WO2020126929A1 - Method for softening water and water softening system - Google Patents

Method for softening water and water softening system Download PDF

Info

Publication number
WO2020126929A1
WO2020126929A1 PCT/EP2019/085134 EP2019085134W WO2020126929A1 WO 2020126929 A1 WO2020126929 A1 WO 2020126929A1 EP 2019085134 W EP2019085134 W EP 2019085134W WO 2020126929 A1 WO2020126929 A1 WO 2020126929A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
softening system
product
control
product water
Prior art date
Application number
PCT/EP2019/085134
Other languages
German (de)
French (fr)
Inventor
Dietmar Steiner
Paul Mielcarek
Lars BOMMER
Ganzhou Wang
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN201980085096.7A priority Critical patent/CN113226992A/en
Priority to EP19845814.3A priority patent/EP3898526A1/en
Publication of WO2020126929A1 publication Critical patent/WO2020126929A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4691Capacitive deionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/46135Voltage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46145Fluid flow
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • C02F2209/055Hardness

Definitions

  • the invention is based on a method for water softening by means of a capacitive water softening system, water being softened in at least one process step by means of at least one condenser and ent-hardened product water being provided.
  • an ion concentration of the product water is regulated to a defined value.
  • a “product water” is to be understood in particular as water which is provided by a water supply device, in particular a waterworks, drinking water supply plant or the like, as a water supply, in particular a drinking water supply, and has undergone cleaning, in particular softening, in a water softening system.
  • “De-hardening” should preferably be understood to mean de-ionization, in particular decalcification.
  • “De-ionization” should be understood to mean that the charged, in particular ionic, portion is at least substantially removed from an ion-containing mixture, in particular an aqueous mixture.
  • a reduction in the charged proportion of preferably at least 10%, particularly preferably of at least 50% and very particularly preferably of at least 90% should preferably be achieved, for example to a target hardness of 3 ° dH.
  • “Decalcification” is to be understood to mean that the lime, in particular CaC03 and traces of magnesium, is at least substantially removed from a calcareous mixture, in particular a calcareous, aqueous mixture.
  • a reduction in the lime content of preferably at least 10%, particularly preferably of at least 50% and very particularly preferably of at least 90% should preferably be achieved.
  • the condenser is flowed through in at least one process step with water, in particular unpurified water, in particular controlled and / or regulated by a control and / or regulating unit of the capacitive water softening system.
  • water in particular unpurified water, in particular controlled and / or regulated by a control and / or regulating unit of the capacitive water softening system.
  • a voltage is applied to the electrodes of the capacitor of the capacitive water softening system, in particular by means of a control and / or regulating unit of the capacitive water softening system.
  • the capacitor is preferably charged components of the unpurified water as a function of the voltage applied to the electrodes.
  • Untreated water is to be understood in particular as water which is provided by a water supply device, in particular a waterworks, drinking water supply plant, or the like as a water supply, in particular drinking water supply, and which does not contain any further experiences, especially descaling.
  • the unpurified water has a hardness of 7 ° dH.
  • a stream (7 ei ) is preferably used to bind charged constituents of the unpurified water through the condenser.
  • a current (7 ei ) is preferably consumed depending on the number of bound ions (Ac) and / or on the applied voltage.
  • the electrical current ⁇ I ei ) in the condenser through which unpurified water flows is preferably at least one process step via an applied voltage, in particular by means of a control and / or regulating unit of the capacitive water softening system , regulated.
  • the ion concentration of the product water is determined, in particular by a user and / or by a program, in particular to regulate the electrical current (7 ei ) via the applied voltage in the condenser through which the unpurified water flows, preferably in at least one method step determined by means of a control and / or regulating unit of the capacitive water softening system.
  • the de-ionization current (7 D ) in the condenser is calculated in order to achieve a target hardness of the product water flow, in particular to bind a certain number of ions, in particular by means of a control and / or regulating unit of the capacitive water softening system.
  • the product water flow (V (l / s)) is preferably measured in at least one process step.
  • the Faraday efficiency is preferably determined from the measured product water flow (V (l / s)), in particular by means of a control and / or regulating unit of the capacitive water softening system.
  • the Faraday efficiency is preferably determined from the measured product water flow (V (l / s)) by means of a calibration curve of the Faraday efficiency and / or the deionization performance against the product water flow (V (l / s)) of the water softener. tion system, in particular by means of a control and / or regulating unit of the capacitive water softening system.
  • the Faraday efficiency and the desired target hardness of the product water are used to calculate the electrical current (7 ei ) to be set via the voltage, in particular by means of a control and / or regulating unit of the capacitive water softening system.
  • a “de-ionization current” is to be understood as a minimum current which is required to bind a certain number of ions to the electrodes of a capacitor.
  • the product of z and F is constant.
  • the product of Ac and V is called De
  • the "Faraday efficiency” should be understood as a ratio of the de-ionization current (7 D ) and the actually consumed current (7 ei ):
  • the respectively missing quantity can be calculated from formula (1).
  • the Faraday efficiency can be calculated using formula (2) and the de-ionization current (7 D ), the actually consumed electrical current (7 ei ) and set via a voltage on the capacitor.
  • a product water flow of 12.1 l / min is measured.
  • a hardness of the unpurified water of 7 ° dH is also measured.
  • the example system has a Faraday efficiency of 0.7.
  • the desired target hardness is for example 3 ° dH.
  • the ion concentration difference in this example is 0.76 mmol / l.
  • this corresponds to a de-ionization current of 29 A. With a Faraday efficiency of 0.7, this corresponds to an electrical current of 41 A which must be set via a voltage on the capacitor, in this example in order to achieve the desired target hardness to reach.
  • a targeted ion concentration can advantageously be achieved by the method according to the invention.
  • the method can advantageously reduce energy consumption.
  • the method can advantageously reduce the costs of water softening.
  • the method can advantageously reduce maintenance costs and / or extend maintenance intervals.
  • An advantageous service life of a water softening system can be achieved by the method.
  • a water regeneration of 95% can advantageously be achieved. 95% of the incoming untreated water can advantageously be converted into softened water.
  • the ion concentration of the product water is measured in at least one process step and the product water flow is determined in at least one process step from the ion concentration of the product water.
  • the product water flow in particular from a control unit and / or control unit, is calculated with a known and / or measured ion concentration of the unpurified water and a known and / or measured ion concentration of the product water.
  • an amount of water can advantageously be determined.
  • the target hardness of the product water is calculated at a maximum deionization current with known and / or measured hardness of the unpurified water.
  • a maximum product water hardness to be achieved can advantageously be displayed for a water softening system.
  • a user Before purchasing a water softening system, a user can advantageously infer the minimum ion concentration to be achieved in the product water.
  • the ion concentration of the product water be entered by a user in at least one method step and / or determined by a program of a control and / or regulating unit of the capacitive water softening system.
  • a user can advantageously control the energy consumption of a water softening system via the ion concentration of the product water.
  • a water softening system in particular a capacitive water softening system, with at least one control and / or regulating unit and with at least one condenser for carrying out a method according to the invention for water softening is proposed.
  • the water softening system is preferably provided for use in terms of flow technology in front of another water-consuming unit.
  • a water-consuming food processor for example a dishwasher
  • the water softening system is used in the water supply for a residential unit, in particular for a residential house, and / or for an industrial unit, in particular a factory or a plantation.
  • the water softening system is preferably provided for treating an inflow of a building water network, in particular a domestic water network.
  • a “water softening system” is to be understood to mean, in particular, a system which is intended to reduce particles, in particular lime, in the water, in particular in a water pipe.
  • the water softening system is preferably arranged on a water supply, in particular on a water pipe.
  • the water softening system is preferably arranged in terms of flow technology in front of a water-consuming unit on a water supply, in particular a water pipe.
  • the water softening system is preferably designed with a connection to unpurified, hard water.
  • the water softening system preferably softens the water and supplies soft, purified product water to the units connected behind it.
  • the water softening system is preferably integrated into a water supply, in particular a water-consuming unit.
  • a “water supply” should preferably be understood to mean a unit which is arranged between the water-consuming unit and a water pipe and / or one at the water reservoir thereof. It is conceivable that the water supply comprises at least a hose and / or a pipe or the like for guiding water. It is also conceivable that the water supply comprises, for example, a pump for guiding water and / or a heating module for regulating the water temperature. Preferably, water is fed through a line pressure applied to the water supply or a pump through the water softening system. It is conceivable that the water supply has a storage basin downstream of the water softening system.
  • the at least one capacitor is preferably formed by an electrical capacitor.
  • the capacitor comprises at least a first electrode.
  • the at least one capacitor comprises at least one further electrode.
  • the electrodes are preferably at a distance of less than 1 mm.
  • the electrodes of the at least one first capacitor are preferably made of a carbon, in particular porous carbon, preferably nanoporous carbon. It is conceivable that the electrodes are formed from a graphite, from a graphene and / or carbon nanotubes and / or from a composite material comprising carbon nanotubes. In one operating state, the electrodes preferably provide adsorbate sites for dissolved ions.
  • the electrodes can advantageously be made stable and with a large surface area. A water regeneration of 95% can advantageously be achieved.
  • a voltage is applied between the at least one first electrode and the at least one further electrode.
  • the value of the voltage, particularly preferably 1 V, on the at least one first electrode is preferably opposite to the value of the voltage on the at least one further electrode.
  • “Oppositely equivalent” should in particular be understood to mean a value that is similar to another value except for its sign.
  • the applied voltage produces at least one negatively charged first electrode and at least one equally strong but positive charged further electrode. It is also conceivable that the electrodes are charged in reverse. It is also conceivable that at least one electrode is connected to an electrical mass of the water softening system.
  • the at least one first charged electrode was in at least one operating state in direct contact with the unpurified water.
  • the at least one further charged electrode is in direct contact with the unpurified water in at least one operating state.
  • the negative charge on the at least one first electrode binds positively charged components from the unpurified water to the at least one first electrode.
  • the positive charge on the at least one further electrode binds negatively charged components from the unpurified water to the at least one further electrode.
  • the amount of voltage is proportional to the de-ionization strength of a capacitor.
  • a “de-ionization strength” should preferably be understood to mean the number of charged components removed from the water.
  • the current density of a capacitor is preferably in a range of 10-50 mA / cm 2 .
  • a de-ionization current is, for example, 29 A, with an electrical current of 41 A having to be set at a Faraday efficiency of 0.7 in order to achieve 29 A de-ionization current.
  • the water softening system preferably has a known, in particular measured, relationship between a product water flow and the Faraday efficiency. Due to leakage currents and other energy losses, such as waste heat, the electrical current is always higher than the de-ionization current.
  • the positive charge on the at least one first electrode binds the negatively charged constituents from the unpurified water to the at least one first electrode.
  • the negative charge on the at least one further electrode positively charged components from the unpurified water binds to the at least one further electrode.
  • Fluidically, softened product water is arranged behind the at least one condenser in at least one operating state. It is conceivable that the water softening system comprises at least one check valve.
  • the water softening system comprises at least one control and / or regulating unit.
