG. 12 shows a modification 7 of FIG.
  • FIG. 13 is a diagram schematically showing the BB cross section of FIG.
  • the low-rigidity portion 18B has a bellows-shaped portion 180-f provided on the side plate 18.
  • the bellows-shaped portion 180-f is configured such that, when the heat exchanger 10 is bent, the interval between the peaks on the inside 181 of the side plate 18 is narrower than the interval between the peaks on the outside 182 of the bend of the side plate 18. It should be provided.
  • the compressive stress when the heat exchanger 10 is bent is reduced.
  • the widening of the crests on the outer side 182 of the bending of the side plate 18 reduces the tensile stress when the heat exchanger 10 is bent.
  • FIG. 14 is a modified example 8 of FIG.
  • the side plate 18 is formed to have a width smaller than that of the long diameter portion 14B of the heat transfer tube 14. By making the entire width of the side plate 18 narrow, the stress that acts when the heat exchanger 10 is bent can be reduced.
  • FIG. 15 shows a modification 9 of FIG.
  • FIG. 16 is a diagram schematically showing the CC cross section of FIG.
  • the outdoor unit of the first embodiment may be a top flow type outdoor unit 100-1 which blows out air in a substantially vertical direction.
  • the heat exchanger according to the first embodiment may be a heat exchanger 10-1 having a double bent shape having two bent portions 180 as shown in FIG.
  • the device to which the heat exchanger of the first embodiment is applied is not limited to the outdoor unit, and may be an indoor unit (not shown).
  • the shape of the heat exchanger of the first embodiment is not limited to the single-bend shape or the double-bend shape, and may be a shape having three or more bends.
  • the fluid exchanged by the heat exchanger 10 is not limited to the refrigerant of the refrigeration cycle and may be a heat medium such as water or brine.
  • the modified examples of the first embodiment may be combined appropriately.
  • it may be configured to have the inner cutout 180-a of Modification 2 of FIG. 7 and the hole 180-d of Modification 5 of FIG.
  • FIG. 17 is a diagram schematically showing a state before bending the heat exchanger according to the second embodiment of the present invention.
  • FIG. 18 is a diagram schematically illustrating a DD cross section of FIG. 17, the same components as those in FIG. 3 are designated by the same reference numerals, and the description will be omitted or simplified.
  • the side plate 18 and the header 12 are fixed in the heat exchanger 10 of the first embodiment.
  • a gap is provided between the side plate 18-1 and the header 12-1.
  • the second embodiment has a configuration in which the side plate 18-1 and the header 12-1 are not fixed. Although the side plate 18-1 is bent toward the heat transfer tube 14 in FIG.
  • the bent portion of the side plate 18-1 facing the heat transfer tube 14 may be omitted.
  • the stress when the heat exchanger 10-2 is bent can be reduced.
  • the stress acting on the header 12-1 or the heat transfer tube 14 when the heat exchanger 10-2 is bent is reduced. can do.
  • both ends of the side plate 18-1 and the header 12-1 are not fixed, and the header 12-1 is fixed only to the heat transfer tube 14. Since the header 12-1 is fixed only to the heat transfer tube 14, the fixing strength of the header 12-1 may be reduced. For example, if the fixing strength of the header is reduced, the header or the heat transfer tube 14 may be deformed. Therefore, in the example of this embodiment, as shown in FIG. 18, the header 12-1 has a thin portion 121 and a thick portion 122 formed to be thicker than the thin portion 121. The heat transfer tube 14 is connected to the thick portion 122. By configuring the heat transfer tube 14 to be connected to the thick portion 122, the fixing between the header 12-1 and the heat transfer tube 14 can be strengthened. Furthermore, since the rigidity of the header 12-1 is increased, the deformation of the header 12-1 can be suppressed.
  • FIG. 19 shows a modification 10 of FIG.
  • the heat exchanger 10-3 of Modification 10 includes a reinforcing member 13.
  • the reinforcing member 13 is for reinforcing the header 12-1, and is attached to the header 12-1.
  • the reinforcing member 13 is attached to a portion of the header 12-1 where the heat transfer tube 14 is not attached.
  • the reinforcing member 13 includes the header 12-1 and the end portion of the header 12-1 from the heat transfer pipe 14 connected to the header 12-1 closest to the end portion of the header 12-1 along the direction in which the reinforcing member 13 extends. Up to at least a part of.
  • the reinforcing member 13 was connected to the header 12-1 at a position closest to the end of the header 12-1 from the end of the header 12-1 along the direction in which the header 12-1 and the reinforcing member 13 extend. It is preferable to extend to a position past the heat transfer tube 14. In the region where the heat transfer tube 14 or the side plate 18-1 of the header 12-1 is not fixed, the fixing strength of the header 12-1 may decrease. If the fixing strength of the header 12-1 is reduced, the header 12-1 or the heat transfer tube 14 may be deformed. Therefore, in Modification 10, the heat transfer pipe 14 connected to the header 12-1 is closest to the end of the header 12-1 along the direction in which the header 12-1 and the reinforcing member 13 extend from the heat transfer pipe 14 to the header 12-1. It is configured to have a reinforcing member 13 that reinforces at least a part up to the end portion. By providing the reinforcing member 13, deformation of the header 12-1 or the heat transfer tube 14 can be suppressed.
  • the present invention is not limited to the above embodiments, but can be variously modified within the scope of the present invention. That is, the configuration of the above-described embodiment may be appropriately improved, or at least a part of the configuration may be replaced with another configuration. Furthermore, the constituent elements that are not particularly limited in the arrangement are not limited to the arrangement disclosed in the embodiment, and can be arranged in a position where the function can be achieved.
  • the second embodiment can be applied to the first embodiment.
  • the reinforcing member 13 of the second embodiment can be applied to the header 12 of the first embodiment.
  • the first embodiment can be applied to the second embodiment.
  • the low rigidity portion 18B of the first embodiment can be applied to the side plate 18-1 of the second embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The heat exchanger has a curved section in which a short diameter portion of a flat shaped heat transfer tube with a cross-section having a long diameter portion and the short diameter portion is the inside of the curve and comprises a side plate that is fixed to the heat transfer tube. The side plate has, along the direction that the heat transfer tube extends, a base plate portion and a low rigidity portion that is provided between the base plate portions and that is formed with a rigidity lower than the base plate portion, and is curved in an area that includes one site of the low rigidity portion.

Description

熱交換器および冷凍サイクル装置Heat exchanger and refrigeration cycle device
 この発明は、熱交換器および冷凍サイクル装置に関するものである。 The present invention relates to a heat exchanger and a refrigeration cycle device.
 従来から、断面略扁平状の伝熱管とサイドプレートとを具備した熱交換器が知られている(例えば、特許文献1参照)。特許文献1の熱交換器の伝熱管およびサイドプレートは、直線形状を有している。 BACKGROUND ART Conventionally, a heat exchanger including a heat transfer tube having a substantially flat cross section and a side plate has been known (for example, see Patent Document 1). The heat transfer tube and the side plate of the heat exchanger of Patent Document 1 have a linear shape.
