WO2020127088A1 - Water softening - Google Patents

Water softening Download PDF

Info

Publication number
WO2020127088A1
WO2020127088A1 PCT/EP2019/085408 EP2019085408W WO2020127088A1 WO 2020127088 A1 WO2020127088 A1 WO 2020127088A1 EP 2019085408 W EP2019085408 W EP 2019085408W WO 2020127088 A1 WO2020127088 A1 WO 2020127088A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
condenser
softening system
capacitor
valve
Prior art date
Application number
PCT/EP2019/085408
Other languages
German (de)
French (fr)
Inventor
Dietmar Steiner
Paul Mielcarek
Lars BOMMER
Ganzhou Wang
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN201980085040.1A priority Critical patent/CN113195419B/en
Priority to EP19832311.5A priority patent/EP3898528A1/en
Publication of WO2020127088A1 publication Critical patent/WO2020127088A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4691Capacitive deionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4602Treatment of water, waste water, or sewage by electrochemical methods for prevention or elimination of deposits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure

Definitions

  • Water softening in particular the removal of mainly CaCC> 3 and traces of magnesium, mainly takes place using three different technologies, especially in the home.
  • ion exchangers which are very efficient and require little electrical energy consumption, whereby the “used” salt has to be exchanged periodically.
  • Fer ner via reverse osmosis, whereby the water to be cleaned is pressed through a membrane. Reverse osmosis is associated with high electrical energy consumption and high water consumption.
  • CDI capacitive deionization
  • the water is pumped through a plate condenser.
  • the applied voltage sucks out the ions dissolved in the water.
  • the electrodes must be regenerated periodically, which results in discontinuous operation.
  • a water softening system with at least one first condenser and with at least one control and / or regulating unit, which is provided for this purpose, at least one voltage at the at least one first condenser and a water flow through the at least one first condenser to form a bond and / or to control and / or regulate the rejection of charged components from the water and / or from the first capacitor.
  • the invention relates to a water softening system with at least one first condenser and with at least one control and / or regulating unit it is provided to control and / or to control at least a voltage at the at least one first capacitor and a water flow through the at least one first capacitor to bind and / or repel charged components from the water to and / or from the first capacitor regulate.
  • the at least one control and / or regulating unit is provided in at least one operating state to control the condenser for continuous softening of water.
  • the water softening system is preferably provided for use in terms of flow technology in front of another water-consuming unit.
  • a water-consuming food processor for example a dishwasher
  • the water softening system is used in the water supply for a residential unit, in particular for a residential house, and / or for an industrial unit, in particular a factory or a plantation.
  • the water softening system is preferably provided for treating an inflow of a building water network, in particular a domestic water network.
  • a “water softening system” is to be understood to mean, in particular, a system which is intended to reduce particles, in particular lime, in the water, in particular in a water pipe.
  • the water softening system is preferably arranged on a water supply, in particular on a water pipe.
  • the water softening system is preferably arranged in terms of flow technology in front of a water-consuming unit on a water supply, in particular a water pipe.
  • the water softening system is preferably designed with a connection to unpurified, hard water.
  • the water softening system preferably softens the water and supplies soft, purified product water to the units connected behind it.
  • Hard water is to be understood in particular as water which is used as a water supply by a water supply device, in particular a waterworks, drinking water supply plant or the like. especially a drinking water supply, is provided and has not undergone any further cleaning, especially descaling.
  • Softening should preferably be understood to mean de-ionizing, especially descaling.
  • “De-ionizing” is to be understood to mean that the charged, in particular ionic, fraction is at least substantially removed from an ion-containing mixture, in particular an aqueous mixture.
  • a reduction in the charged proportion of preferably at least 10%, particularly preferably of at least 50% and very particularly preferably of at least 90% should preferably be achieved.
  • “Decalcifying” is to be understood to mean that the lime, in particular CaCO 3 and traces of magnesium, are at least substantially removed from a calcareous mixture, in particular a calcareous, aqueous mixture.
  • a reduction in the lime content of preferably at least 10%, particularly preferably of at least 50% and very particularly preferably of at least 90% should preferably be achieved.
  • the water softening system is preferably integrated into a water supply, in particular a water-consuming unit.
  • a “water supply” should preferably be understood to mean a unit which is arranged between the water-consuming unit and a water pipe and / or one at the water reservoir thereof. It is conceivable that the water supply comprises at least a hose and / or a pipe or the like for guiding water. It is also conceivable that the water supply comprises, for example, a pump for guiding water and / or a heating module for regulating the water temperature.
  • the water supply is preferably free of a pump upstream of the water softening system. Water is preferably led through the water softening system via a line pressure present at the water supply.
  • the water supply is preferably free from a storage basin connected downstream of the water softening system. Preferably, water is continuously softened in any operating state of the water softening system and passed on to a water dispenser.
  • the water softening system is at least intended to harden water.
  • the water softening system is intended to provide continuously softened water. Under “continuously softened water make available ”should be understood that the water softening system can provide softened water at any time of operation, especially fresh water from a water supply, for withdrawal.
  • the water softening system is available for direct water softening at any time of operation.
  • the water softening system is designed without a reservoir.
  • the water softening system is particularly designed to meet an ongoing need for softened water.
  • the water softening system softens water at every operating time. Softened water is advantageously passed on from the water softening system to any possible consumption at any time of operation.
  • the water softening system is preferably provided for the necessary softening of water.
  • the water softening system is preferably designed in such a way that a downstream consumer can be supplied with softened water at essentially any time of operation.
  • Softened water essentially corresponding to a requirement should preferably be understood to mean an amount of water that has been softened and is undiluted except for water residues in a water pipe and is given directly to a consumer after a softening process and the amount softened water speaks ent, which is desired by a consumer.
  • the water softening system can advantageously satisfy a continuous consumption of softened water.
  • the water softening system passes on softened water at any time of operation, in accordance with a requirement, for possible consumption.
  • the at least one first capacitor is preferably formed by an electrical capacitor.
  • the first capacitor comprises at least one first electrode.
  • the at least one first capacitor comprises at least one further electrode.
  • the at least one first electrical capacitor comprises a plurality of first electrodes and a plurality of further electrodes.
  • a “multitude” is to be understood to mean in particular a number greater than one, in particular greater than five. It is conceivable that the at least one first capacitor has a different number of first electrodes than further electrodes.
  • the electrodes preferably rotate in at least one operating state.
  • the electrodes are preferably at a distance of a few less than 1 mm.
  • the electrodes of the at least one first capacitor are preferably made of a carbon, in particular porous carbon, preferably nanoporous carbon.
  • the electrodes are formed from a graphite, from a graphene and / or carbon nanotubes and / or from a composite material comprising carbon nanotubes.
  • the electrodes preferably provide adsorbate spaces for dissolved ions.
  • the electrodes can advantageously be made stable and with a large surface area.
  • a voltage is applied between the at least one first electrode and the at least one further electrode.
  • the value of the voltage on the at least one first electrode is preferably equivalent to the value of the voltage on the at least one further electrode.
  • “Oppositely equivalent” should in particular be understood to mean a value that is similar to another value except for its sign.
  • the applied voltage generates at least one negatively charged first electrode and at least one equally strongly but positively charged further electrode. It is also conceivable that the electrodes are charged in reverse. It is also conceivable that at least one electrode is connected to an electrical mass of the water softening system.
  • the at least one first charged electrode was in at least one operating state in direct contact with the unpurified water.
  • the at least one further charged electrode is in direct contact with the unpurified water in at least one operating state.
  • the negative charge on the at least one first electrode binds positively charged components from the unpurified water to the at least one first electrode.
  • the positive charge on the at least one further electrode binds negatively charged components from the unpurified water to the at least one further electrode.
  • the amount of voltage is proportional to the de-ionization strength of a capacitor.
  • a “de-ionization strength” should preferably be understood to mean the number of charged components removed from the water.
  • the current density of a capacitor is preferably in a range of 10-50 mA / cm 2 .
  • An opposite charge distribution between the at least one first electrode and the at least one further electrode is also conceivable.
  • the positive charge on the at least one first electrode binds the negatively charged constituents from the unpurified water to the at least one first electrode.
  • the negative charge on the at least one further electrode positively charged components from the unpurified water binds to the at least one further electrode.
  • softened product water is arranged in at least one operating state behind the at least one condenser.
  • the water softening system comprises at least one control and / or regulating unit.
  • the at least one control and / or regulating unit is intended to control the continuous provision of softened water.
  • a “control and / or regulating unit” is to be understood in particular as a unit with at least one control electronics.
  • Control electronics should in particular be understood to mean a unit with a processor unit and with a memory unit and with an operating program stored in the memory unit.
  • the control and / or regulating unit “is preferably a component which is intended to control and / or regulate at least the electrical, in particular electronic, components of the water softening system.
  • the control and / or regulating unit of the water softening system is at least intended to supply any valves and / or capacitors to a controller with a voltage. It is also conceivable that the control and / or regulating unit comprises at least one sensor element for regulating the variables controlled by the control and / or regulating unit.
  • the water softening system comprises at least one, preferably at least three, particularly preferably at least five, check valve (s). It is conceivable that the water softening system comprises at least one electric needle valve, which is preferably arranged fluidically upstream of the at least one first condenser and fluidically upstream of the at least one further condenser.
  • the inventive design of the water softening system can advantageously provide a water softening system which continuously provides softened water. This advantageously means that no waiting times for softened water can occur.
  • a low-maintenance water softening system can advantageously be designed.
  • a water softening system which is inexpensive to operate can advantageously be designed. The susceptibility to maintenance can be reduced.
  • Line pressure is to be understood as the pressure with which unpurified water arrives at the water softening system from a water supply device, in particular a water supply line, in particular an urban water supply line.
  • a “water output is controlled exclusively via the external line pressure” should be understood to mean that the line pressure leads the water through the at least one first condenser to water softening and that the line pressure leads the softened water to water output by the control and / or control unit.
  • the water softening system is designed to be pump-free. Water softening is preferably carried out free of additional compression compared to the line pressure.
  • the water softening system comprises at least one pump.
  • the pump must be seen to increase the line pressure and / or to maintain the pressure through the water through the water softening system.
  • the pump is intended to support the passage of unpurified water through the water softening system.
  • several pumps, in particular one pump for each condenser of the water softening system are also conceivable.
  • the water softening system have at least one further condenser, which leads to binding and / or repulsion of charged constituents from the water and / or from the / the condenser is arranged in terms of flow technology parallel to the at least one first capacitor.
  • This advantageously increases the softening capacity of the water softening system.
  • the first capacitor can advantageously be relieved of who.
  • a "softening performance" is to be understood as an amount of softened product water that can be released by the water softening system at a time.
  • the at least one further capacitor is similar to the first capacitor, at least in its mode of operation.
  • the design of the at least one further capacitor is preferably similar to that of the first capacitor.
  • the at least one further capacitor has a different design than the first capacitor.
  • a different number of any component, in particular the electrodes, the capacitors and / or a different material for any component, in particular the electrodes, the capacitors and / or different sizes for any component, in particular the electrodes, of the capacitors are conceivable .
  • Fluidically behind the at least one first condenser and / or behind the at least one further condenser, water softened is arranged in at least one, preferably each, operating state.
  • control and / or regulating unit comprises a switching element which is provided to periodically reverse at least one voltage across the at least one first capacitor and the at least one further capacitor.
  • a water softening system is advantageously formed, which ensures a water softening that essentially corresponds to a need at any time of operation.
  • a water softening system is advantageously provided, which comprises low-maintenance capacitors. Before geous accumulated ions on the capacitors are removed at regular intervals from the capacitors in a cleaning switching position by reversing the voltage.
  • a water softening system with low energy consumption, in particular with 50% less energy consumption, is advantageously formed by dispensing with a pump.
  • Period intervals should preferably be understood to mean temporal, in particular constant, recurring intervals.
  • the switching element preferably reverses the voltage during an operation on the first capacitor at the same time as on the further capacitor.
  • the switching element is provided to switch the voltage at the first capacitor back to the output voltage after a further time interval, in particular the same time interval as when the voltage was first switched.
  • the switching element is preferably provided to adapt the time intervals of the switching processes to a water consumption of the water softening system. It is conceivable that the time intervals remain the same.
  • a water softening system can advantageously be designed, which operates at the optimum energy point at any time of operation.
  • a voltage reversal on a capacitor transfers the capacitor from a de-ionization switch position to a cleaning switch position and vice versa.
  • the Wennele element is in particular provided to bring the at least one first capacitor and the at least one further capacitor recurring from the de-ionization switch position into the cleaning switch position and after a defined time interval back into the de-ionization switch position.
  • a switch position should be understood, in which a capacitor is switched when a new, in particular reversed, voltage is applied to the at least two electrodes for the first time or after cleaning.
  • a “cleaning switch position” is to be understood as a switch position into which a capacitor is switched when the voltage between the at least two electrodes of the capacitor is reversed in comparison to the de-ionization switch position.
  • “Reverse polarity” should be understood to mean, in particular, a reversal of the charge carrier sign, although the voltage strength need not be the same.
  • the voltage in the cleaning switch position is preferably lower than in the de-ionization switch position.
  • the at least one capacitor which is operated in the cleaning switching position, is supplied with water which is taken from a sewage network.
  • An environmentally friendly and / or material-friendly water softening system can advantageously be formed.
  • a water regeneration of 95% can advantageously be achieved.
  • the water softening system has at least one pressure reducing valve, which is arranged upstream of the at least one first condenser to reduce the line pressure.
  • the at least one pressure reducing valve is preferably provided to bring a pressure present at the at least one first condenser to an intended value, which is particularly advantageous for the condenser. Overloading of the at least one first capacitor is advantageously avoided.
  • the at least one first condenser is advantageously supplied with a sufficient water pressure.
  • a “pressure reducing valve” should preferably be understood to mean a valve which changes an existing pressure on an inlet side to a lower pressure on an outlet side.
  • the pressure reducing valve is designed as a pressure reducer.
  • first pressure-reducing valve is preferably arranged in terms of flow in front of the at least one first condenser.
  • the at least one first pressure reducing valve is provided to reduce the line pressure of the unpurified water in terms of flow technology before the first condenser to an operating pressure.
  • An “operating pressure” is to be understood as a pressure at which a condenser can be operated without damage and the pressure behind the condensers is sufficiently high, in particular for a domestic water network, in particular greater than 0 bar and less than 15 bar, preferably greater than 1 bar and less than 12 bar, particularly preferably greater than 3 bar and less than 10 bar and very particularly preferably greater than 6 bar and less than 10 bar.
  • the at least one first pressure reducing valve protects the at least one first condenser from excess pressure.
  • the at least one first capacitor is advantageously designed to be protected by the at least one first pressure reducing valve. It is also conceivable that a number deviating from one, such as two, three or the like, is arranged on the first pressure-reducing valves in terms of flow in front of the at least one first condenser.
  • the at least one first pressure reducing valve is designed as an electrical and / or electronic pressure reducing valve. Alternatively, it is conceivable that the at least one first pressure reducing valve is designed as a mechanical pressure reducing valve.
  • the at least one pressure reducing valve is arranged upstream of the at least one further condenser to reduce the line pressure. It is conceivable that at least one further pressure reducing valve is arranged upstream of the at least one further condenser to reduce the line pressure.
  • the at least one further condenser is advantageously supplied with sufficient water pressure.
  • the at least one further pressure reducing valve is preferably formed identically to the first pressure reducing valve.
  • the further pressure reducing valve is designed as a pressure reducer.
  • at least one, in particular exactly one, further pressure reducing valve is arranged upstream of the at least one further condenser.
  • the at least one further pressure reducing valve is preferably provided to reduce the line pressure of the uncleaned water in terms of flow technology before the first condenser to an operating pressure.
