WO2020124974A1 - 一种轨道交通综合监控混合培训仿真系统及方法 - Google Patents

一种轨道交通综合监控混合培训仿真系统及方法 Download PDF

Info

Publication number
WO2020124974A1
WO2020124974A1 PCT/CN2019/092683 CN2019092683W WO2020124974A1 WO 2020124974 A1 WO2020124974 A1 WO 2020124974A1 CN 2019092683 W CN2019092683 W CN 2019092683W WO 2020124974 A1 WO2020124974 A1 WO 2020124974A1
Authority
WO
WIPO (PCT)
Prior art keywords
simulation
subsystem
training
monitoring
physical
Prior art date
Application number
PCT/CN2019/092683
Other languages
English (en)
French (fr)
Inventor
王永
陈根军
解凯
张长开
毛建维
吉跃瑾
顾全
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Publication of WO2020124974A1 publication Critical patent/WO2020124974A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Definitions

  • the invention belongs to the technical field of comprehensive monitoring of rail transit, and in particular relates to a mixed training simulation system and method of comprehensive monitoring of rail transit.
  • the existing rail transportation comprehensive monitoring training simulation system is based on the graph model library mirrored by the actual monitoring center system. It performs digital modeling and logical simulation of physical equipment, which can simulate and simulate various failures that may occur in the actual integrated monitoring system. In order to improve the emergency response ability of the comprehensive monitoring personnel.
  • the present invention proposes a hybrid training simulation system and method for comprehensive monitoring of rail transit, comprehensively considering the economy and accuracy, digitally modeling all station equipment, and physically modeling the equipment of a typical station.
  • the physical modeling station alone is used as a data source for training simulation, or all digital modeling stations can be used for training simulation alone, or a combination of the two to a hybrid simulation method to enhance the training effect.
  • the present invention provides a hybrid training simulation system for comprehensive monitoring of rail transit, including:
  • Cross-site synchronization subsystem the cross-site synchronization subsystem is used for real-time communication with the integrated monitoring system located at the site of the integrated monitoring and control center to obtain simulated cross-section data, integrated monitoring system model and integrated monitoring center screen;
  • a simulation management and calculation analysis subsystem the simulation management and calculation analysis subsystem is connected with the cross-site synchronization subsystem, and receives simulation cross-sectional data, an integrated monitoring system model and an integrated monitoring center screen sent by the cross-site synchronization subsystem;
  • the monitoring center simulation subsystem which is used to simulate the functions of the integrated monitoring center on the site of the integrated monitoring and control center, is connected to the cross-site synchronization subsystem, and receives simulated cross-sectional data sent by the cross-site synchronization subsystem, Comprehensive monitoring system model and integrated monitoring center screen, and respond to student operation instructions;
  • a collection simulation subsystem which includes a simulation collection channel, which is provided between the monitoring center simulation subsystem and the simulation management and calculation analysis subsystem, and when the monitoring center simulation subsystem receives the student operation instruction, Then, the operation instruction is issued to the simulation management and calculation and analysis subsystem through the simulation acquisition channel, and the simulation management and calculation and analysis subsystem is based on the received operation instruction, simulation profile data, integrated monitoring system model, and integrated monitoring
  • the central screen manages the entire training process.
  • the simulation acquisition channel uses a shared memory method to realize data interaction between the simulation subsystem of the monitoring center and the simulation management and calculation analysis subsystem.
  • the hybrid training simulation system for comprehensive monitoring of rail transit further includes a physical equipment simulation subsystem, which is a physical equipment configured based on the principle of minimization and similar to an actual typical station, for simulating actual physical equipment Status during operation;
  • the acquisition simulation subsystem further includes a physical acquisition channel, and the physical acquisition channel is provided between the monitoring center simulation subsystem and the physical device simulation subsystem.
  • the hybrid training simulation system for comprehensive monitoring of rail transit is used for simulation, only the analog acquisition channel is enabled to realize pure digital analog simulation;
  • a set typical station is enabled with a physical collection channel, and other stations are enabled with a simulated collection channel to achieve a mixed simulation simulation.
  • the simulation management and calculation analysis subsystem includes:
  • a profile management module the profile management module is used to add, delete, modify and take out the received simulated profile data
  • the fault management module is used to add, delete and modify the simulated fault information obtained based on the simulated cross-section data, the integrated monitoring system model and the integrated monitoring center screen;
  • teaching plan management module the teaching plan management module is used to add, delete and modify the training teaching plan information
  • a logic customization module the logic customization module is used to customize the correlation logic between the input and output signals according to the operating characteristics of the physical device
  • Training monitoring module the training monitoring module is used by the instructor to monitor the entire training process, and the monitoring information includes instructor operation information, student operation information and equipment operation information;
  • a training control module the training control module is used by the instructor to control the entire training process, including starting training, suspending training, and ending training control operations;
  • a calculation and analysis module which is used to calculate the operation logic of the device based on the simulation cross-section data, the integrated monitoring system model and the screen of the integrated monitoring center, analyze the operating state of the device, and count the operating indexes of the device.
  • the present invention provides a hybrid training simulation method for comprehensive monitoring of rail transit, including:
  • the simulation subsystem of the monitoring center When the simulation subsystem of the monitoring center receives the operation instructions of the students, it sends the operation instructions to the simulation management and calculation analysis subsystem through the simulation acquisition channel in the acquisition simulation subsystem.
  • the simulation management and calculation analysis subsystem The system manages the entire training process based on the received operation instructions, simulated profile data, integrated monitoring system model and integrated monitoring center screen.
  • the simulation acquisition channel uses a shared memory method to realize data interaction between the simulation subsystem of the monitoring center and the simulation management and calculation analysis subsystem.
  • the hybrid training simulation system for comprehensive monitoring of rail transit further includes a physical equipment simulation subsystem, which is configured with physical equipment similar to actual typical stations based on the principle of minimization to simulate the actual physical equipment operation process State in
  • the acquisition simulation subsystem further includes a physical acquisition channel, and the physical acquisition channel is provided between the monitoring center simulation subsystem and the physical device simulation subsystem.
  • the hybrid training simulation system for comprehensive monitoring of rail transit is used for simulation, only the analog acquisition channel is enabled to realize pure digital analog simulation;
  • a set typical station is enabled with a physical collection channel, and other stations are enabled with a simulated collection channel to achieve a mixed simulation simulation.
  • the simulation management and calculation analysis subsystem includes:
  • a profile management module the profile management module is used to add, delete, modify and take out the received simulation profile data