特開2007-139376号公報JP, 2007-139376, A
 近年、熱交換の高効率化、および省スペース化を実現した熱交換器の需要がある。扁平形状の伝熱管を有する熱交換器が曲部を有する形状となることで、熱交換の高効率化、および省スペース化を実現することができる。しかしながら、扁平形状の伝熱管を有する熱交換器を曲げることは困難である。例えば、扁平形状の伝熱管を有する熱交換器を曲げる際に大きな力を作用させるため、曲げ加工によって熱交換器に異常変形が生じる等の課題がある。 In recent years, there is a demand for heat exchangers that achieve high efficiency of heat exchange and space saving. Since the heat exchanger having the flat heat transfer tube has the shape having the curved portion, it is possible to realize high efficiency of heat exchange and space saving. However, it is difficult to bend a heat exchanger having a flat heat transfer tube. For example, since a large force is applied when a heat exchanger having a flat heat transfer tube is bent, there is a problem that the heat exchanger has an abnormal deformation due to bending.
 この発明は、上記のような課題を鑑みてなされたもので、扁平形状の伝熱管の短径部が曲げの内側となる曲げ部を有する熱交換器を得ることを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to obtain a heat exchanger having a bent portion in which the minor diameter portion of the flat heat transfer tube is inside the bend.
 この発明に係る熱交換器は、断面が短径部と長径部とを有する扁平形状の伝熱管の短径部が曲げの内側となる曲げ部を有し、伝熱管と固定されたサイドプレートを備え、サイドプレートは、伝熱管が延びる方向に沿って、基板部、および基板部の間に設けられ基板部よりも剛性が低く形成された低剛性部を有しており、1箇所の前記低剛性部を含む領域で曲げられているものである。 The heat exchanger according to the present invention has a bent portion in which the short-diameter portion of the flat-shaped heat-transfer tube having a cross-section having a short-diameter portion and a long-diameter portion is inside the bend, and the side plate fixed to the heat-transfer tube The side plate has a board portion and a low-rigidity portion formed between the board portions and having a rigidity lower than that of the board portion along the direction in which the heat transfer tube extends. It is bent in the region including the rigid portion.
 この発明の熱交換器は、サイドプレートの1箇所の低剛性部を含む領域で曲げられているため、熱交換器を曲げるときに作用させる力を低減することができる。 Since the heat exchanger of the present invention is bent in a region including one low-rigidity portion of the side plate, it is possible to reduce the force applied when the heat exchanger is bent.
この発明の実施の形態1に係る冷凍サイクル装置の室外機を正面からみたときの外観を模式的に記載した図である。It is the figure which described typically the appearance when the outdoor unit of the refrigerating cycle device concerning Embodiment 1 of this invention is seen from the front. 図1のA-A断面を模式的に記載した図である。It is the figure which described the AA cross section of FIG. 1 typically. 図2に記載の熱交換器の曲げ加工を行う前の状態を模式的に記載した図である。It is the figure which described typically the state before performing the bending process of the heat exchanger described in FIG. 図3に記載の伝熱管の断面を模式的に記載した図である。It is the figure which described typically the cross section of the heat transfer tube described in FIG. 図4の変形例1である。It is the modification 1 of FIG. 図3に記載の熱交換器を上方から見たときの外観を模式的に記載した図である。It is the figure which described typically the external appearance when the heat exchanger described in FIG. 3 is seen from above. 図6の変形例2である。It is the modification 2 of FIG. 図6の変形例3である。It is the modification 3 of FIG. 図6の変形例4である。It is the modification 4 of FIG. 図6の変形例5である。It is the modification 5 of FIG. 図6の変形例6である。It is a modification 6 of FIG. 図6の変形例7である。It is a modification 7 of FIG. 図12のB-B断面を模式的に記載した図である。It is the figure which described the BB cross section of FIG. 12 typically. 図6の変形例8である。It is a modification 8 of FIG. 図1の変形例9である。It is the modification 9 of FIG. 図15のC-C断面を模式的に記載した図である。FIG. 16 is a diagram schematically showing the CC cross section of FIG. 15. この発明の実施の形態2に係る熱交換器の曲げ加工を行う前の状態を模式的に記載した図である。It is the figure which described typically the state before performing the bending process of the heat exchanger which concerns on Embodiment 2 of this invention. 図17のD-D断面を模式的に記載した図である。FIG. 18 is a diagram schematically illustrating a DD cross section of FIG. 17. 図17の変形例10である。It is the modification 10 of FIG.
 以下、図面を参照して、この発明の実施の形態について説明する。なお、各図中、同一または相当する部分には、同一符号を付して、その説明を適宜省略または簡略化する。また、各図に記載の構成について、その形状、大きさおよび配置等は、この発明の範囲内で適宜変更することができる。 Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or corresponding parts will be denoted by the same reference numerals, and the description thereof will be appropriately omitted or simplified. Further, regarding the configuration shown in each drawing, the shape, size, arrangement, etc. can be appropriately changed within the scope of the present invention.
実施の形態1.
[冷凍サイクル装置]
Embodiment 1.
[Refrigeration cycle device]
 図1は、この発明の実施の形態1に係る冷凍サイクル装置の室外機を正面からみたときの外観を模式的に記載した図である。図2は、図1のA-A断面を模式的に記載した図である。図1および図2に示すように、この実施の形態の例の室外機100は、図示を省略してある室内機と冷媒配管で接続されて、冷凍サイクル装置を形成するものである。冷凍サイクル装置は、倉庫等の冷却空間を冷却する冷凍装置、またはビル等の空調を行う空気調和装置に適用することができる。図1に示すように、室外機100は、略水平方向に空気を吹き出すサイドフロータイプの室外機100である。図2に示すように、室外機100の内部には、熱交換室110と機械室111とが形成されている。機械室111には、図示を省略してある圧縮機等が設けられている。熱交換室110には、熱交換器10および送風機102が設けられている。送風機102は、熱交換器10への送風を行うものである。送風機102が送風を行うことで、送風された空気と熱交換器10の内部を流れる流体との熱交換が促進される。図1に示すように、送風機102の前方には、送風機102を覆うファンガード103が設けられている。 FIG. 1 is a diagram schematically showing the external appearance of an outdoor unit of a refrigeration cycle apparatus according to Embodiment 1 of the present invention when viewed from the front. FIG. 2 is a diagram schematically showing the AA cross section of FIG. As shown in FIGS. 1 and 2, the outdoor unit 100 of the example of this embodiment is connected to an indoor unit (not shown) by a refrigerant pipe to form a refrigeration cycle apparatus. The refrigeration cycle apparatus can be applied to a refrigeration apparatus that cools a cooling space such as a warehouse or an air conditioner that air-conditions a building or the like. As shown in FIG. 1, the outdoor unit 100 is a side-flow type outdoor unit 100 that blows out air in a substantially horizontal direction. As shown in FIG. 2, inside the outdoor unit 100, a heat exchange chamber 110 and a machine room 111 are formed. The machine room 111 is provided with a compressor and the like (not shown). The heat exchange chamber 110 is provided with the heat exchanger 10 and the blower 102. The blower 102 blows air to the heat exchanger 10. The blower 102 blows air to promote heat exchange between the blown air and the fluid flowing inside the heat exchanger 10. As shown in FIG. 1, a fan guard 103 that covers the blower 102 is provided in front of the blower 102.
