WO2020124868A1 - 触摸面板、触摸装置及触摸检测方法 - Google Patents

触摸面板、触摸装置及触摸检测方法 Download PDF

Info

Publication number
WO2020124868A1
WO2020124868A1 PCT/CN2019/081320 CN2019081320W WO2020124868A1 WO 2020124868 A1 WO2020124868 A1 WO 2020124868A1 CN 2019081320 W CN2019081320 W CN 2019081320W WO 2020124868 A1 WO2020124868 A1 WO 2020124868A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
sensing
pressure
sensing electrode
electrode
Prior art date
Application number
PCT/CN2019/081320
Other languages
English (en)
French (fr)
Inventor
包春贵
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to CN201980049346.1A priority Critical patent/CN112639701A/zh
Publication of WO2020124868A1 publication Critical patent/WO2020124868A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present disclosure relates to the field of touch technology, and in particular, to a touch panel, a touch device, and a touch detection method.
  • Capacitive touch screens have been widely used in communication, consumer electronics, instruments, meters and other application fields. At present, in order to improve the accuracy of touch input in capacitive touch screens of the same size, more sensing electrodes need to be provided in areas of the same size. However, each sensing electrode needs to be electrically connected to the touch chip with a lead wire, and only a limited lead wire can be arranged in a limited space. This is not conducive to the development of capacitive touch screens.
  • embodiments of the present disclosure disclose a touch panel, a touch device, and a touch detection method.
  • a touch panel includes a touch layer for generating a first touch signal in response to user touch.
  • the touch layer includes a plurality of first sensing electrodes and a plurality of second sensing electrodes.
  • the plurality of first sensing electrodes and The same first wiring is electrically connected, and the plurality of second sensing electrodes are electrically connected to the plurality of second wirings; the plurality of first sensing electrodes are arranged at intervals, and the adjacent two first sensing electrodes form a gap, each One second sensing electrode corresponds to one gap.
  • a touch device includes the touch panel as described above.
  • a touch detection method applied to a touch panel includes a stacked touch layer and a pressure-sensitive conductor layer, each first sensing electrode of the touch layer and one pressure-sensitive conductor layer
  • the positions of the sensing channels correspond to each second sensing electrode of the touch layer corresponds to the position of one pressure sensing channel of the pressure sensitive conductor layer
  • the first sensing electrode of the touch layer corresponds to the same first wiring Electrical connection
  • the touch detection method includes:
  • the touch layer of the touch panel generates a first touch signal
  • the pressure-sensitive conductor layer of the touch panel generates a second touch signal
  • the pressure-sensitive touch position it is determined that one of the at least two position coordinates is the actual touch position.
  • the channels of the plurality of first sensing electrodes are connected into one channel to avoid each The first sensing electrodes are connected by a single wiring, thereby reducing the number of wirings, and thereby reducing the space occupied by the wiring, which is beneficial to the development of touch accuracy of the touch panel.
  • FIG. 1 is a structural block diagram of a touch device provided by a first embodiment of the present disclosure.
  • FIG. 2 is a partial schematic plan view of the touch layer provided by the first embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a part of the structure of the touch layer.
  • FIG. 4 is a simple schematic diagram of a touch object when the touch position of the touch panel is L.
  • FIG. 5 is a structural block diagram of a touch device provided by a second embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a laminated structure of a touch panel provided by a second embodiment of the present disclosure.
  • FIG. 7 is a schematic partial plan view of a touch layer provided by a second embodiment of the present disclosure.
  • FIG. 8 is a schematic partial plan view of a pressure-sensitive conductor layer.
  • FIG. 9 is a simple schematic diagram of a touch object when the touch position of the touch panel is M1.
  • FIG. 10 is a flowchart of a touch detection method provided by the present disclosure.
  • FIG 11 is one of the schematic plan views of the touch layer provided by the third embodiment of the present disclosure.
  • FIG. 12 is a second schematic plan view of a touch layer provided by a third embodiment of the present disclosure.
  • FIG. 13 is a third schematic plan view of a touch layer provided by a third embodiment of the present disclosure.
  • FIG 14 is a fourth schematic plan view of a touch layer provided by a third embodiment of the present disclosure.
  • 15 is a fifth schematic plan view of a touch layer provided by a third embodiment of the present disclosure.
  • 16 is a sixth schematic plan view of a touch layer provided by a third embodiment of the present disclosure.
