WO2020126837A1 - Thermodynamic cycle for producing compressed air - Google Patents
Thermodynamic cycle for producing compressed air Download PDFInfo
- Publication number
- WO2020126837A1 WO2020126837A1 PCT/EP2019/084932 EP2019084932W WO2020126837A1 WO 2020126837 A1 WO2020126837 A1 WO 2020126837A1 EP 2019084932 W EP2019084932 W EP 2019084932W WO 2020126837 A1 WO2020126837 A1 WO 2020126837A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compressor
- evaporator
- working medium
- thermodynamic cycle
- compressed air
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K7/00—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
- F01K7/34—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
- F01K7/36—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating the engines being of positive-displacement type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B27/00—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
- F04B27/005—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders with two cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B35/00—Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
- F04B35/006—Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for driven by steam engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B35/00—Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
- F04B35/008—Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being a fluid transmission link
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B45/00—Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
- F04B45/04—Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
- F04B45/053—Pumps having fluid drive
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B5/00—Machines or pumps with differential-surface pistons
- F04B5/02—Machines or pumps with differential-surface pistons with double-acting pistons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B9/00—Piston machines or pumps characterised by the driving or driven means to or from their working members
- F04B9/08—Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
- F04B9/12—Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air
- F04B9/129—Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air having plural pumping chambers
- F04B9/131—Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air having plural pumping chambers with two mechanically connected pumping members
- F04B9/133—Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air having plural pumping chambers with two mechanically connected pumping members reciprocating movement of the pumping members being obtained by a double-acting elastic-fluid motor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
Definitions
- the invention relates to a thermodynamic cycle for producing compressed air with an evaporator, in which a working medium is in the liquid phase and in the vapor phase, with a steam-operated compressor (13), to which the working medium flows as steam from the evaporator, with a condenser for cooling and Liquefaction of the working medium after leaving the compressor and with a feed pump that conveys the working medium liquefied in the condenser back to the evaporator.
- thermodynamic cycle for generating compressed air is known from WO 89/08188 Al.
- a steam-operated double-acting compressor is used in which the interior of the housing is divided into two sections, with a first dimensionally stable piston having a section in a working chamber and in a compression chamber and a second dimensionally stable piston divides the other section into a working chamber and a compression chamber, and the two pistons are connected to one another by a piston rod which is tightly guided from one section to the other section through a central part of the housing.
- the energy source for the heating can be waste heat or solar heat.
- the invention has for its object to improve the known thermodynamic circular process.
- the pursued goal is achieved in a thermodynamic cycle with the features mentioned at the beginning by the fact that between the condenser and the evaporator a preheater is arranged in which heat transfer from the compressed air generated by the compressor and the liquid working medium takes place.
- the compressed air generated is heated during compression in the compressor.
- the compressed and heated compressed air is led through the preheater, through which the liquid working medium conveyed by the feed pump also flows.
- the liquid working fluid is preheated in the preheater.
- the compressed air is cooled in the preheater, so that only little heat is introduced into the compressed air system.
- thermodynamic cycle according to the invention can advantageously be further developed.
- the working medium is advantageously a high-molecular organic working medium whose boiling point is lower than the boiling point of water.
- the preheater is advantageously arranged between the feed pump and the evaporator, since then the working medium flowing through the feed pump is still cool.
- the preheater can contain a pipe coil through which the working medium flows and which is surrounded by the compressed air.
- the compressor is a double-acting compressor with a plurality of pistons which can be moved together in a straight line relative to a housing. Compressed air is then pumped in every half movement cycle.
- the pistons of the compressor can be rigid pistons or deformable membranes.
- thermodynamic cycle according to the invention for generating compressed air Two exemplary embodiments of a thermodynamic cycle according to the invention for generating compressed air are shown in the drawings. The invention will now be explained in more detail with reference to the figures of these drawings. Show it
- Figure 1 in a highly simplified representation, the first embodiment with a compressor with dimensionally stable pistons and
- FIG. 2 in a highly simplified representation, the second embodiment with a compressor with flexible membranes as pistons.
- Organic Rankine Cycle is derived from the British physicist and engineer William John Macquorn Rankine and from the use of a high-molecular organic working medium with a boiling point that is lower than the boiling point of water.
- the ORC comprises an evaporator 10, in which the working medium is in the liquid phase and in the vapor phase, which is essentially above the liquid phase.
- the liquid phase is heated by a heat source 11, preferably by the waste heat from machines or systems, to above its boiling point, so that a pressure is established in the two phases which is above atmospheric pressure.
- a working medium can be used whose boiling point is 45 degrees Celsius.
- the waste heat heats the working medium to 80 degrees Celsius, for example. In accordance with this heating to 80 degrees, a certain vapor pressure of, for example, 3 bar is established.
- a zigzag line indicates how the working medium rises within the evaporator.
- the pressurized steam reaches a double-acting compressor 13, in which the steam does work to compress air, so that it generates compressed air and feeds it into a compressed air system.
- the expanded steam passes through a pipe 14 to a condenser 15, in which the working medium is cooled and liquefied.
- a feed pump 16 conveys the liquid working medium back into the evaporator 10.
- the working fluid conveyed by the feed pump 16 first flows in a coil 19 through a preheater 18 and then to the evaporator 10.
- the preheater 18 is thus arranged between the feed pump 16 and the evaporator 10, so that the cool working medium flows through the feed pump 16.
- the compressed air generated is heated during compression in the compressor.
- the compressed and heated compressed air is fed via a pipe 19 to the preheater 18, through which in the Pipe coil 17 also flows the liquid working medium conveyed by the feed pump 16.
- the compressed air flows around the coil 19 before it leaves the pre-heater 18 and arrives at a compressed air tank.
- the liquid working fluid is preheated in the preheater 18.
- the compressed air is cooled in the preheater 18, so that only a little heat is introduced into the compressed air system.
- the double-acting compressor 13 has a pressure-resistant housing 30 with a central housing part 31, the interior of which is divided into a first working chamber 33 and a second working chamber 34 by a dimensionally stable working piston 32.
- the working chamber 33 is via an inlet valve 35, which is closed in one position and opened in a two-th position and which can be actuated, for example, electromagnetically from a position which it assumes under the action of a spring into the other position, to one in the housing 30 extending channel connected to the tube 12.
- the working chamber 34 is connected via an inlet valve 36, which is formed in the same way as the inlet valve 35, to the channel connected to the tube 12.
- the working chamber 33 is also via a drain valve 37, which is closed in one position and opened in a second position and which, for example, can be actuated electromagnetically from a position which it assumes under the action of a spring into the other position, to an in Housing 30 extending channel connected, which is connected to the tube 14.
- the working chamber 34 is also connected to the channel connected to the pipe 14 via a drain valve 38, which is designed in exactly the same way as the drain valve 37.
- the compressor 13 also has a first lateral housing part 39 with an interior space, which is divided into two chambers by a first dimensionally stable compressor piston 40.
- the compressor 13 has a second lateral housing part 41 which is opposite the housing part 39 with respect to the central housing part 31 and the interior of which is also divided into two chambers by a second rigid compression piston 42.
- Each of the compressor pistons 40 and 42 is fixedly connected to the working piston 32 by means of a piston rod 43 which extends from it on one side and which is sealed through the walls separating the interior spaces of the three housing parts.
- the piston rod 43 can be formed by two individual piston rods, which are individually firmly connected to the working piston 32, or by a one-piece piston rod which passes through the working piston and on which the working piston 32 is firmly seated. All three pistons 32, 40 and 42 can thus be moved together in the direction of the axis of the piston rod 43 in the housing. se 30 led.