  • a fault management module is used to add, delete, and modify simulation fault information based on the simulated cross-sectional data, the integrated monitoring system model, and the integrated monitoring center screen;
  • teaching plan management module the teaching plan management module is used to add, delete and modify the training teaching plan information
  • a logic customization module the logic customization module is used to customize the associated logic between the input and output signals according to the operating characteristics of the physical device
  • Training monitoring module the training monitoring module is used by the instructor to monitor the entire training process, and the monitoring information includes instructor operation information, student operation information and equipment operation information;
  • a training control module the training control module is used by the instructor to control the entire training process, including starting training, suspending training, and ending training control operations;
  • a calculation and analysis module which is used to calculate the device operation logic based on the simulated cross-sectional data, the integrated monitoring system model, and the screen of the integrated monitoring center, analyze the device operating status, and count device operating indicators.
  • the hybrid training simulation system and method for comprehensive monitoring of rail transit comprehensively considers economy and accuracy, digitally models all station equipment, and at the same time physically models the equipment of a typical station.
  • the station of the model is used as the data source for training simulation, and all stations with digital modeling can also be used for training simulation alone, or a combination of the two.
  • the simulation method not only improves the accuracy of the rail transportation comprehensive monitoring training simulation, but also meets the needs of the supervisor to understand the physics.
  • the requirements of the equipment change process, but also to improve the accident handling ability of the supervisor.
  • FIG. 1 is a schematic structural diagram of a hybrid training simulation system for comprehensive monitoring of rail transit according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a hybrid training simulation method for comprehensive monitoring of rail transit according to an embodiment of the present invention.
  • an embodiment of the present invention provides a hybrid training simulation system for comprehensive monitoring of rail transit, including: a cross-site synchronization subsystem, a simulation management and calculation analysis subsystem, a monitoring center simulation subsystem, and an acquisition simulation subsystem;
  • the cross-site synchronization subsystem is used for real-time communication with the integrated monitoring system located at the site of the integrated monitoring and control center to obtain simulated cross-section data, an integrated monitoring system model, and an integrated monitoring center screen; the integrated monitoring and control center belongs to site one.
  • the hybrid training simulation system for comprehensive monitoring of rail transit belongs to site two. Site one and site two use cross-site synchronization technology to synchronize the simulation section data from site one to site two, the integrated monitoring system model and the screen of the integrated monitoring center;
  • the simulation cross-section data described in the embodiments of the present invention refers to the equipment operating status data collected in the comprehensive monitoring system at a certain moment, such as the opening and stopping of air conditioners, the opening and stopping of elevators, the operating position of trains, and the operating speed of trains 1.
  • any dynamic information such as fire alarm, gate operation status, people flow and so on, which is used for the simulation management and calculation analysis subsystem as the initial state of the training system, and then on this basis, a fire can be simulated and then the train can be simulated Blocking, evacuation of people, elevator stop fire start, etc., this belongs to the existing technology, which data specifically included in the simulated cross-section data depends on the actual situation;
  • the integrated monitoring system model records how many stations there are in the system, how many air conditioners, how many elevators, how many screen doors etc. are static information about each station. As for the operating status of these devices, it is recorded in the aforementioned simulation section data of. In the simulation environment, by using the simulation profile data, the integrated monitoring system model and the integrated monitoring center screen synchronized by the actual system, what the trainees see is highly consistent with the actual system.
  • the simulation management and calculation analysis subsystem is connected to the cross-site synchronization subsystem, and receives simulation cross-sectional data, an integrated monitoring system model, and an integrated monitoring center screen sent by the cross-site synchronization subsystem; in a specific embodiment of the present invention
  • the simulation management and calculation analysis subsystem specifically includes:
  • a profile management module the profile management module is used to add, delete, modify and take out the received simulated profile data
  • the fault management module is used to add, delete and modify the simulated fault information based on the simulated cross-section data, the integrated monitoring system model and the integrated monitoring center screen; the fault information is recorded by the device or The fault information of the station, such as when a fire occurs, this fire information must be related to the station in the model. After the fire, the shield door is closed, the vehicle is blocked, and the screen is used to save and observe;
  • teaching plan management module the teaching plan management module is used to add, delete and modify the training teaching plan information
  • a logic customization module the logic customization module is used to customize the associated logic between the input and output signals according to the operating characteristics of the physical device
  • Training monitoring module the training monitoring module is used by the instructor to monitor the entire training process, and the monitoring information includes instructor operation information, student operation information and equipment operation information;
  • a training control module the training control module is used by the instructor to control the entire training process, including starting training, suspending training, and ending training control operations;
  • a calculation and analysis module which is used to calculate the equipment operation logic based on the simulation cross-section data, the integrated monitoring system model and the integrated monitoring center screen, analyze the operation status of the equipment, and calculate the equipment operation index; as the equipment recorded in the integrated monitoring system model is the equipment
  • the logical relationship between them such as the number of stations on a line, the number of screen doors, the number of elevators, the number of gates, etc., are interlocked between these devices. For example, after a fire, the train should be prohibited from entering the station, the elevator It should be automatically opened and shut down, etc.
  • the monitoring center simulation subsystem is used to simulate the function of the integrated monitoring center on the site of the integrated monitoring and control center. It is connected to the cross-site synchronization subsystem and receives the simulated cross-section data, the integrated monitoring system model and the synthesis sent by the cross-site synchronization subsystem Monitor the center screen and respond to the student's operation instructions. In the monitoring center simulation subsystem, the simulated cross-section data is used as the initial state of the simulation.
  • the integrated monitoring system model plus the simulated cross-section data and the integrated monitoring center screen can be Ensure that the system seen and used in the simulated environment is highly consistent with the actual system;
  • the integrated monitoring and control center is the department organization that uses the integrated monitoring system, and the simulation subsystem of the monitoring center simulates the staff of this department through the integrated monitoring system Monitor, control, and handle accidents on all equipment of the entire track line;
