WO2020125213A1 - 电能储存装置及电动工具系统 - Google Patents

电能储存装置及电动工具系统 Download PDF

Info

Publication number
WO2020125213A1
WO2020125213A1 PCT/CN2019/114239 CN2019114239W WO2020125213A1 WO 2020125213 A1 WO2020125213 A1 WO 2020125213A1 CN 2019114239 W CN2019114239 W CN 2019114239W WO 2020125213 A1 WO2020125213 A1 WO 2020125213A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
voltage
parallel
series
module
Prior art date
Application number
PCT/CN2019/114239
Other languages
English (en)
French (fr)
Inventor
刘传君
郭新忠
严安
Original Assignee
常州格力博有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201822145933.6U external-priority patent/CN209282869U/zh
Priority claimed from CN201811564074.2A external-priority patent/CN109360929A/zh
Priority claimed from CN201811564236.2A external-priority patent/CN109473616A/zh
Priority claimed from CN201811566089.2A external-priority patent/CN109360930A/zh
Priority claimed from CN201822146566.1U external-priority patent/CN209217096U/zh
Priority claimed from CN201822146585.4U external-priority patent/CN209200051U/zh
Priority claimed from CN201822146597.7U external-priority patent/CN209217097U/zh
Priority claimed from CN201811564279.0A external-priority patent/CN109599526B/zh
Priority claimed from CN201822145919.6U external-priority patent/CN209200050U/zh
Application filed by 常州格力博有限公司 filed Critical 常州格力博有限公司
Priority to EP19901399.6A priority Critical patent/EP3890084A4/en
Priority to AU2019410335A priority patent/AU2019410335A1/en
Publication of WO2020125213A1 publication Critical patent/WO2020125213A1/zh
Priority to US17/344,934 priority patent/US20210305653A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • B25F5/02Construction of casings, bodies or handles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • B25F5/02Construction of casings, bodies or handles
    • B25F5/021Construction of casings, bodies or handles with guiding devices
    • B25F5/023Construction of casings, bodies or handles with guiding devices with removably attached levels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0445Multimode batteries, e.g. containing auxiliary cells or electrodes switchable in parallel or series connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/247Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for portable devices, e.g. mobile phones, computers, hand tools or pacemakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/269Mechanical means for varying the arrangement of batteries or cells for different uses, e.g. for changing the number of batteries or for switching between series and parallel wiring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/519Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/04Pins or blades for co-operation with sockets
    • H01R13/05Resilient pins or blades
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/10Sockets for co-operation with pins or blades
    • H01R13/11Resilient sockets
    • H01R13/113Resilient sockets co-operating with pins or blades having a rectangular transverse section
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/082Plural DC voltage, e.g. DC supply voltage with at least two different DC voltage levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0045Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of electric tools, and in particular to an electric energy storage device and an electric tool system using the electric energy storage device.
  • power tools usually have a rated working voltage, that is, power tools with different voltage platforms require battery packs with different voltages to provide power. Therefore, different battery packs need to be prepared to adapt to different rated work Voltage power tools increase the cost of use and cause a waste of resources.
  • An object of the present invention is to provide an electric energy storage device capable of providing various output voltages and an electric tool system using the electric energy storage device.
  • the present invention provides an electric energy storage device including N energy units with the same rated voltage and a socket, N energy units are equally divided into M energy modules, and each of the energy modules Including K energy units, where M ⁇ 2 and K ⁇ 2, the K energy units in each energy module have two connection states of series and parallel, and can switch between parallel and series connection states .
  • the socket includes an in-module control section corresponding to the energy module, and the in-module control section is provided with a plurality of parallel switches and series connection of K energy units in parallel for each of the energy modules 1 or more series switches of the K energy units, when the parallel switch is closed and the series switch is open, K of the energy units are connected in parallel; when the parallel switch is open and the series switch When closed, the K energy units are connected in series.
  • control unit in the module includes 2*(K-1) parallel switches, and the parallel switches are connected to the electrodes of the same polarity of the K energy cells two by two;
  • the control unit includes (K-1) series switches, which are connected to K electrodes of different polarities of the energy cells two by two.
  • the parallel switch is a normally closed switch
  • the series switch is a normally open switch
  • the K energy units in the energy module are connected in parallel in an initial state
  • the parallel switch is a normally open switch
  • the series switch is a normally closed switch, and the K energy units in the energy module are connected in series in an initial state.
  • the socket further includes two voltage output terminals.
  • each of the energy units is provided with a positive electrode and a negative electrode
  • the socket includes eight independently arranged electrode terminals, and the eight electrode terminals include four respectively connected to the positive electrodes of the four energy units A positive electrode terminal and four negative electrode terminals respectively connected to the negative electrodes of the four energy cells.
  • the type of the output voltage of the electrical energy storage device is equal to the number of N factors.
  • the energy units may be multi-level modules, each level module includes 2 or 3 secondary modules, and the lowest level energy module includes 2 or 3 energy units.
  • the invention provides an electric tool system, including an electric tool and an electric energy storage device.
  • the electric energy storage device includes N energy units with the same rated voltage, and the N energy units are equally divided into M energy modules, each The energy module includes K energy units, where M ⁇ 2 and K ⁇ 2, the K energy units in each energy module have two connection states of series and parallel, and can be connected in parallel and series Switching between states, the electrical energy storage device is provided with a socket, and the power tool is provided with a plug that cooperates with the socket.
  • the electrical energy storage device is provided with a socket
  • the socket includes an in-module control section provided corresponding to each of the energy modules
  • the in-module control section includes a plurality of parallel connection of the K energy units A switch and one or more series switches of K energy units connected in series, when the parallel switch is closed and the series switch is open, K of the energy units are connected in parallel; when the parallel switch is open and the When the series switch is closed, K of the energy units are connected in series.
  • the plug is provided with an internal switching part which cooperates with the internal control part of the module and simultaneously switches the state of the parallel switch and the serial switch of the internal control part of the module, so that The K energy units in the energy module are switched from parallel to series or from series to parallel.
  • the inner switching part includes an insulating part and a conductive part, and one of the parallel switch and the serial switch of the control part in the module is initially closed and opened by the insulating part , Another is initially in a disconnected state and turned on by the conductive portion.
  • the socket further includes an inter-module control unit including a parallel switch in which M energy modules are connected in parallel and a series switch in which M energy modules are connected in series, when the parallel switch is closed And when the series switch is open, M energy modules are connected in parallel; when the parallel switch is open and the series switch is closed, M energy modules are connected in series.
  • an inter-module control unit including a parallel switch in which M energy modules are connected in parallel and a series switch in which M energy modules are connected in series, when the parallel switch is closed And when the series switch is open, M energy modules are connected in parallel; when the parallel switch is open and the series switch is closed, M energy modules are connected in series.
  • the plug is provided with an external switching part which cooperates with the inter-module control part and simultaneously switches the state of the parallel switch and the serial switch of the inter-module control part, so that The M energy modules are switched from parallel to series or from series to parallel.
  • the external switching portion includes an insulating portion and a conductive portion, and one of the parallel switch and the serial switch of the inter-module control portion is initially closed and opened by the insulating portion, The other is initially in a disconnected state and turned on by the conductive portion.
  • each of the energy modules is provided with a positive electrode and a negative electrode
  • the socket includes 2*M voltage output terminals respectively connected to the positive electrode and the negative electrode of each of the energy modules
  • the plug is provided with
  • the connection piece connected to the voltage output terminal determines that M of the energy modules are connected in series or in parallel.
  • the present invention provides a power tool system, including a low-voltage power tool, a medium-voltage power tool, and a high-voltage power tool.
  • the power tool system includes the electric energy storage device according to claims 1 to 7, and the low-voltage power tool is provided with Low-voltage plug, the low-voltage plug is docked with the socket and N energy units are in full parallel; the high-voltage power tool is provided with a high-voltage plug, the high-voltage plug is docked with the socket and N The energy unit is in a full series-parallel state; the medium-voltage power tool is provided with a medium-voltage plug, the medium-voltage plug is docked with the socket, and the N energy units are in a medium-voltage state.
  • the medium voltage state means that K of the energy units in the energy module are connected in series, and M of the energy modules are connected in parallel, corresponding to the output voltage K*nV; or K of the energy in the energy module The units are connected in parallel, and the M energy modules are connected in series, corresponding to the output voltage M*nV.
  • the power tool system further includes a low voltage battery pack mated with the low voltage power tool, a medium voltage battery pack mated with the medium voltage power tool, or a high voltage mated with the high voltage power tool Battery pack.
  • the beneficial effect of the present invention is that the electric energy storage device and the electric tool system of the present invention have multiple output voltages, which increases the applicable range of the electric energy storage device and reduces the use cost.
  • FIG. 1 is a schematic diagram of connection of four internal energy units in the first embodiment of the electric energy storage device of the present invention.
  • FIG. 2 is a schematic circuit diagram of the electrical energy storage device of the first embodiment when mated with a low-voltage plug.
  • FIG. 3 is a schematic circuit diagram of the electrical energy storage device of the first embodiment when mated with a medium voltage plug.
  • FIG. 4 is a schematic circuit diagram of the electrical energy storage device of the first embodiment cooperating with a high-voltage plug.
  • FIG. 5 is an exploded perspective view of the high-voltage plug according to the first embodiment.
  • FIG. 6 is a schematic structural diagram of the electrical energy storage device of Embodiment 1 when mated with a high-voltage plug.
  • FIG. 7 is a schematic circuit diagram of the first embodiment of the electrical energy storage device and the high-voltage plug mating.
  • FIG. 8 is a schematic diagram of connection of four internal energy units in the second embodiment of the electric energy storage device of the present invention.
  • FIG. 9 is a schematic circuit diagram of the second embodiment of the electrical energy storage device and a low-voltage plug mating.
  • FIG. 12 is a schematic diagram of connection between the electric energy storage device of the second embodiment and a high-voltage plug.
  • FIG. 13 is a schematic structural diagram of the high-voltage plug in FIG. 12.
  • FIG. 14 is a schematic structural diagram of the second embodiment of the electrical energy storage device and the high-voltage plug mating.
  • 15 is a schematic circuit diagram of the second embodiment of the electrical energy storage device and high-voltage plug mating.
  • 16 is a schematic diagram of connection of four internal energy units in the third embodiment of the electric energy storage device of the present invention.
  • FIG. 17 is a schematic structural diagram of a low-voltage plug in Embodiment 3.
  • FIG. 18 is a schematic structural diagram of the electric energy storage device and the low-voltage plug in the third embodiment.
  • FIG. 19 is a connection schematic diagram of the electric energy storage device and the low-voltage plug in the third embodiment.
  • 20 is a schematic circuit diagram of the electric energy storage device and the low-voltage plug in the third embodiment.
  • FIG. 22 is a schematic circuit diagram of an electric energy storage device and a high-voltage plug in the third embodiment.
  • 23 is a schematic diagram of connection of four internal energy units in the fourth embodiment of the electric energy storage device of the present invention.
  • 24 is a schematic circuit diagram of a fourth embodiment of the electric energy storage device of the present invention.
  • FIG. 25 is a connection schematic diagram of the electric energy storage device of the fourth embodiment when mated with a low-voltage plug.
  • 26 is a schematic circuit diagram of the fourth embodiment of the electrical energy storage device and low-voltage plug mating.
  • FIG. 27 is a connection schematic diagram of the electric energy storage device of the fourth embodiment when it is mated with a medium-voltage plug.
  • FIG. 28 is a schematic circuit diagram of the electrical energy storage device of the fourth embodiment when it is mated with a medium-voltage plug.
  • FIG. 29 is a schematic circuit diagram of the electrical energy storage device of Embodiment 4 cooperating with a high-voltage plug.
  • 30 is a schematic diagram of connection of four internal energy units in the fifth embodiment of the electric energy storage device of the present invention.
  • FIG. 31 is a schematic circuit diagram of Embodiment 5 of the electrical energy storage device of the present invention.
  • FIG. 32 is a connection schematic diagram of the electric energy storage device of the fifth embodiment when mated with a low-voltage plug.
  • 33 is a schematic circuit diagram of the fifth embodiment of the electrical energy storage device and low-voltage plug mating.
  • FIG. 34 is a schematic circuit diagram of the fifth embodiment of the electric energy storage device mated with a medium voltage plug.
  • 35 is a schematic diagram of the connection of the electric energy storage device of the fifth embodiment and a high-voltage plug.
  • 36 is a schematic circuit diagram of the fifth embodiment of the electrical energy storage device and the high-voltage plug mating.
  • FIG. 37 is a schematic diagram of connection of six internal energy units in the sixth embodiment of the electric energy storage device of the present invention.
  • 38 is a schematic circuit diagram of the sixth embodiment of the electrical energy storage device and a low-voltage plug mating.
  • 39 is a schematic circuit diagram of the sixth embodiment of the electric energy storage device and a first medium-voltage plug mating.
  • FIG. 40 is a schematic circuit diagram of an electric energy storage device in Embodiment 6 cooperating with a second medium voltage plug.
  • 44 is a schematic diagram of connection of twelve internal energy units in the seventh embodiment of the electric energy storage device of the present invention.
  • 45 is a schematic circuit diagram of the seventh embodiment of the electrical energy storage device when mated with a low-voltage plug.
  • FIG. 46 is a connection schematic diagram of the electric energy storage device in Embodiment 7 when it is mated with a first medium-voltage plug.
  • FIG. 47 is a circuit schematic diagram of the electric energy storage device in Embodiment 7 when mated with a first medium-voltage plug.
  • FIG. 48 is a connection schematic diagram of the electrical energy storage device and a second medium-voltage plug in Embodiment 7.
  • FIG. 48 is a connection schematic diagram of the electrical energy storage device and a second medium-voltage plug in Embodiment 7.
  • FIG. 49 is a schematic circuit diagram of the electric energy storage device in Embodiment 7 when mated with a second medium voltage plug.
  • FIG. 50 is a connection schematic diagram when the electric energy storage device in Embodiment 7 is mated with a third medium-voltage plug.
  • FIG. 51 is a schematic circuit diagram of the electric energy storage device and the third medium voltage plug in the seventh embodiment.
  • FIG. 52 is a connection schematic diagram when the electric energy storage device in Embodiment 7 cooperates with a fourth medium-voltage plug.
  • FIG. 55 is a schematic circuit diagram of the electric energy storage device and the high-voltage plug in the seventh embodiment.
  • FIG. 56 is a schematic diagram of the cooperation between the conductive terminals of the electric energy storage device and the low-voltage plug in the eighth embodiment.
  • FIG. 57 is a low-voltage blade structure diagram of the low-voltage blade in the eighth embodiment.
  • Fig. 59 is a structural diagram of a medium-voltage insert of a medium-voltage plug in the eighth embodiment.
  • FIG. 60 is a schematic diagram of the cooperation between the conductive terminals of the electric energy storage device and the high-voltage plug in the eighth embodiment.
  • Fig. 61 is a structural diagram of a high-voltage insert of a high-voltage plug in the eighth embodiment.
  • the present invention provides an electrical energy storage device, which includes N energy units with equal voltages.
  • An energy unit refers to an object that can provide electrical energy, such as a battery cell, a lithium battery, or other energy carriers. Of course, multiple batteries can also be charged. To form a single energy unit; the batteries include but are not limited to lithium batteries, nickel-metal hydride batteries, nickel-cadmium batteries and other rechargeable batteries.
  • the rated voltage of the energy unit is nV. It should be noted that the measured voltage of each energy unit of n ⁇ 5%V can be regarded as equal.
  • N is a composite number.
  • a composite number refers to a number in a natural number that can be divided by other numbers (except 0) except for being divisible by 1 and itself.
  • the circuit connection between the K energy units in the energy module has two optional states of parallel and series, and the circuit connection between the M energy modules also has two optional states of parallel and series. Therefore, the N energy units of the electrical energy storage device have the following four connection states: 1. K energy units in the energy module are connected in parallel, and M energy modules are connected in parallel, so that all N energy units are connected in parallel, this state It can be referred to as the full parallel state, and the output voltage is nV; 2. K energy units in the energy module are connected in series, and M energy modules are connected in series, so that all N energy units are connected in series. This state can be referred to as the full series state. The output voltage is N*nV; 3.