  • the at least one control and / or regulating unit is provided to control the continuous provision of softened water.
  • a “control and / or regulating unit” should in particular be understood to mean a unit with at least one control electronics.
  • Control electronics should in particular be understood to mean a unit with a processor unit and with a memory unit and with an operating program stored in the memory unit.
  • the control and / or regulating unit is preferably a construction part which is intended to control and / or regulate at least the electrical, in particular electronic, components of the water softening system.
  • the control and / or regulating unit of the water softening system is at least intended to supply any valves and / or a capacitor with a voltage for control purposes.
  • the control and / or regulating unit preferably comprises at least one storage element.
  • control and / or regulating unit comprises at least one sensor element for regulating the variables controlled by the control and / or regulating unit.
  • the calibration curve between the product water flow and the Faraday efficiency and / or the de-ionization performance can be recorded and / or calculated by measuring the input and output hardness of the water as well as the electricity consumption and volume flow of water (product water flow) through the water softening system.
  • the control and / or regulating unit comprises a switching element which is provided to reverse at least one voltage at the at least one first capacitor at, in particular periodic, intervals. “Periodic intervals” should preferably be understood to mean temporal, in particular constant, recurring intervals.
  • the switching element is preferably provided to switch the voltage across the first capacitor back to the output voltage after a further time interval, in particular in particular the same time interval as when the voltage was first switched.
  • the switching element is preferably provided to adapt the time intervals of the switching operations to a water consumption of the water softening system. It is conceivable that the time intervals remain the same. As an alternative, it is conceivable that the temporal distance variations become shorter and / or longer.
  • a water softening system can be designed which operates at the optimum energy level at every time of operation.
  • a voltage reversal on a capacitor transfers the capacitor from a de-ionization switch position to a cleaning switch position and vice versa.
  • the switching element is particularly provided to bring the at least one first capacitor and the at least one further capacitor recurring from the de-ionization switch position into the cleaning switch position and after a defined time interval back into the de-ionization switch position.
  • a deionization switch position is to be understood as a switch position into which a capacitor is switched when a new, in particular reversed, voltage is applied to the at least two electrodes thereof for the first time or after cleaning.
  • a “cleaning switch position” is to be understood as a switch position into which a capacitor is switched when the voltage between the at least two electrodes of the capacitor is reversed.
  • Reversed polarity should be understood to mean, in particular, a reversal of the charge carrier sign, although the voltage strength does not have to be the same.
  • the voltage in the cleaning switch position is preferably lower than in the de-ionization switch position. It is conceivable that the at least one condenser, which is operated in the cleaning switch position, is supplied with water which is taken from a water network.
  • An environmentally friendly and / or material-friendly water softening system can advantageously be designed.
  • a water softening system can be formed which provides softened water that can be regulated.
  • a water softening system can advantageously be designed, which can dispense a product water with a controlled ion concentration.
  • An energy-efficient water softening system can advantageously be designed.
  • a water softening system which is inexpensive to operate can advantageously be designed. An increase in the service life of a water softening system can advantageously be achieved.
  • control and / or regulating unit comprises a replaceable storage element.
  • the storage element is preferably arranged on the control and / or regulating unit so that it is accessible from the outside. It is conceivable that the storage element is arranged behind a flap within a housing of the control and / or regulating unit. Easy assembly and / or easy replacement of the storage element can advantageously be achieved. A simple exchange and / or an easier new recording of the calibration curve, which is stored on the storage element, can advantageously be achieved. An export of the calibration curve to another device can advantageously be achieved. In laboratories, the measurement conditions for individual test series can advantageously be called up on an external device.
  • the water softening system according to the invention should not be limited to the application and embodiment described above.
  • the water softening system according to the invention can have a number deviating from a number of individual elements, components and units as well as method steps mentioned to fulfill a function described here.
  • values lying within the stated limits are also to be considered disclosed and can be used as desired.
  • FIG. 1 shows a capacitive water softening system according to the invention in a schematic representation
  • FIG. 2 shows a capacitor of a capacitive water softening system in a de-ionization switch position in a schematic illustration
  • Fig. 3 shows a capacitor of a capacitive water softening system in a cleaning switching position in a schematic Dar and
  • Fig. 4 is a schematic flow diagram of an inventive
  • FIG. 1 shows a capacitive water softening system 10 with a condenser 12.
  • a fresh water source 32 in particular a connection to a water line, supplies unpurified water to the condenser 12 via a water line, such as a pipe and / or a hose.
  • the water flow to the condenser 12 can be controlled by a control and / or regulating unit 18 via a valve 28, which is arranged upstream of the condenser 12.
  • the water softening system 10 has the control and / or regulating unit 18.
  • the control and / or regulating unit 18 controls and / or regulates a current and / or a voltage V k , V k ' at the capacitor 12.
  • the control and / or regulating unit 18 controls and / or regulates the capacitor 12 for cleaning switch position or a de-ionization switch position.
  • a directional valve 30, in particular a three-way valve is arranged behind the condenser 12.
  • the control and / or regulating unit 18 controls and / or regulates the directional valve 30 in order to forward the water which flows out of the con- capacitor 12 comes.
  • the directional valve 30 is designed with two outlets. An outlet of the directional valve 30 is connected to a building water network 34. Another output of the directional valve 30 is connected to a wastewater network 36.
  • the control and / or regulating unit 18 controls and / or regulates the directional valve 30 for forwarding the water into the building water network 34 when the condenser 12 is operated in the de-ionization switch position.
  • the control and / or regulating unit 18 controls and / or regulates the directional valve 30 for forwarding the water into the sewage network 36 when the condenser 12 is operated in the cleaning switch position.
  • the control and / or regulating unit 18 comprises an exchangeable storage element 26. A calibration curve of the Faraday efficiency and / or the de-ionization power against the product water flow of the water softening system 10 is stored on the storage element.
  • the condenser 12 of the water softening system 10 is shown schematically in FIG. 2 and FIG. 3.
  • the water softening system 10 comprises, for example, a condenser 12.
  • the condenser 12 is designed to bind and / or repel charged components from the water to and / or from the / the first condenser 12, in particular the electrodes 14, 14 '(see FIG . 2 and 3).
  • the condenser 12 can be switched by the control and / or regulating unit 18 into a cleaning switch position and / or a de-ionization switch position.
  • the control and / or regulating unit 18 controls and / or regulates the voltage V k , V k ' at electrodes 14, 14' of the capacitor 12.
  • FIG. 2 shows a capacitor 12 in the de-ionization switch position.
  • Untreated water flows through an area between two porous electrodes 14, 14 'of a capacitor 12.
  • a voltage V k is present between the two electrodes 14, 14' shown.
  • Positive ions are drawn from the water to a negatively charged electrode 14 and bound there.
  • Negative ions are drawn from the water to a positively charged electrode 14 'and bound there.
  • the positive and the negative electrodes 14, 14 ' face each other. arranged.
  • Collectors 16, 16 ' are located behind the electrodes 14, 14'. The collectors 16, 16 'can absorb or release charge, in particular the bound ions at the electrodes 14, 14'.
  • FIG. 3 shows a capacitor 12 in the cleaning switch position. Uncleaned water and / or waste water flows through an area between two porous electrodes 14, 14 'of a capacitor 12. Between the two electrodes 14, 14' shown, a voltage V k 'is present . The voltage V k ' is opposite to the voltage ⁇ in the de-ionization switch position. Positive ions are released from the positive electrode 14 into the water. Negative ions are given to the water by the positive electrode 14 '.
  • the positive and negative electrodes 14, 14 ' are arranged opposite one another. Collectors 16, 16 'are located behind the electrodes 14, 14'.
  • the control and / or regulating unit 18 controls and / or regulates a water flow, in particular of unpurified water or waste water, through the condenser 12.
  • the control and / or regulating unit 18 controls a water output, in particular of product water, in particular of the water softening system 10 of the condenser 12.
  • the control and / or regulating unit controls and / or regulates a valve 22, which is located upstream of the condenser in terms of flow technology, for controlling and / or regulating the water flow through the condenser.
  • Figure 4 shows a schematic flow diagram of a method for water softening by means of the capacitive water softening system.
  • a voltage V k is applied to the electrodes 14, 14 'of the capacitor 12.
  • water in particular unpurified water, flows through the condenser 12.
  • the capacitor 12 binds charged components of the unpurified water as a function of the applied voltage V k to the electrodes 14, 14 '.
  • the ion concentration of the product water is regulated via an applied voltage V k to the electrodes 14, 14 'of the capacitor 12.
  • the voltage V k on the at least one capacitor 12 is regulated in order to set the ion concentration of the product water in a targeted manner.
  • the ion concentration of the product water is regulated via a voltage V k .
  • an electrical current, in particular de-ionization current is regulated in the condenser 12 through which unpurified water flows, via a voltage V k .
  • the ion concentration of the product water is calculated in at least one method step, in particular a measuring step 22.
  • the product water flow is measured.
  • the electrical current in the capacitor 12 is calculated in order to achieve a target hardness.
  • the Faraday efficiency is determined from the known product water flow.
  • the Faraday efficiency is determined from the known product water flow by means of a calibration curve of the Faraday efficiency and / or the deionization performance against the product water flow of the water softening system 10.
  • the de-ionization current and / or the actually required electrical current, in particular from the control and / or regulating unit 18, is calculated from the Faraday efficiency and the desired target hardness of the product water.
  • the calibration curve of the Faraday efficiency and / or the deionization performance against the product water flow of the water softening system 10 is retrieved from the storage element 26.
  • the relationship between Fara day efficiency and product water flow is essentially a linear relationship, for example.
  • a product water flow of 12.1 l / min is measured.
  • a hardness of the unpurified water of 7 ° dH is also measured.
  • the example system has a Faraday efficiency of 0.7.
  • the desired target hardness is, for example, 3 ° dH.
  • the ion concentration difference is 0.76 mmol / l. This corresponds to a de-ionization current of 29 A. With a Fa raday efficiency of 0.7, this corresponds to an electrical current of 41 A, which must be set at the capacitor 12.
  • the ion concentration of the product water is measured and in at least one process step the product water flow is determined from the ion concentration of the product water.
  • the product water flow is calculated at a known ion concentration of the untreated water and a known ion concentration of the product water, in particular by means of the calibration curve of the Faraday efficiency versus the product water flow.
  • a hardness of the unpurified water of 7 ° dH is measured.
  • the target hardness of the product water is measured, for example, as 3 ° dH.
  • the ion concentration difference is 0.76 mmol / l. This corresponds to a de-ionization current of 29 A.
  • an electrical current of 41 A, which is set at the capacitor 12 the Faraday efficiency is 0.7.
  • the product water flow can be determined by the calibration curve of the Faraday efficiency and / or the de-ionization performance against the product water flow of the water softening system 10 compared to the product water flow.
  • the target hardness of the product water is calculated at a maximum deionization current with known hardness of the unpurified water.
  • the target hardness of the product water at a maximum deionization current with known hardness of the unpurified water is calculated by means of the calibration curve of the Faraday efficiency and / or the deionization performance against the product water flow of the water softening system 10.
  • the hardness of the unpurified water is measured.
  • the ion concentration of the product water is entered by a user and / or determined by the control and / or regulating unit, in particular a program of the capacitive water softening system.
  • Water in particular for comparing a calibration curve, is measured and / or compared.
  • Process steps are conceivable. In particular, the method steps can be repeated in any order.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

