WO2020126797A1 - Simulation du comportement thermique d'un dispositif à dégagement de chaleur - Google Patents
Simulation du comportement thermique d'un dispositif à dégagement de chaleur Download PDFInfo
- Publication number
- WO2020126797A1 WO2020126797A1 PCT/EP2019/084829 EP2019084829W WO2020126797A1 WO 2020126797 A1 WO2020126797 A1 WO 2020126797A1 EP 2019084829 W EP2019084829 W EP 2019084829W WO 2020126797 A1 WO2020126797 A1 WO 2020126797A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermal
- heat
- networks
- emitting device
- computer program
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/08—Thermal analysis or thermal optimisation
Definitions
- the present invention relates to a computer-implemented method for determining thermal resistances of a heat-emitting device as a function of the heat transfer coefficient, an associated simulation system, a computer program product, a computer-readable medium and an aircraft with a simulation system.
- Parameters such as power dissipation, heat sink geometry or the placement of electrical components influence the temperatures, heat flows and flow conditions in electrical systems. These in turn influence the expected life of the individual components. In order to determine these parameters or to simulate heat flows, complex tools for the calculation of temperature and currents have to be programmed.
- the Foster network If the thermal resistances and capacitance are connected in parallel in the model, this is called the Foster network. This is easy to describe mathematically. The heating and cooling of a heat source can usually be satisfactorily described in the case of a one-dimensional heat path. However, the individual R and C values of the Foster network do not correspond to the actual values of the individual layers of the heat-emitting device. This results from the fact that the individual capacities of the Foster network are not switched to ground, i.e. the environment.
- the Foster network In order not only to model the thermal resistance of the entire heat path, but also to work with the R and C values actually present in the electrical system, the Foster network must be transformed into a Cauer network. The Details of the transformation and its description are known for example from relevant standards.
- the time behavior of a one-dimensional heat path can be described in the Foster model with a sum of exponential functions.
- the system responds to a simple load profile P L with an exponential rise in temperature.
- a temporally different excitation than a load profile for example a sequence of rectangular pulses, can easily be represented by superimposing temporally offset load profiles with an adapted load P Li .
- P Li can also assume negative values.
- the challenge is to correctly map the real heat paths in the electrical system and their interaction in the model. Validation of the model by comparison with measurement results is mandatory. Numerical calculation methods are more precise than calculations with RC networks, but they are also slower. The numerical calculation of the cooling and cooling of complex electrical systems can still take several days. This precludes monitoring of electrical systems during operation in real time.
- the object of the invention is to improve the state of the art technology in such a way that monitoring and forecasting the thermal behavior of electrical systems is possible in real time and the information obtained can be used, for example, to adapt the operation.
- the invention is intended to be used in particular in electrical systems in aviation.
- One aspect of the invention is to extend the prior art by transforming the R and C values of the Cauer network back into another Foster network.
- the invention claims a computer-implemented method for determining thermal resistances of a heat-emitting device as a function of the heat transfer coefficient.
- the process includes the steps:
- the first Foster network can be determined on the basis of a thermal simulation but also on the basis of experimental measurements.
- the three different heat transfer coefficients can represent three different heat dissipation conditions of the heat-emitting device in the environment.
- a first Foster network and then a Cauer network are created for each individual heat transfer coefficient.
- the thermal resistances of the first Foster networks have no relation to the actual thermal resistances of the heat-emitting device.
- the first Foster network is therefore physically incorrect. That is why the first Foster networks are being converted into Cauer networks.
- the Cauer networks are physically correct and represent the actual thermal resistances of the heat-emitting device.
- the Cauer networks have the disadvantage of a complex calculation that takes long computing times. Therefore, the thermal resistances obtained from the Cauer networks are used to determine the heat transfer coefficient-dependent curves by curve fitting. These curve profiles can be used to determine target values of the thermal resistances by interpolation for a predefinable target heat transfer coefficient.
- the computer-implemented method for determining the thermal behavior of the heat-emitting device can be designed and include further steps: a) a refitting of the thermal resistance stands (R c , i) and associated thermal capacities (C c , i) of the Cauer networks in second Foster networks, the thermal resistances and thermal capacities of the second Foster networks (C F2 , ii / R F2 , ii ) are equal to the thermal resistances and thermal capacities of the Cauer networks (C c , ii, Rc, ii), except for the thermal capacity and the thermal resistance of the member responsible for cooling, the member responsible for cooling being determined by the heat transfer coefficient ( h) is determined, b) a determination of the complex thermal resistances in the second Foster networks and c) determining the zeitab dependent temperature curve on the skilletübergangskoeffi ⁇ coefficient determining boundary surface of the heat-emitting Vorrich processing by including the determined complex thermal resistances.
