WO2020125032A1 - 光传送网线路带宽切换方法及装置 - Google Patents

光传送网线路带宽切换方法及装置 Download PDF

Info

Publication number
WO2020125032A1
WO2020125032A1 PCT/CN2019/100649 CN2019100649W WO2020125032A1 WO 2020125032 A1 WO2020125032 A1 WO 2020125032A1 CN 2019100649 W CN2019100649 W CN 2019100649W WO 2020125032 A1 WO2020125032 A1 WO 2020125032A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
otn frame
network device
encapsulation protocol
otn
Prior art date
Application number
PCT/CN2019/100649
Other languages
English (en)
French (fr)
Inventor
欧斯思
雷张伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19898373.6A priority Critical patent/EP3893515B1/en
Publication of WO2020125032A1 publication Critical patent/WO2020125032A1/zh
Priority to US17/353,373 priority patent/US11570530B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • H04J3/1664Optical Transport Network [OTN] carrying hybrid payloads, e.g. different types of packets or carrying frames and packets in the paylaod
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0083Formatting with frames or packets; Protocol or part of protocol for error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0003Switching fabrics, e.g. transport network, control network
    • H04J2203/0005Switching elements
    • H04J2203/0007Space switch details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0089Multiplexing, e.g. coding, scrambling, SONET
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2212/00Encapsulation of packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation

Definitions

  • Embodiments of the present application relate to the field of communications, and in particular, to a method and device for switching bandwidth of an optical transmission network.
  • Optical transport network as the core technology of the next generation transport network, is based on the wavelength division multiplexing technology and organizes the transport network of the network at the optical layer.
  • OTN includes technical specifications of electrical and optical layers, and uses optical fiber as the transmission medium to enable the transmission of large-capacity services.
  • the optical transmission network shown in FIG. 1 includes multiple network devices (NE) and client-side devices. Different network devices transmit signals through optical fibers, and network devices and client-side devices can pass Ethernet, etc.
  • the network device is used to transmit data from the client-side device through the optical fiber between the network devices, so as to be finally transmitted by the network device to another client-side device.
  • Line-side bandwidth is generally used to describe the rate of signal transmission between network devices through optical fibers.
  • the bandwidth level of the OTN line side can generally be 2.5 gigabits per second (Gbit/s), 10Gbit/s, 40Gbit/s, 100Gbit/s or n*100Gbit/s, etc.
  • the bandwidth on the line side is generally not static, because of the specific needs of the business and so on, bandwidth switching is required.
  • the method adopted for line bandwidth switching is generally to interrupt service transmission and set a new line side bandwidth before continuing service transmission.
  • the current transmission bandwidth level is 100Gbit/s.
  • the bandwidth level is 200Gbit/s.
  • 100Gbit/s you need to interrupt the service transmission first, then reduce the bandwidth level of the service transmission to 100Gbit/s, and then resume the service. It can be seen that the current switching efficiency for the line bandwidth is low.
  • Embodiments of the present application provide a method and device for switching bandwidth of an optical transmission network. Can improve the efficiency of bandwidth switching.
  • a method for switching bandwidth of an optical transmission network is provided.
  • the method is applicable to an optical transmission network.
  • the optical transmission network includes multiple network devices.
  • the method includes: the network device switches the first optical transmission network OTN frame from the first bandwidth to the second bandwidth with the substructure as the granularity; the bandwidth of the substructure For the set value, the first bandwidth and the second bandwidth differ by one or more set values; after the network device encapsulates the first OTN frame of the second bandwidth through the first encapsulation protocol, the second bandwidth is transmitted through the optical layer.
  • the foregoing network device switches the first optical transmission network OTN frame from the first bandwidth to the second bandwidth with the sub-structure as the granularity includes: the network device determines the second OTN frame, and the second OTN frame is the third Bandwidth, the second OTN frame is generated by the network device according to the first service data from the client side according to the second encapsulation protocol; the network device switches the bandwidth of the third encapsulation protocol from the first bandwidth to the second bandwidth with a set value as the granularity
  • the network device maps the payload of the second OTN frame to the payload of the sub-structure of the first OTN frame according to the third encapsulation protocol, and maps the overhead of the second OTN frame to the overhead of the first OTN frame.
  • An OTN frame sub-structure is filled with invalid bytes so that the ratio of overhead or invalid bytes to payload included in each sub-structure is a fixed ratio.
  • the first OTN frame is generated by the network device based on the first service data from the client side according to the fourth encapsulation protocol; the foregoing network device uses the sub-structure as the granularity to convert the first OTN frame Switching from one bandwidth to the second bandwidth includes: the network device switches the bandwidth of the fourth encapsulation protocol from the first bandwidth to the second bandwidth with a set value as the granularity; the network device maps the first service data in accordance with the fourth encapsulation protocol In the payload of the sub-structure of the first OTN frame, the sub-structure of the first OTN frame is filled with overhead or invalid bytes, so that the ratio of the overhead or invalid bytes included in each sub-structure to the payload is a fixed ratio.
  • the method when the first bandwidth is greater than the second bandwidth, after the network device switches the first optical transmission network OTN frame from the first bandwidth to the second bandwidth with the substructure as the granularity, the method further includes:
  • the network device switches the first encapsulation protocol and optical layer from the first bandwidth to the second bandwidth.
  • the method when the first bandwidth is less than the second bandwidth, before the network device uses the substructure as the granularity, before switching the first OTN frame from the first bandwidth to the second bandwidth, the method further includes:
  • the network device switches the first encapsulation protocol and optical layer from the first bandwidth to the second bandwidth.
  • the set value is 25 gigabits per second
  • the first bandwidth is an integer multiple of 100 gigabits per second
  • the second bandwidth is an integer multiple of 100 gigabits per second.
  • an optical transmission network line bandwidth switching device is provided.
  • the device is suitable for network equipment in the optical transmission network.
  • the device includes:
  • the first switching unit is used to switch the first optical transmission network OTN frame from the first bandwidth to the second bandwidth with the substructure as the granularity; the bandwidth of the substructure is a set value, and the first bandwidth is different from the second bandwidth by one or Multiple settings
  • the first sending unit is configured to encapsulate the first OTN frame of the second bandwidth through the first encapsulation protocol and then send the second bandwidth through the optical layer.
  • the first switching unit is specifically used to:
  • the second OTN frame is the third bandwidth
  • the second OTN frame is generated by the network device according to the first service data from the client side according to the second encapsulation protocol
  • the payload of the second OTN frame is mapped into the payload of the sub-structure of the first OTN frame, and the overhead of the second OTN frame is mapped into the overhead of the first OTN frame.
  • the sub-structures are filled with invalid bytes so that the ratio of overhead or invalid bytes to payload included in each sub-structure is a fixed ratio.
  • it also includes:
  • the receiving unit is configured to receive the third OTN frame through the optical layer and decapsulate according to the first encapsulation protocol to obtain the fourth OTN frame;
  • a first decapsulation unit configured to decapsulate the fourth OTN frame according to the third encapsulation protocol to obtain a fifth OTN frame
  • a second decapsulation unit configured to decapsulate the fifth OTN frame according to the second encapsulation protocol to obtain second service data
  • the second sending unit is configured to send the second service data to the client-side device.
  • the first OTN frame is generated by the network device according to the first service data from the client side according to the fourth encapsulation protocol; the first switching unit is specifically configured to:
  • the first service data is mapped into the payload of the sub-structure of the first OTN frame, and the overhead or invalid bytes are filled in the sub-structure of the first OTN frame, so that the overhead or invalidity included in each sub-structure
  • the ratio of bytes to payload is a fixed ratio.
  • it also includes:
  • a receiving unit configured to receive a sixth OTN frame through the optical layer, and decapsulate according to the first encapsulation protocol to obtain a seventh OTN frame;
  • the third decapsulation unit is used to decapsulate the seventh OTN frame according to the fourth encapsulation protocol to obtain third service data;
  • the second sending unit is configured to send the third service data to the client-side device.
  • the method when the first bandwidth is greater than the second bandwidth, the method further includes:
  • the second switching unit is used to switch the first encapsulation protocol and the optical layer from the first bandwidth to the second after the network device switches the first optical transport network OTN frame from the first bandwidth to the second bandwidth with the substructure as the granularity bandwidth.
  • the method when the first bandwidth is smaller than the second bandwidth, the method further includes:
  • the second switching unit is used to switch the first encapsulation protocol and the optical layer from the first bandwidth to the second before the network device switches the first optical transmission network OTN frame from the first bandwidth to the second bandwidth with the substructure as the granularity bandwidth.
  • the set value is 25 gigabits per second
  • the first bandwidth is an integer multiple of 100 gigabits per second
  • the second bandwidth is an integer multiple of 100 gigabits per second.
  • an optical transmission network cross device in a third aspect, includes a transceiver, a processor and a memory; the transceiver is used to communicate with other optical transmission network cross equipment, the memory is used to store programs; the processor is used to execute the stored program in the memory to control the optical transmission network cross equipment to perform the first aspect method.
  • a computer-readable storage medium is provided, and a computer program is stored on the computer-readable storage medium, and the computer program is executed by a processor to implement the method described in the first aspect.
  • a computer program product containing instructions, which when executed on a computer, causes the computer to perform the method described in the first aspect.
  • a chip in the sixth aspect, includes a processor and a memory; the memory is used to store a program; the processor is used to execute the program stored in the memory to perform the method described in the first aspect.
  • FIG. 1 is a network architecture of an optical transmission network provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of an ODU frame structure provided by an embodiment of the present application.
  • FIG. 3 is a flowchart of a method for switching bandwidth of an optical transmission network provided by an embodiment of the present application
  • FIG. 4 is a schematic diagram of an optical transmission network line bandwidth switching process provided by an embodiment of the present application.
  • 5A is a schematic diagram of an ODU25Gn mapping process provided by an embodiment of this application.
  • 5B is a schematic diagram of another ODU25Gn mapping process provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an ODUC1 provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an ODU25G4 provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a network device according to an embodiment of this application.
  • FIG. 9 is a schematic diagram of an optical transmission process provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another optical transmission process provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an optical transmission network line bandwidth switching device according to an embodiment of the present application.
  • An embodiment of the present application provides a bandwidth adjustment method, which is applied to an optical transmission network.
  • the network architecture of the optical transmission network is shown in FIG. 1.
  • the optical transmission network includes multiple network devices, and the network devices communicate with each other through optical fibers.
  • the network devices can also communicate with client-side devices through Ethernet or optical fibers.
  • the service data is encapsulated into OTN frames according to one or more encapsulation protocols, and transmitted in the form of OTN frames on the optical transmission network.
  • the OTN frame may include one or more of the following: optical channel payload unit (optical channel payload unit, OPU), optical channel data unit (optical channel data unit, ODU), and optical channel transmission unit (optical channel transmission unit, OTU) etc.
  • OPU optical channel payload unit
  • ODU optical channel data unit
  • OTU optical channel transmission unit
  • the mapping overhead is mainly used for the mapping of service data and OPU payload; the information structure of ODU is mainly used to support end-to-end data transmission in the optical transmission network.
  • the ODU overhead is added to the OPU to form an ODU, where the ODU overhead is used For end-to-end path monitoring, as shown in Figure 2, the OPU payload is placed in the ODU's payload slot (timeslot, TS) 1-j; OUT is used for point-to-point transmission in the optical transmission network, that is, For transmission between network devices, specifically, OTU overhead and forward error correction (FEC) check information are added to the ODU frame to form an OTU frame, and the OTU overhead is used for point-to-point link monitoring.
  • FEC forward error correction
  • the line bandwidth of the optical transmission network generally refers to the bandwidth of the OTN frame