- the two compressor pistons 40 and 42 have the same outside diameter. This is smaller than the outer diameter of the working piston 32.
- the chamber 44 which is located on the side of the working piston 40 remote from the piston rod 43, that is to say the outer chamber, has a circular disc-shaped cross section perpendicular to the direction of movement of the pistons, while the opposite, inner one Chamber 45 has an annular cross section.
- the chamber 46 which is located on the side of the working piston 42 remote from the piston rod 43, that is to say the outer chamber, has a circular, disc-shaped cross section, while the opposite, inner chamber 47 has an annular cross section.
- the two outer chambers 44 and 46 are used as compression chambers.
- the compression chamber 44 is connected to an air inlet channel 51 via a sucking valve 50, which is designed as a check valve opening towards it, and via a pressure valve 52, which is designed as a check valve which blocks it, to an air outlet channel 53, to which the pipe 14 is connected.
- the Ver Noticerkam mer 44 is connected via a sucking valve 54, which is designed as a check valve opening towards it, to the air inlet channel 51, and via a pressure valve 55, which is designed as a check valve, which blocks it, with the air outlet channel 53.
- the chambers 43 and 45 are connected to atmosphere.
- the two working chambers 33 and 34 each have a ring-shaped cross section in the direction of movement of the pistons, but this is larger than the cross section of the compression chambers 42 and 45.
- pressurized steam flows from the evaporator 10 and the tube 12 into the working chamber 33.
- the pressure generates a force on the working piston 32, which moves the working piston and with it also the two compressor pistons 40 and 42 to the right according to the view according to FIG. 1.
- the compressor piston 42 By means of the compressor piston 42, the compressor chamber 46 is reduced and air is displaced from it via the pressure valve 55 into the pipe 17 and further into the compressed air container. The air is compressed to the pressure in the compressed air tank. In contrast to this, the volume of the compression chamber 44 is increased so that air flows in via the sucking valve 50.
- the double-acting compressor 13 has a pressure-resistant housing 60 with a central housing part 61 and with two lateral housing parts 62 and 63 arranged in a mirror image with respect to the central housing part 61, the diameter of which is larger than the diameter of the central housing part 61.
- the housing parts 62 and 63 each consist of a bottom 64 and a cover 65.
- the interior of the housing part 62 which is formed by the bottom and cover and is circular in cross section, is inserted into a working chamber 67 adjoining the central housing part 61 and into an outer chamber by a circular membrane 66, which can be made of Teflon, a thermoplastic or rubber, for example Compressor chamber 68 divided.
- the circular interior formed by the bottom and cover of the housing part 63 is divided by a circular membrane 69, which is the same as the membrane 66, into a working chamber 70 adjacent to the central housing part 61 and into an external compression chamber 71.
- the membrane 66 is clamped with its outer edge between the lid and the bottom of the housing part 62.
- the membrane 69 is clamped with its outer edge between the lid and the bottom of the housing part 63. Through the respective membrane, the parting line between the bottom and the cover of a side housing part is thus sealed.
- the two diaphragms 66 and 69 are each clamped between two learning clamps 72, which are held on a piston rod 73 which passes through the central housing part 61 and is guided therein in a sliding manner in its longitudinal direction. A Movement of one membrane is transmitted to the other membrane via the piston rod 73.
- the working chamber 67 is via an inlet valve 35 which is closed in one position and opened in a second position and which is, for example, electromagnetically from a position which it takes up under the action of a spring into the other position is operable, connected to a channel running in the housing 60, which is connected to the tube 12.
- the working chamber 70 is connected via a flow valve 36, which is designed in the same way as the inlet valve 35, to the channel connected to the tube 12.
- the working chamber 67 is also via a drain valve 37, which is closed in one position and opened in a second position and which can be actuated, for example, electromagnetically from a position which it assumes under the action of a spring into the other position, to one in the housing 30 extending channel connected to the tube 14.
- the working chamber 70 is also connected to the channel connected to the pipe 14 via a drain valve 38, which is designed in exactly the same way as the drain valve 37.
- the compression chamber 68 is connected via a sucking valve 50, which is designed as a check valve opening towards it, with an air inlet channel 51, and via a pressure valve 52, which is designed as a check valve, which blocks it, with an air outlet channel 53, to which the Tube 14 is connected.
- the compressor chamber 71 is connected to the air inlet channel 51 via a sucking valve 54, which is designed as a check valve opening towards it, and via a pressure valve 55, which is designed as a check valve which blocks it, with the air outlet channel 53.
- the compressor 13 according to FIG. 2 is also at a standstill when the two inlet valves 35 and 36 and the two outlet valves 37 and 38 are closed.
- 65 covers of 62, 63
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
Abstract
The invention relates to a thermodynamic cycle for producing compressed air, comprising: an evaporator, in which a working fluid is present in liquid phase and in steam phase; a steam-operated compressor, to which the working fluid in the form of steam flows from the evaporator; a condenser for cooling and liquefying the working fluid once this has left the compressor; and a feed pump, which conveys the working fluid liquefied in the condenser back to the evaporator. A preheater is arranged between the condenser and the evaporator, in which preheater heat is transferred between the compressed air generated by the compressor and the liquid working fluid.
Description
Thermodynamischer Kreisprozess zur Erzeugung von Druckluft Thermodynamic cycle for the generation of compressed air
Beschreibung description
Die Erfindung betrifft einen thermodynamischer Kreisprozess zur Erzeugung von Druckluft mit einem Verdampfer, in dem ein Arbeitsmedium in flüssiger Phase und in Dampfphase vorliegt, mit einem dampfbetriebenen Kompressor (13), dem das Arbeitsmedium als Dampf vom Verdampfer her zuströmt, mit einem Kondensor zur Abkühlung und Verflüssigung des Arbeitsmediums nach dem Verlassen des Kompressors und mit einer Speisepumpe, die das im Kondensor verflüssigte Arbeitsmedium zurück zum Verdampfer fördert. The invention relates to a thermodynamic cycle for producing compressed air with an evaporator, in which a working medium is in the liquid phase and in the vapor phase, with a steam-operated compressor (13), to which the working medium flows as steam from the evaporator, with a condenser for cooling and Liquefaction of the working medium after leaving the compressor and with a feed pump that conveys the working medium liquefied in the condenser back to the evaporator.
Ein derartiger thermodynamischer Kreisprozess zur Erzeugung von Druckluft ist aus der WO 89/08188 Al bekannt. Innerhalb des aus der genannten Schrift bekannten thermodynami schen Kreisprozesses wird ein dampfbetriebener doppeltwirkender Kompressor benutzt, bei dem das Innere des Gehäuses in zwei Sektionen unterteilt, wobei ein erster formfester Kol ben die eine Sektion in eine Arbeitskammer und in eine Verdichterkammer und ein zweiter formfester Kolben die andere Sektion in eine Arbeitskammer und in eine Verdichterkammer aufteilt und wobei die beiden Kolben durch eine Kolbenstange, die dicht durch einen Mittelteil des Gehäuses hindurch von der einen Sektion zur anderen Sektion geführt ist, miteinander verbunden sind. Such a thermodynamic cycle for generating compressed air is known from WO 89/08188 Al. Within the thermodynamic cycle process known from the cited document, a steam-operated double-acting compressor is used in which the interior of the housing is divided into two sections, with a first dimensionally stable piston having a section in a working chamber and in a compression chamber and a second dimensionally stable piston divides the other section into a working chamber and a compression chamber, and the two pistons are connected to one another by a piston rod which is tightly guided from one section to the other section through a central part of the housing.