- the heat-emitting device is a power electronic system.
- the operation of the heat-emitting device is adapted from the determined temperature profile. This has the advantage that the operation reacts to the existing temperature profile of the heat-emitting device and failures or malfunctions can thus be avoided.
- the invention also claims a simulation system designed to determine the thermal behavior of the heat-emitting device by carrying out the method according to the invention.
- the invention also claims a computer program product comprising a computer program, the computer program being loadable into a memory device of a simulation system, the steps of an inventive method being carried out with the computer program when the computer program is executed on the simulation system.
- the invention also claims a computer-readable medium on which a computer program is stored, the computer program being loadable into a storage device of a simulation system, with the computer program carrying out the steps of a method according to the invention when the computer program is executed on the simulation system .
- the invention also claims an aircraft with a simulation system according to the invention and a heat-emitting device.
- Aircraft is understood to mean any type of flying means of transportation or transportation, be it manned or unmanned.
- the aircraft according to the invention has an electric or hybrid-electric flight drive.
- the air vehicle according to the invention is an aircraft.
- the invention has the further advantage that the method and the simulation system can be transferred to a large number of further technical systems.
- Fig. 5 is a view of an aircraft.
- a heat transfer coefficient h in the unit [W / m 2 K] can be determined using a load profile P L.
- Fig. 2 shows a first Foster network with i thermal resistances of the first Foster network R Fi , i, i thermal capacities of the first Foster network C F i, i, a possible connection 6 to other components and a ground or an binding to the environment 7.
- the thermal resistances of the first Foster networks R FI , I have no relation to the actual thermal resistances R of the heat-emitting device 1.
- the first Foster network is therefore not physically correct. That is why the first Foster networks are being converted into Cauer networks.
- Fig. 3 shows a Cauer network with i thermal resistances of the Cauer network R c , i, i thermal capacities of the Cauer network C c , i, a possible connection 6 to other components and a grounding or connection to the environment
- the Cauer networks are physically correct and repre ⁇ animals, the actual thermal resistance R of the heat emitting device 1.
- the Cauer networks have but takes the disadvantage of a complex calculation, the long computing times in claim.
- the obtained from the Cauer networks ther mix resistors R c, i to R c, ii is equal to
- the thermal resistances and thermal capacities of the Cauer networks (C c , ii, Rc, i-i) (except the thermal capacitance and the thermal resistance of the member responsible for cooling are used) to the heat transfer coefficient shown in Fig. 4 ⁇ to determine the curve curves 8 as a function of the curve by adapting the curve.
- These curves 8 can be used to determine target values of the thermal resistances R z by interpolation for a predefinable target heat transfer coefficient h z .
- the temperature T (t) at an interface as a function of time t is as follows:
- FIG. 5 shows a view of an electric or hybrid electric aircraft, as an example of an aircraft 10, with a power electronic system 9 and an electric machine or a motor 12.
- the motor 12 rotates a propeller 11.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
La présente invention concerne un procédé mis en oeuvre par ordinateur permettant de déterminer des résistances thermiques (R) d'un dispositif à dégagement de chaleur (1) en fonction du coefficient de transfert de chaleur (h), un système de simulation associé, un produit-programme informatique, un support lisible par ordinateur et un aéronef (10).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018222473.0A DE102018222473A1 (de) | 2018-12-20 | 2018-12-20 | Simulation des thermischen Verhaltens einer wärmeabgebenden Vorrichtung |
DE102018222473.0 | 2018-12-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020126797A1 true WO2020126797A1 (fr) | 2020-06-25 |
Family
ID=69137840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2019/084829 WO2020126797A1 (fr) | 2018-12-20 | 2019-12-12 | Simulation du comportement thermique d'un dispositif à dégagement de chaleur |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102018222473A1 (fr) |
WO (1) | WO2020126797A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113484051A (zh) * | 2021-06-03 | 2021-10-08 | 中国科学技术大学 | 一种机载系统实时热等效模拟方法及系统 |
-
2018
- 2018-12-20 DE DE102018222473.0A patent/DE102018222473A1/de not_active Withdrawn
-
2019
- 2019-12-12 WO PCT/EP2019/084829 patent/WO2020126797A1/fr active Application Filing
Non-Patent Citations (2)
Title |
---|
PAOLO EMILIO BAGNOLI ET AL: "Thermal Resistance Analysis by Induced Transient (TRAIT) Method for Power Electronic Devices Thermal Characterization-Part I: Fundamentals and Theory", IEEE TRANSACTIONS ON POWER ELECTRONICS, INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, USA, vol. 13, no. 6, 1 November 1998 (1998-11-01), XP011043229, ISSN: 0885-8993 * |
SHWETA NATARAJAN ET AL: "Measuring the Thermal Resistance in Light Emitting Diodes Using a Transient Thermal Analysis Technique", IEEE TRANSACTIONS ON ELECTRON DEVICES, IEEE SERVICE CENTER, PISACATAWAY, NJ, US, vol. 60, no. 8, 1 August 2013 (2013-08-01), pages 2548 - 2555, XP011520753, ISSN: 0018-9383, DOI: 10.1109/TED.2013.2271485 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113484051A (zh) * | 2021-06-03 | 2021-10-08 | 中国科学技术大学 | 一种机载系统实时热等效模拟方法及系统 |
CN113484051B (zh) * | 2021-06-03 | 2022-04-01 | 中国科学技术大学 | 一种机载系统实时热等效模拟方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
DE102018222473A1 (de) | 2020-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2700124B1 (fr) | Procédé et dispositif pour déterminer la température interne d'un accumulateur d'énergie | |
DE60007772T2 (de) | Rekursive zustandsschätzung durch matrixfaktorisierung | |
EP1078433A1 (fr) | Dispositif et procede permettant de determiner des grandeurs d'etat | |
DE112005001748T5 (de) | Ein System und Verfahren zum Überwachen der Leistung eines Wärmetauschers | |
DE112012006178B4 (de) | Parametereinstellvorrichtung | |
DE102005055333B4 (de) | Verfahren zur Leistungsbewertung von Wärmetauschern | |
WO2019149324A1 (fr) | Procédé de détermination d'états de fonctionnement d'un ventilateur | |
WO2020126797A1 (fr) | Simulation du comportement thermique d'un dispositif à dégagement de chaleur | |
EP4088077B1 (fr) | Procédé et dispositif de détermination de l'encrassement dans un échangeur de chaleur | |
EP4295258A1 (fr) | Procédé de détermination de l'état de charge d'une mémoire à changement de phase | |
EP2013727A1 (fr) | Procede pour analyse d'arborescence de defaillances | |
EP3599583A1 (fr) | Détermination de la consommation de l'énergie de chauffage ou de refroidissement d'une sous-unité de construction | |
DE3529257A1 (de) | Verfahren und anordnung zur ermittlung der waermeabgabe von heizflaechen einer heizungsanlage | |
DE102020116218A1 (de) | Verfahren und Vorrichtung zum Betreiben eines technischen Systems | |
WO2017190956A1 (fr) | Procédé de détermination d'un modèle | |
EP2057420B1 (fr) | Procédé pour exécuter une analyse de réseau de tuyauterie dans un réseau de tuyauterie | |
DE102019209561A1 (de) | Verfahren und Vorrichtung zum Optimieren eines Leiterplattenmaterials für die Herstellung einer Leiterplatte mithilfe eines Bayes`schen Optimierungsprozesses | |
DE102015226076A1 (de) | Verfahren und Vorrichtung zum Bestimmen einer Temperatur einer Komponente in einem mechatronischem System | |
EP2591647B1 (fr) | Dispositif électronique doté d' un dispositif de refroidissement | |
DE112018001692T5 (de) | Informationsverarbeitungsvorrichtung, informationsverarbeitungsverfahren und programm | |
DE102013206274A1 (de) | Verfahren und Vorrichtung zum Anpassen eines nicht parametrischen Funktionsmodells | |
DE102018133080B3 (de) | Verfahren zur Ermittlung eines Erwartungswertes einer Nennleistung eines unbekannten Heizkörpers und eines Erwartungswertes mindestens eines thermischen Kopplungsparameters eines elektronischen Heizkostenverteilers auf dem unbekannten Heizkörper und Parametrierverfahren zur Parametrierung eines elektronischen Heizkostenverteilers | |
EP1916585A2 (fr) | Procédé et dispositif destinés à la production des caractéristiques de température et à leur linéarisation | |
WO2004040386A1 (fr) | Procede pour commander le mode de fonctionnement des installations d'une raffinerie ou d'un complexe industriel petrochimique | |
WO2022219104A1 (fr) | Analyse de cause d'anomalies pendant le fonctionnement d'un système technique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19832301 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19832301 Country of ref document: EP Kind code of ref document: A1 |