WO2020125272A1 - 压力检测装置、屏幕组件及移动终端 - Google Patents

压力检测装置、屏幕组件及移动终端 Download PDF

Info

Publication number
WO2020125272A1
WO2020125272A1 PCT/CN2019/117448 CN2019117448W WO2020125272A1 WO 2020125272 A1 WO2020125272 A1 WO 2020125272A1 CN 2019117448 W CN2019117448 W CN 2019117448W WO 2020125272 A1 WO2020125272 A1 WO 2020125272A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
frequency
pressure detection
detection device
Prior art date
Application number
PCT/CN2019/117448
Other languages
English (en)
French (fr)
Inventor
郭阳
李奎
谢长虹
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2021535026A priority Critical patent/JP7258148B2/ja
Priority to KR1020217021972A priority patent/KR102552626B1/ko
Priority to EP19897576.5A priority patent/EP3901744B1/en
Priority to ES19897576T priority patent/ES2964550T3/es
Publication of WO2020125272A1 publication Critical patent/WO2020125272A1/zh
Priority to US17/347,381 priority patent/US11720209B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0266Details of the structure or mounting of specific components for a display module assembly
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0056Means for improving the coupling-out of light from the light guide for producing polarisation effects, e.g. by a surface with polarizing properties or by an additional polarizing elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04106Multi-sensing digitiser, i.e. digitiser using at least two different sensing technologies simultaneously or alternatively, e.g. for detecting pen and finger, for saving power or for improving position detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/22Details of telephonic subscriber devices including a touch pad, a touch sensor or a touch detector