  • the acquisition and simulation subsystem includes a simulation acquisition channel, which is provided between the monitoring center simulation subsystem and the simulation management and calculation analysis subsystem.
  • the operation Instructions are sent to the simulation management and calculation and analysis subsystem through the simulation acquisition channel.
  • the simulation management and calculation and analysis subsystem manages the entire training based on the received operation instructions, simulation profile data, integrated monitoring system model and integrated monitoring center screen management
  • the operation instruction refers to the operation performed by the supervisor on the equipment using the integrated monitoring system, such as starting the air conditioner.
  • the simulation acquisition channel uses a shared memory method to implement data interaction between the simulation subsystem of the monitoring center and the simulation management and calculation analysis subsystem.
  • Embodiment 1 Based on the same inventive concept as Embodiment 1, the difference between the embodiment of the present invention and Embodiment 1 lies in:
  • the hybrid training simulation system for comprehensive monitoring of rail transit also includes a physical equipment simulation subsystem that configures physical equipment similar to actual typical stations based on the principle of minimization, that is, considering economic factors, only one typical station is selected ,
  • the physical equipment similar to the actual station is configured according to the principle of minimization to simulate the status of the actual equipment during operation; for example, the actual situation is that two air conditioners are installed on the car, and the physical equipment simulation subsystem can be configured with only one air conditioner to achieve Reducing capital investment and simply allocating from an economic perspective means that no matter how many devices are actually on site, each device is only equipped with one; the specific working logic of the physical device simulation subsystem is to accept control commands and switch the corresponding Operating status;
  • the acquisition and simulation subsystem includes a physical acquisition channel, and the physical acquisition channel is provided between the monitoring center simulation subsystem and the physical device simulation subsystem.
  • the physical acquisition channel The 104 protocol can be used to realize the data interaction between the monitoring center simulation subsystem and the physical equipment simulation subsystem;
  • the hybrid training simulation system for comprehensive monitoring of rail transit when used for simulation, it may choose to enable only the analog acquisition channel to realize pure digital analog simulation;
  • the hybrid training simulation system for comprehensive monitoring of rail transit when used for simulation, it may choose to enable only the physical acquisition channel to realize pure physical simulation simulation;
  • a physical collection channel can be set for a typical station, and a simulation collection channel can be enabled for other stations to achieve a mixed simulation simulation.
  • the set typical stations are designed according to the actual situation. This process can be understood by combining the following examples. For example, suppose a track line has ten stations, the operation status of the first nine station equipment uses simulated section data, and the remaining one The station uses the data sent by a typical station configured according to the principle of minimization. When the control command is sent to the first nine stations, because there is no actual physical equipment, the operation state of the equipment must be simulated by software calculation. If it is sent to the tenth station Station, because there is actual physical equipment, software simulation is not needed at this time.
  • the shield door After the actual physical equipment receives the control command, assuming it is the shield door opening command, the shield door will open and send the shield door to the simulation monitoring center Status: On. Simply put, part of the device status is simulated by software calculation, and part is sent by the actual device.
  • an embodiment of the present invention provides a hybrid training simulation method for comprehensive monitoring of rail transit, as shown in FIG. 2, which specifically includes the following steps:
  • the simulation subsystem of the monitoring center When the simulation subsystem of the monitoring center receives the operation instructions of the students, it sends the operation instructions to the simulation management and calculation analysis subsystem through the simulation acquisition channel in the acquisition simulation subsystem.
  • the simulation management and calculation analysis subsystem The system manages the entire training process based on the received operation instructions, simulation profile data, integrated monitoring system model, and integrated monitoring center screen; in a preferred embodiment of the embodiment of the present invention, the analog acquisition channel uses a shared memory method to implement monitoring center simulation Data interaction between subsystems and simulation management and computational analysis subsystems.
  • the hybrid training simulation system for comprehensive monitoring of rail transit also includes a physical equipment simulation subsystem.
  • the physical equipment simulation subsystem is a physical equipment that is configured by the principle of minimization and is similar to an actual typical station, and is used to simulate the actual physical equipment during the operation process.
  • the specific working logic of the physical equipment simulation subsystem is to accept control commands and switch the corresponding operating state;
  • the acquisition simulation subsystem further includes a physical acquisition channel, and the physical acquisition channel is provided between the monitoring center simulation subsystem and the physical device simulation subsystem.
  • the set typical stations are enabled with physical acquisition channels, and other stations are enabled with analog acquisition channels to achieve mixed simulation simulation; physical equipment simulation, which simulates the actual situation in the station Equipment, the simulation subsystem of the monitoring center simulates the monitoring and control operations after collecting the operating status of these equipment;
  • the simulation management and calculation analysis subsystem includes:
  • a profile management module the profile management module is used to add, delete, modify and take out the received simulated profile data
  • the fault management module is used to add, delete and modify the simulated fault information obtained based on the simulated section data, the integrated monitoring system model and the integrated monitoring center screen;
  • teaching plan management module the teaching plan management module is used to add, delete and modify the training teaching plan information
  • a logic customization module the logic customization module is used to customize the associated logic between the input and output signals according to the operating characteristics of the physical device
  • Training monitoring module the training monitoring module is used by the instructor to monitor the entire training process, and the monitoring information includes instructor operation information, student operation information and equipment operation information;
  • a training control module the training control module is used by the instructor to control the entire training process, including starting training, suspending training, and ending training control operations;
  • the process of calculation, analysis and statistics of the system model and the screen of the integrated monitoring center can be implemented using existing technology, and how to perform specific calculations, analysis and statistics is determined according to actual needs, therefore, it has not been done in the present invention More details.
  • the present invention proposes a hybrid training simulation system and method for comprehensive monitoring of rail transit, comprehensively considering the economy and accuracy, digitally modeling all station equipment, and physically modeling the equipment of a typical station. You can use the physically modeled station as a data source for training simulation alone, or use all the digitally modeled stations for training simulation alone, or a combination of the two to combine simulation methods to enhance the training effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