  • the K energy units in the energy module are connected in series, and the M energy modules are connected in parallel.
  • This state can be referred to as the internal and external parallel state, and the output voltage is K*nV; 4.
  • Energy The K energy units in the module are connected in parallel, and the M energy modules are connected in series.
  • This state can be referred to as the internal parallel and external serial state, and the output voltage is M*nV.
  • the electric energy storage device can output a rated voltage matched with different docking electric tools according to the electric power storage device.
  • N is the minimum value 4
  • the output voltages of the third internal and external serial connection states and the fourth internal and external serial connection states are 2nV, that is, the four connection states have three output voltages. Therefore, the electrical energy storage device can provide at least three output voltages. Please note that in any of the aforementioned connection states, all energy units are involved in the work.
  • the electrical energy storage device in the first embodiment of the present invention includes four energy units with the same voltage, each energy unit has a rated voltage of nV; the four energy units are equally divided into two
  • the socket (not shown) of the electric energy storage device includes a plurality of voltage output terminals.
  • Each energy module 10a, 20a is respectively provided with positive and negative electrodes, and a plurality of voltage output terminals are provided for the positive and negative electrodes of each energy module, that is, set to 2*M.
  • M is 2. Therefore, 4 voltage output terminals are provided.
  • the four voltage output terminals are: a voltage output terminal 101a connected to the positive electrode of the energy module 10a, a voltage output terminal 102a connected to the negative electrode of the energy module 10a, and a voltage output terminal 201a connected to the positive electrode of the energy module 20a.
  • the voltage output terminal 202a to which the negative electrode of the module 20a is connected.
  • connection state between the M energy modules can be controlled by controlling the connection mode between the four voltage output terminals, and the connection mode of the four voltage output terminals can be one or more of the butt plugs
  • connection piece is determined, and the content of this part will be detailed later.
  • the socket (not shown) of the electric energy storage device includes a control part in the module.
  • the in-module control unit is provided for each energy module, that is, M units. In this embodiment, M is 2, so two in-module control units are provided.
  • the control part in the module is used to control the connection state of the K energy units in the energy module.
  • the control part in the module can be switched by the internal switching part of the docking plug, which will be described in detail later.
  • control unit and the two energy units in the energy module are connected in the same way, and one of the control units is taken as an example for description below.
  • the control part in the module includes a parallel switch and a series switch.
  • the parallel switch connects the positive and negative ends of each energy unit in parallel. Therefore, the number of parallel switches corresponds to the number K of energy units set to (K-1) pairs, that is 2*(K- 1); the series switch connects each energy unit in series, the number of which corresponds to the number K of energy units is set to (K-1). In this embodiment, K is equal to 2, so the control unit in the module includes one series switch 30a and two parallel switches 41a and 42a.
  • the series switch 30a and the parallel switches 41a and 42a each include two contacts (not labeled) connected to the electrodes of the energy unit.
  • the two contacts of the parallel switches 41a and 42a are respectively connected to the two energy units of the energy module 10a.
  • the electrodes with the same polarity are connected, for example, as shown in FIG. 1: the two contacts of the parallel switch 41a are respectively connected to the negative poles of the two energy cells, and the two contacts of the parallel switch 42a are respectively connected to the positive poles of the two energy cells.
  • the two contact portions of the series switch 30a are respectively connected to electrodes of opposite polarities of two energy cells, and the other two electrodes of opposite polarities of the two energy cells are respectively connected to the aforementioned voltage output terminals 101a and 102a.
  • the parallel switches 41a and 42a are normally closed switches
  • the series switch 30a is a normally open switch, that is, in the initial state, the parallel switches 41a and 42a are in the on state and the series switch 30a is in the off state, each energy module The two energy units in 10a and 20a are initially connected in parallel.
  • the normally closed switch means that in the initial state, its two contact parts are in contact state to realize that the electrodes electrically connected to the two contact parts are in the connected state, and the two contacts can be changed by the action of foreign objects
  • the electrical connection state of the part switches the two contact parts from the contact state to the disconnected state, for example, a normally closed terminal.
  • Normally open switch means that in the initial state, its two contact parts are in a disconnected state to realize that the electrode electrically connected to the two contact parts is in a disconnected state, and the electric power of the two contact parts can be changed by the action of a foreign object
  • the state of sexual connection makes the two contact parts switch from the disconnected state to the connected state, for example, a normally open terminal.
  • the normally open switch is not limited to the normally open terminal, nor is the normally closed switch to the normally closed terminal, and the embodiments that can achieve the same function are within the scope of protection of the present invention.
  • a low-voltage power tool (not shown) has an operating voltage of nV and has a low-voltage plug (not shown), and the low-voltage plug has a polarity of 4 voltage output terminals connected in parallel Two connecting pieces D1, D2 of the same voltage output terminal, these two connecting pieces D1, D2 simultaneously serve as the voltage input terminal of the low-voltage plug.
  • FIG. 1 a low-voltage power tool (not shown) has an operating voltage of nV and has a low-voltage plug (not shown), and the low-voltage plug has a polarity of 4 voltage output terminals connected in parallel Two connecting pieces D1, D2 of the same voltage output terminal, these two connecting pieces D1, D2 simultaneously serve as the voltage input terminal of the low-voltage plug.
  • the connecting piece D1 connects the positive voltage output terminal 101a and the voltage output terminal 201a, and the connecting piece D2 connects the negative voltage output terminal 102a and the voltage output terminal 202a, so that the two energy The modules 10a and 20a are connected in parallel, and the two energy units in each energy module 10a and 20a are kept in parallel and output low voltage nV.
  • the K energy units in each energy module are maintained in parallel connection through the control section in the module, and the M energy modules are connected in parallel through the connection piece of the low-voltage plug , Corresponding to the aforementioned first full parallel state, to output low voltage nV to the low voltage power tool.
  • a medium-voltage power tool (not shown) with an operating voltage of 2nV and having a medium-voltage plug (not shown).
  • the medium-voltage plug is provided with a voltage output terminal 201a and A pair of connecting pieces D3 and D4 respectively connected to 102a, and the connecting pieces D3 and D4 also serve as the voltage input terminal of the medium voltage plug.
  • the medium-voltage plug also has a connecting piece (not shown) for connecting voltage output terminals with different polarities in the two energy modules 10a, 20a.
  • the connecting piece connects the voltage output terminals 101a and 202a.
  • the K energy units in the same energy module are maintained in parallel connection through the control section in the module, and the M energy module is realized by the connection piece of the medium voltage plug between the energy modules Connected in series, corresponding to the aforementioned fourth internal and external serial state, to output medium voltage M*nV to the medium voltage power tool.
  • a high-voltage power tool (not shown) has an operating voltage of 4nV and has a high-voltage plug 700.
  • the high-voltage plug 700 is provided with a connecting piece 71a to connect two energy modules 10a and 20a Voltage output terminals with different polarities so that the two energy modules 10a, 20a are connected in series.
  • the high-voltage plug is additionally provided with a pair of connecting pieces D5 and D6, which are respectively connected to the other two voltage output terminals with different polarities in the two energy modules 10a and 20a, and serve as a voltage input terminal of the high-voltage plug.
  • the high-voltage plug 700 is also provided with a base 701 and an internal switching part cooperating with the internal control part of the module.
  • the internal switching part corresponds to the internal control part of the module. In this embodiment, there are two internal control parts of the module, so the internal switching part is also Two.
  • the internal switching portion includes an insulating portion 51a provided corresponding to the parallel switches 41a, 42a and a conductive portion 61a provided corresponding to the series switch 30a.
  • the series switch 30a is in a conducting state, so that the two energy units in the energy modules 10a, 20a are switched from the parallel connection to the series connection, and the output voltage of each energy module 10a, 20a is 2nV.
  • the two energy modules 10a and 20a are connected in series through the connecting piece 71a, so that a high voltage of 4nV can be output to the high-voltage power tool.
  • FIG. 7 is a corresponding circuit diagram.
  • the K energy units in each energy module are switched from parallel connection to series connection through the cooperation between the control section and the internal switching section in the module, and the energy modules are The connecting piece of the plug realizes the series connection of the M energy modules, corresponding to the aforementioned second full series state, to output high voltage N*nV to the high voltage power tool.
  • the present invention also provides a power tool system, including the aforementioned low-voltage power tool, medium-voltage power tool, high-voltage power tool, and electrical energy storage device.
  • the power tool system may further include a conventional low-voltage battery pack with a rated voltage of nV 2.
  • the electric energy storage device of the present invention can cooperate with low-voltage electric tools, medium-voltage electric tools and high-voltage electric tools, and provide different output voltages accordingly, so that low-voltage electric tools, medium-voltage electric tools and high-voltage electric tools can work normally jobs.
  • the low-voltage power tool can also be matched with the conventional low-voltage battery pack, and the conventional low-voltage battery pack is correspondingly provided with an output end connected to the connecting pieces D1 and D2 of the low-voltage power tool.
  • the medium-voltage power tool can also be matched with a conventional medium-voltage battery pack, and the conventional medium-voltage battery pack is correspondingly provided with an output end connected to the medium-voltage power tool connecting pieces D3 and D4.
  • the high-voltage power tool can also be matched with a conventional high-voltage battery pack, and the conventional high-voltage battery pack is correspondingly provided with an output end connected to the connecting pieces D5 and D6 of the high-voltage power tool.
  • the electric energy storage device of the present invention also provides the second embodiment.
  • the electric energy storage device in the second embodiment also includes four energy units with equal voltages, and the voltage of each energy unit is nV ;
  • the socket of the electric energy storage device includes two in-module control parts equal to the value of M, which are used for the connection status of the two energy units in the energy modules 10b and 20b.
  • the difference from the first embodiment is that: 1.
  • the socket of the electric energy storage device is only provided with two voltage output terminals 301b and 302b.
  • the two voltage output terminals 301b and 302b are correspondingly connected to the total positive and negative electrodes after the two energy modules are connected.
  • the socket of the electrical energy storage device is provided with an inter-module control part for controlling the connection state of the energy modules 10b and 20b. It can be understood that the number of inter-module control parts is M-1, and M is 2 in this embodiment Therefore, there is only one inter-module control unit.
  • the control part in the module includes a series switch 30b and two parallel switches 41b, 42b, where the parallel switches 41b, 42b are normally closed switches, and the series switch 30b is normally open switches. Therefore, in the initial state, the energy modules 10b, 20b The energy units are connected in parallel.
  • the structure of the control part in the module and the connection relationship with the energy unit are the same as those in the first embodiment, and reference may be made to the previous introduction, which will not be repeated here.
  • each energy module 10b, 20b is provided with two positive and negative electrodes as a whole.
  • the inter-module control unit includes a series switch 31b and two parallel switches 43b, 44b, and the two contact parts of the parallel switches 43b, 44b are respectively the same polarity electrodes as the two energy modules 10b, 20b Connection, for example: the two contacts of the parallel switch 43b are connected to the two negative poles of the two energy modules 10b, 20b respectively, the two contacts of the parallel switch 44b are respectively connected to the two positive poles of the two energy modules 10b, 20b, the parallel switch After 43b and 44b are turned on, the parallel connection of the energy modules 10b and 20b can be realized; the two contact parts of the series switch 31b are respectively connected to the two electrodes with opposite polarities of the two energy modules 10b and 20b, and the two energy modules 10b and 20b The other two electrodes with opposite polarities are respectively connected to the aforementioned voltage output terminals 301b and 302b, and the series switch 31b is turned on to realize the series connection of the energy modules 10b and 20b.
  • the series switch 31b of the inter-module control unit is a normally open switch, that is, initially in the off state, and the parallel switches 43b, 44b are normally closed switches, that is, initially in the on state. Therefore, in the initial state, the energy modules 10b, 20b It is connected in parallel.
  • the control unit in the module in the initial state, also controls the energy units in the energy modules 10b and 20b in a parallel connection state. Therefore, the energy units of the energy storage device in the initial state are in a fully parallel state, and the output voltage is nV. 9 is the corresponding circuit diagram.
  • the status of the control section within the module and the control section between the modules can be selectively switched, so that the energy units in the energy modules 10b and 20b are changed from parallel to series ,
  • the two energy modules 10b, 20b are changed from parallel to series, which will be described below with reference to the drawings.
  • a low-voltage power tool (not shown) has an operating voltage of low-voltage nV and has a low-voltage plug.
  • the low-voltage plug has two connecting pieces D7 and D8 for connecting with two voltage output terminals 301b, 302b.
  • the four energy units of the electrical energy storage device are in parallel connection, and their output voltage is nV. Therefore, when the low-voltage power tool is connected to the electric energy storage device, the two connecting pieces on the low-voltage plug are connected to the two voltage output terminals 301b and 302b, respectively, so that the low voltage nV can be output to use the low-voltage power tool.
  • a medium voltage power tool (not shown), whose working voltage is medium voltage 2nV and has a medium voltage plug, the medium voltage plug is provided with two voltage output terminals 301b, Two connecting pieces D9 and D10 connected by 302b.
  • the medium voltage plug is also provided with an internal switching part corresponding to the control part in the module.
  • the internal switching portion includes an insulating portion 51b and a conductive portion 61b.
  • the insulating part 51b contacts the two contact parts of the parallel switches 41b and 42b in the control part in the module, so that the parallel switches 41b and 42b are in a non-conductive state, and the conductive part 61b and the corresponding module
  • the two contact parts of the series switch 30b in the internal control part are in contact, so that the series switch 30b is in a conducting state, and the energy units in the energy modules 10b, 20b are changed from parallel to series, so that the output of each energy module 10b, 20b
  • the voltage is 2nV.
  • the inter-module control section remains unchanged, that is, the energy modules 10b and 20b remain in parallel, and the electrical energy storage device outputs a medium voltage of 2nV to the medium voltage power tool.
  • a high-voltage power tool (not shown) has an operating voltage of 4nV and has a high-voltage plug 70b.
  • the high-voltage plug 70b is provided with two connections to two voltage output terminals 301b and 302b Pieces D11, D12.
  • the high-voltage plug 70b is also provided with an internal switching part corresponding to the control part inside the module and an external switching part corresponding to the control part between the modules.
  • Each inner switching portion includes a first insulating portion 52b and a first conductive portion 62b
  • the outer switching portion includes a second insulating portion 53b and a second conductive portion 63b.
  • the second insulating portion 53b contacts the two contact portions of the parallel switches 43b and 44b in the inter-module control portion to disconnect the parallel switches 43b and 44b, and the second conductive portion 63b and the two contacts of the series switch 31b in the inter-module control portion
  • the two contact parts are in contact, so that the series switch 31b is turned on, and the energy modules 10b and 20b are changed from parallel to series connection to output a high voltage of 4nV.
  • FIG. 15 is a corresponding circuit diagram.
  • the present invention also provides a power tool system, including the aforementioned low-voltage power tool, medium-voltage power tool, high-voltage power tool, and electrical energy storage device.
  • the power tool system may further include a conventional low-voltage battery pack with a rated voltage of nV 2.
  • the electric energy storage device of the present invention can cooperate with low-voltage electric tools, medium-voltage electric tools and high-voltage electric tools, and provide different output voltages accordingly, so that low-voltage electric tools, medium-voltage electric tools and high-voltage electric tools can work normally jobs.