In der WO 89/08188 wird darauf hingewiesen, dass die Energiequelle für die Erwärmung Abwärme oder Solarwärme sein kann. In WO 89/08188 it is pointed out that the energy source for the heating can be waste heat or solar heat.
Der Erfindung liegt die Zielsetzung zugrunde, den bekannten thermodynamischen Kreispro zess zu verbessern. The invention has for its object to improve the known thermodynamic circular process.
Das verfolgte Ziel wird bei einem thermodynamischen Kreisprozess mit den eingangs ange führten Merkmalen dadurch erreicht, dass zwischen dem Kondensor und dem Verdampfer
ein Vorwärmer angeordnet ist, in dem eine Wärmeübertragung von der vom Kompressor erzeugten Druckluft und dem flüssigen Arbeitsmedium stattfindet. Bei der Komprimierung im Kompressor wird die erzeugte Druckluft erhitzt. Die komprimierte und erhitzte Druckluft wird durch den Vorwärmer geführt, durch den auch das von der Speisepumpe geförderte flüssige Arbeitsmedium strömt. Einerseits wird in dem Vorwärmer das flüssige Arbeitsmittel vorge wärmt. Andererseits wird in dem Vorwärmer die Druckluft abgekühlt, so dass nur wenig Wärme in das Druckluftsystem eingebracht wird. The pursued goal is achieved in a thermodynamic cycle with the features mentioned at the beginning by the fact that between the condenser and the evaporator a preheater is arranged in which heat transfer from the compressed air generated by the compressor and the liquid working medium takes place. The compressed air generated is heated during compression in the compressor. The compressed and heated compressed air is led through the preheater, through which the liquid working medium conveyed by the feed pump also flows. On the one hand, the liquid working fluid is preheated in the preheater. On the other hand, the compressed air is cooled in the preheater, so that only little heat is introduced into the compressed air system.
Ein erfindungsgemäßer thermodynamischer Kreisprozess kann in vorteilhafter Weise weiter ausgestaltet werden. A thermodynamic cycle according to the invention can advantageously be further developed.
Vorteilhafterweise ist das Arbeitsmedium ein hochmolekulares organisches Arbeitsmedium, dessen Siedepunkt niedriger ist als der Siedepunkt von Wasser. The working medium is advantageously a high-molecular organic working medium whose boiling point is lower than the boiling point of water.
Mit einem hochmolekularen organischen Arbeitsmedium, dessen Siedepunkt niedriger als der Siedepunkt von Wasser ist, bietet sich die Möglichkeit das Arbeitsmedium auch durch Abwärme aus einem industriellen Prozess, die nur eine Temperatur von zum Beispiel 80 oder 100 Grad Celsius hat, über die Siedetemperatur hinaus zu erwärmen. With a high molecular weight organic working medium, the boiling point of which is lower than the boiling point of water, it is also possible to heat the working medium above the boiling point by means of waste heat from an industrial process that only has a temperature of, for example, 80 or 100 degrees Celsius .
Der Vorwärmer ist vorteilhafterweise zwischen der Speisepumpe und dem Verdampfer an geordnet, da dann das durch die Speisepumpe strömende Arbeitsmedium noch kühl ist. The preheater is advantageously arranged between the feed pump and the evaporator, since then the working medium flowing through the feed pump is still cool.
Der Vorwärmer kann eine Rohrschlange enthalten, durch die das Arbeitsmedium fließt und die von der Druckluft umspült ist. The preheater can contain a pipe coil through which the working medium flows and which is surrounded by the compressed air.
Es ist günstig, wenn der Kompressor ein doppeltwirkender Kompressor mit mehreren relativ zu einem Gehäuse gemeinsam geradlinig bewegbaren Kolben ist. In jedem halben Bewe gungszyklus wird dann Druckluft gefördert. It is favorable if the compressor is a double-acting compressor with a plurality of pistons which can be moved together in a straight line relative to a housing. Compressed air is then pumped in every half movement cycle.
Die Kolben des Kompressors können formfeste Kolben oder verformbare Membrane sein. The pistons of the compressor can be rigid pistons or deformable membranes.
Zwei Ausführungsbeispiele eines erfindungsgemäßen thermodynamischen Kreisprozesses zur Erzeugung von Druckluft sind in den Zeichnungen dargestellt. Anhand der Figuren dieser Zeichnungen wird die Erfindung nun näher erläutert.
Es zeigen Two exemplary embodiments of a thermodynamic cycle according to the invention for generating compressed air are shown in the drawings. The invention will now be explained in more detail with reference to the figures of these drawings. Show it
Figur 1 in stark vereinfachter Darstellung das erste Ausführungsbeispiel mit einem Kompres sor mit formfesten Kolben und Figure 1 in a highly simplified representation, the first embodiment with a compressor with dimensionally stable pistons and
Figur 2 in stark vereinfachter Darstellung das zweite Ausführungsbeispiel mit einem Kom pressor mit flexiblen Membranen als Kolben. Figure 2 in a highly simplified representation, the second embodiment with a compressor with flexible membranes as pistons.
Die beiden in den Figuren gezeigten thermodynamischen Kreisprozesse sind stark schema tisch dargestellt und sind jeweils ein sogenannter Organic Rankine Cycle (ORC). Der Name Organic Rankine Cycle leitet sich ab von dem britischen Physiker und Ingenieur William John Macquorn Rankine sowie von der Verwendung eines hochmolekularen organischen Ar beitsmediums mit einem Siedepunkt, der niedriger ist als der Siedepunkt von Wasser. The two thermodynamic cycle processes shown in the figures are shown schematically and are each a so-called Organic Rankine Cycle (ORC). The name Organic Rankine Cycle is derived from the British physicist and engineer William John Macquorn Rankine and from the use of a high-molecular organic working medium with a boiling point that is lower than the boiling point of water.
Der ORC umfasst einen Verdampfer 10, in dem das Arbeitsmedium in flüssiger Phase und in Dampfphase, die sich im Wesentlichen oberhalb der flüssigen Phase befindet, vorliegt. Die flüssige Phase wird von eine Wärmequelle 11, vorzugsweise von der Abwärme von Maschi nen oder Anlagen, bis über ihren Siedepunkt erwärmt, so dass sich in den beiden Phasen ein Druck einstellt, der über Atmosphärendruck liegt. Zum Beispiel kann ein Arbeitsmedium verwendet werden, dessen Siedepunkt bei 45 Grad Celsius liegt. Durch die Abwärme wird das Arbeitsmedium zum Beispiel auf 80 Grad Celsius erwärmt. Entsprechend dieser Erwär mung auf 80 Grad stellt sich ein bestimmter Dampfdruck von zum Beispiel 3 bar ein. Durch eine zick-zack-Linie ist angedeutet, wie das Arbeitsmedium innerhalb des Verdampfers auf steigt. Über ein Rohr 12 gelangt der unter Druck stehende Dampf zu einem doppeltwirken den Kompressor 13, in dem von dem Dampf Arbeit geleistet wird, um Luft zu komprimieren, um also Druckluft zu erzeugen und in ein Druckluftsystem einzuspeisen. Von dem Kompres sor 13 gelangt der expandierte Dampf über ein Rohr 14 zu einem Kondensor 15, in dem das Arbeitsmedium gekühlt wird und verflüssigt wird. Eine Speisepumpe 16 fördert das flüssige Arbeitsmedium zurück in den Verdampfer 10. Das von der Speisepumpe 16 geförderte Ar beitsmedium fließt dabei zunächst in einer Rohrschlange 19 durch einen Vorwärmer 18 und dann dem Verdampfer 10 zu. Der Vorwärmer 18 ist also zwischen der Speisepumpe 16 und dem Verdampfer 10 angeordnet, so dass durch die Speisepumpe 16 das kühle Arbeitsmedi um fließt. The ORC comprises an evaporator 10, in which the working medium is in the liquid phase and in the vapor phase, which is essentially above the liquid phase. The liquid phase is heated by a heat source 11, preferably by the waste heat from machines or systems, to above its boiling point, so that a pressure is established in the two phases which is above atmospheric pressure. For example, a working medium can be used whose boiling point is 45 degrees Celsius. The waste heat heats the working medium to 80 degrees Celsius, for example. In accordance with this heating to 80 degrees, a certain vapor pressure of, for example, 3 bar is established. A zigzag line indicates how the working medium rises within the evaporator. Via a pipe 12, the pressurized steam reaches a double-acting compressor 13, in which the steam does work to compress air, so that it generates compressed air and feeds it into a compressed air system. From the compressor sensor 13, the expanded steam passes through a pipe 14 to a condenser 15, in which the working medium is cooled and liquefied. A feed pump 16 conveys the liquid working medium back into the evaporator 10. The working fluid conveyed by the feed pump 16 first flows in a coil 19 through a preheater 18 and then to the evaporator 10. The preheater 18 is thus arranged between the feed pump 16 and the evaporator 10, so that the cool working medium flows through the feed pump 16.