[熱交換器] [Heat exchanger]
 図2に示すように、熱交換器10は、両端に設けられたヘッダ12を有している。熱交換器10で熱交換される流体は、例えば、一方のヘッダ12から流入し、他方のヘッダ12から流出する。熱交換器10は、曲げの内側181が凹形状となり曲げの外側182が凸形状となる曲げ部180を有している。曲げの内側181は、曲率が大きくなる部分であり、曲げの外側182は、曲率が小さくなる部分である。熱交換器10は、1つの曲げ部180を有する1回曲げ形状を有している。 As shown in FIG. 2, the heat exchanger 10 has headers 12 provided at both ends. The fluid that is heat-exchanged in the heat exchanger 10 flows in from one header 12 and flows out from the other header 12, for example. The heat exchanger 10 has a bent portion 180 in which the inner side 181 of the bend is concave and the outer side 182 of the bend is convex. The inside 181 of the bend is a portion where the curvature is large, and the outside 182 of the bend is a portion where the curvature is small. The heat exchanger 10 has a one-time bending shape having one bending portion 180.
 図3は、図2に記載の熱交換器の曲げ加工を行う前の状態を模式的に記載した図である。図3に示すように、熱交換器10は、ヘッダ12と伝熱管14とフィン16とサイドプレート18とを有している。この実施の形態の例の熱交換器10は、ヘッダ12と伝熱管14とフィン16とサイドプレート18とがアルミニウムで形成されたアルミ熱交換器である。なお、この実施の形態の例の熱交換器10は、アルミニウムで形成されたものに限定されない。伝熱管14は、その内部に流体が流れるものである。伝熱管14は、ヘッダ12の内部と連通している。伝熱管14は、伝熱管14の先端がヘッダ12の内部に差し込まれた状態で、ヘッダ12とろう付けされている。伝熱管14は、積層方向に沿って、複数個が積層されている。一方のヘッダ12に流入した流体は、複数個の伝熱管14を平行に流れて、他方のヘッダ12から流出する。つまり、図3の例の熱交換器10は、流体が複数個の伝熱管14に平行に流れるパラレルフロー熱交換器である。なお、この実施の形態の例の熱交換器10は、パラレルフロー熱交換器に限定されない。 FIG. 3 is a diagram schematically showing the state before bending the heat exchanger shown in FIG. 2. As shown in FIG. 3, the heat exchanger 10 includes a header 12, heat transfer tubes 14, fins 16 and side plates 18. The heat exchanger 10 of the example of this embodiment is an aluminum heat exchanger in which the header 12, the heat transfer tubes 14, the fins 16 and the side plates 18 are made of aluminum. The heat exchanger 10 in the example of this embodiment is not limited to the one formed of aluminum. The heat transfer tube 14 has a fluid flowing therein. The heat transfer tube 14 communicates with the inside of the header 12. The heat transfer tube 14 is brazed to the header 12 with the tip of the heat transfer tube 14 inserted into the header 12. A plurality of heat transfer tubes 14 are stacked along the stacking direction. The fluid flowing into one of the headers 12 flows through the plurality of heat transfer tubes 14 in parallel and flows out of the other header 12. That is, the heat exchanger 10 in the example of FIG. 3 is a parallel flow heat exchanger in which the fluid flows in parallel to the plurality of heat transfer tubes 14. The heat exchanger 10 of the example of this embodiment is not limited to the parallel flow heat exchanger.
 図4は、図3に記載の伝熱管の断面を模式的に記載した図である。図5は、図4の変形例1である。図4に示すように、伝熱管14は、短径部14Aと長径部14Bとを有する扁平形状の断面を有している。伝熱管14は、内部に単一の流路14-1を有している。なお、伝熱管14は、図5に示すように、内部に複数の流路14-2を有するものであってもよい。 FIG. 4 is a diagram schematically showing a cross section of the heat transfer tube shown in FIG. FIG. 5 is a first modification of FIG. As shown in FIG. 4, the heat transfer tube 14 has a flat cross section having a short diameter portion 14A and a long diameter portion 14B. The heat transfer tube 14 has a single flow path 14-1 inside. The heat transfer tube 14 may have a plurality of flow paths 14-2 inside, as shown in FIG.
 図3に記載のサイドプレート18は、伝熱管14およびフィン16を保護するものである。サイドプレート18は、伝熱管14およびフィン16の変形等を抑制するように設けられる板形状の部材である。サイドプレート18は、例えば伝熱管14の積層方向の両側に設けられている。サイドプレート18は、フィン16を介して伝熱管14と固定されている。サイドプレート18とフィン16とは例えばろう付けで固定されており、フィン16と伝熱管14とは例えばろう付けで固定されている。なお、サイドプレート18はフィン16を介さずに伝熱管14とろう付け等で固定されてもよい。サイドプレート18の両端部は、ヘッダ12とろう付け等で固定されている。なお、サイドプレート18の両端部は、伝熱管14とは異なり、ヘッダ12の内部に差し込まれていない。サイドプレート18の両端部が、ヘッダ12の内部に差し込まれていてもよい。 The side plate 18 shown in FIG. 3 protects the heat transfer tubes 14 and the fins 16. The side plate 18 is a plate-shaped member provided so as to suppress deformation of the heat transfer tube 14 and the fins 16. The side plates 18 are provided, for example, on both sides of the heat transfer tube 14 in the stacking direction. The side plate 18 is fixed to the heat transfer tube 14 via the fin 16. The side plate 18 and the fin 16 are fixed by brazing, for example, and the fin 16 and the heat transfer tube 14 are fixed by brazing, for example. The side plate 18 may be fixed to the heat transfer tube 14 by brazing or the like without using the fin 16. Both ends of the side plate 18 are fixed to the header 12 by brazing or the like. Unlike the heat transfer tube 14, both ends of the side plate 18 are not inserted into the header 12. Both ends of the side plate 18 may be inserted into the header 12.
 フィン16は、空気と熱交換する表面積を大きくすることで、熱交換器10の熱交換効率を高めるものである。フィン16は、例えば凹凸が連続した波形状を有するコルゲートフィンである。フィン16は、積層された伝熱管14の間、または伝熱管14とサイドプレート18との間に設けられている。 The fins 16 increase the heat exchange efficiency of the heat exchanger 10 by increasing the surface area for exchanging heat with the air. The fin 16 is, for example, a corrugated fin having a corrugated shape with continuous irregularities. The fins 16 are provided between the stacked heat transfer tubes 14 or between the heat transfer tubes 14 and the side plates 18.
 図6は、図3に記載の熱交換器を上方から見たときの外観を模式的に記載した図である。サイドプレート18は、サイドプレート18が延びる方向、すなわち伝熱管14が延びる方向に沿って、基板部18Aと低剛性部18Bとを有している。低剛性部18Bは、基板部18Aと基板部18Aとの間に設けられている。低剛性部18Bは、基板部18Aよりも剛性が低く形成されている。 FIG. 6 is a diagram schematically showing the external appearance of the heat exchanger shown in FIG. 3 when viewed from above. The side plate 18 has a substrate portion 18A and a low-rigidity portion 18B along the direction in which the side plate 18 extends, that is, the direction in which the heat transfer tube 14 extends. The low-rigidity portion 18B is provided between the substrate portion 18A and the substrate portion 18A. The low-rigidity portion 18B is formed to have a lower rigidity than the substrate portion 18A.