  • the bandwidth of the OTN frame is controlled by the encapsulation protocol of the OTN frame
  • the bandwidth of the OTN frame may also refer to the encapsulation protocol of the OTN frame Bandwidth, taking ODU as an example, usually the bandwidth of ODU can be 2.5Gbit/s, 10Gbit/s, 40Gbit/s, 100Gbit/s, n*100Gbit/s, etc.
  • the bandwidth value provided by the embodiment of the present application is an approximate bandwidth level value, and does not represent a specific accurate value.
  • the bandwidth unit may also be referred to as G.
  • ODU bandwidth when the ODU bandwidth is 40 Gbit/s, it may be named ODUXL; when the ODU bandwidth is 100 Gbit/s, it may be named ODUC.
  • ODU bandwidth when the ODU bandwidth is n*100 Gbit/s, It can be named ODUCn; among them, X, XXV, XL, L, and C are Roman letters, which mean 10, 25, 40, 50, and 100, respectively.
  • the bandwidth of the OTN frame can be switched, and no terminal service is required during the switching process.
  • a method for switching the line bandwidth of the optical transmission network provided by the embodiment of the present application will be further introduced.
  • the bandwidth switching method is applicable to a network device of an optical transmission network.
  • the bandwidth switching method may specifically include the following steps: S310.
  • the network device uses the substructure as the granularity to convert the first optical transmission network OTN frame from The first bandwidth is switched to the second bandwidth, the bandwidth of the sub-structure is a set value, and the first bandwidth is different from the second bandwidth by one or more set values; S530, the network device passes the first OTN frame of the second bandwidth After being encapsulated by the first encapsulation protocol, the second bandwidth is transmitted through the optical layer.
  • the embodiments of the present application are applicable to the scenario of elastic bandwidth switching.
  • the flexible bandwidth switching refers to increasing or decreasing the transmission bandwidth without affecting existing communication services.
  • whether the bandwidth of the optical layer transmission needs to be switched during the communication process can be determined according to the current bandwidth of the optical layer transmission, the actual needs of the transmission service, and the current optical transmission environment.
  • the current optical layer transmission bandwidth is 200G
  • the actual communication service can meet the demand using 100G, so it is necessary to reduce the optical layer transmission bandwidth to 100G.
  • the current optical layer transmission bandwidth is 100G
  • the current transmission environment can meet the requirements of 200G, and 200G can improve the transmission efficiency of the transmission service. Therefore, it is necessary to increase the optical layer transmission bandwidth to 200G.
  • the actual needs of the transmission service can be determined according to the service information such as the service type or the indication information of other devices.
  • the current optical transmission environment may include the current optical transmission line status, for example, the current transmission resource usage and so on.
  • optical digital signal processing In the optical communication process, before the OTN frame is transmitted to the optical layer, optical digital signal processing (ODSP) needs to be performed on the OTN frame, and the performance of optical communication can be improved through the ODSP.
  • the ODSP algorithm can include multiple. Generally for the same ODSP algorithm, the lower the bandwidth, the longer the transmission distance. Therefore, when determining whether the bandwidth of the optical layer transmission needs to be switched, the bandwidth and transmission distance limits of the ODSP algorithm performance used can also be determined.
  • the first OTN frame may be composed of one or more sub-structures, wherein the sub-structure is the minimum unit of OTN frame adjustment, and each bandwidth switch increases or decreases one or more sub-structures.
  • each sub-structure It can be composed of two parts, the first part is used to encapsulate the overhead or fill invalid bytes, and the other part is the payload.
  • the OTN frame is used as the ODU and the set value is 25G as an example for description.
  • the sub-structure of the first OTN frame can be expressed as ODU25G, and each time slot (TS) is 5G.
  • an OTN frame with a bandwidth of 100G can be expressed as ODU25G4, where 4 indicates that the ODU25G4 is composed of 4 ODU25G (ODU25G) #, ODU25G 2#, ODU25G 3# and ODU25G4#), when the bandwidth is switched from 100G to 150G, that is, from ODU25G4 to ODU25G6, in this ODU25G4, the first part of the first ODU25G can be ODU overhead, and the remaining ODU25G The first part of can be a fixed padding of invalid bytes. The size of the invalid bytes can be equal to the size of ODU overhead.
  • each sub-structure of ODU25G4 includes an overhead area and a payload area.
  • the overhead area of each sub-structure can be used to fill the overhead or fixed filling.
  • the payload area of each sub-structure can be divided into 5 time slots, each Each substructure may or may not include the FEC check area.
  • the overhead area of all substructures deletes invalid bytes to form the overhead area of the first OTN frame, and the payload area of all substructures constitutes the net of the first OTN frame. Dutch area.
  • the network device may encapsulate the service data sent by the client-side device at least twice.
  • the first encapsulation can be encapsulated according to the second encapsulation protocol, which is mainly used for end-to-end transmission control.
  • the second encapsulation protocol can include multiple types, for example, the OTN line side encapsulation protocol; the second encapsulation can be performed according to the first encapsulation protocol Encapsulation is mainly used to improve transmission efficiency.
  • the first encapsulation protocol may include multiple types.
  • the first encapsulation protocol may be encapsulation according to the ODSP algorithm.
  • the embodiment of the present application may add a third packaging between the first packaging and the second packaging, and the third packaging may be performed based on the third packaging protocol.
  • the bandwidth switching process can be performed only in the third encapsulation, and the first encapsulation process does not need to be changed. Specifically, it can be achieved by the following steps: the network device determines the second OTN frame, and the second OTN frame is the third bandwidth.
  • the second OTN frame is generated by the network device according to the first service data from the client side according to the second encapsulation protocol; the network device switches the bandwidth of the third encapsulation protocol from the first bandwidth to the second bandwidth at a granularity of the set value; the network According to the third encapsulation protocol, the device maps the payload of the second OTN frame to the payload of the sub-structure of the first OTN frame, and maps the overhead of the second OTN frame to the overhead of the first OTN frame.
  • the sub-structures of the frame are filled with invalid bytes, so that the ratio of overhead or invalid bytes to payload included in each sub-structure is a fixed ratio.
  • the network device can encapsulate the service data sent by the client for the first time, and encapsulate it as ODUCn1.
  • the network device can map ODUCn1 to ODU25Gn2, and then encapsulate ODU25Gn2 for the second time, and
  • the encapsulated OTN frame is transmitted in the optical layer.
  • the third encapsulation protocol may specify the mapping rule between ODUCn1 and ODU25Gn2. As shown in FIG.
  • the network device When encapsulating three times, you can map ODUCn1 to ODU25Gn3, and then encapsulate ODU25Gn3 a second time, and transmit the encapsulated OTN frames on the optical layer.
  • the network device may also receive OTN frames sent by other devices, and may specifically include the following steps: the network device receives the third OTN frame through the optical layer and decapsulates to obtain the fourth OTN frame according to the first encapsulation protocol; the network device converts the fourth The OTN frame is decapsulated according to the third encapsulation protocol to obtain a fifth OTN frame; the network device decapsulates the fifth OTN frame according to the second encapsulation protocol to obtain second service data; and the network device sends the second service data to the client side device.
  • an invalid time slot is usually added to the payload.
  • the payload area of ODUCn includes two types of filled and unfilled columns. In this case, the filled column is an invalid time slot.
  • these invalid time slots can be stripped. Based on this, the third encapsulation process according to the third encapsulation protocol maps the payload of the second OTN frame to the substructure of the first OTN frame.
  • the payload may specifically include the following steps: strip the invalid time slot in the payload of the second OTN frame, and when stripping the invalid time slot, the bandwidth of the remaining time slot can be guaranteed to be a multiple of the set value, for example, the normal time slot
  • the bandwidth is 5G
  • the set value is 25G
  • the number of bits in the number of remaining time slots is 5 or 0, so that the payload in each substructure corresponds to only one second OTN frame.
  • the payload after stripping the invalid time slot of the second OTN frame is filled in the payload of the sub-structure of the first OTN frame.
  • the network device may encapsulate the service data sent by the client-side device at least twice.
  • the first packaging can be packaged according to the fourth packaging protocol, which is mainly used for end-to-end transmission control.
  • the fourth packaging protocol can include multiple types, for example, ODU25Gn packaging protocol; the second packaging can be packaged according to the first packaging protocol, It is mainly used to improve transmission efficiency.
  • the first encapsulation protocol may include multiple types.
  • the first encapsulation protocol may be encapsulation according to the ODSP algorithm.
  • the first OTN frame is generated by the network device according to the fourth encapsulation protocol according to the first service data from the client side; the network device uses the substructure as the granularity to switch the first OTN frame from the first bandwidth to the second Specifically, the bandwidth can be achieved by: the network device switches the bandwidth of the fourth encapsulation protocol from the first bandwidth to the second bandwidth at a granularity of the set value; the network device maps the first service data to the second bandwidth according to the fourth encapsulation protocol
  • the sub-structure of the first OTN frame is filled with overhead or invalid bytes, so that the ratio of the overhead or invalid bytes included in each sub-structure to the payload is a fixed ratio.
  • the network device may also receive OTN frames sent by other devices, and may specifically include the following steps: the network device receives the sixth OTN frame through the optical layer, and decapsulates according to the first encapsulation protocol to obtain the seventh OTN frame; The OTN frame is decapsulated according to the fourth encapsulation protocol to obtain third service data; the network device sends the third service data to the client-side device.
  • the optical transmission network line bandwidth switching may include electrical layer bandwidth switching and optical layer bandwidth switching, where electrical layer bandwidth switching may refer to bandwidth switching corresponding to the foregoing first to fourth encapsulation protocols.
  • electrical layer bandwidth switching may refer to bandwidth switching corresponding to the foregoing first to fourth encapsulation protocols.
  • the method further includes : The network device switches the first encapsulation protocol and optical layer from the first bandwidth to the second bandwidth.
  • the method further includes: The first encapsulation protocol and the optical layer are switched from the first bandwidth to the second bandwidth. At this time, the bandwidth of the electrical layer is smaller than the bandwidth of the optical layer, and invalid padding is inserted in the idle bandwidth position.
  • the network equipment in the optical transport network can initiate an increase or decrease request to increase or decrease the substructure of the box-to-end network equipment.
  • the increase request carries the request type and the number of sub-structures requested to be added. For example, when a request adds 2 ODU25Gs, the request carries the [Req_Add, ODU25G 2] flag. After receiving the corresponding increase request from the peer, it sends a response to the increase request to the peer. For example: the response carries the [ACK, ODU25G 2] flag. After receiving the response response of the increase request from the opposite end, the local end will initiate an increase implementation instruction, which is used to indicate that the end will carry the service in the added corresponding substructure after sending the increase implementation instruction.
  • the implementation instruction request carries the [do_Add, ODU25G 2] flag.
  • the local end extracts the service from the added corresponding substructure; at the same time, it sends a response to the increase implementation instruction to the opposite end.
  • the response carries the [ACK, ODU25G 2] flag.
  • FIG. 8 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the optical module 800 specifically includes: a line-side interface 801, a processor 802, a memory 803, and a client-side interface 804. Each module can be connected via a bus.