Bei der Komprimierung im Kompressor wird die erzeugte Druckluft erhitzt. Die komprimierte und erhitzte Druckluft wird über ein Rohr 19 zu dem Vorwärmer 18 geführt, durch den in der
Rohrschlange 17 auch das von der Speisepumpe 16 geförderte flüssige Arbeitsmedium strömt. In dem Vorwärmer 18 umspült die Druckluft die Rohrschlange 19, ehe sie den Vor wärmer 18 verlässt und zu einem Druckluftbehälter gelangt. Einerseits wird in dem Vorwär mer 18 das flüssige Arbeitsmittel vorgewärmt. Andererseits wird in dem Vorwärmer 18 die Druckluft abgekühlt, so dass nur wenig Wärme in das Druckluftsystem eingebracht wird. The compressed air generated is heated during compression in the compressor. The compressed and heated compressed air is fed via a pipe 19 to the preheater 18, through which in the Pipe coil 17 also flows the liquid working medium conveyed by the feed pump 16. In the preheater 18, the compressed air flows around the coil 19 before it leaves the pre-heater 18 and arrives at a compressed air tank. On the one hand, the liquid working fluid is preheated in the preheater 18. On the other hand, the compressed air is cooled in the preheater 18, so that only a little heat is introduced into the compressed air system.
Der doppeltwirkende Kompressor 13 gemäß Figur 1 hat ein druckfestes Gehäuse 30 mit einem mittleren Gehäuseteil 31, dessen Inneres durch einen formfesten Arbeitskolben 32 in eine erste Arbeitskammer 33 und in eine zweite Arbeitskammer 34 aufgeteilt ist. Die Arbeits kammer 33 ist über ein Zulaufventil 35, das in einer Stellung geschlossen und in einer zwei ten Stellung geöffnet ist und das zum Beispiel elektromagnetisch von einer Stellung, die es unter der Wirkung einer Feder einnimmt, in die andere Stellung betätigbar ist, an einen im Gehäuse 30 verlaufenden Kanal angeschlossen, der mit dem Rohr 12 verbunden ist. Die Arbeitskammer 34 ist über ein Zulaufventil 36, das genauso wie das Zulaufventil 35 ausge bildet ist, an den mit dem Rohr 12 verbundenen Kanal angeschlossen. Die Arbeitskammer 33 ist außerdem über ein Ablaufventil 37, das in einer Stellung geschlossen und in einer zweiten Stellung geöffnet ist und das zum Beispiel elektromagnetisch von einer Stellung, die es unter der Wirkung einer Feder einnimmt, in die andere Stellung betätigbar ist, an einen im Gehäuse 30 verlaufenden Kanal angeschlossen, der mit dem Rohr 14 verbunden ist. Die Arbeitskammer 34 ist außerdem über ein Ablaufventil 38, das genauso wie das Ablaufventil 37 ausgebildet ist, mit dem mit dem Rohr 14 verbundenen Kanal angeschlossen. The double-acting compressor 13 according to FIG. 1 has a pressure-resistant housing 30 with a central housing part 31, the interior of which is divided into a first working chamber 33 and a second working chamber 34 by a dimensionally stable working piston 32. The working chamber 33 is via an inlet valve 35, which is closed in one position and opened in a two-th position and which can be actuated, for example, electromagnetically from a position which it assumes under the action of a spring into the other position, to one in the housing 30 extending channel connected to the tube 12. The working chamber 34 is connected via an inlet valve 36, which is formed in the same way as the inlet valve 35, to the channel connected to the tube 12. The working chamber 33 is also via a drain valve 37, which is closed in one position and opened in a second position and which, for example, can be actuated electromagnetically from a position which it assumes under the action of a spring into the other position, to an in Housing 30 extending channel connected, which is connected to the tube 14. The working chamber 34 is also connected to the channel connected to the pipe 14 via a drain valve 38, which is designed in exactly the same way as the drain valve 37.
Der Kompressor 13 hat außerdem ein erstes seitliches Gehäuseteil 39 mit einem Innenraum, der durch einen ersten formfesten Verdichterkolben 40 in zwei Kammern aufgeteilt wird. Au ßerdem hat der Kompressor 13 ein zweites seitliches Gehäuseteil 41, das dem Gehäuseteil 39 bezüglich des mittleren Gehäuseteils 31 gegenüberliegt und dessen Innenraum durch einen zweiten formfesten Verdichterkolben 42 ebenfalls in zwei Kammern aufgeteilt ist. Jeder der Verdichterkolben 40 und 42 ist über eine Kolbenstange 43, die einseitig von ihm abgeht und die abgedichtet durch die Innenräume der drei Gehäuseteile voneinander trennende Wände hindurchgeführt ist, mit dem Arbeitskolben 32 fest verbunden. Die Kolbenstange 43 kann durch zwei einzelne Kolbenstangen, die einzeln fest mit dem Arbeitskolben 32 verbun den sind, oder durch eine einstückige Kolbenstange gebildet sein, die durch den Arbeitskol ben hindurchgeht und auf der der Arbeitskolben 32 fest sitzt. Alle drei Kolben 32, 40 und 42 sind somit gemeinsam in Richtung der der Achse der Kolbenstange 43 bewegbar im Gehäu-
se 30 geführt. Die beiden Verdichterkolben 40 und 42 haben denselben Außendurchmesser. Dieser ist kleiner als der Außendurchmesser des Arbeitskolbens 32. The compressor 13 also has a first lateral housing part 39 with an interior space, which is divided into two chambers by a first dimensionally stable compressor piston 40. In addition, the compressor 13 has a second lateral housing part 41 which is opposite the housing part 39 with respect to the central housing part 31 and the interior of which is also divided into two chambers by a second rigid compression piston 42. Each of the compressor pistons 40 and 42 is fixedly connected to the working piston 32 by means of a piston rod 43 which extends from it on one side and which is sealed through the walls separating the interior spaces of the three housing parts. The piston rod 43 can be formed by two individual piston rods, which are individually firmly connected to the working piston 32, or by a one-piece piston rod which passes through the working piston and on which the working piston 32 is firmly seated. All three pistons 32, 40 and 42 can thus be moved together in the direction of the axis of the piston rod 43 in the housing. se 30 led. The two compressor pistons 40 and 42 have the same outside diameter. This is smaller than the outer diameter of the working piston 32.