  • the at least one additional pressure reducing valve protects the at least one additional condenser from excess pressure.
  • the at least one further capacitor is advantageously protected by the at least one further pressure reducing valve.
  • a number deviating from one, such as two, three or the like is arranged in flow terms on further pressure reducing valves upstream of the at least one further condenser.
  • the at least one further pressure reducing valve is preferably designed as an electrical and / or electronic pressure reducing valve.
  • the at least one further pressure reducing valve is designed as a mechanical pressure reducing valve.
  • the water softening system comprises at least one first valve, which is arranged upstream of the at least one condenser for regulating the water supply.
  • the water supply to the at least one condenser is at least partially restricted by the at least one first valve.
  • the water supply to the at least one condenser is at least partially restricted by the at least one pressure reducing valve.
  • the at least one first valve is preferably an electrical and / or electronic valve. til trained.
  • the at least one first valve is designed as a mechanical valve.
  • the water softening system comprises at least one further valve, in order to regulate the water supply, is arranged upstream of the at least one further condenser.
  • the water supply to the at least one condenser is at least partially restricted by the at least one further valve.
  • the at least one further valve is preferably designed as an electrical and / or electronic valve.
  • the at least one further valve is designed as a mechanical valve.
  • the at least one control unit has at least one first directional valve for controlling the flow direction of the water from the at least one first condenser, which is provided in a first position for the at least one first condenser with a building water network and in a second position to couple to a sewage network.
  • the at least one first way valve is preferably designed as an at least three-way valve, in particular exactly three-way valve.
  • the at least one first way valve comprises more than three ways. At least two paths for water transmission of the water softening system are advantageously designed.
  • the at least one first directional valve is arranged in terms of fluid flow after the at least one first condenser.
  • the at least one first directional valve is preferably designed to convey softened water from the water softening system to a building water network in a first position.
  • the at least one first directional valve is preferably designed to pass hard water and / or cleaning water from the water softening system to a sewage network in a second position.
  • “Cleaning water” is understood to be water that is contained in the water softening system after cleaning at least one condenser.
  • the control and / or regulating unit is preferably provided to control the at least one first directional valve.
  • the control and / or regulating unit preferably controls the water transfer of the at least one first directional valve electrically, in particular via a voltage.
  • the at least one control and / or regulating unit has at least one further directional valve for controlling the flow direction of the water from the at least one further condenser, which is provided in a first position for the at least one further one To couple the condenser to a building water network and in a second position to a sewage network.
  • the at least one further way valve is preferably designed as an at least three-way valve, in particular exactly three-way valve. It is conceivable that the at least one further way valve comprises more than three ways.
  • At least one further directional valve is formed by at least two directional valves.
  • a four-way valve unit can be formed from two three-way valves, not all of which need to be connected.
  • the at least one first direction is preferably designed as a water transfer of the water softening system for softened water.
  • the at least one further direction is designed as a waste water transmission of the water softening system.
  • the control and / or regulating unit is preferably provided to control the at least one further directional valve.
  • the control and / or regulating unit preferably controls the water transfer of the at least one further directional valve electrically, in particular via a voltage.
  • the at least one further directional valve is made to transmit softened water from the water softening system to a building water network in a first position.
  • the at least one further directional valve is preferably designed to pass hard water and / or cleaning water from the water softening system to a sewage network in a second position.
  • control and / or regulating unit be provided to control a reversal of the forwarding direction of the at least one first directional valve and the at least one further directional valve at periodic intervals.
  • control and / or regulating unit controls the at least one directional valve and the at least one further directional valve at the same periodic intervals to reverse their forwarding direction as the capacitors are reversed.
  • the at least one first directional valve directs softened water from the at least one first condenser in a de-ionization switch position in the building water network.
  • the at least one further directional valve directs softened water from the at least one further condenser in a de-ionization switch position into the building water network.
  • the at least one first directional valve directs hard and / or unpurified water from the at least one first condenser in a cleaning switching position into the sewage network.
  • the at least one further directional valve directs hard and / or unpurified water from the at least one further condenser in a cleaning switching position into the sewage network.
  • the control and / or regulating unit preferably controls the switching position for the at least one first capacitor, for the at least one further capacitor, for the at least one first directional valve and for the at least one further directional valve, in particular simultaneously and at periodic intervals.
  • the water softening system is advantageously designed for the continuous delivery of softened water.
  • the at least one first capacitor is in a different, in particular opposite, switching position than the at least one further capacitor at each time of operation.
  • the line pressure of the water is reduced from the at least one first pressure reducing valve to an operating pressure in the water softening system.
  • the at least one first capacitor is preferably operated in a de-ionization switch position in at least one further method step.
  • the at least one further capacitor is preferably operated in a cleaning switching position in at least one method step, in particular in parallel with the further method step.
  • the water is led from the at least one first condenser in a de-ionization switch position into the common forwarding direction of the at least one first and the at least one further directional valve.
  • the water is preferably conducted from the at least one further condenser in a cleaning switching position into the individual forwarding direction of the at least one further directional valve. It is preferred in at least one Process step measured the ion content of the unpurified, hard water.
  • the switching positions of the at least one first and the at least one further capacitor and the forwarding directions of the at least one first directional valve and the at least one further one Directional valve are preferably performed in periodic intervals, preferably at most 10 min, particularly preferably at most 3 min, very particularly preferably at most 2 min Directional valve and the at least one further directional valve, in particular at the same time, vice versa.
  • the at least one condenser which is in a cleaning switching position with a maximum of 20%, preferably a maximum of 10%, particularly preferably a maximum of 5% of the available, unpurified water through the at least one first and the at least one further valve unpurified water.
  • the at least one condenser which is in a de-ionization switch position with at least 80%, preferably at least 90%, particularly preferably at least 95% of the available, unpurified water, is preferably replaced by the at least one first and that supplies at least one additional valve with unpurified water.
  • the amount of available unpurified water is preferably measured in at least one process step.
  • the amount of the unpurified water available is preferably regulated to a certain amount by the at least one first pressure reducing valve via the control and / or regulating unit.
  • the degree of hardness of the deionized water is preferably measured in at least one method step.
  • the degree of hardness of the unpurified water is preferably measured in at least one process step.
  • the water softening system according to the invention should not be limited to the application and embodiment described above.
  • the water softening system according to the invention can be used to fulfill a function described here by a number of those mentioned here individual elements, components and units have different numbers.
  • values lying within the stated limits are also to be considered disclosed and can be used as desired.
  • Fig. 4 is a process diagram for the operation of the invention
  • a water softening system 10 is shown schematically in FIG. 1.
  • the water softening system 10 comprises a first condenser 12.
  • the first condenser 12 is designed to bind and / or repel components loaded from the water to and / or from the / the first condenser 12 (see FIGS. 2 and 3).
  • the water softening system 10 comprises a further condenser 16.
  • the further condenser 16 is arranged next to the first condenser 12 in terms of flow technology.
  • the other Condenser 16 is designed to bind and / or repel charged constituents from the water and / or from the / the further capacitor 16 (see FIGS. 2 and 3).
  • FIG. 2 shows a capacitor 12, 16 in the de-ionization switch position.
  • FIG. 3 shows a capacitor 12, 16 in the cleaning switching position. Water flows through an area between two porous electrodes 44, 44 'of a capacitor 12, 16. Between the two electrodes 44, 44' shown there is a voltage V k ' . The voltage V k ' is opposite to the voltage ⁇ in the de-ionization switch position. Positive ions are released from the positive electrode 44 into the water. Negative ions are released from the positive electrode 44 'into the water. The positive and negative electrodes 44, 44 'are arranged opposite one another. Collectors 46, 46 'are located behind the electrodes 44, 44'. The collectors 46, 46 'can absorb or release charge, in particular the bound ions on the electrodes 44, 44'.
  • the water softening system 10 comprises a pressure reducing valve 20.
  • the pressure reducing valve 20 is arranged in terms of flow technology before the first condenser 12.
  • the pressure reducing valve 20 is arranged upstream of the further condenser 16.
  • the pressure reducing valve 20 is designed to reduce the line pressure.
  • the pressure reducing valve 20 is arranged as the first station for incoming tap water 48 in the water softening system 10.
  • the pressure reducing valve 20 is connected on the inlet side, in particular via a water meter, to a water network.
  • the water softening system 10 comprises at least a first valve 22.
  • the first valve 22 is arranged in terms of flow technology before the first condenser 12.
  • the first valve 22 is designed to regulate the water supply.
  • the first valve 22 is designed to regulate the water supply to the first condenser 12.
  • the first valve 22 is arranged behind the pressure reducing valve 20 in terms of flow.
  • the water softening system 10 includes at least one further valve 24.
  • the further valve 24 is arranged in terms of flow technology before the further condenser 16.
  • the further valve 24 is designed to regulate the water supply.
  • the further valve 24 is alsobil det for regulating the water supply to the further condenser 16.
  • the further valve 24 is arranged behind the pressure reducing valve 20 in terms of flow. On the output side of the pressure reduction valve 20, a line is divided in the direction of the first valve 22 and in the direction of the further valve 24.
  • the first valve 22 and the further valve 24 are arranged parallel to one another in terms of flow.
  • the water softening system 10 comprises a control and / or regulating unit 14.
  • the control and / or regulating unit 14 has a first directional valve 26 for controlling the flow direction of the water from the first condenser 12, which is provided in a first position for this purpose is to couple a first condenser 12 to a building water network 42 and in a second position to a sewage network 40.
  • the first directional valve 26 is designed as a three-way valve.
  • the first directional valve 26 has an input and two outputs. The input of the first directional valve 26 is coupled to the first condenser 12 via a line.
  • the first outlet of the first directional valve 26 is connected to the building water network 42 via a line.
  • the second output of the first directional valve 26 is connected to the sewage network 40 via a line.
  • the control and / or regulating unit 14 controls the first We valve 26 to regulate the flow direction of the water in the water softening system 10 in a first forwarding direction 30 and a further forwarding direction 32.
  • the control and / or regulating unit 14 controls the first Directional valve 26 for regulating the flow direction of the water of the water softening system 10 to waste water in a waste water network 40 and to a de-ionized process water in a building water network 42.
  • the at least one control and / or regulating unit 14 has at least one wide way valve 28 for controlling the direction of flow of the water from the at least one further condenser 16, which is provided in a first position for this purpose, the at least one further condenser 16 to couple with a building water network 42 and in a second position with a sewage network 40.
  • the further directional valve 28 is designed as a three-way valve.
  • the further directional valve 28 has an inlet and two outlets.
  • the input of the further directional valve 28 is coupled via a line to the wide capacitor 16.
  • the first output of the further directional valve 28 is connected to the building water network 42 via a line.
  • the second output of the further directional valve 28 is connected to the sewage network 40 via a line.
  • the control and / or regulating unit 14 controls the further directional valve 28 to regulate the flow direction of the water in the water softening system 10 in an additional first forwarding direction 34, in particular to a wastewater in a wastewater network 40, and an additional further forwarding direction 36 , In particular to a de-ionized Ge used water in a building water network 42.
  • the control and / or regulating unit 14 controls the first directional valve 26 to regulate the flow direction of the water of the water softening system 10 to a waste water in a waste water network 40 and to one De-ionized service water in a building water network 42.
  • the first directional valve 26 and the one further directional valve 28 have a common forwarding direction 38.
  • the first directional valve 26 and the one further directional valve 28 have a common forwarding direction 38 for the de-ionized service water of the water softening system 10 in a building water network 42.
  • the first directional valve 26 has a first forwarding direction 30 for the wastewater from the water softening system 10 into a water network 40, which is formed separately from the additional first forwarding direction 34 of the further directional valve 28 for the wastewater from the water softening system 10.
  • the control and / or regulating unit 14 controls the water softening system 10.
  • the control and / or regulating unit 14 controls in an operating state a continuous delivery of softened water.
  • the control and / or regulating unit 14 controls a voltage V k , V k ' on the first condenser 12.
  • the control and / or regulating unit 14 controls a water flow through the first condenser 12.
  • the control and / or regulating unit 14 controls a water output of the water softening system 10 exclusively the external line pressure.
  • the control and / or regulating unit 14 controls a voltage V k , V k ' on the further capacitor 16.
  • the control and / or regulating unit 14 controls a water flow through the further capacitor 16.
  • the control and / or regulating unit 14 comprises a switching element 18.
  • the switching element 18 is provided to reverse the voltage V k , V k ' at the first capacitor 12 and the further capacitor 16 at periodic intervals.
  • the control and / or regulating unit 14 controls a reversal of the forwarding direction 30, 32 of the first directional valve 26 at periodic intervals.
  • the control and / or regulating unit 14 controls a reversal of the forwarding direction 34, 36 of the first directional valve 26 at periodic intervals.
  • the control and / or regulating unit 14 controls the forwarding direction 30, 32 of the first-way valve 26 in a first forwarding direction 30 for the waste water, at the same time as when the control and / or regulating unit 14 controls the first condenser 12 in the cleaning switch position .
  • the control and / or regulating unit 14 controls the forwarding direction 30, 32 of the first-way valve 26 into the further forwarding direction 32 for the de-ionized service water, at the same time as when the control and / or regulating unit 14 controls the first condenser 12 controls in the de-ionization switch position.
  • the control and / or regulating unit 14 controls the forwarding direction 34, 36 of the further directional valve 28 in an additional first forwarding direction 34 for the water, at the same time as when the control and / or regulating unit 14 controls the further condenser 16 in the cleaning switching position .
  • the control and / or regulating unit 14 controls the forwarding direction 34, 36 of the further directional valve 28 in the further forwarding direction 32 for the de-ionized Ge used water in the building water network 42, at the same time as when the control and / or regulating unit 14 the other Capacitor 16 controls in the de-ionization switch position.
  • the water softening system 10 can be designed, for example, as part of a domestic water supply system.
  • the at least one first capacitor 12 and the at least one further capacitor 16 are operated alternately in their switching positions.
  • a method for operating the water softening system 10 according to the invention is shown schematically in FIG. 4.
  • a line pressure regulating step 50 the line pressure of the unpurified water, in particular fresh water, is reduced by the control and / or regulating unit 14 to regulate the pressure reducing valve 20 to an operating pressure.
  • the ion content of the unpurified, hard water is measured.
  • the available amount of the unpurified, hard water is measured.
  • the at least one condenser 12, 16, which is in a cleaning switch position is supplied with approximately 5% of the available untreated water, in particular fresh water, by the further valve 24 and the pressure reducing valve 20 with unpurified water.
  • the supply of the condensers with unpurified water, in particular fresh water is controlled and / or regulated via the opening time of the valves 22, 24.
  • the supply of the condensers with unpurified water, in particular fresh water is optionally controlled and / or regulated via an electrically controllable needle valve by means of the opening time of the needle valve.
  • the at least one further capacitor 16 is operated in a cleaning switching position.
  • the at least one condenser 12, 16, which is in a cleaning switching position is cleaned of the water flowing through, the accumulated ions being rinsed off by the electrodes 44, 44 '.
  • the water, which is used for cleaning the condenser 12, 16, is enriched with ions, in particular by a factor of 20.
  • the at least one deionization step 58 which runs at least partially at the same time as the cleaning step 56, the at least one first capacitor 12 is operated in the deionization switch position.
  • the control and / or regulating unit 14 controls or regulates the opening time of the first valve 22 and the further valve 24 and the pressure reducing valve 20.
  • the water from the at least one condenser 12 is 16, which is in a de-ionization switching position, in the common forwarding direction 38 of the at least one first directional valve 26 and one further directional valve 28 leads ge.
  • the water from the at least one condenser 12, 16, which is in a cleaning switching position, is passed into the individual forwarding direction 30 of the at least one further directional valve 28.
  • the degree of hardness of the deionized water is measured in at least one subsequent measuring step 66.
  • the voltage V k , V k ' on the capacitors 12, 16 is controlled or regulated.
  • the voltage V k , V k ' on the capacitors 12, 16 is controlled or regulated for cleaning or de-ionization or a setting and / or reversal of a switching position.
  • the flow of unpurified, hard water to the condenser 12, 16, which is reversed in the cleaning switching position is switched off.
  • the condenser 12, 16, which is reversed in the cleaning switching position is switched to a flow with waste water to be discarded.