一种轨道交通综合监控混合培训仿真系统及方法,包括跨现场同步子系统、仿真管理与计算分析子系统、监控中心仿真子系统和采集仿真子系统,跨现场同步子系统的输出端分别与所述仿真管理与计算分析子系统和监控中心仿真子系统相连;采集仿真子系统设于监控中心仿真子系统与仿真管理与计算分析子系统之间,当监控中心仿真子系统接收到学员操作指令后,则通过采集仿真子系统下发给仿真管理与计算分析子系统,仿真管理与计算分析子系统基于接收到的操作指令、仿真断面数据、综合监控系统模型和综合监控中心画面管理整个培训过程。本发明提高了轨道交通综合监控培训仿真准确性,满足了监控员了解物理设备变化过程的要求,提高了监控员事故处理能力。

Description

一种轨道交通综合监控混合培训仿真系统及方法 技术领域
本发明属于轨道交通综合监控技术领域,具体涉及一种轨道交通综合监控混合培训仿真系统及方法。
背景技术
现有的轨道交通综合监控培训仿真系统,是基于实际监控中心系统镜像过来的图模库,对物理设备进行数字建模和逻辑仿真,可以模拟和仿真实际综合监控系统可能出现的各种故障,以提高综合监控人员的事故应急处理能力。
但是,现有综合监控中存在物理设备种类繁多、特性复杂等问题,且有的设备无法进行数字建模和模拟,而综合监控人员又需要一个高度逼真的仿真系统,所以需要在综合监控培训仿真系统中考虑经济性因素,按照一个典型车站的实际设备进行最小化配置,包括车站级综合监控系统(Integrated Supervision and Control System,ISCS)的模拟设备以及就地级的电力监控系统(Power Supervisory Control And Data Acquisition System,PSCADA)的模拟设备、火灾自动报警系统(Fire Alarm System,的模拟设备、环境与设备监控系统(Building Automation System,BAS)的模拟设备、门禁系统(Access Control System,ACS)的模拟设备、广播系统(Public Address,PA)的模拟设备、闭路电视系统(Closed Circuit Television,CCTV)的模拟设备和乘客信息系统(Passenger Information,PIS)的模拟设备等,各系统具有输入输出信号量的功能来模拟就地级设备的状态。
另外,由于其中一些设备的运行特性无法采用当前技术进行软件模拟,所以需要配置实际物理设备进行模拟,但实际物理设备投入资金较大,所以大部分设备的物理特性还是需要用软件模拟,混合仿真就是各取二者优点,提高仿真的真实性和经济性。
发明内容
针对上述问题,本发明提出一种轨道交通综合监控混合培训仿真系统及方法,综合考虑经济性和准确性,对全部车站设备进行数字建模,同时对一个典型车站的设备进行物理建模,可以单独用物理建模的车站作为数据源进行培训仿真,也可以单独使用数字建模的所有车站进行培训仿真,或者二者结合混合仿真方式,增强了培训效果。
实现上述技术目的,达到上述技术效果,本发明通过以下技术方案实现:
第一方面,本发明提供了一种轨道交通综合监控混合培训仿真系统,包括:
跨现场同步子系统,所述跨现场同步子系统用于与位于综合监控控制中心现场的综合监控系统实时通信,获取仿真断面数据、综合监控系统模型和综合监控中心画面;
仿真管理与计算分析子系统,所述仿真管理与计算分析子系统与所述跨现场同步子系统相连,接收跨现场同步子系统发送的仿真断面数据、综合监控系统模型和综合监控中心画面;
监控中心仿真子系统,所述监控中心仿真子系统用于模拟综合监控控制中心现场的综合监控中心功能,其与所述跨现场同步子系统相连,接收跨现场同步子系统发送的仿真断面数据、综合监控系统模型和综合监控中心画面,并响应学员操作指令;
采集仿真子系统,所述采集仿真子系统包括模拟采集通道,其设于所述监控中心仿真子系统与仿真管理与计算分析子系统之间,当监控中心仿真子系统接收到学员操作指令后,则将所述操作指令通过所述模拟采集通道下发给仿真管理与计算分析子系统,所述仿真管理与计算分析子系统基于接收到的操作指令、仿真断面数据、综合监控系统模型和综合监控中心画面管理整个培训过程。
优选地,所述模拟采集通道使用共享内存方法实现监控中心仿真子系统和仿真管理与计算分析子系统之间的数据交互。
优选地,所述轨道交通综合监控混合培训仿真系统还包括物理设备模拟子系统,所述物理设备模拟子系统为基于最小化原则配置的与实际典型车站相似的物理设备,用于模拟实际物理设备运行过程中的状态;
所述采集仿真子系统还包括物理采集通道,所述物理采集通道设于所述监控中心仿真子系统与物理设备模拟子系统之间。
优选地,当所述轨道交通综合监控混合培训仿真系统进行仿真时,只启用模拟采集通道,实现纯数字模拟仿真;
或者,当所述轨道交通综合监控混合培训仿真系统进行仿真时,只启用物理采集通道,实现纯物理模拟仿真;
或者,当所述轨道交通综合监控混合培训仿真系统进行仿真时,设定的典型车站启用物理采集通道,其它车站启用模拟采集通道,实现混合模拟仿真。
优选地,所述仿真管理与计算分析子系统包括:
断面管理模块,所述断面管理模块用于对接收到的仿真断面数据进行增加、删除、修改和取出处理;
故障管理模块,所述故障管理模块用于对基于仿真断面数据、综合监控系统模型和综合监控中心画面获得的仿真故障信息进行增加、删除和修改处理;
教案管理模块,所述教案管理模块用于对培训教案信息的增加、删除和修改处理;
逻辑定制模块,所述逻辑定制模块用于根据物理设备运行特性定制输入输出信号之间 的关联逻辑;
培训监视模块,所述培训监视模块用于教员监视整个培训过程,监视信息包括教员操作信息、学员操作信息和设备运行信息;
培训控制模块,所述培训控制模块用于教员控制整个培训过程,包括开始培训、暂停培训和结束培训控制操作;
计算分析模块,所述计算分析模块用于基于仿真断面数据、综合监控系统模型和综合监控中心画面计算设备运行逻辑,分析设备运行状态,统计设备运行指标。
第二方面,本发明提供了一种轨道交通综合监控混合培训仿真方法,包括:
建立权利要求1中所述的轨道交通综合监控混合培训仿真系统;
利用跨现场同步子系统从位于综合监控控制中心现场的综合监控系统中获取仿真断面数据、综合监控系统模型和综合监控中心画面,并分别发送给仿真管理与计算分析子系统和监控中心仿真子系统;