Aufgrund des beschriebenen Aufbaus des Kompressors 13 aus Figur 1 hat die Kammer 44, die sich auf der der Kolbenstange 43 abgelegenen Seite des Arbeitskolbens 40 befindet, also die äußere Kammer ist, senkrecht zur Bewegungsrichtung der Kolben einen kreisschei benförmigen Querschnitt, während die gegenüberliegende, innere Kammer 45 einen ring förmigen Querschnitt hat. Ebenso hat die Kammer 46, die sich auf der der Kolbenstange 43 abgelegenen Seite des Arbeitskolbens 42 befindet, also die äußere Kammer ist, einen kreis scheibenförmigen Querschnitt, während die gegenüberliegende, innere Kammer 47 einen ringförmigen Querschnitt hat. Die beiden äußeren Kammern 44 und 46 werden als Verdich terkammern genutzt. Die Verdichterkammer 44 ist über ein Säugventil 50, das als zu ihr hin öffnendes Rückschlagventil ausgebildet ist, mit einem Lufteinlasskanal 51, und über ein Druckventil 52, das als zu ihr hin sperrendes Rückschlagventil ausgebildet ist, mit einem Luftauslasskanal 53 verbunden, an den das Rohr 14 angeschlossen ist. Die Verdichterkam mer 44 ist über ein Säugventil 54, das als zu ihr hin öffnendes Rückschlagventil ausgebildet ist, mit dem Lufteinlasskanal 51, und über ein Druckventil 55, das als zu ihr hin sperrendes Rückschlagventil ausgebildet ist, mit dem Luftauslasskanal 53 verbunden. Die Kammern 43 und 45 sind mit Atmosphäre verbunden. Due to the described construction of the compressor 13 from FIG. 1, the chamber 44, which is located on the side of the working piston 40 remote from the piston rod 43, that is to say the outer chamber, has a circular disc-shaped cross section perpendicular to the direction of movement of the pistons, while the opposite, inner one Chamber 45 has an annular cross section. Likewise, the chamber 46, which is located on the side of the working piston 42 remote from the piston rod 43, that is to say the outer chamber, has a circular, disc-shaped cross section, while the opposite, inner chamber 47 has an annular cross section. The two outer chambers 44 and 46 are used as compression chambers. The compression chamber 44 is connected to an air inlet channel 51 via a sucking valve 50, which is designed as a check valve opening towards it, and via a pressure valve 52, which is designed as a check valve which blocks it, to an air outlet channel 53, to which the pipe 14 is connected. The Verdichterkam mer 44 is connected via a sucking valve 54, which is designed as a check valve opening towards it, to the air inlet channel 51, and via a pressure valve 55, which is designed as a check valve, which blocks it, with the air outlet channel 53. The chambers 43 and 45 are connected to atmosphere.
Die beiden Arbeitskammern 33 und 34 haben in Bewegungsrichtung der Kolben jeweils ei nen ringförmigen Querschnitt, der jedoch größer als der Querschnitt der Verdichterkammern 42 und 45 ist. The two working chambers 33 and 34 each have a ring-shaped cross section in the direction of movement of the pistons, but this is larger than the cross section of the compression chambers 42 and 45.
Es sei zunächst angenommen, dass die beiden Zulaufventile 35 und 36 und die beiden Ab laufventile 37 und 38 geschlossen sind. Die Kolben 32, 40 und 42 stehen dann still. It is initially assumed that the two inlet valves 35 and 36 and the two outlet valves 37 and 38 are closed. The pistons 32, 40 and 42 then stand still.
Werden nun das der Arbeitskammer 33 zugehörige Zulaufventil 35 und das der Arbeitskam mer 34 zugehörige Ablaufventil 38 geöffnet, so strömt unter Druck stehender Dampf aus dem Verdampfer 10 und dem Rohr 12 in die Arbeitskammer 33 hinein. Durch den Druck wird an dem Arbeitskolben 32 eine Kraft erzeugt, die den Arbeitskolben und mit diesem auch die beiden Verdichterkolben 40 und 42 gemäß der Ansicht nach Figur 1 nach rechts bewegt. Durch den Verdichterkolben 42 wird die Verdichterkammer 46 verkleinert und aus dieser über das Druckventil 55 Luft in das Rohr 17 und weiter in den Druckluftbehälter verdrängt.
Die Luft ist dabei auf den im Druckluftbehälter herrschenden Druck verdichtet. Im Gegensatz dazu wird das Volumen der Verdichterkammer 44 vergrößert, so dass über das Säugventil 50 Luft einströmt. Sind die Kolben am Ende ihres Weges angelangt, so werden das Zulauf ventil 35 und das Ablaufventil 38 geschlossen und das Zulaufventil 36 und das Ablaufventil 37 geöffnet. Unter Druck stehender Dampf strömt nun aus dem Verdampfer 10 über das Rohr 12 in die Arbeitskammer 34. Durch den Druck wird an dem Arbeitskolben 32 eine Kraft erzeugt, die den Arbeitskolben und mit diesem auch die beiden Verdichterkolben 40 und 42 gemäß der Ansicht nach Figur 1 nach links bewegt. Durch den Verdichterkolben 40 wird die Verdichterkammer 44 verkleinert und dadurch die zuvor angesaugte Luft verdichtet und über das Druckventil 52 in das Rohr 17 und weiter in den Druckluftbehälter verdrängt. Im Gegen satz dazu wird das Volumen der Verdichterkammer 46 vergrößert, so dass über das Säug ventil 54 Luft einströmt. Der beschriebene Zyklus wiederholt sich solange, bis das abwech selnde Öffnen und Schließen der Ventile 35, 36, 37 und 38 unterbleibt und zumindest die beiden Zulaufventile 35 und 36 gleichzeitig geschlossen sind. If the inlet valve 35 belonging to the working chamber 33 and the outlet valve 38 belonging to the working chamber 34 are opened, pressurized steam flows from the evaporator 10 and the tube 12 into the working chamber 33. The pressure generates a force on the working piston 32, which moves the working piston and with it also the two compressor pistons 40 and 42 to the right according to the view according to FIG. 1. By means of the compressor piston 42, the compressor chamber 46 is reduced and air is displaced from it via the pressure valve 55 into the pipe 17 and further into the compressed air container. The air is compressed to the pressure in the compressed air tank. In contrast to this, the volume of the compression chamber 44 is increased so that air flows in via the sucking valve 50. When the pistons have reached the end of their path, the inlet valve 35 and the outlet valve 38 are closed and the inlet valve 36 and the outlet valve 37 are opened. Pressurized steam now flows from the evaporator 10 via the tube 12 into the working chamber 34. The pressure generates a force on the working piston 32, which forces the working piston and with it also the two compressor pistons 40 and 42 according to the view according to FIG. 1 moved to the left. By means of the compressor piston 40, the compressor chamber 44 is reduced and the air previously sucked in is compressed and displaced via the pressure valve 52 into the pipe 17 and further into the compressed air tank. In contrast, the volume of the compression chamber 46 is increased so that 54 flows in through the sucking valve. The cycle described is repeated until the alternating opening and closing of valves 35, 36, 37 and 38 is omitted and at least the two inlet valves 35 and 36 are closed at the same time.