Abstract

The invention relates to a water softening system having at least one first capacitor (12) and having at least one open-loop and/or closed-loop control unit (14), which is provided to implement open-loop and/or closed-loop control of at least one voltage (Vk, Vk') on the at least one first capacitor (12) and a flow of water through the at least one further capacitor (16) so as to produce the bonding and/or repulsion of charged constituents from the water to and/or from the first capacitor (12). The invention proposes that the at least one open-loop and/or closed-loop control unit (14), in at least one operating mode, is designed to actuate the at least one first capacitor (12) so as to continuously soften water.

Description

Beschreibung description
Wasserenthärtung Water softening
Stand der Technik State of the art
Wasserenthärtung, also insbesondere die Entfernung von hauptsächlich CaCC>3 und Spuren von Magnesium, erfolgt - vor allem im häuslichen Bereich - haupt sächlich über drei unterschiedliche Technologien. Zum einen über lonentauscher, welche sehr effizient und mit geringem elektrischen Energieverbrauch verbunden sind, wobei das„verbrauchte“ Salz periodisch ausgetauscht werden muss. Fer ner über Umkehrosmose, wobei das zu reinigende Wasser durch eine Membran gepresst wird. Die Umkehrosmose ist mit einem hohen elektrischen Energiever brauch sowie einem hohen Wasserverbrauch verbunden. Des Weiteren über kapazitive Deionisierung oder Capacitive Deionisation (CDI). Dabei wird das Wasser durch einen Plattenkondensator gepumpt. Die angelegte Spannung saugt die im Wasser gelösten Ionen ab. Die Elektroden müssen dabei periodisch regeneriert werden, woraus ein diskontinuierlicher Betrieb folgt. Water softening, in particular the removal of mainly CaCC> 3 and traces of magnesium, mainly takes place using three different technologies, especially in the home. On the one hand via ion exchangers, which are very efficient and require little electrical energy consumption, whereby the “used” salt has to be exchanged periodically. Fer ner via reverse osmosis, whereby the water to be cleaned is pressed through a membrane. Reverse osmosis is associated with high electrical energy consumption and high water consumption. Furthermore, via capacitive deionization or capacitive deionization (CDI). The water is pumped through a plate condenser. The applied voltage sucks out the ions dissolved in the water. The electrodes must be regenerated periodically, which results in discontinuous operation.
Es ist bereits eine Wasserenthärtungsanlage mit zumindest einem ersten Kon densator und mit zumindest einer Steuer- und/oder Regeleinheit, die dazu vorge sehen ist, zumindest eine Spannung an dem zumindest einen ersten Kondensa tor und einen Wasserfluss durch den zumindest einen ersten Kondensator zu einer Bindung und/oder Abstoßung von geladenen Bestandteilen aus dem Was ser an und/oder von dem ersten Kondensator zu steuern und/oder zu regeln, vorgeschlagen worden. It is already a water softening system with at least one first condenser and with at least one control and / or regulating unit, which is provided for this purpose, at least one voltage at the at least one first condenser and a water flow through the at least one first condenser to form a bond and / or to control and / or regulate the rejection of charged components from the water and / or from the first capacitor.
Offenbarung der Erfindung Disclosure of the invention
Die Erfindung geht aus von einer Wasserenthärtungsanlage mit zumindest einem ersten Kondensator und mit zumindest einer Steuer- und/oder Regeleinheit, die dazu vorgesehen ist, zumindest eine Spannung an dem zumindest einen ersten Kondensator und einen Wasserfluss durch den zumindest einen ersten Konden sator zu einer Bindung und/oder Abstoßung von geladenen Bestandteilen aus dem Wasser an und/oder von dem ersten Kondensator zu steuern und/oder zu regeln. The invention relates to a water softening system with at least one first condenser and with at least one control and / or regulating unit it is provided to control and / or to control at least a voltage at the at least one first capacitor and a water flow through the at least one first capacitor to bind and / or repel charged components from the water to and / or from the first capacitor regulate.
Es wird vorgeschlagen, dass die zumindest eine Steuer- und/oder Regeleinheit in zumindest einem Betriebszustand dazu vorgesehen ist, den Kondensator zu ei ner kontinuierlichen Enthärtung von Wasser anzusteuern. It is proposed that the at least one control and / or regulating unit is provided in at least one operating state to control the condenser for continuous softening of water.
Die Wasserenthärtungsanlage ist vorzugsweise zu einem Einsatz strömungs technisch vor einer weiteren wasserverbrauchenden Einheit vorgesehen. Denk bar ist dabei beispielsweise ein Einsatz der Wasserenthärtungsanlage in Verbin dung mit einer wasserverbrauchenden Küchenmaschine, beispielsweise einer Spülmaschine. Es ist ebenfalls denkbar, dass die Wasserenthärtungsanlage in der Wasserversorgung für eine Wohneinheit, insbesondere für ein Wohnhaus, und/oder für eine industrielle Einheit, insbesondere eine Fabrik oder eine Planta ge, zum Einsatz kommt. Vorzugsweise ist die Wasserenthärtungsanlage zu einer Aufbereitung eines Zuwassers eines Gebäudewassernetzes, insbesondere Hauswassernetzes, vorgesehen. The water softening system is preferably provided for use in terms of flow technology in front of another water-consuming unit. For example, the use of the water softening system in conjunction with a water-consuming food processor, for example a dishwasher, is conceivable. It is also conceivable that the water softening system is used in the water supply for a residential unit, in particular for a residential house, and / or for an industrial unit, in particular a factory or a plantation. The water softening system is preferably provided for treating an inflow of a building water network, in particular a domestic water network.
Unter einer„Wasserenthärtungsanlage“ soll insbesondere eine Anlage verstan den werden, welche zu einer Reduktion von Partikeln, insbesondere Kalk, im Wasser, insbesondere in einer Wasserleitung, vorgesehen ist. Vorzugsweise ist die Wasserenthärtungsanlage dazu an einer Wasserversorgung, insbesondere an einer Wasserleitung, angeordnet. Vorzugsweise ist die Wasserenthärtungsan lage strömungstechnisch vor einer wasserverbrauchenden Einheit an einer Was serversorgung, insbesondere Wasserleitung, angeordnet. Vorzugsweise ist die Wasserenthärtungsanlage mit einem Anschluss an ungereinigtes, hartes Wasser ausgebildet. Vorzugsweise enthärtet die Wasserenthärtungsanlage das Wasser und liefert dahinter geschalteten Einheiten weiches, gereinigtes Produktwasser. A “water softening system” is to be understood to mean, in particular, a system which is intended to reduce particles, in particular lime, in the water, in particular in a water pipe. For this purpose, the water softening system is preferably arranged on a water supply, in particular on a water pipe. The water softening system is preferably arranged in terms of flow technology in front of a water-consuming unit on a water supply, in particular a water pipe. The water softening system is preferably designed with a connection to unpurified, hard water. The water softening system preferably softens the water and supplies soft, purified product water to the units connected behind it.
Unter„hartem Wasser“ soll insbesondere Wasser verstanden werden, welches von einer Wasserversorgungseinrichtung, insbesondere einem Wasserwerk, Trinkwasserförderungswerk oder dergleichen, als eine Wasserversorgung, ins- besondere eine Trinkwasserversorgung, bereitgestellt wird und keine weiteren Reinigungen, insbesondere Entkalkungen, erfahren hat. “Hard water” is to be understood in particular as water which is used as a water supply by a water supply device, in particular a waterworks, drinking water supply plant or the like. especially a drinking water supply, is provided and has not undergone any further cleaning, especially descaling.
Unter„enthärten“ soll vorzugsweise de-ionisieren, insbesondere entkalken, ver standen werden. Unter„de-ionisieren“ soll verstanden werden, dass aus einem ionenhaltigen Gemisch, insbesondere wässrigem Gemisch, der geladene, insbe sondere ionische, Anteil zumindest im Wesentlichen entfernt wird. Vorzugsweise soll eine Reduktion des geladenen Anteils von vorzugsweise mindestens 10 %, besonders bevorzugt von mindestens 50 % und ganz besonders bevorzugt von mindestens 90 % erreicht werden. Unter„entkalken“ soll verstanden werden, dass aus einem kalkhaltigen Gemisch, insbesondere kalkhaltigem, wässrigem Gemisch, der Kalk, insbesondere CaC03 und Spuren von Magnesium, zumindest im Wesentlichen entfernt wird. Vorzugsweise soll eine Reduktion des Kalkgehalts von vorzugsweise mindestens 10 %, besonders bevorzugt von mindestens 50 % und ganz besonders bevorzugt von mindestens 90 % erreicht werden. “Softening” should preferably be understood to mean de-ionizing, especially descaling. “De-ionizing” is to be understood to mean that the charged, in particular ionic, fraction is at least substantially removed from an ion-containing mixture, in particular an aqueous mixture. A reduction in the charged proportion of preferably at least 10%, particularly preferably of at least 50% and very particularly preferably of at least 90% should preferably be achieved. “Decalcifying” is to be understood to mean that the lime, in particular CaCO 3 and traces of magnesium, are at least substantially removed from a calcareous mixture, in particular a calcareous, aqueous mixture. A reduction in the lime content of preferably at least 10%, particularly preferably of at least 50% and very particularly preferably of at least 90% should preferably be achieved.
Vorzugsweise ist die Wasserenthärtungsanlage in eine Wasserversorgung, ins besondere eine wasserverbrauchende Einheit, integriert. Unter einer„Wasser versorgung“ soll vorzugsweise eine Einheit verstanden werden, welche zwischen der wasserverbrauchenden Einheit und einer Wasserleitung und/oder einem an deren Wasserreservoir angeordnet ist. Denkbar ist, dass die Wasserversorgung zumindest einen Schlauch und/oder ein Rohr o. dgl. zu einer Führung von Was ser umfasst. Denkbar ist ebenfalls, dass die Wasserversorgung beispielsweise eine Pumpe zur Führung von Wasser und/oder ein Heizmodul zur Regulierung der Wassertemperatur umfasst. Bevorzugt ist die Wasserversorgung frei von einer der Wasserenthärtungsanlage vorgeschalteten Pumpe. Vorzugsweise wird Wasser über einen an der Wasserversorgung anliegenden Leitungsdruck durch die Wasserenthärtungsanlage geführt. Bevorzugt ist die Wasserversorgung frei von einem der Wasserenthärtungsanlage nachgeschalteten Speicherbecken. Vorzugsweise wird Wasser bei Bedarf in jedem Betriebszustand der Wasserent härtungsanlage kontinuierlich enthärtet und zu einer Wasserausgabe weitergelei tet. The water softening system is preferably integrated into a water supply, in particular a water-consuming unit. A “water supply” should preferably be understood to mean a unit which is arranged between the water-consuming unit and a water pipe and / or one at the water reservoir thereof. It is conceivable that the water supply comprises at least a hose and / or a pipe or the like for guiding water. It is also conceivable that the water supply comprises, for example, a pump for guiding water and / or a heating module for regulating the water temperature. The water supply is preferably free of a pump upstream of the water softening system. Water is preferably led through the water softening system via a line pressure present at the water supply. The water supply is preferably free from a storage basin connected downstream of the water softening system. Preferably, water is continuously softened in any operating state of the water softening system and passed on to a water dispenser.
Die Wasserenthärtungsanlage ist zumindest dazu vorgesehen, Wasser zu ent härten. Die Wasserenthärtungsanlage ist dazu vorgesehen, kontinuierlich enthär tetes Wasser zur Verfügung zu stellen. Unter„kontinuierlich enthärtetes Wasser zur Verfügung stellen“ soll verstanden werden, dass die Wasserenthärtungsanla ge zu jedem Betriebszeitpunkt direkt enthärtetes Wasser, insbesondere frisches Wasser einer Wasserversorgung, zu einer Entnahme bereitstellen kann. Insbe sondere ist die Wasserenthärtungsanlage zu jedem Betriebszeitpunkt zu einer direkten Wasserenthärtung verfügbar. Die Wasserenthärtungsanlage ist frei von einem Speicherbecken ausgebildet. Die Wasserenthärtungsanlage ist insbeson dere dazu ausgebildet, einen andauernden Bedarf an enthärtetem Wasser zu decken. Insbesondere wird von der Wasserenthärtungsanlage zu jedem Be triebszeitpunkt Wasser enthärtet. Vorteilhaft wird von der Wasserenthärtungsan lage zu jedem Betriebszeitpunkt enthärtetes Wasser zu einem möglichen Ver brauch weitergeleitet. Bevorzugt ist die Wasserenthärtungsanlage zu einer be darfsweisen Enthärtung von Wasser vorgesehen. Vorzugsweise ist die Wasser enthärtungsanlage so ausgebildet, dass zu jedem Betriebszeitpunkt ein nachge schalteter Verbraucher mit im Wesentlichen einem Bedarf entsprechend enthär tetem Wasser versorgt werden kann. Unter„im Wesentlichen einem Bedarf ent sprechend enthärtetem Wasser“ soll vorzugsweise eine Menge an Wasser ver standen werde, welche enthärtet ist und bis auf Wasserreste in einer Wasserlei tung unverdünnt und auf direktem Weg nach einem Enthärtungsvorgang an ei nen Verbraucher abgegeben wird und der Menge an enthärtetem Wasser ent spricht, die von einem Verbraucher gewünscht ist. Insbesondere kann die Was serenthärtungsanlage vorteilhaft einen kontinuierlichen Verbrauch von enthärte tem Wasser befriedigen. Vorzugsweise wird von der Wasserenthärtungsanlage zu jedem Betriebszeitpunkt im Wesentlichen einem Bedarf entsprechend enthär tetes Wasser zu einem möglichen Verbrauch weitergeleitet. The water softening system is at least intended to harden water. The water softening system is intended to provide continuously softened water. Under "continuously softened water make available ”should be understood that the water softening system can provide softened water at any time of operation, especially fresh water from a water supply, for withdrawal. In particular, the water softening system is available for direct water softening at any time of operation. The water softening system is designed without a reservoir. The water softening system is particularly designed to meet an ongoing need for softened water. In particular, the water softening system softens water at every operating time. Softened water is advantageously passed on from the water softening system to any possible consumption at any time of operation. The water softening system is preferably provided for the necessary softening of water. The water softening system is preferably designed in such a way that a downstream consumer can be supplied with softened water at essentially any time of operation. “Softened water essentially corresponding to a requirement” should preferably be understood to mean an amount of water that has been softened and is undiluted except for water residues in a water pipe and is given directly to a consumer after a softening process and the amount softened water speaks ent, which is desired by a consumer. In particular, the water softening system can advantageously satisfy a continuous consumption of softened water. Preferably, the water softening system passes on softened water at any time of operation, in accordance with a requirement, for possible consumption.
Vorzugsweise ist der zumindest eine erste Kondensator von einem elektrischen Kondensator gebildet. Der erste Kondensator umfasst zumindest eine erste Elektrode. Der zumindest eine erste Kondensator umfasst zumindest eine weite re Elektrode. Denkbar ist ebenfalls, dass der zumindest eine erste elektrische Kondensator eine Vielzahl von ersten Elektroden und eine Vielzahl von weiteren Elektroden umfasst. Unter einer„Vielzahl“ soll dabei insbesondere eine Zahl grö ßer Eins, insbesondere größer fünf, verstanden werden. Denkbar ist, dass der zumindest eine erste Kondensator unterschiedlich viele erste Elektroden wie wei tere Elektroden aufweist. Vorzugsweise rotieren die Elektroden in zumindest ei nem Betriebszustand. Die Elektroden weisen bevorzugt einen Abstand von weni- ger als 1 mm auf. Vorzugsweise sind die Elektroden des zumindest einen ersten Kondensators aus einem Kohlenstoff, insbesondere porösen Kohlenstoff, bevor zugt nanoporösen Kohlenstoff hergestellt. Denkbar ist, dass die Elektroden aus einem Graphit, aus einem Graphen und/oder Kohlenstoffnanoröhren und/oder aus einem Kohlenstoffnanoröhren umfassenden Verbundswerkstoff ausgebildet sind. Die Elektroden stellen in einem Betriebszustand vorzugsweise Adsorbat plätze für gelöste Ionen zur Verfügung. Vorteilhaft können die Elektroden stabil und mit einer großen Oberfläche ausgebildet werden. The at least one first capacitor is preferably formed by an electrical capacitor. The first capacitor comprises at least one first electrode. The at least one first capacitor comprises at least one further electrode. It is also conceivable that the at least one first electrical capacitor comprises a plurality of first electrodes and a plurality of further electrodes. A “multitude” is to be understood to mean in particular a number greater than one, in particular greater than five. It is conceivable that the at least one first capacitor has a different number of first electrodes than further electrodes. The electrodes preferably rotate in at least one operating state. The electrodes are preferably at a distance of a few less than 1 mm. The electrodes of the at least one first capacitor are preferably made of a carbon, in particular porous carbon, preferably nanoporous carbon. It is conceivable that the electrodes are formed from a graphite, from a graphene and / or carbon nanotubes and / or from a composite material comprising carbon nanotubes. In one operating state, the electrodes preferably provide adsorbate spaces for dissolved ions. The electrodes can advantageously be made stable and with a large surface area.
Zwischen die zumindest eine erste Elektrode und die zumindest eine weitere Elektrode wird in einem Betriebszustand eine Spannung angelegt. Der Wert der Spannung an der zumindest einen ersten Elektrode ist vorzugsweise entgegen gesetzt gleichwertig zu dem Wert der Spannung an der zumindest einen weiteren Elektrode. Unter„entgegengesetzt gleichwertig“ soll insbesondere ein Wert ver standen werden, welcher einem weiteren Wert bis auf sein Vorzeichen gleicht.In an operating state, a voltage is applied between the at least one first electrode and the at least one further electrode. The value of the voltage on the at least one first electrode is preferably equivalent to the value of the voltage on the at least one further electrode. “Oppositely equivalent” should in particular be understood to mean a value that is similar to another value except for its sign.
Die angelegte Spannung erzeugt zumindest eine negativ geladene erste Elektro de und zumindest eine gleich stark aber positiv geladene weitere Elektrode. Denkbar ist auch, dass die Elektroden umgekehrt geladen sind. Denkbar ist auch, dass zumindest eine Elektrode mit einer elektrischen Masse der Wasser enthärtungsanlage verbunden ist. The applied voltage generates at least one negatively charged first electrode and at least one equally strongly but positively charged further electrode. It is also conceivable that the electrodes are charged in reverse. It is also conceivable that at least one electrode is connected to an electrical mass of the water softening system.