The invention relates to a method for softening water by means of a capacitive water softening system, wherein in at least one method step water is softened by means of at least one capacitor and softened product water is provided. It is proposed that in the at least one method step an ion concentration of the product water is regulated to a defined value.

Description

Beschreibung description
VERFAHREN ZU EINER WASSERENTHÄRTUNG UND WASSERENTHÄRTUNGSANLAGE METHOD FOR A WATER SOFTENING AND WATER SOFTENING SYSTEM
Stand der Technik State of the art
Es ist bereits ein Verfahren zu einer Wasserenthärtung vorgeschlagen worden. Wasserenthärtung, also insbesondere die Entfernung von hauptsächlich CaCC>3 und Spuren von Magnesium, erfolgt - vor allem im häuslichen Bereich - haupt sächlich über drei unterschiedliche Technologien. Zum einen über lonentauscher, welche sehr effizient und mit geringem elektrischen Energieverbrauch verbunden sind, wobei das„verbrauchte“ Salz periodisch ausgetauscht werden muss. Fer ner über Umkehrosmose, wobei das zu reinigende Wasser durch eine Membran gepresst wird. Die Umkehrosmose ist mit einem hohen elektrischen Energiever brauch sowie einem hoher Wasserverbrauch verbunden. Des Weiteren über ka pazitive Deionisierung oder Capacitive Deionisierung (CDI). Dabei wird das Was ser durch einen Kondensator gepumpt. Die angelegte Spannung saugt die im Wasser gelösten Ionen ab. Die Elektroden müssen dabei periodisch regeneriert werden, woraus ein diskontinuierlicher Betrieb folgt. A method of water softening has been proposed. Water softening, in particular the removal of mainly CaCC> 3 and traces of magnesium, mainly takes place using three different technologies, especially in the home. On the one hand via ion exchangers, which are very efficient and require little electrical energy consumption, whereby the “used” salt has to be exchanged periodically. Fer ner via reverse osmosis, whereby the water to be cleaned is pressed through a membrane. Reverse osmosis is associated with high electrical energy consumption and high water consumption. Furthermore, via capacitive deionization or capacitive deionization (CDI). The water is pumped through a condenser. The applied voltage sucks out the ions dissolved in the water. The electrodes must be regenerated periodically, which results in discontinuous operation.
Offenbarung der Erfindung Disclosure of the invention
Die Erfindung geht aus von einem Verfahren zu einer Wasserenthärtung mittels einer kapazitiven Wasserenthärtungsanlage, wobei in zumindest einem Verfah rensschritt Wasser mittels zumindest eines Kondensators enthärtet wird und ent härtetes Produktwasser bereitgestellt wird. The invention is based on a method for water softening by means of a capacitive water softening system, water being softened in at least one process step by means of at least one condenser and ent-hardened product water being provided.
Es wird vorgeschlagen, dass in dem zumindest einen Verfahrensschritt eine lo- nenkonzentration des Produktwassers auf einen definierten Wert geregelt wird. Unter einem„Produktwasser“ soll insbesondere Wasser verstanden werden, wel ches von einer Wasserversorgungseinrichtung, insbesondere Wasserwerk, Trinkwasserförderungswerk oder dergleichen, als eine Wasserversorgung, ins besondere Trinkwasserversorgung, bereitgestellt wird und eine Reinigung, insbe sondere Enthärtung, in einer Wasserenthärtungsanlage erfahren hat. Unter„Ent härtung“ soll vorzugsweise De-Ionisierung, insbesondere Entkalkung, verstanden werden. Unter„De-Ionisierung“ soll verstanden werden, dass aus einem ionen haltigen Gemisch, insbesondere wässrigem Gemisch, der geladene, insbesonde re ionische, Anteil zumindest im Wesentlichen entfernt wird. Vorzugsweise soll eine Reduktion des geladenen Anteils von vorzugsweise mindestens 10 %, be sonders bevorzugt von mindestens 50 % und ganz besonders bevorzugt von mindestens 90 % erreicht werden, beispielsweise auf eine Zielhärte von 3°dH. Unter„Entkalkung“ soll verstanden werden, dass aus einem kalkhaltigen Ge misch, insbesondere kalkhaltigem, wässrigem Gemisch, der Kalk, insbesondere CaC03 und Spuren von Magnesium, zumindest im Wesentlichen entfernt wird. Vorzugsweise soll eine Reduktion des Kalkgehalts von vorzugsweise mindestens 10 %, besonders bevorzugt von mindestens 50 % und ganz besonders bevorzugt von mindestens 90 % erreicht werden. It is proposed that in the at least one method step an ion concentration of the product water is regulated to a defined value. A "product water" is to be understood in particular as water which is provided by a water supply device, in particular a waterworks, drinking water supply plant or the like, as a water supply, in particular a drinking water supply, and has undergone cleaning, in particular softening, in a water softening system. “De-hardening” should preferably be understood to mean de-ionization, in particular decalcification. “De-ionization” should be understood to mean that the charged, in particular ionic, portion is at least substantially removed from an ion-containing mixture, in particular an aqueous mixture. A reduction in the charged proportion of preferably at least 10%, particularly preferably of at least 50% and very particularly preferably of at least 90% should preferably be achieved, for example to a target hardness of 3 ° dH. “Decalcification” is to be understood to mean that the lime, in particular CaC03 and traces of magnesium, is at least substantially removed from a calcareous mixture, in particular a calcareous, aqueous mixture. A reduction in the lime content of preferably at least 10%, particularly preferably of at least 50% and very particularly preferably of at least 90% should preferably be achieved.
Bevorzugt wird der Kondensator in zumindest einem Verfahrensschritt mit Was ser, insbesondere ungereinigtem Wasser, insbesondere von einer Steuer- und/oder Regeleinheit der kapazitiven Wasserenthärtungsanlage gesteuert und/oder geregelt, durchströmt. Vorzugsweise wird in zumindest einem Verfah rensschritt zu einer Bereitstellung des enthärteten Produktwassers eine Span nung an die Elektroden des Kondensators der kapazitiven Wasserenthärtungsan lage, insbesondere mittels einer Steuer- und/oder Regeleinheit der kapazitiven Wasserenthärtungsanlage, angelegt. In zumindest einem Verfahrensschritt bin det der Kondensator vorzugsweise geladene Bestandteile des ungereinigten Wassers in Abhängigkeit der angelegten Spannung an die Elektroden. Preferably, the condenser is flowed through in at least one process step with water, in particular unpurified water, in particular controlled and / or regulated by a control and / or regulating unit of the capacitive water softening system. Preferably, in at least one process step to provide the softened product water, a voltage is applied to the electrodes of the capacitor of the capacitive water softening system, in particular by means of a control and / or regulating unit of the capacitive water softening system. In at least one process step, the capacitor is preferably charged components of the unpurified water as a function of the voltage applied to the electrodes.
Unter„ungereinigtem Wasser“ soll insbesondere Wasser verstanden werden, welches von einer Wasserversorgungseinrichtung, insbesondere Wasserwerk, Trinkwasserförderungswerk, oder dergleichen als eine Wasserversorgung, ins besondere Trinkwasserversorgung, bereitgestellt wird und keine weiteren Reini- gungen, insbesondere Entkalkungen, erfahren hat. Das ungereinigte Wasser hat beispielsweise eine Härte von 7°dH. “Untreated water” is to be understood in particular as water which is provided by a water supply device, in particular a waterworks, drinking water supply plant, or the like as a water supply, in particular drinking water supply, and which does not contain any further experiences, especially descaling. For example, the unpurified water has a hardness of 7 ° dH.
In zumindest einem Verfahrensschritt wird zur Bindung von geladenen Bestand teilen des ungereinigten Wassers durch den Kondensator vorzugsweise ein Strom (7ei) verbraucht. In zumindest einem Verfahrensschritt wird vorzugsweise ein Strom (7ei) in Abhängigkeit von der Anzahl an gebundenen Ionen (Ac) und/oder von der angelegten Spannung verbraucht. In at least one process step, a stream (7 ei ) is preferably used to bind charged constituents of the unpurified water through the condenser. In at least one process step, a current (7 ei ) is preferably consumed depending on the number of bound ions (Ac) and / or on the applied voltage.
Zu einer Bindung einer bestimmten Anzahl an Ionen aus dem ungereinigten Wasser wird in zumindest einem Verfahrensschritt vorzugsweise der elektrische Strom {Iei) in dem mit ungereinigtem Wasser durchströmten Kondensator über eine angelegte Spannung, insbesondere mittels einer Steuer- und/oder Re geleinheit der kapazitiven Wasserenthärtungsanlage, reguliert. For binding a certain number of ions from the unpurified water, the electrical current {I ei ) in the condenser through which unpurified water flows is preferably at least one process step via an applied voltage, in particular by means of a control and / or regulating unit of the capacitive water softening system , regulated.
Ferner wird zu einer Regelung des elektrischen Stroms (7ei) über die angelegte Spannung in dem mit ungereinigtem Wasser durchströmten Kondensator, vor zugsweise in zumindest einem Verfahrensschritt, die lonenkonzentration des Produktwassers ermittelt, insbesondere von einem Nutzer eingegeben und/oder von einem Programm, insbesondere mittels einer Steuer- und/oder Regeleinheit der kapazitiven Wasserenthärtungsanlage, ermittelt. In zumindest einem Verfah rensschritt wird der De-Ionisierungsstrom (7D) in dem Kondensator zur Erreichung einer Zielhärte des Produktwasserstroms, insbesondere zu einer Bindung einer bestimmten Anzahl an Ionen, insbesondere mittels einer Steuer- und/oder Re geleinheit der kapazitiven Wasserenthärtungsanlage, berechnet. Furthermore, the ion concentration of the product water is determined, in particular by a user and / or by a program, in particular to regulate the electrical current (7 ei ) via the applied voltage in the condenser through which the unpurified water flows, preferably in at least one method step determined by means of a control and / or regulating unit of the capacitive water softening system. In at least one procedural step, the de-ionization current (7 D ) in the condenser is calculated in order to achieve a target hardness of the product water flow, in particular to bind a certain number of ions, in particular by means of a control and / or regulating unit of the capacitive water softening system.
Vorzugsweise wird in zumindest einem Verfahrensschritt der Produktwasser strom (V (l/s)) gemessen. In zumindest einem Verfahrensschritt wird vorzugswei se aus dem gemessenen Produktwasserstrom (V (l/s)) die Faraday- Effizienz, insbesondere mittels einer Steuer- und/oder Regeleinheit der kapazitiven Was serenthärtungsanlage, ermittelt. In zumindest einem Verfahrensschritt wird vor zugsweise aus dem gemessenen Produktwasserstrom (V (l/s)) die Faraday- Effizienz mittels einer Eichkurve der Faraday- Effizienz und/oder der De ionisierungsleistung gegen den Produktwasserstrom (V (l/s)) der Wasserenthär- tungsanlage, insbesondere mittels einer Steuer- und/oder Regeleinheit der kapa zitiven Wasserenthärtungsanlage, ermittelt. The product water flow (V (l / s)) is preferably measured in at least one process step. In at least one process step, the Faraday efficiency is preferably determined from the measured product water flow (V (l / s)), in particular by means of a control and / or regulating unit of the capacitive water softening system. In at least one process step, the Faraday efficiency is preferably determined from the measured product water flow (V (l / s)) by means of a calibration curve of the Faraday efficiency and / or the deionization performance against the product water flow (V (l / s)) of the water softener. tion system, in particular by means of a control and / or regulating unit of the capacitive water softening system.
In zumindest einem Verfahrensschritt wird aus der Faraday- Effizienz und der gewünschten Zielhärte des Produktwassers der über die Spannung einzustellen de elektrische Strom (7ei), insbesondere mittels einer Steuer- und/oder Regelein heit der kapazitiven Wasserenthärtungsanlage, berechnet. In at least one process step, the Faraday efficiency and the desired target hardness of the product water are used to calculate the electrical current (7 ei ) to be set via the voltage, in particular by means of a control and / or regulating unit of the capacitive water softening system.
Unter einem„De-Ionisierungsstrom“ soll ein minimaler Strom verstanden werden, welcher benötigt wird um eine bestimmten Anzahl von Ionen an die Elektroden eines Kondensators zu binden. Der minimale elektrische Strom für die De ionisierung (De-Ionisierungsstrom (7D)) in einem Kondensator korreliert mit der Differenz der lonenkonzentration (Ac (mol/l)) strömungstechnisch vor und nach dem Kondensator sowie mit dem Produktwasserstrom (V (l/s)): lD= Ac· V· z· F (1) A “de-ionization current” is to be understood as a minimum current which is required to bind a certain number of ions to the electrodes of a capacitor. The minimum electrical current for de-ionization (de-ionization current (7 D )) in a condenser correlates with the difference in the ion concentration (Ac (mol / l)) in terms of flow technology before and after the condenser and with the product water flow (V (l / s )): l D = AcVZf (1)
Das Symbol F beschreibt die Faradaykonstante von ungefähr 96500 As/mol und das Symbol z die Anzahl an Elektronen pro Ion (bei Ca2+ ist z = 2). Das Produkt aus z und F ist konstant. Das Produkt aus Ac und V nennt man De The symbol F describes the Faraday constant of approximately 96,500 As / mol and the symbol z the number of electrons per ion (for Ca 2+ , z = 2). The product of z and F is constant. The product of Ac and V is called De