Der doppeltwirkende Kompressor 13 gemäß Figur 2 hat ein druckfestes Gehäuse 60 mit einem mittleren Gehäuseteil 61 und mit zwei bezüglich des mittleren Gehäuseteils 61 spie gelbildlich angeordneten seitlichen Gehäuseteilen 62 und 63, deren Durchmesser größer ist als der Durchmesser des mittleren Gehäuseteils 61. Die Gehäuseteile 62 und 63 setzen sich jeweils aus einem Boden 64 und einem Deckel 65 zusammen. Der durch Boden und Deckel gebildete, im Querschnitt kreisrunde Innenraum des Gehäuseteils 62 wird durch eine kreis runde Membran 66, die zum Beispiel aus Teflon, einem Thermoplast oder Gummi bestehen kann, in eine an das mittlere Gehäuseteil 61 angrenzende Arbeitskammer 67 und in eine außen liegende Verdichterkammer 68 aufgeteilt. Der durch Boden und Deckel gebildete, kreisrunde Innenraum des Gehäuseteils 63 wird durch eine kreisrunde Membran 69, die gleich wie die Membran 66 ausgebildet ist, in eine an das mittlere Gehäuseteil 61 angren zende Arbeitskammer 70 und in eine außen liegende Verdichterkammer 71 aufgeteilt. Die Membran 66 ist mit ihrem Außenrand zwischen dem Deckel und dem Boden des Gehäuse teils 62 eingeklemmt. Die Membran 69 ist mit ihrem Außenrand zwischen dem Deckel und dem Boden des Gehäuseteils 63 eingeklemmt. Durch die jeweilige Membran ist somit auch die Trennfuge zwischen dem Boden und dem Deckel eines seitlichen Gehäuseteils abge dichtet. In ihrer Mitte sind die beiden Membrane 66 und 69 jeweils zwischen zwei Klemmtel lern 72 eingeklemmt, die auf einer Kolbenstange 73 gehalten sind, die durch das mittlere Gehäuseteil 61 hindurchgeht und darin in ihrer Längsrichtung dicht gleitend geführt ist. Eine
Bewegung der einen Membran überträgt sich über die Kolbenstange 73 auf die andere Membran. The double-acting compressor 13 according to FIG. 2 has a pressure-resistant housing 60 with a central housing part 61 and with two lateral housing parts 62 and 63 arranged in a mirror image with respect to the central housing part 61, the diameter of which is larger than the diameter of the central housing part 61. The housing parts 62 and 63 each consist of a bottom 64 and a cover 65. The interior of the housing part 62, which is formed by the bottom and cover and is circular in cross section, is inserted into a working chamber 67 adjoining the central housing part 61 and into an outer chamber by a circular membrane 66, which can be made of Teflon, a thermoplastic or rubber, for example Compressor chamber 68 divided. The circular interior formed by the bottom and cover of the housing part 63 is divided by a circular membrane 69, which is the same as the membrane 66, into a working chamber 70 adjacent to the central housing part 61 and into an external compression chamber 71. The membrane 66 is clamped with its outer edge between the lid and the bottom of the housing part 62. The membrane 69 is clamped with its outer edge between the lid and the bottom of the housing part 63. Through the respective membrane, the parting line between the bottom and the cover of a side housing part is thus sealed. In the middle, the two diaphragms 66 and 69 are each clamped between two learning clamps 72, which are held on a piston rod 73 which passes through the central housing part 61 and is guided therein in a sliding manner in its longitudinal direction. A Movement of one membrane is transmitted to the other membrane via the piston rod 73.
Wie bei dem Kompressor 13 gemäß Figur 1 ist die Arbeitskammer 67 über ein Zulaufventil 35, das in einer Stellung geschlossen und in einer zweiten Stellung geöffnet ist und das zum Beispiel elektromagnetisch von einer Stellung, die es unter der Wirkung einer Feder ein nimmt, in die andere Stellung betätigbar ist, an einen im Gehäuse 60 verlaufenden Kanal angeschlossen, der mit dem Rohr 12 verbunden ist. Die Arbeitskammer 70 ist über ein Zu laufventil 36, das genauso wie das Zulaufventil 35 ausgebildet ist, an den mit dem Rohr 12 verbundenen Kanal angeschlossen. Die Arbeitskammer 67 ist außerdem über ein Ablaufven til 37, das in einer Stellung geschlossen und in einer zweiten Stellung geöffnet ist und das zum Beispiel elektromagnetisch von einer Stellung, die es unter der Wirkung einer Feder einnimmt, in die andere Stellung betätigbar ist, an einen im Gehäuse 30 verlaufenden Kanal angeschlossen, der mit dem Rohr 14 verbunden ist. Die Arbeitskammer 70 ist außerdem über ein Ablaufventil 38, das genauso wie das Ablaufventil 37 ausgebildet ist, mit dem mit dem Rohr 14 verbundenen Kanal angeschlossen. As with the compressor 13 according to FIG. 1, the working chamber 67 is via an inlet valve 35 which is closed in one position and opened in a second position and which is, for example, electromagnetically from a position which it takes up under the action of a spring into the other position is operable, connected to a channel running in the housing 60, which is connected to the tube 12. The working chamber 70 is connected via a flow valve 36, which is designed in the same way as the inlet valve 35, to the channel connected to the tube 12. The working chamber 67 is also via a drain valve 37, which is closed in one position and opened in a second position and which can be actuated, for example, electromagnetically from a position which it assumes under the action of a spring into the other position, to one in the housing 30 extending channel connected to the tube 14. The working chamber 70 is also connected to the channel connected to the pipe 14 via a drain valve 38, which is designed in exactly the same way as the drain valve 37.
Die Verdichterkammer 68 ist über ein Säugventil 50, das als zu ihr hin öffnendes Rück schlagventil ausgebildet ist, mit einem Lufteinlasskanal 51, und über ein Druckventil 52, das als zu ihr hin sperrendes Rückschlagventil ausgebildet ist, mit einem Luftauslasskanal 53 verbunden, an den das Rohr 14 angeschlossen ist. Die Verdichterkammer 71 ist über ein Säugventil 54, das als zu ihr hin öffnendes Rückschlagventil ausgebildet ist, mit dem Luftein lasskanal 51, und über ein Druckventil 55, das als zu ihr hin sperrendes Rückschlagventil ausgebildet ist, mit dem Luftauslasskanal 53 verbunden. The compression chamber 68 is connected via a sucking valve 50, which is designed as a check valve opening towards it, with an air inlet channel 51, and via a pressure valve 52, which is designed as a check valve, which blocks it, with an air outlet channel 53, to which the Tube 14 is connected. The compressor chamber 71 is connected to the air inlet channel 51 via a sucking valve 54, which is designed as a check valve opening towards it, and via a pressure valve 55, which is designed as a check valve which blocks it, with the air outlet channel 53.
Auch der Kompressor 13 gemäß Figur 2 steht still, wenn die beiden Zulaufventile 35 und 36 und die beiden Ablaufventile 37 und 38 geschlossen sind. The compressor 13 according to FIG. 2 is also at a standstill when the two inlet valves 35 and 36 and the two outlet valves 37 and 38 are closed.