Die zumindest eine erste geladene Elektrode ist in zumindest einem Betriebszu stand in direktem Kontakt mit dem ungereinigten Wasser. Die zumindest eine weitere geladene Elektrode ist in zumindest einem Betriebszustand in direktem Kontakt mit dem ungereinigten Wasser. Die negative Ladung an der zumindest einen ersten Elektrode bindet positiv geladene Bestandteile aus dem ungereinig ten Wasser an die zumindest eine erste Elektrode. Die positive Ladung an der zumindest einen weiteren Elektrode bindet negativ geladene Bestandteile aus dem ungereinigten Wasser an die zumindest eine weitere Elektrode. Der Betrag der Spannung ist proportional zur De-Ionisierungsstärke eines Kondensators. Unter einer„De-Ionisierungsstärke“ soll vorzugsweise die Anzahl an aus dem Wasser entfernten geladenen Bestandteilen verstanden werden. Die Stromdichte eines Kondensators liegt bevorzugt in einem Bereich von 10 - 50 mA/cm2. Denkbar ist auch eine entgegengesetzte Ladungsverteilung zwischen der zumin dest einen ersten Elektrode und der zumindest einen weiteren Elektrode. The at least one first charged electrode was in at least one operating state in direct contact with the unpurified water. The at least one further charged electrode is in direct contact with the unpurified water in at least one operating state. The negative charge on the at least one first electrode binds positively charged components from the unpurified water to the at least one first electrode. The positive charge on the at least one further electrode binds negatively charged components from the unpurified water to the at least one further electrode. The amount of voltage is proportional to the de-ionization strength of a capacitor. A “de-ionization strength” should preferably be understood to mean the number of charged components removed from the water. The current density of a capacitor is preferably in a range of 10-50 mA / cm 2 . An opposite charge distribution between the at least one first electrode and the at least one further electrode is also conceivable.
In diesem Fall bindet die positive Ladung an der zumindest einen ersten Elektro de negativ geladene Bestandteile aus dem ungereinigten Wasser an die zumin dest eine erste Elektrode. In diesem Fall bindet die negative Ladung an der zu mindest einen weiteren Elektrode positiv geladene Bestandteile aus dem unge reinigten Wasser an die zumindest eine weitere Elektrode. Strömungstechnisch hinter dem zumindest einen Kondensator ist in zumindest einem Betriebszustand enthärtetes Produktwasser angeordnet. In this case, the positive charge on the at least one first electrode binds the negatively charged constituents from the unpurified water to the at least one first electrode. In this case, the negative charge on the at least one further electrode positively charged components from the unpurified water binds to the at least one further electrode. In terms of flow technology, softened product water is arranged in at least one operating state behind the at least one condenser.
Die Wasserenthärtungsanlage umfasst zumindest eine Steuer- und/oder Re geleinheit. Die zumindest eine Steuer- und/oder Regeleinheit ist dazu vorgese hen eine kontinuierliche Bereitstellung von enthärtetem Wasser zu steuern. Unter einer„Steuer- und/oder Regeleinheit“ soll insbesondere eine Einheit mit zumin dest einer Steuerelektronik verstanden werden. Unter einer„Steuerelektronik“ soll insbesondere eine Einheit mit einer Prozessoreinheit und mit einer Speicher einheit sowie mit einem in der Speichereinheit gespeicherten Betriebsprogramm verstanden werden. Die Steuer- und/oder Regeleinheit“ ist vorzugsweise ein Bauteil, welches dazu vorgesehen ist zumindest die elektrischen, insbesondere elektronischen, Bauteile der Wasserenthärtungsanlage zu steuern und/oder zu regeln. Die Steuer- und/oder Regeleinheit der Wasserenthärtungsanlage ist zu mindest dazu vorgesehen etwaige Ventile und/oder Kondensatoren zu einer Steuerung mit einer Spannung zu versorgen. Denkbar ist weiterhin, dass die Steuer- und/oder Regeleinheit zumindest ein Sensorelement umfasst zu einer Regelung der von der Steuer- und/oder Regeleinheit gesteuerten Größen. The water softening system comprises at least one control and / or regulating unit. The at least one control and / or regulating unit is intended to control the continuous provision of softened water. A “control and / or regulating unit” is to be understood in particular as a unit with at least one control electronics. “Control electronics” should in particular be understood to mean a unit with a processor unit and with a memory unit and with an operating program stored in the memory unit. The control and / or regulating unit “is preferably a component which is intended to control and / or regulate at least the electrical, in particular electronic, components of the water softening system. The control and / or regulating unit of the water softening system is at least intended to supply any valves and / or capacitors to a controller with a voltage. It is also conceivable that the control and / or regulating unit comprises at least one sensor element for regulating the variables controlled by the control and / or regulating unit.
Denkbar ist das die Wasserenthärtungsanlage zumindest ein, bevorzugt zumin dest drei, besonders bevorzugt zumindest fünf, Rückschlagventil/e umfasst. Denkbar ist das die Wasserenthärtungsanlage zumindest ein, elektrisches Na delventil umfasst, welches vorzugsweise strömungstechnisch vor dem zumindest einen ersten und strömungstechnisch vor dem zumindest einen weiteren Kon densator angeordnet ist. Durch die erfindungsgemäße Ausgestaltung der Wasserenthärtungsanlage kann vorteilhaft eine Wasserenthärtungsanlage bereitgestellt werden, welche kontinu ierlich enthärtetes Wasser bereitstellt. Vorteilhaft wird dadurch erreicht, dass kei ne Wartezeiten auf enthärtetes Wasser entstehen können. Vorteilhaft kann eine wartungsarme Wasserenthärtungsanlage ausgebildet werden. Vorteilhaft kann eine betriebskostengünstige Wasserenthärtungsanlagt ausgebildet werden. Vor teilhaft kann die Wartungsanfälligkeit reduziert werden. It is conceivable that the water softening system comprises at least one, preferably at least three, particularly preferably at least five, check valve (s). It is conceivable that the water softening system comprises at least one electric needle valve, which is preferably arranged fluidically upstream of the at least one first condenser and fluidically upstream of the at least one further condenser. The inventive design of the water softening system can advantageously provide a water softening system which continuously provides softened water. This advantageously means that no waiting times for softened water can occur. A low-maintenance water softening system can advantageously be designed. A water softening system which is inexpensive to operate can advantageously be designed. The susceptibility to maintenance can be reduced.
Des Weiteren wird vorgeschlagen, dass die Steuer- und/oder Regeleinheit dazu vorgesehen ist, eine Wasserausgabe ausschließlich über einen externen Lei tungsdruck zu steuern. Unter„Leitungsdruck“ soll der Druck verstanden werden, mit welchem ungereinigtes Wasser von einer Wasserversorgungseinrichtung, insbesondere einer Wasserversorgungsleitung, wie insbesondere einer städti schen Wasserversorgungsleitung, an der Wasserenthärtungsanlage ankommt. Darunter, dass eine„Wasserausgabe ausschließlich über den externen Lei tungsdruck steuert“ soll verstanden werden, dass der Leitungsdruck das Wasser durch den zumindest einen ersten Kondensator zu einer Wasserenthärtung führt und, dass der Leitungsdruck das enthärtete Wasser zu einer Wasserausgabe durch die Steuer- und/oder Regeleinheit führt. Die Wasserenthärtungsanlage ist pumpenfrei ausgebildet. Vorzugsweise erfolgt eine Wasserenthärtung frei von einer Zusatzverdichtung gegenüber dem Leitungsdruck. Vorteilhaft können Aus fallzeiten aufgrund einer Reparatur einer Pumpe vermieden werden. Vorteilhaft kann ein Energieverbrauch der Wasserenthärtungsanlage, insbesondere um bis zu 54%, reduziert werden gegenüber einem Stand der Technik. Alternativ ist denkbar, insbesondere bei Niederdruckleitungen, dass die Wasserenthärtungs anlage zumindest eine Pumpe umfasst. Die Pumpe ist in diesem Fall dazu vor gesehen den Leitungsdruck zu verstärken und/oder den Druck über den Weg des Wassers durch die Wasserenthärtungsanlage aufrecht zu erhalten. Die Pumpe ist in diesem Fall dazu vorgesehen eine Führung von ungereinigtem Wasser durch die Wasserenthärtungsanlage zu unterstützen. Alternativ sind auch mehre re Pumpen, insbesondere jeweils eine Pumpe für jeden Kondensator der Was serenthärtungsanlage, denkbar. Furthermore, it is proposed that the control and / or regulating unit is provided to control a water dispensing exclusively via an external line pressure. “Line pressure” is to be understood as the pressure with which unpurified water arrives at the water softening system from a water supply device, in particular a water supply line, in particular an urban water supply line. This means that a “water output is controlled exclusively via the external line pressure” should be understood to mean that the line pressure leads the water through the at least one first condenser to water softening and that the line pressure leads the softened water to water output by the control and / or control unit. The water softening system is designed to be pump-free. Water softening is preferably carried out free of additional compression compared to the line pressure. Downtimes due to repair of a pump can advantageously be avoided. Energy consumption of the water softening system can advantageously be reduced, in particular by up to 54%, compared to a prior art. As an alternative, it is conceivable, particularly in the case of low-pressure lines, that the water softening system comprises at least one pump. In this case, the pump must be seen to increase the line pressure and / or to maintain the pressure through the water through the water softening system. In this case, the pump is intended to support the passage of unpurified water through the water softening system. Alternatively, several pumps, in particular one pump for each condenser of the water softening system, are also conceivable.
Des Weiteren wird vorgeschlagen, dass die Wasserenthärtungsanlage zumindest einen weiteren Kondensator aufweist, der zu einer Bindung und/oder Abstoßung von geladenen Bestandteilen aus dem Wasser an und/oder von den/dem Kon densator strömungstechnisch parallel zu dem zumindest einen ersten Kondensa tor angeordnet ist. Vorteilhaft wird dadurch die Enthärtungsleistung der Wasser enthärtungsanlage erhöht. Vorteilhaft kann der erste Kondensator entlastet wer den. Unter einer„Enthärtungsleistung“ soll eine Menge an enthärtetem Produkt wasser verstanden werden, die maximal von der Wasserenthärtungsanlage zu einem Zeitpunkt abgegeben werden kann. Der zumindest eine weitere Konden sator gleicht zumindest in seiner Funktionsweise dem ersten Kondensator. Der zumindest eine weitere Kondensator gleicht vorzugsweise in seiner Bauart dem einen ersten Kondensator. Es ist denkbar, dass der zumindest eine weitere Kon densator eine andere Bauart aufweist als der eine erste Kondensator. Denkbar sind eine abweichende Anzahl einer beliebigen Komponente, insbesondere der Elektroden, der Kondensatoren und/oder ein abweichendes Material für eine be liebige Komponente, insbesondere der Elektroden, der Kondensatoren und/oder abweichende Größen für eine beliebige Komponente, insbesondere der Elektro den, der Kondensatoren. Strömungstechnisch hinter dem zumindest einen ersten Kondensator und/oder hinter dem zumindest einen weiteren Kondensator ist in zumindest einem, vorzugsweise jedem, Betriebszustand enthärtetes Produkt wasser angeordnet. Furthermore, it is proposed that the water softening system have at least one further condenser, which leads to binding and / or repulsion of charged constituents from the water and / or from the / the condenser is arranged in terms of flow technology parallel to the at least one first capacitor. This advantageously increases the softening capacity of the water softening system. The first capacitor can advantageously be relieved of who. A "softening performance" is to be understood as an amount of softened product water that can be released by the water softening system at a time. The at least one further capacitor is similar to the first capacitor, at least in its mode of operation. The design of the at least one further capacitor is preferably similar to that of the first capacitor. It is conceivable that the at least one further capacitor has a different design than the first capacitor. A different number of any component, in particular the electrodes, the capacitors and / or a different material for any component, in particular the electrodes, the capacitors and / or different sizes for any component, in particular the electrodes, of the capacitors are conceivable . Fluidically behind the at least one first condenser and / or behind the at least one further condenser, water softened is arranged in at least one, preferably each, operating state.
Ferner wird vorgeschlagen, dass die Steuer- und/oder Regeleinheit ein Schalt element umfasst, das dazu vorgesehen ist zumindest eine Spannung an dem zumindest einen ersten Kondensator und dem zumindest einen weiteren Kon densator in periodischen Abständen umzukehren. Vorteilhaft wird eine Wasser enthärtungsanlage ausgebildet, welche zu jedem Betriebszeitpunkt eine im We sentlichen einem Bedarf entsprechende Wasserenthärtung gewährleistet. Vor teilhaft wird eine Wasserenthärtungsanlage bereitgestellt, welche dazu vorgese hen ist, zu jedem Betriebszeitpunkt über zumindest einen Kondensator eine di rekte Wasserenthärtung durchzuführen. Vorteilhaft wird eine Wasserenthär tungsanlage bereitgestellt, welche wartungsarme Kondensatoren umfasst. Vor teilhaft werden angesammelte Ionen an den Kondensatoren in regelmäßigen Zeitabständen von den Kondensatoren in einer Reinigungsschaltstellung durch Umkehr der Spannung entfernt. Vorteilhaft wird eine energieverbrauchsarme Wasserenthärtungsanlage, insbesondere mit 50 % weniger Energieverbrauch, durch den Verzicht auf eine Pumpe ausgebildet. Vorteilhaft wird eine wartungs- arme Wasserenthärtungsanlage durch den Verzicht auf eine Pumpe ausgebildet. Unter„periodischen Abständen“ sollen vorzugsweise zeitliche, insbesondere gleichbleibende zeitliche, wiederkehrende Abstände verstanden werden. Vor zugsweise kehrt das Schaltelement die Spannung während eines Betriebs an dem ersten Kondensator zum gleichen Zeitpunkt um wie an dem weiteren Kon densator. Vorzugsweise ist das Schaltelement dazu vorgesehen nach einem wei teren zeitlichen Abstand, insbesondere einem gleichen zeitlichen Abstand wie beim ersten Umschalten der Spannung, die Spannung an dem ersten Kondensa tor wieder auf die Ausgangsspannung zu schalten. Vorzugsweise ist das Schalt element dazu vorgesehen die zeitlichen Abstände der Schaltvorgänge an einen Wasserverbrauch der Wasserenthärtungsanlage anzupassen. Denkbar ist, dass die zeitlichen Abstände gleich lang bleiben. Alternativ ist denkbar, dass die zeitli chen Abstände Variationen kürzer und/oder länger werden. Vorteilhaft kann eine Wasserenthärtungsanlage ausgebildet werden, welche zu jedem Betriebszeit punkt im Energieoptimum arbeitet. Vorzugsweise überführt eine Spannungsum kehr an einem Kondensator den Kondensator aus einer De-Ionisierungs- Schaltstellung in eine Reinigungsschaltstellung und umgekehrt. Das Schaltele ment ist insbesondere dazu vorgesehen, den zumindest einen ersten Kondensa tor und den zumindest einen weiteren Kondensator wiederkehrend von der De- lonisierungs-Schaltstellung in die Reinigungsschaltstellung und nach einem defi nierten zeitlichen Abstand wieder zurück in die De-Ionisierungs-Schaltstellung zu bringen. Unter einer De-Ionisierungs-Schaltstellung soll eine Schaltstellung ver standen werden, in welche ein Kondensator geschaltet ist, wenn erstmalig oder nach einer Reinigung eine neue, insbesondere umgepolte, Spannung an dessen zumindest zwei Elektroden angelegt wird. Unter einer“Reinigungsschaltstellung“ soll eine Schaltstellung verstanden werden, in welche ein Kondensator geschaltet ist, wenn die Spannung zwischen den zumindest zwei Elektroden des Kondensa tors umgepolt ist, im Vergleich zu der De-Ionisierungs-Schaltstellung. Unter„um gepolt“ soll insbesondere eine Umkehr der Ladungsträgervorzeichen verstanden werden, wobei die Spannungsstärke nicht gleich groß sein muss. Vorzugsweise ist die Spannung in der Reinigungsschaltstellung niedriger als in der De- Ionisierungs-Schaltstellung. Es ist denkbar, dass der zumindest eine Kondensa tor, welcher in der Reinigungsschaltstellung betrieben wird, mit Wasser versorgt ist, welches aus einem Abwassernetz entnommen ist. Vorteilhaft kann eine um weltschonende und/oder materialschonende Wasserenthärtungsanlage ausge- bildet werden. Vorteilhaft kann eine Wasserregeneration von 95 % erreicht wer den. It is further proposed that the control and / or regulating unit comprises a switching element which is provided to periodically reverse at least one voltage across the at least one first capacitor and the at least one further capacitor. A water softening system is advantageously formed, which ensures a water softening that essentially corresponds to a need at any time of operation. Before a water softening system is partially provided, which is intended to perform a direct water softening at any time of operation via at least one condenser. A water softening system is advantageously provided, which comprises low-maintenance capacitors. Before geous accumulated ions on the capacitors are removed at regular intervals from the capacitors in a cleaning switching position by reversing the voltage. A water softening system with low energy consumption, in particular with 50% less energy consumption, is advantageously formed by dispensing with a pump. A maintenance poor water softening system designed by dispensing with a pump. “Periodic intervals” should preferably be understood to mean temporal, in particular constant, recurring intervals. The switching element preferably reverses the voltage during an operation on the first capacitor at the same time as on the further capacitor. Preferably, the switching element is provided to switch the voltage at the first capacitor back to the output voltage after a further time interval, in particular the same time interval as when the voltage was first switched. The switching element is preferably provided to adapt the time intervals of the switching processes to a water consumption of the water softening system. It is conceivable that the time intervals remain the same. Alternatively, it is conceivable that the variations in time become shorter and / or longer. A water softening system can advantageously be designed, which operates at the optimum energy point at any time of operation. Preferably, a voltage reversal on a capacitor transfers the capacitor from a de-ionization switch position to a cleaning switch position and vice versa. The Schaltele element is in particular provided to bring the at least one first capacitor and the at least one further capacitor recurring from the de-ionization switch position into the cleaning switch position and after a defined time interval back into the de-ionization switch position. Under a de-ionization switch position, a switch position should be understood, in which a capacitor is switched when a new, in particular reversed, voltage is applied to the at least two electrodes for the first time or after cleaning. A “cleaning switch position” is to be understood as a switch position into which a capacitor is switched when the voltage between the at least two electrodes of the capacitor is reversed in comparison to the de-ionization switch position. “Reverse polarity” should be understood to mean, in particular, a reversal of the charge carrier sign, although the voltage strength need not be the same. The voltage in the cleaning switch position is preferably lower than in the de-ionization switch position. It is conceivable that the at least one capacitor, which is operated in the cleaning switching position, is supplied with water which is taken from a sewage network. An environmentally friendly and / or material-friendly water softening system can advantageously be formed. A water regeneration of 95% can advantageously be achieved.