 熱交換器10は、図2に示すように、1回曲げ形状を有している。具体的には、図4に示す短径部14Aが図2に示す曲げの内側181となるように曲げられている。熱交換器10は、ヘッダ12と伝熱管14とフィン16とサイドプレート18とが固定された状態で曲げられる。したがって、熱交換器10を曲げるときは、伝熱管14、フィン16、およびサイドプレート18のそれぞれの、曲げの内側181に生じる圧縮応力と、曲げの外側182に生じる引張応力とを合算した応力が生じる。サイドプレート18は、伝熱管14およびフィン16と比較して剛性が高い板状の部材であるため、曲げに必要となる力が大きい。そこで、図6に示すように、サイドプレート18の曲げ部180となる低剛性部18Bに、内側切欠き180-aと外側切欠き180-bとを設ける。内側切欠き180-aは、サイドプレート18の曲げの内側181に設けられた切欠き形状である。外側切欠き180-bは、サイドプレート18の曲げの外側182に設けられた切欠き形状である。内側切欠き180-aを設けることで、熱交換器10を曲げるときの圧縮応力を低減することができる。外側切欠き180-bを設けることで、熱交換器10を曲げるときの引張応力を低減することができる。 The heat exchanger 10 has a single-bent shape as shown in FIG. Specifically, the short diameter portion 14A shown in FIG. 4 is bent so as to be the inside 181 of the bend shown in FIG. The heat exchanger 10 is bent with the header 12, the heat transfer tubes 14, the fins 16 and the side plates 18 fixed. Therefore, when the heat exchanger 10 is bent, the stress obtained by adding the compressive stress generated on the inner side 181 of bending and the tensile stress generated on the outer side 182 of bending of each of the heat transfer tube 14, the fin 16 and the side plate 18 is applied. Occurs. The side plate 18 is a plate-shaped member having high rigidity as compared with the heat transfer tubes 14 and the fins 16, and therefore has a large force required for bending. Therefore, as shown in FIG. 6, an inner cutout 180-a and an outer cutout 180-b are provided in the low-rigidity portion 18B that serves as the bent portion 180 of the side plate 18. The inner notch 180-a has a notch shape provided in the bent inner side 181 of the side plate 18. The outer cutout 180-b has a cutout shape provided on the bent outer side 182 of the side plate 18. By providing the inner cutout 180-a, it is possible to reduce the compressive stress when the heat exchanger 10 is bent. By providing the outer cutout 180-b, the tensile stress when bending the heat exchanger 10 can be reduced.
 上記のように、この実施の形態の例の熱交換器10は、断面が短径部14Aと長径部14Bとを有する扁平形状の伝熱管14の短径部14Aが曲げの内側181となる曲げ部180を有するものである。熱交換器10は、伝熱管14と固定されたサイドプレート18を備えており、サイドプレート18は、伝熱管14が延びる方向に沿って、基板部18A、および基板部18Aの間に設けられ基板部18Aよりも剛性が低く形成された低剛性部18Bを有している。そして、熱交換器10は、1箇所の低剛性部18Bを含む領域で曲げられている。熱交換器10が、サイドプレート18に設けられた1箇所の低剛性部18Bを含む領域で曲げられているため、熱交換器10を曲げるときに作用する応力を低減することができる。熱交換器10を曲げるときに作用する応力を低減することで、熱交換器10に適切な向きまたは大きさの荷重を作用させることができる。熱交換器10に適切な荷重を作用させることで、熱交換器10の形状を高精度化することができる。また、熱交換器10に適切な荷重を作用させることで、熱交換器10を曲げるときに異常な力が作用することによる熱交換器10の損傷のおそれ等を低減することができる。さらに、熱交換器10が、サイドプレート18に設けられた1箇所の低剛性部18Bを有しているため、熱交換器10の曲げる位置を低剛性部18Bとして、熱交換器10の形状を高精度化することができる。さらに、低剛性部18Bを曲げ部180のみに設けることで、サイドプレート18の基板部18Aによる伝熱管14およびフィン16の保護を確実化することができる。 As described above, in the heat exchanger 10 of the example of this embodiment, the cross section has the minor diameter portion 14A and the major diameter portion 14B, and the minor diameter portion 14A of the flat heat transfer tube 14 is bent inside 181. It has a section 180. The heat exchanger 10 includes a side plate 18 fixed to the heat transfer tube 14, and the side plate 18 is provided between the substrate portion 18A and the substrate portion 18A along the direction in which the heat transfer tube 14 extends. It has a low-rigidity portion 18B formed to have a rigidity lower than that of the portion 18A. Then, the heat exchanger 10 is bent in a region including one low-rigidity portion 18B. Since the heat exchanger 10 is bent in the region including the one low-rigidity portion 18B provided on the side plate 18, it is possible to reduce the stress acting when the heat exchanger 10 is bent. By reducing the stress that acts when the heat exchanger 10 is bent, it is possible to apply a load having an appropriate orientation or magnitude to the heat exchanger 10. By applying an appropriate load to the heat exchanger 10, the shape of the heat exchanger 10 can be made highly accurate. Further, by applying an appropriate load to the heat exchanger 10, it is possible to reduce the risk of damage to the heat exchanger 10 due to an abnormal force acting when the heat exchanger 10 is bent. Further, since the heat exchanger 10 has one low-rigidity portion 18B provided on the side plate 18, the bending position of the heat exchanger 10 is set to the low-rigidity portion 18B, and the shape of the heat exchanger 10 is changed. High accuracy can be achieved. Further, by providing the low-rigidity portion 18B only on the bent portion 180, the protection of the heat transfer tubes 14 and the fins 16 by the substrate portion 18A of the side plate 18 can be ensured.
 なお、この実施の形態は、上記で説明したものに限定されない。例えば、基板部18Aと低剛性部18Bとを異なる材質で形成して、低剛性部18Bの剛性を基板部18Aの剛性よりも低くすることができる。 Note that this embodiment is not limited to the one described above. For example, the substrate portion 18A and the low-rigidity portion 18B can be formed of different materials, and the rigidity of the low-rigidity portion 18B can be made lower than the rigidity of the substrate portion 18A.
 また、例えば、図7は、図6の変形例2である。また、例えば、図8は、図6の変形例3である。変形例2または変形例3に示すように、低剛性部18Bは、内側切欠き180-a、または外側切欠き180-bを有するものであればよい。図7に示すように、内側切欠き180-aを設けることで、熱交換器10を曲げるときの圧縮応力を低減することができる。図8に示すように、外側切欠き180-bを設けることで、熱交換器10を曲げるときの引張応力を低減することができる。なお、内側切欠き180-a、または外側切欠き180-bのうちの一方を採用するときにおいて、応力を大きく低減することを目的とするときは、内側切欠き180-aを採用するとよい。熱交換器10を曲げるときの応力の低減は、引張応力を低減する効果よりも、圧縮応力を低減する効果が大きいためである。 Further, for example, FIG. 7 shows a modification 2 of FIG. Further, for example, FIG. 8 is a modification 3 of FIG. As shown in Modification 2 or Modification 3, the low-rigidity portion 18B may have the inner cutout 180-a or the outer cutout 180-b. As shown in FIG. 7, by providing the inner cutout 180-a, it is possible to reduce the compressive stress when the heat exchanger 10 is bent. As shown in FIG. 8, by providing the outer cutouts 180-b, the tensile stress when the heat exchanger 10 is bent can be reduced. When one of the inner cutout 180-a and the outer cutout 180-b is adopted, the inner cutout 180-a may be adopted when the purpose is to greatly reduce the stress. The reduction of stress when bending the heat exchanger 10 is because the effect of reducing the compressive stress is larger than the effect of reducing the tensile stress.