ionisierungsleistung (mmol/min). Unter der„Faraday-Effizienz“ soll ein Verhältnis von dem De-Ionisierungsstrom (7D) und dem tatsächlich verbrauchten Strom (7ei) verstanden werden: ionization capacity (mmol / min). The "Faraday efficiency" should be understood as a ratio of the de-ionization current (7 D ) and the actually consumed current (7 ei ):
IpIp
F (2) F (2)
lel lel
Bei zwei bekannten Größen von entweder Produktwasserstrom, De- Ionisierungsstrom oder Konzentrationsdifferenz der Ionen kann die jeweils feh lende Größe aus Formel (1) berechnet werden. Ferner kann beispielsweise aus der Faraday Effizienz mittels Formel (2) und dem De-Ionisierungsstrom (7D) der tatsächlich verbrauchte elektrische Strom (7ei) berechnet werden und über eine Spannung an dem Kondensator eingestellt werden. Beispielsweise wird ein Pro duktwasserstrom von 12,1 l/min gemessen. In diesem Beispiel wird auch eine Härte des ungereinigten Wassers von 7°dH gemessen. Bei 0,2 l/s weist die Bei spielanlage eine Faraday-Effizienz von 0,7 auf. Die gewünschte Zielhärte ist bei- spielsweise 3°dH. Die lonenkonzentrationsdifferenz ist in diesem Beispiel 0,76 mmol/l. Das entspricht in diesem Beispiel einem De-Ionisierungsstrom von 29 A. Bei einer Faraday- Effizienz von 0,7 entspricht das einem elektrischen Strom von 41 A der über eine Spannung an dem Kondensator eingestellt werden muss, in diesem Beispiel, um die gewünschte Zielhärte zu erreichen. In the case of two known quantities of either product water flow, deionization flow or concentration difference of the ions, the respectively missing quantity can be calculated from formula (1). Furthermore, the Faraday efficiency can be calculated using formula (2) and the de-ionization current (7 D ), the actually consumed electrical current (7 ei ) and set via a voltage on the capacitor. For example, a product water flow of 12.1 l / min is measured. In this example, a hardness of the unpurified water of 7 ° dH is also measured. At 0.2 l / s, the example system has a Faraday efficiency of 0.7. The desired target hardness is for example 3 ° dH. The ion concentration difference in this example is 0.76 mmol / l. In this example, this corresponds to a de-ionization current of 29 A. With a Faraday efficiency of 0.7, this corresponds to an electrical current of 41 A which must be set via a voltage on the capacitor, in this example in order to achieve the desired target hardness to reach.
Durch das erfindungsgemäße Verfahren kann vorteilhaft eine gezielte lonenkon- zentration erreicht werden. Vorteilhaft kann durch das Verfahren ein Energiever brauch reduziert werden. Vorteilhaft können durch das Verfahren die Kosten ei ner Wasserenthärtung reduziert werden. Durch das Verfahren kann ein vorteilhaft reduzierter Wartungsaufwand und/oder verlängerte Wartungsintervalle erreicht werden. Durch das Verfahren kann eine vorteilhafte Lebensdauer einer Wasser enthärtungsanlage erreicht werden. Vorteilhaft kann eine Wasserregeneration von 95% erreicht werden. Vorteilhaft können 95% des einlaufenden ungereinig ten Wassers in enthärtetes Wasser überführt werden. A targeted ion concentration can advantageously be achieved by the method according to the invention. The method can advantageously reduce energy consumption. The method can advantageously reduce the costs of water softening. The method can advantageously reduce maintenance costs and / or extend maintenance intervals. An advantageous service life of a water softening system can be achieved by the method. A water regeneration of 95% can advantageously be achieved. 95% of the incoming untreated water can advantageously be converted into softened water.
Ferner wird vorgeschlagen, dass in zumindest einem Verfahrensschritt die lo- nenkonzentration des Produktwassers gemessen wird und in zumindest einem Verfahrensschritt aus der lonenkonzentration des Produktwassers der Produkt wasserstrom ermittelt wird. In zumindest einem Verfahrensschritt wird bei einer bekannten und/oder gemessenen lonenkonzentration des ungereinigten Wassers und einer bekannten und/oder gemessenen lonenkonzentration des Produktwas sers der Produktwasserstrom, insbesondere von einer Steuereinheit und/oder Regeleinheit, berechnet. Vorteilhaft kann bei einem Ausfall der Steuer und/oder Regeleinheit eine Austrittsmenge an Wasser bestimmt werden. It is further proposed that the ion concentration of the product water is measured in at least one process step and the product water flow is determined in at least one process step from the ion concentration of the product water. In at least one method step, the product water flow, in particular from a control unit and / or control unit, is calculated with a known and / or measured ion concentration of the unpurified water and a known and / or measured ion concentration of the product water. In the event of a failure of the control and / or regulating unit, an amount of water can advantageously be determined.
Ferner wird vorgeschlagen, dass in zumindest einem Verfahrensschritt, insbe sondere einem Rechenschritt, die Zielhärte des Produktwassers bei einem ma ximalen De-Ionisierungsstrom bei bekannter und/oder gemessener Härte des ungereinigten Wassers berechnet wird. Vorteilhaft kann für eine Wasserenthär tungsanlage eine maximal zu erzielende Produktwasserhärte angezeigt werden. Vorteilhaft kann ein Nutzer vor einer Anschaffung einer Wasserenthärtungsanla ge auf die zu erzielende minimale lonenkonzentration im Produktwasser schlie ßen. Ferner wird vorgeschlagen, dass in zumindest einem Verfahrensschritt die lo- nenkonzentration des Produktwassers von einem Nutzer eingegeben und/oder von einem Programm einer Steuer- und/oder Regeleinheit der kapazitiven Was serenthärtungsanlage ermittelt wird. Vorteilhaft kann ein Nutzer über die lonen- konzentration des Produktwasser den Energieverbrauch einer Wasserenthär tungsanlage kontrollieren. It is further proposed that in at least one method step, in particular a calculation step, the target hardness of the product water is calculated at a maximum deionization current with known and / or measured hardness of the unpurified water. A maximum product water hardness to be achieved can advantageously be displayed for a water softening system. Before purchasing a water softening system, a user can advantageously infer the minimum ion concentration to be achieved in the product water. It is further proposed that the ion concentration of the product water be entered by a user in at least one method step and / or determined by a program of a control and / or regulating unit of the capacitive water softening system. A user can advantageously control the energy consumption of a water softening system via the ion concentration of the product water.
Ferner wird eine Wasserenthärtungsanlage, insbesondere eine kapazitive Was serenthärtungsanlage, mit zumindest einer Steuer- und/oder Regeleinheit und mit zumindest einem Kondensator zur Durchführung eines erfindungsgemäßen Ver fahrens zu einer Wasserenthärtung vorgeschlagen. Furthermore, a water softening system, in particular a capacitive water softening system, with at least one control and / or regulating unit and with at least one condenser for carrying out a method according to the invention for water softening is proposed.
Die Wasserenthärtungsanlage ist vorzugsweise zu einem Einsatz strömungs technisch vor einer weiteren wasserverbrauchenden Einheit vorgesehen. Denk bar ist dabei beispielsweise ein Einsatz der Wasserenthärtungsanlage in Verbin dung mit einer wasserverbrauchenden Küchenmaschine, beispielsweise einer Spülmaschine. Es ist ebenfalls denkbar, dass die Wasserenthärtungsanlage in der Wasserversorgung für eine Wohneinheit, insbesondere für ein Wohnhaus, und/oder für eine industrielle Einheit, insbesondere eine Fabrik oder eine Planta ge, zum Einsatz kommt. Vorzugsweise ist die Wasserenthärtungsanlage zu einer Aufbereitung eines Zuwassers eines Gebäudewassernetzes, insbesondere Hauswassernetzes, vorgesehen. The water softening system is preferably provided for use in terms of flow technology in front of another water-consuming unit. For example, the use of the water softening system in conjunction with a water-consuming food processor, for example a dishwasher, is conceivable. It is also conceivable that the water softening system is used in the water supply for a residential unit, in particular for a residential house, and / or for an industrial unit, in particular a factory or a plantation. The water softening system is preferably provided for treating an inflow of a building water network, in particular a domestic water network.
Unter einer„Wasserenthärtungsanlage“ soll insbesondere eine Anlage verstan den werden, welche zu einer Reduktion von Partikeln, insbesondere Kalk, im Wasser, insbesondere in einer Wasserleitung, vorgesehen ist. Vorzugsweise ist die Wasserenthärtungsanlage dazu an einer Wasserversorgung, insbesondere an einer Wasserleitung, angeordnet. Vorzugsweise ist die Wasserenthärtungsan lage strömungstechnisch vor einer wasserverbrauchenden Einheit an einer Was serversorgung, insbesondere Wasserleitung, angeordnet. Vorzugsweise ist die Wasserenthärtungsanlage mit einem Anschluss an ungereinigtes, hartes Wasser ausgebildet. Vorzugsweise enthärtet die Wasserenthärtungsanlage das Wasser und liefert dahinter geschalteten Einheiten weiches, gereinigtes Produktwasser. Vorzugsweise ist die Wasserenthärtungsanlage in eine Wasserversorgung, ins besondere eine wasserverbrauchende Einheit, integriert. Unter einer„Wasser versorgung“ soll vorzugsweise eine Einheit verstanden werden, welche zwischen der wasserverbrauchenden Einheit und einer Wasserleitung und/oder einem an deren Wasserreservoir angeordnet ist. Denkbar ist, dass die Wasserversorgung zumindest einen Schlauch und/oder ein Rohr o. dgl. zu einer Führung von Was ser umfasst. Denkbar ist ebenfalls, dass die Wasserversorgung beispielsweise eine Pumpe zur Führung von Wasser und/oder ein Heizmodul zur Regulierung der Wassertemperatur umfasst. Vorzugsweise wird Wasser über einen an der Wasserversorgung anliegenden Leitungsdruck oder eine Pumpe durch die Was serenthärtungsanlage geführt. Denkbar ist, dass die Wasserversorgung ein der Wasserenthärtungsanlage nachgeschaltetes Speicherbecken aufweist. A “water softening system” is to be understood to mean, in particular, a system which is intended to reduce particles, in particular lime, in the water, in particular in a water pipe. For this purpose, the water softening system is preferably arranged on a water supply, in particular on a water pipe. The water softening system is preferably arranged in terms of flow technology in front of a water-consuming unit on a water supply, in particular a water pipe. The water softening system is preferably designed with a connection to unpurified, hard water. The water softening system preferably softens the water and supplies soft, purified product water to the units connected behind it. The water softening system is preferably integrated into a water supply, in particular a water-consuming unit. A “water supply” should preferably be understood to mean a unit which is arranged between the water-consuming unit and a water pipe and / or one at the water reservoir thereof. It is conceivable that the water supply comprises at least a hose and / or a pipe or the like for guiding water. It is also conceivable that the water supply comprises, for example, a pump for guiding water and / or a heating module for regulating the water temperature. Preferably, water is fed through a line pressure applied to the water supply or a pump through the water softening system. It is conceivable that the water supply has a storage basin downstream of the water softening system.
Vorzugsweise ist der zumindest eine Kondensator von einem elektrischen Kon densator gebildet. Der Kondensator umfasst zumindest eine erste Elektrode. Der zumindest eine Kondensator umfasst zumindest eine weitere Elektrode. Die Elektroden weisen bevorzugt einen Abstand von weniger als 1 mm auf. Vor zugsweise sind die Elektroden des zumindest einen ersten Kondensators aus einem Kohlenstoff, insbesondere porösen Kohlenstoff, bevorzugt nanoporösen Kohlenstoff, hergestellt. Denkbar ist, dass die Elektroden aus einem Graphit, aus einem Graphen und/oder Kohlenstoffnanoröhren und/oder aus einem Kohlen stoff nanoröhren umfassenden Verbundswerkstoff ausgebildet sind. Die Elektro den stellen in einem Betriebszustand vorzugsweise Adsorbatplätze für gelöste Ionen zur Verfügung. Vorteilhaft können die Elektroden stabil und mit einer gro ßen Oberfläche ausgebildet werden. Vorteilhaft kann eine Wasserregeneration von 95% erreicht werden. The at least one capacitor is preferably formed by an electrical capacitor. The capacitor comprises at least a first electrode. The at least one capacitor comprises at least one further electrode. The electrodes are preferably at a distance of less than 1 mm. The electrodes of the at least one first capacitor are preferably made of a carbon, in particular porous carbon, preferably nanoporous carbon. It is conceivable that the electrodes are formed from a graphite, from a graphene and / or carbon nanotubes and / or from a composite material comprising carbon nanotubes. In one operating state, the electrodes preferably provide adsorbate sites for dissolved ions. The electrodes can advantageously be made stable and with a large surface area. A water regeneration of 95% can advantageously be achieved.