Definitions

  • the present disclosure relates to the field of electronic technology, in particular to a pressure detection device, a screen assembly, and a mobile terminal.
  • touch screen technology simplifies the operation process of electronic products, and has a better user experience.
  • infrared emission and reception matrices can be set in the X and Y directions of the screen, which can continuously emit infrared light to scan the screen.
  • the controller can obtain the position coordinates of the infrared light transmission disconnection by detecting the infrared light in the X and Y directions, so as to determine the pressing position of the user's finger.
  • infrared light is likely to cause problems such as reflection and refracted stray light.
  • the touch screen is insensitive to the user's operation and the user experience is poor.
  • An object of the embodiments of the present disclosure is to provide a pressure detection device, a screen assembly, and a mobile terminal to solve the problems of low flexibility of the touch screen and poor user experience in the related art.
  • a pressure detection device provided by an embodiment of the present disclosure includes a substrate, a light-conducting layer, a light-absorbing layer, and a photosensitive layer arranged in this order, and further includes a light source, wherein:
  • the light source may emit light of a first frequency, and the exit surface of the light source faces the light conducting layer;
  • the light-conducting layer scatters the light of the first frequency
  • the light absorption layer includes a container forming a closed space, and an absorption liquid filling the container, the absorption liquid absorbs at least a portion of the light of the first frequency, and at least one side of the container is an elastic surface;
  • the photosensitive surface of the photosensitive layer faces the light absorbing layer, and the photosensitive layer is used to detect the light of the first frequency passing through the light absorbing layer.
  • the light-conducting layer includes a reflective plate and a light guide plate, the reflective plate and the light guide plate are arranged in sequence, and the reflective plate is provided on one side of the substrate.
  • the pressure detection device further includes a light-shielding layer disposed on the back side of the photosensitive surface of the photosensitive layer.
  • the pressure detection device further includes a light processing assembly, the light processing assembly includes a refraction plate and a polarizing plate, the refraction plate is adjacent to the polarizing plate, and is disposed on the light conducting layer and the Between light absorbing layers.
  • the light processing assembly includes a refraction plate and a polarizing plate, the refraction plate is adjacent to the polarizing plate, and is disposed on the light conducting layer and the Between light absorbing layers.
  • the side of the container facing the light absorbing layer is an elastic surface
  • the side of the container facing the light source is an inelastic surface
  • the light transmittance of the container is higher than a predetermined light transmittance threshold.
  • the absorption liquid is used to absorb the light of the first frequency, and the absorption amount of the absorption liquid to the light of the first frequency is a positive distance from the passage of the light of the first frequency in the absorption liquid Related.
  • a detector and a plurality of photosensitive blocks are provided on the photosensitive layer, the plurality of photosensitive blocks are respectively connected to the detector, and the photosensitive blocks are used to detect the light of the light of the first frequency Strong, and convert the detected light intensity into current, the detector is used to determine the position of the photosensitive block corresponding to the change in light intensity based on the change in current.
  • the light shielding layer is used to block the passage of light in a predetermined frequency range.
  • the light shielding layer includes a base film and an antireflection film
  • the refractive index of the antireflection film is greater than the refractive index of the base film
  • the thickness of the antireflection film is within a predetermined thickness range
  • the base film It is provided on the upper layer of the photosensitive layer
  • the anti-reflection film is provided on the upper layer of the base film.
  • the thickness of the anti-reflection film is Odd times.
  • an embodiment of the present disclosure provides a screen assembly including the pressure detection device according to the first aspect above, the pressure detection device including at least two light sources, at least one of the at least two light sources The light source may emit light at the first frequency.
  • the pressure detection device includes a first light source and a second light source, wherein the first light source is used to emit visible light, and the second light source is used to emit invisible light at a first frequency.
  • an embodiment of the present disclosure provides a mobile terminal, including the screen component described in the second aspect above.
  • the pressure detection device provided by the embodiments of the present disclosure includes a substrate, a light-conducting layer, a light-absorbing layer, and a photosensitive layer arranged in this order, and also includes a light source, wherein: the light source can emit the first frequency Light, the exit surface of which faces the light-conducting layer.
  • the light-conducting layer scatters light at the first frequency.
  • the light-absorbing layer includes a container forming a closed space and an absorption liquid filling the container. The absorption liquid absorbs at least part of the light of the first frequency.
  • At least one side of the container is an elastic surface, and the photosensitive surface of the photosensitive layer faces the light absorbing layer.
  • the photosensitive layer is used to detect the first frequency light passing through the light absorbing layer. In this way, based on the structure of the pressure detecting device, light can pass through The conductive layer scatters the light source, and through the structure of the light-absorbing layer container and the absorption liquid, the sensitivity of light-based pressure detection can be improved and the user experience can be improved while ensuring the detection accuracy.
  • FIG. 1 is a schematic structural diagram of a pressure detection device of the present application
  • FIG. 2 is a schematic structural diagram of yet another pressure detection device of the present application.
  • FIG. 3 is a schematic structural diagram of a photosensitive layer of this application.
  • FIG. 4 is a schematic structural diagram of a photosensitive layer and a light-shielding layer of this application;
  • FIG. 5 is a schematic structural diagram of a light-shielding layer of the present application.
  • FIG. 6 is a flowchart of an embodiment of a pressure detection method according to this application.
  • FIG. 7 is a schematic diagram of a deformation of a receiving pressure in this application.
  • FIG. 8 is a flowchart of another embodiment of a pressure detection method according to this application.
  • 9 is a mobile terminal embodiment of the present application.
  • Embodiments of the present disclosure provide a pressure detection device, a screen assembly, and a mobile terminal.
  • the pressure detection device includes a substrate 200, a light-conducting layer 300, a light-absorbing layer 500, and a photosensitive layer 600 arranged in this order, and further includes a light source 100, in which:
  • the substrate 200 is located at the lowermost layer of the pressure detection device and can be used for bearing, fixing, power supply, and control.
  • the substrate 200 can be a glass plate, a metal plate, or a plastic plate, which is not limited in the embodiments of the present disclosure.
  • the light source 100 may be disposed outside the light conductive layer 300, and the exit surface of the light source 100 faces the light conductive layer 300.
  • the light source 100 may be composed of multiple white light sources and multiple infrared light sources.
  • the light source 100 may emit visible white light and the first frequency at the same time.
  • Light such as infrared light in a specific frequency range
  • the white light source can be provided by devices such as LEDs
  • the first frequency of light can be provided by devices such as infrared light emitters.
  • the light source 100 may be connected to a flexible printed circuit (FPC), and a substrate 200 may be disposed on one side of the light source 100 and the light-conducting layer 300.
  • FPC flexible printed circuit
  • the white light source and the infrared light source emitted by the light source 100 are point light sources, and the arrangement of multiple white light sources and infrared light sources can be various, for example, three white light sources and two infrared light sources are arranged in parallel, or one white light source and An infrared light source is arranged in parallel, and the specific light source arrangement may be different according to actual conditions, which is not limited in the embodiments of the present disclosure.
  • the two light sources After the light source 100 emits a white light source and light of a first frequency (such as an infrared light source), the two light sources enter the light conductive layer 300, and the light conductive layer 300 can convert the white light source and infrared light source emitted by the light source 100 from a point light source to a surface light source In order to reduce the difference in light intensity emitted from different regions of the light-conducting layer 300, the light-conducting layer 300 scatters the light of the first frequency.
  • a first frequency such as an infrared light source
  • a light-absorbing layer 500 may be provided on the other side of the light source 100 connected to the light-conducting layer 300.
  • the light of the first frequency passes through the light-conducting layer 300 After dispersion, it passes through the light absorbing layer 500 connected to the light source 100, and then reaches the photosensitive layer 600, wherein the light absorbing layer 500 may include a container 501 forming an enclosed space, and the container 501 may store the absorption liquid 502, the absorption liquid 502 has no absorption effect on the white light source.
  • the inelastic surface of the container 501 is connected to the light source 100.
  • Both sides of the container 501 have good light transmittance to ensure that the first frequency light reaches the inelastic surface of the container 501 After passing through the absorption liquid 502, the absorption liquid 502 passes through the elastic surface 5011 of the container and reaches the photosensitive layer 600.
  • the elastic surface 5011 of the container has high strength and is not easy to deform.
  • the elastic surface 5011 of the container also needs to have good elasticity. When receiving external pressure, the elastic surface 5011 of the container can be deformed due to force. After the external force is removed, the elastic surface 5011 of the container can immediately restore the original shape. At the same time, the elastic surface 5011 of the container also has good durability. Since the pressure detection device is mainly used to detect the first frequency that changes with the change of the external pressure Because of the intensity of light, the elastic surface 5011 of the container has good durability, so it will not reduce the light transmittance due to longer and more frequent pressing.
  • the container may include multiple sub-containers, and each sub-container is filled with an absorption liquid. It may have an elastic surface and an inelastic surface.
  • the container is composed of a plurality of sub-containers, the amount of absorption liquid in each sub-container is not too large, which is reduced by the influence of gravity, and the detection accuracy can be improved.
  • the absorption liquid 502 stored in the container 501 may be a liquid that has a certain absorption effect on light at a first frequency (such as a specific frequency f 0 ), wherein the light at the first frequency may be infrared at a frequency within a predetermined frequency range Light, the absorption liquid 502 does not absorb visible light, and does not affect the direction of light propagation.
  • a first frequency such as a specific frequency f 0
  • the absorption liquid 502 does not absorb visible light, and does not affect the direction of light propagation.
  • the photosensitive layer 600 may be a thin film that induces light of the first frequency
  • the photosensitive layer 600 can sense infrared light of a specific frequency or a frequency within a predetermined frequency range.
  • the photosensitive layer 600 has good elasticity, durability and light resistance.
  • the detection method of the light of the first frequency by the photosensitive layer 600 may have thermal effects and photoelectric effects, etc., wherein the light of the first frequency is detected by the resistance effect may be: when the light of the first frequency is irradiated to the photosensitive layer 600, the photosensitive layer 600 The material on the top absorbs light at the first frequency and causes a temperature rise, which causes a change in resistance, thereby achieving the purpose of detecting light at the first frequency; detecting light at the first frequency through the photoelectric effect can be: After the material absorbs the light of the first frequency, photoelectrons are generated due to the photoelectric effect, thereby forming a change in current, which achieves the purpose of detection.
  • there may be multiple detection methods which may be different according to specific application scenarios, which is not limited in the embodiments of the present disclosure.
  • the light source 100 may be composed of multiple white light sources and multiple infrared light sources.
  • the light transmission layer 300 may combine the white light source and the first light
  • the light of one frequency is converted from a point light source to a surface light source, and the light of the first frequency is scattered out.
  • the light of the first frequency and visible light can pass through the inelastic surface of the container 501 and reach the absorption liquid 502, which has no effect on visible light. Absorption, but can absorb part of the light at the first frequency.
  • the unabsorbed light at the first frequency can reach the photosensitive layer 600.
  • the photosensitive layer 600 After the light at the first frequency is detected, the photosensitive layer 600 generates a resistance change or photoelectron, which causes a current The change.
  • the photosensitive layer 600 of the pressure detection device and the elastic surface 5011 of the container may produce a concave deformation.
  • the thickness of the absorption liquid 502 becomes smaller.
  • the The absorbed portion of light at a frequency decreases, the intensity of light reaching the photosensitive layer 600 increases, and the resistance or photoelectrons generated at the corresponding position change, thereby generating a current change signal, and then determining the position where the finger or other object is pressed.
  • a pressure detection device includes a substrate, a light-conducting layer, a light-absorbing layer, and a photosensitive layer arranged in sequence, and further includes a light source, wherein: the light source can emit light at a first frequency, and an exit surface thereof faces the light-conducting layer
  • the light-conducting layer scatters light at the first frequency
  • the light-absorbing layer includes a container forming a closed space, and an absorption liquid filling the container.
  • the absorption liquid absorbs at least part of the light at the first frequency.
  • At least one side of the container is an elastic surface.
  • the photosensitive surface of the photosensitive layer faces the light absorbing layer, and the photosensitive layer is used to detect the light of the first frequency passing through the light absorbing layer.
  • ambient light can be reduced by the photosensitive layer to the pressure detection device.
  • the structure of the light source and the absorption liquid can improve the sensitivity of pressure detection under pressure sensing and improve the user experience on the premise of ensuring the detection accuracy.
  • Embodiments of the present disclosure provide yet another pressure detection device.
  • the pressure detection device contains all the functional units of the pressure detection device shown in Figure 1, and on the basis of it, it has been improved, as shown in Figure 2, the improvements are as follows:
  • white light sources and infrared light sources may be alternately arranged in the light source, so that the light source 100 may emit uniform visible light and infrared light (ie, light of the first frequency).
  • the light of the first frequency can be dispersed by the light conductive layer 300, wherein the light conductive layer 300 may include a reflective plate 302 and a light guide plate 301
  • the light reflecting plate 302 and the light guiding plate 301 are arranged in this order in the light conducting layer 300.
  • the light guiding plate 301 may be disposed on one side of the substrate 200.
  • the exit surface of the light source 100 may face the light guiding plate 301.
  • the light of the first frequency emitted by the light source 100 may Firstly, after the function of the light guide plate 301, the point light source is converted into a surface light source, and then the light of the first frequency can then pass through the function of the reflective plate 301 to reflect the stray light in the light source to the display side, thereby reducing the first frequency
  • the loss of light intensity improves the detection accuracy of the pressure detection device.
  • a light processing assembly 400 may be provided between the light conducting layer 300 and the light absorbing layer 500, and the light processing assembly 400 may be a refraction plate 401 and a polarizing plate 402, wherein the refraction plate 401 and the polarizing plate 402 may be arranged in parallel or overlapped, specifically
  • the arrangement of the light source can be varied, and the embodiment of the present disclosure does not limit this.
  • the light processing component 400 refracts the first frequency light and visible light emitted by the light source 100 through the refraction plate 401 and the polarized light 402 to make visible light The light is emitted in parallel with the first frequency to improve the uniformity of light intensity.
  • the light transmittance of the light absorbing layer may be higher than a predetermined light transmittance threshold, and the rate of change of the light absorbing layer's light transmittance with deformation may be less than the predetermined change rate threshold.
  • the light transmittance can represent the ability of the light to pass through the medium, and is the percentage of the light of the first frequency that passes through the light absorption layer and the light of the first frequency that enters the light absorption layer.
  • the light transmittance of the light absorber layer must be greater than the predetermined light transmittance threshold to ensure the accuracy of the pressure detection device to ensure the first penetration of the light absorber layer
  • the amount of light at a frequency, and at the same time, the change rate of the light absorption layer's light transmittance with deformation can be less than the predetermined change rate threshold, if the light absorption layer's light transmittance change rate with deformation is higher than the predetermined change rate threshold, then the light absorption
  • the smaller the degree of change of the light transmittance of the layer with deformation that is, the light transmittance of the light absorbing layer is not sensitive to the change of the light absorbing layer's deformation, which will cause the pressure detection device to be less sensitive to pressure, resulting in pressure detection