  • the low-voltage power tool can also be matched with a conventional low-voltage battery pack, which is provided with an output end corresponding to the connection pieces D7 and D8 of the low-voltage power tool.
  • the medium-voltage power tool can also be matched with a conventional medium-voltage battery pack, and the conventional medium-voltage battery pack is correspondingly provided with an output end connected to the medium-voltage power tool connecting pieces D9 and D10.
  • the high-voltage power tool can also be matched with a conventional high-voltage battery pack, and the conventional high-voltage battery pack is correspondingly provided with an output end connected to the connection pieces D11 and D12 of the high-voltage power tool.
  • the in-module control unit of the electrical energy storage device controls the energy units in the energy module in the parallel state in the initial state. If necessary, the control unit in the module may initially set the energy unit in series.
  • the electric energy storage device of the present invention also provides a third embodiment.
  • the electric energy storage device of the third embodiment also includes 4 energy units with equal voltage, and the voltage of each energy unit is nV, equal Divided into two energy modules 10c, 20c.
  • the third embodiment is basically the same as the first embodiment.
  • the socket of the electric energy storage device is provided with four voltage output terminals 101c, 102c, 201c, 202c, and two internal control units.
  • Each internal control unit includes a series switch 30c and Two parallel switches 41c, 42c.
  • the series switch 30c of the control part in the module is a normally closed switch, which is initially in the on state, and the parallel switches 41c and 42c are normally open switches, which are in the off state at the beginning.
  • the two energy units in each energy module 10c, 20c are in series connection, and the output voltage of each energy module 10c, 20c is 2nV.
  • a low-voltage power tool (not shown) has an operating voltage of nV and has a low-voltage plug 70c.
  • the low-voltage plug 70c is provided with two internal switching sections, each of which includes two guides.
  • the through portion 61c and one insulating portion 51c, the insulating portion 51c is used to turn off the series switch 30c, and the conducting portion 61c is used to turn on the parallel switches 41c, 42c to connect the two energy units in each energy module 10c, 20c Change from series to parallel.
  • the low-voltage plug is also provided with two connecting pieces 71c to connect four voltage output terminals 101c, 102c, 201c, and 202c in parallel, so that the energy modules 10c and 20c are connected in parallel, so that the energy storage device can output low voltage nV to the outside.
  • Figure 20 shows the corresponding circuit Schematic.
  • a medium-voltage power tool (not shown) has an operating voltage of 2nV and is provided with a medium-voltage plug.
  • the medium-voltage plug is provided with four voltage output terminals 101c, 102c, 201c, and 202c connected in parallel.
  • the connection piece can connect the energy modules 10c and 20c in parallel, and the two energy units in each energy module 10c and 20c can be connected in series, so that the electric energy storage device can output a low voltage of 2nV to the outside.
  • connection methods of the connecting pieces of the various plugs that are docked refer to Embodiment 1, and details are not described herein again.
  • the low-voltage power tool, the medium-voltage power tool, the high-voltage power tool and the energy storage device in this embodiment may jointly form a power tool system, and the power tool system may also include a conventional low-voltage, medium-voltage and high-voltage battery pack, similar
  • the power tool system may also include a conventional low-voltage, medium-voltage and high-voltage battery pack, similar
  • the foregoing first embodiment will not be repeated here.
  • the electric energy storage device of the present invention also provides a fourth embodiment.
  • the electric energy storage device of the fourth embodiment also includes four energy units with equal voltages, and the voltage of each energy unit is nV, which is equally divided into two. 10d, 20d.
  • the fourth embodiment is similar to the second embodiment.
  • the socket of the electric energy storage device is only provided with two voltage output terminals 301d and 302d.
  • the socket includes two intra-module control sections and one inter-module control section.
  • Each intra-module control section includes one series switch 30d and two parallel switches 41d and 42d.
  • the inter-module control unit includes one series switch 31d and two parallel switches 43d and 44d.
  • the intra-module control unit initially controls the two energy units in the energy modules 10b and 20b in a parallel state
  • the inter-module control unit initially controls the energy modules 10b and 20b in a parallel state
  • the intra-module control unit initially controls the two energy units in the energy modules 10d and 20d in series
  • the inter-module control unit also initially controls the energy modules 10d and 20d in series.
  • the series switch 30d of the control part in the module is a normally closed switch, which is initially in the on state, and the parallel switches 41d and 42d of the control part in the module are normally open switches, which are in the off state at the beginning, so that each energy module 10d
  • the two energy units in 20d are connected in series, and the output voltage of each energy module 10d and 20d is 2nV.
  • the series switch 31d of the inter-module control unit is a normally closed switch, which is initially turned on, and the parallel switches 43d and 44d of the inter-module control unit are normally open switches, which are initially turned off, so that the energy modules 10d and 20d are controlled at Series state. Therefore, in the initial state, the output voltage of the electric energy storage device is 4nV.
  • the external switching part includes two conducting parts 62d and one insulating part 52d.
  • the insulating part 52d is used to disconnect the series switch 31d of the inter-module control part, and the conducting part 62d is used to conduct
  • the parallel switches 43d and 44d of the inter-module control unit change the energy modules 10d and 20d from series to parallel so that the electrical energy storage device can output low voltage nV to the outside.
  • a high-voltage power tool (not shown) has an operating voltage of 4nV and is provided with a high-voltage plug.
  • the high-voltage plug is provided with connecting pieces respectively connected to two voltage output terminals 301d and 302d, and an energy module 10c.
  • And 20c are connected in series, and the two energy units in the energy modules 10c and 20c are connected in series, so that the electric energy storage device can output low voltage 4nV to the outside.
  • the low-voltage power tool, the medium-voltage power tool, the high-voltage power tool and the energy storage device in this embodiment may jointly form a power tool system, and the power tool system may also include a conventional low-voltage, medium-voltage and high-voltage battery pack, similar
  • the power tool system may also include a conventional low-voltage, medium-voltage and high-voltage battery pack, similar
  • the foregoing first embodiment will not be repeated here.
  • the electric energy storage device includes four energy units with the same voltage, the voltage is nV, and they are divided into two energy modules 10e, 20e; and the fourth embodiment above
  • the socket of the electrical energy storage device includes an in-module control unit, an inter-module control unit, and two voltage output terminals 301e, 302e.
  • the intra-module control unit includes one series switch 30e and two parallel switches 41e and 42e
  • the inter-module control unit includes one series switch 31e and two parallel switches 43e and 44e.
  • the intra-module control unit initially controls the two energy units in the energy modules 10b and 20b in a parallel state
  • the inter-module control unit initially controls the energy modules 10b and 20b in a parallel state
  • the inter-module control unit initially controls the energy modules 10d and 20d in parallel
  • the in-module control unit initially controls the two energy units in the energy modules 10d and 20d in series. status.
  • the series switch 31e of the inter-module control unit is a normally open switch and is initially off, and the parallel switches 43e and 44e of the inter-module control unit are normally closed switches and is initially on so that the energy module 10e , 20e control in parallel state.
  • the series switch 30e of the control part in the module is a normally closed switch, which is initially turned on, and the parallel switch 41e, 42e of the control part in the module is a normally open switch, which is initially turned off, so that each energy module 10e, 20e
  • the two energy units are connected in series, and the output voltage of each energy module 10e, 20e is 2nV.
  • a low-voltage power tool (not shown) has an operating voltage of nV and is provided with a low-voltage plug, and the low-voltage plug is provided with connecting pieces respectively connected to two voltage output terminals 301e and 302e.
  • the low-voltage plug is also provided with two internal switching parts, each of which includes an insulating part 51e and two conducting parts 61e, the insulating part 51e is used to disconnect the series switch 30e, and the conducting part 61e is used to conduct the parallel switch 41e, 42e, so as to change the two energy units in each energy module 10e, 20e from series to parallel, and keep the energy modules 10e, 20e in parallel so that the electric energy storage device can output low voltage nV to the outside.
  • a medium-voltage power tool (not shown) has an operating voltage of 2nV and is provided with a medium-voltage plug.
  • the medium-voltage plug is provided with connecting pieces respectively connected to two voltage output terminals 301e and 302e.
  • the electric energy storage device can output medium voltage 2nV to the outside.
  • a high-voltage power tool (not shown) has an operating voltage of 4nV and is provided with a high-voltage plug.
  • the high-voltage plug is provided with connecting pieces respectively connected to two voltage output terminals 301e and 302e.
  • the high-voltage plug is also provided with an external switching part corresponding to the inter-module control part.
  • the external switching part includes an insulating part 52e and a conductive part 62e.
  • the insulating part 52e is used to turn off the series switch 31e, and the conducting part 62e is used to turn on the parallel switches 43e and 44e.
  • the two energy units in the energy modules 10e and 20e remain in series, so that the electric energy storage device can output low voltage 4nV to the outside.
  • the initial state may also be set to the intra-module control section to control the battery cells in each energy module to be connected in parallel, and between the modules
  • the control part controls the series connection between the two energy modules.
  • the present invention also provides Embodiment 6 where M and K have different values, which can correspond to multiple medium voltage values.
  • the electric energy storage device includes six energy units with the same voltage, and the voltages are all nV.
  • the socket of the electric energy storage device is provided with four voltage output terminals, including voltage output terminals 101f and 102f connected to the positive and negative electrodes of the energy module 10f and voltage output terminals 201f connected to the positive and negative electrodes of the energy module 20f, 202f.
  • the setting rules and methods of the voltage output terminal are the same as the voltage output terminal in the first embodiment, and the content can be referred to.
  • Embodiment 6 is similar to the foregoing Embodiment 1, except that the number of energy units in each energy module 10f and 20f is different, and the number of series switches and parallel switches of the corresponding control section in the module will be different.
  • the number of parallel switches corresponding to the number of energy units K is set to 2* (K-1), the number of series switches corresponding to the number of energy units K is set to (K-1), in the sixth embodiment,
  • K is equal to 3
  • the in-module control unit includes two series switches 31f, 32f and four parallel switches 41f, 42f, 43f, and 44f.
  • the series switches 31f, 32f, the parallel switches 41f, 42f, 43f, 44f each include two contact portions (not labeled) connected to the electrodes of the energy cell, and the two switches 41f, 42f, 43f, 44f of the parallel switches Each contact part is connected to the electrode of the same polarity of the energy cell, and the two contact parts of the series switches 31f and 32f are connected to the electrode of the opposite polarity of the energy cell.
  • the two contacts of the parallel switch 41f are connected to the negative poles of the energy cell 10f1 and the energy cell 10f2
  • the parallel switch 42f is connected to the negative poles of the energy cell 10f1 and the energy cell 10f3
  • the two contacts of the parallel switch 43f are connected to
  • the positive electrodes of the energy unit 10f1 and the energy unit 10f2 are connected
  • the two contact portions of the parallel switch 44f are connected to the positive electrodes of the energy unit 10f1 and the energy unit 10f3; that is, the three parallel switches 41f and 42f are connected by two pairs
  • the positive poles of the energy cells 10f1, 10f2, and 10f3 are connected in parallel
  • the parallel switches 43f and 44f connect the positive poles of the three energy cells 10f1, 10f2, and 10f3 in parallel through a pairwise connection.
  • the series switch 31f connects the positive electrode of the energy cell 10f1 and the negative electrode of the energy cell 10f2, and the series switch 32f connects the positive electrode of the energy cell 10f2 and the negative electrode of the energy cell 10f3. That is, the series switches 31f and 32f are connected in series between the three energy cells 10f1, 10f2, and 10f3.
  • the parallel switches 41f, 42f, 43f, 44f can be normally closed switches, which are initially in the on state, and the series switches 31f, 32f can be normally open, and are initially in the off state. Therefore, initially, the three energy units 10f1, 10f2, and 10f3 in each energy module 10f and 20f are in parallel, and the external output voltage is nV.
  • a low-voltage power tool (not shown) has an operating voltage of nV and has a low-voltage plug.
  • the low-voltage plug has two connecting pieces L1 and L2 that connect electrodes of the same polarity of two energy modules .
  • one connecting piece connects the voltage output terminals 101f and 201f corresponding to the positive poles of the two energy modules 10f and 20f
  • the other connecting piece connects the voltage output terminals 102f corresponding to the negative poles of the two energy modules , 202f connection
  • the two energy modules 10f, 20f are connected in parallel, the electrical energy storage device outputs low voltage nV to the low voltage power tool.
  • a medium voltage power tool (not shown), which has a working voltage of 2nV and has a first medium voltage plug, and a connection piece connecting two energy modules 10f and 20f in series is provided on the first medium voltage plug (Not shown).
  • the medium-voltage power tool uses the electric energy storage device
  • the first medium-voltage plug is mated with the socket, and the connecting piece connects the two voltage output terminals of different energy modules 10f and 20f with different polarities among the four voltage output terminals.
  • the positive voltage output terminal 101f of the energy module 10f and the negative voltage output terminal 202f of the energy module are connected so that the two energy modules 10f and 20f are connected in series.
  • the first medium-voltage plug is further provided with two connecting pieces L3, L4, respectively connected to the other two voltage output terminals 201f, 102f of the two energy modules 10f, 20f.
  • the three energy units 10f1, 10f2, and 10f3 in each energy module 10f, 20f are connected in parallel through the in-module control section, so that the electric energy storage device outputs the first medium voltage 2nV to the medium voltage power tool.
  • FIG. 40 to FIG. 41 another medium voltage power tool (not shown), which has a working voltage of 3nV and has a second medium voltage plug, and two energy modules are connected in parallel on the second medium voltage plug
  • Two connecting pieces L5 and L6 one connecting piece is connected to the voltage output terminals 101f and 201f corresponding to the positive poles of the two energy modules 10f and 20f, and the other is connected to the voltage output terminals corresponding to the negative poles of the two energy modules 10f and 20f 102f and 202f are connected so that the two energy modules 10f and 20f are connected in parallel.
  • the second medium-voltage plug is further provided with an internal switching part, which is provided corresponding to the internal control part of the module, and includes an insulating part 51f and a conductive part 61f.
  • the insulating portion 51f contacts the two contact portions of the parallel switches 41f, 42f, 43f, and 44f, disconnecting the parallel switches 41f, 42f, 43f, and 44f, and the conductive portion 61f is
  • the two contact parts of the series switches 31f and 32f are in contact to make the series switches 31f and 32f conductive, so that the three energy units 10f1, 10f2 and 10f3 in each energy module 10f and 20f are changed from parallel to series, and each energy module
  • the output voltage of 10f and 20f is 3nV.
  • the two energy modules 10f and 20f are connected in parallel by connecting pieces L5 and L6. Therefore, the electrical energy storage device outputs the second medium voltage 3nV to the second medium voltage power tool.
  • a high-voltage power tool (not shown) has an operating voltage of 6nV and has a high-voltage plug, and a connecting piece (not shown) connecting two energy modules in series is provided on the high-voltage plug.
  • the connecting piece connects the voltage output terminals with different polarities of different energy modules 10f and 20f among the four voltage output terminals.
  • the positive electrode 101f of the energy module 10f is connected to the negative electrode 202f of the energy module, so that the two energy modules 10f, 20f is connected in series.
  • the high-voltage plug is also provided with two connecting pieces L7 and L8, which are respectively connected to two other voltage output terminals 201f and 102f of two energy modules 10f and 20f.
  • the high-voltage plug is also provided with an internal switching part that cooperates with the control part in the module.
  • the internal switching part includes an insulating part 52f and a conductive part 62f.
  • the insulating portion 52f is inserted between the two contact portions of the parallel switches 41f, 42f, 43f, and 44f to disconnect the parallel switches 41f, 42f, 43f, and 44f, and the conductive portion 62f and the series switch
  • the two contact parts of 31f and 32f are in contact to turn on the series switches 31f and 32f, that is, the three energy units 10f1, 10f2 and 10f3 in each energy module 10f and 20f are connected in series, and the energy modules 10f and 20f Connected in series through connecting pieces. Therefore, the electrical energy storage device outputs a high 6nV to the high-voltage power tool.
  • the present invention also provides a power tool system, including the aforementioned low-voltage power tool, first medium-voltage power tool, second medium-voltage power tool, high-voltage power tool and electrical energy storage device, the power tool system may further include A conventional low-voltage battery pack with a rated voltage of nV, a conventional first medium-voltage battery pack with a rated voltage of 2nV, a conventional second medium-voltage battery pack with a rated voltage of 3nV, and a conventional high-voltage battery pack with a rated voltage of 6nV.