Zwischen die zumindest eine erste Elektrode und die zumindest eine weitere Elektrode wird in einem Betriebszustand eine Spannung angelegt. Der Wert der Spannung, insbesondere bevorzugt 1 V, an der zumindest einen ersten Elektrode ist vorzugsweise entgegengesetzt gleichwertig zu dem Wert der Spannung an der zumindest einen weiteren Elektrode. Unter„entgegengesetzt gleichwertig“ soll insbesondere ein Wert verstanden werden, welcher einem weiteren Wert bis auf sein Vorzeichen gleicht. Die angelegte Spannung erzeugt zumindest eine negativ geladene erste Elektrode und zumindest eine gleich stark aber positiv geladene weitere Elektrode. Denkbar ist auch, dass die Elektroden umgekehrt geladen sind. Denkbar ist auch, dass zumindest eine Elektrode mit einer elektri schen Masse der Wasserenthärtungsanlage verbunden ist. In an operating state, a voltage is applied between the at least one first electrode and the at least one further electrode. The value of the voltage, particularly preferably 1 V, on the at least one first electrode is preferably opposite to the value of the voltage on the at least one further electrode. “Oppositely equivalent” should in particular be understood to mean a value that is similar to another value except for its sign. The applied voltage produces at least one negatively charged first electrode and at least one equally strong but positive charged further electrode. It is also conceivable that the electrodes are charged in reverse. It is also conceivable that at least one electrode is connected to an electrical mass of the water softening system.
Die zumindest eine erste geladene Elektrode ist in zumindest einem Betriebszu stand in direktem Kontakt mit dem ungereinigten Wasser. Die zumindest eine weitere geladene Elektrode ist in zumindest einem Betriebszustand in direktem Kontakt mit dem ungereinigten Wasser. Die negative Ladung an der zumindest einen ersten Elektrode bindet positiv geladene Bestandteile aus dem ungereinig ten Wasser an die zumindest eine erste Elektrode. Die positive Ladung an der zumindest einen weiteren Elektrode bindet negativ geladene Bestandteile aus dem ungereinigten Wasser an die zumindest eine weitere Elektrode. Der Betrag der Spannung ist proportional zur De-Ionisierungsstärke eines Kondensators. Unter einer„De-Ionisierungsstärke“ soll vorzugsweise die Anzahl an aus dem Wasser entfernten geladenen Bestandteilen verstanden werden. Die Stromdichte eines Kondensators liegt bevorzugt in einem Bereich von 10 - 50 mA/cm2. Ein De-Ionisierungsstrom liegt beispielsweise bei 29 A, wobei bei einer Faraday- Effizienz von 0,7 ein elektrischer Strom von 41 A eingestellt werden muss, um 29 A De-Ionisierungsstrom zu erreichen. Vorzugsweise weist die Wasserenthär tungsanlage ein bekanntes, insbesondere gemessenes, Verhältnis zwischen ei nem Produktwasserstrom und der Faraday- Effizienz auf. Der elektrische Strom ist aufgrund von Leck- Strömen und sonstigen Energieverlusten, wie etwa durch Abwärme, immer höher als der De-Ionisierungsstrom. The at least one first charged electrode was in at least one operating state in direct contact with the unpurified water. The at least one further charged electrode is in direct contact with the unpurified water in at least one operating state. The negative charge on the at least one first electrode binds positively charged components from the unpurified water to the at least one first electrode. The positive charge on the at least one further electrode binds negatively charged components from the unpurified water to the at least one further electrode. The amount of voltage is proportional to the de-ionization strength of a capacitor. A “de-ionization strength” should preferably be understood to mean the number of charged components removed from the water. The current density of a capacitor is preferably in a range of 10-50 mA / cm 2 . A de-ionization current is, for example, 29 A, with an electrical current of 41 A having to be set at a Faraday efficiency of 0.7 in order to achieve 29 A de-ionization current. The water softening system preferably has a known, in particular measured, relationship between a product water flow and the Faraday efficiency. Due to leakage currents and other energy losses, such as waste heat, the electrical current is always higher than the de-ionization current.
Denkbar ist auch eine entgegengesetzte Ladungsverteilung zwischen der zumin dest einen ersten Elektrode und der zumindest einen weiteren Elektrode. An opposite charge distribution between the at least one first electrode and the at least one further electrode is also conceivable.
In diesem Fall bindet die positive Ladung an der zumindest einen ersten Elektro de negativ geladene Bestandteile aus dem ungereinigten Wasser an die zumin dest eine erste Elektrode. In diesem Fall bindet die negative Ladung an der zu mindest einen weiteren Elektrode positiv geladene Bestandteile aus dem unge reinigten Wasser an die zumindest eine weitere Elektrode. Strömungstechnisch ist hinter dem zumindest einen Kondensator ist in zumindest einem Betriebszu stand enthärtetes Produktwasser angeordnet. Denkbar ist, dass die Wasserenthärtungsanlage zumindest ein Rückschlagventil umfasst. In this case, the positive charge on the at least one first electrode binds the negatively charged constituents from the unpurified water to the at least one first electrode. In this case, the negative charge on the at least one further electrode positively charged components from the unpurified water binds to the at least one further electrode. Fluidically, softened product water is arranged behind the at least one condenser in at least one operating state. It is conceivable that the water softening system comprises at least one check valve.
Die Wasserenthärtungsanlage umfasst zumindest eine Steuer- und/oder Re geleinheit. Die zumindest eine Steuer- und/oder Regeleinheit ist dazu vorgese hen, eine kontinuierliche Bereitstellung von enthärtetem Wasser zu steuern. Un ter einer„Steuer- und/oder Regeleinheit“ soll insbesondere eine Einheit mit zu mindest einer Steuerelektronik verstanden werden. Unter einer„Steuerelektronik“ soll insbesondere eine Einheit mit einer Prozessoreinheit und mit einer Speicher einheit sowie mit einem in der Speichereinheit gespeicherten Betriebsprogramm verstanden werden. Die Steuer- und/oder Regeleinheit ist vorzugsweise ein Bau teil, welches dazu vorgesehen ist, zumindest die elektrischen, insbesondere elektronischen, Bauteile der Wasserenthärtungsanlage zu steuern und/oder zu regeln. Die Steuer- und/oder Regeleinheit der Wasserenthärtungsanlage ist zu mindest dazu vorgesehen, etwaige Ventile und/oder einen Kondensator zu einer Steuerung mit einer Spannung zu versorgen. Die Steuer- und/oder Regeleinheit umfasst vorzugsweise zumindest ein Speicherelement. Vorzugsweise ist eine Eichkurve zwischen dem Produktwasserstrom und der Faraday- Effizienz und/oder der De-Ionisierungsleistung der Wasserenthärtungsanlage für Produkt wasserströme von 0 l/min bis mindestens 50 l/min, bevorzugt mindestens 12 l/min, in dem Speicherelement gespeichert. Vorzugsweise ist eine Eichkurve zwischen dem Produktwasserstrom und der Faraday- Effizienz und/oder der De- Ionisierungsleistung der Wasserenthärtungsanlage für Produktwasserströme von 0 l/min bis mindestens 50 l/min, bevorzugt mindestens 12 l/min, in dem Spei cherelement bei einer Herstellung, Montage und/oder Wartung gespeichert und/oder nachträglich einspeicherbar. Denkbar ist weiterhin, dass die Steuer- und/oder Regeleinheit zumindest ein Sensorelement zu einer Regelung der von der Steuer- und/oder Regeleinheit gesteuerten Größen umfasst. Die Eichkurve zwischen dem Produktwasserstrom und der Faraday- Effizienz und/oder der De- Ionisierungsleistung kann über Messung der Eingangs- und Ausgangshärten des Wassers sowie des Stromverbrauchs und des Volumenflusses von Wasser (Pro duktwasserstrom) durch die Wasserenthärtungsanlage aufgenommen und/oder berechnet werden. Die Steuer- und/oder Regeleinheit umfasst ein Schaltelement, das dazu vorge sehen ist, zumindest eine Spannung an dem zumindest einen ersten Kondensa tor in, insbesondere periodischen, Abständen umzukehren. Unter„periodischen Abständen“ sollen vorzugsweise zeitliche, insbesondere gleichbleibende zeitli che, wiederkehrende Abstände verstanden werden. Vorzugsweise ist das Schaltelement dazu vorgesehen, nach einem weiteren zeitlichen Abstand, insbe sondere einem gleichen zeitlichen Abstand wie beim ersten Umschalten der Spannung, die Spannung an dem ersten Kondensator wieder auf die Ausgangs spannung zu schalten. Vorzugsweise ist das Schaltelement dazu vorgesehen, die zeitlichen Abstände der Schaltvorgänge an einen Wasserverbrauch der Was serenthärtungsanlage anzupassen. Denkbar ist, dass die zeitlichen Abstände gleich lang bleiben. Alternativ ist denkbar, dass die zeitlichen Abstandasvariatio- nen kürzer und/oder länger werden. Vorteilhaft kann eine Wasserenthärtungsan lage ausgebildet werden, welche zu jedem Betriebszeitpunkt im Energieoptimum arbeitet. Vorzugsweise überführt eine Spannungsumkehr an einem Kondensator den Kondensator aus einer De-Ionisierungs-Schaltstellung in eine Reinigungs schaltstellung und umgekehrt. Das Schaltelement ist insbesondere dazu vorge sehen, den zumindest einen ersten Kondensator und den zumindest einen weite ren Kondensator wiederkehrend von der De-Ionisierungs-Schaltstellung in die Reinigungsschaltstellung und nach einem definierten zeitlichen Abstand wieder zurück in die De-Ionisierungs-Schaltstellung zu bringen. Unter einer De- Ionisierungs-Schaltstellung soll eine Schaltstellung verstanden werden, in welche ein Kondensator geschaltet ist, wenn erstmalig oder nach einer Reinigung eine neue, insbesondere umgepolte, Spannung an dessen zumindest zwei Elektroden angelegt wird. Unter einer“Reinigungsschaltstellung“ soll im Vergleich zu der De- Ionisierungs-Schaltstellung eine Schaltstellung verstanden werden, in welche ein Kondensator geschaltet ist, wenn die Spannung zwischen den zumindest zwei Elektroden des Kondensators umgepolt ist. Unter„umgepolt“ soll insbesondere eine Umkehr der Ladungsträgervorzeichen verstanden werden, wobei die Span nungsstärke nicht gleich groß sein muss. Vorzugsweise ist die Spannung in der Reinigungs-Schaltstellung niedriger als in der De-Ionisierungs-Schaltstellung. Es ist denkbar, dass der zumindest eine Kondensator, welcher in der Reinigungs schaltstellung betrieben wird, mit Wasser versorgt ist, welches aus einem Ab wassernetz entnommen ist. Vorteilhaft kann eine umweltschonende und/oder materialschonende Wasserenthärtungsanlage ausgebildet werden. Vorteilhaft kann eine Wasserenthärtungsanlage ausgebildet werden, welche re gelbar enthärtetes Wasser bereitstellt. Vorteilhaft kann eine Wasserenthärtungs anlage ausgebildet werden, die ein Produktwasser mit geregelter lonenkonzent- ration ausgeben kann. Vorteilhaft kann eine energiesparsame Wasserenthär tungsanlage ausgebildet werden. Vorteilhaft kann eine betriebskostengünstige Wasserenthärtungsanlage ausgebildet werden. Vorteilhaft kann eine Erhöhung der Standzeit einer Wasserenthärtungsanlage erreicht werden. The water softening system comprises at least one control and / or regulating unit. The at least one control and / or regulating unit is provided to control the continuous provision of softened water. A “control and / or regulating unit” should in particular be understood to mean a unit with at least one control electronics. “Control electronics” should in particular be understood to mean a unit with a processor unit and with a memory unit and with an operating program stored in the memory unit. The control and / or regulating unit is preferably a construction part which is intended to control and / or regulate at least the electrical, in particular electronic, components of the water softening system. The control and / or regulating unit of the water softening system is at least intended to supply any valves and / or a capacitor with a voltage for control purposes. The control and / or regulating unit preferably comprises at least one storage element. A calibration curve between the product water flow and the Faraday efficiency and / or the de-ionization capacity of the water softening system for product water flows from 0 l / min to at least 50 l / min, preferably at least 12 l / min, is preferably stored in the storage element. There is preferably a calibration curve between the product water flow and the Faraday efficiency and / or the deionization performance of the water softening system for product water flows from 0 l / min to at least 50 l / min, preferably at least 12 l / min, in the storage element during manufacture, Assembly and / or maintenance saved and / or subsequently saved. It is also conceivable that the control and / or regulating unit comprises at least one sensor element for regulating the variables controlled by the control and / or regulating unit. The calibration curve between the product water flow and the Faraday efficiency and / or the de-ionization performance can be recorded and / or calculated by measuring the input and output hardness of the water as well as the electricity consumption and volume flow of water (product water flow) through the water softening system. The control and / or regulating unit comprises a switching element which is provided to reverse at least one voltage at the at least one first capacitor at, in particular periodic, intervals. “Periodic intervals” should preferably be understood to mean temporal, in particular constant, recurring intervals. The switching element is preferably provided to switch the voltage across the first capacitor back to the output voltage after a further time interval, in particular in particular the same time interval as when the voltage was first switched. The switching element is preferably provided to adapt the time intervals of the switching operations to a water consumption of the water softening system. It is conceivable that the time intervals remain the same. As an alternative, it is conceivable that the temporal distance variations become shorter and / or longer. Advantageously, a water softening system can be designed which operates at the optimum energy level at every time of operation. Preferably, a voltage reversal on a capacitor transfers the capacitor from a de-ionization switch position to a cleaning switch position and vice versa. The switching element is particularly provided to bring the at least one first capacitor and the at least one further capacitor recurring from the de-ionization switch position into the cleaning switch position and after a defined time interval back into the de-ionization switch position. A deionization switch position is to be understood as a switch position into which a capacitor is switched when a new, in particular reversed, voltage is applied to the at least two electrodes thereof for the first time or after cleaning. In comparison to the de-ionization switch position, a “cleaning switch position” is to be understood as a switch position into which a capacitor is switched when the voltage between the at least two electrodes of the capacitor is reversed. “Reversed polarity” should be understood to mean, in particular, a reversal of the charge carrier sign, although the voltage strength does not have to be the same. The voltage in the cleaning switch position is preferably lower than in the de-ionization switch position. It is conceivable that the at least one condenser, which is operated in the cleaning switch position, is supplied with water which is taken from a water network. An environmentally friendly and / or material-friendly water softening system can advantageously be designed. Advantageously, a water softening system can be formed which provides softened water that can be regulated. A water softening system can advantageously be designed, which can dispense a product water with a controlled ion concentration. An energy-efficient water softening system can advantageously be designed. A water softening system which is inexpensive to operate can advantageously be designed. An increase in the service life of a water softening system can advantageously be achieved.