  • the line-side interface 801 is used to send or receive optical signals to achieve optical communication with network devices;
  • the client-side interface is used to communicate with client-side devices;
  • the memory 803 is used to store program codes and data of network devices;
  • the processor 802 may control the network device to perform the processing procedures related to the network device in FIG. 3 and/or other procedures for the technology described in this application.
  • the line-side interface 801 may include an OTN line processing module, an ODSP module, a digital-to-analog/analog-to-digital conversion module, and so on.
  • the OTN line processing module is mainly used to complete the relevant processing of the OTN protocol (for example, it may include the first packaging process in the embodiment shown in FIG. 3), and the ODSP module is mainly used to process digital signals in optical communication ( For example, it may include the second packaging process and the third packaging process in the foregoing embodiment shown in FIG. 3), and the digital-to-analog/analog-to-digital conversion module is mainly used for photoelectric conversion.
  • the processing required by the line-side interface of the network device as an example during the end-to-end output transmission process:
  • the OTN line processing module receives service data from the processor, and the OTN line processing module completes the second processing of the second encapsulation protocol on the service data to form a second OTN frame, where the second processing of the second encapsulation protocol may include framing and adding Overhead and multiplexing, etc.; output the second OTN frame to the ODSP module;
  • the ODSP module can strip the invalid time slot in the payload of the second OTN frame and reserve the overhead to obtain the second OTN-m, where m represents the payload time slot after stripping the invalid time slot in the second OTN frame number.
  • m represents the payload time slot after stripping the invalid time slot in the second OTN frame number.
  • an ODUC1 has 20 time slots and each time slot has a bandwidth of 5 Gbit/s. After stripping 5 invalid time slots, the value of m can be 15.
  • the ODSP module encapsulates the second OTN frame according to the third encapsulation protocol, which specifically includes the following process: the OTN-m is divided into n parts according to the substructure granularity, and the n parts are encapsulated in the first In the payload area of the sub-structure of the OTN frame, the overhead of the second OTN frame is encapsulated in the overhead area of the sub-structure of the first OTN frame. The overhead areas of the sub-structures of other first OTN frames are filled with fixed padding. Is an invalid byte, thus obtaining the first OTN frame.
  • the third encapsulation protocol which specifically includes the following process: the OTN-m is divided into n parts according to the substructure granularity, and the n parts are encapsulated in the first In the payload area of the sub-structure of the OTN frame, the overhead of the second OTN frame is encapsulated in the overhead area of the sub-structure of the first OTN frame. The overhead areas of the sub-structures of other first
  • the ODSP module encapsulates the first OTN frame according to the first encapsulation protocol and outputs it to the digital-to-analog conversion module, and the digital-to-analog conversion module converts the encapsulated first OTN frame into an optical signal for output.
  • the analog-to-digital conversion module After the analog-to-digital conversion module receives the optical signal and converts it into an electrical signal, it is sent to the ODSP module;
  • the ODSP module needs to be encapsulated according to the first encapsulation protocol and the third encapsulation protocol. Specifically, the ODSP module searches and delimits the third OTN frame, deletes the fixed padding in the third OTN frame, and obtains the fourth OTN frame-m; next, fills the invalid time slot with OTN-m to obtain the fourth OTN frame, and Send the fourth OTN frame to the OTN line processing module;
  • the OTN line processing module performs street encapsulation on the fourth OTN frame according to the second encapsulation protocol to obtain service data; wherein, decapsulation may include deframing, de-overheading, demultiplexing, and so on.
  • the OTN line processing module sends service data to the processor 802, and the processor 802 sends it to the client-side device through the client-side interface 804.
  • the increase or decrease of the bandwidth mainly includes two parts, one is the increase or decrease of the bandwidth of the optical layer and the first encapsulation protocol, and the other is the increase or decrease of the bandwidth of the third or fourth encapsulation protocol.
  • the bandwidth of the optical layer and the first encapsulation protocol at a granularity of 25G can be increased.
  • the electrical layer bandwidth is smaller than the optical layer bandwidth, and the idle bandwidth position is inserted with invalid padding;
  • increase the bandwidth of the third encapsulation protocol mainly including two processes, one process is to increase the bandwidth of the second OTN-m, and the other process is to increase the bandwidth of the first OTN frame.
  • the second OTN frame strips the time slot to form the second OTN-m 1 ; after the handover, the strip time slot forms the second OTN-m 2 , where m 2 is greater than m 1 ; Among them, the switching point starts to switch at the first byte of the second OTN frame header.
  • the addition and deletion process does not affect the time slots that are not added or deleted.
  • m 2 can be increased in proportion to m 1 , and the increased ratio can be The ratio of bandwidth after switching corresponds. For example, the bandwidth before switching is 100G, and the bandwidth after switching is 150G. Then m 2 can be 1.5 times m1;
  • the bandwidth can be increased with the substructure as the granularity.
  • the switching point starts to switch at the first byte of the frame header of the first OTN frame.
  • the addition and deletion process does not affect the substructure that is not added or deleted;
  • the bandwidth increase for the second OTN-m and the bandwidth increase for the first OTN frame can be synchronized.
  • the bandwidth of the third encapsulation protocol can be reduced first:
  • the second OTN frame strips the time slot to form the second OTN-m 3 ; after the handover, the time slot is stripped to form the second OTN-m 4 , where m 3 is greater than m 4 ;
  • the switching point starts to switch at the first byte of the second OTN frame header, the addition and deletion process does not affect the unadded and deleted slots, m 4 can be reduced in proportion to m 3 , and the reduced ratio can be The ratio of bandwidth after switching corresponds.
  • the bandwidth before switching is 200G
  • the bandwidth after switching is 100G.
  • m 4 can be 0.5 times m 3 ;
  • the bandwidth can be reduced with the substructure as the granularity.
  • the switching point starts switching at the first byte of the frame header of the first OTN frame.
  • the addition and deletion process does not affect the substructure that is not added or deleted;
  • the bandwidth on the line side of the electrical layer is less than the bandwidth of the optical layer, and invalid fill is inserted under the idle bandwidth position;
  • the bandwidth reduction for the second OTN-m and the bandwidth reduction for the first OTN frame can be synchronized.
  • the processing of the line-side interface 801 includes the following processes:
  • the OTN line processing module receives the business data from the processor, and the OTN line processing module completes the fourth encapsulation protocol related processing on the business data to form a first OTN frame, and outputs the first OTN frame to the ODSP module, which is processed by the ODSP module After the first OTN frame is encapsulated by the first encapsulation protocol, it is transmitted to the digital-to-analog conversion module, which is converted into an optical signal output by the digital-to-analog conversion module.
  • the analog-to-digital conversion module After the analog-to-digital conversion module receives the optical signal and converts it into an electrical signal, it is sent to the ODSP module;
  • the ODSP module needs to be encapsulated according to the first encapsulation protocol to obtain a sixth OTN frame, and send the sixth OTN frame to the OTN line processing module.
  • the OTN line processing module performs street encapsulation on the sixth OTN frame according to the fourth encapsulation protocol to obtain service data; wherein, decapsulation may include deframing, de-overheading, demultiplexing, and so on.
  • the OTN line processing module sends service data to the processor 802, and the processor 802 sends it to the client-side device through the client-side interface 804.
  • the ODSP module, OTN line processing module and optical layer are used to add or delete bandwidth based on the sub-structure.
  • FIG. 11 is a schematic structural diagram of an optical transmission network line bandwidth switching device according to an embodiment of the present application.
  • the device is suitable for network equipment in an optical transmission network. As shown in FIG. 11, the device includes:
  • the first switching unit 1101 is used to switch the first optical transmission network OTN frame from the first bandwidth to the second bandwidth with the substructure as the granularity; the bandwidth of the substructure is a set value, and the first bandwidth is The second bandwidth differs by one or more set values;
  • the first sending unit 1102 is configured to encapsulate the first OTN frame of the second bandwidth through the first encapsulation protocol, and then send the second bandwidth through the optical layer.
  • the first switching unit 1101 is specifically used to:
  • the second OTN frame is a third bandwidth, and the second OTN frame is generated by the network device according to the first service data from the client side according to the second encapsulation protocol;
  • the payload of the second OTN frame is mapped into the payload of the sub-structure of the first OTN frame
  • the overhead of the second OTN frame is mapped into the overhead of the first OTN frame
  • the invalid bytes are filled so that the ratio of the overhead or invalid bytes to the payload included in each sub-structure is a fixed ratio.
  • it also includes:
  • the receiving unit is configured to receive the third OTN frame through the optical layer and decapsulate according to the first encapsulation protocol to obtain the fourth OTN frame;
  • a first decapsulation unit configured to decapsulate the fourth OTN frame according to the third encapsulation protocol to obtain a fifth OTN frame
  • a second decapsulation unit configured to decapsulate the fifth OTN frame according to the second encapsulation protocol to obtain second service data
  • the second sending unit is configured to send the second service data to the client-side device.
  • the first OTN frame is generated by the network device according to the first service data from the client side according to the fourth encapsulation protocol; the first switching unit 1101 is specifically configured to:
  • the first service data is mapped in the payload of the sub-structure of the first OTN frame, and the sub-structure of the first OTN frame is filled with overhead or invalid bytes so that each sub-structure includes
  • the ratio of overhead or invalid bytes to payload is a fixed ratio.
  • it also includes:
  • a receiving unit configured to receive a sixth OTN frame through the optical layer, and decapsulate according to the first encapsulation protocol to obtain a seventh OTN frame;
  • a third decapsulation unit configured to decapsulate the seventh OTN frame according to the fourth encapsulation protocol to obtain third service data
  • the second sending unit is configured to send the third service data to the client-side device.
  • the method when the first bandwidth is greater than the second bandwidth, the method further includes:
  • the second switching unit is used to switch the first encapsulation protocol and the optical layer from the first bandwidth to the first bandwidth after the network device switches the first optical transmission network OTN frame from the first bandwidth to the second bandwidth with the substructure as the granularity Second bandwidth.
  • it also includes:
  • the second switching unit is used to switch the first encapsulation protocol and the optical layer from the first bandwidth to the first bandwidth before the network device switches the first optical transmission network OTN frame from the first bandwidth to the second bandwidth using the sub-structure as the granularity Second bandwidth.
  • the set value is 25 gigabits per second
  • the first bandwidth is an integer multiple of 100 gigabits per second
  • the second bandwidth is an integer multiple of 100 gigabits per second.
  • the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable medium to another computer-readable medium, for example, the computer instructions may be from a website site, computer, server, or data center via wired (For example, coaxial cable, optical fiber, digital subscriber line (Digital Subscriber Line, DSL)) or wireless (for example, infrared, wireless, microwave, etc.) transmission to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, floppy disk, hard disk, magnetic tape), optical medium (for example, DVD), or semiconductor medium (for example, Solid State Disk (SSD)), or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请提供了一种光传送网线路带宽切换方法及装置。该方法包括:网络设备以子结构为粒度,将第一光传送网OTN帧由第一带宽切换到第二带宽;子结构的带宽为设定值,第一带宽与第二带宽相差一个或多个设定值;网络设备将第二带宽的第一OTN帧通过第一封装协议封装后,通过光层以第二带宽进行传输。通过本申请实施例,可以实现线路侧相对小颗粒的带宽等级进行数据传输,在进而实现带宽的弹性切换。提高了带宽的切换效率,以及业务通信的效率。