Des Weiteren wird vorgeschlagen, dass die Wasserenthärtungsanlage zumindest ein Druckreduzierventil aufweist, welches zu einer Reduktion des Leitungsdrucks strömungstechnisch vor dem zumindest einen ersten Kondensator angeordnet ist. Vorzugsweise ist das zumindest eine Druckreduzierventil dazu vorgesehen, einen an dem zumindest einen ersten Kondensator anstehenden Druck auf einen vorgesehenen, insbesondere für den Kondensator vorteilhaften Wert zu bringen. Vorteilhaft wird eine Überbelastung des zumindest einen ersten Kondensators vermieden. Vorteilhaft wird der zumindest eine erste Kondensator mit einem aus reichenden Wasserdruck versorgt. Unter einem„Druckreduzierventil“ soll vor zugsweise ein Ventil verstanden werden, welches einen bestehenden Druck an einer Eingangsseite auf einen geringeren Druck auf einer Ausgangsseite ändert. Insbesondere ist das Druckreduzierventil als Druckminderer ausgebildet. Vor zugsweise ist strömungstechnisch vor dem zumindest einen ersten Kondensator zumindest ein, insbesondere genau ein, erstes Druckreduzierventil angeordnet. Vorzugsweise ist das zumindest eine erste Druckreduzierventil dazu vorgesehen den Leitungsdruck des ungereinigten Wassers strömungstechnisch vor dem ei nen ersten Kondensator auf einen Betriebsdruck zu reduzieren. Unter einem„Be triebsdruck“ soll ein Druck verstanden werden, bei welchem ein Kondensator schadensfrei betrieben werden kann und der Druck hinter den Kondensatoren ausreichend hoch, insbesondere für ein Hauswassernetz, insbesondere größer als 0 bar und kleiner als 15 bar, bevorzugt größer als 1 bar und kleiner als 12 bar, besonders bevorzugt größer als 3 bar und kleiner als 10 bar und ganz besonders bevorzugt größer gleich 6 bar und kleiner gleich 10 bar, ist. Vorzugsweise schützt das zumindest eine erste Druckreduzierventil den zumindest einen ersten Kon densator vor einem Überdruck. Vorteilhaft ist der zumindest eine erste Konden sator durch das zumindest eine erste Druckreduzierventil geschützt ausgebildet. Es ist auch denkbar, dass eine Anzahl von eins abweichend wie etwa zwei, drei o. dgl. an ersten Druckreduzierventilen strömungstechnisch vor dem zumindest einen ersten Kondensator angeordnet sind. Vorzugsweise ist das zumindest eine erste Druckreduzierventil als ein elektrisches und/oder elektronisches Druckredu zierventil ausgebildet. Alternativ ist denkbar, dass das zumindest eine erste Druckreduzierventil als mechanisches Druckreduzierventil ausgebildet ist. Des Weiteren wird vorgeschlagen, dass das zumindest eine Druckreduzierventil zu einer Reduktion des Leitungsdrucks strömungstechnisch vor dem zumindest einen weiteren Kondensator angeordnet ist. Es ist denkbar, dass zumindest ein weiteres Druckreduzierventil zu einer Reduktion des Leitungsdrucks strömungs technisch vor dem zumindest einen weiteren Kondensator angeordnet ist. Furthermore, it is proposed that the water softening system has at least one pressure reducing valve, which is arranged upstream of the at least one first condenser to reduce the line pressure. The at least one pressure reducing valve is preferably provided to bring a pressure present at the at least one first condenser to an intended value, which is particularly advantageous for the condenser. Overloading of the at least one first capacitor is advantageously avoided. The at least one first condenser is advantageously supplied with a sufficient water pressure. A “pressure reducing valve” should preferably be understood to mean a valve which changes an existing pressure on an inlet side to a lower pressure on an outlet side. In particular, the pressure reducing valve is designed as a pressure reducer. Before at least one, in particular exactly one, first pressure-reducing valve is preferably arranged in terms of flow in front of the at least one first condenser. Preferably, the at least one first pressure reducing valve is provided to reduce the line pressure of the unpurified water in terms of flow technology before the first condenser to an operating pressure. An “operating pressure” is to be understood as a pressure at which a condenser can be operated without damage and the pressure behind the condensers is sufficiently high, in particular for a domestic water network, in particular greater than 0 bar and less than 15 bar, preferably greater than 1 bar and less than 12 bar, particularly preferably greater than 3 bar and less than 10 bar and very particularly preferably greater than 6 bar and less than 10 bar. Preferably, the at least one first pressure reducing valve protects the at least one first condenser from excess pressure. The at least one first capacitor is advantageously designed to be protected by the at least one first pressure reducing valve. It is also conceivable that a number deviating from one, such as two, three or the like, is arranged on the first pressure-reducing valves in terms of flow in front of the at least one first condenser. Preferably, the at least one first pressure reducing valve is designed as an electrical and / or electronic pressure reducing valve. Alternatively, it is conceivable that the at least one first pressure reducing valve is designed as a mechanical pressure reducing valve. Furthermore, it is proposed that the at least one pressure reducing valve is arranged upstream of the at least one further condenser to reduce the line pressure. It is conceivable that at least one further pressure reducing valve is arranged upstream of the at least one further condenser to reduce the line pressure.
Vorteilhaft wird eine Überbelastung des zumindest einen weiteren Kondensators vermieden. Vorteilhaft wird der zumindest eine weitere Kondensator mit einem ausreichenden Wasserdruck versorgt. Vorzugsweise ist das zumindest eine wei tere Druckreduzierventil identisch mit dem einen ersten Druckreduzierventil aus gebildet. Insbesondere ist das weitere Druckreduzierventil als Druckminderer ausgebildet. Denkbar ist, dass strömungstechnisch vor dem zumindest einen weiteren Kondensator zumindest ein, insbesondere genau ein, weiteres Druckre duzierventil angeordnet ist. Vorzugsweise ist in diesem Fall das zumindest eine weitere Druckreduzierventil dazu vorgesehen den Leitungsdruck des ungereinig ten Wassers strömungstechnisch vor dem einen ersten Kondensator auf einen Betriebsdruck zu reduzieren. Vorzugsweise schützt das zumindest eine weitere Druckreduzierventil den zumindest einen weiteren Kondensator vor einem Über druck. Vorteilhaft ist der zumindest eine weitere Kondensator durch das zumin dest eine weitere Druckreduzierventil geschützt ausgebildet. Es ist alternativ auch denkbar, dass eine Anzahl von eins abweichend wie etwa zwei, drei o. dgl. an weiteren Druckreduzierventilen strömungstechnisch vor dem zumindest einen weiteren Kondensator angeordnet sind. Vorzugsweise ist das zumindest eine weitere Druckreduzierventil als ein elektrisches und/oder elektronisches Druckre duzierventil ausgebildet. Alternativ ist denkbar, dass das zumindest eine weitere Druckreduzierventil als mechanisches Druckreduzierventil ausgebildet ist. Overloading of the at least one further capacitor is advantageously avoided. The at least one further condenser is advantageously supplied with sufficient water pressure. The at least one further pressure reducing valve is preferably formed identically to the first pressure reducing valve. In particular, the further pressure reducing valve is designed as a pressure reducer. It is conceivable that at least one, in particular exactly one, further pressure reducing valve is arranged upstream of the at least one further condenser. In this case, the at least one further pressure reducing valve is preferably provided to reduce the line pressure of the uncleaned water in terms of flow technology before the first condenser to an operating pressure. Preferably, the at least one additional pressure reducing valve protects the at least one additional condenser from excess pressure. The at least one further capacitor is advantageously protected by the at least one further pressure reducing valve. As an alternative, it is also conceivable that a number deviating from one, such as two, three or the like, is arranged in flow terms on further pressure reducing valves upstream of the at least one further condenser. The at least one further pressure reducing valve is preferably designed as an electrical and / or electronic pressure reducing valve. Alternatively, it is conceivable that the at least one further pressure reducing valve is designed as a mechanical pressure reducing valve.
Des Weiteren wird vorgeschlagen, dass die Wasserenthärtungsanlage zumindest ein erstes Ventil umfasst, welches zu einer Regulierung der Wasserzufuhr strö mungstechnisch vor dem zumindest einen Kondensator angeordnet ist. Vorteil haft wird die Wasserzufuhr zu dem zumindest einen Kondensator zumindest teil weise durch das zumindest eine erste Ventil beschränkt. Denkbar ist auch, dass die Wasserzufuhr zu dem zumindest einen Kondensator zumindest teilweise durch das zumindest eine Druckreduzierventil beschränkt wird. Vorzugsweise ist das zumindest eine erste Ventil als ein elektrisches und/oder elektronisches Ven- til ausgebildet. Alternativ ist denkbar, dass das zumindest eine erste Ventil als mechanisches Ventil ausgebildet ist. Furthermore, it is proposed that the water softening system comprises at least one first valve, which is arranged upstream of the at least one condenser for regulating the water supply. Advantageously, the water supply to the at least one condenser is at least partially restricted by the at least one first valve. It is also conceivable that the water supply to the at least one condenser is at least partially restricted by the at least one pressure reducing valve. The at least one first valve is preferably an electrical and / or electronic valve. til trained. Alternatively, it is conceivable that the at least one first valve is designed as a mechanical valve.
Des Weiteren wird vorgeschlagen, dass die Wasserenthärtungsanlage zumindest ein weiteres Ventil umfasst, zu einer Regulierung der Wasserzufuhr strömungs technisch vor dem zumindest einen weiteren Kondensator angeordnet ist. Vor teilhaft wird die Wasserzufuhr zu dem zumindest einen Kondensator zumindest teilweise durch das zumindest eine weitere Ventil beschränkt. Vorzugsweise ist das zumindest eine weitere Ventil als ein elektrisches und/oder elektronisches Ventil ausgebildet. Alternativ ist denkbar, dass das zumindest eine weitere Ventil als mechanisches Ventil ausgebildet ist. Furthermore, it is proposed that the water softening system comprises at least one further valve, in order to regulate the water supply, is arranged upstream of the at least one further condenser. The water supply to the at least one condenser is at least partially restricted by the at least one further valve. The at least one further valve is preferably designed as an electrical and / or electronic valve. Alternatively, it is conceivable that the at least one further valve is designed as a mechanical valve.
Des Weiteren wird vorgeschlagen, dass die zumindest eine Steuereinheit zumin dest ein erstes Wege-Ventil zu einer Steuerung der Flussrichtung des Wassers aus dem zumindest einen ersten Kondensator aufweist, welches in einer ersten Stellung dazu vorgesehen ist, den zumindest einen ersten Kondensator mit ei nem Gebäudewassernetz und in einer zweiten Stellung mit einem Abwassernetz zu koppeln. Vorzugsweise ist das zumindest eine erste Wege-Ventil als ein zu mindest Drei-Wege-Ventil, insbesondere genau Drei-Wege-Ventil, ausgebildet.Furthermore, it is proposed that the at least one control unit has at least one first directional valve for controlling the flow direction of the water from the at least one first condenser, which is provided in a first position for the at least one first condenser with a building water network and in a second position to couple to a sewage network. The at least one first way valve is preferably designed as an at least three-way valve, in particular exactly three-way valve.
Es ist denkbar, dass das zumindest eine erste Wege-Ventil mehr als drei Wege umfasst. Vorteilhaft sind zumindest zwei Wege für eine Wasserweiterleitung der Wasserenthärtungsanlage ausgebildet. Vorzugsweise ist das zumindest eine erste Wege-Ventil strömungstechnisch nach dem zumindest einen ersten Kon densator angeordnet. Vorzugsweise ist das zumindest eine erste Wege-Ventil dazu ausgebildet in einer ersten Stellung enthärtetes Wasser aus der Wasser enthärtungsanlage an ein Gebäudewassernetz weiterzuleiten. Vorzugsweise ist das zumindest eine erste Wege-Ventil dazu ausgebildet in einer zweiten Stellung hartes Wasser und/oder Reinigungswasser aus der Wasserenthärtungsanlage an ein Abwassernetz weiterzuleiten. Unter„Reinigungswasser“ soll Wasser verstan den werden, welches nach einer Reinigung zumindest eines Kondensators in der Wasserenthärtungsanlage enthalten ist. Vorzugsweise ist die Steuer- und/oder Regeleinheit dazu vorgesehen das zumindest eine erste Wege-Ventil zu steuern. Vorzugsweise steuert die Steuer- und/oder Regeleinheit die Wasserweiterleitung des zumindest einen ersten Wege-Ventils elektrisch, insbesondere über eine Spannung. Des Weiteren wird vorgeschlagen, dass die zumindest eine Steuer- und/oder Regeleinheit zumindest ein weiteres Wege-Ventil zu einer Steuerung der Fluss richtung des Wassers aus dem zumindest einen weiteren Kondensator aufweist, welches in einer ersten Stellung dazu vorgesehen ist den zumindest einen weite ren Kondensator mit einem Gebäudewassernetz und in einer zweiten Stellung mit einem Abwassernetz zu koppeln. Vorzugsweise ist das zumindest eine weite re Wege-Ventil als ein zumindest Drei-Wege-Ventil, insbesondere genau Drei- Wege-Ventil, ausgebildet. Es ist denkbar, dass das zumindest eine weitere We ge-Ventil mehr als drei Wege umfasst. Es ist ebenfalls denkbar, dass das zumin dest eine weitere Wege-Ventil von zumindest zwei Wege-Ventilen ausgebildet wird. Beispielsweise kann eine Vier-Wege-Ventileinheit aus zwei Drei-Wege- Ventilen ausgebildet sein, wobei nicht alle Wege angeschlossen sein müssen. Vorzugsweise ist die zumindest eine erste Richtung als eine Wasserweiterleitung der Wasserenthärtungsanlage für enthärtetes Wasser ausgebildet. Vorzugsweise ist die zumindest eine weitere Richtung als eine Abwasserweiterleitung der Was serenthärtungsanlage ausgebildet. Vorzugsweise ist die Steuer- und/oder Re geleinheit dazu vorgesehen das zumindest eine weitere Wege-Ventil zu steuern. Vorzugsweise steuert die Steuer- und/oder Regeleinheit die Wasserweiterleitung des zumindest einen weiteren Wege-Ventils elektrisch, insbesondere über eine Spannung. Vorzugsweise ist das zumindest eine weitere Wege-Ventil dazu aus gebildet in einer ersten Stellung enthärtetes Wasser aus der Wasserenthärtungs anlage an ein Gebäudewassernetz weiterzuleiten. Vorzugsweise ist das zumin dest eine weitere Wege-Ventil dazu ausgebildet in einer zweiten Stellung hartes Wasser und/oder Reinigungswasser aus der Wasserenthärtungsanlage an ein Abwassernetz weiterzuleiten. It is conceivable that the at least one first way valve comprises more than three ways. At least two paths for water transmission of the water softening system are advantageously designed. Preferably, the at least one first directional valve is arranged in terms of fluid flow after the at least one first condenser. The at least one first directional valve is preferably designed to convey softened water from the water softening system to a building water network in a first position. The at least one first directional valve is preferably designed to pass hard water and / or cleaning water from the water softening system to a sewage network in a second position. “Cleaning water” is understood to be water that is contained in the water softening system after cleaning at least one condenser. The control and / or regulating unit is preferably provided to control the at least one first directional valve. The control and / or regulating unit preferably controls the water transfer of the at least one first directional valve electrically, in particular via a voltage. Furthermore, it is proposed that the at least one control and / or regulating unit has at least one further directional valve for controlling the flow direction of the water from the at least one further condenser, which is provided in a first position for the at least one further one To couple the condenser to a building water network and in a second position to a sewage network. The at least one further way valve is preferably designed as an at least three-way valve, in particular exactly three-way valve. It is conceivable that the at least one further way valve comprises more than three ways. It is also conceivable that at least one further directional valve is formed by at least two directional valves. For example, a four-way valve unit can be formed from two three-way valves, not all of which need to be connected. The at least one first direction is preferably designed as a water transfer of the water softening system for softened water. Preferably, the at least one further direction is designed as a waste water transmission of the water softening system. The control and / or regulating unit is preferably provided to control the at least one further directional valve. The control and / or regulating unit preferably controls the water transfer of the at least one further directional valve electrically, in particular via a voltage. Preferably, the at least one further directional valve is made to transmit softened water from the water softening system to a building water network in a first position. The at least one further directional valve is preferably designed to pass hard water and / or cleaning water from the water softening system to a sewage network in a second position.
Des Weiteren wird vorgeschlagen, dass die Steuer- und/oder Regeleinheit dazu vorgesehen ist, in periodischen Abständen eine Umkehr der Weiterleitungsrich tung des zumindest einen ersten Wege-Ventils und des zumindest einen weite ren Wege-Ventils steuert. Vorzugsweise steuert die Steuer- und/oder Regelein heit das zumindest eine Wege-Ventil und das zumindest eine weitere Wege- Ventil in denselben periodischen Abständen zu einer Umkehr ihrer Weiterlei tungsrichtung, wie die Kondensatoren umgepolt werden. Vorzugsweise leitet das zumindest eine erste Wege-Ventil enthärtetes Wasser aus dem zumindest einen ersten Kondensator in einer De-Ionisierungs-Schaltstellung in das Gebäudewas sernetz. Vorzugsweise leitet das zumindest eine weitere Wege-Ventil enthärtetes Wasser aus dem zumindest einen weiteren Kondensator in einer De- Ionisierungs-Schaltstellung in das Gebäudewassernetz. Vorzugsweise leitet das zumindest eine erste Wege-Ventil hartes und/oder ungereinigtes Wasser aus dem zumindest einen ersten Kondensator in einer Reinigungsschaltstellung in das Abwassernetz. Vorzugsweise leitet das zumindest eine weitere Wege-Ventil hartes und/oder ungereinigtes Wasser aus dem zumindest einen weiteren Kon densator in einer Reinigungsschaltstellung in das Abwassernetz. Vorzugsweise steuert die Steuer- und/oder Regeleinheit die Schaltstellung für den zumindest einen ersten Kondensator, für den zumindest einen weiteren Kondensator, für das zumindest eine erste Wege-Ventil und für das zumindest eine weitere Wege- Ventil, insbesondere gleichzeitig und in periodischen Abständen. Vorteilhaft ist die Wasserenthärtungsanlage zu einer kontinuierlichen Abgabe von enthärtetem Wasser ausgebildet. Vorzugsweise befindet sich der zumindest eine erste Kon densator zu jedem Betriebszeitpunkt in einer anderen, insbesondere gegensätzli chen, Schaltstellung als der zumindest eine weitere Kondensator. Furthermore, it is proposed that the control and / or regulating unit be provided to control a reversal of the forwarding direction of the at least one first directional valve and the at least one further directional valve at periodic intervals. Preferably, the control and / or regulating unit controls the at least one directional valve and the at least one further directional valve at the same periodic intervals to reverse their forwarding direction as the capacitors are reversed. Preferably, the at least one first directional valve directs softened water from the at least one first condenser in a de-ionization switch position in the building water network. Preferably, the at least one further directional valve directs softened water from the at least one further condenser in a de-ionization switch position into the building water network. Preferably, the at least one first directional valve directs hard and / or unpurified water from the at least one first condenser in a cleaning switching position into the sewage network. Preferably, the at least one further directional valve directs hard and / or unpurified water from the at least one further condenser in a cleaning switching position into the sewage network. The control and / or regulating unit preferably controls the switching position for the at least one first capacitor, for the at least one further capacitor, for the at least one first directional valve and for the at least one further directional valve, in particular simultaneously and at periodic intervals. The water softening system is advantageously designed for the continuous delivery of softened water. Preferably, the at least one first capacitor is in a different, in particular opposite, switching position than the at least one further capacitor at each time of operation.