 また、例えば、図9は、図6の変形例4である。図9に示すように。低剛性部18Bは、サイドプレート18の曲げの内側181に切れ目を有する複数のスリット180-cを有している。スリット180-cは、熱交換器10を曲げる前の状態で、曲げたときに曲げの内側181となる向きに、間隔が大きくなる形状とするとよい。スリット180-cを形成して低剛性部18Bを設ける構成とすることで、サイドプレート18を加工する面積を低減することができるため、サイドプレート18の強度の低減を抑制し、サイドプレート18の加工費を低減し、伝熱管14およびフィン16を保護する機能の低減を抑制することができる。なお、図9では、内側切欠き180-aの曲げの内側181となる部分にスリット180-cを設ける例についての説明を行ったが、内側切欠き180-aを省略して、サイドプレート18の曲げの内側181となる部分にスリット180-cのみを設ける構成としてもよい。 Further, for example, FIG. 9 is a modified example 4 of FIG. As shown in FIG. The low-rigidity portion 18B has a plurality of slits 180-c having cuts on the inside 181 of the bend of the side plate 18. It is preferable that the slits 180-c have a shape in which a gap is increased in a direction in which the heat exchanger 10 is bent before bending the heat exchanger 10 so as to be the inside 181 of the bending. By forming the slit 180-c and providing the low-rigidity portion 18B, the area for processing the side plate 18 can be reduced, so that the reduction of the strength of the side plate 18 can be suppressed and the side plate 18 can be suppressed. The processing cost can be reduced, and the reduction of the function of protecting the heat transfer tubes 14 and the fins 16 can be suppressed. In FIG. 9, an example in which the slit 180-c is provided in the portion of the inner cutout 180-a that is the inner side 181 of the bend has been described, but the inner cutout 180-a is omitted and the side plate 18 is omitted. Alternatively, only the slit 180-c may be provided in the portion that becomes the inner side 181 of the bend.
 また、例えば、図10は、図6の変形例5である。図11は、図6の変形例6である。図10または図11に示すように、低剛性部18Bは、サイドプレート18に設けられた穴180-d,180-eを有している。低剛性部18Bを形成する穴は、例えば、図10に示すように、サイドプレート18が延びる方向に沿って長径を有する長穴形状の穴180-d、または、図11に示すように、サイドプレート18の長辺に沿って短径を有する長穴形状の穴180-eである。なお、低剛性部18Bを形成する穴の形状は、特に限定されず、例えば、楕円、真円、または矩形等であってもよい。低剛性部18Bを形成する穴は、1つの穴であってもよいが、複数個の穴を有する構成とすることで、力を適切に分散させ且つ適切な強度を得ることができる。 Further, for example, FIG. 10 shows a modified example 5 of FIG. FIG. 11 is a modification 6 of FIG. As shown in FIG. 10 or FIG. 11, the low-rigidity portion 18B has holes 180-d and 180-e provided in the side plate 18. The hole forming the low-rigidity portion 18B is, for example, as shown in FIG. 10, a long hole-shaped hole 180-d having a major axis along the direction in which the side plate 18 extends, or as shown in FIG. It is a hole 180-e having a long hole shape having a short diameter along the long side of the plate 18. The shape of the hole forming the low-rigidity portion 18B is not particularly limited, and may be, for example, an ellipse, a perfect circle, a rectangle, or the like. The hole forming the low-rigidity portion 18B may be one hole, but by having a structure having a plurality of holes, it is possible to appropriately disperse the force and obtain an appropriate strength.
 また、例えば、図12は、図6の変形例7である。図13は、図12のB-B断面を模式的に記載した図である。図12に示すように、低剛性部18Bは、サイドプレート18に設けられた蛇腹形状部180-fを有している。低剛性部18Bを蛇腹形状部180-fで形成することで、サイドプレート18による伝熱管14およびフィン16の保護を確実化することができる。蛇腹形状部180-fは、熱交換器10が曲げられたときに、サイドプレート18の曲げの外側182の山の間隔よりもサイドプレート18の曲げの内側181の山の間隔が狭くなるように設けられるとよい。サイドプレート18の曲げの内側181の山の間隔が狭くなることで、熱交換器10を曲げるときの圧縮応力が低減される。サイドプレート18の曲げの外側182の山の間隔が広くなることで、熱交換器10を曲げるときの引張応力が低減される。 Further, for example, FIG. 12 shows a modification 7 of FIG. FIG. 13 is a diagram schematically showing the BB cross section of FIG. As shown in FIG. 12, the low-rigidity portion 18B has a bellows-shaped portion 180-f provided on the side plate 18. By forming the low-rigidity portion 18B with the bellows-shaped portion 180-f, the protection of the heat transfer tubes 14 and the fins 16 by the side plate 18 can be ensured. The bellows-shaped portion 180-f is configured such that, when the heat exchanger 10 is bent, the interval between the peaks on the inside 181 of the side plate 18 is narrower than the interval between the peaks on the outside 182 of the bend of the side plate 18. It should be provided. By reducing the distance between the peaks on the inner side 181 of the side plate 18 when bending, the compressive stress when the heat exchanger 10 is bent is reduced. The widening of the crests on the outer side 182 of the bending of the side plate 18 reduces the tensile stress when the heat exchanger 10 is bent.
 また、例えば、図14は、図6の変形例8である。図14に示すように、サイドプレート18は、伝熱管14の長径部14Bよりも幅が狭く形成されている。サイドプレート18の全体の幅を狭くしておくことで、熱交換器10を曲げるときに作用する応力を低減することができる。 Further, for example, FIG. 14 is a modified example 8 of FIG. As shown in FIG. 14, the side plate 18 is formed to have a width smaller than that of the long diameter portion 14B of the heat transfer tube 14. By making the entire width of the side plate 18 narrow, the stress that acts when the heat exchanger 10 is bent can be reduced.
 また、例えば、図15は、図1の変形例9である。図16は、図15のC-C断面を模式的に記載した図である。図15に示すように、実施の形態1の室外機は、略鉛直方向に空気を吹き出すトップフロータイプの室外機100-1であってもよい。実施の形態1の熱交換器は、図16に示すように、2つの曲げ部180を有する2回曲げ形状を有する熱交換器10-1であってもよい。なお、実施の形態1の熱交換器が適用される機器は、室外機に限定されず、図示を省略してある室内機であってもよい。また、実施の形態1の熱交換器の形状は、1回曲げ形状または2回曲げ形状に限定されず、3回曲げ以上の曲げを有する形状であってもよい。また、熱交換器10が熱交換させる流体は、冷凍サイクルの冷媒に限定されず、水またはブライン等の熱媒体であってもよい。 Further, for example, FIG. 15 shows a modification 9 of FIG. FIG. 16 is a diagram schematically showing the CC cross section of FIG. As shown in FIG. 15, the outdoor unit of the first embodiment may be a top flow type outdoor unit 100-1 which blows out air in a substantially vertical direction. The heat exchanger according to the first embodiment may be a heat exchanger 10-1 having a double bent shape having two bent portions 180 as shown in FIG. The device to which the heat exchanger of the first embodiment is applied is not limited to the outdoor unit, and may be an indoor unit (not shown). Further, the shape of the heat exchanger of the first embodiment is not limited to the single-bend shape or the double-bend shape, and may be a shape having three or more bends. Further, the fluid exchanged by the heat exchanger 10 is not limited to the refrigerant of the refrigeration cycle and may be a heat medium such as water or brine.