Description

光传送网线路带宽切换方法及装置
本申请要求于2018年12月21日提交中国专利局、申请号为201811572644.2、申请名称为“光传送网线路带宽切换方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种光传送网线路带宽切换方法及装置。
背景技术
光传送网络(optical transport network,OTN)作为下一代传送网的核心技术,是以波分复用技术为基础,在光层组织网络的传送网。OTN包括电层和光层的技术规范,采用光纤作为传输介质,能够实现大容量业务的传输。例如,如图1所示的光传送网包括多个网络设备(network equipment,NE)以及客户侧设备,不同网络设备通过光纤进行信号的传输,网络设备与客户侧设备之间可以通过以太网等进行信号的传输,网络设备用于将来自于客户侧设备的数据经过光纤在网络设备之间传输,以便由最终由网络设备传输给另一个客户侧设备。通常用线路侧带宽来描述网络设备之间通过光纤进行信号传输的速率,其中,OTN线路侧的带宽等级,一般可以为2.5吉比特每秒(Gbit/s)、10Gbit/s、40Gbit/s、100Gbit/s或者n*100Gbit/s等等。
在实际应用中,线路侧带宽一般不是一成不变的,因业务的具体需求等等情况,需要进行带宽切换。目前线路带宽切换采用的做法一般是先中断业务传输设置新的线路侧带宽,然后再继续业务传输。例如,当前传输的带宽等级100Gbit/s,要将带宽等级增大到200Gbit/s,则需要先中断业务传输,然后将业务传输的带宽等级增加到200Gbit/s,再恢复业务;当前光层传输的带宽等级是200Gbit/s,要将带宽等级减小100Gbit/s,则需要先中断业务传输,然后将业务传输的带宽等级减小到100Gbit/s,再恢复业务。由此可知,目前对于线路带宽的切换效率较低。
发明内容
本申请实施例提供了一种光传送网线路带宽切换方法及装置。可以提高带宽切换的效率。
第一方面,提供了一种光传送网线路带宽切换方法。方法适用于光传送网络中,光传送网包括多个网络设备,方法包括:网络设备以子结构为粒度,将第一光传送网OTN帧由第一带宽切换到第二带宽;子结构的带宽为设定值,第一带宽与第二带宽相差一个或多个设定值;网络设备将第二带宽的第一OTN帧通过第一封装协议封装后,通过光层以第二带宽进行传输。通过本申请实施例,可以实现线路侧相对小颗粒的带宽等级进行数据传输,在进而实现带宽的弹性切换。提高了带宽的切换效率,以及业务通信的效率。
在一个可能的实现中,前述网络设备以子结构为粒度,将第一光传送网OTN帧由第一带宽切换到第二带宽包括:网络设备确定第二OTN帧,第二OTN帧为第三带宽,第二OTN帧由网络设备根据来自客户侧的第一业务数据按照第二封装协议生成;网络设备以设定值为粒度,将第三封装协议的带宽由第一带宽切换至第二带宽;网络设备按照第三封装协议,将第二OTN帧的净荷映射在第一OTN帧的子结构的净荷中,将第二OTN帧的开销映射在第一OTN帧的开销中,在第一OTN帧的子结构中填充无效字节,使得每个子结构包括的开销或无效字节与净荷的比例为固定比例。通过本申请实施例可以实现,对OTN线路处理协议生成的OTN帧转换,并在转换过程中实现带宽的无损切换,提升了切换效率。
在另一个可能的实现中,第一OTN帧由网络设备根据来自客户侧的第一业务数据按照第四封装协议生成;前述网络设备以子结构为粒度,将第一光传送网OTN帧由第一带宽切换到第二带宽包括:网络设备以设定值为粒度,将第四封装协议的带宽由第一带宽切换至第二带宽;网络设备按照第四封装协议,将第一业务数据映射在第一OTN帧的子结构的净荷中,在第一OTN帧的子结构中填充开销或无效字节,使得每个子结构包括的开销或无效字节与净荷的比例为固定比例。
在另一个可能的实现中,当第一带宽大于第二带宽时,在网络设备以子结构为粒度,将第一光传送网OTN帧由第一带宽切换到第二带宽之后,方法还包括:
网络设备将第一封装协议和光层由第一带宽切换到第二带宽。
在另一个可能的实现中,当第一带宽小于第二带宽时,在网络设备以子结构为粒度,将第一光传送网OTN帧由第一带宽切换到第二带宽之前,方法还包括:
网络设备将第一封装协议和光层由第一带宽切换到第二带宽。
在另一个可能的实现中,设定值为25吉比特每秒,第一带宽为100吉比特每秒的整数倍,第二带宽为100吉比特每秒的整数倍。
第二方面,提供了一种光传送网线路带宽切换装置。装置适用于光传送网络中的网络设备,装置包括:
第一切换单元,用于以子结构为粒度,将第一光传送网OTN帧由第一带宽切换到第二带宽;子结构的带宽为设定值,第一带宽与第二带宽相差一个或多个设定值;
第一发送单元,用于将第二带宽的第一OTN帧通过第一封装协议封装后,通过光层以第二带宽进行发送。
在一个可能的实现中,第一切换单元具体用于:
确定第二OTN帧,第二OTN帧为第三带宽,第二OTN帧由网络设备根据来自客户侧的第一业务数据按照第二封装协议生成;
以设定值为粒度,将第三封装协议的带宽由第一带宽切换至第二带宽;
按照第三封装协议,将第二OTN帧的净荷映射在第一OTN帧的子结构的净荷中,将第二OTN帧的开销映射在第一OTN帧的开销中,在第一OTN帧的子结构中填充无效字节,使得每个子结构包括的开销或无效字节与净荷的比例为固定比例。
在另一个可能的实现中,还包括:
接收单元,用于通过光层接收第三OTN帧,并按照第一封装协议解封装得到第四OTN帧;
第一解封装单元,用于将第四OTN帧按照第三封装协议解封装得到第五OTN帧;
第二解封装单元,用于将第五OTN帧按照第二封装协议解封装得到第二业务数据;
第二发送单元,用于向客户侧设备发送第二业务数据。
在另一个可能的实现中,第一OTN帧由网络设备根据来自客户侧的第一业务数据按照第四封装协议生成;第一切换单元具体用于:
以设定值为粒度,将第四封装协议的带宽由第一带宽切换至第二带宽;
按照第四封装协议,将第一业务数据映射在第一OTN帧的子结构的净荷中,在第一OTN帧的子结构中填充开销或无效字节,使得每个子结构包括的开销或无效字节与净荷的比例为固定比例。
在另一个可能的实现中,还包括:
接收单元,用于通过光层接收第六OTN帧,并按照第一封装协议解封装得到第七OTN帧;
第三解封装单元,用于将第七OTN帧按照第四封装协议解封装得到第三业务数据;
第二发送单元,用于向客户侧设备发送第三业务数据。
在另一个可能的实现中,当第一带宽大于第二带宽时,还包括:
第二切换单元,在网络设备以子结构为粒度,将第一光传送网OTN帧由第一带宽切换到第二带宽之后,用于将第一封装协议和光层由第一带宽切换到第二带宽。
在另一个可能的实现中,当第一带宽小于第二带宽时,还包括:
第二切换单元,在网络设备以子结构为粒度,将第一光传送网OTN帧由第一带宽切换到第二带宽之前,用于将第一封装协议和光层由第一带宽切换到第二带宽。
在另一个可能的实现中,设定值为25吉比特每秒,第一带宽为100吉比特每秒的整数倍,第二带宽为100吉比特每秒的整数倍。
第三方面,提供了一种光传送网络交叉设备。包括收发器、处理器和存储器;收发器用于与其他光传送网络交叉设备进行通信,存储器用于存放程序;处理器用于执行存储器存储的程序,以控制光传送网络交叉设备执行前述第一方面的方法。
第四方面,提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现前述第一方面所述的方法。
第五方面,提供了一种包含指令的计算机程序产品,当所述指令在计算机上运行时,使得计算机执行前述第一方面所述的方法。
第六方面,提供了一种芯片。包括处理器和存储器;存储器用于存放程序;所述处理器用于执行所述存储器存储的所述程序,以执行前述第一方面所述的方法。
附图说明
图1为本申请实施例提供的一种光传送网络的网络架构;
图2为本申请实施例提供的一种ODU帧结构示意图;
图3为本申请实施例提供的一种光传送网线路带宽切换方法流程图;
图4为本申请实施例提供的一种光传送网线路带宽切换过程示意图;
图5A为本申请实施例提供的一种ODU25Gn映射过程示意图;
图5B为本申请实施例提供的另一种ODU25Gn映射过程示意图;
图6为本申请实施例提供的一种ODUC1结构示意图;
图7为本申请实施例提供的一种ODU25G4结构示意图;
图8为本申请实施例提供的一种网络设备结构示意图;
图9为本申请实施例提供的一种光传送过程示意图;
图10为本申请实施例提供的另一种光传送过程示意图;
图11为本申请实施例提供的一种光传送网线路带宽切换装置结构示意图。
具体实施方式
下面将结合本实施例中的附图,对本实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供了一种带宽调整方法,所述方法应用于光传送网络中。其中,该光传送网络的网络架构如图1所示。该光传送网络中包括多个网络设备,网络设备之间通过光纤进行通信,另外,网络设备还可以与客户侧设备通过以太网或光纤进行通信。
具体地,业务数据根据一个或多个封装协议封装为OTN帧,以OTN帧的形式在光传送网络进行传输。其中,OTN帧可以包括下述一种或多种:光通道净荷单元(optical channel payload unit,OPU)、光通道数据单元(optical channel data unit,ODU)和光通道传输单元(optical channel transport unit,OTU)等等。OPU结构用于适配客户侧设备的业务数据,以实现来自客户侧的业务数据在光传送网中进行传输,具体地,将业务数据映射入OPU净荷区并添加映射开销,形成OPU,该映射开销主要用于业务数据与OPU净荷的映射;ODU的信息结构主要用于支持光传送网中端到端的数据传输,具体地,在OPU上添加ODU开销形成ODU,其中,该ODU开销用于端到端路径监控,如图2所示,OPU净荷置于ODU的净荷时隙(timeslot,TS)1-j中;OUT用于在光传送网中点到点的传输,也即网络设备之间的传输,具体地,在ODU帧上添加OTU开销及前向错误纠正(forward error correction,FEC)校验信息,形成OTU帧,该OTU开销用于点到点链路监控。
在本申请实施例中光传送网络线路带宽一般是指OTN帧的带宽,该OTN帧的带宽由该OTN帧的封装协议控制,所以该OTN帧的带宽也可以是指该OTN帧的封装协议的带宽,以ODU为例,通常ODU的带宽可以为2.5Gbit/s、10Gbit/s、40Gbit/s、100Gbit/s、n*100Gbit/s等。需要说明的是,本申请实施例提供的带宽值为一个大概带宽等级值,并不代表具体的精确值,在本文中带宽单位还可以简称为G。此外,本申请实施例当ODU的带宽为40Gbit/s时,可以命名为ODUXL;当ODU的带宽为100Gbit/s时,可以命名为ODUC,相应的,ODU的带宽为n*100Gbit/s时,可以命名为ODUCn;其中,X、XXV、XL、L、C为罗马字母,分别代表10、25、40、50、100的意思。
本申请实施例提供的OTN帧在光传送网中进行传输时,可以对OTN帧的带宽进行切换,且切换过程无需终端业务。下面,结合图3,对本申请实施例提供的光传送网线路带宽切换方法进行进一步的介绍。如图5所示,该带宽切换方法适用于光传送 网的网络设备中,该该带宽切换方法具体可以包括如下步骤:S310,网络设备以子结构为粒度,将第一光传送网OTN帧由第一带宽切换到第二带宽,该子结构的带宽为设定值,该第一带宽与第二带宽相差一个或多个设定值;S530,网络设备将第二带宽的第一OTN帧通过第一封装协议封装后,通过光层以所述第二带宽进行传输。
本申请实施例适用于弹性带宽切换的场景。该弹性带宽切换是指在不影响已有通信业务,增大或者减少传输带宽。其中,在通信过程中,光层传输的带宽是否需要切换,可以根据当前光层传输的带宽,传输业务的实际需要,以及当前光传输环境来确定。例如,当前光层传输的带宽为200G,实际通信业务使用100G即可满足需求,所以需要减小光层传输的带宽到100G。再例如,当前光层传输的带宽为100G,当前传输环境可以满足200G的需求,且200G可以提待传输业务的传输效率,所以需要增加光层传输的带宽到200G。另外,传输业务的实际需要可以根据业务类型等业务信息,或其他设备的指示信息确定。当前光传输环境可以包括当前光传输的线路状态,例如,当前传输资源已使用的情况等等。
在光通信过程中,在OTN帧传输到光层之前,需要对OTN帧进行光数字信号处理(optical digital signal processing,ODSP),通过ODSP可以提高光通信的性能。ODSP的算法可以包括多种。一般对于同样的ODSP算法,带宽越低,传输距离越长。所以,在确定光层传输的带宽是否需要切换时,还可以结合使用的ODSP算法性能对带宽和传输距离的限制来确定。