  • the sensitivity of the device is poor, so the rate of change of light transmittance of the light absorbing layer with deformation can be less than the predetermined rate of change threshold.
  • the absorption liquid 502 can be used to absorb part of the light of the first frequency, that is, infrared light within a predetermined frequency range, and the absorption liquid 502 has no absorption effect on visible light, when the light source 100 emits light of the first frequency (such as a specific frequency f 0 Infrared light) and visible light, the light emitted at the first frequency needs to pass through the absorption liquid 502. At this time, the absorption liquid 502 can absorb part of the infrared light within a predetermined frequency range, and has no absorption effect on visible light, which does not affect the light. Direction of propagation.
  • the degree of absorption of infrared light by the absorption liquid 502 is positively related to the distance that infrared light passes through the absorption liquid 502.
  • the degree of absorption of infrared light by the absorption liquid 502 is directly proportional to the distance of infrared light passing through the absorption liquid 502, that is, the greater the thickness of the absorption liquid 502, the stronger the absorption of infrared light, the infrared light penetrating the absorption liquid 502
  • the absorption level of the infrared light by the absorption liquid 502 and the distance of infrared light passing through the absorption liquid 502 The scale factor is 4, then if the distance of 6 units of infrared light passing through the absorption liquid 502 is 1, then the absorption liquid 500 can absorb 4 units of infrared light, and only 2 infrared rays pass through the absorption liquid 502 unit.
  • the absorption capacity of the absorption liquid 502 for infrared light has nothing to do with the ambient temperature where the pressure detection device is located. In this way, the anti-environmental interference capability of the pressure detection can be improved to ensure the accuracy of the detection.
  • the photosensitive layer 600 may be provided with a detector 602 and a plurality of photosensitive blocks 601. As shown in FIG. 3, the plurality of photosensitive blocks 601 may be arranged on the photosensitive layer 600 in a predetermined arrangement manner to form a photosensitive array, each photosensitive block 601 can lead a lead to connect to the detector 602.
  • the detector 602 can determine the position of the infrared light intensity change according to the monitored current change on the photosensitive block 601, wherein the photosensitive block 601 is located on the upper layer of the elastic surface 5011 of the container . When pressure is detected on the pressure detection device, the elastic surface 5011 of the container will be deformed at the position where the pressure is generated.
  • the photosensitive block 601 will detect the change in infrared light, which will cause a change in the current on the photosensitive block 601. At this time, the detector 602 can monitor the sensitivity of the current. The location of block 601, thereby determining the location of pressure generation on the pressure detection device. For example, in FIG. 3, a plurality of photosensitive blocks 601 such as photosensitive blocks 6011, photosensitive blocks 6012... photosensitive blocks 6019, etc.
  • each photosensitive block 601 is connected to the detector 602 by wires. If the detector 602 detects that a current change has occurred at the position of the photosensitive block 6012, it can be determined that a change in light intensity has occurred at the positions of the photosensitive block 6011 and the photosensitive block 6012, that is, the photosensitive block 6011 and the photosensitive block 6012 Received external pressure on its location.
  • a light-shielding layer 700 may be provided on the upper layer of the photosensitive layer 600.
  • the light-shielding layer 700 is mainly used to block the interference of external light on the pressure detection device to avoid reducing the detection accuracy of the pressure detection device due to the interference of external light.
  • the light-shielding layer 700 also has With higher elasticity and durability, the light-shielding layer 700 can block outside infrared light from passing through the light-shielding layer 700, and also does not affect the internal light of the pressure detection device passing through the light-shielding layer 700.
  • the light shielding layer 700 is located on the upper layer of the photosensitive layer 600, and the photosensitive layer 600 is located on the upper layer of the light absorption layer 500.
  • the photosensitive layer 600 is used to detect the light of the first frequency
  • the light shielding layer 700 can be used to block external light from interfering with the optical pickup, to prevent infrared light in the external light from irradiating the photosensitive layer 600 and affecting the sensitivity of the photosensitive layer 600. Judgment of actual infrared light changes.
  • the light shielding layer 700 may include a base film 702 and an antireflection film 701, the refractive index of the antireflection film 701 may be greater than the refractive index of the base film 702, the thickness of the antireflection film 701 may be within a predetermined thickness range, and the base film 702 is provided on the upper layer of the photosensitive layer 600, and an anti-reflection film 701 is provided on the upper layer of the base film 702.
  • the refractive index of infrared light in the outside air is n 0
  • the refractive index of infrared light in the anti-reflection film 702 is n 1
  • the refractive index of infrared light in the base film 702 is n 2
  • R in the above formula is the reflectivity of the antireflection film 702, that is, the ratio of the intensity of the reflected light to the intensity of the projected light, It is the phase difference between two adjacent beams.
  • the reflectance R appears at its maximum value, and the intensity of the reflected light is much greater than the intensity of the transmitted light. It can be considered that all infrared light with a frequency of f 0 in the infrared light in the outside air is reflected.
  • the light source 100 may be composed of multiple white light sources and multiple infrared light sources. After the light source 100 emits white light (that is, visible light) and light of the first frequency (such as infrared light of a specific frequency), the light guide plate 301 in the light conducting layer 300 may The white light source and infrared light source are converted from point light sources to surface light sources, and then the reflective plate 3002 in the light transmission layer 300 emits the stray light refracted by the light guide plate to the display side to reduce the loss of light intensity, and then the infrared light and The visible light is refracted by the refracting plate 401 and the polarizing plate 402 and becomes a uniform light.
  • white light that is, visible light
  • the first frequency such as infrared light of a specific frequency
  • the absorbing liquid 502 does not absorb visible light, but it can absorb some infrared light.
  • the absorbed infrared light can reach the photosensitive layer 600.
  • the photosensitive layer 600 After detecting the infrared light, the photosensitive layer 600 generates a resistance change or a photoelectron, thereby causing a change in current.
  • the light shielding layer 700, the photosensitive layer 600 of the pressure detection device, and the elastic surface 5011 of the container may produce a concave deformation. At the concave position, the thickness of the absorption liquid 502 becomes smaller.
  • the The absorbed portion of the infrared light at the position is reduced, and the light intensity reaching the photosensitive layer 600 is increased, and the resistance or photoelectrons generated at the corresponding position are changed, thereby generating a current change signal, thereby determining the position where the finger or other object is pressed.
  • a pressure detection device includes a substrate, a light-conducting layer, a light-absorbing layer, and a photosensitive layer arranged in sequence, and further includes a light source, wherein: the light source can emit light at a first frequency, and an exit surface thereof faces the light-conducting layer
  • the light-conducting layer scatters light at the first frequency
  • the light-absorbing layer includes a container forming a closed space, and an absorption liquid filling the container.
  • the absorption liquid absorbs at least part of the light at the first frequency.
  • At least one side of the container is an elastic surface.
  • the photosensitive surface of the photosensitive layer faces the light absorbing layer, and the photosensitive layer is used to detect the light of the first frequency passing through the light absorbing layer.
  • ambient light can be reduced by the photosensitive layer to the pressure detection device.
  • the structure of the light source and the absorption liquid can improve the sensitivity of pressure detection under pressure sensing and improve the user experience on the premise of ensuring the detection accuracy.
  • an embodiment of the present disclosure also provides a pressure detection method.
  • the method may be executed by a mobile terminal, the mobile The terminal may include the pressure detection device as described in the first and second embodiments, wherein the mobile terminal may be a mobile phone, a tablet computer, etc.
  • the mobile terminal may be a mobile terminal used by a user. As shown in FIG. 6, the method may specifically include the following steps:
  • step S602 when it is detected that the container 501 is deformed during the pressure detection in the mobile terminal, the light intensity received by the photosensitive layer 600 after the container 501 is deformed is acquired.
  • the light source 100 in the pressure detection device will continuously emit infrared light and visible white light of a specific frequency (such as f 0 ), or emit infrared light pulses for scanning, and the infrared light passes through the container 501.
  • a specific frequency such as f 0
  • the elastic surface reaches the absorbing liquid 502, part of it will be absorbed by the absorbing liquid 502 in the container 501.
  • the photosensitive layer 600 will detect the infrared light passing through the absorbing liquid 502. According to the infrared light, a resistance change or photoelectrons may be generated, thereby causing a current The change.
  • the detector 602 may record the reference current I 0 of each photosensitive block 601 when the pressure detection device does not receive pressure, and I 0 may be a preset fixed current value or update data when the pressure detection device is corrected.
  • I 0 may be a preset fixed current value or update data when the pressure detection device is corrected.
  • the light shielding layer 700, the photosensitive layer 600, and the elastic surface 5011 of the container may have depressions, and the thickness of the absorption liquid 502 decreases at the depressions, and the infrared light is The absorbed part decreases, the light intensity reaching the photosensitive layer 600 increases, and the light intensity obtained at this time is the light intensity after the container 301 is deformed.
  • the absorption liquid 502 has no absorption effect on visible white light. After the visible white light passes through the container 501 and the absorption liquid 502, no gas effect is generated, and the visible white light is only used for screen image display.
  • step S604 according to the light intensity, it is determined that the current change after the container 501 is deformed.
  • the change of the current at the corresponding position of the container 501 is determined.
  • step S606 according to the current change, the position information of the container 501 where the deformation occurs is determined, and the corresponding control strategy is executed for the target object at the position corresponding to the position information.
  • the target object may be an application object, a control object (determination, deletion, editing, etc.), a picture object, a text object, or any other object that can implement a control strategy, and the control strategy may be any strategy such as deletion, editing, and opening.
  • the detector analyzes the current change, determines the position information of the deformation of the container 501 on the pressure detection device, determines the target object according to the position information, acquires the control strategy corresponding to the target object, and executes the control strategy. For example, in FIG. 3, if the deformed position is the position corresponding to the photosensitive block 6012, and the target object corresponding to the photosensitive block is the camera application, the corresponding control strategy is to open the camera application, when the position (the photosensitive block 6012 corresponds to (Location) When the deformation occurs, the control strategy for opening the camera application is executed.
  • control strategies can be adopted for the target object at the same position. For example, when the current change is greater than a certain threshold, control strategies such as deletion or rearrangement can be performed on the camera application. When the current changes When it is less than a certain threshold, the camera application may be opened.
  • An embodiment of the present disclosure provides a pressure detection method, which can be applied to a mobile terminal.
  • the mobile terminal includes a pressure detection device.
  • the pressure detection device may include a substrate, a light-conducting layer, a light-absorbing layer, and a photosensitive layer arranged in this order.
  • the light source can emit light at a first frequency, the exit surface of which faces the light-conducting layer, and the light-conducting layer scatters light at the first frequency
  • the light-absorbing layer includes a container forming an enclosed space, and an absorption filling the container Liquid, the absorption liquid absorbs at least part of the light of the first frequency, at least one side of the container is an elastic surface, the photosensitive surface of the photosensitive layer faces the light absorption layer, and the photosensitive layer is used to detect the light of the first frequency passing through the light absorption layer, so Based on the structure of the above pressure detection device, the interference of ambient light to the pressure detection device can be reduced through the photosensitive layer.
  • the structure of the light source and the absorption liquid can increase the sensitivity of pressure detection under pressure sensing and improve users while ensuring the detection accuracy Experience.
  • an embodiment of the present disclosure provides a pressure detection method.
  • the method may be executed by a mobile terminal, and the mobile terminal may include the pressure detection device in the first and second embodiments, wherein,
  • the mobile terminal may be a mobile phone, a tablet computer, etc.
  • the mobile terminal may be a mobile terminal used by a user.
  • the method may specifically include the following steps:
  • step S802 when a deformation of the container 501 in the pressure detection device in the mobile terminal is detected, the light intensity received by the photosensitive layer 600 after the deformation of the container 501 is acquired.
  • step S802 For the specific processing procedure of the above step S802, reference may be made to the relevant content of step S602 in the foregoing third embodiment, and details are not described herein again.
  • step S804 the corresponding target current is determined according to the light intensity.
  • step S806 according to the target current and the predetermined reference current, it is determined that the current change after the container 501 is deformed.
  • the predetermined reference current may be the current when no deformation occurs, for example, in FIG. 7, when deformation is generated on the basis of FIG. 7(a) to form the deformation condition in FIG. 7(b), this
  • the current change after the container 501 is deformed is the current difference between the current I 1 corresponding to the deformation generated in FIG. 7(b) and the current I 0 corresponding to FIG. 7(a).
  • the predetermined reference current is I 0
  • the target current is I 1 .
  • step S808 according to the target current and the current corresponding to the last obtained light intensity, it is determined that the current change after the container 501 is deformed
  • the predetermined reference current is the current I 1 corresponding to the deformation generated in FIG. 7(b)
  • the target current is the current I 2 corresponding to the deformation in FIG. 7(c)
  • the amount of current change at this time is the difference between I 2 and I 1 .
  • step S810 according to the current change, the position information of the container 501 where the deformation occurs is determined, and the corresponding control strategy is executed for the target object at the position corresponding to the position information.
  • step S810 For the specific processing procedure of the above step S810, reference may be made to the relevant content of step S606 in the foregoing third embodiment, and details are not described herein again.
  • An embodiment of the present disclosure provides a pressure detection method, which can be applied to a mobile terminal.
  • the mobile terminal includes a pressure detection device.
  • the pressure detection device may include a substrate, a light-conducting layer, a light-absorbing layer, and a photosensitive layer arranged in this order.
  • the light source can emit light at a first frequency, the exit surface of which faces the light-conducting layer, and the light-conducting layer scatters light at the first frequency
  • the light-absorbing layer includes a container forming an enclosed space, and an absorption filling the container Liquid, the absorption liquid absorbs at least part of the light of the first frequency, at least one side of the container is an elastic surface, the photosensitive surface of the photosensitive layer faces the light absorbing layer, and the photosensitive layer is used to detect the light of the first frequency passing through the light absorbing layer, so Based on the structure of the above pressure detection device, the interference of ambient light to the pressure detection device can be reduced through the photosensitive layer.
  • the structure of the light source and the absorption liquid can increase the sensitivity of pressure detection under pressure sensing and improve users while ensuring the detection accuracy Experience.
  • the embodiment of the present disclosure also provides a screen assembly.
  • the screen assembly includes any one of the pressure detection devices described in the first and second embodiments.
  • the pressure detection device includes at least two light sources, and at least one of the at least two light sources can emit light at a first frequency .
  • the pressure detection device includes a first light source and a second light source, wherein the first light source is used to emit visible light, and the second light source is used to emit invisible light at a first frequency.
  • the pressure detection device includes a substrate, a light-conducting layer, a light-absorbing layer and a photosensitive layer, and also includes a light source, wherein:
  • the light source may emit light of a first frequency, and the exit surface of the light source faces the light conducting layer;
  • the light-conducting layer scatters the light of the first frequency
  • the light absorption layer includes a container forming a closed space, and an absorption liquid filling the container, the absorption liquid absorbs at least a portion of the light of the first frequency, and at least one side of the container is an elastic surface;
  • the photosensitive surface of the photosensitive layer faces the light absorbing layer, and the photosensitive layer is used to detect the light of the first frequency passing through the light absorbing layer.