Ferner wird vorgeschlagen, dass die Steuer- und/oder Regeleinheit ein aus tauschbares Speicherelement umfasst. Vorzugsweise ist das Speicherelement von außen zugänglich an der Steuer und/oder Regeleinheit angeordnet. Denkbar ist, dass das Speicherelement innerhalb eines Gehäuses der Steuer- und/oder Regeleinheit hinter einer Klappe angeordnet ist. Vorteilhaft kann eine leichte Montage und/oder ein leichter Austausch des Speicherelements erreicht werden. Vorteilhaft kann ein leichter Austausch und/oder ein erleichterte Neuaufnahme der Eichkurve, welche auf dem Speicherelement gespeichert ist, erreicht werden. Vorteilhaft kann ein Export der Eichkurve auf ein weiteres Gerät erreicht werden. Vorteilhaft können in Laboratorien die Messbedingungen für einzelne Testreihen auf einem externen Gerät abgerufen werden. It is also proposed that the control and / or regulating unit comprises a replaceable storage element. The storage element is preferably arranged on the control and / or regulating unit so that it is accessible from the outside. It is conceivable that the storage element is arranged behind a flap within a housing of the control and / or regulating unit. Easy assembly and / or easy replacement of the storage element can advantageously be achieved. A simple exchange and / or an easier new recording of the calibration curve, which is stored on the storage element, can advantageously be achieved. An export of the calibration curve to another device can advantageously be achieved. In laboratories, the measurement conditions for individual test series can advantageously be called up on an external device.
Die erfindungsgemäße Wasserenthärtungsanlage soll hierbei nicht auf die oben beschriebene Anwendung und Ausführungsform beschränkt sein. Insbesondere kann die erfindungsgemäße Wasserenthärtungsanlage zu einer Erfüllung einer hierin beschriebenen Funktionsweise eine von einer hierin genannten Anzahl von einzelnen Elementen, Bauteilen und Einheiten sowie Verfahrensschritten abwei chende Anzahl aufweisen. Zudem sollen bei den in dieser Offenbarung angege benen Wertebereichen auch innerhalb der genannten Grenzen liegende Werte als offenbart und als beliebig einsetzbar gelten. The water softening system according to the invention should not be limited to the application and embodiment described above. In particular, the water softening system according to the invention can have a number deviating from a number of individual elements, components and units as well as method steps mentioned to fulfill a function described here. In addition, in the value ranges specified in this disclosure, values lying within the stated limits are also to be considered disclosed and can be used as desired.
Zeichnungen drawings
Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In den Zeichnungen ist ein Ausführungsbeispiel der Erfindung dargestellt. Die Zeichnungen, die Beschreibung und die Ansprüche enthalten zahlreiche Merk- male in Kombination. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammen fassen. Further advantages result from the following description of the drawing. In the drawings, an embodiment of the invention is shown. The drawings, the description and the claims contain numerous features. male in combination. The person skilled in the art will expediently also consider the features individually and combine them into useful further combinations.
Es zeigen: Show it:
Fig. 1 eine erfindungsgemäße kapazitive Wasserenthärtungsanlage in einer schematischen Darstellung, 1 shows a capacitive water softening system according to the invention in a schematic representation,
Fig. 2 einen Kondensator einer kapazitiven Wasserenthärtungsanlage in einer De-Ionisierungs-Schaltstellung in einer schematischen Darstellung, 2 shows a capacitor of a capacitive water softening system in a de-ionization switch position in a schematic illustration,
Fig. 3 einen Kondensator einer kapazitiven Wasserenthärtungsanlage in einer Reinigungsschaltstellung in einer schematischen Dar stellung und Fig. 3 shows a capacitor of a capacitive water softening system in a cleaning switching position in a schematic Dar and
Fig. 4 ein schematisches Ablaufdiagramm eines erfindungsgemäßen Fig. 4 is a schematic flow diagram of an inventive
Verfahrens zu einer Wasserenthärtung mittels der kapazitiven Wasserenthärtungsanlage. Process for water softening using the capacitive water softening system.
Beschreibung des Ausführungsbeispiels Description of the embodiment
Figur 1 zeigt eine kapazitive Wasserenthärtungsanlage 10 mit einem Kondensa tor 12. Eine Frischwasserquelle 32, insbesondere ein Anschluss an eine Wasser leitung, liefert ungereinigtes Wasser zu dem Kondensator 12 über eine Wasser leitung wie etwa ein Rohr und/oder ein Schlauch. Der Wasserfluss zu dem Kon densator 12 ist von einer Steuer- und/oder Regeleinheit 18 kontrollierbar über ein Ventil 28, welches strömungstechnisch vor dem Kondensator 12 angeordnet ist. Die Wasserenthärtungsanlage 10 weist die Steuer- und/oder Regeleinheit 18 auf. Die Steuer- und/oder Regeleinheit 18 steuert und/oder regelt einen Strom und/oder eine Spannung Vk, Vk’ an dem Kondensator 12. Die Steuer- und/oder Regeleinheit 18 steuert und/oder regelt den Kondensator 12 in eine Reinigungs schaltstellung oder eine De-Ionisierungs-Schaltstellung. Strömungstechnisch hinter dem Kondensator 12 ist ein Wege-Ventil 30, insbesondere Drei-Wege- Ventil, angeordnet. Die Steuer- und/oder Regeleinheit 18 steuert und/oder regelt das Wege-Ventil 30 zu einer Weiterleitung des Wassers, welches aus dem Kon- densator 12 kommt. Das Wege-Ventil 30 ist mit zwei Ausgängen ausgebildet. Ein Ausgang des Wege-Ventils 30 ist mit einem Gebäudewassernetz 34 verbunden. Ein weiterer Ausgang des Wege-Ventils 30 ist mit einem Abwassernetz 36 ver bunden. Die Steuer und/oder Regeleinheit 18 steuert und/oder regelt das Wege- Ventil 30 zu einer Weiterleitung des Wassers in das Gebäudewassernetz 34, wenn der Kondensator 12 in De-Ionisierungs-Schaltstellung betrieben wird. Die Steuer- und/oder Regeleinheit 18 steuert und/oder regelt das Wege-Ventil 30 zu einer Weiterleitung des Wassers in das Abwassernetz 36, wenn der Kondensator 12 in Reinigungsschaltstellung betrieben wird. Die Steuer- und/oder Regeleinheit 18 umfasst ein austauschbares Speicherelement 26. Auf dem Speicherelement ist eine Eichkurve der Faraday- Effizienz und/oder der De-Ionisierungsleistung gegen den Produktwasserstrom der Wasserenthärtungsanlage 10 gespeichert. FIG. 1 shows a capacitive water softening system 10 with a condenser 12. A fresh water source 32, in particular a connection to a water line, supplies unpurified water to the condenser 12 via a water line, such as a pipe and / or a hose. The water flow to the condenser 12 can be controlled by a control and / or regulating unit 18 via a valve 28, which is arranged upstream of the condenser 12. The water softening system 10 has the control and / or regulating unit 18. The control and / or regulating unit 18 controls and / or regulates a current and / or a voltage V k , V k ' at the capacitor 12. The control and / or regulating unit 18 controls and / or regulates the capacitor 12 for cleaning switch position or a de-ionization switch position. In terms of flow, a directional valve 30, in particular a three-way valve, is arranged behind the condenser 12. The control and / or regulating unit 18 controls and / or regulates the directional valve 30 in order to forward the water which flows out of the con- capacitor 12 comes. The directional valve 30 is designed with two outlets. An outlet of the directional valve 30 is connected to a building water network 34. Another output of the directional valve 30 is connected to a wastewater network 36. The control and / or regulating unit 18 controls and / or regulates the directional valve 30 for forwarding the water into the building water network 34 when the condenser 12 is operated in the de-ionization switch position. The control and / or regulating unit 18 controls and / or regulates the directional valve 30 for forwarding the water into the sewage network 36 when the condenser 12 is operated in the cleaning switch position. The control and / or regulating unit 18 comprises an exchangeable storage element 26. A calibration curve of the Faraday efficiency and / or the de-ionization power against the product water flow of the water softening system 10 is stored on the storage element.
Der Kondensator 12 der Wasserenthärtungsanlage 10 ist in Figur 2 und Figur 3 schematisch dargestellt. Die Wasserenthärtungsanlage 10 umfasst beispielhaft einen Kondensator 12. Der Kondensator 12 ist zu einer Bindung und/oder Absto ßung von geladenen Bestandteilen aus dem Wasser an und/oder von den/dem ersten Kondensator 12, insbesondere den Elektroden 14, 14’ ausgebildet (siehe Fig. 2 und 3). The condenser 12 of the water softening system 10 is shown schematically in FIG. 2 and FIG. 3. The water softening system 10 comprises, for example, a condenser 12. The condenser 12 is designed to bind and / or repel charged components from the water to and / or from the / the first condenser 12, in particular the electrodes 14, 14 '(see FIG . 2 and 3).
Zu einer Bindung und/oder Abstoßung von geladenen Bestandteilen aus dem Wasser, insbesondere ungereinigtem Wasser, kann der Kondensator 12 von der Steuer- und/oder Regeleinheit 18 in eine Reinigungsschaltstellung oder und/eine De-Ionisierungsschaltstellung geschaltet werden. Zu einer Schaltung des Kon densators 12 in eine Reinigungsschaltstellung steuert und/oder regelt die Steuer- und/oder Regeleinheit 18 die Spannung Vk, Vk’ an Elektroden 14, 14’ des Kon densators 12. To bind and / or repel charged components from the water, in particular unpurified water, the condenser 12 can be switched by the control and / or regulating unit 18 into a cleaning switch position and / or a de-ionization switch position. To switch the capacitor 12 into a cleaning switching position, the control and / or regulating unit 18 controls and / or regulates the voltage V k , V k ' at electrodes 14, 14' of the capacitor 12.
Figur 2 zeigt einen Kondensator 12 in De-Ionisierungs-Schaltstellung. Ungerei nigtes Wasser durchströmt einen Bereich zwischen zwei porösen Elektroden 14, 14’ eines Kondensators 12. Zwischen den beiden gezeigten Elektroden 14, 14’ liegt eine Spannung Vk an. Positive Ionen werden aus dem Wasser an eine nega tiv geladene Elektrode 14 gezogen und dort gebunden. Negative Ionen werden aus dem Wasser an eine positiv geladene Elektrode 14’ gezogen und dort ge bunden. Die positive und die negative Elektrode 14, 14’ sind sich gegenüberlie- gend angeordnet. Hinter den Elektroden 14, 14’ befinden sich Kollektoren 16, 16’. Die Kollektoren 16, 16’ können Ladung, insbesondere der gebundenen Ionen an den Elektroden 14, 14’, aufnehmen oder abgeben. Figure 2 shows a capacitor 12 in the de-ionization switch position. Untreated water flows through an area between two porous electrodes 14, 14 'of a capacitor 12. A voltage V k is present between the two electrodes 14, 14' shown. Positive ions are drawn from the water to a negatively charged electrode 14 and bound there. Negative ions are drawn from the water to a positively charged electrode 14 'and bound there. The positive and the negative electrodes 14, 14 'face each other. arranged. Collectors 16, 16 'are located behind the electrodes 14, 14'. The collectors 16, 16 'can absorb or release charge, in particular the bound ions at the electrodes 14, 14'.