当确定带宽需要切换时,则再执行S510-S520。其中,在S510中,第一OTN帧可以由一个或多个子结构构成,其中,子结构为OTN帧调整的最小单位,每次带宽切换,增加或减少一个或多个子结构,另外,每个子结构可以由两部分构成,第一部分用于封装开销或填充无效字节,另一部分为净荷。例如,图4所示,以OTN帧为ODU,设定值为25G为例进行说明。第一OTN帧的子结构可以表示为ODU25G,每个时隙(TS)为5G,相应地,100G带宽的OTN帧,可以表示为ODU25G4,其中,4表示该ODU25G4由4个ODU25G构成(ODU25G 1#、ODU25G 2#、ODU25G 3#和ODU25G4#),当带宽由100G切换为150G时,也即由ODU25G4切换为ODU25G6,在该ODU25G4中,第一个ODU25G的第一部分可以为ODU开销,其余ODU25G的第一部分可以为无效字节的固定填充,该无效字节的大小可以等于ODU开销的大小,切换为ODU25G6后,每个OTN帧增加两个ODU25G(ODU25G 5#和ODU25G 6#),在该ODU25G6中,第一个ODU25G的第一部分可以为ODU开销,其余ODU25G的第一部分可以为无效字节。如图4所示,ODU25G4的每个子结构包括开销区和净荷区,每个子结构的开销区可以用来填充开销或固定填充,每个子结构的净荷区可以划分为5个时隙,每个子结构可以包括FEC校验区也可以不包括FEC校验区,所有子结构的开销区删除无效字节构成第一OTN帧的开销区,所有子结构的净荷区构成第一OTN帧的净荷区。
在一些实施例中,网络设备可以对接收客户侧设备发送的业务数据进行至少两次封装。第一次封装可以按照第二封装协议进行封装,主要用于端到端的传输控制,第二封装协议可以包括多种,例如,OTN线路侧封装协议;第二次封装可以按照第一封装协议进行封装,主要用于提升传输效率,第一封装协议可以包括多种,例如,第一 封装协议可以为根据ODSP算法进行封装。基于此,本申请实施例可以在第一次封装和第二次封装之间增加第三次封装,该第三次封装可以基于第三封装协议进行。此时,可以仅在第三次封装进行带宽切换的处理,第一次封装过程无需进行更改,具体可以通过如下步骤实现:网络设备确定第二OTN帧,第二OTN帧为第三带宽,该第二OTN帧由网络设备根据来自客户侧的第一业务数据按照第二封装协议生成;网络设备以设定值为粒度,将第三封装协议的带宽由第一带宽切换至第二带宽;网络设备按照第三封装协议,将第二OTN帧的净荷映射在第一OTN帧的子结构的净荷中,将第二OTN帧的开销映射在第一OTN帧的开销中,在第一OTN帧的子结构中填充无效字节,使得每个子结构包括的开销或无效字节与净荷的比例为固定比例。
例如,基于前述子结构的例子,网络设备可以对客户侧发送的业务数据进行第一次封装,封装为ODUCn1,网络设备可以将ODUCn1映射到ODU25Gn2,然后再对ODU25Gn2进行第二次封装,并将封装后的OTN帧在光层进行传输。其中,第三封装协议可以规定ODUCn1与ODU25Gn2之间的映射规则。如图5A所示,当100*n1小于25*n2时,ODUCn1的开销映射到ODU25G#1的开销中,ODUCn1的净荷映射到ODU25G#1到ODU25G#n1的净荷中。如图5B所示,当100*n1大于25*n2时,ODUCn1的开销映射到多个ODU25Gn2中,ODUCn1的净荷映射到多个ODU25GCn2的子结构的净荷中。当带宽由25G*n2切换为25G*n3时,结合图5A、图5B和图4所示(例如,n2等于4,n3等于6;或,n2等于6,n3等于4),网络设备在第三次封装时,可以将ODUCn1映射到ODU25Gn3,然后再对ODU25Gn3进行第二次封装,并将封装后的OTN帧在光层进行传输。
另外,网络设备还可以接收其他设备发送的OTN帧,具体可以包括如下步骤:网络设备通过光层接收第三OTN帧,并按照第一封装协议解封装得到第四OTN帧;网络设备将第四OTN帧按照所述第三封装协议解封装得到第五OTN帧;网络设备将第五OTN帧按照第二封装协议解封装得到第二业务数据;网络设备向客户侧设备发送第二业务数据。
进一步地,在OTN帧的传输过程中,为了保证开销和净荷为固定比例,通常会在净荷中添加无效时隙,例如,ODUCn的净荷区包括含填充列和不含填充列两种情况,该填充列为无效时隙。在第三次封装过程中,可以将这些无效时隙剥离,基于此,第三次封装过程依据的第三封装协议规定的将第二OTN帧的净荷映射在第一OTN帧的子结构的净荷中具体可以包括如下步骤:将第二OTN帧的净荷中的无效时隙剥离,在剥离无效时隙时,剩余时隙的带宽可以保证为设定值的倍数,例如,通常时隙的带宽为5G,设定值为25G,那么剩余时隙的数量的各位数为5或0,以便每个子结构中的净荷只对应一个第二OTN帧。接下来,将第二OTN帧剥离无效时隙后的净荷,填充在第一OTN帧的子结构的净荷中。
例如,如图7所示为ODUC1的净荷区以M=16字节(对应的列数为16列)作为其时隙间插粒度,以20帧作为一个划分周期的OPU净荷区的时隙划分示意图,将ODUC1的净荷区依次划分为20个5Gbit/s时隙,相应地,如图8所示,ODU25G4中,每一个子结构时隙的净荷区以M=16字节(对应的列数为16列)作为其时隙间插粒度,以20帧作为一个划分周期,将ODU25G的净荷区依次划分为5个5Gbit/s时隙。编号为 TS A.B(其中A=1…n,代表时隙的编号;B=1…20,该时隙间插次数的编号)。需要说明的是,上述帧结构以ODU帧结构为例进行说明,由于OPU、ODU和OTU之间存在层层封装的关系,因而ODU和OPU的帧结构可根据本发明实施例提供的OTU的帧结构推导得出,本发明实施例不再赘述。另外,在预设字节的一种实现方式中,M为网络设备逻辑实现电路处理总线宽度,例如16字节、64字节、128字节、256字节等。
在一些实施例中,网络设备可以对接收客户侧设备发送的业务数据进行至少两次封装。第一次封装可以按照第四封装协议进行封装,主要用于端到端的传输控制,第四封装协议可以包括多种,例如,ODU25Gn封装协议;第二次封装可以按照第一封装协议进行封装,主要用于提升传输效率,第一封装协议可以包括多种,例如,第一封装协议可以为根据ODSP算法进行封装。基于此,第一OTN帧由网络设备根据来自客户侧的第一业务数据按照第四封装协议生成;网络设备以子结构为粒度,将第一光传送网OTN帧由第一带宽切换到第二带宽具体可以通过如下方式实现:网络设备以设定值为粒度,将第四封装协议的带宽由第一带宽切换至第二带宽;网络设备按照第四封装协议,将第一业务数据映射在第一OTN帧的子结构的净荷中,在第一OTN帧的子结构中填充开销或无效字节,使得每个子结构包括的开销或无效字节与净荷的比例为固定比例。
另外,网络设备还可以接收其他设备发送的OTN帧,具体可以包括如下步骤:网络设备通过光层接收第六OTN帧,并按照第一封装协议解封装得到第七OTN帧;网络设备将第七OTN帧按照第四封装协议解封装得到第三业务数据;网络设备向客户侧设备发送所述第三业务数据。
在一些实施例中,光传送网线路带宽切换可以包括电层带宽切换和光层带宽切换,其中,电层带宽切换可以指针对前述第一封装协议至第四封装协议对应的带宽切换。在带宽切换时,需要确保光层带宽大于等于第一封装协议的带宽大于等于第四封装协议的带宽,或者,光层带宽大于等于第一封装协议的带宽大于等于第三封装协议的带宽。基于此,当切换前的第一带宽大于切换后的第二带宽时,在网络设备以子结构为粒度,将第一光传送网OTN帧由第一带宽切换到第二带宽之后,该还包括:网络设备将第一封装协议和光层由第一带宽切换到第二带宽。当切换前的第一带宽小于切换后的第二带宽时,在网络设备以子结构为粒度,将第一光传送网OTN帧由第一带宽切换到第二带宽之前,还包括:网络设备将第一封装协议和光层由第一带宽切换到第二带宽,此时电层带宽小于光层带宽,空闲带宽位置下插无效填充。
另外,光传送网中的网络设备可以箱对端网络设备发起增加或减少子结构的增加或减少请求。其中,该增加请求中携带有请求类型和请求增加的子结构的个数,例如,当请求增加2个ODU25G时,该请求中携带有[Req_Add,ODU25G 2]标示。当收到对端的相应的增加请求后,向对端发送该增加请求的应答响应。例如:该应答响应中携带[ACK,ODU25G 2]标示。当收到对端的该增加请求的应答响应后,本端将发起增加实施指示,用于表示该端将在发送该增加实施指示后在增加的相应的子结构承载业务。例如:该实施指示请求中携带[do_Add,ODU25G 2]标示。当收到对端的相应的增加实施指示后,本端从增加的相应的子结构中提取业务;同时向对端发送该增加实施指示 的应答响应。例如:该应答响应中携带[ACK,ODU25G 2]标示。当收到对端的增加实施指示的应答响应后,表示该增加的子结构已无损增加成功,同时实现业务的无损承载。
通过本申请实施例,可以实现线路侧相对小颗粒的带宽等级进行数据传输,在进而实现带宽的弹性切换。提高了带宽的切换效率,以及业务通信的效率。
图8为本申请实施例提供的一种网络设备结构示意图。如图8所示,该光模块800具体包括:包括线路侧接口801,处理器802,存储器803、客户侧接口804。各个模块可以通过总线连接。
其中,线路侧接口801用于发送或接收光信号,以实现与网络设备进行光通信;客户侧接口用于与客户侧设备之间进行通信;存储器803用于存储网络设备的程序代码和数据;处理器802可以控制网络设备执行图3中涉及网络设备的处理过程和/或用于本申请所描述的技术的其他过程。
具体地,线路侧接口801可以包括OTN线路处理模块、ODSP模块和数模/模数转换模块等等。其中,OTN线路处理模块主要用于完成OTN协议的相关处理(例如,可以包括前述图3所示的实施例中的第一封装过程),ODSP模块主要用于光通信中的数字信号的处理(例如,可以包括前述图3所示的实施例中的第二封装过程和第三封装过程),数模/模数转换模块主要用于光电之间的转换。基于此,以端到端的输出传输过程中,网络设备的线路侧接口需要进行的处理为例进行说明:
在一些实施例中,如图9所示,线路侧接口发送数据过程:
OTN线路处理模块接收来自处理器的业务数据,由OTN线路处理模块对业务数据完成第二封装协议的相关处理后形成第二OTN帧,其中,第二封装协议的相关处理可以包括成帧、添加开销以及复接等等;将该第二OTN帧输出到ODSP模块;
ODSP模块在接收到第二OTN帧后,可以剥离第二OTN帧净荷中无效时隙,保留开销,得到第二OTN-m,m表示第二OTN帧剥离无效时隙后的净荷时隙数。例如,一个ODUC1有20个时隙,每个时隙带宽5Gbit/s,在剥离5个无效时隙后,m的值可以为15。
接下来,ODSP模块将第二OTN帧按照第三封装协议进行封装,具体包括如下过程:按子结构为粒度将OTN-m拆分为n个部分,并将这n个部分分别封装在第一OTN帧的子结构的净荷区中,将第二OTN帧的开销封装在第一OTN帧的子结构的开销区,其他第一OTN帧的子结构的开销区填充固定填充,该固定填充可以为无效字节,从而得到第一OTN帧。
ODSP模块将第一OTN帧按照第一封装协议进行封装,并输出到数模转换模块,由数模转换模块将封装后的第一OTN帧转换为光信号输出。
线路侧接口接收数据过程:
模数转换模块接收光信号转换为电信号后,发送至ODSP模块;
ODSP模块需要按照第一封装协议和第三封装协议进行封装。具体地,ODSP模块搜索定界第三OTN帧,删除第三OTN帧中的固定填充,得到第四OTN帧-m;接下来,对OTN-m填充无效时隙,得到第四OTN帧,并将第四OTN帧发送至OTN线路处理模块;
OTN线路处理模块根据第二封装协议对第四OTN帧进行街封装,得到业务数据;其中,解封装可以包括解帧、去开销以及解复接等等。OTN线路处理模块将业务数据发送至处理器802,由处理器802通过客户侧接口804发送至客户侧设备。
在带宽切换过程中,对于带宽的增加或减少主要包括两部分,一部分是光层和第一封装协议的带宽增加或减少,另一部分是第三封装协议或第四封装协议的带宽增加或减少。
以设定值为25G的带宽增加过程为例:
可以对光层和第一封装协议的以25G为粒度进行带宽增加,此时,电层带宽小于光层带宽,空闲带宽位置下插无效填充;
然后对第三封装协议的带宽进行增加,主要包括两个过程,一个过程是对第二OTN-m带宽的增加,另一个过程是对第一OTN帧带宽的增加。
对于第二OTN-m的带宽增加:在切换前,第二OTN帧剥离时隙形成第二OTN-m 1;切换后,剥离时隙形成第二OTN-m 2,其中m 2大于m 1;其中,切换点在第二OTN帧头第一个字节处开始切换,增删过程不影响未增删的时隙,m 2相对于m 1可以等比例增加,该增加的比例可以与切换前带宽和切换后带宽的比例对应。例如,切换前带宽为100G,切换后带宽为150G。那么m 2可以为m1的1.5倍;
对于第一OTN帧的带宽增加:可以以子结构为粒度增加带宽,切换点在第一OTN帧帧头第一个字节处开始切换,增删过程不影响未增删的子结构;
其中,对于第二OTN-m的带宽增加和对于第一OTN帧的带宽增加可以同步进行。
以设定值为25G的带宽减少过程为例:
可以先对第三封装协议的带宽进行减少:
对于第二OTN-m的带宽减少:在切换前,第二OTN帧剥离时隙形成第二OTN-m 3;切换后,剥离时隙形成第二OTN-m 4,其中m 3大于m 4;其中,切换点在第二OTN帧头第一个字节处开始切换,增删过程不影响未增删的时隙,m 4相对于m 3可以等比例减少,该减少的比例可以与切换前带宽和切换后带宽的比例对应。例如,切换前带宽为200G,切换后带宽为100G。那么m 4可以为m 3的0.5倍;
对于第一OTN帧的带宽减少:可以以子结构为粒度减少带宽,切换点在第一OTN帧帧头第一个字节处开始切换,增删过程不影响未增删的子结构;在对电层线路侧带宽进行减少后,电层线路侧带宽小于光层带宽,空闲带宽位置下插无效填充;