Ferner wird ein Verfahren zum Betrieb einer erfindungsgemäßen Wasserenthär tungsanlage und/oder einem Hauswasserversorgungssystem mit erfindungsge mäßer Wasserenthärtungsanlage vorgeschlagen. Vorzugsweise wird in zumin dest einem Verfahrensschritt von dem zumindest einen ersten Druckreduzierven til der Leitungsdruck des Wassers zu einem Betriebsdruck in der Wasserenthär tungsanlage reduziert. Vorzugsweise wird in zumindest einem weiteren Verfah rensschritt der zumindest eine erste Kondensator in einer De-Ionisierungs- Schaltstellung betrieben. Bevorzugt wird in zumindest einem, insbesondere zu dem weiteren Verfahrensschritt parallelen, Verfahrensschritt der zumindest eine weitere Kondensator in einer Reinigungsschaltstellung betrieben. Ferner wird in zumindest einem Verfahrensschritt insbesondere das Wasser aus dem zumin dest einen ersten Kondensator in einer De-Ionisierungs-Schaltstellung in die ge meinsame Weiterleitungsrichtung des zumindest einen ersten und des zumindest einen weiteren Wege-Ventil geleitet. Vorzugsweise wird in zumindest einem Ver fahrensschritt das Wasser aus dem zumindest einen weiteren Kondensator in einer Reinigungsschaltstellung in die einzelne Weiterleitungsrichtung des zumin dest einem weiteren Wege-Ventils geleitet. Bevorzugt wird in zumindest einem Verfahrensschritt der lonengehalt des ungereinigten, harten Wassers gemessen. Vorzugsweise werden in zumindest einem Verfahrensschritt in periodischen Ab ständen, die abhängig sind vom lonengehalt des ungereinigten, harten Wassers, die Schaltstellungen des zumindest einen ersten und des zumindest einen weite ren Kondensators und die Weiterleitungsrichtungen des zumindest einen ersten Wege-Ventils und des zumindest einen weiteren Wege-Ventils, insbesondere zeitgleich, umgekehrt. Vorzugsweise werden in zumindest einem Verfahrens schritt in periodischen Abständen, bevorzugt maximal 10 min, besonders bevor zugt maximal 3 min, ganz besonders bevorzugt maximal 2 min, die Schaltstellun gen des zumindest eine ersten und des zumindest einen weiteren Kondensators und die Weiterleitungsrichtungen des zumindest eine ersten Wege-Ventils und des zumindest einen weiteren Wege-Ventils, insbesondere zeitgleich, umgekehrt. Vorzugsweise wird in zumindest einem Verfahrensschritt der zumindest eine Kondensator, welcher sich in einer Reinigungsschaltstellung befindet mit maximal 20 %, bevorzugt maximal 10 %, besonders bevorzugt maximal 5 % des verfügba ren, ungereinigten Wasser durch das zumindest eine erste und das zumindest eine weitere Ventil mit ungereinigtem Wasser versorgt. Vorzugsweise wird in zumindest einem Verfahrensschritt der zumindest eine Kondensator, welcher sich in einer De-Ionisierungs-Schaltstellung befindet mit mindestens 80 %, be vorzugt mindestens 90 %, besonders bevorzugt mindestens 95 % des verfügba ren, ungereinigten Wassers durch das zumindest eine erste und das zumindest einen weitere Ventil mit ungereinigtem Wasser versorgt. Vorzugsweise wird in zumindest einem Verfahrensschritt die Menge des verfügbaren ungereinigten Wassers gemessen. Vorzugsweise wird in zumindest einem Verfahrensschritt die Menge des verfügbaren ungereinigten Wassers von dem zumindest eine ersten Druckreduzierventil über die Steuer- und/oder Regeleinheit auf eine bestimmte Menge geregelt. Vorzugsweise wird in zumindest einem Verfahrensschritt der Härtegrad des de-ionisierten Wassers gemessen. Vorzugsweise wird in zumin dest einem Verfahrensschritt der Härtegrad des ungereinigten Wassers gemes sen. Furthermore, a method for operating a water softening system according to the invention and / or a domestic water supply system with a water softening system according to the invention is proposed. Preferably, in at least one process step, the line pressure of the water is reduced from the at least one first pressure reducing valve to an operating pressure in the water softening system. The at least one first capacitor is preferably operated in a de-ionization switch position in at least one further method step. The at least one further capacitor is preferably operated in a cleaning switching position in at least one method step, in particular in parallel with the further method step. Furthermore, in at least one method step, in particular the water is led from the at least one first condenser in a de-ionization switch position into the common forwarding direction of the at least one first and the at least one further directional valve. In at least one process step, the water is preferably conducted from the at least one further condenser in a cleaning switching position into the individual forwarding direction of the at least one further directional valve. It is preferred in at least one Process step measured the ion content of the unpurified, hard water. Preferably, in at least one process step, periodically, which are dependent on the ion content of the unpurified, hard water, the switching positions of the at least one first and the at least one further capacitor and the forwarding directions of the at least one first directional valve and the at least one further one Directional valve, especially at the same time, vice versa. In at least one method, the switching positions of the at least one first and the at least one further capacitor and the forwarding directions of the at least one first are preferably performed in periodic intervals, preferably at most 10 min, particularly preferably at most 3 min, very particularly preferably at most 2 min Directional valve and the at least one further directional valve, in particular at the same time, vice versa. Preferably, in at least one method step, the at least one condenser, which is in a cleaning switching position with a maximum of 20%, preferably a maximum of 10%, particularly preferably a maximum of 5% of the available, unpurified water through the at least one first and the at least one further valve unpurified water. In at least one method step, the at least one condenser, which is in a de-ionization switch position with at least 80%, preferably at least 90%, particularly preferably at least 95% of the available, unpurified water, is preferably replaced by the at least one first and that supplies at least one additional valve with unpurified water. The amount of available unpurified water is preferably measured in at least one process step. In at least one method step, the amount of the unpurified water available is preferably regulated to a certain amount by the at least one first pressure reducing valve via the control and / or regulating unit. The degree of hardness of the deionized water is preferably measured in at least one method step. The degree of hardness of the unpurified water is preferably measured in at least one process step.
Die erfindungsgemäße Wasserenthärtungsanlage soll hierbei nicht auf die oben beschriebene Anwendung und Ausführungsform beschränkt sein. Insbesondere kann die erfindungsgemäße Wasserenthärtungsanlage zu einer Erfüllung einer hierin beschriebenen Funktionsweise eine von einer hierin genannten Anzahl von einzelnen Elementen, Bauteilen und Einheiten abweichende Anzahl aufweisen. Zudem sollen bei den in dieser Offenbarung angegebenen Wertebereichen auch innerhalb der genannten Grenzen liegende Werte als offenbart und als beliebig einsetzbar gelten. The water softening system according to the invention should not be limited to the application and embodiment described above. In particular, the water softening system according to the invention can be used to fulfill a function described here by a number of those mentioned here individual elements, components and units have different numbers. In addition, in the value ranges specified in this disclosure, values lying within the stated limits are also to be considered disclosed and can be used as desired.
Zeichnungen drawings
Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In den Zeichnungen ist ein Ausführungsbeispiel der Erfindung dargestellt. Die Zeichnungen, die Beschreibung und die Ansprüche enthalten zahlreiche Merk male in Kombination. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammen fassen. Further advantages result from the following description of the drawing. In the drawings, an embodiment of the invention is shown. The drawings, the description and the claims contain numerous features in combination. The person skilled in the art will expediently also consider the features individually and combine them into useful further combinations.
Es zeigen: Show it:
Fig. 1 eine schematische erfindungsgemäße Wasserenthärtungsvor richtung, 1 is a schematic water softening device according to the invention,
Fig. 2 ein erfindungsgemäßer Kondensator in De-Ionisierungs- Schaltstellung, 2 shows a capacitor according to the invention in the de-ionization switch position,
Fig. 3 ein erfindungsgemäßer Kondensator in Reinigungsschaltstel lung, 3 is a capacitor according to the invention in cleaning switching position,
Fig. 4 ein Verfahrensdiagramm zum Betrieb der erfindungsgemäßen Fig. 4 is a process diagram for the operation of the invention
Wasserenthärtungsvorrichtung. Water softening device.
Beschreibung des Ausführungsbeispiels Description of the embodiment
Eine erfindungsgemäße Wasserenthärtungsanlage 10 ist in Fig. 1 schematisch dargestellt. Die Wasserenthärtungsanlage 10 umfasst einen ersten Kondensator 12. Der erste Kondensator 12 ist zu einer Bindung und/oder Abstoßung von ge ladenen Bestandteilen aus dem Wasser an und/oder von den/dem ersten Kon densator 12 ausgebildet (siehe Fig. 2 und 3). Die Wasserenthärtungsanlage 10 umfasst einen weiteren Kondensator 16. Der weitere Kondensator 16 ist strö mungstechnisch neben dem ersten Kondensator 12 angeordnet. Der weitere Kondensator 16 ist zu einer Bindung und/oder Abstoßung von geladenen Be standteilen aus dem Wasser an und/oder von den/dem weiteren Kondensator 16 ausgebildet (siehe Fig. 2 und 3). Figur 2 zeigt einen Kondensator 12, 16 in De- lonisierungs-Schaltstellung. Wasser durchströmt einen Bereich zwischen zwei porösen Elektroden 44, 44’ eines Kondensators 12, 16. Zwischen den beiden gezeigten Elektroden 44, 44’ liegt eine Spannung \ an. Positive Ionen werden aus dem Wasser an eine negativ geladene Elektrode 44 gezogen und dort ge bunden. Negative Ionen werden aus dem Wasser an eine positiv geladene Elektrode 44’ gezogen und dort gebunden. Die positive und die negative Elektro de 44, 44’ sind sich gegenüberliegend angeordnet. Hinter den Elektroden 44, 44’ befinden sich Kollektoren 46, 46’. Die Kollektoren 46, 46’ können Ladung, insbe sondere der gebundenen Ionen an den Elektroden 44, 44’, aufnehmen oder ab geben. A water softening system 10 according to the invention is shown schematically in FIG. 1. The water softening system 10 comprises a first condenser 12. The first condenser 12 is designed to bind and / or repel components loaded from the water to and / or from the / the first condenser 12 (see FIGS. 2 and 3). The water softening system 10 comprises a further condenser 16. The further condenser 16 is arranged next to the first condenser 12 in terms of flow technology. The other Condenser 16 is designed to bind and / or repel charged constituents from the water and / or from the / the further capacitor 16 (see FIGS. 2 and 3). FIG. 2 shows a capacitor 12, 16 in the de-ionization switch position. Water flows through a region between two porous electrodes 44, 44 'of a capacitor 12, 16. There is a voltage \ between the two electrodes 44, 44' shown. Positive ions are drawn from the water to a negatively charged electrode 44 and bound there. Negative ions are drawn from the water to a positively charged electrode 44 'and bound there. The positive and the negative Elektro de 44, 44 'are arranged opposite one another. Collectors 46, 46 'are located behind the electrodes 44, 44'. The collectors 46, 46 'can take up or give off charge, in particular the bound ions at the electrodes 44, 44'.
Figur 3 zeigt einen Kondensator 12, 16 in Reinigungsschaltstellung. Wasser durchströmt einen Bereich zwischen zwei porösen Elektroden 44, 44’ eines Kon densators 12, 16. Zwischen den beiden gezeigten Elektroden 44, 44’ liegt eine Spannung V k’ an. Die Spannung V k’ ist entgegengesetzt zu der Spannung \ in der De-Ionisierungs-Schaltstellung. Positive Ionen werden von der positiven Elektrode 44 an das Wasser abgegeben. Negative Ionen werden von der positi ven Elektrode 44’ an das Wasser abgegeben. Die positive und die negative Elektrode 44, 44’ sind sich gegenüberliegend angeordnet. Hinter den Elektroden 44, 44’ befinden sich Kollektoren 46, 46’. Die Kollektoren 46, 46’ können Ladung, insbesondere der gebundenen Ionen an den Elektroden 44, 44’, aufnehmen oder abgeben. Figure 3 shows a capacitor 12, 16 in the cleaning switching position. Water flows through an area between two porous electrodes 44, 44 'of a capacitor 12, 16. Between the two electrodes 44, 44' shown there is a voltage V k ' . The voltage V k ' is opposite to the voltage \ in the de-ionization switch position. Positive ions are released from the positive electrode 44 into the water. Negative ions are released from the positive electrode 44 'into the water. The positive and negative electrodes 44, 44 'are arranged opposite one another. Collectors 46, 46 'are located behind the electrodes 44, 44'. The collectors 46, 46 'can absorb or release charge, in particular the bound ions on the electrodes 44, 44'.
Die Wasserenthärtungsanlage 10 umfasst ein Druckreduzierventil 20. Das Druck reduzierventil 20 ist strömungstechnisch vor dem ersten Kondensator 12 ange ordnet. Das Druckreduzierventil 20 ist strömungstechnisch vor dem weiteren Kondensator 16 angeordnet. Das Druckreduzierventil 20 ist zu einer Reduktion des Leitungsdrucks ausgebildet. Das Druckreduzierventil 20 ist als erste Station für ankommendes Leitungswasser 48 in der Wasserenthärtungsanlage 10 ange ordnet. Das Druckreduzierventil 20 ist eingangsseitig, insbesondere über einen Wasserzähler mit einem Wassernetz verbunden. Die Wasserenthärtungsanlage 10 umfasst zumindest ein erstes Ventil 22. Das erste Ventil 22 ist strömungstechnisch vor dem ersten Kondensator 12 angeord net. Das erste Ventil 22 ist zu einer Regulierung der Wasserzufuhr ausgebildet. Das erste Ventil 22 ist zu einer Regulierung der Wasserzufuhr zu dem ersten Kondensator 12 ausgebildet. Das erste Ventil 22 ist strömungstechnisch hinter dem Druckreduzierventil 20 angeordnet. Die Wasserenthärtungsanlage 10 um fasst zumindest ein weiteres Ventil 24. Das weitere Ventil 24 ist strömungstech nisch vor dem weiteren Kondensator 16 angeordnet. Das weitere Ventil 24 ist zu einer Regulierung der Wasserzufuhr ausgebildet. Das weitere Ventil 24 ist zu einer Regulierung der Wasserzufuhr zu dem weiteren Kondensator 16 ausgebil det. Das weitere Ventil 24 ist strömungstechnisch hinter dem Druckreduzierventil 20 angeordnet. Ausgangsseitig des Druckreduzierungsventils 20 wird eine Lei tung in Richtung des ersten Ventils 22 und in Richtung des weiteren Ventils 24 aufgeteilt. Das erste Ventil 22 und das weitere Ventil 24 sind strömungstechnisch parallel zueinander angeordnet. The water softening system 10 comprises a pressure reducing valve 20. The pressure reducing valve 20 is arranged in terms of flow technology before the first condenser 12. The pressure reducing valve 20 is arranged upstream of the further condenser 16. The pressure reducing valve 20 is designed to reduce the line pressure. The pressure reducing valve 20 is arranged as the first station for incoming tap water 48 in the water softening system 10. The pressure reducing valve 20 is connected on the inlet side, in particular via a water meter, to a water network. The water softening system 10 comprises at least a first valve 22. The first valve 22 is arranged in terms of flow technology before the first condenser 12. The first valve 22 is designed to regulate the water supply. The first valve 22 is designed to regulate the water supply to the first condenser 12. The first valve 22 is arranged behind the pressure reducing valve 20 in terms of flow. The water softening system 10 includes at least one further valve 24. The further valve 24 is arranged in terms of flow technology before the further condenser 16. The further valve 24 is designed to regulate the water supply. The further valve 24 is ausgebil det for regulating the water supply to the further condenser 16. The further valve 24 is arranged behind the pressure reducing valve 20 in terms of flow. On the output side of the pressure reduction valve 20, a line is divided in the direction of the first valve 22 and in the direction of the further valve 24. The first valve 22 and the further valve 24 are arranged parallel to one another in terms of flow.