Figur 3 zeigt einen Kondensator 12 in Reinigungsschaltstellung. Ungereinigtes Wasser und/oder Abwasser durchströmt einen Bereich zwischen zwei porösen Elektroden 14, 14’ eines Kondensators 12. Zwischen den beiden gezeigten Elekt roden 14, 14’ liegt eine Spannung Vk’ an. Die Spannung Vk’ ist entgegengesetzt zu der Spannung \ in der De-Ionisierungs-Schaltstellung. Positive Ionen werden von der positiven Elektrode 14 an das Wasser abgegeben. Negative Ionen wer den von der positiven Elektrode 14’ an das Wasser abgegeben. Die positive und die negative Elektrode 14, 14’ sind sich gegenüberliegend angeordnet. Hinter den Elektroden 14, 14’ befinden sich Kollektoren 16, 16’. Figure 3 shows a capacitor 12 in the cleaning switch position. Uncleaned water and / or waste water flows through an area between two porous electrodes 14, 14 'of a capacitor 12. Between the two electrodes 14, 14' shown, a voltage V k 'is present . The voltage V k ' is opposite to the voltage \ in the de-ionization switch position. Positive ions are released from the positive electrode 14 into the water. Negative ions are given to the water by the positive electrode 14 '. The positive and negative electrodes 14, 14 'are arranged opposite one another. Collectors 16, 16 'are located behind the electrodes 14, 14'.
Die Steuer- und/oder Regeleinheit 18 steuert und/oder regelt einen Wasserfluss, insbesondere von ungereinigtem Wasser oder Abwasser, durch den Kondensator 12. Die Steuer- und/oder Regeleinheit 18 steuert eine Wasserausgabe, insbe sondere von Produktwasser, der Wasserenthärtungsanlage 10, insbesondere des Kondensators 12. Beispielsweise steuert und/oder regelt die Steuer- und/oder Regeleinheit ein strömungstechnisch vor dem Kondensator gelegenes Ventil 22 zur Steuerung und/oder Regulierung des Wasserflusses durch den Kondensator. The control and / or regulating unit 18 controls and / or regulates a water flow, in particular of unpurified water or waste water, through the condenser 12. The control and / or regulating unit 18 controls a water output, in particular of product water, in particular of the water softening system 10 of the condenser 12. For example, the control and / or regulating unit controls and / or regulates a valve 22, which is located upstream of the condenser in terms of flow technology, for controlling and / or regulating the water flow through the condenser.
Figur 4 zeigt ein schematisches Ablaufdiagramm eines Verfahrens zu einer Was serenthärtung mittels der kapazitiven Wasserenthärtungsanlage. Figure 4 shows a schematic flow diagram of a method for water softening by means of the capacitive water softening system.
In zumindest einem Verfahrensschritt, insbesondere einem Spannungsschritt 20, wird eine Spannung Vk, an die Elektroden 14, 14’ des Kondensators 12 angelegt. In zumindest einem Verfahrensschritt, insbesondere dem einen Spannungsschritt 20, wird der Kondensator 12 mit Wasser, insbesondere ungereinigtem Wasser, durchströmt. In zumindest einem Verfahrensschritt, insbesondere dem einen Spannungsschritt 20, bindet der Kondensator 12 geladene Bestandteile des un gereinigten Wassers in Abhängigkeit der angelegten Spannung Vk an die Elekt roden 14, 14’. In zumindest einem Verfahrensschritt, insbesondere dem einen Spannungsschritt 20, wird die lonenkonzentration des Produktwassers über eine angelegte Spannung Vk, an die Elektroden 14, 14’ des Kondensators 12 reguliert. In zumindest einem Verfahrensschritt, insbesondere dem einen Spannungsschritt 20, wird die Spannung Vk an dem zumindest einen Kondensator 12 zu einer ge zielten Einstellung der lonenkonzentration des Produktwassers reguliert. In at least one method step, in particular a voltage step 20, a voltage V k is applied to the electrodes 14, 14 'of the capacitor 12. In at least one process step, in particular the one voltage step 20, water, in particular unpurified water, flows through the condenser 12. In at least one process step, in particular the one voltage step 20, the capacitor 12 binds charged components of the unpurified water as a function of the applied voltage V k to the electrodes 14, 14 '. In at least one method step, in particular the one voltage step 20, the ion concentration of the product water is regulated via an applied voltage V k to the electrodes 14, 14 'of the capacitor 12. In at least one method step, in particular the one voltage step 20, the voltage V k on the at least one capacitor 12 is regulated in order to set the ion concentration of the product water in a targeted manner.
In zumindest einem Verfahrensschritt, insbesondere dem einen Spannungsschritt 20, wird die lonenkonzentration des Produktwassers über eine Spannung Vk re guliert. In zumindest einem Verfahrensschritt, insbesondere dem einen Span nungsschritt 20, wird ein elektrischer Strom, insbesondere De-Ionisierungsstrom, in dem mit ungereinigtem Wasser durchströmten Kondensator 12 über eine Spannung Vk reguliert. In at least one process step, in particular the one voltage step 20, the ion concentration of the product water is regulated via a voltage V k . In at least one method step, in particular one voltage step 20, an electrical current, in particular de-ionization current, is regulated in the condenser 12 through which unpurified water flows, via a voltage V k .
In zumindest einem Verfahrensschritt, insbesondere einem Messschritt 22, wird die lonenkonzentration des Produktwassers berechnet. In zumindest einem Ver fahrensschritt, insbesondere dem einen Messschritt 22, wird der Produktwasser strom gemessen. In zumindest einem Verfahrensschritt, insbesondere dem einen Messschritt 22, wird der elektrische Strom in dem Kondensator 12 zur Erreichung einer Zielhärte berechnet. In zumindest einem Verfahrensschritt, insbesondere dem einen Messschritt 22, wird aus dem bekannten Produktwasserstrom die Fa- raday- Effizienz ermittelt. In zumindest einem Verfahrensschritt, insbesondere dem einen Messschritt 22, wird aus dem bekannten Produktwasserstrom die Fa- raday- Effizienz mittels einer Eichkurve der Faraday- Effizienz und/oder der De- lonisierungsleistung gegen den Produktwasserstrom der Wasserenthärtungsan lage 10 ermittelt. In zumindest einem Verfahrensschritt, insbesondere dem einen Messschritt 22, wird aus der Faraday- Effizienz und der gewünschten Zielhärte des Produktwassers der De-Ionisierungsstrom und/oder der tatsächlich benötigte elektrische Strom, insbesondere von der Steuer- und/oder Regeleinheit 18, be rechnet. In zumindest einem Verfahrensschritt, insbesondere dem einen Mess schritt 22, wird die Eichkurve der Faraday- Effizienz und/oder der De- lonisierungsleistung gegen den Produktwasserstrom der Wasserenthärtungsan lage 10 von dem Speicherelement 26 abgerufen. Der Zusammenhang der Fara day- Effizienz und des Produktwasserstroms ist beispielsweise im Wesentlichen als linearer Zusammenhang ausgeprägt. The ion concentration of the product water is calculated in at least one method step, in particular a measuring step 22. In at least one process step, in particular the one measuring step 22, the product water flow is measured. In at least one method step, in particular the one measuring step 22, the electrical current in the capacitor 12 is calculated in order to achieve a target hardness. In at least one method step, in particular one measuring step 22, the Faraday efficiency is determined from the known product water flow. In at least one method step, in particular the one measuring step 22, the Faraday efficiency is determined from the known product water flow by means of a calibration curve of the Faraday efficiency and / or the deionization performance against the product water flow of the water softening system 10. In at least one method step, in particular the one measuring step 22, the de-ionization current and / or the actually required electrical current, in particular from the control and / or regulating unit 18, is calculated from the Faraday efficiency and the desired target hardness of the product water. In at least one method step, in particular the one measuring step 22, the calibration curve of the Faraday efficiency and / or the deionization performance against the product water flow of the water softening system 10 is retrieved from the storage element 26. The relationship between Fara day efficiency and product water flow is essentially a linear relationship, for example.
Beispielsweise wird ein Produktwasserstrom von 12,1 l/min gemessen. In diesem Beispiel wird auch eine Härte des ungereinigten Wassers von 7°dH gemessen. Bei 0,2 l/s weist die Beispielanlage eine Faraday- Effizienz von 0,7 auf. Die ge wünschte Zielhärte ist beispielsweise 3°dH. Die lonenkonzentrationsdifferenz ist 0,76 mmol/l. Das entspricht einem De-Ionisierungsstrom von 29 A. Bei einer Fa raday- Effizienz von 0,7 entspricht das einem elektrischen Strom von 41 A, der an dem Kondensator 12 eingestellt werden muss. For example, a product water flow of 12.1 l / min is measured. In this example, a hardness of the unpurified water of 7 ° dH is also measured. At 0.2 l / s, the example system has a Faraday efficiency of 0.7. The desired target hardness is, for example, 3 ° dH. The ion concentration difference is 0.76 mmol / l. This corresponds to a de-ionization current of 29 A. With a Fa raday efficiency of 0.7, this corresponds to an electrical current of 41 A, which must be set at the capacitor 12.
In zumindest einem Verfahrensschritt, insbesondere einen Rechenschritt 24, wird die lonenkonzentration des Produktwassers gemessen und in zumindest einem Verfahrensschritt wird aus der lonenkonzentration des Produktwassers der Pro duktwasserstrom ermittelt. In zumindest einem Verfahrensschritt, insbesondere dem Rechenschritt 24, wird bei einer bekannten lonenkonzentration des ungerei nigten Wassers und einer bekannten lonenkonzentration des Produktwassers der Produktwasserstrom berechnet, insbesondere mittels der Eichkurve der Faraday- Effizienz gegenüber dem Produktwasserstrom. In at least one process step, in particular a calculation step 24, the ion concentration of the product water is measured and in at least one process step the product water flow is determined from the ion concentration of the product water. In at least one process step, in particular calculation step 24, the product water flow is calculated at a known ion concentration of the untreated water and a known ion concentration of the product water, in particular by means of the calibration curve of the Faraday efficiency versus the product water flow.
Beispielsweise wird eine Härte des ungereinigten Wassers von 7°dH gemessen. Die Zielhärte des Produktwassers ist beispielsweise als 3°dH gemessen. Die lonenkonzentrationsdifferenz ist 0,76 mmol/l. Das entspricht einem De- Ionisierungsstrom von 29 A. Bei einem elektrischen Strom von 41 A, der an dem Kondensator 12 eingestellt ist, ist die Faraday Effizienz 0,7. Durch die Eichkurve der Faraday- Effizienz und/oder der De-Ionisierungsleistung gegen den Produkt wasserstrom der Wasserenthärtungsanlage 10 gegenüber dem Produktwasser strom kann der Produktwasserstrom ermittelt werden. For example, a hardness of the unpurified water of 7 ° dH is measured. The target hardness of the product water is measured, for example, as 3 ° dH. The ion concentration difference is 0.76 mmol / l. This corresponds to a de-ionization current of 29 A. With an electrical current of 41 A, which is set at the capacitor 12, the Faraday efficiency is 0.7. The product water flow can be determined by the calibration curve of the Faraday efficiency and / or the de-ionization performance against the product water flow of the water softening system 10 compared to the product water flow.
In zumindest einem Verfahrensschritt, insbesondere einem Rechenschritt 24, wird die Zielhärte des Produktwassers bei einem maximalen De- Ionisierungsstrom bei bekannter Härte des ungereinigten Wassers berechnet. In zumindest einem Verfahrensschritt, insbesondere einem Rechenschritt 24, wird die Zielhärte des Produktwassers bei einem maximalen De-Ionisierungsstrom bei bekannter Härte des ungereinigten Wassers mittels der Eichkurve der Faraday- Effizienz und/oder der De-Ionisierungsleistung gegenüber dem Produktwasser strom der Wasserenthärtungsanlage 10 berechnet. In zumindest einem Verfah rensschritt, insbesondere einem Rechenschritt 24, wird die Härte des ungereinig ten Wassers gemessen. In zumindest einem Verfahrensschritt, insbesondere dem einen Rechenschritt 24, wird die lonenkonzentration des Produktwassers von einem Nutzer eingegeben und/oder von der Steuer- und/oder Regeleinheit, insbesondere einem Programm der kapazitiven Wasserenthärtungsanlage, ermittelt. In at least one process step, in particular a calculation step 24, the target hardness of the product water is calculated at a maximum deionization current with known hardness of the unpurified water. In at least one method step, in particular a calculation step 24, the target hardness of the product water at a maximum deionization current with known hardness of the unpurified water is calculated by means of the calibration curve of the Faraday efficiency and / or the deionization performance against the product water flow of the water softening system 10. In at least one procedural step, in particular a computing step 24, the hardness of the unpurified water is measured. In at least one method step, in particular the one calculation step 24, the ion concentration of the product water is entered by a user and / or determined by the control and / or regulating unit, in particular a program of the capacitive water softening system.
Es ist denkbar, dass in zumindest einem Verfahrensschritt die Temperatur desIt is conceivable that the temperature of the
Wassers, insbesondere zum Abgleich einer Eichkurve, gemessen und/oder ver glichen wird. Water, in particular for comparing a calibration curve, is measured and / or compared.
Alle Verfahrensschritte können insbesondere in einer beliebigen Reihenfolge ablaufen, wobei auch zwischen den Verfahrensschritten durchgeführte weitereAll process steps can, in particular, take place in any order, with additional ones carried out between the process steps
Verfahrensschritte denkbar sind. Insbesondere können die Verfahrensschritte in einer beliebigen Reihenfolge wiederholt ablaufen. Process steps are conceivable. In particular, the method steps can be repeated in any order.