然后对光层和第一封装协议的以25G为粒度进行带宽减少。
其中,对于第二OTN-m的带宽减少和对于第一OTN帧的带宽减少可以同步进行。
在一些实施例中,结合10所示,在线路侧接口801的处理包括如下过程:
线路侧接口发送数据过程:
OTN线路处理模块接收来自处理器的业务数据,由OTN线路处理模块对业务数据完成第四封装协议的相关处理后形成第一OTN帧,并将该第一OTN帧输出到ODSP模块,由ODSP模块将第一OTN帧通过第一封装协议封装后,传输出到数模转换模块,由数模转换模块转换为光信号输出。
线路侧接口接收数据过程:
模数转换模块接收光信号转换为电信号后,发送至ODSP模块;
ODSP模块需要按照第一封装协议进行封装,得到第六OTN帧,并将第六OTN帧发送至OTN线路处理模块。
OTN线路处理模块根据第四封装协议对第六OTN帧进行街封装,得到业务数据;其中,解封装可以包括解帧、去开销以及解复接等等。OTN线路处理模块将业务数据发送至处理器802,由处理器802通过客户侧接口804发送至客户侧设备。
在带宽切换过程中,直接在ODSP模块、OTN线路处理模块和光层,基于子结构进行带宽增删。
图11为本申请实施例提供的一种光传送网线路带宽切换装置结构示意图。该装置适用于光传送网络中的网络设备,如图11所示,该装置包括:
第一切换单元1101,用于以子结构为粒度,将第一光传送网OTN帧由第一带宽切换到第二带宽;所述子结构的带宽为设定值,所述第一带宽与所述第二带宽相差一个或多个设定值;
第一发送单元1102,用于将第二带宽的第一OTN帧通过第一封装协议封装后,通过光层以所述第二带宽进行发送。
在一个实施例中,所述第一切换单元1101具体用于:
确定第二OTN帧,所述第二OTN帧为第三带宽,所述第二OTN帧由所述网络设备根据来自客户侧的第一业务数据按照第二封装协议生成;
以设定值为粒度,将第三封装协议的带宽由第一带宽切换至第二带宽;
按照第三封装协议,将所述第二OTN帧的净荷映射在所述第一OTN帧的子结构的净荷中,将所述第二OTN帧的开销映射在第一OTN帧的开销中,在第一OTN帧的子结构中填充无效字节,使得每个子结构包括的开销或无效字节与净荷的比例为固定比例。
在另一个实施例中,还包括:
接收单元,用于通过光层接收第三OTN帧,并按照第一封装协议解封装得到第四OTN帧;
第一解封装单元,用于将所述第四OTN帧按照所述第三封装协议解封装得到第五OTN帧;
第二解封装单元,用于将所述第五OTN帧按照所述第二封装协议解封装得到第二业务数据;
第二发送单元,用于向客户侧设备发送所述第二业务数据。
在另一个实施例中,所述第一OTN帧由所述网络设备根据来自客户侧的第一业务数据按照第四封装协议生成;所述第一切换单元1101具体用于:
以设定值为粒度,将第四封装协议的带宽由第一带宽切换至第二带宽;
按照第四封装协议,将所述第一业务数据映射在所述第一OTN帧的子结构的净荷中,在第一OTN帧的子结构中填充开销或无效字节,使得每个子结构包括的开销或无效字节与净荷的比例为固定比例。
在另一个实施例中,还包括:
接收单元,用于通过光层接收第六OTN帧,并按照第一封装协议解封装得到第七OTN帧;
第三解封装单元,用于将所述第七OTN帧按照所述第四封装协议解封装得到第三业务数据;
第二发送单元,用于向客户侧设备发送所述第三业务数据。
在另一个实施例中,当所述第一带宽大于所述第二带宽时,还包括:
第二切换单元,在所述网络设备以子结构为粒度,将第一光传送网OTN帧由第一带宽切换到第二带宽之后,用于将第一封装协议和光层由第一带宽切换到第二带宽。
在另一个实施例中,还包括:
第二切换单元,在所述网络设备以子结构为粒度,将第一光传送网OTN帧由第一带宽切换到第二带宽之前,用于将第一封装协议和光层由第一带宽切换到第二带宽。
在另一个实施例中,所述设定值为25吉比特每秒,所述第一带宽为100吉比特每秒的整数倍,所述第二带宽为100吉比特每秒的整数倍。
在上述各个本申请实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读介质向另一个计算机可读介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种光传送网线路带宽切换方法,其特征在于,所述方法适用于光传送网络中,所述光传送网包括多个网络设备,所述方法包括:
    所述网络设备以子结构为粒度,将第一光传送网OTN帧由第一带宽切换到第二带宽;所述子结构的带宽为设定值,所述第一带宽与所述第二带宽相差一个或多个设定值;
    所述网络设备将第二带宽的第一OTN帧通过第一封装协议封装后,通过光层以所述第二带宽进行传输。
  2. 根据权利要求1所述的方法,其特征在于,所述网络设备以子结构为粒度,将第一光传送网OTN帧由第一带宽切换到第二带宽包括:
    所述网络设备确定第二OTN帧,所述第二OTN帧为第三带宽,所述第二OTN帧由所述网络设备根据来自客户侧的第一业务数据按照第二封装协议生成;
    所述网络设备以设定值为粒度,将第三封装协议的带宽由第一带宽切换至第二带宽;
    所述网络设备按照第三封装协议,将所述第二OTN帧的净荷映射在所述第一OTN帧的子结构的净荷中,将所述第二OTN帧的开销映射在第一OTN帧的开销中,在第一OTN帧的子结构中填充无效字节,使得每个子结构包括的开销或无效字节与净荷的比例为固定比例。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述网络设备通过光层接收第三OTN帧,并按照第一封装协议解封装得到第四OTN帧;
    所述网络设备将所述第四OTN帧按照所述第三封装协议解封装得到第五OTN帧;
    所述网络设备将所述第五OTN帧按照所述第二封装协议解封装得到第二业务数据;
    所述网络设备向客户侧设备发送所述第二业务数据。
  4. 根据权利要求1所述的方法,其特征在于,所述第一OTN帧由所述网络设备根据来自客户侧的第一业务数据按照第四封装协议生成;所述网络设备以子结构为粒度,将第一光传送网OTN帧由第一带宽切换到第二带宽包括:
    所述网络设备以设定值为粒度,将第四封装协议的带宽由第一带宽切换至第二带宽;
    所述网络设备按照第四封装协议,将所述第一业务数据映射在所述第一OTN帧的子结构的净荷中,在第一OTN帧的子结构中填充开销或无效字节,使得每个子结构包括的开销或无效字节与净荷的比例为固定比例。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述网络设备通过光层接收第六OTN帧,并按照第一封装协议解封装得到第七OTN帧;
    所述网络设备将所述第七OTN帧按照所述第四封装协议解封装得到第三业务数据;
    所述网络设备向客户侧设备发送所述第三业务数据。
  6. 根据权利要求1-5任意一项所述的方法,其特征在于,当所述第一带宽大于所述第二带宽时,在所述网络设备以子结构为粒度,将第一光传送网OTN帧由第一带宽切换到第二带宽之后,所述方法还包括:
    所述网络设备将第一封装协议和光层由第一带宽切换到第二带宽。
  7. 根据权利要求1-5任意一项所述的方法,其特征在于,当所述第一带宽小于所述第二带宽时,在所述网络设备以子结构为粒度,将第一光传送网OTN帧由第一带宽切换到第二带宽之前,所述方法还包括:
    所述网络设备将第一封装协议和光层由第一带宽切换到第二带宽。
  8. 根据权利要求1-7任意一项所述的方法,其特征在于,所述设定值为25吉比特每秒,所述第一带宽为100吉比特每秒的整数倍,所述第二带宽为100吉比特每秒的整数倍。
  9. 一种光传送网线路带宽切换装置,其特征在于,所述装置适用于光传送网络中的网络设备,所述装置包括:
    第一切换单元,用于以子结构为粒度,将第一光传送网OTN帧由第一带宽切换到第二带宽;所述子结构的带宽为设定值,所述第一带宽与所述第二带宽相差一个或多个设定值;
    第一发送单元,用于将第二带宽的第一OTN帧通过第一封装协议封装后,通过光层以所述第二带宽进行发送。
  10. 根据权利要求9所述的装置,其特征在于,所述第一切换单元具体用于:
    确定第二OTN帧,所述第二OTN帧为第三带宽,所述第二OTN帧由所述网络设备根据来自客户侧的第一业务数据按照第二封装协议生成;
    以设定值为粒度,将第三封装协议的带宽由第一带宽切换至第二带宽;
    按照第三封装协议,将所述第二OTN帧的净荷映射在所述第一OTN帧的子结构的净荷中,将所述第二OTN帧的开销映射在第一OTN帧的开销中,在第一OTN帧的子结构中填充无效字节,使得每个子结构包括的开销或无效字节与净荷的比例为固定比例。
  11. 根据权利要求10所述的装置,其特征在于,还包括:
    接收单元,用于通过光层接收第三OTN帧,并按照第一封装协议解封装得到第四OTN帧;
    第一解封装单元,用于将所述第四OTN帧按照所述第三封装协议解封装得到第五OTN帧;
    第二解封装单元,用于将所述第五OTN帧按照所述第二封装协议解封装得到第二业务数据;
    第二发送单元,用于向客户侧设备发送所述第二业务数据。
  12. 根据权利要求9所述的装置,其特征在于,所述第一OTN帧由所述网络设备根据来自客户侧的第一业务数据按照第四封装协议生成;所述第一切换单元具体用于:
    以设定值为粒度,将第四封装协议的带宽由第一带宽切换至第二带宽;
    按照第四封装协议,将所述第一业务数据映射在所述第一OTN帧的子结构的净荷 中,在第一OTN帧的子结构中填充开销或无效字节,使得每个子结构包括的开销或无效字节与净荷的比例为固定比例。
  13. 根据权利要求12所述的装置,其特征在于,还包括:
    接收单元,用于通过光层接收第六OTN帧,并按照第一封装协议解封装得到第七OTN帧;
    第三解封装单元,用于将所述第七OTN帧按照所述第四封装协议解封装得到第三业务数据;
    第二发送单元,用于向客户侧设备发送所述第三业务数据。
  14. 根据权利要求9-13任意一项所述的装置,其特征在于,当所述第一带宽大于所述第二带宽时,还包括:
    第二切换单元,在所述网络设备以子结构为粒度,将第一光传送网OTN帧由第一带宽切换到第二带宽之后,用于将第一封装协议和光层由第一带宽切换到第二带宽。
  15. 根据权利要求9-13任意一项所述的装置,其特征在于,当所述第一带宽小于所述第二带宽时,还包括:
    第二切换单元,在所述网络设备以子结构为粒度,将第一光传送网OTN帧由第一带宽切换到第二带宽之前,用于将第一封装协议和光层由第一带宽切换到第二带宽。
  16. 根据权利要求9-15任意一项所述的装置,其特征在于,所述设定值为25吉比特每秒,所述第一带宽为100吉比特每秒的整数倍,所述第二带宽为100吉比特每秒的整数倍。
  17. 一种网络设备,其特征在于,所述网络设备应用于光传送网中,所述网络设备包括收发器、处理器和存储器;所述收发器用于与其他网络设备或客户侧设备进行通信,所述存储器用于存放程序;所述处理器用于执行所述存储器存储的所述程序,以控制所述网络设备执行权利要求1-8任意一项所述的方法。
  18. 一种计算机可读存储介质,包括计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行如权利要求1-8任意一项所述的方法。
  19. 一种计算机程序产品,包括计算机可读指令,当计算机读取并执行所述计算机可读指令,使得计算机执行如权利要求1-8任意一项所述的方法。
PCT/CN2019/100649 2018-12-21 2019-08-14 光传送网线路带宽切换方法及装置 WO2020125032A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19898373.6A EP3893515B1 (en) 2018-12-21 2019-08-14 Optical transmission network line bandwidth switching method and device
US17/353,373 US11570530B2 (en) 2018-12-21 2021-06-21 Method and apparatus for switching line bandwidth of optical transport network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811572644.2 2018-12-21
CN201811572644.2A CN111356037B (zh) 2018-12-21 2018-12-21 光传送网线路带宽切换方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/353,373 Continuation US11570530B2 (en) 2018-12-21 2021-06-21 Method and apparatus for switching line bandwidth of optical transport network