Die Wasserenthärtungsanlage 10 umfasst eine Steuer- und/oder Regeleinheit 14. Die Steuer- und/oder Regeleinheit 14 weist ein erstes Wege-Ventil 26 zu einer Steuerung der Flussrichtung des Wassers aus dem einen ersten Kondensator 12 auf, welches in einer ersten Stellung dazu vorgesehen ist, den einen ersten Kon densator 12 mit einem Gebäudewassernetz 42 und in einer zweiten Stellung mit einem Abwassernetz 40 zu koppeln. Das erste Wege-Ventil 26 ist als Drei-Wege- Ventil ausgebildet. Das erste Wege-Ventil 26 weist einen Eingang und zwei Aus gänge auf. Der Eingang des ersten Wege-Ventil 26 ist über eine Leitung mit dem ersten Kondensator 12 gekoppelt. Der erste Ausgang des ersten Wege-Ventils 26 ist über eine Leitung mit dem Gebäudewassernetz 42 verbunden. Der zweite Ausgang des ersten Wege-Ventils 26 ist über eine Leitung mit dem Abwasser netz 40 verbunden. Die Steuer- und/oder Regeleinheit 14 steuert das erste We ge-Ventil 26 zu einer Regulierung der Flussrichtung des Wassers in der Wasser enthärtungsanlage 10 in eine erste Weiterleitungsrichtung 30 und eine weitere Weiterleitungsrichtung 32. Die Steuer- und/oder Regeleinheit 14 steuert das erste Wege-Ventil 26 zu einer Regulierung der Flussrichtung des Wassers der Was serenthärtungsanlage 10 zu einem Abwasser in ein Abwassernetz 40 und zu einem de-ionisierten Gebrauchswasser in ein Gebäudewassernetz 42. Die zumindest eine Steuer- und/oder Regeleinheit 14 weist zumindest ein weite res Wege-Ventil 28 zu einer Steuerung der Flussrichtung des Wassers aus dem zumindest einen weiteren Kondensator 16 auf, welches in einer ersten Stellung dazu vorgesehen ist, den zumindest einen weiteren Kondensator 16 mit einem Gebäudewassernetz 42 und in einer zweiten Stellung mit einem Abwassernetz 40 zu koppeln. Das weitere Wege-Ventil 28 ist als Drei-Wege- Ventil ausgebildet. Das weitere Wege-Ventil 28 weist einen Eingang und zwei Ausgänge auf. The water softening system 10 comprises a control and / or regulating unit 14. The control and / or regulating unit 14 has a first directional valve 26 for controlling the flow direction of the water from the first condenser 12, which is provided in a first position for this purpose is to couple a first condenser 12 to a building water network 42 and in a second position to a sewage network 40. The first directional valve 26 is designed as a three-way valve. The first directional valve 26 has an input and two outputs. The input of the first directional valve 26 is coupled to the first condenser 12 via a line. The first outlet of the first directional valve 26 is connected to the building water network 42 via a line. The second output of the first directional valve 26 is connected to the sewage network 40 via a line. The control and / or regulating unit 14 controls the first We valve 26 to regulate the flow direction of the water in the water softening system 10 in a first forwarding direction 30 and a further forwarding direction 32. The control and / or regulating unit 14 controls the first Directional valve 26 for regulating the flow direction of the water of the water softening system 10 to waste water in a waste water network 40 and to a de-ionized process water in a building water network 42. The at least one control and / or regulating unit 14 has at least one wide way valve 28 for controlling the direction of flow of the water from the at least one further condenser 16, which is provided in a first position for this purpose, the at least one further condenser 16 to couple with a building water network 42 and in a second position with a sewage network 40. The further directional valve 28 is designed as a three-way valve. The further directional valve 28 has an inlet and two outlets.
Der Eingang des weiteren Wege-Ventils 28 ist über eine Leitung mit dem weite ren Kondensator 16 gekoppelt. Der erste Ausgang des weiteren Wege-Ventils 28 ist über eine Leitung mit dem Gebäudewassernetz 42 verbunden. Der zweite Ausgang des weiteren Wege-Ventils 28 ist über eine Leitung mit dem Abwasser netz 40 verbunden. Die Steuer- und/oder Regeleinheit 14 steuert das weitere Wege-Ventil 28 zu einer Regulierung der Flussrichtung des Wassers in der Was serenthärtungsanlage 10 in eine zusätzliche erste Weiterleitungsrichtung 34, ins besondere zu einem Abwasser in ein Abwassernetz 40, und eine zusätzliche weitere Weiterleitungsrichtung 36, insbesondere zu einem de-ionisierten Ge brauchswasser in ein Gebäudewassernetz 42. Die Steuer- und/oder Regeleinheit 14 steuert das erste Wege-Ventil 26 zu einer Regulierung der Flussrichtung des Wassers der Wasserenthärtungsanlage 10 zu einem Abwasser in ein Abwasser netz 40 und zu einem de-ionisierten Gebrauchswasser in ein Gebäudewasser netz 42. The input of the further directional valve 28 is coupled via a line to the wide capacitor 16. The first output of the further directional valve 28 is connected to the building water network 42 via a line. The second output of the further directional valve 28 is connected to the sewage network 40 via a line. The control and / or regulating unit 14 controls the further directional valve 28 to regulate the flow direction of the water in the water softening system 10 in an additional first forwarding direction 34, in particular to a wastewater in a wastewater network 40, and an additional further forwarding direction 36 , In particular to a de-ionized Ge used water in a building water network 42. The control and / or regulating unit 14 controls the first directional valve 26 to regulate the flow direction of the water of the water softening system 10 to a waste water in a waste water network 40 and to one De-ionized service water in a building water network 42.
Das erste Wege-Ventil 26 und das eine weitere Wege-Ventil 28 weisen eine ge meinsame Weiterleitungsrichtung 38 auf. Das erste Wege-Ventil 26 und das eine weitere Wege-Ventil 28 weisen eine gemeinsame Weiterleitungsrichtung 38 für das de-ionisierte Gebrauchswasser der Wasserenthärtungsanlage 10 in ein Ge bäudewassernetz 42 auf. Das erste Wege-Ventil 26 weist eine erste Weiterlei tungsrichtung 30 für das Abwasser der Wasserenthärtungsanlage 10 in ein Ab wassernetz 40 auf, welche von der zusätzlichen ersten Weiterleitungsrichtung 34 des weiteren Wege-Ventils 28 für das Abwasser der Wasserenthärtungsanlage 10 getrennt ausgebildet ist. The first directional valve 26 and the one further directional valve 28 have a common forwarding direction 38. The first directional valve 26 and the one further directional valve 28 have a common forwarding direction 38 for the de-ionized service water of the water softening system 10 in a building water network 42. The first directional valve 26 has a first forwarding direction 30 for the wastewater from the water softening system 10 into a water network 40, which is formed separately from the additional first forwarding direction 34 of the further directional valve 28 for the wastewater from the water softening system 10.
Die Steuer- und/oder Regeleinheit 14 steuert die Wasserenthärtungsanlage 10. Die Steuer- und/oder Regeleinheit 14 steuert in einem Betriebszustand eine kon tinuierliche Abgabe von enthärtetem Wasser. Die Steuer- und/oder Regeleinheit 14 steuert eine Spannung Vk, Vk’ an dem ersten Kondensator 12. Die Steuer- und/oder Regeleinheit 14 steuert einen Wasserfluss durch den ersten Kondensa tor 12. Die Steuer- und/oder Regeleinheit 14 steuert eine Wasserausgabe der Wasserenthärtungsanlage 10 ausschließlich über den externen Leitungsdruck. Die Steuer- und/oder Regeleinheit 14 steuert eine Spannung Vk, Vk’ an dem wei teren Kondensator 16. Die Steuer- und/oder Regeleinheit 14 steuert einen Was serfluss durch den weiteren Kondensator 16. Die Steuer- und/oder Regeleinheit 14 umfasst ein Schaltelement 18. Das Schaltelement 18 ist dazu vorgesehen die Spannung Vk, Vk’ an dem ersten Kondensator 12 und dem weiteren Kondensator 16 in periodischen Abständen umzukehren. Die Steuer- und/oder Regeleinheit 14 steuert eine Umkehr der Weiterleitungsrichtung 30, 32 des ersten Wege-Ventils 26 in periodischen Abständen. Die Steuer- und/oder Regeleinheit 14 steuert eine Umkehr der Weiterleitungsrichtung 34, 36 des ersten Wege-Ventils 26 in periodi schen Abständen. Die Steuer- und/oder Regeleinheit 14 steuert die Weiterlei tungsrichtung 30, 32 des ersten-Wege Ventils 26 in eine erste Weiterleitungsrich tung 30 für das Abwasser, zeitgleich wie wenn die Steuer- und/oder Regeleinheit 14 den ersten Kondensator 12 in die Reinigungsschaltstellung steuert. Die Steu er- und/oder Regeleinheit 14 steuert die Weiterleitungsrichtung 30, 32 des ers- ten-Wege Ventils 26 in die weitere Weiterleitungsrichtung 32 für das de-ionisierte Gebrauchswasser, zeitgleich wie wenn die Steuer- und/oder Regeleinheit 14 den ersten Kondensator 12 in die De-Ionisierungs-Schaltstellung steuert. Die Steuer- und/oder Regeleinheit 14 steuert die Weiterleitungsrichtung 34, 36 des weiteren Wege-Ventils 28 in eine zusätzliche erste Weiterleitungsrichtung 34 für das Ab wasser, zeitgleich wie wenn die Steuer- und/oder Regeleinheit 14 den weiteren Kondensator 16 in die Reinigungsschaltstellung steuert. Die Steuer- und/oder Regeleinheit 14 steuert die Weiterleitungsrichtung 34, 36 des weiteren Wege- Ventils 28 in die weitere Weiterleitungsrichtung 32 für das de-ionisierte Ge brauchswasser in das Gebäudewassernetz 42, zeitgleich wie wenn die Steuer- und/oder Regeleinheit 14 den weiteren Kondensator 16 in die De-Ionisierungs- Schaltstellung steuert. Die Wasserenthärtungsanlage 10 kann beispielsweise als Teil eines Hauswasserversorgungssystems ausgebildet sein. Der zumindest eine erste Kondensator 12 und der zumindest eine weitere Kondensator 16 werden wechselweise in ihren Schaltstellungen betrieben. Ein Verfahren zum Betrieb der erfindungsgemäßen Wasserenthärtungsanlage 10 ist schematisch in Fig. 4 gezeigt. In einem Leitungsdruckregulierschritt 50 wird der Leitungsdruck des ungereinigten Wassers, insbesondere Frischwassers, von der Steuer- und/oder Regeleinheit 14 über eine Regelung des Druckreduzierven tils 20 zu einem Betriebsdruck reduziert. In zumindest einem darauffolgenden Messschritt 52 wird der lonengehalt des ungereinigten, harten Wassers gemes sen. In dem zumindest einen Messschritt 52 wird die verfügbare Menge des un gereinigten, harten Wassers gemessen. In zumindest einem anschließenden Versorgungsschritt 54 wird der zumindest eine Kondensator 12, 16, welcher sich in einer Reinigungsschaltstellung befindet, mit etwa 5 % des verfügbaren, unge reinigten Wassers, insbesondere Frischwassers, durch das weitere Ventil 24 und das Druckreduzierventil 20 mit ungereinigtem Wasser versorgt. In dem zumindest einen Versorgungsschritt 54 wird der zumindest eine Kondensator 12, 16, wel cher sich in einer De-Ionisierungs-Schaltstellung befindet, mit etwa 95 % des verfügbaren, ungereinigten Wassers durch das erste Ventil 22 und das Druckre duzierventil 20 mit ungereinigtem Wasser, insbesondere Frischwasser, versorgt. In dem zumindest einen Versorgungsschritt 54 wird die Versorgung der Konden satoren mit ungereinigtem Wasser, insbesondere Frischwasser, über die Öff nungszeit der Ventile 22, 24 gesteuert und/oder geregelt. In dem zumindest ei nen Versorgungsschritt 54 wird optional die Versorgung der Kondensatoren mit ungereinigtem Wasser, insbesondere Frischwasser, über ein elektrisch ansteu erbares Nadelventil mittels der Öffnungszeit des Nadelventils gesteuert und/oder geregelt. In zumindest einem anschließenden Reinigungsschritt 56 wird der zu mindest eine weitere Kondensator 16 in einer Reinigungsschaltstellung betrie ben. In dem zumindest einen Reinigungsschritt 56 wird der zumindest eine Kon densator 12, 16, welcher sich in einer Reinigungsschaltstellung befindet, von dem durchlaufenden Wasser gereinigt, wobei die angesammelten Ionen von den Elektroden 44, 44‘ abgespült werden. In dem zumindest einen Reinigungsschritt 56 wird das Wasser, welches zum Reinigen des Kondensators 12, 16 benutzt wird, mit Ionen, insbesondere um einen Faktor 20, angereichert. In zumindest einem zumindest teilweise zeitgleich zu dem Reinigungsschritt 56 ablaufenden De-Ionisierungsschritt 58 wird der zumindest eine erste Kondensator 12 in der De-Ionisierungs-Schaltstellung betrieben. In dem zumindest einen De- Ionisierungsschritt 58 wird das durchlaufende Wasser von dem zumindest einen Kondensator 12, 16, welcher sich in einer De-Ionisierungs-Schaltstellung befin- det, enthärtet. In zumindest einem anschließenden Öffnungsschritt 60 steuert oder regelt die Steuer- und/oder Regeleinheit 14 die Öffnungszeit des ersten Ventils 22 und des weiteren Ventils 24 und des Druckreduzierventils 20. In zu mindest einem anschließenden Weiterleitungsschritt 62 wird das Wasser aus dem zumindest einen Kondensator 12, 16, welcher sich in einer De-Ionisierungs- Schaltstellung befindet, in die gemeinsame Weiterleitungsrichtung 38 des zumin dest einen ersten Wege-Ventils 26 und des einen weiteren Wege-Ventils 28 ge leitet. In dem zumindest einen Weiterleitungsschritt 62 wird das Wasser aus dem zumindest einen Kondensator 12, 16, welcher sich in einer Reinigungsschaltstel lung befindet, in die einzelne Weiterleitungsrichtung 30 des zumindest einen wei teren Wege-Ventils 28 geleitet. In zumindest einem anschließenden Regelungs schritt 64 wird in periodischen Abständen, die abhängig sind vom lonengehalt des ungereinigten, harten Wassers, die Schaltstellungen des zumindest einen ersten und des zumindest einen weiteren Kondensators 12, 16 und die Weiterlei tungsrichtungen 30, 32, 34, 36 des zumindest eine ersten Wege-Ventils 26 und des zumindest einen weiteren Wege-Ventils 28 , insbesondere zeitgleich, umge kehrt. In zumindest einem darauffolgenden Messschritt 66 wird der Härtegrad des de-ionisierten Wassers gemessen. In zumindest einem anschließenden Um polschritt 68 wird die Spannung Vk, Vk’ an den Kondensatoren 12, 16 gesteuert oder geregelt. In dem zumindest einen Umpolschritt 68 wird die Spannung Vk, Vk’ an den Kondensatoren 12, 16 zu einer Reinigung oder De-Ionisierung oder Ein stellung und/oder Umkehrung einer Schaltstellung gesteuert oder geregelt. In dem zumindest einen Umpolschritt 68 wird der Strom von ungereinigtem, harten Wasser zu dem Kondensator 12, 16, welche in Reinigungsschaltstellung umge polt wird, abgeschaltet. In dem zumindest einem Umpolschritt 68 wird der Kon densator 12, 16, welcher in Reinigungsschaltstellung umgepolt wird auf eine Durchströmung mit zu verwerfendem Abwasser umgeschaltet. The control and / or regulating unit 14 controls the water softening system 10. The control and / or regulating unit 14 controls in an operating state a continuous delivery of softened water. The control and / or regulating unit 14 controls a voltage V k , V k ' on the first condenser 12. The control and / or regulating unit 14 controls a water flow through the first condenser 12. The control and / or regulating unit 14 controls a water output of the water softening system 10 exclusively the external line pressure. The control and / or regulating unit 14 controls a voltage V k , V k ' on the further capacitor 16. The control and / or regulating unit 14 controls a water flow through the further capacitor 16. The control and / or regulating unit 14 comprises a switching element 18. The switching element 18 is provided to reverse the voltage V k , V k ' at the first capacitor 12 and the further capacitor 16 at periodic intervals. The control and / or regulating unit 14 controls a reversal of the forwarding direction 30, 32 of the first directional valve 26 at periodic intervals. The control and / or regulating unit 14 controls a reversal of the forwarding direction 34, 36 of the first directional valve 26 at periodic intervals. The control and / or regulating unit 14 controls the forwarding direction 30, 32 of the first-way valve 26 in a first forwarding direction 30 for the waste water, at the same time as when the control and / or regulating unit 14 controls the first condenser 12 in the cleaning switch position . The control and / or regulating unit 14 controls the forwarding direction 30, 32 of the first-way valve 26 into the further forwarding direction 32 for the de-ionized service water, at the same time as when the control and / or regulating unit 14 controls the first condenser 12 controls in the de-ionization switch position. The control and / or regulating unit 14 controls the forwarding direction 34, 36 of the further directional valve 28 in an additional first forwarding direction 34 for the water, at the same time as when the control and / or regulating unit 14 controls the further condenser 16 in the cleaning switching position . The control and / or regulating unit 14 controls the forwarding direction 34, 36 of the further directional valve 28 in the further forwarding direction 32 for the de-ionized Ge used water in the building water network 42, at the same time as when the control and / or regulating unit 14 the other Capacitor 16 controls in the de-ionization switch position. The water softening system 10 can be designed, for example, as part of a domestic water supply system. The at least one first capacitor 12 and the at least one further capacitor 16 are operated alternately in their switching positions. A method for operating the water softening system 10 according to the invention is shown schematically in FIG. 4. In a line pressure regulating step 50, the line pressure of the unpurified water, in particular fresh water, is reduced by the control and / or regulating unit 14 to regulate the pressure reducing valve 20 to an operating pressure. In at least one subsequent measuring step 52, the ion content of the unpurified, hard water is measured. In the at least one measuring step 52, the available amount of the unpurified, hard water is measured. In at least one subsequent supply step 54, the at least one condenser 12, 16, which is in a cleaning switch position, is supplied with approximately 5% of the available untreated water, in particular fresh water, by the further valve 24 and the pressure reducing valve 20 with unpurified water. In the at least one supply step 54, the at least one condenser 12, 16, which is in a de-ionization switch position, with approximately 95% of the available, unpurified water through the first valve 22 and the pressure reducing valve 20 with unpurified water, especially fresh water. In the at least one supply step 54, the supply of the condensers with unpurified water, in particular fresh water, is controlled and / or regulated via the opening time of the valves 22, 24. In at least one supply step 54, the supply of the condensers with unpurified water, in particular fresh water, is optionally controlled and / or regulated via an electrically controllable needle valve by means of the opening time of the needle valve. In at least one subsequent cleaning step 56, the at least one further capacitor 16 is operated in a cleaning switching position. In the at least one cleaning step 56, the at least one condenser 12, 16, which is in a cleaning switching position, is cleaned of the water flowing through, the accumulated ions being rinsed off by the electrodes 44, 44 '. In the at least one cleaning step 56, the water, which is used for cleaning the condenser 12, 16, is enriched with ions, in particular by a factor of 20. In at least one deionization step 58, which runs at least partially at the same time as the cleaning step 56, the at least one first capacitor 12 is operated in the deionization switch position. In the at least one de-ionization step 58, the water flowing through from the at least one condenser 12, 16, which is in a de-ionization switch position det, softened. In at least one subsequent opening step 60, the control and / or regulating unit 14 controls or regulates the opening time of the first valve 22 and the further valve 24 and the pressure reducing valve 20. In at least one subsequent forwarding step 62, the water from the at least one condenser 12 is 16, which is in a de-ionization switching position, in the common forwarding direction 38 of the at least one first directional valve 26 and one further directional valve 28 leads ge. In the at least one forwarding step 62, the water from the at least one condenser 12, 16, which is in a cleaning switching position, is passed into the individual forwarding direction 30 of the at least one further directional valve 28. In at least one subsequent control step 64, the switching positions of the at least one first and at least one further condenser 12, 16 and the forwarding directions 30, 32, 34, 36 of the periodically, which are dependent on the ion content of the unpurified, hard water at least one first directional valve 26 and the at least one further directional valve 28, in particular vice versa, reverses. The degree of hardness of the deionized water is measured in at least one subsequent measuring step 66. In at least one subsequent pole step 68, the voltage V k , V k ' on the capacitors 12, 16 is controlled or regulated. In the at least one reversal step 68, the voltage V k , V k ' on the capacitors 12, 16 is controlled or regulated for cleaning or de-ionization or a setting and / or reversal of a switching position. In the at least one pole reversal step 68, the flow of unpurified, hard water to the condenser 12, 16, which is reversed in the cleaning switching position, is switched off. In the at least one pole reversal step 68, the condenser 12, 16, which is reversed in the cleaning switching position, is switched to a flow with waste water to be discarded.