  • the electric energy storage device of the present invention can cooperate with low-voltage electric tools, first medium-voltage electric tools, second medium-voltage electric tools and high-voltage electric tools, and provide different output voltages accordingly, so that low-voltage electric tools and first medium-voltage electric tools 2.
  • the second medium voltage power tool and high voltage power tool can work normally.
  • the low-voltage power tool can also be matched with a conventional low-voltage battery pack, and the conventional low-voltage battery pack is correspondingly provided with an output end connected to the connecting pieces L1, L2 of the low-voltage power tool.
  • the first medium-voltage power tool may also be matched with a conventional first medium-voltage battery pack, and the conventional first medium-voltage battery pack is correspondingly provided with an output end connected to the first medium-voltage power tool connecting pieces L3, L4.
  • the second medium-voltage power tool may also be matched with a conventional second medium-voltage battery pack, and the conventional second medium-voltage battery pack is correspondingly provided with an output end connected to the second medium-voltage power tool connecting pieces L5, L6.
  • the high-voltage power tool can also be matched with a conventional high-voltage battery pack, and the conventional high-voltage battery pack is correspondingly provided with an output end connected to the connecting pieces L7 and L8 of the high-voltage power tool.
  • each module 10g and 20g can be regarded as a sub-electric energy storage device, and the connection mode is the same as that of the electric energy storage device in the sixth embodiment.
  • Each module 10g, 20g includes two energy modules 11g, 12g, 21g, 22g, and each energy module 11g, 12g, 21g, 22g includes three energy units.
  • the socket of the electric energy storage device is provided with two voltage output terminals 101g and 102g respectively connected to the total positive electrodes of the two modules 10g and 20g, and two voltage output terminals 201g respectively connected to the total negative electrodes of the two modules 10g and 20g , 202g.
  • the socket of the electrical energy storage device corresponds to each of the energy modules 11g and 12g in the modules 10g and 20g and is provided with two intra-module control units and one inter-module control unit.
  • the control part in the module includes two series switches 31g, 32g and four parallel switches 41g, 42g, 43g, 44g, and controls the connection status of the three energy units in each energy module 11g, 12g.
  • the specific connection method can refer to the implementation Example 6.
  • the inter-module control unit includes a series switch 33g and two parallel switches 45g and 46g to control the connection status between the energy modules 11g and 12g.
  • the connection mode is also the same as the previous embodiment.
  • the series switch 33g is used to connect two energy Two electrodes of different polarities in the modules 11g and 12g form a series
  • parallel switches 45g and 46g are used to connect two electrodes of the same polarity in the two energy modules 11g and 12g to form a parallel. That is, initially, the energy modules 11g and 12g are connected in parallel.
  • the parallel switches 41g, 42g, 43g, 44g, 45g, and 46g of the control unit in the module are normally closed switches, which are initially in the on state, and the series switches 31g, 32g, and 33g are normally open switches.
  • the off state that is, initially, the three energy units in the energy modules 11g, 12g are connected in parallel. Therefore, initially, the six energy units within 10g and 20g of each module are all connected in parallel.
  • a low-voltage power tool (not shown) has an operating voltage of nV and is provided with a low-voltage plug.
  • the low-voltage plug has two connecting pieces connected in parallel to the voltage output terminals 101g, 102g, 201g, and 202g.
  • Modules 10g and 20g are connected in parallel. Therefore, the six energy units within 10g and 20g of each module are kept in parallel to output low voltage nV to low voltage power tools.
  • a first medium-voltage power tool (not shown) has an operating voltage of 2nV and is provided with a first medium-voltage plug.
  • the first medium-voltage plug corresponds to 10g and 20g of each module
  • the inter-module control unit is provided with an external switching unit.
  • the external switching unit includes an insulating part 54g for opening parallel switches 45g and 46g of the inter-module control unit and a conductive part 66g for turning on the series switch 33g of the inter-module control unit ,
  • the two energy modules 11g, 12g, 21g, 22g in each module 10g, 20g are changed from parallel to series, and the three energy units in each energy module 11g, 12g, 21g, 22g remain in parallel.
  • the output voltage of a module 10g, 20g is 2nv.
  • the first medium voltage plug also has a connecting piece that connects the voltage output terminals 101g, 102g, 201g, and 202g in parallel, so that the modules 10g and 20g are connected in parallel to output the first medium voltage 2nV to the first medium voltage power tool.
  • a second medium-voltage power tool (not shown) has an operating voltage of 3nV and is provided with a second medium-voltage plug.
  • the second medium voltage plug is also provided with an internal switching part corresponding to each module's 10g, 20g internal control part of the module.
  • the internal switching part includes parallel switches 41g, 42g, 43g, 44g for disconnecting the internal control part of the module.
  • the insulating part 52g and the conductive part 62g for conducting the series switches 31g and 32g of the control part in the module change the three energy units in each energy module 11g, 12g, 21g and 22g from parallel to series, each module
  • the two energy modules 11g, 12g, 21g, and 22g in 10g and 20g are kept in parallel, and the output voltage of each module 10g and 20g is 3nv.
  • the inter-module control unit remains unchanged, and the second medium voltage plug also has a connection piece that connects the voltage output terminals 101g, 102g, 201g, and 202g in parallel, so that the modules 10g and 20g are connected in parallel to output the second medium voltage 3nV to the second Medium voltage power tools.
  • a third medium-voltage power tool (not shown) has an operating voltage of 4nV and is provided with a third medium-voltage plug.
  • the third medium voltage plug is also provided with an external switching part corresponding to the inter-module control part of each module 10g, 20g.
  • the external switching part includes an insulating part 53g and a parallel switch 45g, 46g for disconnecting the inter-module control part.
  • the third medium voltage plug also has a connecting piece that connects the voltage output terminals 101g, 102g, 201g, and 202g in series, so that the modules 10g and 20g are connected in series to output the third medium voltage 4nV to the third medium voltage power tool.
  • a fourth medium-voltage power tool (not shown) has an operating voltage of 6 nV and is provided with a fourth medium-voltage plug.
  • the fourth medium voltage plug is also provided with an internal switching part corresponding to each module's 10g, 20g internal control part of the module.
  • the internal switching part includes parallel switches 41g, 42g, 43g, 44g for disconnecting the internal control part of the module.
  • the insulating part 51g and the conductive part 61g for conducting the series switches 31g and 32g of the control part in the module change the three energy units in each energy module 11g, 12g, 21g and 22g from parallel to series, each module
  • the energy modules 11g, 12g, 21g, and 22g in 10g and 20g are kept in parallel, and the output voltage of each module 10g and 20g is 3nv.
  • the second medium voltage plug also has a connecting piece that connects the voltage output terminals 101g, 102g, 201g, and 202g in series, so that the modules 10g and 20g are connected in series to output the fourth medium voltage 6nV to the fourth medium voltage power tool.
  • a high-voltage power tool (not shown) has an operating voltage of 12nV and is provided with a high-voltage plug.
  • the high-voltage plug is also provided with an internal switching part corresponding to each module's 10g, 20g internal control part of the module.
  • the internal switching part includes an insulating part 55g for disconnecting parallel switches 41g, 42g, 43g, 44g of the internal control part of the module
  • the conductive part 65g for turning on the series switches 31g and 32g of the control part in the module changes the three energy units in each energy module 11g, 12g, 21g and 22g from parallel to series.
  • the high-voltage plug is also provided with an external switching part corresponding to the inter-module control part of each module 10g and 20g.
  • the external switching part includes an insulating part 56g for disconnecting parallel switches 45g and 46g of the inter-module control part and a conductive part for conducting Through the conductive part 64g of the series switch 33g of the inter-module control part, the two energy modules 11g, 12g, 21g, 22g in each module 10g, 20g are also changed from parallel to series, each module 10g, 20g The output voltage is 6nv.
  • the electric energy storage device can provide six kinds of voltages, namely low voltage nV, high voltage 12nV, and four medium voltages 2nV, 3nV, 4nV, and 6nV.
  • the distribution level of N is: energy unit->energy module->electric energy storage device
  • the distribution level of N in embodiment 7 is, energy unit->energy module->module->electric energy storage device , An extra level.
  • the output voltage of N energy units U k1*k2*k3*nV, where any level is paralleled, it is equivalent to omitting the coefficient, which is equivalent to various permutations and combinations of k1, k2, k3..., and the same result needs to be removed
  • the value corresponds to each factor of N, that is, the type of output voltage of the electric energy storage device is the same as the number of factors of N, except for the lowest low voltage and the highest high voltage, the middle is the middle voltage value.
  • the factors of 4 include 1, 2, and 4, a total of 3, so there are 3 kinds of output voltages.
  • the factors of 6 include 1, 2, 3, and 6, a total of 4, so there are 3 kinds of output voltages.
  • the number of factors of 12 includes 1, 2, 3, 4, 6, and 12, a total of 6, so there are 6 kinds of output voltages.
  • N 8, the factors of 8 are 1, 2, 4, and 8, a total of 4, and there should be 4 output voltages; when N is 9, the factors of 9 are 1, 3, and 9, a total of 3, there should be 3 kinds of output voltage.
  • the energy storage device is provided with an in-module control unit.
  • Embodiment 8 provides another solution without providing an in-module control unit. Please refer to FIG. 56.
  • the energy storage device includes four energy units and A socket that is electrically connected to four energy units.
  • the socket includes a plurality of conductive terminals arranged independently of each other, and the plurality of conductive terminals includes eight electrode terminals electrically connected to the positive and negative electrodes of the four energy units, specifically the first positive terminal connected to the positive and negative electrodes of the first energy unit 211 and the first negative terminal 212, the second positive terminal 213 and the second negative terminal 214 connected to the positive and negative poles of the second energy cell, the third positive terminal 215 connected to the positive and negative poles of the third energy cell, and The third negative terminal 216 and the fourth positive terminal 217 and the fourth negative terminal 218 connected to the positive and negative poles of the fourth energy cell.
  • the first energy unit and the second energy unit form a first energy module
  • the third energy unit and the fourth energy unit form a second energy module.
  • the eight electrode terminals are arranged linearly in a row, from left to right are the fourth negative electrode terminal 218, the third negative electrode terminal 216, the second negative electrode terminal 214, the first negative electrode terminal 212, the second positive electrode terminal 213, the third positive electrode Terminal 215, fourth positive terminal 217, and first positive terminal 211.
  • connection methods can be generated between the eight electrode terminals by docking male plugs, so that different circuit connection states are formed between the four battery packs to obtain different output voltages, similar to the previous four batteries
  • the first or third embodiment of the package is different.
  • each energy unit is independent and not connected. Only when connected with the docking plug, there will be parallel or series connection between the energy units.
  • FIG. 56 shows a situation in which the conductive terminal of the socket of the energy storage device of the present invention cooperates with the low-voltage male blade of the low-voltage plug of a low-voltage power tool.
  • the low-voltage plug includes two independently arranged low-voltage male plugs 221 and 222, and the low-voltage male plug 221 includes four contact arms 2211, 2212, 2213, and 2214 arranged side by side to connect two adjacent contact arms Three connection parts 2215, 2216, 2217 and a voltage output part 2218.
  • the low-voltage male plug 222 includes four contact arms 2221, 2222, 2223, 2224 arranged side by side, three connection portions 2225, 2226, 2227 connecting two adjacent contact arms, and a voltage output portion 2228.
  • the contact arms 2211, 2212, 2213, and 2214 of the low-voltage male insert 221 are sequentially inserted into the fourth negative terminal 218, the third negative terminal 216, the second negative terminal 214, and the first negative terminal 212 Then, that is, the negative electrodes of the four energy units are connected in parallel.
  • the contact arms 2221, 2222, 2223, and 2224 of the low-voltage male insert 222 are sequentially inserted into the second positive terminal 213, the third positive terminal 215, the fourth positive terminal 217, and the first positive terminal 211, that is, the four The positive pole of an energy unit.
  • two low-voltage male inserts 221 and 222 are connected to four energy units in parallel, which is equivalent to two energy units in two energy modules connected in parallel, and the two energy modules are connected in parallel, and the energy storage device outputs through two voltages.
  • Parts 2218 and 2228 output nV voltage for low-voltage electric tools.
  • FIG. 58 shows a situation in which the conductive terminal of the socket of the energy storage device of the present invention cooperates with the medium-voltage male plug of the medium-voltage plug of a medium-voltage power tool.
  • the medium-voltage plug 230 includes three independently arranged medium-voltage male inserts 231, 232, and 233 arranged side by side.
  • the medium-voltage male insert 231 includes two oppositely disposed contact arms 2311, 2312, connection contacts The connection portion 2313 and the voltage output portion 2314 of the arms 2311 and 2312.
  • the medium voltage male insert 232 includes two oppositely disposed contact arms 2321, 2322, a connecting portion 2323 connecting the contact arms 2321, 2322, and a voltage output portion 2324;
  • the medium voltage male insert 233 includes four contact arms 2331 disposed side by side 2332, 2333, 2334 and three connecting portions 2335, 2336, 2337 that connect adjacent contact arms 2331, 2332, 2333, 2334 in pairs.
  • the two contact arms 2311, 2312 of the medium voltage male insert 231 are inserted into the fourth negative terminal 218 and the third negative terminal 216, respectively.
  • the two contact arms 2321 and 2322 of the middle-voltage male insert 232 are respectively connected to the second positive terminal 213 and the first positive terminal 211.
  • the four contact arms 2331, 2332, 2333, and 2334 of the middle-voltage male insert 233 are sequentially inserted into the second negative terminal 214, the first negative terminal 212, the third positive terminal 215, and the fourth positive terminal 217.
  • the energy storage device outputs 2nV voltage for the medium-voltage power tool through the two voltage output parts 2314 and 2324.
  • FIG. 60 shows a situation in which the conductive terminal of the socket of the energy storage device of the present invention cooperates with the high-voltage male blade of the high-voltage plug of a high-voltage power tool.
  • the high-voltage plug includes five independently arranged high-voltage male plugs 241, 242, 243, 244, and 245.
  • the high-voltage male insert 241 includes a contact arm 2411 and a voltage output portion 2412.
  • the high-voltage male plug 245 includes a contact arm 2451 and a voltage output portion 2452.
  • the high-voltage male insert 242 includes two contact arms 2421, 2422 and a connecting portion 2423 connecting the two contact arms 2421, 2422.
  • the high-voltage male insert 243 includes two contact arms 2431, 2432 and a connecting portion 2433 connecting the contact arms 2431, 2432.
  • the high-voltage male insert 244 includes two contact arms 2441, 2442 and a connecting portion 2443 connecting the contact arms 2441, 2442.
  • the contact arm 2411 of the high voltage male insert 241 is inserted into the fourth negative terminal 218, the contact arm 2451 of the high voltage male insert 245 is inserted into the first positive terminal 211, and the high voltage male insert 242
  • the contact arms 2421 and 2422 are respectively connected to the fourth positive terminal 217 and the third negative terminal 216 to connect the third and fourth energy units in series.
  • the contact arms 2431 and 2432 of the high voltage male insert 243 are connected to the third positive terminal 215 respectively 3.
  • the second negative terminal 214 is inserted to connect the third and second energy units in series.
  • the contact arms 2441 and 2442 of the high-voltage male insert 244 are inserted into the second positive terminal 213 and the first negative terminal 212 respectively to connect the second And the first energy unit. That is, four energy units are connected in series with the high-voltage male inserts 241, 242, and 243.
  • the contact arm 2411 of the high-voltage male insert 241 is inserted into the fourth negative terminal 218, and the contact arm 2451 of the high-voltage male insert 245 is inserted into the first positive terminal 211. In this way, all four energy units are connected in series, which is equivalent to two energy units in two energy modules connected in series, and the two energy modules are connected in series.
  • the energy storage device 100 is a high voltage through two voltage output parts 2412, 2452 The power tool outputs 4nV voltage.
  • control unit within the module and the control unit between modules are not limited to the aforementioned normally open switch or normally closed switch, and all components that can achieve the same function are within the scope of protection.
  • the insulating parts for switching the normally closed switches in the inner switching part and the outer switching part may be provided separately, or may be formed in plural and integrated, for example, multiple parallel switches Stacked up and down, using a single insulating part can achieve insulation to separate multiple parallel switches.
  • the insulating portion may be formed together with the conductive portion, for example, one section is made of insulating material and the other section is made of conductive material.
  • the structure of the conductive part and the insulating part is not limited here, it is only necessary to ensure that the conductive part conducts the corresponding series switch, and the insulating part isolates the corresponding parallel switch.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Computer Hardware Design (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本发明提供了一种电能储存装置,包括N个额定电压相同的能量单元并设有插座,所述N个能量单元均分成为M个能量模块,每个所述能量模块包括K个能量单元,其中M≥2,且K≥2,每个所述能量模块内的K个所述能量单元具有串联和并联两种连接状态,并且能够在并联和串联连接状态之间切换。本发明还提供了一种使用该电能储存装置的电动工具系统,不同额定电压的电动工具具有不同的插头,与插座对接后使电能储存装置输出不同的电压。本发明电能储存装置具有多种输出电压,可适应于多种额定电压不同的电能储存装置,降低了使用成本。