Publications (1)

Publication Number Publication Date
WO2020125032A1 true WO2020125032A1 (zh) 2020-06-25

Family

ID=71100623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100649 WO2020125032A1 (zh) 2018-12-21 2019-08-14 光传送网线路带宽切换方法及装置

Country Status (4)

Country Link
US (1) US11570530B2 (zh)
EP (1) EP3893515B1 (zh)
CN (1) CN111356037B (zh)
WO (1) WO2020125032A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102870434A (zh) * 2012-06-14 2013-01-09 华为技术有限公司 传送、接收客户信号的方法和装置
CN102884808A (zh) * 2012-06-19 2013-01-16 华为技术有限公司 一种分配光频谱带宽资源的方法及装置
EP2566118A1 (en) * 2011-09-01 2013-03-06 Alcatel Lucent Network element for switching time division multiplex signals
CN104885385A (zh) * 2012-12-31 2015-09-02 中兴通讯(美国)公司 用于光传输网的自适应数据传输格式

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215153B (zh) * 2010-04-02 2014-11-05 华为技术有限公司 带宽调整方法及通信节点
WO2012171160A1 (zh) * 2011-06-13 2012-12-20 华为技术有限公司 光传送网背板时分到空分位宽转换方法及背板
US9231721B1 (en) * 2012-06-28 2016-01-05 Applied Micro Circuits Corporation System and method for scaling total client capacity with a standard-compliant optical transport network (OTN)
EP2779491A1 (en) * 2013-03-15 2014-09-17 Alcatel Lucent Method of resizing a protected ODUflex connection in an optical transport network
CN105451102B (zh) * 2014-08-22 2019-05-28 华为技术有限公司 一种处理信号的方法、装置及系统
CN111147185A (zh) * 2015-01-22 2020-05-12 华为技术有限公司 一种利用以太网信道传输业务信号的方法及通信设备
CN108632061B (zh) * 2017-03-20 2020-12-15 华为技术有限公司 一种带宽调整方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2566118A1 (en) * 2011-09-01 2013-03-06 Alcatel Lucent Network element for switching time division multiplex signals
CN102870434A (zh) * 2012-06-14 2013-01-09 华为技术有限公司 传送、接收客户信号的方法和装置
CN102884808A (zh) * 2012-06-19 2013-01-16 华为技术有限公司 一种分配光频谱带宽资源的方法及装置
CN104885385A (zh) * 2012-12-31 2015-09-02 中兴通讯(美国)公司 用于光传输网的自适应数据传输格式

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3893515A4

Also Published As

Publication number Publication date
EP3893515B1 (en) 2024-03-20
US20210314682A1 (en) 2021-10-07
CN111356037B (zh) 2021-08-20
CN111356037A (zh) 2020-06-30
US11570530B2 (en) 2023-01-31
EP3893515A1 (en) 2021-10-13
EP3893515A4 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
US11063686B2 (en) Method and apparatus for mapping and de-mapping in an optical transport network
KR101536141B1 (ko) 이더넷과 can 통신 간의 신호 변환을 제공하는 차량용 장치 및 그 제어방법
US10237203B2 (en) Lossless adjustment method of ODUflex channel bandwidth and ODUflex channel
US7898944B2 (en) Smart mechanism for multi-client bidirectional optical channel protection scheme
US9681208B2 (en) Data processing method, communications board and device
US20160286290A1 (en) Dynamic bandwidth assignment method and apparatus on passive optical network
US20090003235A1 (en) Method and Apparatus For Data Frame Transmission
US20060233194A1 (en) Ethernet encapsulation over optical transport network
US11381335B2 (en) Method and apparatus for spectrum defragmentation, device, and system
JP2012501613A (ja) 10ギガビット光ファイバーチャネルサービスを光伝送ネットワークに伝送する方法及び装置
US11251905B2 (en) Method for receiving code block stream, method for transmitting code block stream, and communications apparatus
WO2020125032A1 (zh) 光传送网线路带宽切换方法及装置
WO2014000439A1 (zh) 基带射频接口承载传输的方法、装置和系统
JP2008236691A (ja) EoS(EtheroverSONET)通信装置
US11902403B2 (en) Method for receiving code block stream, method for sending code block stream, and communications apparatus
WO2021185196A1 (zh) 一种数据帧的传送方法以及相关设备
RU2809182C1 (ru) Способ передачи служебных данных, соответствующее устройство и микросхема цифровой обработки
Ge et al. Design and implementation of an EOS chip
Valcarenghi et al. Impact of Radio over Ethernet Time-based Encapsulation on Fronthaul Performance
JP2020528251A (ja) ビット・ブロック・ストリームを処理する方法及び装置、ビット・ブロック・ストリームのレート・マッチングのための方法及び装置、並びにビット・ブロック・ストリームを切り替える方法及び装置
WO2013026378A1 (zh) 嵌入控制信道信息传输方法和装置
JP2005286369A (ja) ディジタル信号伝送システムおよびディジタル信号伝送装置
CN103986958A (zh) 与以太网通信的有线电视机顶盒、系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019898373

Country of ref document: EP

Effective date: 20210705