Claims

Ansprüche Expectations
1. Verfahren zu einer Wasserenthärtung mittels einer kapazitiven Wasserent härtungsanlage, wobei in zumindest einem Verfahrensschritt Wasser mit tels zumindest eines Kondensators enthärtet wird und enthärtetes Pro duktwasser bereitgestellt wird, dadurch gekennzeichnet, dass in dem zumindest einen Verfahrensschritt eine lonenkonzentration des Produkt wassers auf einen definierten Wert geregelt wird. 1. A method for water softening by means of a capacitive water softening system, water being softened in at least one process step using at least one condenser and softened product water being provided, characterized in that in the at least one process step an ion concentration of the product water to a defined value is regulated.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in zumindest einem Verfahrensschritt die lonenkonzentration des Produktwassers ge messen wird und in zumindest einem Verfahrensschritt aus der lonenkon zentration des Produktwassers der Produktwasserstrom ermittelt wird. 2. The method according to claim 1, characterized in that the ion concentration of the product water is measured in at least one process step and the product water flow is determined in at least one process step from the ion concentration of the product water.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in zumindest einem Verfahrensschritt, insbesondere einem Rechenschritt 24, die Zielhärte des Produktwassers bei einem maximalen De 3. The method according to claim 1 or 2, characterized in that in at least one process step, in particular a calculation step 24, the target hardness of the product water at a maximum De
ionisierungsstrom bei bekannter Härte des ungereinigten Wassers berech net wird. Ionization current is calculated with known hardness of the unpurified water.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in zumindest einem Verfahrensschritt die lonenkonzentrati on des Produktwassers von einem Nutzer eingegeben und/oder von einem Programm einer Steuer- und/oder Regeleinheit der kapazitiven Wasserent härtungsanlage selbsttätig ermittelt wird. 4. The method according to any one of the preceding claims, characterized in that in at least one process step, the ion concentration of the product water is entered by a user and / or is automatically determined by a program of a control and / or regulating unit of the capacitive water treatment system.
5. Wasserenthärtungsanlage mit zumindest einer Steuer- und/oder Regelein heit (18) und mit zumindest einem Kondensator (12) zur Durchführung ei nes Verfahrens zu einer Wasserenthärtung nach einem der vorhergehen den Ansprüche. 5. Water softening system with at least one control and / or regulating unit (18) and with at least one condenser (12) for carrying out a method for water softening according to one of the preceding claims.
6. Wasserenthärtungsanlage nach Anspruch 5, dadurch gekennzeichnet, dass die Steuer- und/oder Regeleinheit (18) ein austauschbares Spei cherelement (26) umfasst. 6. Water softening system according to claim 5, characterized in that the control and / or regulating unit (18) comprises an exchangeable memory element (26).
PCT/EP2019/085134 2018-12-19 2019-12-13 Method for softening water and water softening system WO2020126929A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980085096.7A CN113226992A (en) 2018-12-19 2019-12-13 Method for softening water and water softening device
EP19845814.3A EP3898526A1 (en) 2018-12-19 2019-12-13 Method for softening water and water softening system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018222254.1A DE102018222254A1 (en) 2018-12-19 2018-12-19 Water softening process
DE102018222254.1 2018-12-19

Publications (1)

Publication Number Publication Date
WO2020126929A1 true WO2020126929A1 (en) 2020-06-25

Family

ID=69411403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/085134 WO2020126929A1 (en) 2018-12-19 2019-12-13 Method for softening water and water softening system

Country Status (4)

Country Link
EP (1) EP3898526A1 (en)
CN (1) CN113226992A (en)
DE (1) DE102018222254A1 (en)
WO (1) WO2020126929A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130105323A1 (en) * 2011-10-27 2013-05-02 David J. Averbeck Ion Removal Using a Capacitive Deionization System

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107459200B (en) * 2017-09-26 2020-10-20 江苏中圣高科技产业有限公司 High-salt-content wastewater salinity resource recovery process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130105323A1 (en) * 2011-10-27 2013-05-02 David J. Averbeck Ion Removal Using a Capacitive Deionization System

Also Published As

Publication number Publication date
EP3898526A1 (en) 2021-10-27
DE102018222254A1 (en) 2020-06-25
CN113226992A (en) 2021-08-06

Similar Documents

Publication Publication Date Title
DE60008931T2 (en) AUTOMATED DEVICE FOR CLEANING DRINKING WATER
CA2755572A1 (en) Method for removing ionic species from desalination unit
EP2646373A1 (en) Electrolysis cell for generating ozone for treating a liquid
EP2706042B1 (en) Point-of-use water dispenser and method for using said water dispenser
CN207158982U (en) A kind of membrane capacitance deionization system
CN100339314C (en) Water maker with fine filtration and electrolysis unit
EP2933232A1 (en) Method for the filtration of drinking or process water in a water supply installation
CN104709980A (en) Clamping-groove multistage series-capacitor deionizer
Wang et al. Ammonia removal from municipal wastewater via membrane capacitive deionization (MCDI) in pilot-scale
CN205419871U (en) Electric flocculating reaction equipment of waste water is polluted to sweet phosphine high concentration of preliminary treatment grass
DE3902366A1 (en) Method and device for cleaning and regulating the pressures in piping systems
EP3898526A1 (en) Method for softening water and water softening system
DE102011054483A1 (en) Ozone generator module
CN107098508B (en) Direct-drinking water-separating water supply equipment and water supply method thereof
DE102017108427A1 (en) Electrochemical device and method for operating an electrochemical device
CN206985913U (en) New water purifier complete set of equipments based on ozone Inner electrolysis and CDI GC-MSs
CN202658018U (en) Water purification machine
DE102018222263A1 (en) Water softening
CN205151943U (en) Household water purification system
CN205241388U (en) Energy -conserving little dense water reverse osmosis unit
DE102011054888A1 (en) Ozone generator module
CN106069382A (en) A kind of water-saving irrigation system controlling drought canopy
CN207957946U (en) A kind of water-saving water cleaning systems
CN2806438Y (en) Micro-filtering electrolyzing water producing machine
CN204097162U (en) Square matrix formula electro-adsorption water treating equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19845814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019845814

Country of ref document: EP

Effective date: 20210719