Description

电能储存装置及电动工具系统 技术领域
本发明涉及电动工具技术领域,尤其涉及一种电能储存装置及使用该电能储存装置的电动工具系统。
背景技术
在园林机械、动力工具行业,电动工具通常具有一个额定的工作电压,即,不同电压平台的电动工具需要不同电压的电池包来提供动力,如此,需要准备不同的电池包以适配不同额定工作电压的电动工具,增加了使用成本,造成了资源浪费。
有鉴于此,有必要设计一种改进的电能储存装置及使用该电能储存装置的电动工具系统,以解决上述问题。
发明内容
本发明的目的在于提供一种能够提供多种输出电压的电能储存装置及使用该电能储存装置的电动工具系统。
为实现上述发明目的,本发明提供了一种电能储存装置,包括N个额定电压相同的能量单元并设有插座,N个所述能量单元均分成为M个能量模块,每个所述能量模块包括K个能量单元,其中M≥2,且K≥2,每个所述能量模块内的K个所述能量单元具有串联和并联两种连接状态,并且能够在并联和串联连接状态之间切换。
作为一个实施方式,所述插座包括对应所述能量模块设有模块内控制部,所述模块内控制部对应每一个所述能量模块设置有并联K个所述能量单元的多个并联开关及串联K个所述能量单元的1个或多个串联开关,当所述并联开关闭合且所述串联开关断开时,K个所述能量单元并联;当所述并联开关断开且所 述串联开关闭合时,K个所述能量单元串联。
作为一个实施方式,所述模块内控制部包括2*(K-1)个所述并联开关,所述并联开关分别两两连接K个所述能量单元的相同极性的电极;所述模块内控制部包括(K-1)个所述串联开关,所述串联开关分别两两连接K个所述能量单元的不同极性的电极。
作为一个实施方式,所述并联开关为常闭开关,所述串联开关为常开开关,所述能量模块内的K个所述能量单元初始状态下并联连接;或者所述并联开关为常开开关,所述串联开关为常闭开关,所述能量模块内的K个所述能量单元初始状态下串联连接。
作为一个实施方式,所述插座还包括模块间控制部,所述模块间控制部包括并联M个所述能量模块的并联开关以及串联M个所述能量模块的串联开关,当所述模块间控制部的所述并联开关闭合且所述串联开关断开时,M个所述能量模块并联;当所述模块间控制部的所述并联开关断开且所述串联开关闭合时,M个所述能量模块串联。
作为一个实施方式,所述插座还包括两个电压输出端子。
作为一个实施方式,每一所述能量单元设有正极及负极,所述插座包括八个独立设置的电极端子,八个所述电极端子包括分别与四个所述能量单元的正极连接的四个正极端子及分别与四个所述能量单元的负极连接的四个负极端子。
作为一个实施方式,所述电能储存装置的输出电压的种类等于N的因子数目。
作为一个实施方式,当N≥8时,所述能量单元可以均为多级模块,每级模块包括2个或3个次级模块,最低一级的能量模块包括2个或3个能量单元。
本发明提供了一种电动工具系统,包括电动工具及电能储存装置,所述电能储存装置,包括N个额定电压相同的能量单元,N个所述能量单元均分成为M个能量模块,每个所述能量模块包括K个能量单元,其中M≥2,且K≥2, 每个所述能量模块内的K个所述能量单元具有串联和并联两种连接状态,并且能够在并联和串联连接状态之间切换,所述电能储存装置设有插座,所述电动工具设有与所述插座配合的插头。
作为一个实施方式,所述电能储存装置设有插座,所述插座包括对应每一个所述能量模块设置的模块内控制部,所述模块内控制部包括并联K个所述能量单元的多个并联开关及串联K个所述能量单元的1个或多个串联开关,当所述并联开关闭合且所述串联开关断开时,K个所述能量单元并联;当所述并联开关断开且所述串联开关闭合时,K个所述能量单元串联。
作为一个实施方式,所述插头设有内切换部,所述内切换部与所述模块内控制部配合,同时切换所述模块内控制部的所述并联开关及所述串联开关的状态,使所述能量模块内的K个所述能量单元由并联切换为串联或者由串联改切换为并联。
作为一个实施方式,所述内切换部包括绝缘部及导电部,所述模块内控制部的所述并联开关和所述串联开关的其中一种初始时处于闭合状态并由所述绝缘部断开,另一种初始时处于断开状态并由所述导电部导通。
作为一个实施方式,所述插座还包括模块间控制部,所述模块间控制部包括并联M个所述能量模块的并联开关以及串联M个所述能量模块的串联开关,当所述并联开关闭合且所述串联开关断开时,M个所述能量模块并联;当所述并联开关断开且所述串联开关闭合时,M个所述能量模块串联。
作为一个实施方式,所述插头设有外切换部,所述外切换部与所述模块间控制部配合,同时切换所述模块间控制部的所述并联开关及所述串联开关的状态,使M个所述能量模块由并联切换为串联或者由串联改切换为并联。
作为一个实施方式,所述外切换部包括绝缘部及导电部,所述模块间控制部的所述并联开关和所述串联开关的一种初始时处于闭合状态并由所述绝缘部断开,另一种初始时处于断开状态并由所述导电部导通。
作为一个实施方式,每个所述能量模块设有正极及负极,所述插座包括分别与每个所述能量模块的正极及负极连接的2*M个电压输出端子,所述插 头设有与所述电压输出端子连接的连接片,由所述连接片确定M个所述能量模块串联或并联。
本发明提供了一种电动工具系统,包括低压电动工具、中压电动工具及高压电动工具,所述电动工具系统包括如权利要求1至7所述的电能储存装置,所述低压电动工具设有低压插头,所述低压插头与所述插座对接并使N个所述能量单元处于全并联状态;所述高压电动工具设有高压插头,所述高压插头与所述插座对接并使N个所述能量单元处于全串并联状态;所述中压电动工具设有中压插头,所述中压插头与所述插座对接并使N个所述能量单元处于一中压状态。
作为一个实施方式,所述中压状态指所述能量模块内K个所述能量单元串联,M个所述能量模块并联,对应输出电压K*nV;或者所述能量模块内K个所述能量单元并联,M个所述能量模块串联,对应输出电压M*nV。
作为一个实施方式,所述电动工具系统还包括与所述低压电动工具配接的低压电池包、与所述中压电动工具配接的中压电池包或与所述高压电动工具配接的高压电池包。
本发明的有益效果是:本发明电能储存装置及电动工具系统具有多种输出电压,增加了电能储存装置的适用范围,降低了使用成本。
附图说明
图1为本发明电能储存装置的实施例一的内部四个能量单元的连接示意图。
图2为实施例一的电能储存装置与一种低压插头配合时的电路示意图。
图3为实施例一的电能储存装置与一种中压插头配合时的电路示意图。
图4为实施例一的电能储存装置与一种高压插头配合的电路示意图。
图5为实施例一高压插头的立体分解图。
图6为实施例一的电能储存装置与一种高压插头配合时的结构示意图。
图7为实施例一的电能储存装置与高压插头配合时的电路示意图。
图8为本发明电能储存装置的实施例二的内部四个能量单元的连接示意图。
图9为实施例二的电能储存装置与一种低压插头配合时的电路示意图。
图10为实施例二的电能储存装置与一种中压插头配合的连接示意图。
图11为实施例二的电能储存装置与中压插头配合时的电路示意图。
图12为实施例二的电能储存装置与一种高压插头配合的连接示意图。
图13为图12中高压插头的结构示意图。
图14为实施例二的电能储存装置与高压插头配合时的结构示意图。
图15为实施例二的电能储存装置与高压插头配合时的电路示意图。
图16为本发明电能储存装置的实施例三的内部四个能量单元的连接示意图。
图17为实施例三中一种低压插头的结构示意图。
图18为实施例三中电能储存装置与低压插头配合时的结构示意图。
图19为实施例三中电能储存装置与低压插头配合时的连接示意图。
图20实施例三中电能储存装置与低压插头配合时的电路示意图。
图21实施例三中电能储存装置与一种中压插头配合时的电路示意图。
图22实施例三中电能储存装置与一种高压插头配合时的电路示意图。
图23为本发明电能储存装置的实施例四的内部四个能量单元的连接示意图。
图24为本发明电能储存装置的实施例四的电路示意图。
图25为实施例四的电能储存装置与一种低压插头配合时的连接示意图。
图26为实施例四的电能储存装置与低压插头配合时的电路示意图。
图27为实施例四的电能储存装置与一种中压插头配合时的连接示意图。
图28为实施例四的电能储存装置与中压插头配合时的电路示意图。
图29为实施例四的电能储存装置与一种高压插头配合的电路示意图。
图30为本发明电能储存装置的实施例五的内部四个能量单元的连接示意图。
图31为本发明电能储存装置的实施例五的电路示意图。
图32为实施例五的电能储存装置与一种低压插头配合时的连接示意图。
图33为实施例五的电能储存装置与低压插头配合时的电路示意图。
图34为实施例五的电能储存装置与一种中压插头配合时的电路示意图。
图35为实施例五的电能储存装置与一种高压插头配合的连接示意图。
图36为实施例五的电能储存装置与高压插头配合时的电路示意图。
图37为本发明电能储存装置的实施例六的内部六个能量单元的连接示意图。
图38为实施例六的电能储存装置与一种低压插头配合时的电路示意图。
图39为实施例六中电能储存装置与一种第一中压插头配合时的电路示意图。
图40为实施例六中电能储存装置与一种第二中压插头配合的电路示意图。
图41为实施例六中电能储存装置与第二中压插头配合时的电路示意图。
图42为实施例六中电能储存装置与一种高压插头配合的连接示意图。
图43为实施例六中电能储存装置与高压插头配合时的电路示意图。
图44为本发明电能储存装置的实施例七的内部十二个能量单元的连接示意图。
图45为实施例七的电能储存装置与一种低压插头配合时的电路示意图。
图46为实施例七中电能储存装置与一种第一中压插头配合时的连接示意图。
图47为实施例七中电能储存装置与一种第一中压插头配合时的电路示意图。
图48为实施例七中电能储存装置与一种第二中压插头配合的连接示意图。
图49为实施例七中电能储存装置与一种第二中压插头配合时的电路示意图。
图50为实施例七中电能储存装置与一种第三中压插头配合时的连接示意图。
图51为实施例七中电能储存装置与第三中压插头配合时的电路示意图。
图52为实施例七中电能储存装置与一种第四中压插头配合时的连接示意图。
图53为实施例七中电能储存装置与第四中压插头配合时的电路示意图。
图54为实施例七中电能储存装置与一种高压插头配合的连接示意图。
图55为实施例七中电能储存装置与高压插头配合时的电路示意图。
图56为实施例八中电能储存装置导电端子与低压插片的配合示意图。
图57为实施例八中低压插片的低压插片结构图。
图58为实施例八中电能储存装置导电端子与中压插片的配合示意图。
图59为实施例八中中压插头的中压插片结构图。
图60为实施例八中电能储存装置导电端子与高压插片的配合示意图。
图61为实施例八中高压插头的高压插片结构图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面结合附图和具体实施例对本发明进行详细描述。
在此,还需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与本发明的方案密切相关的结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
另外,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
本发明提供了一种电能储存装置,其包括N个电压相等的能量单元,能量单元是指能够提供电能的物体,例如电芯、锂电池或者其他能量载体,当 然,也可以将多个电池电性组合以形成为一个能量单元;所述的电池包括但不限于为锂电池、镍氢电池、镉镍电池等可充电电池。该能量单元的额定电压均为nV。需要说明的是,每个能量单元的实测电压为n±5%V均可视为相等。其中,N为合数,合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。N个能量单元均等分为M个能量模块,每个能量模块包括K个能量单元,其中N=M*K,M≥2,K≥2,即N的最小值为4,4个能量单元可均为2组,每组两个能量单元。
能量模块内的K个能量单元之间的电路连接存在并联与串联两种可选状态,M个能量模块之间的电路连接也存在并联与串联两种可选状态。于是,电能储存装置的N个能量单元存在以下四种连接状态:1.能量模块内的K个能量单元并联连接,M个能量模块之间并联连接,使N个能量单元全部并联连接,此状态可简称为全并联状态,输出电压为nV;2.能量模块内的K个能量单元串联连接,M个能量模块串联连接,使N个能量单元全部串联连接,此状态可简称为全串联状态,输出电压为N*nV;3.能量模块内的K个能量单元串联连接,M个能量模块之间并联连接,此状态可简称为内串外并状态,输出电压为K*nV;4.能量模块内的K个能量单元并联连接,M个能量模块之间串联连接,此状态可简称为内并外串状态,输出电压为M*nV。
此电能储存装置能够依据不同的对接电动工具输出与之相匹配的额定电压。当N为最小值4时,第3种内串外并连接状态及第4种内并外串连接状态输出的电压均为2nV,即,这四种连接状态具有3种输出电压。因此,电能储存装置可提供至少三种输出电压。请留意,在前述任何一种连接状态下,全部能量单元均参与工作。
下面将结合附图对本发明的具体实施例进行说明。
实施例一
请参阅图1至图7所示,在本发明实施例一中的电能储存装置包括4个电压相同的能量单元,每个能量单元的额定电压均为nV;4个能量单元均等分为两个能量模块,分别为能量模块10a和能量模块20a;每个能量模块10a、 20a包括两个能量单元,即对应前述N=4,M=2,K=2的情况,电能储存装置能够提供3种输出电压。
电能储存装置的插座(未图示)包括多个电压输出端子。每一个能量模块10a、20a各自设有正、负两电极,多个电压输出端子对应每一个能量模块的正、负两电极设置,即设置为2*M个,在本实施例中,M为2,故设置4个电压输出端子。4个电压输出端子分别为:与能量模块10a正电极连接的电压输出端子101a,与能量模块10a的负电极连接的电压输出端子102a、与能量模块20a正电极连接的电压输出端子201a,与能量模块20a的负电极连接的电压输出端子202a。可以理解的是,通过控制这4个电压输出端子之间的连接方式可控制M个能量模块之间的连接状态,并且这4个电压输出端子的连接方式可由对接的插头的1个或多个连接片确定,此部分内容将在后面详述。
电能储存装置的插座(未图示)包括模块内控制部。模块内控制部对应每一个能量模块设置,即设置为M个,在本实施例中,M为2,故设置有两个模块内控制部。模块内控制部用于控制能量模块内的K个能量单元的连接状态,模块内控制部可以由对接插头的内切换部进行切换,此部分内容将在后面详述。
每个控制部与能量模块内的两能量单元的连接方式是相同的,下面以其中一控制部为例进行说明。
模块内控制部包括并联开关和串联开关,并联开关并联各个能量单元的正极及负极两端,故,并联开关数量对应能量单元的数量K设置为(K-1)对,即2*(K-1);串联开关串联连接各个能量单元,其数量对应能量单元的数量K设置为(K-1)个。本实施例中,K等于2,于是模块内控制部包括1个串联开关30a、两个并联开关41a、42a。
串联开关30a及各并联开关41a、42a均包括两个与能量单元的电极连接的接触部(未标号),并联开关41a、42a的两个接触部均分别与能量模块10a的两个能量单元的极性相同的电极连接,例如图1所示:并联开关41a的两 个接触部分别与两个能量单元的负极相连,并联开关42a的两个接触部分别与两个能量单元的正极相连。串联开关30a的两个接触部分别与两个能量单元的极性相反的电极连接,两个能量单元中另两个极性相反的电极与前述电压输出端子101a、102a分别连接。串联开关30a导通时可以实现两个能量单元的串联连接;并联开关41a、42a导通时可以实现两个能量单元的并联连接。
在本实施中,并联开关41a、42a为常闭开关,串联开关30a为常开开关,即初始状态时,并联开关41a、42a处于导通状态,串联开关30a处于断开状态,每一个能量模块10a、20a内的两个能量单元最初处于并联连接状态。
需要说明的是,常闭开关是指在初始状态下,其两个接触部是处于接触状态以实现与两个接触部电性连接的电极处于连接状态,且可通过外物作用改变两个接触部的电性连接状态,使两个接触部从接触状态切换为断开状态,例如,常闭端子。常开开关是指在初始状态下,其两个接触部是处于断开状态以实现与两个接触部电性连接的电极处于断开状态,且可通过外物作用改变两个接触部的电性连接状态,使两个接触部从断开状态切换为连接状态,例如,常开端子。当然,常开开关并不限于为常开端子,常闭开关也不限于为常闭端子,能够实现相同功能的实施方式均在此发明的保护范围内。
本发明电能储存装置的插座在与对接电动工具的插头对接过程中,其4个电压输出端子101a、102a、201a、202a可产生不同的连接方式使两个能量模块10a、20a处于串联或并联状态,模块内控制部的串联开关30a及并联开关41a、42a的状态可以选择性被切换,使能量模块10a、20a内部的能量单元由初始的并联改为串联。下面将结合图面进行说明。
请参阅图2并结合图1所示,一种低压电动工具(未图示),其工作电压为nV并具有低压插头(未图示),低压插头具有并联连接4个电压输出端子中极性相同的电压输出端子的两个连接片D1、D2,这两个连接片D1、D2同时作为低压插头的电压输入端。例如图2所示,当低压插头与插座配合时,连接片D1连接正极的电压输出端子101a与电压输出端子201a,连接片D2 连接负极的电压输出端子102a与电压输出端子202a,使两个能量模块10a、20a并联连接,每个能量模块10a、20a内的两个能量单元保持并联,输出低压nV。
即,低压电动工具的低压插头与电能储存装置配合时,每一个能量模块内的K个能量单元通过模块内控制部保持并联连接,能量模块之间通过低压插头的连接片实现M能量模块并联连接,对应前述第1种全并联状态,以输出低压nV至该低压电动工具。
请参阅图3并结合图1所示,一种中压电动工具(未图示),其工作电压为2nV并具有中压插头(未图示),中压插头设有与电压输出端子201a与102a分别连接的一对连接片D3、D4,连接片D3、D4同时作为中压插头的电压输入端。中压插头还具有一连接片(未图示),用于连接两个能量模块10a、20a中的极性不同的电压输出端子,例,连接片将电压输出端子101a与202a连接。当中压电动工具的中压插头与插座插接配合时,使两个能量模块10a、20a串联连接,每个能量模块10a、20a内的两个能量单元保持并联,输出中压2nV。
即,中压电动工具的中压插头与电能储存装置配合时,同一能量模块内的K个能量单元通过模块内控制部保持并联连接,能量模块之间通过中压插头的连接片实现M能量模块串联连接,对应前述第4种内并外串状态,以输出中压M*nV至该中压电动工具。
请参阅图4至图7所示,一种高压电动工具(未图示),其工作电压为4nV并具有高压插头700,高压插头700设有连接片71a,连接两个能量模块10a、20a中的极性不同的电压输出端子,以使两个能量模块10a、20a串联连接。高压插头上还另外设有一对连接片D5、D6,用于与两个能量模块10a、20a中另外两个极性不同的电压输出端子分别连接,作为高压插头的电压输入端。
高压插头上700还设有基座701及与模块内控制部配合的内切换部,内切换部与模块内控制部对应设置,本实施中模块内控制部为两个,故内切换部也为两个。内切换部包括对应并联开关41a、42a设置的绝缘部51a及对应 串联开关30a设置的导电部61a。当高压插头与插座插接配合时,绝缘部51a与并联开关41a、42a接触,使并联开关41a、42a断开处于非导通状态,导电部61a与串联开关30a的两个接触部接触,使串联开关30a处于导通状态,以使能量模块10a、20a内的两个能量单元由并联连接切换为串联连接,每个能量模块10a、20a的输出电压为2nV。如前述,两个能量模块10a、20a又之间通过连接片71a串联连接,故可输出高压4nV至该高压电动工具,图7为对应的电路图。