Werden nun das der Arbeitskammer 70 zugehörige Zulaufventil 35 und das der Arbeitskam mer 67 zugehörige Ablaufventil 38 geöffnet, so strömt unter Druck stehender Dampf aus dem Verdampfer 10 und dem Rohr 12 in die Arbeitskammer 70 hinein. Durch den Druck wird an der Membran 69 eine Kraft erzeugt, die die Membran 69 nach außen drückt und nach außen bewegt, so dass sich das Volumen der Arbeitskammer 70 vergrößert und das Volu men der Verdichterkammer 71 verkleinert. Die Kolbenstange 73 bewegt sich gemäß der An-
sicht gemäß Figur 2 nach rechts und bewegt die Membran 66 nach innen, so dass sich das Volumen der Arbeitskammer 67 verkleinert und das Volumen der Verdichterkammer 68 ver größert. Somit wird aus der Verdichterkammer 71 über das Druckventil 55 Luft in das Rohr 17 und weiter in den Druckluftbehälter verdrängt. In die sich vergrößernde Verdichterkammer 68 strömt über das Säugventil 50 Luft ein. Sind die Membrane 66 und 69 am Ende ihresIf the inlet valve 35 belonging to the working chamber 70 and the outlet valve 38 belonging to the working chamber 67 are opened, pressurized steam flows from the evaporator 10 and the tube 12 into the working chamber 70. A pressure is generated on the membrane 69 by the pressure, which pushes the membrane 69 outward and moves it outward, so that the volume of the working chamber 70 increases and the volume of the compression chamber 71 decreases. The piston rod 73 moves according to the View to the right according to FIG. 2 and moves the membrane 66 inwards, so that the volume of the working chamber 67 is reduced and the volume of the compressor chamber 68 is increased. Air is thus displaced from the compression chamber 71 via the pressure valve 55 into the pipe 17 and further into the compressed air tank. Air flows into the enlarging compressor chamber 68 via the sucking valve 50. Are the membranes 66 and 69 at the end of theirs
Weges angelangt, so werden das Zulaufventil 35 und das Ablaufventil 38 geschlossen und das Zulaufventil 36 und das Ablaufventil 37 geöffnet. Unter Druck stehender Dampf strömt nun aus dem Verdampfer 10 über das Rohr 12 in die Arbeitskammer 67. Durch den Druck wird an der Membran 66 eine Kraft erzeugt, die die Membran 66 nach außen drückt und nach außen bewegt, so dass sich das Volumen der Arbeitskammer 67 vergrößert und das Volumen der Verdichterkammer 68 verkleinert. Die Kolbenstange 73 bewegt sich gemäß der Ansicht gemäß Figur 2 nach links und bewegt die Membran 69 nach innen, so dass sich das Volumen der Arbeitskammer 70 verkleinert und das Volumen der Verdichterkammer 71 ver größert. Somit wird aus der Verdichterkammer 68 über das Druckventil 52 Luft in das Rohr 17 und weiter in den Druckluftbehälter verdrängt. In die sich vergrößernde VerdichterkammerOn the way, the inlet valve 35 and the outlet valve 38 are closed and the inlet valve 36 and the outlet valve 37 are opened. Pressurized steam now flows from the evaporator 10 via the pipe 12 into the working chamber 67. The pressure creates a force on the membrane 66 which pushes the membrane 66 outwards and moves it outwards, so that the volume of the working chamber moves 67 increased and the volume of the compression chamber 68 reduced. The piston rod 73 moves according to the view according to FIG. 2 to the left and moves the membrane 69 inwards, so that the volume of the working chamber 70 is reduced and the volume of the compression chamber 71 is increased. Air is thus displaced from the compression chamber 68 via the pressure valve 52 into the pipe 17 and further into the compressed air tank. In the expanding compression chamber
71 strömt über das Säugventil 54 Luft ein. 71 flows in via the sucking valve 54.
Der beschriebene Zyklus wiederholt sich solange, bis das abwechselnde Öffnen und Schlie ßen der Ventile 35, 36, 37 und 38 unterbleibt und zumindest die beiden Zulaufventile 35 und 36 gleichzeitig geschlossen sind.
The cycle described is repeated until the alternate opening and closing of the valves 35, 36, 37 and 38 is omitted and at least the two inlet valves 35 and 36 are closed at the same time.
Bezugszeichenliste Reference list
10 Verdampfer 10 evaporators
11 Wärmequelle 11 heat source
12 Rohr 12 pipe
13 Kompressor 13 compressor
14 Rohr 14 pipe
15 Kondensor 15 condenser
16 Speisepumpe 16 feed pump
17 Rohrschlange 17 pipe coil
18 Vorwärmer 18 preheaters
19 Rohr 19 pipe
30 druckfestes Gehäuse von 13 30 flameproof housing from 13
31 mittleres Gehäuseteil31 middle housing part
32 Arbeitskolben 32 working pistons
33 erste Arbeitskammer 33 first working chamber
34 zweite Arbeitskammer34 second working chamber
35 Zulaufventil von 33 35 inlet valve of 33
36 Zulaufventil von 34 36 inlet valve from 34
37 Ablaufventil von 33 37 drain valve of 33
38 Ablaufventil von 34 38 drain valve from 34
39 seitliches Gehäuseteil 39 side housing part
40 Verdichterkolben 40 compressor pistons
41 seitliches Gehäuseteil 41 side housing part
42 Verdichterkolben 42 compressor pistons
43 Kolbenstange 43 piston rod
44 Verdichterkammer 44 compression chamber
45 Kammer 45 chamber
46 Verdichterkammer 46 compression chamber
47 Kammer 47 chamber
50 Säugventil 50 nursing valve
51 Lufteinlasskanal 51 air intake duct
52 Druckventil 52 pressure valve
53 Luftauslasskanal
54 Säugventil 53 air outlet duct 54 nursing valve
55 Druckventil 55 pressure valve
60 druckfestes Gehäuse 61 mittleres Gehäuseteil von 60 62 seitliches Gehäuseteil von 6060 pressure-resistant housing 61 middle housing part from 60 62 side housing part from 60
63 seitliches Gehäuseteil von 6063 side housing part of 60
64 Boden von 62, 63 64 bottom of 62, 63
65 Deckel von 62, 63 65 covers of 62, 63
66 Membran 66 membrane
67 Arbeitskammer 67 Chamber of Labor
68 Verdichterkammer 68 compression chamber
69 Membran 69 membrane
70 Arbeitskammer 70 working chamber
71 Verdichterkammer 71 compression chamber
72 Klemmteller 72 clamping plates
73 Kolbenstange
73 piston rod
Claims
1. Thermodynamischer Kreisprozess zur Erzeugung von Druckluft mit einem Verdampfer, in dem ein Arbeitsmedium in flüssiger Phase und in Dampfphase vorliegt, mit einem dampfbetriebenen Kompressor (13), dem das Arbeitsmedium als Dampf vom Ver dampfer (10) her zuströmt, mit einem Kondensor (15) zur Abkühlung und Verflüssigung des Arbeitsmediums nach dem Verlassen des Kompressors (13) und mit einer Speisepumpe (16), die das im Kondensor (15) verflüssigte Arbeitsmedium zurück zum Verdampfer (10) fördert, dadurch gekennzeichnet, dass zwischen dem Kondensor (15) und dem Verdampfer (10) ein Vorwärmer (18) angeordnet ist, in dem eine Wärmeübertragung von der vom Kom pressor (13) erzeugten Druckluft und dem flüssigen Arbeitsmedium stattfindet. 1. Thermodynamic cycle for producing compressed air with an evaporator, in which a working medium is in the liquid phase and in the vapor phase, with a steam-operated compressor (13), to which the working medium flows as steam from the evaporator (10), with a condenser ( 15) for cooling and liquefying the working medium after leaving the compressor (13) and with a feed pump (16) which conveys the working medium liquefied in the condenser (15) back to the evaporator (10), characterized in that between the condenser (15 ) and the evaporator (10) a preheater (18) is arranged in which a heat transfer from the compressor (13) generated by the compressed air and the liquid working medium takes place.
2. Thermodynamischer Kreisprozess nach Patentanspruch 1, wobei das Ar beitsmedium ein hochmolekulares organisches Arbeitsmedium ist, dessen Siedepunkt nied riger ist als der Siedepunkt von Wasser. 2. Thermodynamic cycle according to claim 1, wherein the Ar beitsmedium is a high molecular weight organic working medium whose boiling point is lower than the boiling point of water.