当监控中心仿真子系统接收到学员操作指令后,则将所述操作指令通过所述采集仿真子系统中的模拟采集通道下发给仿真管理与计算分析子系统,所述仿真管理与计算分析子系统基于接收到的操作指令、仿真断面数据、综合监控系统模型和综合监控中心画面管理整个培训过程。
优选地,所述模拟采集通道使用共享内存方法实现监控中心仿真子系统和仿真管理与计算分析子系统之间的数据交互。
优选地,所述轨道交通综合监控混合培训仿真系统还包括物理设备模拟子系统,所述物理设备模拟子系统基于最小化原则配置与实际典型车站相似的物理设备,用于模拟实际物理设备运行过程中的状态;
所述采集仿真子系统还包括物理采集通道,所述物理采集通道设于所述监控中心仿真子系统与物理设备模拟子系统之间。
优选地,当所述轨道交通综合监控混合培训仿真系统进行仿真时,只启用模拟采集通道,实现纯数字模拟仿真;
或者,当所述轨道交通综合监控混合培训仿真系统进行仿真时,只启用物理采集通道,实现纯物理模拟仿真;
或者,当所述轨道交通综合监控混合培训仿真系统进行仿真时,设定的典型车站启用物理采集通道,其它车站启用模拟采集通道,实现混合模拟仿真。
优选地,所述仿真管理与计算分析子系统包括:
断面管理模块,所述断面管理模块用于对接收到的仿真断面数据进行增加、删除、修 改和取出处理;
故障管理模块,所述故障管理模块用于基于所述仿真断面数据、综合监控系统模型和综合监控中心画面,对仿真故障信息的增加、删除和修改处理;
教案管理模块,所述教案管理模块用于对培训教案信息的增加、删除和修改处理;
逻辑定制模块,所述逻辑定制模块用于根据物理设备运行特性定制输入输出信号之间的关联逻辑;
培训监视模块,所述培训监视模块用于教员监视整个培训过程,监视信息包括教员操作信息、学员操作信息和设备运行信息;
培训控制模块,所述培训控制模块用于教员控制整个培训过程,包括开始培训、暂停培训和结束培训控制操作;
计算分析模块,所述计算分析模块用于基于所述仿真断面数据、综合监控系统模型和综合监控中心画面计算设备运行逻辑,分析设备运行状态,统计设备运行指标。
与现有技术相比,本发明的有益效果:
本发明的一种轨道交通综合监控混合培训仿真系统及方法,综合考虑经济性和准确性,对全部车站设备进行数字建模,同时对一个典型车站的设备进行物理建模,可以单独用物理建模的车站作为数据源进行培训仿真,也可以单独使用数字建模的所有车站进行培训仿真,或者二者结合混合仿真方式,不仅提高了轨道交通综合监控培训仿真准确性,满足了监控员了解物理设备变化过程的要求,而且还实现了提高监控员事故处理能力。
附图说明
图1为本发明一种实施例的轨道交通综合监控混合培训仿真系统结构示意图;
图2为本发明一种实施例的一种轨道交通综合监控混合培训仿真方法的流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
下面结合附图对本发明的应用原理作详细的描述。
实施例1
如图1所示,本发明实施例提供了一种轨道交通综合监控混合培训仿真系统,包括:跨现场同步子系统、仿真管理与计算分析子系统、监控中心仿真子系统和采集仿真子系统;
所述跨现场同步子系统用于与位于综合监控控制中心现场的综合监控系统实时通信,获取仿真断面数据、综合监控系统模型和综合监控中心画面;所述综合监控控制中心属于 现场一,所述轨道交通综合监控混合培训仿真系统属于现场二,现场一和现场二通过跨现场同步技术实现现场一到现场二的仿真断面数据、综合监控系统模型和综合监控中心画面同步;
本发明实施例中所述的仿真断面数据指的是某一时刻,综合监控系统中采集到的设备运行状态数据,比如空调的开停、电梯的开停、列车的运行位置、列车的运行速度、是否有火灾警报、闸机运行状态、人流量等等动态信息,用于供仿真管理与计算分析子系统作为培训的系统初始状态,然后可以在此基础上,模拟设置一个火灾,然后模拟列车阻塞、人流疏散、电梯停用消防启动等情况,此属于现有技术,所述仿真断面数据中具体包括哪些数据根据实际情况来定;
所述的综合监控系统模型中记录的是系统有多少座车站,每个车站有多少空调、多少电梯、多少屏蔽门等静态信息,至于这些设备的运行状态,是记录在前述的仿真断面数据中的。在模拟环境中,通过使用实际系统同步过来的仿真断面数据、综合监控系统模型和综合监控中心画面,被培训人员看到的才是和实际系统高度一致的。
所述仿真管理与计算分析子系统与所述跨现场同步子系统相连,接收跨现场同步子系统发送的仿真断面数据、综合监控系统模型和综合监控中心画面;在本发明实施例的一种具体实施方式中,所述仿真管理与计算分析子系统具体包括:
断面管理模块,所述断面管理模块用于对接收到的仿真断面数据进行增加、删除、修改和取出处理;
故障管理模块,所述故障管理模块用于对基于仿真断面数据、综合监控系统模型和综合监控中心画面获得的仿真故障信息的增加、删除和修改处理;所述的故障信息记录的是设备的或车站的故障信息,比如几点几分发生火灾,这个火灾信息肯定要关联模型中的车站等,火灾发生后,屏蔽门的关闭,车辆的阻塞,并通过画面来实现保存和观察;
教案管理模块,所述教案管理模块用于对培训教案信息的增加、删除和修改处理;
逻辑定制模块,所述逻辑定制模块用于根据物理设备运行特性定制输入输出信号之间的关联逻辑;
培训监视模块,所述培训监视模块用于教员监视整个培训过程,监视信息包括教员操作信息、学员操作信息和设备运行信息;
培训控制模块,所述培训控制模块用于教员控制整个培训过程,包括开始培训、暂停培训和结束培训控制操作;
计算分析模块,所述计算分析模块用于基于仿真断面数据、综合监控系统模型和综合监控中心画面计算设备运行逻辑,分析设备运行状态,统计设备运行指标;由于综合监控 系统模型中记录的是设备之间的逻辑关系,比如一条线有多少车站,这个车站有多少屏蔽门、多少电梯、多少闸机等,这些设备之间是有连锁逻辑的,比如发生火灾后,列车应该禁止进站,电梯应该自动打开并停运等等,这些逻辑关系需要用软件去模拟,并最终反映在综合监控中心画面上。
所述监控中心仿真子系统用于模拟综合监控控制中心现场的综合监控中心功能,其与所述跨现场同步子系统相连,接收跨现场同步子系统发送的仿真断面数据、综合监控系统模型和综合监控中心画面,并响应学员操作指令,在监控中心仿真子系统中,所述的仿真断面数据被用作仿真的初始状态,所述综合监控系统模型加上仿真断面数据和综合监控中心画面,才能保证在模拟环境中看到的和使用的系统与实际系统高度一致;所述的综合监控控制中心是使用综合监控系统的部门组织机构,监控中心仿真子系统模拟这个部门的工作人员通过综合监控系统对整个轨道线路各设备进行监视、控制、事故处理等;