即,高压电动工具的高压插头与电能储存装置配合时,每一个能量模块内的K个能量单元通过模块内控制部与内切换部的配合由并联连接切换为串联连接,能量模块之间通过高压插头的连接片实现M能量模块串联连接,对应前述第2种全串联状态,以输出高压N*nV至该高压电动工具。
对应实施例一,本发明还提供一种电动工具系统,包括前述低压电动工具、中压电动工具、高压电动工具及电能储存装置,该电动工具系统还可以包括额定电压为nV的常规低压电池包、额定电压为2nV的常规中压电池包及额定电压为4nV的常规高压电池包。如前所述,本发明电能储存装置与低压电动工具、中压电动工具及高压电动工具均可以配合,并相应提供不同的输出电压,使低压电动工具、中压电动工具及高压电动工具能够正常工作。同时,低压电动工具也可以与常规的低压电池包配合,常规的低压电池包对应设有与低压电动工具的连接片D1、D2连接的输出端。中压电动工具也可以与常规的中压电池包配合,常规的中压电池包对应设有与中压电动工具连接片D3、D4连接的输出端。高压电动工具也可以与常规的高压电池包配合,常规的高压电池包对应设有与高压电动工具的连接片D5、D6连接的输出端。
实施例二
请参阅图8至图13所示,本发明电能储存装置还提供了实施例二,在实施例二中的电能储存装置同样包括4个电压相等的能量单元,每个能量单元的电压均为nV;4个能量单元均等分为两个能量模块10b、20b,每个能量模块10b、20b包括两个能量单元。即,仍然对应前述N=4,M=2,K=2的情 况,电能储存装置能够提供3种输出电压。
与实施例一相同的是,该电能储存装置的插座包括与M值相等的两个模块内控制部,用于能量模块10b、20b内的两个能量单元的连接状态。与实施例一不同的是,1.该电能储存装置的插座仅设有两个电压输出端子301b、302b。两个电压输出端子301b、302b与两个能量模块连接后的总的正、负电极对应连接。2.该电能储存装置的插座设有模块间控制部,用于控制能量模块10b、20b的连接状态,可以理解的是,模块间控制部的数量为M-1个,本实施中M为2,故,模块间控制部为1个。
模块内控制部包括一个串联开关30b和两个并联开关41b、42b,其中并联开关41b、42b为常闭开关,串联开关30b为常开开关,故,初始状态时,能量模块10b、20b内的能量单元处于并联连接状态。模块内控制部的结构及与能量单元的连接关系与实施例一相同,可参考之前的介绍,在此不再赘述。
模块间控制部的工作原理与模块内控制部相似,可以理解为将能量模块视为能量单元去理解,下面将对模块间控制部进行具体描述:参考图8所示,每个能量模块10b、20b作为整体设有正、负两个电极。在本实施例中,模块间控制部包括一个串联开关31b和两个并联开关43b、44b,并联开关43b、44b的两个接触部均分别与两个能量模块10b、20b的极性相同的电极连接,例如:并联开关43b的两个接触部分别与两个能量模块10b、20b的两负极相连,并联开关44b的两个接触部分别与两个能量模块10b、20b的两正极相连,并联开关43b、44b导通后可以实现能量模块10b、20b的并联连接;串联开关31b的两个接触部分别与两个能量模块10b、20b的极性相反的两电极连接,两个能量模块10b、20b中另两个极性相反的电极与前述电压输出端子301b、302b分别连接,串联开关31b导通可以实现能量模块10b、20b的串联连接。
模块间控制部的串联开关31b为常开开关,即初始时位于断开状态,并联开关43b、44b为常闭开关,即初始时位于导通状态,故,初始状态时,能量模块10b、20b处于并联连接状态。结合前述,初始状态时,模块内控制部将能量模块10b、20b内的能量单元也控制在并联连接状态,故,初始时的电 能储存装置的能量单元处于全并联状态,输出电压为nV,图9为对应的电路图。
电能储存装置的插座在与对接电动工具的插头对接过程中,其模块内控制部及模块间控制部的状态均可被选择性切换,使能量模块10b、20b内的能量单元由并联改为串联,使两能量模块10b、20b由并联改为串联,下面将结合图面进行说明。
请参阅图9所示,一种低压电动工具(未图示),其工作电压为低压nV并具有低压插头,低压插头具有两个连接片D7、D8,用于与两个电压输出端子301b、302b。如前所述,初始状态下,电能储存装置的4个能量单元处于并联连接状态,其输出电压为nV。因此,当低压电动工具与电能储存装置配接时,低压插头上的两个连接片与两个电压输出端子301b、302b分别连接即可实现输出低压nV至使用该低压电动工具。
请参阅图10至图11所示,一种中压电动工具(未图示),其工作电压为中压2nV并具有中压插头,中压插头上设置有分别与两个电压输出端子301b、302b连接的两个连接片D9、D10。中压插头还设有与模块内控制部对应设置的内切换部,本实施例中,模块内控制部为两个,则内切换部也设置有两个。
内切换部包括绝缘部51b及导电部61b。当中压插头与插座插接配合时,绝缘部51b与模块内控制部中的并联开关41b、42b的两个接触部接触,使并联开关41b、42b处于非导通状态,导电部61b与相应模块内控制部中的串联开关30b的两个接触部接触,使串联开关30b处于导通状态,使能量模块10b、20b内的能量单元由并联改为串联,使每个能量模块10b、20b的输出电压为2nV。同时,模块间控制部保持不变,即能量模块10b、20b仍然保持并联,电能储存装置输出中压2nV至该中压电动工具。
请参阅图12至图15所示,一种高压电动工具(未图示),其工作电压为4nV并具有高压插头70b,高压插头70b设有与两个电压输出端子301b、302b连接的两连接片D11、D12。高压插头70b上还设置有与模块内控制部对应设置的内切换部、与模块间控制部对应设置的外切换部。在本实施例中,模 块内控制部为两个,则内切换部也设置有两个,模块间控制部为1个,则外切换部也设置有1个。每一内切换部包括第一绝缘部52b和第一导电部62b,外切换部包括第二绝缘部53b和第二导电部63b。
当高压插头与插座插接配合时,第一绝缘部52b与模块内控制部中的并联开关41b、42b的两个接触部接触,使并联开关41b、42b断开,第一导电部62b与模块内控制部中的串联开关30b的两个接触部接触,使串联开关30b导通,使每个能量模块10b、20b内的两个能量单元由并联改为串联,每个能量模块10b、20b的输出电压为2nV。
第二绝缘部53b与模块间控制部中的并联开关43b、44b的两个接触部接触,使并联开关43b、44b断开,第二导电部63b与模块间控制部中的串联开关31b的两个接触部接触,使串联开关31b导通,使能量模块10b、20b由并联改为串联连接,以输出高压4nV,图15为相应的电路图。
对应实施例二,本发明还提供一种电动工具系统,包括前述低压电动工具、中压电动工具、高压电动工具及电能储存装置,该电动工具系统还可以包括额定电压为nV的常规低压电池包、额定电压为2nV的常规中压电池包及额定电压为4nV的常规高压电池包。如前所述,本发明电能储存装置与低压电动工具、中压电动工具及高压电动工具均可以配合,并相应提供不同的输出电压,使低压电动工具、中压电动工具及高压电动工具能够正常工作。同时,低压电动工具也可以与常规的低压电池包配合,常规的低压电池包对应设有与低压电动工具的连接片D7、D8连接的输出端。中压电动工具也可以与常规的中压电池包配合,常规的中压电池包对应设有与中压电动工具连接片D9、D10连接的输出端。高压电动工具也可以与常规的高压电池包配合,常规的高压电池包对应设有与高压电动工具的连接片D11、D12连接的输出端。
实施例三
上述实施例一及实施例二中的电能储存装置的模块内控制部在初始状态时均将能量模块内的能量单元控制在并联状态。依据需要,模块内控制部 也可以在初始时将能量单元设定在串联状态。
请参阅图16至图22所示,本发明电能储存装置还提供了实施例三,实施例三的电能储存装置同样包括4个电压相等的能量单元,每个能量单元的电压均为nV,均等分为两个能量模块10c、20c。实施例三与实施例一基本相同,电能储存装置的插座设有4个电压输出端子101c、102c、201c、202c及两个模块内控制部,每一模块内控制部包括1个串联开关30c和2个并联开关41c、42c。与实施例一不同的是,初始状态时,模块内控制部的串联开关30c为常闭开关,初始时处于导通状态,并联开关41c、42c为常开开关,初始时处于断开状态,使每一个能量模块10c、20c内的两个能量单元处于串联连接状态,每个能量模块10c、20c的输出电压为2nV。
参考图17至图19所示,一种低压电动工具(未图示),其工作电压为nV并具有低压插头70c,低压插头70c设置2个内切换部,每个内切换部包括2个导通部61c及1个绝缘部51c,绝缘部51c用于断开串联开关30c,导通部61c用于导通并联开关41c、42c,以将每一个能量模块10c、20c内的两个能量单元由串联改为并联。低压插头还设置两连接片71c,以并联连接4个电压输出端子101c、102c、201c、202c,使能量模块10c、20c并联连接,使电能储存装置可对外输出低压nV,图20为相应的电路示意图。
参考图21所示,一种中压电动工具(未图示),其工作电压为2nV并设有中压插头,中压插头设置有并联连接4个电压输出端子101c、102c、201c、202c的连接片,可使能量模块10c、20c并联连接,每一个能量模块10c、20c内的两个能量单元保持串联,使电能储存装置可对外输出低压2nV。
参考图22所示,一种高压电动工具(未图示),其工作电压为4nV并设有高压插头,高压插头设置有串联连接4个电压输出端子101c、102c、201c、202c的连接片,使能量模块10c、20c串联连接,每一个能量模块10c、20c内的两个能量单元保持串联,使电能储存装置可对外输出低压4nV。
关于对接的各种插头的连接片的具体连接方式可参考实施例一,不再赘述。
本实施例中的低压电动工具、中压电动工具、高压电动工具及该能储存装置可共同形成一种电动工具系统,该电动工具系统还可以包括常规的低压、中压及高压电池包,类似前述实施例一,不再赘述。
实施例四
参考图23及图24,本发明电能储存装置还提供了实施例四,实施例四的电能储存装置同样包括4个电压相等的能量单元,每个能量单元的电压均为nV,均等分为两个10d、20d。实施例四与实施例二类似,电能储存装置的插座仅设置了两个电压输出端子301d、302d。插座包括两个模块内控制部及1个模块间控制部,每一模块内控制部包括1个串联开关30d和2个并联开关41d、42d。模块间控制部包括1个串联开关31d和2个并联开关43d、44d。关于电压输出端子301d、302d、模块内控制部及模块间控制部的各种连接方式可参考实施例二,此处不再赘述。
实施例二中,模块内控制部初始时将能量模块10b、20b内的两个能量单元控制在并联状态,模块间控制部初始时将能量模块10b、20b之间控制在并联状态。而在本实施四中,模块内控制部初始时将能量模块10d、20d内的两个能量单元控制在串联状态,模块间控制部初始时也将能量模块10d、20d之间控制在串联状态。具体的,模块内控制部的串联开关30d为常闭开关,初始时处于导通状态,模块内控制部并联开关41d、42d为常开开关,初始时处于断开状态,使每一个能量模块10d、20d内的两个能量单元处于串联连接状态,每个能量模块10d、20d的输出电压为2nV。模块间控制部的串联开关31d为常闭开关,初始时处于导通状态,模块间控制部的并联开关43d、44d为常开开关,初始时处于断开状态,使能量模块10d、20d控制在串联状态。故,初始状态时,电能储存装置的输出电压为4nV。
参考图25及图26所示,一种低压电动工具(未图示),其工作电压为nV并设有低压插头,低压插头设有分别与两个电压输出端子301d、302d连接的连接片。低压插头还设置了2个内切换部,每个内切换部包括1个绝缘部51d及2个导通部61d,绝缘部51d用于断开模块内控制部的串联开关30d,导通 部61d用于导通模块内控制部的并联开关41d、42d,以将每一个能量模块10d、20d内的两个能量单元由串联改为并联。低压插头还设置有外切换部,外切换部包括2个导通部62d及1个绝缘部52d,绝缘部52d用于断开模块间控制部的串联开关31d,导通部62d用于导通模块间控制部的并联开关43d、44d,以将能量模块10d、20d由串联改为并联,使电能储存装置可对外输出低压nV。
参考图27及图28所示,一种中压电动工具(未图示),其工作电压为2nV并设有中压插头,中压插头设有分别与两个电压输出端子301d、302d连接的连接片。中压插头还设置有2个内切换部,每个内切换部包括1个绝缘部53d及2个导通部63d,绝缘部53d用于断开模块内控制部的串联开关30d,导通部63d用于模块内控制部的导通并联开关41d、42d,以将每一个能量模块10d、20d内的两个能量单元由串联改为并联,能量模块10c、20c之间保持串联,使电能储存装置可对外输出低压2nV。
参考图29所示,一种高压电动工具(未图示),其工作电压为4nV并设有高压插头,高压插头设有分别与两个电压输出端子301d、302d连接的连接片,能量模块10c、20c之间保持串联,能量模块10c、20c内的两个能量单元保持串联,使电能储存装置可对外输出低压4nV。
本实施例中的低压电动工具、中压电动工具、高压电动工具及该能储存装置可共同形成一种电动工具系统,该电动工具系统还可以包括常规的低压、中压及高压电池包,类似前述实施例一,不再赘述。
实施例五
请参阅图30至图31所示,在实施例五中,电能储存装置包括四个电压相同的能量单元,电压均为nV,均分为两个能量模块10e、20e;与上面的实施例四相似,电能储存装置的插座包括模块内控制部、模块间控制部以及两个电压输出端子301e、302e。模块内控制部包括1个串联开关30e和两个并联开关41e、42e,模块间控制部包括一个串联开关31e和两个并联开关43e、44e。关于电压输出端子301e、302e、模块内控制部及模块间控制部的各种 连接方式可参考实施例二,此处不再赘述。
实施例二中,模块内控制部初始时将能量模块10b、20b内的两个能量单元控制在并联状态,模块间控制部初始时将能量模块10b、20b之间控制在并联状态。在本实施例五中,模块间控制部初始时也是将能量模块10d、20d之间控制在并联状态,但是模块内控制部初始时是将能量模块10d、20d内的两个能量单元控制在串联状态。
具体的说,模块间控制部的串联开关31e为常开开关,初始时处于断开状态,模块间控制部的并联开关43e、44e为常闭开关,初始时处于导通状态,使能量模块10e、20e控制在并联状态。模块内控制部的串联开关30e为常闭开关,初始时处于导通状态,模块内控制部并联开关41e、42e为常开开关,初始时处于断开状态,使每一个能量模块10e、20e内的两个能量单元处于串联连接状态,每个能量模块10e、20e的输出电压为2nV。
参考图32及图33所示,一种低压电动工具(未图示),其工作电压为nV并设有低压插头,低压插头设有分别与两个电压输出端子301e、302e连接的连接片。低压插头还设置2个内切换部,每个内切换部包括1个绝缘部51e及2个导通部61e,绝缘部51e用于断开串联开关30e,导通部61e用于导通并联开关41e、42e,以将每一个能量模块10e、20e内的两个能量单元由串联改为并联,能量模块10e、20e之间保持并联,使电能储存装置可对外输出低压nV。
参考图34所示,一种中压电动工具(未图示),其工作电压为2nV并设有中压插头,中压插头设有分别与两个电压输出端子301e、302e连接的连接片,使电能储存装置可对外输出中压2nV。
参考图35及图36所示,一种高压电动工具(未图示),其工作电压为4nV并设有高压插头,高压插头设有分别与两个电压输出端子301e、302e连接的连接片。高压插头还对应模块间控制部设置有外切换部,外切换部包括绝缘部52e和导电部62e,绝缘部52e用于断开串联开关31e,导通部62e用于导通并联开关43e、44e,以将能量模块10e、20e由并联改为串联,能量模块 10e、20e内的两个能量单元保持串联,使电能储存装置可对外输出低压4nV。
另外,可以理解的是,电能储存装置在设置有模块间控制部及模块内控制部的情况下,也可以将初始状态设置为模块内控制部控制每一能量模块内的电池单元并联,模块间控制部控制两个能量模块之间串联。具体的控制方式可以结合参考前面的实施例二及实施例四。
实施例六
前面五个实施例中,电能储存装置均包括4个电压相同的能量单元,均分为2组,每组2个能量单元。即,N=4,M=2,K=2,由于M与K相同,故第3种及第4中连接状态所对应的中压值相同,再加上第1种连接状态对应的低压和第2种连接状态对应的高压,可对外输出3种电压。本发明还提供了M与K不同值的实施例六,可对应多个中压值。
请参阅图37所示,在实施例六中,电能储存装置包括6个电压相同的能量单元,电压均为nV。6个能量单元平均分为两个能量模块10f、20f,每个能量模块10f、20f包括3个能量单元10f1、10f2及10f3。即,在实施例六中,N=6,M=2,K=3。
电能储存装置的插座设有4个电压输出端子,包括与能量模块10f的正、负电极对应连接的电压输出端子101f、102f及与能量模块20f的正、负电极对应连接的电压输出端子201f、202f。电压输出端子的设置规则及方式与实施例一中的电压输出端子相同,可参考其内容。
电能储存装置的插座还设有对应每个能量模块10f、20f的模块内控制部。总体而言,实施例六与前述实施例一比较类似,区别在于每个能量模块10f、20f内的能量单元数量不同,相应的模块内控制部的串联开关和并联开关的数量会不同。
依据之前的设置规律,并联开关数量对应能量单元的数量K设置为2*(K-1个),串联开关的数量对应能量单元的数量K设置为(K-1),在实施例六中,K等于3时,故,串联开关为2个,并联开关为4个。具体来讲,模块内控制部包括两个串联开关31f、32f和4个并联开关41f、42f、43f、44f。 在本实施例中,串联开关31f、32f、并联开关41f、42f、43f、44f均包括两个与能量单元的电极连接的接触部(未标号),并联开关41f、42f、43f、44f的两个接触部均分别与能量单元的极性相同的电极连接,串联开关31f、32f的两个接触部与能量单元的极性相反的电极连接。
以能量模块10f为例说明,并联开关41f的两个接触部连接能量单元10f1及能量单元10f2的负极,并联开关42f连接能量单元10f1及能量单元10f3的负极,并联开关43f的两个接触部与连接能量单元10f1及能量单元10f2的正极相连,并联开关44f的两个接触部与连接能量单元10f1及能量单元10f3的正极相连;即,并联开关41f、42f通过两两连接的方式分别将3个能量单元10f1、10f2、10f3的正极并联连接,并联开关43f、44f通过两两连接的方式分别将3个能量单元10f1、10f2、10f3的正极并联连接。
串联开关31f连接能量单元10f1的正极及能量单元10f2的负极,串联开关32f连接能量单元10f2的正极及能量单元10f3的负极。即,串联开关31f、32f串联在3个能量单元10f1、10f2、10f3之间。
其中,并联开关41f、42f、43f、44f可以为常闭开关,初始时位于导通状态,串联开关31f、32f可以为常开,初始时位于断开状态。故,初始时,每个能量模块10f、20f内的三个能量单元10f1、10f2、10f3处于并联状态,对外输出电压为nV。