Claims

Ansprüche Expectations
1. Wasserenthärtungsanlage mit zumindest einem ersten Kondensator (12) und mit zumindest einer Steuer- und/oder Regeleinheit (14), die dazu vor gesehen ist, zumindest eine Spannung (\ , \ ’) an dem zumindest einen ersten Kondensator (12) und einen Wasserfluss durch den zumindest einen ersten Kondensator (12) zu einer Bindung und/oder Abstoßung von gela denen Bestandteilen aus dem Wasser an und/oder von dem ersten Kon densator (12) steuert und/oder regelt, dadurch gekennzeichnet, dass die zumindest eine Steuer- und/oder Regeleinheit (14) in zumindest einem Be triebszustand dazu vorgesehen ist, den zumindest einen ersten Kondensa tor (12) zu einer kontinuierlichen Enthärtung von Wasser anzusteuern. 1. Water softening system with at least one first capacitor (12) and with at least one control and / or regulating unit (14), which is provided for this purpose, at least one voltage (\, \ ') on the at least one first capacitor (12) and controls and / or regulates a water flow through the at least one first condenser (12) to bind and / or repel charged components from the water and / or from the first condenser (12), characterized in that the at least one Control and / or regulating unit (14) is provided in at least one operating state to control the at least one first capacitor (12) for a continuous softening of water.
2. Wasserenthärtungsanlage nach Anspruch 1, dadurch gekennzeichnet, dass die Steuer- und/oder Regeleinheit (14) dazu vorgesehen ist, eine Wasserausgabe ausschließlich über einen externen Leitungsdruck zu steuern. 2. Water softening system according to claim 1, characterized in that the control and / or regulating unit (14) is provided to control water output exclusively via an external line pressure.
3. Wasserenthärtungsanlage nach Anspruch 1 oder 2, gekennzeichnet 3. Water softening system according to claim 1 or 2, characterized
durch zumindest einen weiteren Kondensator (16), der zu einer Bindung und/oder Abstoßung von geladenen Bestandteilen aus dem Wasser an und/oder von den/dem zumindest einen weiteren Kondensator (16) strö mungstechnisch parallel zu dem zumindest einen ersten Kondensator (12) angeordnet ist. by means of at least one further condenser (16), which is used to bind and / or repel charged components from the water to and / or from the at least one further condenser (16) in terms of flow technology parallel to the at least one first condenser (12) is arranged.
4. Wasserenthärtungsanlage zumindest nach Anspruch 3, dadurch gekennzeichnet, dass die Steuer- und/oder Regeleinheit (14) ein Schaltelement (18) umfasst, das dazu vorgesehen ist zumindest eine Spannung (\ , \ ’) an dem zumindest einen ersten Kondensator (12) und dem zumindest ei nen weiteren Kondensator (16) in periodischen Abständen umzukehren. 4. Water softening system at least according to claim 3, characterized in that the control and / or regulating unit (14) comprises a switching element (18) which is provided for this purpose at least one voltage (\, \ ') on the at least one first capacitor (12 ) and to reverse the at least one additional capacitor (16) at periodic intervals.
5. Wasserenthärtungsanlage nach einem der vorhergehenden Ansprüche, gekennzeichnet durch zumindest ein Druckreduzierventil (20), welches zu einer Reduktion des Leitungsdrucks strömungstechnisch vor dem zumin dest einen ersten Kondensator (12) angeordnet ist. 5. Water softening system according to one of the preceding claims, characterized by at least one pressure reducing valve (20) which is arranged in terms of flow technology to reduce the line pressure before at least a first condenser (12).
6. Wasserenthärtungsanlage nach Anspruch 3 und 5, dadurch gekennzeichnet, dass das zumindest eine Druckreduzierventil (20) zu einer Re duktion des Leitungsdrucks strömungstechnisch vor dem zumindest einen weiteren Kondensator (16) angeordnet ist. 6. Water softening system according to claim 3 and 5, characterized in that the at least one pressure reducing valve (20) for a reduction of the line pressure is arranged fluidically upstream of the at least one further condenser (16).
7. Wasserenthärtungsanlage nach einem der vorhergehenden Ansprüche, gekennzeichnet durch zumindest ein erstes Ventil (22), welches zu einer Regulierung der Wasserzufuhr strömungstechnisch vor dem zumindest ei nen ersten Kondensator (12) angeordnet ist. 7. Water softening system according to one of the preceding claims, characterized by at least one first valve (22), which is arranged to regulate the water supply in terms of flow technology before the at least one first condenser (12).
8. Wasserenthärtungsanlage nach einem der vorhergehenden Ansprüche, gekennzeichnet durch zumindest ein weiteres Ventil (24), welches zu ei ner Regulierung der Wasserzufuhr strömungstechnisch vor dem zumindest einen weiteren Kondensator (16) angeordnet ist. 8. Water softening system according to one of the preceding claims, characterized by at least one further valve (24), which is arranged for ei ner regulation of the water supply fluidically upstream of the at least one further condenser (16).
9. Wasserenthärtungsanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zumindest eine Steuer- und/oder Re geleinheit (14) zumindest ein erstes Wege-Ventil (26) zu einer Steuerung der Flussrichtung des Wassers aus dem zumindest einen ersten Konden sator (12) aufweist, welches in einer ersten Stellung dazu vorgesehen ist den zumindest einen ersten Kondensator (12) mit einem Gebäudewasser netz (42) und in einer zweiten Stellung mit einem Abwassernetz (40) zu koppeln. 9. Water softening system according to one of the preceding claims, characterized in that the at least one control and / or regulating unit (14) has at least one first directional valve (26) for controlling the flow direction of the water from the at least one first capacitor ( 12), which is provided in a first position for coupling the at least one first condenser (12) to a building water network (42) and in a second position to a sewage network (40).
10. Wasserenthärtungsanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zumindest eine Steuer- und/oder Re geleinheit (14) zumindest ein weiteres Wege-Ventil (28) zu einer Steuerung der Flussrichtung des Wassers aus dem zumindest einen weiteren Kon densator (16) aufweist, welches in einer ersten Stellung dazu vorgesehen ist den zumindest einen weiteren Kondensator (16) mit einem Gebäude- wassernetz (42) und in einer zweiten Stellung mit einem Abwassernetz (40) zu koppeln. 10. Water softening system according to one of the preceding claims, characterized in that the at least one control and / or re gel unit (14) at least one further directional valve (28) for controlling the flow direction of the water from the at least one further condenser ( 16), which is provided in a first position for this purpose, the at least one further capacitor (16) with a building water network (42) and in a second position to couple with a sewage network (40).
11. Wasserenthärtungsanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuer- und/oder Regeleinheit (14) dazu vorgesehen ist, in periodischen Abständen eine Umkehr der Weiterlei tungsrichtung (30, 32, 34, 36) des zumindest einen ersten Wege-Ventils (26) und des zumindest einen weiteren Wege-Ventils (28) steuert. 11. Water softening system according to one of the preceding claims, characterized in that the control and / or regulating unit (14) is provided to periodically reverse the forwarding direction (30, 32, 34, 36) of the at least one first way Controls valve (26) and the at least one further directional valve (28).
12. Verfahren zum Betrieb einer Wasserenthärtungsanlage (10) nach einem der Ansprüche 1 bis 11. 12. A method for operating a water softening system (10) according to any one of claims 1 to 11.
PCT/EP2019/085408 2018-12-19 2019-12-16 Water softening WO2020127088A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980085040.1A CN113195419B (en) 2018-12-19 2019-12-16 Softening of water
EP19832311.5A EP3898528A1 (en) 2018-12-19 2019-12-16 Water softening

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018222263.0 2018-12-19
DE102018222263.0A DE102018222263A1 (en) 2018-12-19 2018-12-19 Water softening

Publications (1)

Publication Number Publication Date
WO2020127088A1 true WO2020127088A1 (en) 2020-06-25

Family

ID=69137848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/085408 WO2020127088A1 (en) 2018-12-19 2019-12-16 Water softening

Country Status (4)

Country Link
EP (1) EP3898528A1 (en)
CN (1) CN113195419B (en)
DE (1) DE102018222263A1 (en)
WO (1) WO2020127088A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020084188A1 (en) * 1999-01-21 2002-07-04 The Regents Of The University Of California. Alternating-polarity operation for complete regeneration of electrochemical deionization system
US20100140096A1 (en) * 2008-12-05 2010-06-10 Samsung Electronics Co., Ltd. Electrode for capacitive deionization, capacitive deionization device and electric double layer capacitor including the electrode
US20120217170A1 (en) * 2009-11-04 2012-08-30 Voltea B.V. Apparatus and method for removal of ions
US20130105323A1 (en) * 2011-10-27 2013-05-02 David J. Averbeck Ion Removal Using a Capacitive Deionization System
US20150166374A1 (en) * 2012-08-02 2015-06-18 Idropan Dell'orto Depuratori S.R.L. Method and apparatus for treating a fluid containing ionized particles

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11040897B2 (en) * 2015-03-20 2021-06-22 Ecolab Usa Inc. System and method for capacitive deionization of a fluid
CA2976878C (en) * 2015-03-27 2020-07-14 Ecowater Systems Llc Storage and delivery for a water treatment system and method of using the same
CN205773713U (en) * 2016-07-05 2016-12-07 北京碧水源净水科技有限公司 A kind of water-driven water purifier relying on tap water pressure to drive keying

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020084188A1 (en) * 1999-01-21 2002-07-04 The Regents Of The University Of California. Alternating-polarity operation for complete regeneration of electrochemical deionization system
US20100140096A1 (en) * 2008-12-05 2010-06-10 Samsung Electronics Co., Ltd. Electrode for capacitive deionization, capacitive deionization device and electric double layer capacitor including the electrode
US20120217170A1 (en) * 2009-11-04 2012-08-30 Voltea B.V. Apparatus and method for removal of ions
US20130105323A1 (en) * 2011-10-27 2013-05-02 David J. Averbeck Ion Removal Using a Capacitive Deionization System
US20150166374A1 (en) * 2012-08-02 2015-06-18 Idropan Dell'orto Depuratori S.R.L. Method and apparatus for treating a fluid containing ionized particles

Also Published As

Publication number Publication date
CN113195419B (en) 2024-01-23
EP3898528A1 (en) 2021-10-27
DE102018222263A1 (en) 2020-06-25
CN113195419A (en) 2021-07-30

Similar Documents

Publication Publication Date Title
DE60008931T2 (en) AUTOMATED DEVICE FOR CLEANING DRINKING WATER
EP2706042B1 (en) Point-of-use water dispenser and method for using said water dispenser
DE102014105533A1 (en) Process for the filtration of drinking or service water in a water supply device
DE102006015675A1 (en) Small volume reverse osmosis system with double membrane permeate pump
DE3902366C2 (en) Process for operating consumer pipe systems or circulation systems and device for carrying out this process
DE102006009411B4 (en) Plant for heating drinking water and killing legionella and other germs
EP3898528A1 (en) Water softening
DE2826702C2 (en) Device for softening drinking water
DE202006003226U1 (en) Plant for heating drinking water to kill Legionella and other germs, comprising heated water disinfection circuit, circulating water circuit and preheater-recooler for cooling the hot, disinfected water
EP2125641A1 (en) Hot water unit
DE102013114889B4 (en) Circulation device for drinking or service water and method for the treatment of drinking or service water
EP0141339B1 (en) Device for heat recovery from waste water with simultaneous saving of potable water
WO2020126929A1 (en) Method for softening water and water softening system
WO2013153149A1 (en) Method for operating a water treatment system
DE3238285A1 (en) System for supplying heat energy from an external heat circuit to a service water circuit, in particular a service water storage tank
DE102015104972B4 (en) Apparatus and method for treating a liquid, in particular by reverse osmosis
EP3118163B1 (en) Device for water treatment and method for regenerating a water treatment device
DE4409192C1 (en) Deacidifying potable or other water
DE3333842A1 (en) Iron removal and manganese removal plant for well systems
DE3119855A1 (en) Heat exchanger for recovering waste heat
EP0600825A1 (en) Membrane separation process, in particular by reverse osmosis or ultrafiltration and apparatus for carrying it out
DE4205826A1 (en) Back flushing process for reverse osmotic desalination units - using water previously purified by the unit
AT522055B1 (en) HEAT TRANSFER DEVICE
DE102008018826A1 (en) Energy producing system for e.g. heating consumer, has supply fitting provided with connection for return pipeline and pointed pipeline cross section reduced parts in area of supply connection at drinking water supply device
DE102006042650B4 (en) Humidification system with a degermination device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19832311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019832311

Country of ref document: EP

Effective date: 20210719