所述采集仿真子系统包括模拟采集通道,其设于所述监控中心仿真子系统与仿真管理与计算分析子系统之间,当监控中心仿真子系统接收到学员操作指令后,则将所述操作指令通过所述模拟采集通道下发给仿真管理与计算分析子系统,所述仿真管理与计算分析子系统基于接收到的操作指令、仿真断面数据、综合监控系统模型和综合监控中心画面管理整个培训过程,所述的操作指令指的是监控员利用综合监控系统对设备进行的操作,比如启动空调等。在本发明实施例的优选方式中,所述模拟采集通道使用共享内存方法实现监控中心仿真子系统和仿真管理与计算分析子系统之间的数据交互。
实施例2
基于与实施例1相同的发明构思,本发明实施例与实施例1的区别在于:
所述轨道交通综合监控混合培训仿真系统还包括物理设备模拟子系统,所述物理设备模拟子系统基于最小化原则配置与实际典型车站相似的物理设备,即考虑经济性因素,仅选择一座典型车站,按最小化原则配置与实际车站相似的物理设备来模拟实际设备运行过程中的状态;比如实际情况是车子上安装有两台空调,而物理设备模拟子系统可以只配置一台空调,以实现减少资金投入,从经济性角度来进行简配的话,就是无论现场实际有几台设备,每种设备均只配置1台;物理设备模拟子系统的具体工作逻辑就是接受控制命令,并切换相应的运行状态;
所述采集仿真子系统包括物理采集通道,所述物理采集通道设于所述监控中心仿真子系统与物理设备模拟子系统之间,在本发明实施例的优选实施方式中,所述物理采集通道可以选用104规约来实现监控中心仿真子系统与物理设备模拟子系统之间的数据交互;
当所述轨道交通综合监控混合培训仿真系统进行仿真时,可以选择只启用模拟采集通 道,实现纯数字模拟仿真;
或者,当所述轨道交通综合监控混合培训仿真系统进行仿真时,可以选择只启用物理采集通道,实现纯物理模拟仿真;
或者,当所述轨道交通综合监控混合培训仿真系统进行仿真时,可以设定的典型车站启用物理采集通道,其它车站启用模拟采集通道,实现混合模拟仿真。所述设定的典型车站根据实际情况去设计,该过程可以用结合下面的举例进行理解,比如假设一条轨道线路,有十个车站,前九个车站设备的运行状态使用仿真断面数据,剩余一个站使用按最小化原则配置的典型车站上送的数据,当控制命令发送到前九个站时,因为没有实际物理设备,设备的运行状态变化肯定是软件计算模拟的,如果发送到第十个站,因为有实际的物理设备,这个时候就不需要软件计算模拟,实际的物理设备接收到控制命令后,假设是屏蔽门开启命令,屏蔽门就会开启,并向模拟监控中心上送屏蔽门状态:开启。简单说就是一部分设备状态是软件计算模拟的,一部分是实际设备上送的。
实施例3
基于与实施例1和2相同的发明构思,本发明实施例中提供了一种轨道交通综合监控混合培训仿真方法,如图2所示,具体包括以下步骤:
建立实施例1中的轨道交通综合监控混合培训仿真系统;
利用跨现场同步子系统从位于综合监控控制中心现场的综合监控系统中获取仿真断面数据、综合监控系统模型和综合监控中心画面,并分别发送给仿真管理与计算分析子系统和监控中心仿真子系统;
当监控中心仿真子系统接收到学员操作指令后,则将所述操作指令通过所述采集仿真子系统中的模拟采集通道下发给仿真管理与计算分析子系统,所述仿真管理与计算分析子系统基于接收到的操作指令、仿真断面数据、综合监控系统模型和综合监控中心画面管理整个培训过程;在本发明实施例的优选实施方式中,所述模拟采集通道使用共享内存方法实现监控中心仿真子系统和仿真管理与计算分析子系统之间的数据交互。
所述轨道交通综合监控混合培训仿真系统还包括物理设备模拟子系统,所述物理设备模拟子系统为通过最小化原则配置的与实际典型车站相似的物理设备,用于模拟实际物理设备运行过程中的状态,物理设备模拟子系统的具体工作逻辑就是接受控制命令,并切换相应的运行状态;
所述采集仿真子系统还包括物理采集通道,所述物理采集通道设于所述监控中心仿真子系统与物理设备模拟子系统之间。
当所述轨道交通综合监控混合培训仿真系统进行仿真时,只启用模拟采集通道,实现 纯数字模拟仿真;
或者,当所述轨道交通综合监控混合培训仿真系统进行仿真时,只启用物理采集通道,实现纯物理模拟仿真;
或者,当所述轨道交通综合监控混合培训仿真系统进行仿真时,设定的典型车站启用物理采集通道,其它车站启用模拟采集通道,实现混合模拟仿真;物理设备模拟,模拟的是车站中的实际设备,监控中心仿真子系统模拟的是采集到这些设备的运行状态后的监视和控制操作;
优选地所述仿真管理与计算分析子系统包括:
断面管理模块,所述断面管理模块用于对接收到的仿真断面数据进行增加、删除、修改和取出处理;
故障管理模块,所述故障管理模块用于对基于仿真断面数据、综合监控系统模型和综合监控中心画面获得的仿真故障信息的增加、删除和修改处理;
教案管理模块,所述教案管理模块用于对培训教案信息的增加、删除和修改处理;
逻辑定制模块,所述逻辑定制模块用于根据物理设备运行特性定制输入输出信号之间的关联逻辑;
培训监视模块,所述培训监视模块用于教员监视整个培训过程,监视信息包括教员操作信息、学员操作信息和设备运行信息;
培训控制模块,所述培训控制模块用于教员控制整个培训过程,包括开始培训、暂停培训和结束培训控制操作;
计算分析模块,所述计算分析模块用于基于所述仿真断面数据、综合监控系统模型和综合监控中心画面计算设备运行逻辑,分析设备运行状态,统计设备运行指标,该基于仿真断面数据、综合监控系统模型和综合监控中心画面计算、分析和统计的过程均可以采用现有技术去实现,且是怎么进行具体计算、分析和统计是根据实际的需求去确定的,因此,本发明中不做过多的赘述。
综上所述:本发明提出一种轨道交通综合监控混合培训仿真系统及方法,综合考虑经济性和准确性,对全部车站设备进行数字建模,同时对一个典型车站的设备进行物理建模,可以单独用物理建模的车站作为数据源进行培训仿真,也可以单独使用数字建模的所有车站进行培训仿真,或者二者结合混合仿真方式,增强了培训效果。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化 和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (10)