 また、例えば、実施の形態1の変形例を適宜組み合わせても良い。例えば、図7の変形例2の内側切欠き180-aと図10の変形例5の穴180-dとを有する構成とすることができる。 Also, for example, the modified examples of the first embodiment may be combined appropriately. For example, it may be configured to have the inner cutout 180-a of Modification 2 of FIG. 7 and the hole 180-d of Modification 5 of FIG.
実施の形態2. Embodiment 2.
 図17は、この発明の実施の形態2に係る熱交換器の曲げ加工を行う前の状態を模式的に記載した図である。図18は、図17のD-D断面を模式的に記載した図である。図17において、図3と同一の構成については、同一の符号を付して、説明を省略しまたは簡略化する。実施の形態1の熱交換器10は、図3に示すように、サイドプレート18とヘッダ12とが固定されている。実施の形態2の熱交換器10-2は、図17に示すように、サイドプレート18-1とヘッダ12-1との間に間隙が設けられている。実施の形態2は、サイドプレート18-1とヘッダ12-1とが固定されない構成である。なお、図17では、サイドプレート18-1が、伝熱管14に向かって曲げられているが、サイドプレート18-1の伝熱管14に向いた曲げ形状部を省略してもよい。サイドプレート18-1の両端とヘッダ12-1とが固定されない構成とすることで、熱交換器10-2を曲げるときの応力を低減することができる。また、サイドプレート18-1の両端とヘッダ12-1とが固定されない構成とすることで、熱交換器10-2を曲げたときに、ヘッダ12-1または伝熱管14に作用する応力を低減することができる。 FIG. 17 is a diagram schematically showing a state before bending the heat exchanger according to the second embodiment of the present invention. FIG. 18 is a diagram schematically illustrating a DD cross section of FIG. 17, the same components as those in FIG. 3 are designated by the same reference numerals, and the description will be omitted or simplified. As shown in FIG. 3, in the heat exchanger 10 of the first embodiment, the side plate 18 and the header 12 are fixed. In the heat exchanger 10-2 according to the second embodiment, as shown in FIG. 17, a gap is provided between the side plate 18-1 and the header 12-1. The second embodiment has a configuration in which the side plate 18-1 and the header 12-1 are not fixed. Although the side plate 18-1 is bent toward the heat transfer tube 14 in FIG. 17, the bent portion of the side plate 18-1 facing the heat transfer tube 14 may be omitted. With the structure in which both ends of the side plate 18-1 and the header 12-1 are not fixed, the stress when the heat exchanger 10-2 is bent can be reduced. Further, by making the both ends of the side plate 18-1 and the header 12-1 not fixed, the stress acting on the header 12-1 or the heat transfer tube 14 when the heat exchanger 10-2 is bent is reduced. can do.
 この実施の形態の例では、サイドプレート18-1の両端とヘッダ12-1とが固定されない構成であり、ヘッダ12-1が伝熱管14のみと固定されている。ヘッダ12-1が伝熱管14のみと固定される構成となっているため、ヘッダ12-1の固定の強度が低下するおそれ等がある。例えば、ヘッダの固定の強度が低下すると、ヘッダまたは伝熱管14が変形するおそれ等がある。そこで、この実施の形態の例では、図18に示すように、ヘッダ12-1は、薄肉部121と、薄肉部121よりも肉厚に形成された肉厚部122とを有している。そして、伝熱管14は、肉厚部122と接続されている。伝熱管14が、肉厚部122と接続される構成とすることで、ヘッダ12-1と伝熱管14との固定を強固化することができる。さらに、ヘッダ12-1の剛性が高くなるため、ヘッダ12-1の変形を抑制することができる。 In the example of this embodiment, both ends of the side plate 18-1 and the header 12-1 are not fixed, and the header 12-1 is fixed only to the heat transfer tube 14. Since the header 12-1 is fixed only to the heat transfer tube 14, the fixing strength of the header 12-1 may be reduced. For example, if the fixing strength of the header is reduced, the header or the heat transfer tube 14 may be deformed. Therefore, in the example of this embodiment, as shown in FIG. 18, the header 12-1 has a thin portion 121 and a thick portion 122 formed to be thicker than the thin portion 121. The heat transfer tube 14 is connected to the thick portion 122. By configuring the heat transfer tube 14 to be connected to the thick portion 122, the fixing between the header 12-1 and the heat transfer tube 14 can be strengthened. Furthermore, since the rigidity of the header 12-1 is increased, the deformation of the header 12-1 can be suppressed.
 なお、この実施の形態は、上記で説明したものに限定されない。 Note that this embodiment is not limited to the one described above.
 図19は、図17の変形例10である。図19に示すように、変形例10の熱交換器10-3は、補強部材13を備えている。補強部材13は、ヘッダ12-1を補強するものであり、ヘッダ12-1に取り付けられている。補強部材13は、ヘッダ12-1の伝熱管14が取り付けられていない部分に取り付けられている。補強部材13は、ヘッダ12-1および補強部材13が延びる方向に沿って、ヘッダ12-1の端部の最も近くでヘッダ12-1と接続された伝熱管14からヘッダ12-1の端部までの少なくとも一部分を補強している。補強部材13は、ヘッダ12-1および補強部材13が延びる方向に沿って、ヘッダ12-1の端部の側から、ヘッダ12-1の端部の最も近くでヘッダ12-1と接続された伝熱管14を通り過ぎた位置まで延びているとよい。ヘッダ12-1の伝熱管14またはサイドプレート18-1が固定されない領域では、ヘッダ12-1の固定の強度が低下するおそれ等がある。ヘッダ12-1の固定の強度が低下すると、ヘッダ12-1または伝熱管14が変形するおそれ等がある。そこで、変形例10では、ヘッダ12-1および補強部材13が延びる方向に沿って、ヘッダ12-1の端部の最も近くでヘッダ12-1と接続された伝熱管14からヘッダ12-1の端部までの少なくとも一部分を補強する補強部材13を有する構成としている。補強部材13を設けることで、ヘッダ12-1または伝熱管14の変形を抑制することができる。 FIG. 19 shows a modification 10 of FIG. As shown in FIG. 19, the heat exchanger 10-3 of Modification 10 includes a reinforcing member 13. The reinforcing member 13 is for reinforcing the header 12-1, and is attached to the header 12-1. The reinforcing member 13 is attached to a portion of the header 12-1 where the heat transfer tube 14 is not attached. The reinforcing member 13 includes the header 12-1 and the end portion of the header 12-1 from the heat transfer pipe 14 connected to the header 12-1 closest to the end portion of the header 12-1 along the direction in which the reinforcing member 13 extends. Up to at least a part of. The reinforcing member 13 was connected to the header 12-1 at a position closest to the end of the header 12-1 from the end of the header 12-1 along the direction in which the header 12-1 and the reinforcing member 13 extend. It is preferable to extend to a position past the heat transfer tube 14. In the region where the heat transfer tube 14 or the side plate 18-1 of the header 12-1 is not fixed, the fixing strength of the header 12-1 may decrease. If the fixing strength of the header 12-1 is reduced, the header 12-1 or the heat transfer tube 14 may be deformed. Therefore, in Modification 10, the heat transfer pipe 14 connected to the header 12-1 is closest to the end of the header 12-1 along the direction in which the header 12-1 and the reinforcing member 13 extend from the heat transfer pipe 14 to the header 12-1. It is configured to have a reinforcing member 13 that reinforces at least a part up to the end portion. By providing the reinforcing member 13, deformation of the header 12-1 or the heat transfer tube 14 can be suppressed.