请参阅图38所示,一种低压电动工具(未图示),其工作电压为nV并具有低压插头,低压插头具有连接两个能量模块的极性相同的电极的两个连接片L1、L2。当低压插头与插座插接配合时,一个连接片将两个能量模块10f、20f的正极对应的电压输出端子101f、201f连接,另一个连接片将两个能量模块的负极对应的电压输出端子102f、202f连接,使两个能量模块10f、20f并联连接,该电能储存装置输出低压nV至该低压电动工具。
请参阅图39,一种中压电动工具(未图示),其工作电压为2nV并具有第一中压插头,第一中压插头上设置有串联连接两个能量模块10f、20f的连接片(未图示)。当该中压电动工具使用该电能储存装置时,第一中压插头与插 座插接配合,连接片将4个电压输出端子中不同能量模块10f、20f的极性不同的两个电压输出端子相连接,例,将能量模块10f的正极电压输出端子101f与能量模块的负极电压输出端子202f连接,以使两个能量模块10f、20f串联连接。第一中压插头上还设有两个连接片L3、L4,分别连接两个能量模块10f、20f的另外两个不同极性电压输出端子201f,102f。同时,每一个能量模块10f、20f内的三个能量单元10f1、10f2、10f3通过模块内控制部保持并联连接,使该电能储存装置输出第一中压2nV至该中压电动工具。
请参阅图40至图41所示,另一种中压电动工具(未图示),其工作电压为3nV并具有第二中压插头,第二中压插头上设有并联连接两个能量模块的两个连接片L5、L6,其中一个连接片与两个能量模块10f、20f的正极对应的电压输出端子101f、201f连接,另一个与两个能量模块10f、20f的负极对应的电压输出端子102f、202f连接,使两个能量模块10f、20f并联连接。
第二中压插头还设置有内切换部,内切换部对应模块内控制部设置,包括绝缘部51f和导电部61f。当第二中压插头与插座插接配合时,绝缘部51f与并联开关41f、42f、43f、44f的两个接触部接触,使并联开关41f、42f、43f、44f断开,导电部61f与串联开关31f、32f的两个接触部接触,使串联开关31f、32f导通,使每个能量模块10f、20f内的3个能量单元10f1、10f2、10f3由并联改为串联,每个能量模块10f、20f的输出电压为3nV。两个能量模块10f、20f通过连接片L5、L6并联连接。故,该电能储存装置输出第二中压3nV至该第二中压电动工具。
请参阅图42至图43所示,一种高压电动工具(未图示),其工作电压为6nV并具有高压插头,高压插头上设置串联连接两个能量模块的连接片(未图示)。连接片将4个电压输出端子中不同能量模块10f、20f的极性不同的电压输出端子相连接,例如,能量模块10f的正极101f与能量模块的负极202f连接,以使两个能量模块10f、20f串联连接。高压插头上还设有两个连接片L7、L8,分别连接2个能量模块10f、20f的另外两个不同极性电压输出端子201f,102f。
高压插头上还设有与模块内控制部配合的内切换部,内切换部包括绝缘部52f与导电部62f。当高压插头与插座插接配合时,绝缘部52f插入并联开关41f、42f、43f、44f的两个接触部之间,使并联开关41f、42f、43f、44f断开,导电部62f与串联开关31f、32f的两个接触部接触,使串联开关31f、32f导通,即,使每个能量模块10f、20f内的3个能量单元10f1、10f2、10f3串联连接,且能量模块10f、20f之间通过连接片串联连接。故,该电能储存装置输出高6nV至该高压电动工具。
对应实施例六,本发明还提供一种电动工具系统,包括前述低压电动工具、第一中压电动工具、第二中压电动工具、高压电动工具及电能储存装置,该电动工具系统还可以包括额定电压为nV的常规低压电池包、额定电压为2nV的常规第一中压电池包、额定电压为3nV的常规第二中压电池包及额定电压为6nV的常规高压电池包。本发明电能储存装置与低压电动工具、第一中压电动工具、第二中压电动工具及高压电动工具均可以配合,并相应提供不同的输出电压,使低压电动工具、第一中压电动工具、第二中压电动工具及高压电动工具能够正常工作。同时,低压电动工具也可以与常规的低压电池包配合,常规的低压电池包对应设有与低压电动工具的连接片L1、L2连接的输出端。第一中压电动工具也可以与常规的第一中压电池包配合,常规的第一中压电池包对应设有与第一中压电动工具连接片L3、L4连接的输出端。第二中压电动工具也可以与常规的第二中压电池包配合,常规的第二中压电池包对应设有与第二中压电动工具连接片L5、L6连接的输出端。高压电动工具也可以与常规的高压电池包配合,常规的高压电池包对应设有与高压电动工具的连接片L7、L8连接的输出端。
实施例七
参考图44,实施例七中,电能储存装置包括12个电压相同的能量单元,电压均为nV。12个能量单元平均分为2个模块10g、20g。即,N=12,M=2,K=6。
为了便于理解,可以将每一个模块10g、20g视为一个子电能储存装置, 其连接方式与实施例六中的电能储存装置相同。每一模块10g、20g包括2个能量模块11g、12g、21g、22g,每个能量模块11g、12g、21g、22g内又包括3个能量单元。电能储存装置的插座设有2个分别与两个模块10g、20g的总正电极连接的电压输出端子101g、102g,及2个分别与两模块10g、20g的总负电极连接的电压输出端子201g、202g。
两个模块10g、20g的结构是相同的,下面以模块10g进行说明。电能储存装置的插座对应模块10g、20g内的每一个能量模块11g、12g设有2个模块内控制部及1个模块间控制部。模块内控制部包括两个串联开关31g、32g和4个并联开关41g、42g、43g、44g,控制每个能量模块11g、12g内的3个能量单元的连接状态,具体的连接方式可以参考实施例六。
模块间控制部包括1个串联开关33g和2个并联开关45g、46g,控制能量模块11g、12g之间的连接状态,其连接方式也与之前的实施方式相同,串联开关33g用于连接两能量模块11g、12g中极性不同的2个电极形成串联,并联开关45g、46g用于连接两能量模块11g、12g中极性相同的2个电极形成并联。即,初始时,能量模块11g、12g之间并联。
在本实施方式中,模块内控制部的并联开关41g、42g、43g、44g、45g、46g为常闭开关,初始时位于导通状态,串联开关31g、32g、33g为常开开关,初始时位于断开状态,即,初始时,能量模块11g、12g内的三个能量单元并联。故,初始时,每个模块10g、20g内的6个能量单元全部并联。
参考图45所示,一种低压电动工具(未图示),其工作电压为nV并设有低压插头,低压插头具有并联连接电压输出端子101g、102g、201g、202g的两个连接片,使模块10g、20g之间并联。故,每个模块10g、20g内的6个能量单元保持并联,以输出低压nV至低压电动工具。
参考图46及图47所示,一种第一中压电动工具(未图示),其工作电压为2nV并设有第一中压插头,第一中压插头上对应每一模块10g、20g的模块间控制部设置有外切换部,外切换部包括用于断开模块间控制部的并联开关45g、46g的绝缘部54g及用于导通模块间控制部的串联开关33g的导电部 66g,使每一个模块10g、20g内的两个能量模块11g、12g、21g、22g之间由并联改为串联,每个能量模块11g、12g、21g、22g内的3个能量单元保持并联,每一个模块10g、20g的输出电压为2nv。第一中压插头还具有并联连接电压输出端子101g、102g、201g、202g的连接片,使模块10g、20g之间并联,以输出第一中压2nV至第一中压电动工具。
参考图48及图49所示,一种第二中压电动工具(未图示),其工作电压为3nV并设有第二中压插头。第二中压插头上还设有对应每一模块10g、20g的模块内控制部设置的内切换部,内切换部包括用于断开模块内控制部的并联开关41g、42g、43g、44g的绝缘部52g及用于导通模块内控制部的串联开关31g、32g的导电部62g,使每一个能量模块11g、12g、21g、22g内的3个能量单元由并联改为串联,每一个模块10g、20g内的两个能量模块11g、12g、21g、22g之间保持并联,每一个模块10g、20g的输出电压为3nv。模块间控制部保持不变,第二中压插头还具有并联连接电压输出端子101g、102g、201g、202g的连接片,使模块10g、20g之间并联,以输出第二中压3nV至第二中压电动工具。
参考图50及图51所示,一种第三中压电动工具(未图示),其工作电压为4nV并设有第三中压插头。第三中压插头上还设有对应每一模块10g、20g的模块间控制部设置的外切换部,外切换部包括用于断开模块间控制部的并联开关45g、46g的绝缘部53g及用于导通模块间控制部的串联开关33g的导电部63g,使每一模块10g、20g内的2个能量模块11g、12g、21g、22g之间由并联改为串联,每个能量模块11g、12g、21g、22g内的3个能量单元保持并联,每一个模块10g、20g的输出电压为2nv。第三中压插头还具有串联连接电压输出端子101g、102g、201g、202g的连接片,使模块10g、20g之间串联,以输出第三中压4nV至第三中压电动工具。
参考图52及图53所示,一种第四中压电动工具(未图示),其工作电压为6nV并设有第四中压插头。第四中压插头上还设有对应每一模块10g、20g的模块内控制部设置的内切换部,内切换部包括用于断开模块内控制部的并 联开关41g、42g、43g、44g的绝缘部51g及用于导通模块内控制部的串联开关31g、32g的导电部61g,使每一个能量模块11g、12g、21g、22g内的3个能量单元由并联改为串联,每一个模块10g、20g内的能量模块11g、12g、21g、22g之间保持并联,每一个模块10g、20g的输出电压为3nv。第二中压插头还具有串联连接电压输出端子101g、102g、201g、202g的连接片,使模块10g、20g之间串联,以输出第四中压6nV至第四中压电动工具。
参考图54及图55所示,一种高压电动工具(未图示),其工作电压为12nV并设有高压插头。高压插头上还设有对应每一模块10g、20g的模块内控制部设置的内切换部,内切换部包括用于断开模块内控制部的并联开关41g、42g、43g、44g的绝缘部55g及用于导通模块内控制部的串联开关31g、32g的导电部65g,使每一个能量模块11g、12g、21g、22g内的3个能量单元由并联改为串联。高压插头上还设有对应每一模块10g、20g的模块间控制部设置的外切换部,外切换部包括用于断开模块间控制部的并联开关45g、46g的绝缘部56g及用于导通模块间控制部的串联开关33g的导电部64g,使每一模块10g、20g内的2个能量模块11g、12g、21g、22g之间也由并联改为串联,每一个模块10g、20g的输出电压为6nv。高压插头还具有串联连接电压输出端子101g、102g、201g、202g的连接片,使模块10g、20g之间串联,以输出高压12nV至高压电动工具。
即,当N为12,单个能量单元的电压为nV时,电能储存装置可提供6种电压,分别为低压nV,高压12nV及四种中压2nV、3nV、4nV及6nV。
前面几个实施例中,N的分配层级为:能量单元->能量模块->电能储存装置,而实施例七中N的分配层级为,能量单元->能量模块->模块->电能储存装置,多了一个层级。联系之前的能量单元的分配公式,N=M*K,即当M≥4或K≥4时,也可以说当N≥8时,可以进一步均分,使N=k1*k2*k3…,其中k1/k2/k3….的值大于1且小于4,即为2或3。也就是说,所述能量单元可以均分为多级模块,每级模块包括2个或3个次级模块,最低一级的能量模块包括2个或3个能量单元。
N个能量单元的输出电压U=k1*k2*k3*nV,其中任何一个层级并联时相当于省略了该系数,相当于k1、k2、k3…的各种排列组合,同时需去掉结果相同的值,也就对应N的各个因子,即电能储存装置的输出电压种类与N的因子数量相同,除去最低的低压和最高的高压,中间均为中压值。
实施例七中的12个能量单元对应的分配公式为12=2*2*3,每个层级均具有并联和串联两种连接方式,当某一层级处于并联时,该级可视为1,即12个能量单元可出现以下组合方式:1*1*1=1、1*1*3=3、1*2*1=2、1*2*3=6、2*1*1=2、2*1*3=6、2*2*1=4、2*2*3=12,去掉重复的值,可见12的每一种因子均会出现。故,N个能量单元最多能输出的电压种类与其因子数目相同。
例如本发明所列举的,N为4时,4的因子包括1、2及4,共3个,故有3种输出电压。N为6时,6的因子包括1、2、3及6,共4个,故有3种输出电压。N为12时,12的因子数包括1、2、3、4、6及12,共6个,故有6种输出电压。可以理解的是,当N为8时,8的因子为1、2、4及8,共4个,应有4种输出电压;N为9时,9的因子为1、3及9,共3个,应有3种输出电压。
实施例八
在前述实施例中,能量存储装置均设有模块内控制部,实施例八提供了另一种不设置模块内控制部的方案,请参图56所示,能量存储装置包括四个能量单元及与四个能量单元电性连接的插座。插座包括若干相互独立设置的导电端子,若干导电端子包括与四个能量单元的正极与负极电性连接的八个电极端子,具体为与第一个能量单元的正、负极相连的第一正极端子211及第一负极端子212、与第二个能量单元的正、负极相连的第二正极端子213及第二负极端子214、与第三个能量单元的正、负极相连的第三正极端子215及第三负极端子216以及与第四个能量单元的正负、极相连的第四正极端子217及第四负极端子218。其中第一个个能量单元及第二个能量单元形成第一能量模块,第三个能量单元及第四个能量单元形成第二能量模块。
八个电极端子呈直线排列呈一排,从左到右依次为第四负极端子218、 第三负极端子216、第二负极端子214、第一负极端子212、第二正极端子213、第三正极端子215、第四正极端子217及第一正极端子211。
可以理解的是,八个电极端子之间通过对接公插片可以产生不同的连接方式,使四个电池包之间形成不同的电路连接状态,以获得不同的输出电压,类似于前面四个电池包的实施例一或实施例三,不同的是,实施例八中的能量存储装置初始状态时,各个能量单元独立,没有连接。只有与对接的插头连接时,能量单元之间才会有并联或串联的连接状态。
图56中示出了本发明能量存储装置的插座的导电端子与一种低压电动工具的低压插头的低压公插片配合的情形。结合图57所示,低压插头包括两个独立设置的低压公插片221、222,低压公插片221包括并排设置的四个接触臂2211、2212、2213、2214、连接相邻两两接触臂的三个连接部2215、2216、2217以及电压输出部2218。低压公插片222包括并排设置的四个接触臂2221、2222、2223、2224、连接相邻两个接触臂的三个连接部2225、2226、2227以及电压输出部2228。
插座与低压插头插接配合时,低压公插片221的接触臂2211、2212、2213、2214依次与第四负极端子218、第三负极端子216、第二负极端子214及第一负极端子212插接,即,并联连接所述四个能量单元的负极。低压公插片222的接触臂2221、2222、2223、2224依次与第二正极端子213、第三正极端子215、第四正极端子217及第一正极端子211插接,即,并联连接所述四个能量单元的正极。于是,两个低压公插片221、222并联接四个能量单元,相当于两个能量模块内的两个能量单元并联,且两个能量模组之间并联,能量存储装置通过两个电压输出部2218、2228,为低压电动工具输出nV电压。
图58中示出了本发明能量存储装置的插座的导电端子与一种中压电动工具的中压插头的中压公插片配合的情形。
结合图59所示,中压插头230包括并排设置的三个独立设置的中压公插片231、232、233,中压公插片231包括两个相对设置的接触臂2311、2312、连接接触臂2311、2312的连接部2313以及电压输出部2314。中压公插片232 包括两个相对设置的接触臂2321、2322、连接接触臂2321、2322的连接部2323以及电压输出部2324;中压公插片233包括并排设置的四个接触臂2331、2332、2333、2334以及将相邻接触臂2331、2332、2333、2334两两连接的三个连接部2335、2336、2337。
插座与中压插头230插接配合时,中压公插片231的两个接触臂2311、2312分别与第四负极端子218、第三负极端子216插接。中压公插片232的两个接触臂2321、2322分别与第二正极端子213、第一正极端子211插接。中压公插片233的四个接触臂2331、2332、2333、2334依次与第二负极端子214、第一负极端子212、第三正极端子215和第四正极端子217插接。如此,相当于将第一能量模块内的第一能量单元及第二能量单元并联,第二能量模块内的第三能量单元及第四能量单元并联后,然后第一能量模块及第二能量模块之间串联,能量存储装置通过两个电压输出部2314、2324,为中压电动工具输出2nV电压。
图60中示出了本发明能量存储装置的插座的导电端子与一种高压电动工具的高压插头的高压公插片配合的情形。结合图61所示,高压插头包括五个独立设置的高压公插片241、242、243、244、245。其中,高压公插片241包括接触臂2411及与电压输出部2412。高压公插片245包括接触臂2451及电压输出部2452。高压公插片242包括两个接触臂2421、2422和连接两个接触臂2421、2422的连接部2423。高压公插片243包括两个接触臂2431、2432和连接接触臂2431、2432的连接部2433。高压公插片244包括两个接触臂2441、2442和连接接触臂2441、2442的连接部2443。
插座与高压插头插接配合时,高压公插片241的接触臂2411与第四负极端子218插接,高压公插片245的接触臂2451与第一正极端子211插接,高压公插片242的接触臂2421、2422分别与第四正极端子217、第三负极端子216插接,以串联第三及第四能量单元,高压公插片243的接触臂2431、2432分别与第三正极端子215、第二负极端子214插接,以串联第三及第二能量单元,高压公插片244的接触臂2441、2442分别与第二正极端子213、 第一负极端子212插接,以串联第二及第一能量单元。即高压公插片241、242、243串联四个能量单元,高压公插片241的接触臂2411与第四负极端子218插接,高压公插片245的接触臂2451与第一正极端子211插接,如此四个能量单元全部串联,相当于两个能量模块内的两个能量单元串联,且两个能量模组之间串联,能量存储装置100通过两个电压输出部2412、2452,为高压电动工具输出4nV电压。
需要说明的是,模块内控制部、模块间控制部的具体形式并不限于前述常开开关或者常闭开关,所有能够实现相同功能的部件均在此保护范围内。
还需要说明的是,前述实施例一至实施例七,内切换部和外切换部中用于切换常闭开关的的绝缘部可以单独设置,也可以多个并一体成型,如,多个并联开关上下叠放设置,使用一个绝缘部即可实现绝缘分开多个并联开关。绝缘部可以与导电部成型在一起,例如:一段为绝缘材料制成的绝缘部,一段为导电材料制成的导电部。导电部与绝缘部的结构在此不予限制,只需保证,导电部导通对应的串联开关,绝缘部绝缘分开对应的并联开关即可。
以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。