  1. 一种轨道交通综合监控混合培训仿真系统,其特征在于,包括:
    跨现场同步子系统,所述跨现场同步子系统用于与位于综合监控控制中心现场的综合监控系统实时通信,获取仿真断面数据、综合监控系统模型和综合监控中心画面;
    仿真管理与计算分析子系统,所述仿真管理与计算分析子系统与所述跨现场同步子系统相连,接收跨现场同步子系统发送的仿真断面数据、综合监控系统模型和综合监控中心画面;
    监控中心仿真子系统,所述监控中心仿真子系统用于模拟综合监控控制中心现场的综合监控中心功能,其与所述跨现场同步子系统相连,接收跨现场同步子系统发送的仿真断面数据、综合监控系统模型和综合监控中心画面,并响应学员操作指令;
    采集仿真子系统,所述采集仿真子系统包括模拟采集通道,其设于所述监控中心仿真子系统与仿真管理与计算分析子系统之间,当监控中心仿真子系统接收到学员操作指令后,则将所述操作指令通过所述模拟采集通道下发给仿真管理与计算分析子系统,所述仿真管理与计算分析子系统基于接收到的操作指令、仿真断面数据、综合监控系统模型和综合监控中心画面管理整个培训过程。
  2. 根据权利要求1所述的一种轨道交通综合监控混合培训仿真系统,其特征在于:所述模拟采集通道使用共享内存方法实现监控中心仿真子系统和仿真管理与计算分析子系统之间的数据交互。
  3. 根据权利要求1所述的一种轨道交通综合监控混合培训仿真系统,其特征在于:所述轨道交通综合监控混合培训仿真系统还包括物理设备模拟子系统,所述物理设备模拟子系统为基于最小化原则配置的与实际典型车站相似的物理设备,用于模拟实际物理设备运行过程中的状态;
    所述采集仿真子系统还包括物理采集通道,所述物理采集通道设于所述监控中心仿真子系统与物理设备模拟子系统之间。
  4. 根据权利要求3所述的一种轨道交通综合监控混合培训仿真系统,其特征在于:当所述轨道交通综合监控混合培训仿真系统进行仿真时,只启用模拟采集通道,实现纯数字模拟仿真;
    或者,当所述轨道交通综合监控混合培训仿真系统进行仿真时,只启用物理采集通道,实现纯物理模拟仿真;
    或者,当所述轨道交通综合监控混合培训仿真系统进行仿真时,设定的典型车站启用物理采集通道,其它车站启用模拟采集通道,实现混合模拟仿真。
  5. 根据权利要求1所述的一种轨道交通综合监控混合培训仿真系统,其特征在于:所述 仿真管理与计算分析子系统包括:
    断面管理模块,所述断面管理模块用于对接收到的仿真断面数据进行增加、删除、修改和取出处理;
    故障管理模块,所述故障管理模块用于对基于仿真断面数据、综合监控系统模型和综合监控中心画面获得的仿真故障信息进行增加、删除和修改处理;
    教案管理模块,所述教案管理模块用于对培训教案信息的增加、删除和修改处理;
    逻辑定制模块,所述逻辑定制模块用于根据物理设备运行特性定制输入输出信号之间的关联逻辑;
    培训监视模块,所述培训监视模块用于教员监视整个培训过程,监视信息包括教员操作信息、学员操作信息和设备运行信息;
    培训控制模块,所述培训控制模块用于教员控制整个培训过程,包括开始培训、暂停培训和结束培训控制操作;
    计算分析模块,所述计算分析模块用于基于仿真断面数据、综合监控系统模型和综合监控中心画面计算设备运行逻辑,分析设备运行状态,统计设备运行指标。
  6. 一种轨道交通综合监控混合培训仿真方法,其特征在于,包括:
    建立权利要求1中所述的轨道交通综合监控混合培训仿真系统;
    利用跨现场同步子系统从位于综合监控控制中心现场的综合监控系统中获取仿真断面数据、综合监控系统模型和综合监控中心画面,并分别发送给仿真管理与计算分析子系统和监控中心仿真子系统;
    当监控中心仿真子系统接收到学员操作指令后,则将所述操作指令通过所述采集仿真子系统中的模拟采集通道下发给仿真管理与计算分析子系统,所述仿真管理与计算分析子系统基于接收到的操作指令、仿真断面数据、综合监控系统模型和综合监控中心画面管理整个培训过程。
  7. 根据权利要求6所述的一种轨道交通综合监控混合培训仿真方法,其特征在于:所述模拟采集通道使用共享内存方法实现监控中心仿真子系统和仿真管理与计算分析子系统之间的数据交互。
  8. 根据权利要求6所述的一种轨道交通综合监控混合培训仿真方法,其特征在于:所述轨道交通综合监控混合培训仿真系统还包括物理设备模拟子系统,所述物理设备模拟子系统基于最小化原则配置与实际典型车站相似的物理设备,用于模拟实际物理设备运行过程中的状态;
    所述采集仿真子系统还包括物理采集通道,所述物理采集通道设于所述监控中心仿真 子系统与物理设备模拟子系统之间。
  9. 根据权利要求8所述的一种轨道交通综合监控混合培训仿真方法,其特征在于:当所述轨道交通综合监控混合培训仿真系统进行仿真时,只启用模拟采集通道,实现纯数字模拟仿真;
    或者,当所述轨道交通综合监控混合培训仿真系统进行仿真时,只启用物理采集通道,实现纯物理模拟仿真;
    或者,当所述轨道交通综合监控混合培训仿真系统进行仿真时,设定的典型车站启用物理采集通道,其它车站启用模拟采集通道,实现混合模拟仿真。
  10. 根据权利要求6所述的一种轨道交通综合监控混合培训仿真方法,其特征在于:所述仿真管理与计算分析子系统包括:
    断面管理模块,所述断面管理模块用于对接收到的仿真断面数据进行增加、删除、修改和取出处理;
    故障管理模块,所述故障管理模块用于基于所述仿真断面数据、综合监控系统模型和综合监控中心画面,对仿真故障信息的增加、删除和修改处理;
    教案管理模块,所述教案管理模块用于对培训教案信息的增加、删除和修改处理;
    逻辑定制模块,所述逻辑定制模块用于根据物理设备运行特性定制输入输出信号之间的关联逻辑;
    培训监视模块,所述培训监视模块用于教员监视整个培训过程,监视信息包括教员操作信息、学员操作信息和设备运行信息;
    培训控制模块,所述培训控制模块用于教员控制整个培训过程,包括开始培训、暂停培训和结束培训控制操作;
    计算分析模块,所述计算分析模块用于基于所述仿真断面数据、综合监控系统模型和综合监控中心画面计算设备运行逻辑,分析设备运行状态,统计设备运行指标。
PCT/CN2019/092683 2018-12-19 2019-06-25 一种轨道交通综合监控混合培训仿真系统及方法 WO2020124974A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811553636.3A CN109523859B (zh) 2018-12-19 2018-12-19 一种轨道交通综合监控混合培训仿真系统及方法
CN201811553636.3 2018-12-19