3. Thermodynamischer Kreisprozess nach einem vorhergehenden Patentan spruch, wobei das Arbeitsmedium im Verdampfer (10) durch Abwärme aus einem industriel len Prozess erwärmt und verdampft wird. 3. Thermodynamic cycle according to a preceding patent claim, the working medium in the evaporator (10) being heated and evaporated by waste heat from an industrial process.
4. Thermodynamischer Kreisprozess nach einem vorhergehenden Patentan spruch, wobei der Vorwärmer (18) zwischen der Speisepumpe (16) und dem Verdampfer (10) angeordnet ist. 4. Thermodynamic cycle according to a preceding patent claim, wherein the preheater (18) between the feed pump (16) and the evaporator (10) is arranged.
5. Thermodynamischer Kreisprozess nach einem vorhergehenden Patentan spruch, wobei der Vorwärmer eine Rohrschlange enthält, durch die das Arbeitsmedium fließt und die von der Druckluft umspült ist. 5. Thermodynamic cycle according to a previous patent claim, wherein the preheater contains a coil through which the working medium flows and which is surrounded by the compressed air.
6. Thermodynamischer Kreisprozess nach einem vorhergehenden Patentan spruch, wobei der Kompressor ein doppeltwirkender Kompressor (13) mit mehreren relativ zu einem Gehäuse (30; 60) gemeinsam geradlinig bewegbaren Kolben (32, 40, 42; 66, 69) ist.
6. Thermodynamic cycle according to a preceding patent claim, wherein the compressor is a double-acting compressor (13) with a plurality of pistons (32, 40, 42; 66, 69) that can be moved together in a straight line relative to a housing (30; 60).
7. Thermodynamischer Kreisprozess nach Patentanspruch 6, wobei die Kolben des Kompressors (13) formfeste Kolben (32, 40, 42) sind. 7. Thermodynamic cycle according to claim 6, wherein the pistons of the compressor (13) are rigid pistons (32, 40, 42).
8. Thermodynamischer Kreisprozess nach Patentanspruch 6, wobei die Kolben des Kompressors (13) verformbare Membrane (66,69) sind
8. Thermodynamic cycle according to claim 6, wherein the pistons of the compressor (13) are deformable membrane (66,69)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018222245.2 | 2018-12-19 | ||
DE102018222245.2A DE102018222245A1 (en) | 2018-12-19 | 2018-12-19 | Thermodynamic cycle for the generation of compressed air |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020126837A1 true WO2020126837A1 (en) | 2020-06-25 |
Family
ID=69005718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2019/084932 WO2020126837A1 (en) | 2018-12-19 | 2019-12-12 | Thermodynamic cycle for producing compressed air |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102018222245A1 (en) |
WO (1) | WO2020126837A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989008188A1 (en) | 1988-03-03 | 1989-09-08 | James Roderic Robertson | Linear reciprocating compressor |
EP2410153A2 (en) * | 2010-07-23 | 2012-01-25 | General Electric Company | A hybrid power generation system and a method thereof |
DE102012220188A1 (en) * | 2012-11-06 | 2014-05-08 | Siemens Aktiengesellschaft | Integrated ORC process on intercooled compressors to increase efficiency and reduce required drive power by utilizing waste heat |
WO2014103977A1 (en) * | 2012-12-27 | 2014-07-03 | 株式会社 豊田自動織機 | Waste heat utilization device for internal combustion engine |
DE102016218764A1 (en) * | 2016-09-28 | 2018-03-29 | Mahle International Gmbh | Internal combustion engine of a motor vehicle with a waste heat utilization device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4182127A (en) * | 1977-12-12 | 1980-01-08 | Johnson Robert H | Power recovery and feedback system |
DE102007006420A1 (en) * | 2007-02-05 | 2008-08-07 | Voith Patent Gmbh | Motor vehicle drive train of a motor vehicle with a compressed air system |
BE1023904B1 (en) * | 2015-09-08 | 2017-09-08 | Atlas Copco Airpower Naamloze Vennootschap | ORC for converting waste heat from a heat source into mechanical energy and compressor installation that uses such an ORC. |
-
2018
- 2018-12-19 DE DE102018222245.2A patent/DE102018222245A1/en not_active Ceased
-
2019
- 2019-12-12 WO PCT/EP2019/084932 patent/WO2020126837A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989008188A1 (en) | 1988-03-03 | 1989-09-08 | James Roderic Robertson | Linear reciprocating compressor |
EP2410153A2 (en) * | 2010-07-23 | 2012-01-25 | General Electric Company | A hybrid power generation system and a method thereof |
DE102012220188A1 (en) * | 2012-11-06 | 2014-05-08 | Siemens Aktiengesellschaft | Integrated ORC process on intercooled compressors to increase efficiency and reduce required drive power by utilizing waste heat |
WO2014103977A1 (en) * | 2012-12-27 | 2014-07-03 | 株式会社 豊田自動織機 | Waste heat utilization device for internal combustion engine |
DE102016218764A1 (en) * | 2016-09-28 | 2018-03-29 | Mahle International Gmbh | Internal combustion engine of a motor vehicle with a waste heat utilization device |
Also Published As
Publication number | Publication date |
---|---|
DE102018222245A1 (en) | 2020-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69228847T2 (en) | Fluid delivery and evaporation system | |
DE2225259C3 (en) | Shaft seal with sealing surfaces that slide on one another, in particular a mechanical seal | |
DE1282661B (en) | Device for generating cold | |
DE102010005232A1 (en) | Arrangement for converting thermal into motor energy | |
DE102011086476A1 (en) | High temperature heat pump and method of using a working medium in a high temperature heat pump | |
EP2977093A1 (en) | Method and device for separating carbon dioxide from a gas mixture | |
DE60202393T2 (en) | Double piston pump | |
CH667499A5 (en) | METHOD FOR CONVEYING AND COMPRESSING A GASEOUS MEDIUM AND DEVICE FOR IMPLEMENTING THE METHOD. | |
EP1812759B1 (en) | Combined piston-expander compressor | |
WO2020126837A1 (en) | Thermodynamic cycle for producing compressed air | |
DE102009053133A1 (en) | Piston compressor with idling valve | |
WO2014114659A1 (en) | Multi-stage piston compressor | |
DE2726674B1 (en) | Pressurized gas operated double diaphragm pump | |
DE102018222236A1 (en) | Steam powered double acting compressor | |
DE2261532A1 (en) | THROTTLE VALVE | |
DE102012004801A1 (en) | Arrangement for heat pump for heating heat transfer fluid, has condenser and sub-cooler to heat a heat transfer fluid flowing against working fluid flow direction, after fluid flows through flow path formed by de-heater and oil cooler | |
DE102007014724B3 (en) | Device for thermal sterilization of fluids e.g. water, comprises a heating chamber having inlet and outlet, a heat exchanger having heating and cooling sections, a mechanism enabling fluid flow, a movable closing unit, and a control valve | |
DE102019213748A1 (en) | System for generating compressed air | |
WO2013087600A2 (en) | Thermal device for generating mechanical and/or electrical energy | |
DE102019214110A1 (en) | Steam operated piston machine, in particular steam operated free piston machine | |
AT46101B (en) | Control for water column machines. | |
AT7135B (en) | Hydraulic drawing press. | |
AT519851B1 (en) | High pressure energy producer | |
DE202015007447U1 (en) | Low-temperature thermal power plant | |
AT42876B (en) | Pump driven by a piston engine with cock control. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19827671 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19827671 Country of ref document: EP Kind code of ref document: A1 |