  • the light-conducting layer includes a light-reflecting plate and a light guide plate, the light-reflecting plate and the light guide plate are arranged in sequence, and the light guide plate is provided on one side of the substrate.
  • the pressure detection device further includes a light-shielding layer disposed on the back side of the photosensitive surface of the photosensitive layer.
  • the pressure detection device further includes a light processing assembly, the light processing assembly includes a refraction plate and a polarizing plate, the refraction plate is adjacent to the polarizing plate, and is disposed on the light conducting layer With the light absorbing layer.
  • the side facing the light absorbing layer in the container is an elastic surface
  • the side facing the light emitting layer in the container is an inelastic surface
  • the light transmittance of the container is higher than a predetermined light transmittance threshold.
  • the absorption amount of the first frequency light by the absorption liquid is positively related to the distance that the first frequency light passes through the absorption liquid.
  • a detector and a plurality of photosensitive blocks are provided on the photosensitive layer, the plurality of photosensitive blocks are respectively connected to the detector, and the photosensitive blocks are used for detecting the first frequency The light intensity of the light, and converting the detected light intensity into an electric current, and the detector is used to determine the position of the photosensitive block corresponding to the change of the light intensity based on the change of the electric current.
  • the light shielding layer is used to block the passage of light in a predetermined frequency range.
  • the light-shielding layer includes a base film and an antireflection film.
  • the refractive index of the antireflection film is greater than the refractive index of the base film.
  • the thickness of the antireflection film is within a predetermined thickness range.
  • the base film is provided on the upper layer of the photosensitive layer, and the anti-reflection film is provided on the upper layer of the base film.
  • the thickness of the anti-reflection film is Odd times.
  • the pressure detection device may include a substrate, a light-conducting layer, a light-absorbing layer, and a photosensitive layer arranged in this order, and further include a light source, wherein: The light source can emit light at the first frequency, and the exit surface of the light source faces the light-conducting layer.
  • the light-conducting layer scatters the light at the first frequency.
  • the light-absorbing layer includes a container forming a closed space, and an absorption liquid filling the container. The absorption liquid absorbs at least Part of the first frequency light, at least one side of the container is an elastic surface, and the photosensitive surface of the photosensitive layer faces the light absorbing layer.
  • the photosensitive layer is used to detect the first frequency light passing through the light absorbing layer.
  • the structure of the light source can reduce the interference of ambient light on the pressure detection device through the photosensitive layer.
  • the structure of the light source and the absorption liquid can improve the sensitivity of pressure detection under pressure sensing and improve the user experience on the premise of ensuring the detection accuracy.
  • FIG. 9 is a schematic diagram of a hardware structure of a mobile terminal for implementing various embodiments of the present disclosure.
  • the mobile terminal 900 includes but is not limited to: a radio frequency unit 901, a network module 902, an audio output unit 903, an input unit 904, a sensor 905, a display unit 906, a user input unit 907, an interface unit 908, a memory 909, a processor 910, and Power 911 and other components.
  • a radio frequency unit 901 includes but is not limited to: a radio frequency unit 901, a network module 902, an audio output unit 903, an input unit 904, a sensor 905, a display unit 906, a user input unit 907, an interface unit 908, a memory 909, a processor 910, and Power 911 and other components.
  • Those skilled in the art may understand that the structure of the mobile terminal shown in FIG. 9 does not constitute a limitation on the mobile terminal, and the mobile terminal may include more or fewer components than those illustrated, or combine certain components, or different components Layout.
  • mobile terminals include but are not limited to mobile phones, tablet computers, notebook computers, palmtop computers, in-vehicle terminals,
  • the pressure detection device includes a substrate, a light-conducting layer, a light-absorbing layer and a photosensitive layer arranged in this order, and also includes a light source, in which:
  • the light source may emit light of a first frequency, and the exit surface of the light source faces the light conducting layer;
  • the light-conducting layer scatters the light of the first frequency
  • the light absorption layer includes a container forming a closed space, and an absorption liquid filling the container, the absorption liquid absorbs at least a portion of the light of the first frequency, and at least one side of the container is an elastic surface;
  • the photosensitive surface of the photosensitive layer faces the light absorbing layer, and the photosensitive layer is used to detect the light of the first frequency passing through the light absorbing layer.
  • the light-conducting layer includes a light-reflecting plate and a light-guiding plate, the light-reflecting plate and the light-guiding plate are arranged in sequence, and the light-guiding plate is provided on one side of the substrate.
  • the pressure detection device further includes a light-shielding layer provided on the back side of the photosensitive surface of the photosensitive layer.
  • the pressure detection device further includes a light processing assembly, the light processing assembly includes a refraction plate and a polarizing plate, the refraction plate is adjacent to the polarizing plate, and is disposed on the light conducting layer and the light absorption Between layers.
  • the side surface facing the light absorption layer in the container is an elastic surface
  • the side surface facing the light source in the container is an inelastic surface
  • the light transmittance of the container is higher than a predetermined light transmittance threshold.
  • the absorption liquid is used to absorb the light of the first frequency, and the absorption amount of the light of the first frequency by the absorption liquid is positively correlated with the distance the light of the first frequency passes through the absorption liquid.
  • a detector and a plurality of photosensitive blocks are provided on the photosensitive layer, the plurality of photosensitive blocks are respectively connected to the detector, and the photosensitive blocks are used to detect the light intensity of the light of the first frequency, And convert the detected light intensity into a current, and the detector is used to determine the position of the photosensitive block corresponding to the light intensity change based on the change of the current.
  • the light shielding layer is used to block the passage of light in a predetermined frequency range.
  • the light shielding layer includes a base film and an antireflection film
  • the refractive index of the antireflection film is greater than the refractive index of the base film
  • the thickness of the antireflection film is within a predetermined thickness range
  • the base film is disposed at The anti-reflection film is provided on the upper layer of the photosensitive layer and the upper layer of the base film.
  • the thickness of the antireflection film is Odd times.
  • the mobile terminal includes a pressure detection device.
  • the pressure detection device may include a substrate, a light-conducting layer, a light-absorbing layer, and a photosensitive layer arranged in this order.
  • a light source may also be included.
  • the output surface of the light of one frequency faces the light-conducting layer.
  • the light-conducting layer scatters the light of the first frequency.
  • the light-absorbing layer includes a container forming a closed space and an absorption liquid filling the container. The absorption liquid absorbs at least part of the first frequency. Light, at least one side of the container is an elastic surface, and the photosensitive surface of the photosensitive layer faces the light absorbing layer.
  • the photosensitive layer is used to detect the light of the first frequency passing through the light absorbing layer.
  • the light shielding layer reduces the interference of ambient light on the pressure detection device.
  • the structure of the light source and the absorption liquid can improve the sensitivity of pressure detection under pressure sensing and improve the user experience while ensuring the detection accuracy.
  • the radio frequency unit 901 may be used to receive and send signals during sending and receiving information or during a call. Specifically, after receiving the downlink data from the base station, it is processed by the processor 910; The uplink data is sent to the base station.
  • the radio frequency unit 901 includes but is not limited to an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 901 can also communicate with the network and other devices through a wireless communication system.
  • the mobile terminal provides users with wireless broadband Internet access through the network module 902, such as helping users send and receive e-mail, browse web pages, and access streaming media.
  • the audio output unit 903 may convert the audio data received by the radio frequency unit 901 or the network module 902 or stored in the memory 909 into an audio signal and output as sound. Moreover, the audio output unit 903 may also provide audio output related to a specific function performed by the mobile terminal 900 (eg, call signal reception sound, message reception sound, etc.).
  • the audio output unit 903 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 904 is used to receive audio or video signals.
  • the input unit 904 may include a graphics processor (Graphics, Processing, Unit, GPU) 9041 and a microphone 9042, and the graphics processor 9041 may process a still picture or video image obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode The data is processed.
  • the processed image frame may be displayed on the display unit 906.
  • the image frame processed by the graphics processor 9041 may be stored in the memory 909 (or other storage medium) or sent via the radio frequency unit 901 or the network module 902.
  • the microphone 9042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 901 in the case of a telephone call mode and output.
  • the mobile terminal 900 further includes at least one sensor 905, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 9061 according to the brightness of the ambient light, and the proximity sensor can close the display panel 9061 and the mobile terminal 900 when moving to the ear /Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (generally three axes), and can detect the magnitude and direction of gravity when at rest, and can be used to identify the posture of mobile terminals (such as horizontal and vertical screen switching, related games) , Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc.; sensor 905 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, Infrared sensors, etc. will not be repeated here.
  • the display unit 906 is used to display information input by the user or information provided to the user.
  • the display unit 906 may include a display panel 9061, and the display panel 9061 may be configured in the form of a liquid crystal display (Liquid Crystal) (LCD), an organic light emitting diode (Organic Light-Emitting Diode, OLED), or the like.
  • LCD Liquid Crystal
  • OLED Organic Light-Emitting Diode
  • the user input unit 907 may be used to receive input numeric or character information, and generate key signal input related to user settings and function control of the mobile terminal.
  • the user input unit 907 includes a touch panel 9071 and other input devices 9072.
  • the touch panel 9071 also known as a touch screen, can collect user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc. on the touch panel 9071 or near the touch panel 9071 operating).
  • the touch panel 9071 may include a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device and converts it into contact coordinates, and then sends To the processor 910, the command sent by the processor 910 is received and executed.
  • the touch panel 9071 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the user input unit 907 may also include other input devices 9072.
  • other input devices 9072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the touch panel 9071 may be overlaid on the display panel 9061.
  • the touch panel 9071 detects a touch operation on or near it, it is transmitted to the processor 910 to determine the type of touch event, and then the processor 910 according to the touch The type of event provides corresponding visual output on the display panel 9061.
  • the touch panel 9071 and the display panel 9061 are implemented as two independent components to realize the input and output functions of the mobile terminal, in some embodiments, the touch panel 9071 and the display panel 9061 may be integrated The input and output functions of the mobile terminal are not specifically limited here.
  • the interface unit 908 is an interface for connecting an external device to the mobile terminal 900.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 908 may be used to receive input from external devices (eg, data information, power, etc.) and transmit the received input to one or more elements within the mobile terminal 900 or may be used between the mobile terminal 900 and external Transfer data between devices.
  • the memory 909 may be used to store software programs and various data.
  • the memory 909 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, application programs required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; the storage data area may store Data created by the use of mobile phones (such as audio data, phonebooks, etc.), etc.
  • the memory 409 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • the processor 910 is the control center of the mobile terminal, and uses various interfaces and lines to connect the various parts of the entire mobile terminal, by running or executing the software programs and/or modules stored in the memory 909, and calling the data stored in the memory 909 , Perform various functions and process data of the mobile terminal, so as to monitor the mobile terminal as a whole.
  • the processor 910 may include one or more processing units; optionally, the processor 910 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, and application programs, etc.
  • the modulation processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 910.
  • the mobile terminal 900 may also include a power supply 911 (such as a battery) that supplies power to various components.
  • a power supply 911 (such as a battery) that supplies power to various components.
  • the power supply 911 may be logically connected to the processor 910 through a power management system, thereby managing charge, discharge, and power consumption through the power management system Management and other functions.
  • an embodiment of the present disclosure further provides a mobile terminal, including a processor 910, a memory 909, and a computer program stored on the memory 909 and executable on the processor 910, and the computer program is executed by the processor 910
  • a mobile terminal including a processor 910, a memory 909, and a computer program stored on the memory 909 and executable on the processor 910, and the computer program is executed by the processor 910
  • Embodiments of the present disclosure also provide a computer-readable storage medium that stores a computer program on the computer-readable storage medium.
  • the computer program is executed by a processor, the processes of the foregoing pressure detection method embodiments are implemented, and the same technology can be achieved. In order to avoid repetition, I will not repeat them here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • Embodiments of the present disclosure provide a computer-readable storage medium.
  • the interference of ambient light on the pressure detection device can be reduced.
  • the structure of the light source and the absorption liquid can improve the pressure sensitivity while ensuring the detection accuracy.
  • the sensitivity of down pressure detection improves user experience.
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Therefore, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Moreover, the present disclosure may take the form of a computer program product implemented on one or more computer usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code.
  • computer usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • each flow and/or block in the flowchart and/or block diagram and a combination of the flow and/or block in the flowchart and/or block diagram may be implemented by computer program instructions.
  • These computer program instructions can be provided to the processor of a general-purpose computer, special-purpose computer, embedded processor, or other programmable data processing device to produce a machine that allows instructions generated by the processor of the computer or other programmable data processing device to be used
  • These computer program instructions may also be stored in a computer readable memory that can guide a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer readable memory produce an article of manufacture including an instruction device, the instructions
  • the device implements the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and/or block diagrams.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device, so that a series of operating steps are performed on the computer or other programmable device to produce computer-implemented processing, which is executed on the computer or other programmable device
  • the instructions provide steps for implementing the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and/or block diagrams.
  • the computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • the memory may include non-permanent memory, random access memory (RAM) and/or non-volatile memory in a computer-readable medium, such as read only memory (ROM) or flash memory (flash RAM). Memory is an example of computer-readable media.
  • RAM random access memory
  • ROM read only memory
  • flash RAM flash memory
  • Computer readable media including permanent and non-permanent, removable and non-removable media, can store information by any method or technology.
  • the information may be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technologies, read-only compact disc read-only memory (CD-ROM), digital versatile disc (DVD) or other optical storage, Magnetic tape cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media can be used to store information that can be accessed by computing devices.
  • computer-readable media does not include temporary computer-readable media (transitory media), such as modulated data signals and carrier waves.
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Therefore, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Moreover, the present disclosure may take the form of a computer program product implemented on one or more computer usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code.
  • computer usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Measuring Fluid Pressure (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种压力检测装置、屏幕组件及移动终端,所述压力检测装置包括依次排列的基板(200)、光传导层(300)、光吸收层(500)和感光层(600),还包括光源(100),其中:所述光源(100)可发射第一频率的光,其出射面朝向所述光传导层(300);所述光传导层(300)将所述第一频率的光分散射出;所述光吸收层(500)包括形成封闭空间的容器(501),以及填充所述容器(501)的吸收液(502),所述吸收液(502)至少吸收部分所述第一频率的光,所述容器(501)的至少一侧面为弹性面(5011);所述感光层(600)的感光面朝向所述光吸收层(500),所述感光层(600)用于检测穿过所述光吸收层(500)的所述第一频率的光。