  • Icons 10-touch layer; 100-touch device; 101-touch panel; 1011-function area; 1013-frame area; 1015-first frame area; 1017-second frame area; 103-processor; 11-first Sensing electrodes; 111, 112, 113, 114, 115-first sensing electrode; 13-second sensing electrode; 131, 132, 133, 134-second sensing electrode; 15-first wiring; 17- Second wiring; 171, 172, 173, 174-second wiring; 200-touch device; 201-touch panel; 203-processor; 30-touch layer; 31-first sensing electrode; 311, 312, 313, 314, 315-first sensing electrode; 33-second sensing electrode; 331, 332, 333, 334-second sensing electrode; 35-first wiring; 37-second wiring; 371, 373-second Wiring; 50-pressure-sensitive conductor layer; 51-pressure-sensitive channel; 71-first sensing electrode; 711, 712, 713, 714, 715, 716, 717-first
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a Detachable connection, or integral connection; it can be mechanical connection or electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, or it can be the connection between two components.
  • installation can be a fixed connection or a Detachable connection, or integral connection; it can be mechanical connection or electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, or it can be the connection between two components.
  • FIG. 1 is a structural block diagram of a touch device according to a first embodiment of the present disclosure.
  • the touch device 100 includes a touch panel 101 and a processor 103 electrically connected to the touch panel 101.
  • the touch panel 101 includes a touch layer 10 for generating a first touch signal in response to user touch.
  • the processor 103 is configured to receive the first touch signal generated by the touch layer 10 on the touch panel 101 in response to the user's touch and determine the touch parameters of the user's touch input, and perform corresponding control operations according to the touch parameters.
  • the touch parameters include touch position and the like.
  • the touch panel 101 may be a flexible touch panel or a rigid touch panel.
  • the touch device 100 may be a device with a touch input function such as a mobile phone, a tablet computer, a reader, a game machine, and the like. It can be understood that the touch device 100 further includes other necessary or non-essential structures, such as a display panel, etc., which will not be repeated here.
  • FIG. 2 is a schematic partial plan view of the touch layer of the touch panel.
  • the touch layer 10 includes a plurality of first sensing electrodes 11, a plurality of second sensing electrodes 13, a first wiring 15 and a plurality of second wirings 17.
  • the plurality of first sensing electrodes 11 are electrically connected to the processor 103 through the same first wiring 15, and the plurality of second sensing electrodes 13 are electrically connected to the processor 103 through the plurality of second wirings 17.
  • the plurality of first sensing electrodes 11 are electrically connected to the same first wiring 15, that is, the channels of the plurality of first sensing electrodes 11 are connected into one channel, so that each first sensing electrode 11 is not connected by a single wiring. Therefore, the number of wirings and the space occupied by the wirings are reduced, which is beneficial to the development of touch input accuracy of the touch panel 101.
  • each second sensing electrode 13 is correspondingly electrically connected to one second wiring 17.
  • the plurality of first sensing electrodes 11 and the plurality of second sensing electrodes 13 are arranged in the same layer.
  • the plurality of first sensing electrodes 11 are arranged at intervals, and a second sensing electrode 13 is arranged between two adjacent first sensing electrodes 11.
  • the plurality of second sensing electrodes 13 are arranged at intervals.
  • a first sensing electrode 11 is provided between the two sensing electrodes 13. In other words, the first sensing electrodes 11 and the second sensing electrodes 13 are alternately arranged with each other.
  • the touch panel 101 further includes a functional area 1011 and a frame area 1013 disposed around the functional area 1011.
  • the plurality of first sensing electrodes 11 and the plurality of second sensing electrodes 13 are located in the functional area 1011.
  • the first wiring 15 and the second wiring 17 are located in the frame area 1013.
  • the frame area 1013 includes a first frame area 1015 and a second frame area 1017.
  • the functional area 1011 is located between the first border area 1015 and the second border area 1017, that is, the first border area 1015 and the second border area 1017 are located on both sides of the functional area 1011, and the first wiring 15 is located in the first border area 1015.
  • the plurality of first sensing electrodes 11 are electrically connected to the same first wiring 15 located in the first frame region 1015; the plurality of second wirings 17 are located in the second frame region 1017, and the plurality of second sensing electrodes 13 are located in the first The plurality of second wirings 17 in the two frame regions 1017 are electrically connected. Since the plurality of first sensing electrodes 11 are electrically connected to the same first wiring 15 located in the first bezel area 1015, the width of the bezel area 1013 can be effectively reduced, which is beneficial to the frameless and full-screen development of the touch panel 101 . In addition, since the number of wirings in the frame area 1013 is reduced, it is advantageous to improve the anti-static effect of the first frame area 1015.
  • each second sensing electrode 13 is electrically connected to one second wiring 17 correspondingly, and the plurality of second wirings 17 all extend in the same direction to facilitate electrical connection with the processor 103.