Claims (20)

  1. 一种电能储存装置,包括N个额定电压相同的能量单元并设有插座,其特征在于:N个所述能量单元均分成为M个能量模块,每个所述能量模块包括K个能量单元,其中M≥2,且K≥2,每个所述能量模块内的K个所述能量单元具有串联和并联两种连接状态,并且能够在并联和串联连接状态之间切换。
  2. 根据权利要求1所述的电能储存装置,其特征在于:所述插座包括对应所述能量模块设有模块内控制部,所述模块内控制部对应每一个所述能量模块设置有并联K个所述能量单元的多个并联开关及串联K个所述能量单元的1个或多个串联开关,当所述并联开关闭合且所述串联开关断开时,K个所述能量单元并联;当所述并联开关断开且所述串联开关闭合时,K个所述能量单元串联。
  3. 根据权利要求2所述的电能储存装置,其特征在于:所述模块内控制部包括2*(K-1)个所述并联开关,所述并联开关分别两两连接K个所述能量单元的相同极性的电极;所述模块内控制部包括(K-1)个所述串联开关,所述串联开关分别两两连接K个所述能量单元的不同极性的电极。
  4. 根据权利要求2所述的电能储存装置,其特征在于:所述并联开关为常闭开关,所述串联开关为常开开关,所述能量模块内的K个所述能量单元初始状态下并联连接;或者所述并联开关为常开开关,所述串联开关为常闭开关,所述能量模块内的K个所述能量单元初始状态下串联连接。
  5. 根据权利要求2所述的电能储存装置,其特征在于:所述插座还包括模块间控制部,所述模块间控制部包括并联M个所述能量模块的并联开关以及串联M个所述能量模块的串联开关,当所述模块间控制部的所述并联开关闭合且所述串联开关断开时,M个所述能量模块并联;当所述模块间控制部的所述并联开关断开且所述串联开关闭合时,M个所述能量模块串联。
  6. 根据权利要求5所述的电能储存装置,其特征在于:所述插座还包括两个电压输出端子。
  7. 根据权利要求1所述的电能储存装置,其特征在于:每一所述能量单元 设有正极及负极,所述插座包括八个独立设置的电极端子,八个所述电极端子包括分别与四个所述能量单元的正极连接的四个正极端子及分别与四个所述能量单元的负极连接的四个负极端子。
  8. 根据权利要求1所述的电能储存装置,其特征在于:所述电能储存装置的输出电压的种类等于N的因子数目。
  9. 根据权利要求8所述的电能储存装置,其特征在于:当N≥8时,所述能量单元可以均为多级模块,每级模块包括2个或3个次级模块,最低一级的能量模块包括2个或3个能量单元。
  10. 一种电动工具系统,包括电动工具及电能储存装置,其特征在于:所述电能储存装置包括N个额定电压相同的能量单元,N个所述能量单元均分成为M个能量模块,每个所述能量模块包括K个能量单元,其中M≥2,且K≥2,每个所述能量模块内的K个所述能量单元具有串联和并联两种连接状态,并且能够在并联和串联连接状态之间切换,所述电能储存装置设有插座,所述电动工具设有与所述插座配合的插头。
  11. 根据权利要求10所述的电动工具系统,其特征在于:所述插座包括对应每一个所述能量模块设置的模块内控制部,所述模块内控制部包括并联K个所述能量单元的多个并联开关及串联K个所述能量单元的1个或多个串联开关,当所述并联开关闭合且所述串联开关断开时,K个所述能量单元并联;当所述并联开关断开且所述串联开关闭合时,K个所述能量单元串联。
  12. 根据权利要求11所述的电动工具系统,其特征在于:所述插头设有内切换部,所述内切换部与所述模块内控制部配合,同时切换所述模块内控制部的所述并联开关及所述串联开关的状态,使所述能量模块内的K个所述能量单元由并联切换为串联或者由串联改切换为并联。
  13. 根据权利要求12所述的电动工具系统,其特征在于:所述内切换部包括绝缘部及导电部,所述模块内控制部的所述并联开关和所述串联开关的其中一种初始时处于闭合状态并由所述绝缘部断开,另一种初始时处于断开状态并由所述导电部导通。
  14. 根据权利要求11所述的电动工具系统,其特征在于:所述插座还包括模块间控制部,所述模块间控制部包括并联M个所述能量模块的并联开关以及串联M个所述能量模块的串联开关,当所述并联开关闭合且所述串联开关断开时,M个所述能量模块并联;当所述并联开关断开且所述串联开关闭合时,M个所述能量模块串联。
  15. 根据权利要求14所述的电动工具系统,其特征在于:所述插头设有外切换部,所述外切换部与所述模块间控制部配合,切换所述模块间控制部的所述并联开关及所述串联开关的状态,使M个所述能量模块由并联切换为串联或者由串联改切换为并联。
  16. 根据权利要求15所述的电动工具系统,其特征在于:所述外切换部包括绝缘部及导电部,所述模块间控制部的所述并联开关和所述串联开关的一种初始时处于闭合状态并由所述绝缘部断开,另一种初始时处于断开状态并由所述导电部导通。
  17. 根据权利要求10所述的电动工具系统,其特征在于:每个所述能量模块设有正极及负极,所述插座包括分别与每个所述能量模块的正极及负极连接的2*M个电压输出端子,所述插头设有与所述电压输出端子连接的连接片,由所述连接片确定M个所述能量模块之间串联或并联。
  18. 一种电动工具系统,包括低压电动工具、中压电动工具及高压电动工具,其特征在于:所述电动工具系统包括如权利要求1至9中任意一项所述的电能储存装置,所述低压电动工具设有低压插头,所述低压插头与所述插座对接并使N个所述能量单元处于全并联状态;所述高压电动工具设有高压插头,所述高压插头与所述插座对接并使N个所述能量单元处于全串联状态;所述中压电动工具设有中压插头,所述中压插头与所述插座对接并使N个所述能量单元处于一中压状态。
  19. 根据权利要求18所述的电动工具系统,其特征在于:所述中压状态指所述能量模块内K个所述能量单元串联,M个所述能量模块并联,对应输出电压K*nV;或者所述能量模块内K个所述能量单元并联,M个所述能量模块串 联,对应输出电压M*nV。
  20. 根据权利要求18所述的电动工具系统,其特征在于:所述电动工具系统还包括与所述低压电动工具配接的低压电池包、与所述中压电动工具配接的中压电池包或与所述高压电动工具配接的高压电池包。
PCT/CN2019/114239 2018-12-20 2019-10-30 电能储存装置及电动工具系统 WO2020125213A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19901399.6A EP3890084A4 (en) 2018-12-20 2019-10-30 ELECTRIC ENERGY STORAGE DEVICE AND ELECTRIC TOOLING SYSTEM
AU2019410335A AU2019410335A1 (en) 2018-12-20 2019-10-30 Electrical energy storage apparatus and electric tool system
US17/344,934 US20210305653A1 (en) 2018-12-20 2021-06-10 Electric energy storage device and electric tool system

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
CN201822146566.1 2018-12-20
CN201811564236.2 2018-12-20
CN201822146585.4U CN209200051U (zh) 2018-12-20 2018-12-20 电能储存装置及电动工具
CN201811564279.0A CN109599526B (zh) 2018-12-20 2018-12-20 电能储存装置及电动工具
CN201822146597.7U CN209217097U (zh) 2018-12-20 2018-12-20 电能储存装置及电动工具
CN201811566089.2 2018-12-20
CN201822145933.6 2018-12-20
CN201811564074.2A CN109360929A (zh) 2018-12-20 2018-12-20 电能储存装置及电动工具
CN201822146597.7 2018-12-20
CN201822146585.4 2018-12-20
CN201822145933.6U CN209282869U (zh) 2018-12-20 2018-12-20 电能储存装置及电动工具
CN201822145919.6U CN209200050U (zh) 2018-12-20 2018-12-20 电能储存装置及电动工具
CN201811564279.0 2018-12-20
CN201822146566.1U CN209217096U (zh) 2018-12-20 2018-12-20 电能储存装置及电动工具
CN201811566089.2A CN109360930A (zh) 2018-12-20 2018-12-20 电能储存装置及电动工具
CN201811564074.2 2018-12-20
CN201822145919.6 2018-12-20
CN201811564236.2A CN109473616A (zh) 2018-12-20 2018-12-20 电池包及电动工具系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/344,934 Continuation US20210305653A1 (en) 2018-12-20 2021-06-10 Electric energy storage device and electric tool system

Publications (1)

Publication Number Publication Date
WO2020125213A1 true WO2020125213A1 (zh) 2020-06-25

Family

ID=71101045

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/CN2019/114230 WO2020125209A1 (zh) 2018-12-20 2019-10-30 能量存储装置及电动工具系统
PCT/CN2019/114235 WO2020125210A1 (zh) 2018-12-20 2019-10-30 电能储存装置及电动工具系统
PCT/CN2019/114237 WO2020125211A1 (zh) 2018-12-20 2019-10-30 电能储存装置及电动工具系统
PCT/CN2019/114239 WO2020125213A1 (zh) 2018-12-20 2019-10-30 电能储存装置及电动工具系统

Family Applications Before (3)

Application Number Title Priority Date Filing Date
PCT/CN2019/114230 WO2020125209A1 (zh) 2018-12-20 2019-10-30 能量存储装置及电动工具系统
PCT/CN2019/114235 WO2020125210A1 (zh) 2018-12-20 2019-10-30 电能储存装置及电动工具系统
PCT/CN2019/114237 WO2020125211A1 (zh) 2018-12-20 2019-10-30 电能储存装置及电动工具系统

Country Status (4)

Country Link
US (7) US20210305653A1 (zh)
EP (4) EP3890144A1 (zh)
AU (4) AU2019400237A1 (zh)
WO (4) WO2020125209A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110474395A (zh) * 2019-08-27 2019-11-19 常州格力博有限公司 电力系统

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205872A (ja) * 2010-03-26 2011-10-13 Panasonic Electric Works Power Tools Co Ltd 充電電池パック
CN107078533A (zh) * 2014-05-18 2017-08-18 百得有限公司 电动工具系统
WO2018079723A1 (ja) * 2016-10-31 2018-05-03 日立工機株式会社 電池パック及び電池パックを用いた電気機器、電気機器システム
CN109360929A (zh) * 2018-12-20 2019-02-19 常州格力博有限公司 电能储存装置及电动工具
CN109360930A (zh) * 2018-12-20 2019-02-19 常州格力博有限公司 电能储存装置及电动工具
CN109473616A (zh) * 2018-12-20 2019-03-15 常州格力博有限公司 电池包及电动工具系统
CN109599526A (zh) * 2018-12-20 2019-04-09 常州格力博有限公司 电能储存装置及电动工具
CN209200051U (zh) * 2018-12-20 2019-08-02 常州格力博有限公司 电能储存装置及电动工具
CN209200050U (zh) * 2018-12-20 2019-08-02 常州格力博有限公司 电能储存装置及电动工具
CN209217097U (zh) * 2018-12-20 2019-08-06 常州格力博有限公司 电能储存装置及电动工具
CN209217096U (zh) * 2018-12-20 2019-08-06 常州格力博有限公司 电能储存装置及电动工具
CN209282869U (zh) * 2018-12-20 2019-08-20 常州格力博有限公司 电能储存装置及电动工具

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3886426A (en) * 1973-03-16 1975-05-27 Eagle Picher Ind Inc Battery switching circuit
JPS6424370A (en) * 1987-07-20 1989-01-26 Sanyo Electric Co Battery pack system
JP3716300B2 (ja) * 2001-03-26 2005-11-16 独立行政法人産業技術総合研究所 電池有効利用回路
US7436149B2 (en) * 2006-09-26 2008-10-14 Dell Products L.P. Systems and methods for interfacing a battery-powered information handling system with a battery pack of a physically separable battery-powered input or input/output device
US8816613B2 (en) * 2009-07-02 2014-08-26 Chong Uk Lee Reconfigurable battery
US8307222B2 (en) * 2009-09-25 2012-11-06 Dell Products, Lp Flexible cell battery systems and methods for powering information handling systems
CN101924379A (zh) * 2010-04-12 2010-12-22 常州格力博工具有限公司 电池包及电池包与电气装置的组合
JP5817103B2 (ja) * 2010-11-12 2015-11-18 ソニー株式会社 直並列切替システム、電力供給装置、電力供給制御装置及び直並列切替方法
FR2990766B1 (fr) * 2012-05-15 2014-05-09 Renault Sa Systeme et procede correspondant d'estimation de l'etat de charge d'une batterie
KR101648239B1 (ko) * 2012-06-29 2016-08-12 삼성에스디아이 주식회사 돌입 전류를 저감하는 에너지 저장 장치 및 그 방법
DE102013226247A1 (de) * 2012-12-21 2014-06-26 Robert Bosch Gmbh Handwerkzeugakku
GB201403971D0 (en) 2014-03-06 2014-04-23 7Rdd Ltd Portable power supply improvements
US11368029B2 (en) 2014-03-06 2022-06-21 Koki Holdings Co., Ltd. Portable power supply
TWI511345B (zh) * 2014-04-07 2015-12-01 Univ Nat Taiwan Science Tech 能量儲存裝置
US9893384B2 (en) 2014-05-18 2018-02-13 Black & Decker Inc. Transport system for convertible battery pack
US10389139B2 (en) * 2014-10-06 2019-08-20 Black & Decker, Inc. Portable power supply
CN204190691U (zh) * 2014-11-04 2015-03-04 湖南科技大学 太阳能电池电源管理控制器
EP3838055A1 (en) * 2015-06-11 2021-06-23 Positec Power Tools (Suzhou) Co., Ltd Power transmission apparatus and control method therefor, and power supply system
WO2017100787A1 (en) 2015-12-11 2017-06-15 Milwaukee Electric Tool Corporation Method and apparatus for connecting a plurality of battery cells in series or parallel
US10193111B2 (en) 2016-05-20 2019-01-29 Black & Decker Inc. Convertible battery pack
US10923933B2 (en) * 2016-06-08 2021-02-16 Nanjing Chervon Industry Co., Ltd. Power station
CN110121401B (zh) * 2016-09-20 2022-09-06 苏州宝时得电动工具有限公司 动力装置、电动工具及系统
US11824169B2 (en) * 2016-10-31 2023-11-21 Koki Holdings Co., Ltd. Battery pack, electrical device using battery pack, and electrical device system
EP3549229A4 (en) * 2016-11-29 2020-09-23 TTI (Macao Commercial Offshore) Limited MULTIPLE OUTPUT MODES BATTERY PACK
GB201621312D0 (en) * 2016-12-15 2017-02-01 7Rdd Ltd Multi power tool system incorporating battery pack
DE102018106308B4 (de) * 2018-03-19 2020-02-13 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Modulationsindexverbesserung durch intelligente Batterie
CN109301145B (zh) * 2018-11-27 2024-04-16 格力博(江苏)股份有限公司 电池包及电动工具系统
CN209217098U (zh) * 2018-12-20 2019-08-06 常州格力博有限公司 电能储存装置及电动工具
CN209217099U (zh) * 2018-12-20 2019-08-06 常州格力博有限公司 电能储存装置及电动工具
CN209217095U (zh) * 2018-12-20 2019-08-06 常州格力博有限公司 电能储存装置及电动工具
CN209200052U (zh) * 2018-12-20 2019-08-02 常州格力博有限公司 电池包及电动工具系统

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205872A (ja) * 2010-03-26 2011-10-13 Panasonic Electric Works Power Tools Co Ltd 充電電池パック
CN107078533A (zh) * 2014-05-18 2017-08-18 百得有限公司 电动工具系统
WO2018079723A1 (ja) * 2016-10-31 2018-05-03 日立工機株式会社 電池パック及び電池パックを用いた電気機器、電気機器システム
CN109360929A (zh) * 2018-12-20 2019-02-19 常州格力博有限公司 电能储存装置及电动工具
CN109360930A (zh) * 2018-12-20 2019-02-19 常州格力博有限公司 电能储存装置及电动工具
CN109473616A (zh) * 2018-12-20 2019-03-15 常州格力博有限公司 电池包及电动工具系统
CN109599526A (zh) * 2018-12-20 2019-04-09 常州格力博有限公司 电能储存装置及电动工具
CN209200051U (zh) * 2018-12-20 2019-08-02 常州格力博有限公司 电能储存装置及电动工具
CN209200050U (zh) * 2018-12-20 2019-08-02 常州格力博有限公司 电能储存装置及电动工具
CN209217097U (zh) * 2018-12-20 2019-08-06 常州格力博有限公司 电能储存装置及电动工具
CN209217096U (zh) * 2018-12-20 2019-08-06 常州格力博有限公司 电能储存装置及电动工具
CN209282869U (zh) * 2018-12-20 2019-08-20 常州格力博有限公司 电能储存装置及电动工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3890084A4 *

Also Published As

Publication number Publication date
US11855299B2 (en) 2023-12-26
WO2020125211A1 (zh) 2020-06-25
EP3890146A4 (en) 2022-03-09
AU2019410335A1 (en) 2021-07-15
WO2020125209A1 (zh) 2020-06-25
US20240079707A1 (en) 2024-03-07
EP3890144A4 (en) 2021-10-06
US20210305653A1 (en) 2021-09-30
EP3890144A1 (en) 2021-10-06
EP3890145A4 (en) 2021-10-06
EP3890084A1 (en) 2021-10-06
US20220069407A1 (en) 2022-03-03
US11641043B2 (en) 2023-05-02
US20210313662A1 (en) 2021-10-07
AU2019410333A1 (en) 2021-07-15
US11637347B2 (en) 2023-04-25
EP3890084A4 (en) 2021-10-06
EP3890145A1 (en) 2021-10-06
AU2019400237A1 (en) 2021-07-15
US20220115731A1 (en) 2022-04-14
AU2019411162A1 (en) 2021-07-15
EP3890146A1 (en) 2021-10-06
US20210305617A1 (en) 2021-09-30
US20210313614A1 (en) 2021-10-07
WO2020125210A1 (zh) 2020-06-25

Similar Documents

Publication Publication Date Title
CN109301145B (zh) 电池包及电动工具系统
CN209217098U (zh) 电能储存装置及电动工具
CN109360929A (zh) 电能储存装置及电动工具
CN109360930A (zh) 电能储存装置及电动工具
CN209217099U (zh) 电能储存装置及电动工具
WO2020125213A1 (zh) 电能储存装置及电动工具系统
CN209200052U (zh) 电池包及电动工具系统
CN209217095U (zh) 电能储存装置及电动工具
CN209282288U (zh) 电池包及电动工具系统
KR101848726B1 (ko) 탈착을 통한 가변용량형 보조배터리 및 보조배터리 장치
CN109599526B (zh) 电能储存装置及电动工具
CN209217096U (zh) 电能储存装置及电动工具
CN209282869U (zh) 电能储存装置及电动工具
CN209200050U (zh) 电能储存装置及电动工具
CN209217097U (zh) 电能储存装置及电动工具
CN209200051U (zh) 电能储存装置及电动工具
CN218632320U (zh) 一种智能切换双电压电池包
CN212012203U (zh) 一种锂离子电池储能模块电池箱的控制电路
US20240072385A1 (en) Power supply including a touch safe power supply core
KR102078598B1 (ko) 모듈화된 배터리 팩
US8758932B2 (en) Arrangement of battery poles of an electric energy accumulator
CN114726046A (zh) 一种单充电模块兼容多电池充电的系统及方法
WO2018117331A1 (ko) 공기-아연 전지 모듈
CN116134653A (zh) 高压三极耳式电蓄能器
CN115832799A (zh) 线束、电池均衡系统以及电池均衡方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019901399

Country of ref document: EP

Effective date: 20210629

ENP Entry into the national phase

Ref document number: 2019410335

Country of ref document: AU

Date of ref document: 20191030

Kind code of ref document: A