Description

压力检测装置、屏幕组件及移动终端
相关申请的交叉引用
本申请主张在2018年12月18日在中国提交的中国专利申请号No.201811548465.5的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及电子技术领域,尤其涉及一种压力检测装置、屏幕组件及移动终端。
背景技术
随着电子技术和多媒体信息技术的快速发展,人们生活和工作中使用较为频繁的计算机(如平板电脑)、手机、汽车导航仪等多种电子产品,已经开始使用触摸屏来代替传统的键盘、鼠标等来完成输入控制,触摸屏技术简化了人们对电子产品的操作过程,具有较好的用户体验。
以红外线触摸方式为主的触摸屏,可以在屏幕的X和Y方向设置红外发射和接收矩阵,可以持续的发射红外光线对屏幕进行扫描,当用户通过手指按压触摸屏时,在手指按压的位置会阻挡红外光线的传输,接收端会无法接收到红外光线,此时控制器可以通过对X和Y方向上红外光线的检测,获取红外光线传输断开处的位置坐标,从而确定用户手指的按压位置。
但是,以红外线触摸方式为主的触摸屏在使用过程中,红外光线容易产生反射、折射杂光等问题,导致用户在使用触摸屏时,触摸屏对用户的操作反应不灵敏,用户体验较差。
发明内容
本公开实施例的目的是提供一种压力检测装置、屏幕组件及移动终端,以解决相关技术中触摸屏灵活性较低,用户体验较差的问题。
为解决上述技术问题,本公开实施例是这样实现的:
第一方面,本公开实施例提供的一种压力检测装置,所述压力检测装置 包括依次排列的基板、光传导层、光吸收层和感光层,还包括光源,其中:
所述光源可发射第一频率的光,其出射面朝向所述光传导层;
所述光传导层将所述第一频率的光分散射出;
所述光吸收层包括形成封闭空间的容器,以及填充所述容器的吸收液,所述吸收液至少吸收部分所述第一频率的光,所述容器的至少一侧面为弹性面;
所述感光层的感光面朝向所述光吸收层,所述感光层用于检测穿过所述光吸收层的所述第一频率的光。
可选地,所述光传导层包括反光板和导光板,所述反光板和所述导光板依次排列,且所述反光板设于所述基板的一侧面。
可选地,所述压力检测装置还包括遮光层,所述遮光层设置于所述感光层的感光面的背侧。
可选地,所述压力检测装置还包括光线处理组件,所述光线处理组件包括折射板和偏光板,所述折射板与所述偏光板相邻,并设置在所述光传导层与所述光吸收层之间。
可选地,所述容器中朝向所述光吸收层的侧面为弹性面,所述容器中朝向所述光源的侧面为非弹性面。
可选地,所述容器的透光率高于预定透光率阈值。
可选地,所述吸收液用于吸收第一频率的光,所述吸收液对所述第一频率的光的吸收量与所述第一频率的光在所述吸收液中通过的距离正相关。
可选地,所述感光层上设置有检测器和多个感光块,所述多个感光块分别与所述检测器相连接,所述感光块用于检测所述第一频率的光的光强,并将检测到的光强转化为电流,所述检测器用于基于所述电流的变化确定光强变化对应的所述感光块的位置。
可选地,所述遮光层用于阻挡预定频率范围的光穿过。
可选地,所述遮光层包括基膜和增反膜,所述增反膜的折射率大于所述基膜的折射率,所述增反膜的厚度在预定厚度范围内,所述基膜设置于所述感光层的上层,所述基膜的上层设置有所述增反膜。
可选地,所述增反膜的厚度为
Figure PCTCN2019117448-appb-000001
的奇数倍。
第二方面,本公开实施例提供了提供一种屏幕组件,包括如上述第一方面所述的压力检测装置,所述压力检测装置包括至少两个光源,所述至少两个光源中的至少一个光源可发射第一频率的光。
可选地,所述压力检测装置包括第一光源和第二光源,其中,所述第一光源用于发射可见光,所述第二光源用于发射第一频率的不可见光。
第三方面,本公开实施例提供了一种移动终端,包括如上述第二方面所述的屏幕组件。
由以上本公开实施例提供的技术方案可见,本公开实施例提供的压力检测装置包括依次排列的基板、光传导层、光吸收层和感光层,还包括光源,其中:光源可发射第一频率的光,其出射面朝向光传导层,光传导层将第一频率的光分散射出,光吸收层包括形成封闭空间的容器,以及填充容器的吸收液,吸收液至少吸收部分第一频率的光,容器的至少一侧面为弹性面,感光层的感光面朝向光吸收层,感光层用于检测穿过光吸收层的第一频率的光,这样,基于上述压力检测装置的结构,可以通过光传导层将光源分散射出,通过光吸收层的容器和吸收液的结构,可以在保证检测精度的前提下,提高基于光线的压力检测的灵敏度,提高用户体验感。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一种压力检测装置的结构示意图;
图2为本申请又一种压力检测装置的结构示意图;
图3为本申请一种感光层的结构示意图;
图4为本申请一种感光层和遮光层的结构示意图;
图5为本申请一种遮光层的结构示意图;
图6为本申请一种压力检测方法实施例的流程图;
图7为本申请一种接收压力产生形变的示意图;
图8为本申请另一种压力检测方法实施例的流程图;
图9为本申请一种移动终端实施例。
图例说明:
100-光源,200-基板,300-光传导层,301-导光板,302-反光板,400-光线处理组件,401-折射板,402-偏光板,500-光吸收层,501-容器,5011-容器的弹性面,502-吸收液,600-感光层,601-感光块,602-检测器,700-遮光层,701-增反膜,702-基膜。
具体实施方式
本公开实施例提供一种压力检测装置、屏幕组件及移动终端。
为了使本技术领域的人员更好地理解本公开中的技术方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本公开保护的范围。
实施例一
本公开实施例提供一种压力检测装置,如图1所示,该压力检测装置包括依次排列的基板200、光传导层300、光吸收层500和感光层600,还包括光源100,其中:
基板200位于压力检测装置的最下层,可以用于承载、固定、供电和控制等,基板200可以是玻璃板、金属板或塑料板,本公开实施例对此不做限定。
光源100可以设置在光传导层300的外侧,光源100的出射面朝向光传导层300,光源100可以由多个白光光源和多个红外光源组成,光源100可以同时发出可见白光和第一频率的光(如在特定频率范围内的红外光线),其中,白光光源可以通过如LED等器件提供,第一频率的光可以通过如红外光线发射器等器件提供。此外,光源100可以与柔性电路板(Flexible Printed Circuit Board,FPC)相连接,在光源100和光传导层300的一侧可以配置有 基板200。
其中,光源100发出的白光光源和红外光源为点光源,多个白光光源和红外光源的排列方式可以有多种多样,例如,三个白光光源与两个红外光源并行排列,或一个白光光源与一个红外光源并行排列等,具体的光源排列方式可以根据实际情况而有所不同,本公开实施例对此不做限定。
光源100发出白光光源和第一频率的光(如红外光源)后,两种光源进入到光传导层300,光传导层300可以将光源100发出的白光光源和红外光源从点光源转化为面光源,从而降低从光传导层300不同区域发出的光线强度的差异,光传导层300将第一频率的光分散射出。
在光源100与光传导层300相连的另一侧可以设置有光吸收层500,当光源100上的多个红外发射器发出第一频率的光后,第一频率的光经过光传导层300的分散作用后,穿过与光源100相连接的光吸收层500,然后到达感光层600,其中,光吸收层500可以包括形成封闭空间的容器501,容器501内可存储有吸收液502,吸收液502对白光光源没有吸收作用,容器501的非弹性面与光源100相连接,容器501的两侧均具有较好的透光性,以保障第一频率的光穿过容器501的非弹性面到达吸收液502,在穿过吸收液502后透过容器的弹性面5011到达感光层600。容器的弹性面5011具有较高的强度,不容易发生形变,容器的弹性面5011也需具有较好的弹性,当接收到外界压力时,容器的弹性面5011可以因受力而产生形变,在外力撤去后,容器的弹性面5011可以立即恢复原始形状,同时,容器的弹性面5011也具有较好的耐久性,由于压力检测装置主要用于检测随外界压力大小变化而产生变化的第一频率的光的强度,所以,容器的弹性面5011因具有较好的耐久性,所以不会因为较长时间、较为频繁的按压而降低透光率。
另一种方式,容器可以包括多个子容器,每一个子容器中填充有吸收液。其可具有弹性面和非弹性面。当容器由多个子容器构成时,每个子容器中吸收液的量不会太大,受重力的影响降低,可提高检测精度。
容器501中存储的吸收液502可以是一种对第一频率的光(如特定频率f 0)有一定吸收作用的液体,其中,第一频率的光可以是处于预定频率范围内的频率的红外光线,吸收液502对可见光没有吸收作用,且不会影响光线 的传播方向。当第一频率的光穿过存储有吸收液502的容器501后,到达感光层600,感光层600与容器的弹性面5011相连接,感光层600可以是对第一频率的光产生感应的薄膜,如感光层600可以对特定频率或处于预定频率范围内的频率的红外光线产生感应。感光层600具有较好的弹性、耐久性和耐光性。感光层600对第一频率的光的检测方式可以有热效应和光电效应等,其中,通过电阻效应检测第一频率的光可以是:当第一频率的光照射到感光层600时,感光层600上的材料因吸收第一频率的光而导致温度上升,由此引起电阻变化,从而达到检测第一频率的光的目的;通过光电效应检测第一频率的光可以是:当感光层600上的材料吸收了第一频率的光后,由于光电效应产生了光电子,从而形成了电流的变化,达到了检测目的。除通过热效应和光电效应对第一频率的光进行检测外,还可以有多种检测方式,可以根据具体的应用场景而有所不同,本公开实施例对此不做限定。
光源100可以由多个白光光源和多个红外光源组成,当光源100发出白光(即可见光)和第一频率的光(如特定频率的红外光)后,光传导层300可以将白光光源和第一频率的光从点光源转化为面光源,并将第一频率的光分散射出,第一频率的光和可见光可以穿过容器501的非弹性面,到达吸收液502,吸收液502对可见光无吸收作用,但可以吸收部分第一频率的光,未被吸收的第一频率的光可以到达感光层600,感光层600在检测到第一频率的光后,产生电阻变化或光电子,从而引起电流的变化。当手指或其他物体按压压力检测装置时,压力检测装置的感光层600和容器的弹性面5011可以产生凹陷形变,在凹陷的位置,吸收液502的厚度变小,相应的,该位置上的第一频率的光被吸收的部分减少,到达感光层600的光强增大,对应位置上产生的电阻或光电子有所变化,从而产生电流变化信号,进而确定手指或其他物体按压的位置。
本公开实施例提供的一种压力检测装置包括依次排列的基板、光传导层、光吸收层和感光层,还包括光源,其中:光源可发射第一频率的光,其出射面朝向光传导层,光传导层将第一频率的光分散射出,光吸收层包括形成封闭空间的容器,以及填充容器的吸收液,吸收液至少吸收部分第一频率的光,容器的至少一侧面为弹性面,感光层的感光面朝向光吸收层,感光层用于检 测穿过光吸收层的第一频率的光,这样,基于上述压力检测装置的结构,可以通过感光层来减少环境光对压力检测装置的干扰,光源和吸收液的结构可以在保证检测精度的前提下,提高压力感应下压力检测的灵敏度,提高用户体验感。
实施例二
本公开实施例提供又一种压力检测装置。该压力检测装置包含了图1所示的压力检测装置的全部功能单元,并在其基础上,对其进行了改进,如图2所示,改进内容如下:
在光源100中,白光光源和红外光源可以交替排列在光源,可以使光源100发出均匀的可见光和红外光线(即第一频率的光)。
如图2所示,光源100发出第一频率的光和白光光源后,可以通过光传导层300对第一频率的光进行分散作用,其中,光传导层300可以包括反光板302和导光板301,反光板302和导光板301在光传导层300中依次排列,导光板301可以设置在基板200的一侧面,光源100的出射面可以朝向导光板301,光源100发出的第一频率的光可以先经过导光板301的作用,从点光源转化为面光源,然后第一频率的光可以再经过反光板301的作用,将光源中的杂光反射到显示一侧,从而减小第一频率的光的强度损失,提高压力检测装置的检测精度。
在光传导层300和光吸收层500中间可以设置有光线处理组件400,光线处理组件400可以折射板401和偏光板402,其中,折射板401和偏光板402可以并行排列,或者交叠排列,具体的排列方式可以有多种多样,本公开实施例对此不做限制,光线处理组件400通过折射板401和偏光402对光源100发出的第一频率的光和可见光进行折射等处理,可以使得可见光和第一频率的光平行射出,提高光线强度的均匀性。