 この発明は、上記の実施の形態に限定されるものではなく、この発明の範囲内で種々に改変することができる。すなわち、上記の実施の形態の構成を適宜改良してもよく、また、少なくとも一部を他の構成に代替させてもよい。さらに、その配置について特に限定のない構成要件は、実施の形態で開示した配置に限らず、その機能を達成できる位置に配置することができる。 The present invention is not limited to the above embodiments, but can be variously modified within the scope of the present invention. That is, the configuration of the above-described embodiment may be appropriately improved, or at least a part of the configuration may be replaced with another configuration. Furthermore, the constituent elements that are not particularly limited in the arrangement are not limited to the arrangement disclosed in the embodiment, and can be arranged in a position where the function can be achieved.
 例えば、実施の形態1に実施の形態2を適用することができる。例えば、実施の形態1のヘッダ12に、実施の形態2の補強部材13を適用することができる。 For example, the second embodiment can be applied to the first embodiment. For example, the reinforcing member 13 of the second embodiment can be applied to the header 12 of the first embodiment.
 また、例えば、実施の形態2に実施の形態1を適用することができる。例えば、実施の形態2のサイドプレート18-1に、実施の形態1の低剛性部18Bを適用することができる。 Further, for example, the first embodiment can be applied to the second embodiment. For example, the low rigidity portion 18B of the first embodiment can be applied to the side plate 18-1 of the second embodiment.
 10 熱交換器、10-1 熱交換器、10-2 熱交換器、10-3 熱交換器、12 ヘッダ、12-1 ヘッダ、13 補強部材、14 伝熱管、14-1 流路、14-2 流路、14A 短径部、14B 長径部、16 フィン、18 サイドプレート、18-1 サイドプレート、18A 基板部、18B 低剛性部、100 室外機、100-1 室外機、102 送風機、103 ファンガード、110 熱交換室、111 機械室、121 薄肉部、122 肉厚部、180 曲げ部、180-c スリット、180-d 穴、180-e 穴、180-f 蛇腹形状部、181 曲げの内側、182 曲げの外側。 10 heat exchangers, 10-1 heat exchangers, 10-2 heat exchangers, 10-3 heat exchangers, 12 headers, 12-1 headers, 13 reinforcing members, 14 heat transfer tubes, 14-1 flow paths, 14- 2 flow path, 14A short diameter part, 14B long diameter part, 16 fins, 18 side plate, 18-1 side plate, 18A substrate part, 18B low rigidity part, 100 outdoor unit, 100-1 outdoor unit, 102 blower, 103 fan Guard, 110 heat exchange room, 111 machine room, 121 thin part, 122 thick part, 180 bend part, 180-c slit, 180-d hole, 180-e hole, 180-f bellows shape part, 181 inside bend , 182 Outside the bend.

Claims (17)

  1.  断面が短径部と長径部とを有する扁平形状の伝熱管の前記短径部が曲げの内側となる曲げ部を有し、
     前記伝熱管と固定されたサイドプレートを備え、
     前記サイドプレートは、前記伝熱管が延びる方向に沿って、基板部、および前記基板部の間に設けられ該基板部よりも剛性が低く形成された低剛性部を有しており、
     1箇所の前記低剛性部を含む領域で曲げられている
     熱交換器。
    The cross-section has a bent portion where the short-diameter portion of the flat-shaped heat transfer tube having the short-diameter portion and the long-diameter portion is the inside of the bending,
    With the heat transfer tube and a fixed side plate,
    The side plate has a substrate portion along a direction in which the heat transfer tube extends, and a low-rigidity portion formed between the substrate portions and having a rigidity lower than that of the substrate portion,
    A heat exchanger bent in a region including one of the low-rigidity portions.
  2.  前記低剛性部は、前記サイドプレートの曲げの内側に設けられた内側切欠きを有する 
     請求項1に記載の熱交換器。
    The low-rigidity portion has an inner cutout provided inside the bend of the side plate.
    The heat exchanger according to claim 1.
  3.  前記低剛性部は、前記サイドプレートの曲げの外側に設けられた外側切欠きを有する
     請求項1または請求項2に記載の熱交換器。
    The heat exchanger according to claim 1 or 2, wherein the low-rigidity portion has an outer notch provided outside the bending of the side plate.
  4.  前記低剛性部は、前記サイドプレートの曲げの内側に切れ目を有する複数のスリットを有する
     請求項1~請求項3の何れか一項に記載の熱交換器。
    The heat exchanger according to any one of claims 1 to 3, wherein the low-rigidity portion has a plurality of slits having cuts inside a bend of the side plate.
  5.  前記低剛性部は、前記サイドプレートに設けられた穴を有する
     請求項1~請求項4の何れか一項に記載の熱交換器。
    The heat exchanger according to any one of claims 1 to 4, wherein the low-rigidity portion has a hole provided in the side plate.
  6.  前記低剛性部は、前記サイドプレートに設けられた蛇腹形状部を有する
     請求項1~請求項5の何れか一項に記載の熱交換器。
    The heat exchanger according to claim 1, wherein the low-rigidity portion has a bellows-shaped portion provided on the side plate.
  7.  前記蛇腹形状部は、前記サイドプレートの曲げの外側の山の間隔よりも前記サイドプレートの曲げの内側の山の間隔が狭くなっている
     請求項6に記載の熱交換器。
    The heat exchanger according to claim 6, wherein the bellows-shaped portion has a gap between ridges on the inside of bending of the side plate smaller than a gap on the outside of the bending of the side plate.
  8.  前記サイドプレートは、前記伝熱管の前記長径部よりも幅が狭く形成されている
     請求項1~請求項7の何れか一項に記載の熱交換器。
    The heat exchanger according to any one of claims 1 to 7, wherein the side plate has a width narrower than that of the long diameter portion of the heat transfer tube.
  9.  前記伝熱管の両端が接続されたヘッダを備え、
     前記サイドプレートと前記ヘッダとの間に間隙が設けられた、
     請求項1~請求項8の何れか一項に記載の熱交換器。
    A header having both ends of the heat transfer tube connected,
    A gap is provided between the side plate and the header,
    The heat exchanger according to any one of claims 1 to 8.
  10.  前記ヘッダは、薄肉部と、前記薄肉部よりも肉厚に形成された肉厚部とを備え、
     前記伝熱管が、前記肉厚部と接続された
     請求項9に記載の熱交換器。
    The header includes a thin portion and a thick portion formed to be thicker than the thin portion,
    The heat exchanger according to claim 9, wherein the heat transfer tube is connected to the thick portion.
  11.  前記ヘッダを補強する補強部材を備えた
     請求項9または請求項10に記載の熱交換器。
    The heat exchanger according to claim 9, further comprising a reinforcing member that reinforces the header.