Publications (1)

Publication Number Publication Date
WO2020124974A1 true WO2020124974A1 (zh) 2020-06-25

Family

ID=65796364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092683 WO2020124974A1 (zh) 2018-12-19 2019-06-25 一种轨道交通综合监控混合培训仿真系统及方法

Country Status (2)

Country Link
CN (1) CN109523859B (zh)
WO (1) WO2020124974A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109523859B (zh) * 2018-12-19 2021-08-27 南京南瑞继保电气有限公司 一种轨道交通综合监控混合培训仿真系统及方法
CN110104034B (zh) * 2019-04-29 2021-04-20 南京南瑞继保电气有限公司 一种轨道交通综合监控系统跨现场数据比较方法
CN112208587B (zh) * 2020-09-24 2022-06-28 交控科技股份有限公司 一种用于cbtc非信号系统的模拟系统及模拟方法
CN112631144B (zh) * 2020-11-20 2023-09-05 国网山东省电力公司电力科学研究院 一种综合能源实时数字物理混合仿真系统
CN112446148B (zh) * 2020-11-24 2024-04-23 南京轨道交通系统工程有限公司 一种基于城轨综合监控的数据仿真模拟系统及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258452A (zh) * 2012-02-21 2013-08-21 天津市维科车辆技术有限公司 虚实结合的城市轨道交通模拟仿真实训装置和方法
CN103295441A (zh) * 2012-02-29 2013-09-11 上海工程技术大学 一种用于城市轨道交通车站火灾工况仿真系统
CN105913713A (zh) * 2016-06-14 2016-08-31 成都运达科技股份有限公司 地铁调度仿真培训系统及方法
CN107123333A (zh) * 2017-07-11 2017-09-01 河北信成发科技有限公司 标准化车站值班员全景实训考评系统
WO2017165947A1 (en) * 2016-03-31 2017-10-05 Cae Inc. Method and systems for removing the most extraneous data record from a remote repository
CN107403580A (zh) * 2017-07-20 2017-11-28 兰州安信铁路科技有限公司 一种铁路信号综合系统实验平台
US20180284751A1 (en) * 2017-03-31 2018-10-04 Cae Inc. Continuous monitoring of a model in an interactive computer simulation station
CN109523859A (zh) * 2018-12-19 2019-03-26 南京南瑞继保电气有限公司 一种轨道交通综合监控混合培训仿真系统及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1707276A (zh) * 2005-05-24 2005-12-14 武汉大学 电力系统实时仿真方法和装置
US20090325694A1 (en) * 2008-06-27 2009-12-31 Microsoft Corpration Macroscopic quantum effects for computer games
CN102436556B (zh) * 2012-01-09 2015-03-25 国电南瑞科技股份有限公司 轨道交通事故反演系统
CN103123758B (zh) * 2012-11-28 2015-12-23 大同电力高级技工学校 一种调度自动化数字物理混合仿真培训系统
CN103544863B (zh) * 2013-10-22 2015-11-25 国电南瑞科技股份有限公司 轨道交通综合监控培训仿真系统数据交互模块及工作方法
CN104485042B (zh) * 2014-12-02 2017-07-25 国家电网公司 一种可控串联补偿器的数模混合仿真系统及其仿真方法
CN105139712B (zh) * 2015-09-15 2017-10-17 中国南方电网有限责任公司电网技术研究中心 基于实时仿真的在线调度员培训系统及其方法
CN106057008B (zh) * 2016-06-28 2019-01-04 南京南瑞继保电气有限公司 一种基于实时仿真器的调度员培训仿真系统及搭建方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258452A (zh) * 2012-02-21 2013-08-21 天津市维科车辆技术有限公司 虚实结合的城市轨道交通模拟仿真实训装置和方法
CN103295441A (zh) * 2012-02-29 2013-09-11 上海工程技术大学 一种用于城市轨道交通车站火灾工况仿真系统
WO2017165947A1 (en) * 2016-03-31 2017-10-05 Cae Inc. Method and systems for removing the most extraneous data record from a remote repository
CN105913713A (zh) * 2016-06-14 2016-08-31 成都运达科技股份有限公司 地铁调度仿真培训系统及方法
US20180284751A1 (en) * 2017-03-31 2018-10-04 Cae Inc. Continuous monitoring of a model in an interactive computer simulation station
CN107123333A (zh) * 2017-07-11 2017-09-01 河北信成发科技有限公司 标准化车站值班员全景实训考评系统
CN107403580A (zh) * 2017-07-20 2017-11-28 兰州安信铁路科技有限公司 一种铁路信号综合系统实验平台
CN109523859A (zh) * 2018-12-19 2019-03-26 南京南瑞继保电气有限公司 一种轨道交通综合监控混合培训仿真系统及方法

Also Published As

Publication number Publication date
CN109523859B (zh) 2021-08-27
CN109523859A (zh) 2019-03-26

Similar Documents

Publication Publication Date Title
WO2020124974A1 (zh) 一种轨道交通综合监控混合培训仿真系统及方法
WO2019137312A1 (zh) 轨道交通弱电一体化系统
CN103745624B (zh) 轨道交通模拟系统
CN104364663B (zh) 列车测试平台
CN108182841B (zh) 铁路编组站综合自动化仿真培训系统
CN112733353B (zh) 一种全自动驾驶仿真培训验证方法、系统、终端及介质
Ning et al. ACP-based control and management of urban rail transportation systems
CN106527411A (zh) 地铁列车网络控制系统测试装置和系统
WO2023272965A1 (zh) 一种面向于智慧地铁多专业的vr场景验证系统
CN113870649A (zh) 轨道交通信号仿真培训系统
CN111680402B (zh) 一种屏蔽门故障可视化方法、系统、装置及存储介质
JP2023540358A (ja) 列車シミュレーターテストセット及び方法
CN111276015A (zh) 一种基于虚拟现实的地铁司机应急处置训练系统和方法
CN108320610B (zh) 一种基于网络协同的公安交通指挥仿真训练系统
CN112309196B (zh) 站台门仿真训练系统及方法
RU121095U1 (ru) Система обучения персонала для тренажеров локомотивных бригад тягового подвижного состава
JP2001117479A (ja) ネットワークシミュレータ、ネットワークを利用したシミュレーション方法、および、その方法を記憶した記憶媒体
RU147846U1 (ru) Тренажер оператора железнодорожной техники
CN112200487B (zh) 一种城市轨道交通换乘车站的客流模拟方法
CN114063467A (zh) 轨道交通地面一体化仿真测试系统
CN113536602A (zh) 一种面向轨交智能车场的全息电子沙盘仿真方法
CN116755368A (zh) 一种基于快速原型仿真平台的信号模拟系统及验证方法
Milinković et al. Simulation model of a Single Track Railway Line
RU2791353C1 (ru) Интеллектуальный комплекс управления перевозочным процессом городской рельсовой транспортной системы (ГРТС)
CN113539008B (zh) 基于ar的便携式城市轨道交通车辆驾驶模拟系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19899093

Country of ref document: EP

Kind code of ref document: A1