光吸收层的透光率可以高于预定透光率阈值,且光吸收层的透光率随形变的变化率可以小于预定变化率阈值。其中,透光率可以是表示光线透过介质的能力,是透过光吸收层的第一频率的光与射入光吸收层的第一频率的光的百分比,光吸收层的透光率越大,则光吸收层301的透光性越好,所以 为保证压力检测装置的精准性,光吸收层的透光率需大于预定的透光率阈值,以保障穿透光吸收层的第一频率的光的数量,同时,光吸收层的透光率随形变的变化率可以小于预定变化率阈值,如果光吸收层的透光率随形变的变化率高于预定变化率阈值,那么光吸收层的透光率随形变的变化程度越小,即,光吸收层的透光率对光吸收层的形变的变化不敏感,这就会导致压力检测装置对压力的敏感度降低,造成压力检测装置灵敏度较差,所以光吸收层的透光率随形变的变化率可以小于预定变化率阈值。
吸收液502可以用于吸收部分第一频率的光,即在预定频率范围内的红外光线,且吸收液502对可见光无吸收作用,当光源100发射出第一频率的光(如特定频率f 0的红外光线)和可见光时,发出的第一频率的光需穿过吸收液502,此时,吸收液502可以吸收部分预定频率范围内的红外光线,同时对可见光无吸收作用,不影响光线的传播方向。
此外,吸收液502对红外光线的吸收程度与红外光线在吸收液502中通过的距离正相关。吸收液502对红外光线的吸收程度与红外光线在吸收液502中通过的距离正相比,即吸收液502的厚度越大,对红外光线的吸收越强,穿透吸收液502的红外光线的强度就越低,例如,吸收液502对红外光线的吸收程度与红外光线在吸收液502中通过距离的比例系数为2,那么如果6个单位强度的红外光线在吸收液502中需通过的距离为1,则吸收液502可以吸收2个单位的红外光线,通过该吸收液502的红外光线只有4个单位,如果吸收液502对红外光线的吸收程度与红外光线在吸收液502中通过距离的比例系数为4,那么如果6个单位强度的红外光线在吸收液502中需通过的距离为1,则吸收液500可以吸收4个单位的红外光线,通过该吸收液502的红外光线只有2个单位。此外,吸收液502对红外光线的吸收能力与压力检测装置所处的环境温度无关,这样,可以提高压力检测的抗环境干扰能力,保证检测的准确性。
感光层600上可以设置有检测器602和多个感光块601,如图3所示,多个感光块601可以在感光层600上按预定的排列方式进行排列,构成感光阵列,每一个感光块601可以引出一根引线连接到检测器602,检测器602可以根据监测到的感光块601上的电流变化,来确定红外光线强度变化的位置, 其中,感光块601位于容器的弹性面5011的上层。当检测到压力检测装置上产生压力时,在产生压力的位置会导致容器的弹性面5011发生形变,由于容器的弹性面5011发生了形变会导致对应位置上吸收液502厚度的改变,吸收液502厚度产生的变化会影响其吸收红外光线的能力,感光块601会检测到红外光线的变化,由此会导致感光块601上电流的变化,此时,检测器602可以监测到电流发生变化的感光块601的位置,从而确定压力检测装置上压力产生的位置。例如,在图3中,感光块6011、感光块6012...感光块6019等多个感光块601在感光层600上成阵列排布,每个感光块601都由引线连接到检测器602,如果检测器602监测到感光块6012的位置上产生了电流的变化,由此就可以确定在感光块6011和感光块6012的位置上,产生了光强的变化,即感光块6011和感光块6012的位置上接收了外界压力。
在感光层600的上层可设置有遮光层700,遮光层700主要用于阻挡外界光线对压力检测装置的干扰性,避免由于外界光线的干扰而降低压力检测装置的检测精度,遮光层700也具有较高的弹性和耐久性,遮光层700可以阻挡外界的红外光线穿过遮光层700,同时也不影响压力检测装置的内部光线通过遮光层700。
如图4所示,遮光层700位于感光层600的上层,感光层600位于光吸收层500的上层,当第一频率的光穿过容器501后,第一频率的光会到达感光层600,感光层600用于检测第一频率的光,而遮光层700可以用于阻挡外界的光线干扰照射到捡光器上,避免外界光线中的红外光照射到感光层600上,影响感光层600对实际红外光变化的判断。
如图5所示,遮光层700可以包括基膜702和增反膜701,增反膜701的折射率可以大于基膜702的折射率,增反膜701厚度可以在预定厚度范围内,基膜702设置于感光层600的上层,基膜702的上层设置有增反膜701。红外光线在外界空气中的折射率为n 0,红外光线在增反膜702中的折射率为n 1,红外光线在基膜702中的折射率为n 2,当外界的红外光线从空气中照射到压力检测装置时,会发生如图5所示的折射和反射,红外光线会在增反膜701的两侧形成一系列相互平行的光束,并且满足菲涅尔公式:
Figure PCTCN2019117448-appb-000002
其中,上述公式中的R为增反膜702的反射率,即反射光线的强度与投射光线的强度之比,
Figure PCTCN2019117448-appb-000003
为相邻两束光线间的相位差。
当增反膜701的折射率n 1大于基膜702的折射率n 2,且增反膜701的厚度h为
Figure PCTCN2019117448-appb-000004
的奇数倍时,反射率R出现最大值,反射光线的强度远大于透射光线的强度,就可以认为外界空气中红外光线中频率为f 0的红外光线全部被反射。
光源100可以由多个白光光源和多个红外光源组成,当光源100发出白光(即可见光)和第一频率的光(如特定频率的红外光线)后,光传导层300中的导光板301可以将白光光源和红外光源从点光源转化为面光源,然后光传导层300中的反光板3002再将导光板折射出来的杂光发射到显示一侧,减小光线强度的损失,然后红外光线和可见光通过折射板401和偏光板402的折射,变成均匀的光线后,穿过容器501的非弹性面,到达吸收液502,吸收液502对可见光无吸收作用,但可以吸收部分红外光线,未被吸收的红外光线可以到达感光层600,感光层600在检测到红外光线后,产生电阻变化或光电子,从而引起电流的变化。当手指或其他物体按压压力检测装置时,压力检测装置的遮光层700、感光层600和容器的弹性面5011可以产生凹陷形变,在凹陷的位置,吸收液502的厚度变小,相应的,该位置上的红外光线被吸收的部分减少,到达感光层600的光强增大,对应位置上产生的电阻或光电子有所变化,从而产生电流变化信号,进而确定手指或其他物体按压的位置。
本公开实施例提供的一种压力检测装置包括依次排列的基板、光传导层、光吸收层和感光层,还包括光源,其中:光源可发射第一频率的光,其出射面朝向光传导层,光传导层将第一频率的光分散射出,光吸收层包括形成封闭空间的容器,以及填充容器的吸收液,吸收液至少吸收部分第一频率的光,容器的至少一侧面为弹性面,感光层的感光面朝向光吸收层,感光层用于检测穿过光吸收层的第一频率的光,这样,基于上述压力检测装置的结构,可以通过感光层来减少环境光对压力检测装置的干扰,光源和吸收液的结构可 以在保证检测精度的前提下,提高压力感应下压力检测的灵敏度,提高用户体验感。
实施例三
以上为本公开实施例提供的一种压力检测装置,基于该压力检测装置的功能及其组成结构,本公开实施例还提供一种压力检测方法,该方法的执行主体可以为移动终端,该移动终端中可以包含如上述实施例一和实施例二中的压力检测装置,其中,该移动终端可以如手机、平板电脑等,该移动终端可以为用户使用的移动终端。如图6所示,该方法具体可以包括以下步骤:
在步骤S602中,在检测到移动终端中压力检测中容器501发生形变的情况下,获取容器501发生形变后感光层600接收到的光线强度。
在实施中,如图7(a)压力检测装置中的光源100会持续发射特定频率(如f 0)的红外光线和可见白光,或者发射红外光线脉冲进行扫描,红外光线穿过容器501的非弹性面,到达吸收液502,部分会被容器501中的吸收液502吸收,感光层600会对穿过吸收液502的红外光线进行检测,根据红外光线会产生电阻变化或者产生光电子,从而引起电流的变化。
检测器602可以记录压力检测装置未接收到压力时,各感光块601的基准电流I 0,I 0可以是预设的固定的电流值,也可以在对压力检测装置进行校正时的更新数据。如图7(b)所示,当压力检测装置接收到外界压力时,遮光层700、感光层600和容器的弹性面5011会产生凹陷,在凹陷处吸收液502的厚度减小,红外光线被吸收的部分减少,到达感光层600的光强增大,获取此时的光线强度,即为容器301发生形变后的光线强度。
其中,吸收液502对可见白光无吸收作用,可见白光通过容器501和吸收液502后,不会产生气体效果,可见白光仅用于屏幕图像显示。
在步骤S604中,根据光线强度,确定容器501发生形变后的电流变化。
在实施中,根据步骤S602获取的形变前后的光线强度,确定容器501对应位置上的电流的变化。
在步骤S606中,根据电流变化,确定容器501发生形变的位置信息,并对位置信息对应的位置处的目标对象,执行对应的控制策略。
其中,目标对象可以是应用对象、控制对象(确定、删除、编辑等)、图片对象、文字对象等任意可以实现控制策略的对象,控制策略可以是删除、编辑、打开等任意策略。
在实施中,检测器对电流变化进行分析,确定在压力检测装置上,容器501发生形变的位置信息,根据该位置信息确定目标对象,获取该目标对象对应的控制策略,并执行该控制策略。例如,在图3中,如果发生形变的位置为感光块6012对应的位置,而感光块对应的目标对象为相机应用,则对应的控制策略为打开相机应用,当该位置(感光块6012对应的位置)发生形变时,执行打开相机应用的控制策略。
此外,根据电流的变化情况,对相同的位置上的目标对象,可以采取不同的控制策略,例如,当电流变化大于一定阈值时,可以对相机应用执行删除或重排等控制策略,当电流变化小于一定阈值时,可以是打开相机应用。
本公开实施例提供一种压力检测的方法,该方法可以应用于移动终端,该移动终端包括压力检测装置,该压力检测装置可以包括依次排列的基板、光传导层、光吸收层和感光层,还包括光源,其中:光源可发射第一频率的光,其出射面朝向光传导层,光传导层将第一频率的光分散射出,光吸收层包括形成封闭空间的容器,以及填充容器的吸收液,吸收液至少吸收部分第一频率的光,容器的至少一侧面为弹性面,感光层的感光面朝向光吸收层,感光层用于检测穿过光吸收层的第一频率的光,这样,基于上述压力检测装置的结构,可以通过感光层来减少环境光对压力检测装置的干扰,光源和吸收液的结构可以在保证检测精度的前提下,提高压力感应下压力检测的灵敏度,提高用户体验感。
实施例四
如图8所示,本公开实施例提供一种压力检测方法,该方法的执行主体可以为移动终端,该移动终端中可以包含如上述实施例一和实施例二中的压力检测装置,其中,该移动终端可以如手机、平板电脑等,该移动终端可以为用户使用的移动终端。该方法具体可以包括以下步骤:
在步骤S802中,在检测到移动终端中压力检测装置中容器501发生形变 的情况下,获取容器501发生形变后感光层600接收到的光线强度。
上述步骤S802的具体处理过程可以参见上述实施例三中步骤S602的相关内容,在此不再赘述。
在步骤S804中,根据光线强度,确定相应的目标电流。
在步骤S806中,根据目标电流和预定的基准电流,确定容器501发生形变后的电流变化。
在实施中,预定的基准电流可以是未产生形变时的电流,例如,在图7中,当在图7(a)的基础上产生形变,形成图7(b)中的形变状况下,此时容器501发生形变后的电流变化,即为由图7(b)产生形变对应的电流I 1与图7(a)对应的电流I 0的电流差值,此时,预定的基准电流为I 0,目标电流为I 1
此外,还可以根据目标电流和上一次获取的光线强度对应的电流,具体处理步骤如下:
在步骤S808中,根据目标电流和上一次获取的光线强度对应的电流,确定容器501发生形变后的电流变化
在实施中,如在图7(b)的基础上继续发生形变,形成图7(c)中的形变状况,此时,预定的基准电流即为图7(b)产生形变对应的电流I 1,目标电流即为图7(c)产生形变对应的电流I 2,此时电流变化量就为I 2与I 1的差值。
在步骤S810中,根据电流变化,确定容器501发生形变的位置信息,并对位置信息对应的位置处的目标对象,执行对应的控制策略。
上述步骤S810的具体处理过程可以参见上述实施例三中步骤S606的相关内容,在此不再赘述。
本公开实施例提供一种压力检测的方法,该方法可以应用于移动终端,该移动终端包括压力检测装置,该压力检测装置可以包括依次排列的基板、光传导层、光吸收层和感光层,还包括光源,其中:光源可发射第一频率的光,其出射面朝向光传导层,光传导层将第一频率的光分散射出,光吸收层包括形成封闭空间的容器,以及填充容器的吸收液,吸收液至少吸收部分第一频率的光,容器的至少一侧面为弹性面,感光层的感光面朝向光吸收层, 感光层用于检测穿过光吸收层的第一频率的光,这样,基于上述压力检测装置的结构,可以通过感光层来减少环境光对压力检测装置的干扰,光源和吸收液的结构可以在保证检测精度的前提下,提高压力感应下压力检测的灵敏度,提高用户体验感。
实施例五
以上为本公开实施例提供的压力检测装置,基于同样的思路,本公开实施例还提供一种屏幕组件。
所述屏幕组件包括如上述实施例一和实施例二所述的任一压力检测装置,压力检测装置包括至少两个光源,所述至少两个光源中的至少一个光源可发射第一频率的光。
在本公开实施例中,所述压力检测装置包括第一光源和第二光源,其中,所述第一光源用于发射可见光,所述第二光源用于发射第一频率的不可见光。