  12.  前記補強部材は、前記ヘッダが延びる方向に沿って、前記ヘッダの端部の最も近くで該ヘッダと接続された前記伝熱管から該ヘッダの端部までの少なくとも一部分を補強している
     請求項11に記載の熱交換器。
    12. The reinforcing member reinforces at least a part from the heat transfer pipe connected to the header closest to the end of the header to the end of the header along a direction in which the header extends. The heat exchanger described in.
  13.  前記補強部材は、前記ヘッダが延びる方向に沿って、前記ヘッダの端部の最も近くで該ヘッダと接続された前記伝熱管を含む領域を補強している
     請求項12に記載の熱交換器。
    The heat exchanger according to claim 12, wherein the reinforcing member reinforces a region including the heat transfer pipe connected to the header, the region being closest to an end portion of the header along a direction in which the header extends.
  14.  断面が短径部と長径部とを有する扁平形状の伝熱管の前記短径部が曲げの内側となる曲げ部を有し、
     前記伝熱管と固定されたサイドプレートと、
     前記伝熱管の両端が接続されたヘッダと、を備え、
     前記サイドプレートと前記ヘッダとの間に間隙が設けられた、
     熱交換器。
    The cross-section has a bent portion where the short-diameter portion of the flat-shaped heat transfer tube having the short-diameter portion and the long-diameter portion is the inside of the bending,
    A side plate fixed to the heat transfer tube;
    A header to which both ends of the heat transfer tube are connected,
    A gap is provided between the side plate and the header,
    Heat exchanger.
  15.  前記ヘッダは、薄肉部と、前記薄肉部よりも肉厚に形成された肉厚部とを備え、
     前記伝熱管が、前記肉厚部と接続された
     請求項14に記載の熱交換器。
    The header includes a thin portion and a thick portion formed to be thicker than the thin portion,
    The heat exchanger according to claim 14, wherein the heat transfer tube is connected to the thick portion.
  16.  前記伝熱管と前記サイドプレートとの間に設けられ、前記伝熱管および前記サイドプレートと固定されたフィンを有する、
     請求項1~請求項15の何れか一項に記載の熱交換器。
    Provided between the heat transfer tube and the side plate, and having fins fixed to the heat transfer tube and the side plate,
    The heat exchanger according to any one of claims 1 to 15.
  17.  請求項1~請求項16の何れか一項に記載の熱交換器を備えた冷凍サイクル装置。 A refrigeration cycle apparatus including the heat exchanger according to any one of claims 1 to 16.
PCT/JP2018/046562 2018-12-18 2018-12-18 Heat exchanger and refrigeration cycle device WO2020129155A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201890001711.2U CN216432657U (en) 2018-12-18 2018-12-18 Heat exchanger
PCT/JP2018/046562 WO2020129155A1 (en) 2018-12-18 2018-12-18 Heat exchanger and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/046562 WO2020129155A1 (en) 2018-12-18 2018-12-18 Heat exchanger and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2020129155A1 true WO2020129155A1 (en) 2020-06-25

Family

ID=71102284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046562 WO2020129155A1 (en) 2018-12-18 2018-12-18 Heat exchanger and refrigeration cycle device

Country Status (2)

Country Link
CN (1) CN216432657U (en)
WO (1) WO2020129155A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4330048Y1 (en) * 1966-01-24 1968-12-09
JPH01155196A (en) * 1987-12-14 1989-06-19 Nippon Denso Co Ltd Heat exchanger and manufacture thereof
JPH0611280A (en) * 1992-03-11 1994-01-21 Modine Mfg Co Evaporator or condenser functioning as evaporator in combination
JP2002531271A (en) * 1998-11-30 2002-09-24 ヴァレオ テルミーク モツール How to assemble a heat exchanger
JP2003083695A (en) * 2001-09-11 2003-03-19 Japan Climate Systems Corp Heat exchanger
JP2004011986A (en) * 2002-06-05 2004-01-15 Denso Corp Heat exchanger for vehicle
JP2007278607A (en) * 2006-04-07 2007-10-25 Calsonic Kansei Corp Piping connection structure of heat exchanger, and heat exchanger
JP2012132644A (en) * 2010-12-22 2012-07-12 Sharp Corp Heat exchanger and air conditioner with the same
WO2017069280A1 (en) * 2015-10-22 2017-04-27 株式会社ティラド Heat exchanger and method for assembling same
JP2018115775A (en) * 2017-01-16 2018-07-26 株式会社ケーヒン・サーマル・テクノロジー Heat exchanger

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4330048Y1 (en) * 1966-01-24 1968-12-09
JPH01155196A (en) * 1987-12-14 1989-06-19 Nippon Denso Co Ltd Heat exchanger and manufacture thereof
JPH0611280A (en) * 1992-03-11 1994-01-21 Modine Mfg Co Evaporator or condenser functioning as evaporator in combination
JP2002531271A (en) * 1998-11-30 2002-09-24 ヴァレオ テルミーク モツール How to assemble a heat exchanger
JP2003083695A (en) * 2001-09-11 2003-03-19 Japan Climate Systems Corp Heat exchanger
JP2004011986A (en) * 2002-06-05 2004-01-15 Denso Corp Heat exchanger for vehicle
JP2007278607A (en) * 2006-04-07 2007-10-25 Calsonic Kansei Corp Piping connection structure of heat exchanger, and heat exchanger
JP2012132644A (en) * 2010-12-22 2012-07-12 Sharp Corp Heat exchanger and air conditioner with the same
WO2017069280A1 (en) * 2015-10-22 2017-04-27 株式会社ティラド Heat exchanger and method for assembling same
JP2018115775A (en) * 2017-01-16 2018-07-26 株式会社ケーヒン・サーマル・テクノロジー Heat exchanger

Also Published As

Publication number Publication date
CN216432657U (en) 2022-05-03

Similar Documents

Publication Publication Date Title
JP5296990B2 (en) Brazed plate fin heat exchanger
AU2012208126B2 (en) Heat exchanger and air conditioner
EP1840493B1 (en) Bendable heat exchanger core unit
US10508862B2 (en) Heat exchanger for air-cooled chiller
JP6573722B2 (en) Heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger
GB2431464A (en) Heat exchanger
WO2018056209A1 (en) Heat exchanger
WO2017135442A1 (en) Heat exchanger
WO2020129155A1 (en) Heat exchanger and refrigeration cycle device
JP4984836B2 (en) Heat exchanger
JP6413760B2 (en) Heat exchanger and heat exchanger unit using the same
US11384995B2 (en) Finless heat exchanger and refrigeration cycle apparatus
JP2007315619A (en) Heat exchanger
JP6358381B2 (en) Heat exchanger
JP2012102928A (en) Heat exchanger, and vehicle air conditioner including the same
JP2019128090A (en) Heat exchanger and refrigeration cycle device
JP5569410B2 (en) Heat exchanger tubes and heat exchangers
WO2020039547A1 (en) Heat exchanger unit, and refrigeration cycle device
JP2017198385A (en) Heat exchanger
JP5476789B2 (en) Heat exchanger
JP6486718B2 (en) Heat exchanger
JP6593299B2 (en) Heat exchanger
WO2021210428A1 (en) Heat exchanger
WO2022085067A1 (en) Heat exchanger and refrigeration cycle device
WO2022054406A1 (en) Heat exchanger and air conditioning apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP