WO2020126797A1 - Simulation du comportement thermique d'un dispositif à dégagement de chaleur - Google Patents

Simulation du comportement thermique d'un dispositif à dégagement de chaleur Download PDF

Info

Publication number
WO2020126797A1
WO2020126797A1 PCT/EP2019/084829 EP2019084829W WO2020126797A1 WO 2020126797 A1 WO2020126797 A1 WO 2020126797A1 EP 2019084829 W EP2019084829 W EP 2019084829W WO 2020126797 A1 WO2020126797 A1 WO 2020126797A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal
heat
networks
emitting device
computer program
Prior art date
Application number
PCT/EP2019/084829
Other languages
German (de)
English (en)
Inventor
Philipp BAUERSCHMIDT
Antonio Zangaro
Original Assignee
Rolls-Royce Deutschland Ltd & Co Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls-Royce Deutschland Ltd & Co Kg filed Critical Rolls-Royce Deutschland Ltd & Co Kg
Publication of WO2020126797A1 publication Critical patent/WO2020126797A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation

Definitions

  • the present invention relates to a computer-implemented method for determining thermal resistances of a heat-emitting device as a function of the heat transfer coefficient, an associated simulation system, a computer program product, a computer-readable medium and an aircraft with a simulation system.
  • Parameters such as power dissipation, heat sink geometry or the placement of electrical components influence the temperatures, heat flows and flow conditions in electrical systems. These in turn influence the expected life of the individual components. In order to determine these parameters or to simulate heat flows, complex tools for the calculation of temperature and currents have to be programmed.
  • the Foster network If the thermal resistances and capacitance are connected in parallel in the model, this is called the Foster network. This is easy to describe mathematically. The heating and cooling of a heat source can usually be satisfactorily described in the case of a one-dimensional heat path. However, the individual R and C values of the Foster network do not correspond to the actual values of the individual layers of the heat-emitting device. This results from the fact that the individual capacities of the Foster network are not switched to ground, i.e. the environment.
  • the Foster network In order not only to model the thermal resistance of the entire heat path, but also to work with the R and C values actually present in the electrical system, the Foster network must be transformed into a Cauer network. The Details of the transformation and its description are known for example from relevant standards.
  • the time behavior of a one-dimensional heat path can be described in the Foster model with a sum of exponential functions.
  • the system responds to a simple load profile P L with an exponential rise in temperature.
  • a temporally different excitation than a load profile for example a sequence of rectangular pulses, can easily be represented by superimposing temporally offset load profiles with an adapted load P Li .
  • P Li can also assume negative values.
  • the challenge is to correctly map the real heat paths in the electrical system and their interaction in the model. Validation of the model by comparison with measurement results is mandatory. Numerical calculation methods are more precise than calculations with RC networks, but they are also slower. The numerical calculation of the cooling and cooling of complex electrical systems can still take several days. This precludes monitoring of electrical systems during operation in real time.
  • the object of the invention is to improve the state of the art technology in such a way that monitoring and forecasting the thermal behavior of electrical systems is possible in real time and the information obtained can be used, for example, to adapt the operation.
  • the invention is intended to be used in particular in electrical systems in aviation.
  • One aspect of the invention is to extend the prior art by transforming the R and C values of the Cauer network back into another Foster network.
  • the invention claims a computer-implemented method for determining thermal resistances of a heat-emitting device as a function of the heat transfer coefficient.
  • the process includes the steps:
  • the first Foster network can be determined on the basis of a thermal simulation but also on the basis of experimental measurements.
  • the three different heat transfer coefficients can represent three different heat dissipation conditions of the heat-emitting device in the environment.
  • a first Foster network and then a Cauer network are created for each individual heat transfer coefficient.
  • the thermal resistances of the first Foster networks have no relation to the actual thermal resistances of the heat-emitting device.
  • the first Foster network is therefore physically incorrect. That is why the first Foster networks are being converted into Cauer networks.
  • the Cauer networks are physically correct and represent the actual thermal resistances of the heat-emitting device.
  • the Cauer networks have the disadvantage of a complex calculation that takes long computing times. Therefore, the thermal resistances obtained from the Cauer networks are used to determine the heat transfer coefficient-dependent curves by curve fitting. These curve profiles can be used to determine target values of the thermal resistances by interpolation for a predefinable target heat transfer coefficient.
  • the computer-implemented method for determining the thermal behavior of the heat-emitting device can be designed and include further steps: a) a refitting of the thermal resistance stands (R c , i) and associated thermal capacities (C c , i) of the Cauer networks in second Foster networks, the thermal resistances and thermal capacities of the second Foster networks (C F2 , ii / R F2 , ii ) are equal to the thermal resistances and thermal capacities of the Cauer networks (C c , ii, Rc, ii), except for the thermal capacity and the thermal resistance of the member responsible for cooling, the member responsible for cooling being determined by the heat transfer coefficient ( h) is determined, b) a determination of the complex thermal resistances in the second Foster networks and c) determining the zeitab dependent temperature curve on the skilletübergangskoeffi ⁇ coefficient determining boundary surface of the heat-emitting Vorrich processing by including the determined complex thermal resistances.
  • the heat-emitting device is a power electronic system.
  • the operation of the heat-emitting device is adapted from the determined temperature profile. This has the advantage that the operation reacts to the existing temperature profile of the heat-emitting device and failures or malfunctions can thus be avoided.
  • the invention also claims a simulation system designed to determine the thermal behavior of the heat-emitting device by carrying out the method according to the invention.
  • the invention also claims a computer program product comprising a computer program, the computer program being loadable into a memory device of a simulation system, the steps of an inventive method being carried out with the computer program when the computer program is executed on the simulation system.
  • the invention also claims a computer-readable medium on which a computer program is stored, the computer program being loadable into a storage device of a simulation system, with the computer program carrying out the steps of a method according to the invention when the computer program is executed on the simulation system .
  • the invention also claims an aircraft with a simulation system according to the invention and a heat-emitting device.
  • Aircraft is understood to mean any type of flying means of transportation or transportation, be it manned or unmanned.
  • the aircraft according to the invention has an electric or hybrid-electric flight drive.
  • the air vehicle according to the invention is an aircraft.
  • the invention has the further advantage that the method and the simulation system can be transferred to a large number of further technical systems.
  • Fig. 5 is a view of an aircraft.
  • a heat transfer coefficient h in the unit [W / m 2 K] can be determined using a load profile P L.
  • Fig. 2 shows a first Foster network with i thermal resistances of the first Foster network R Fi , i, i thermal capacities of the first Foster network C F i, i, a possible connection 6 to other components and a ground or an binding to the environment 7.
  • the thermal resistances of the first Foster networks R FI , I have no relation to the actual thermal resistances R of the heat-emitting device 1.
  • the first Foster network is therefore not physically correct. That is why the first Foster networks are being converted into Cauer networks.
  • Fig. 3 shows a Cauer network with i thermal resistances of the Cauer network R c , i, i thermal capacities of the Cauer network C c , i, a possible connection 6 to other components and a grounding or connection to the environment
  • the Cauer networks are physically correct and repre ⁇ animals, the actual thermal resistance R of the heat emitting device 1.
  • the Cauer networks have but takes the disadvantage of a complex calculation, the long computing times in claim.
  • the obtained from the Cauer networks ther mix resistors R c, i to R c, ii is equal to
  • the thermal resistances and thermal capacities of the Cauer networks (C c , ii, Rc, i-i) (except the thermal capacitance and the thermal resistance of the member responsible for cooling are used) to the heat transfer coefficient shown in Fig. 4 ⁇ to determine the curve curves 8 as a function of the curve by adapting the curve.
  • These curves 8 can be used to determine target values of the thermal resistances R z by interpolation for a predefinable target heat transfer coefficient h z .
  • the temperature T (t) at an interface as a function of time t is as follows:
  • FIG. 5 shows a view of an electric or hybrid electric aircraft, as an example of an aircraft 10, with a power electronic system 9 and an electric machine or a motor 12.
  • the motor 12 rotates a propeller 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

La présente invention concerne un procédé mis en oeuvre par ordinateur permettant de déterminer des résistances thermiques (R) d'un dispositif à dégagement de chaleur (1) en fonction du coefficient de transfert de chaleur (h), un système de simulation associé, un produit-programme informatique, un support lisible par ordinateur et un aéronef (10).
PCT/EP2019/084829 2018-12-20 2019-12-12 Simulation du comportement thermique d'un dispositif à dégagement de chaleur WO2020126797A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018222473.0A DE102018222473A1 (de) 2018-12-20 2018-12-20 Simulation des thermischen Verhaltens einer wärmeabgebenden Vorrichtung
DE102018222473.0 2018-12-20

Publications (1)

Publication Number Publication Date
WO2020126797A1 true WO2020126797A1 (fr) 2020-06-25

Family

ID=69137840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/084829 WO2020126797A1 (fr) 2018-12-20 2019-12-12 Simulation du comportement thermique d'un dispositif à dégagement de chaleur

Country Status (2)

Country Link
DE (1) DE102018222473A1 (fr)
WO (1) WO2020126797A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113484051A (zh) * 2021-06-03 2021-10-08 中国科学技术大学 一种机载系统实时热等效模拟方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PAOLO EMILIO BAGNOLI ET AL: "Thermal Resistance Analysis by Induced Transient (TRAIT) Method for Power Electronic Devices Thermal Characterization-Part I: Fundamentals and Theory", IEEE TRANSACTIONS ON POWER ELECTRONICS, INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, USA, vol. 13, no. 6, 1 November 1998 (1998-11-01), XP011043229, ISSN: 0885-8993 *
SHWETA NATARAJAN ET AL: "Measuring the Thermal Resistance in Light Emitting Diodes Using a Transient Thermal Analysis Technique", IEEE TRANSACTIONS ON ELECTRON DEVICES, IEEE SERVICE CENTER, PISACATAWAY, NJ, US, vol. 60, no. 8, 1 August 2013 (2013-08-01), pages 2548 - 2555, XP011520753, ISSN: 0018-9383, DOI: 10.1109/TED.2013.2271485 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113484051A (zh) * 2021-06-03 2021-10-08 中国科学技术大学 一种机载系统实时热等效模拟方法及系统
CN113484051B (zh) * 2021-06-03 2022-04-01 中国科学技术大学 一种机载系统实时热等效模拟方法及系统

Also Published As

Publication number Publication date
DE102018222473A1 (de) 2020-06-25

Similar Documents

Publication Publication Date Title
EP2700124B1 (fr) Procédé et dispositif pour déterminer la température interne d'un accumulateur d'énergie
DE60007772T2 (de) Rekursive zustandsschätzung durch matrixfaktorisierung
EP1078433A1 (fr) Dispositif et procede permettant de determiner des grandeurs d'etat
DE112005001748T5 (de) Ein System und Verfahren zum Überwachen der Leistung eines Wärmetauschers
DE112012006178B4 (de) Parametereinstellvorrichtung
DE102005055333B4 (de) Verfahren zur Leistungsbewertung von Wärmetauschern
WO2019149324A1 (fr) Procédé de détermination d'états de fonctionnement d'un ventilateur
WO2020126797A1 (fr) Simulation du comportement thermique d'un dispositif à dégagement de chaleur
EP4088077B1 (fr) Procédé et dispositif de détermination de l'encrassement dans un échangeur de chaleur
EP4295258A1 (fr) Procédé de détermination de l'état de charge d'une mémoire à changement de phase
EP2013727A1 (fr) Procede pour analyse d'arborescence de defaillances
EP3599583A1 (fr) Détermination de la consommation de l'énergie de chauffage ou de refroidissement d'une sous-unité de construction
DE3529257A1 (de) Verfahren und anordnung zur ermittlung der waermeabgabe von heizflaechen einer heizungsanlage
DE102020116218A1 (de) Verfahren und Vorrichtung zum Betreiben eines technischen Systems
WO2017190956A1 (fr) Procédé de détermination d'un modèle
EP2057420B1 (fr) Procédé pour exécuter une analyse de réseau de tuyauterie dans un réseau de tuyauterie
DE102019209561A1 (de) Verfahren und Vorrichtung zum Optimieren eines Leiterplattenmaterials für die Herstellung einer Leiterplatte mithilfe eines Bayes`schen Optimierungsprozesses
DE102015226076A1 (de) Verfahren und Vorrichtung zum Bestimmen einer Temperatur einer Komponente in einem mechatronischem System
EP2591647B1 (fr) Dispositif électronique doté d' un dispositif de refroidissement
DE112018001692T5 (de) Informationsverarbeitungsvorrichtung, informationsverarbeitungsverfahren und programm
DE102013206274A1 (de) Verfahren und Vorrichtung zum Anpassen eines nicht parametrischen Funktionsmodells
DE102018133080B3 (de) Verfahren zur Ermittlung eines Erwartungswertes einer Nennleistung eines unbekannten Heizkörpers und eines Erwartungswertes mindestens eines thermischen Kopplungsparameters eines elektronischen Heizkostenverteilers auf dem unbekannten Heizkörper und Parametrierverfahren zur Parametrierung eines elektronischen Heizkostenverteilers
EP1916585A2 (fr) Procédé et dispositif destinés à la production des caractéristiques de température et à leur linéarisation
WO2004040386A1 (fr) Procede pour commander le mode de fonctionnement des installations d'une raffinerie ou d'un complexe industriel petrochimique
WO2022219104A1 (fr) Analyse de cause d'anomalies pendant le fonctionnement d'un système technique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19832301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19832301

Country of ref document: EP

Kind code of ref document: A1