其中,所述压力检测装置包括基板、光传导层、光吸收层和感光层,还包括光源,其中:
所述光源可发射第一频率的光,其出射面朝向所述光传导层;
所述光传导层将所述第一频率的光分散射出;
所述光吸收层包括形成封闭空间的容器,以及填充所述容器的吸收液,所述吸收液至少吸收部分所述第一频率的光,所述容器的至少一侧面为弹性面;
所述感光层的感光面朝向所述光吸收层,所述感光层用于检测穿过所述光吸收层的所述第一频率的光。
在本公开实施例中,所述光传导层包括反光板和导光板,所述反光板和所述导光板依次排列,且所述导光板设于所述基板的一侧面。
在本公开实施例中,所述压力检测装置还包括遮光层,所述遮光层设置于所述感光层的感光面的背侧。
在本公开实施例中,所述压力检测装置还包括光线处理组件,所述光线处理组件包括折射板和偏光板,所述折射板与所述偏光板相邻,并设置在所述光传导层与所述光吸收层之间。
在本公开实施例中,所述容器中朝向所述光吸收层的侧面为弹性面,所述容器中朝向所述光发射层的侧面为非弹性面。
在本公开实施例中,所述容器的透光率高于预定透光率阈值。
在本公开实施例中所述吸收液对所述第一频率光的吸收量与所述第一频率的光在所述吸收液中通过的距离正相关。
在本公开实施例中,所述感光层上设置有检测器和多个感光块,所述多个感光块分别与所述检测器相连接,所述感光块用于检测所述第一频率的光的光强,并将检测到的光强转化为电流,所述检测器用于基于所述电流的变化确定光强变化对应的所述感光块的位置。
在本公开实施例中,所述遮光层用于阻挡预定频率范围的光穿过。
在本公开实施例中,所述遮光层包括基膜和增反膜,所述增反膜的折射率大于所述基膜的折射率,所述增反膜的厚度在预定厚度范围内,所述基膜设置于所述感光层的上层,所述基膜的上层设置有所述增反膜。
在本公开实施例中,所述增反膜的厚度为
Figure PCTCN2019117448-appb-000005
的奇数倍。
本公开实施例提供一种屏幕组件,包括如上述实施例所述的压力检测装置,该压力检测装置可以包括依次排列的基板、光传导层、光吸收层和感光层,还包括光源,其中:光源可发射第一频率的光,其出射面朝向光传导层,光传导层将第一频率的光分散射出,光吸收层包括形成封闭空间的容器,以及填充容器的吸收液,吸收液至少吸收部分第一频率的光,容器的至少一侧面为弹性面,感光层的感光面朝向光吸收层,感光层用于检测穿过光吸收层的第一频率的光,这样,基于上述压力检测装置的结构,可以通过感光层来减少环境光对压力检测装置的干扰,光源和吸收液的结构可以在保证检测精度的前提下,提高压力感应下压力检测的灵敏度,提高用户体验感。
实施例六
图9为实现本公开各个实施例的一种移动终端的硬件结构示意图,
该移动终端900包括但不限于:射频单元901、网络模块902、音频输出单元903、输入单元904、传感器905、显示单元906、用户输入单元907、接口单元908、存储器909、处理器910、以及电源911等部件。本领域技术人 员可以理解,图9中示出的移动终端结构并不构成对移动终端的限定,移动终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,移动终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,压力检测装置包括依次排列的基板、光传导层、光吸收层和感光层,还包括光源,其中:
所述光源可发射第一频率的光,其出射面朝向所述光传导层;
所述光传导层将所述第一频率的光分散射出;
所述光吸收层包括形成封闭空间的容器,以及填充所述容器的吸收液,所述吸收液至少吸收部分所述第一频率的光,所述容器的至少一侧面为弹性面;
所述感光层的感光面朝向所述光吸收层,所述感光层用于检测穿过所述光吸收层的所述第一频率的光。
此外,所述光传导层包括反光板和导光板,所述反光板和所述导光板依次排列,且所述导光板设于所述基板的一侧面。
另外,所述压力检测装置还包括遮光层,所述遮光层设置于所述感光层的感光面的背侧。
此外,所述压力检测装置还包括光线处理组件,所述光线处理组件包括折射板和偏光板,所述折射板与所述偏光板相邻,并设置在所述光传导层与所述光吸收层之间。
另外,所述容器中朝向所述光吸收层的侧面为弹性面,所述容器中朝向所述光源的侧面为非弹性面。
此外,所述容器的透光率高于预定透光率阈值。
另外,所述吸收液用于吸收第一频率的光,所述吸收液对所述第一频率的光的吸收量与所述第一频率的光在所述吸收液中通过的距离正相关。
此外,所述感光层上设置有检测器和多个感光块,所述多个感光块分别与所述检测器相连接,所述感光块用于检测所述第一频率的光的光强,并将检测到的光强转化为电流,所述检测器用于基于所述电流的变化确定光强变化对应的所述感光块的位置。
另外,所述遮光层用于阻挡预定频率范围的光穿过。
此外,所述遮光层包括基膜和增反膜,所述增反膜的折射率大于所述基膜的折射率,所述增反膜的厚度在预定厚度范围内,所述基膜设置于所述感光层的上层,所述基膜的上层设置有所述增反膜。
另外,所述增反膜的厚度为
Figure PCTCN2019117448-appb-000006
的奇数倍。
本公开实施例提供一种移动终端,该移动终端包括压力检测装置,该压力检测装置可以包括依次排列的基板、光传导层、光吸收层和感光层,还包括光源,其中:光源可发射第一频率的光,其出射面朝向光传导层,光传导层将第一频率的光分散射出,光吸收层包括形成封闭空间的容器,以及填充容器的吸收液,吸收液至少吸收部分第一频率的光,容器的至少一侧面为弹性面,感光层的感光面朝向光吸收层,感光层用于检测穿过光吸收层的第一频率的光,这样,基于上述压力检测装置的结构,可以通过遮光层来减少环境光对压力检测装置的干扰,光源和吸收液的结构可以在保证检测精度的前提下,提高压力感应下压力检测的灵敏度,提高用户体验感。
应理解的是,本公开实施例中,射频单元901可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器910处理;另外,将上行的数据发送给基站。通常,射频单元901包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元901还可以通过无线通信系统与网络和其他设备通信。
移动终端通过网络模块902为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元903可以将射频单元901或网络模块902接收的或者在存储器909中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元903还可以提供与移动终端900执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元903包括扬声器、蜂鸣器以及受话器等。
输入单元904用于接收音频或视频信号。输入单元904可以包括图形处理器(Graphics Processing Unit,GPU)9041和麦克风9042,图形处理器9041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静 态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元906上。经图形处理器9041处理后的图像帧可以存储在存储器909(或其它存储介质)中或者经由射频单元901或网络模块902进行发送。麦克风9042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元901发送到移动通信基站的格式输出。
移动终端900还包括至少一种传感器905,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板9061的亮度,接近传感器可在移动终端900移动到耳边时,关闭显示面板9061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别移动终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器905还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元906用于显示由用户输入的信息或提供给用户的信息。显示单元906可包括显示面板9061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板9061。
用户输入单元907可用于接收输入的数字或字符信息,以及产生与移动终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元907包括触控面板9071以及其他输入设备9072。触控面板9071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板9071上或在触控面板9071附近的操作)。触控面板9071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器910,接收处理器910发来的命令并加以执行。此外,可以采用电阻 式、电容式、红外线以及表面声波等多种类型实现触控面板9071。除了触控面板9071,用户输入单元907还可以包括其他输入设备9072。具体地,其他输入设备9072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板9071可覆盖在显示面板9061上,当触控面板9071检测到在其上或附近的触摸操作后,传送给处理器910以确定触摸事件的类型,随后处理器910根据触摸事件的类型在显示面板9061上提供相应的视觉输出。虽然在图9中,触控面板9071与显示面板9061是作为两个独立的部件来实现移动终端的输入和输出功能,但是在某些实施例中,可以将触控面板9071与显示面板9061集成而实现移动终端的输入和输出功能,具体此处不做限定。
接口单元908为外部装置与移动终端900连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元908可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到移动终端900内的一个或多个元件或者可以用于在移动终端900和外部装置之间传输数据。
存储器909可用于存储软件程序以及各种数据。存储器909可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器409可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器910是移动终端的控制中心,利用各种接口和线路连接整个移动终端的各个部分,通过运行或执行存储在存储器909内的软件程序和/或模块,以及调用存储在存储器909内的数据,执行移动终端的各种功能和处理数据,从而对移动终端进行整体监控。处理器910可包括一个或多个处理单元;可选的,处理器910可集成应用处理器和调制解调处理器,其中,应用处理器 主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器910中。
移动终端900还可以包括给各个部件供电的电源911(比如电池),可选的,电源911可以通过电源管理系统与处理器910逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
可选的,本公开实施例还提供一种移动终端,包括处理器910,存储器909,存储在存储器909上并可在所述处理器910上运行的计算机程序,该计算机程序被处理器910执行时实现上述压力检测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
实施例七
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述压力检测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本公开实施例提供一种计算机可读存储介质,通过上述压力检测装置的结构,可以减少环境光对压力检测装置的干扰,光源和吸收液的结构可以在保证检测精度的前提下,提高压力感应下压力检测的灵敏度,提高用户体验感。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包 括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本公开的实施例可提供为方法、系统或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
以上所述仅为本公开的实施例而已,并不用于限制本公开。对于本领域技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本公开的权利要求范围之内。

Claims (14)

  1. 一种压力检测装置,所述压力检测装置包括依次排列的基板、光传导层、光吸收层和感光层,还包括光源,其中:
    所述光源可发射第一频率的光,其出射面朝向所述光传导层;
    所述光传导层将所述第一频率的光分散射出;
    所述光吸收层包括形成封闭空间的容器,以及填充所述容器的吸收液,所述吸收液至少吸收部分所述第一频率的光,所述容器的至少一侧面为弹性面;
    所述感光层的感光面朝向所述光吸收层,所述感光层用于检测穿过所述光吸收层的所述第一频率的光。
  2. 根据权利要求1所述的压力检测装置,其中,所述光传导层包括反光板和导光板,所述反光板和所述导光板依次排列,且所述反光板设于所述基板的一侧面。
  3. 根据权利要求1所述的压力检测装置,还包括遮光层,所述遮光层设置于所述感光层的感光面的背侧。
  4. 根据权利要求1所述的压力检测装置,还包括光线处理组件,所述光线处理组件包括折射板和偏光板,所述折射板与所述偏光板相邻,并设置在所述光传导层与所述光吸收层之间。
  5. 根据权利要求1所述的压力检测装置,其中,所述容器中朝向所述光吸收层的侧面为弹性面,所述容器中朝向所述光源的侧面为非弹性面。
  6. 根据权利要求5所述的压力检测装置,其中,所述容器的透光率高于预定透光率阈值。
  7. 根据权利要求1所述的压力检测装置,其中,所述吸收液用于吸收第一频率的光,所述吸收液对所述第一频率的光的吸收量与所述第一频率的光在所述吸收液中通过的距离正相关。
  8. 根据权利要求1所述的压力检测装置,其中,所述感光层上设置有检测器和多个感光块,所述多个感光块分别与所述检测器相连接,所述感光块用于检测所述第一频率的光的光强,并将检测到的光强转化为电流,所述检测器用于基于所述电流的变化确定光强变化对应的所述感光块的位置。
  9. 根据权利要求2所述的压力检测装置,其中,所述遮光层用于阻挡预定频率范围的光穿过。
  10. 根据权利要求9所述的压力检测装置,其中,所述遮光层包括基膜和增反膜,所述增反膜的折射率大于所述基膜的折射率,所述增反膜的厚度在预定厚度范围内,所述基膜设置于所述感光层的上层,所述基膜的上层设置有所述增反膜。
  11. 根据权利要求9所述的压力检测装置,其中,所述增反膜的厚度为
    Figure PCTCN2019117448-appb-100001
    的奇数倍。
  12. 一种屏幕组件,所述屏幕组件包括如权利要求1-11中任一项所述的压力检测装置,所述压力检测装置包括至少两个光源,所述至少两个光源中的至少一个光源可发射第一频率的光。
  13. 根据权利要求12所述的屏幕组件,其中,所述压力检测装置包括第一光源和第二光源,其中,所述第一光源用于发射可见光,所述第二光源用于发射第一频率的不可见光。
  14. 一种移动终端,所述移动终端包括如权利要求13所述的屏幕组件。
PCT/CN2019/117448 2018-12-18 2019-11-12 压力检测装置、屏幕组件及移动终端 WO2020125272A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021535026A JP7258148B2 (ja) 2018-12-18 2019-11-12 圧力検出装置、スクリーンコンポーネント及び移動端末
KR1020217021972A KR102552626B1 (ko) 2018-12-18 2019-11-12 압력 검측 장치, 스크린 어셈블리 및 이동 단말기
EP19897576.5A EP3901744B1 (en) 2018-12-18 2019-11-12 Pressure detection device, screen assembly and mobile terminal
ES19897576T ES2964550T3 (es) 2018-12-18 2019-11-12 Dispositivo de detección de presión, conjunto de pantalla y terminal móvil
US17/347,381 US11720209B2 (en) 2018-12-18 2021-06-14 Pressure detection apparatus, screen assembly, and mobile terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811548465.5A CN109739378B (zh) 2018-12-18 2018-12-18 一种压力检测装置、屏幕组件及移动终端
CN201811548465.5 2018-12-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/347,381 Continuation US11720209B2 (en) 2018-12-18 2021-06-14 Pressure detection apparatus, screen assembly, and mobile terminal

Publications (1)

Publication Number Publication Date
WO2020125272A1 true WO2020125272A1 (zh) 2020-06-25

Family

ID=66360460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117448 WO2020125272A1 (zh) 2018-12-18 2019-11-12 压力检测装置、屏幕组件及移动终端

Country Status (7)

Country Link
US (1) US11720209B2 (zh)
EP (1) EP3901744B1 (zh)
JP (1) JP7258148B2 (zh)
KR (1) KR102552626B1 (zh)
CN (1) CN109739378B (zh)
ES (1) ES2964550T3 (zh)
WO (1) WO2020125272A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114264395A (zh) * 2021-11-29 2022-04-01 重庆金山医疗技术研究院有限公司 一种压力检测装置及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109739378B (zh) 2018-12-18 2020-07-28 维沃移动通信有限公司 一种压力检测装置、屏幕组件及移动终端
CN113405703B (zh) * 2021-06-16 2024-04-09 哲弗智能系统(上海)有限公司 一种光学传感器及消防报警装置
CN114659553A (zh) * 2022-02-28 2022-06-24 联想(北京)有限公司 一种检测方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100103140A1 (en) * 2008-10-27 2010-04-29 Sony Ericsson Mobile Communications Ab Touch sensitive device using optical gratings
CN102609138A (zh) * 2011-02-03 2012-07-25 微软公司 在显示面板中进行触摸压力感测
CN106445242A (zh) * 2016-10-31 2017-02-22 北京小米移动软件有限公司 压力触控装置和电子设备
CN107135304A (zh) * 2017-03-31 2017-09-05 努比亚技术有限公司 一种压力触控识别装置及其方法
US20180031745A1 (en) * 2016-07-29 2018-02-01 Samsung Electronics Co., Ltd. Infrared cut filter, camera module having the filter, and electronic device having the module
CN109739378A (zh) * 2018-12-18 2019-05-10 维沃移动通信有限公司 一种压力检测装置、屏幕组件及移动终端

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100506088B1 (ko) 2003-01-14 2005-08-03 삼성전자주식회사 액정표시장치
JP4155310B2 (ja) * 2006-06-02 2008-09-24 ソニー株式会社 バックライト装置と液晶表示装置および液晶表示装置を使用した電子機器
DE102007042693A1 (de) * 2007-09-07 2009-03-12 Foresee Gmbh Berührungssensitives System
JP5014971B2 (ja) * 2007-12-19 2012-08-29 ソニーモバイルディスプレイ株式会社 ディスプレイ装置
JP5413773B2 (ja) 2009-06-24 2014-02-12 国立大学法人 東京大学 柔軟触覚センサ
KR20130086909A (ko) * 2012-01-26 2013-08-05 한국전자통신연구원 압력 센서, 압력 감지 장치 및 압력 센서를 구비하는 터치 스크린
CN105229436B (zh) * 2013-05-16 2019-06-28 三井化学株式会社 按压检测装置及触控面板
JP6607682B2 (ja) * 2015-03-05 2019-11-20 日鉄ケミカル&マテリアル株式会社 遮光膜用黒色樹脂組成物、当該組成物を硬化させた遮光膜を有する遮光膜付基板、並びに当該遮光膜付基板を有するカラーフィルター及びタッチパネル
CN104765500B (zh) * 2015-04-20 2018-07-17 合肥京东方光电科技有限公司 彩膜基板及其制作方法、显示装置
JP2018141651A (ja) * 2017-02-27 2018-09-13 パナソニックIpマネジメント株式会社 機能水濃度センサ
CN108663838B (zh) * 2017-03-31 2020-10-23 合肥鑫晟光电科技有限公司 一种触控面板及显示装置
CN107390956B (zh) * 2017-07-31 2021-01-29 上海天马微电子有限公司 一种触摸屏、显示面板、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100103140A1 (en) * 2008-10-27 2010-04-29 Sony Ericsson Mobile Communications Ab Touch sensitive device using optical gratings
CN102609138A (zh) * 2011-02-03 2012-07-25 微软公司 在显示面板中进行触摸压力感测
US20180031745A1 (en) * 2016-07-29 2018-02-01 Samsung Electronics Co., Ltd. Infrared cut filter, camera module having the filter, and electronic device having the module
CN106445242A (zh) * 2016-10-31 2017-02-22 北京小米移动软件有限公司 压力触控装置和电子设备
CN107135304A (zh) * 2017-03-31 2017-09-05 努比亚技术有限公司 一种压力触控识别装置及其方法
CN109739378A (zh) * 2018-12-18 2019-05-10 维沃移动通信有限公司 一种压力检测装置、屏幕组件及移动终端

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114264395A (zh) * 2021-11-29 2022-04-01 重庆金山医疗技术研究院有限公司 一种压力检测装置及方法
CN114264395B (zh) * 2021-11-29 2024-04-30 重庆金山医疗技术研究院有限公司 一种压力检测装置及方法

Also Published As

Publication number Publication date
EP3901744A1 (en) 2021-10-27
CN109739378B (zh) 2020-07-28
US20210303102A1 (en) 2021-09-30
CN109739378A (zh) 2019-05-10
KR102552626B1 (ko) 2023-07-05
EP3901744B1 (en) 2023-10-04
US11720209B2 (en) 2023-08-08
KR20210101301A (ko) 2021-08-18
EP3901744A4 (en) 2022-02-16
JP7258148B2 (ja) 2023-04-14
JP2022515091A (ja) 2022-02-17
ES2964550T3 (es) 2024-04-08

Similar Documents

Publication Publication Date Title
WO2020125272A1 (zh) 压力检测装置、屏幕组件及移动终端
CN208862900U (zh) 一种显示面板和终端设备
CN107291356B (zh) 文件传输显示控制方法、装置及相应的终端
US8253712B2 (en) Methods of operating electronic devices including touch sensitive interfaces using force/deflection sensing and related devices and computer program products
CN109300942B (zh) 显示面板和具有其的显示装置
KR102640072B1 (ko) 화면 표시의 제어 방법 및 전자기기
KR20180037799A (ko) 생체 센서를 포함하는 전자 장치
KR102028717B1 (ko) 플렉서블 장치 및 그의 제어 방법
CN109729344B (zh) 一种摄像检测装置、方法及移动终端
WO2019153372A1 (zh) 一种显示装置
US20100271334A1 (en) Touch display system with optical touch detector
JP7329150B2 (ja) タッチボタン、制御方法及び電子機器
US11361580B2 (en) Screen module to determine an image using a light reflecting structure and electronic device provided with screen module
WO2021057301A1 (zh) 文件控制方法及电子设备
CN107782280A (zh) 一种检测方法和移动终端
CN109257463B (zh) 一种终端设备及其控制方法和计算机可读存储介质
WO2021208890A1 (zh) 截屏方法及电子设备
WO2020216181A1 (zh) 终端设备及其控制方法
CN113835652A (zh) 用于利用电子装置提供状态指示器的方法和系统
CN112255829A (zh) 一种显示面板及显示装置
CN114995676A (zh) 指纹防误触方法、图形界面及电子设备
US20120242623A1 (en) Touch sensitive device and display device employing the same
RU2619204C2 (ru) Тонкая ito-пленка и терминальное устройство
CN109814749B (zh) 一种压力检测装置、屏幕组件及移动终端
CN109640075B (zh) 一种摄像检测装置、方法及移动终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897576

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021535026

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217021972

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019897576

Country of ref document: EP

Effective date: 20210719