  • FIG. 2 only exemplarily shows that the number of first sensing electrodes 11 is 5, the number of second sensing electrodes 13 is 4, and the number of second wirings 17 is 4.
  • the plurality of first sensing electrodes 11 includes a first sensing electrode 111, a first sensing electrode 112, a first sensing electrode 113, a first sensing electrode 114, and a first sensing electrode 115.
  • the plurality of second sensing electrodes 13 includes a second sensing electrode 131, a second sensing electrode 132, a second sensing electrode 133, and a second sensing electrode 134.
  • the first sensing electrode 111, the second sensing electrode 131, the first sensing electrode 112, the second sensing electrode 132, the first sensing electrode 113, the second sensing electrode 133, the first sensing electrode 114, the first The second sensing electrode 134 and the first sensing electrode 115 are arranged in this order.
  • the plurality of second wirings 17 include second wiring 171, second wiring 172, second wiring 173, and second wiring 174.
  • the second wiring 171 is electrically connected to the second sensing electrode 131
  • the second wiring 172 is electrically connected to the second sensing electrode 132
  • the second wiring 173 is electrically connected to the second sensing electrode 133
  • the second The wiring 174 is electrically connected to the second sensing electrode 134.
  • the number of first sensing electrodes 11, the number of second sensing electrodes 13, and the number of second wirings 17 are not limited. Generally, the number of first sensing electrodes 11 and Two sense the number of electrodes 13 to improve the touch resolution of the touch panel 101.
  • FIG. 3 is a schematic diagram of a part of the structure of the touch layer. Since the first sensing electrode 11 and the second sensing electrode 13 are alternately arranged with each other, a mutual capacitance is formed between the first sensing electrode 11 and the adjacent second sensing electrode 13, and the second sensing electrode 13 and the adjacent Mutual capacitance is formed between the first sensing electrodes 11.
  • a mutual capacitance C11a is formed between the first sensing electrode 111 and the second sensing electrode 131
  • a mutual capacitance C11b is formed between the second sensing electrode 131 and the first sensing electrode 112
  • the first sensing electrode 112 and the first Mutual capacitance C12a is formed between the two sensing electrodes 132
  • mutual capacitance C12b is formed between the second sensing electrode 132 and the first sensing electrode 113
  • mutual capacitance is formed between the first sensing electrode 113 and the second sensing electrode 133 C13a
  • a mutual capacitance C13b is formed between the second sensing electrode 133 and the first sensing electrode 114
  • a mutual capacitance C14a is formed between the first sensing electrode 114 and the second sensing electrode 134
  • a mutual capacitance C14b is formed between a sensing electrode 115.
  • Each first sensing electrode 11 and each second sensing electrode 13 correspond to a position coordinate on the touch panel 101.
  • a touch object a touch object such as a finger, a stylus, etc.
  • the processor 103 obtains touch parameters such as a touch position according to the first touch signal, that is, according to the corresponding relationship between different capacitance change values and coordinate positions.
  • the processor 103 performs corresponding control operations according to the touch parameters.
  • the following describes how the processor 103 determines the touch position of the touch object when the touch panel 101 is touched.
  • FIG. 4 is a simple schematic diagram of a touch object when the touch position of the touch panel is L.
  • the touch position L is on the second sensing electrode 131, the first sensing electrode 112, and the second sensing electrode 132 .
  • the touch area of the touch object on the second sensing electrode 131 is the same as the touch area on the second sensing electrode 132, the touch area is the contact area of the touch object and the touch panel 101, and the processor 103 may detect the The capacitance changes of the second sensing electrode 131 and the second sensing electrode 132 are the same, and the processor 103 can determine that the touch position L is between the second sensing electrode 131 and the second sensing electrode 132. If the touch area of the touch object on the second sensing electrode 131 is greater than the touch area on the second sensing electrode 132, the processor 103 can change according to the capacitance of the second sensing electrode 131 and the second sensing electrode 132. It is determined that the touch position L is biased toward the second sensing electrode 131 in the Y direction (arrow direction in FIG. 4).
  • the touch position is only on the second sensing electrode 131 and the first sensing electrode 112. If the processor 103 detects that the capacitance values of the second sensing electrode 131 and the first sensing electrode 112 are consistent, the processor 103 can determine that the touch position is between the second sensing electrode 131 and the first sensing electrode 112 If the processor 103 detects that the capacitance change value of the second sensing electrode 131 is greater than the capacitance change value of the first sensing electrode 112, that is, the touch position is biased toward the second sensing electrode 131 in the Y direction. The specific value can be calculated through the corresponding relationship between its different capacitance change value and coordinate position.
  • FIG. 5 is a structural block diagram of a touch device according to a second embodiment of the present disclosure.
  • the touch device 200 includes a touch panel 201 and a processor 203 electrically connected to the touch panel 201.
  • FIG. 6 is a schematic diagram of a laminated structure of a touch panel according to a second embodiment of the present disclosure.
  • the touch panel 201 includes a stacked touch layer 30 and a pressure-sensitive conductor layer 50.
  • the touch layer 30 is provided adjacent to the outermost side of the touch panel 201.
  • the touch layer 30 is used to generate a first touch signal in response to a user's touch.
  • the pressure-sensitive conductor layer 50 is used to generate a second touch signal in response to the user's touch.
  • the pressure-sensitive conductive layer 50 and the touch layer 30 together form a capacitive pressure-sensitive structure, that is, when the touch panel 201 is deformed by force, it will cause the pressure-sensitive conductive layer 50 and the touch layer 30 at the corresponding position of the touch panel 201 The capacitance between them changes, so that the pressure-sensitive conductive layer 50 generates a second touch signal.
  • the pressure-sensitive conductor layer 50 may be a resistive pressure-sensitive structure, or the pressure-sensitive conductor layer 50 may be a self-capacitive pressure-sensitive structure.
  • FIG. 7 is a schematic partial plan view of a touch layer provided by a second embodiment of the present disclosure.
  • the touch layer 30 includes a plurality of first sensing electrodes 31 (only five are exemplarily shown in FIG. 7), a plurality of second sensing electrodes 33 (only four are exemplarily shown in FIG. 7), a first One wiring 35 and a plurality of second wirings 37 (only two are exemplarily shown in FIG. 7).
  • the plurality of first sensing electrodes 31 and the plurality of second sensing electrodes 33 are arranged in the same layer.
  • the plurality of first sensing electrodes 31 are arranged at intervals, a second sensing electrode 33 is arranged between two adjacent first sensing electrodes 31, the plurality of second sensing electrodes 33 are arranged at intervals, and the two adjacent second A first sensing electrode 31 is provided between the two sensing electrodes 33.
  • the first sensing electrodes 31 and the second sensing electrodes 33 are alternately arranged with each other.
  • the touch layer 30 of this embodiment is similar in structure to the touch layer 10 provided in the first embodiment, except that the touch layer 30 further includes a plurality of electrode units, each electrode unit includes two second sensing electrodes 33, the same electrode The second sensing electrode 33 of the cell is electrically connected to the same second wiring 37.
  • At least one second sensing electrode 33 of the other electrode unit is provided between the two second sensing electrodes 33 of the same electrode unit to avoid blind touch points and improve the reliability of the touch panel 201. That is, every two second sensing electrodes 33 constitute an electrode unit.
  • the plurality of first sensing electrodes 31 includes a first sensing electrode 311, a first sensing electrode 312, a first sensing electrode 313, a first sensing electrode 314, and a first sensing electrode 315; a plurality of second sensing electrodes
  • the electrode 33 includes a second sensing electrode 331, a second sensing electrode 332, a second sensing electrode 333, and a second sensing electrode 334.
  • the first sensing electrode 311, the second sensing electrode 331, the first sensing electrode 312, the second sensing electrode 332, the first sensing electrode 313, the second sensing electrode 333, the first sensing electrode 314, the first The two sensing electrodes 334 and the first sensing electrodes 315 are arranged in sequence.
  • the second sensing electrode 331 and the second sensing electrode 333 constitute an electrode unit, and the second sensing electrode 332 and the second sensing electrode 334 constitute an electrode unit.
  • the second wiring 37 includes a second wiring 371 and a second wiring 373.
  • the second sensing electrode 331 and the second sensing electrode 333 are electrically connected to the same second wiring 371, and the second sensing electrode 332 and the second sensing electrode 334 are electrically connected to the same second wiring 373.
  • each second sensing electrode 33 of the same electrode unit is electrically connected to the same second wiring 37, each second sensing electrode 33 is prevented from being connected by a single wiring, thereby reducing the number of wirings and effectively reducing touch
  • the width of the frame area of the panel 201 is further conducive to the frameless and full-screen development of the touch panel 201.
  • the pressure-sensitive conductor layer 50 includes a plurality of pressure-sensitive channels 51 arranged in the same layer.
  • Each first sensing electrode 31 and each second sensing electrode 33 respectively correspond to the position of one pressure sensing channel 51. That is, each first sensing electrode 31 and the corresponding pressure-sensitive channel 51 have the same position coordinates on the touch panel 201, and each second sensing electrode 33 and the corresponding pressure-sensitive channel 51 have the same position coordinates on the touch panel 201 Position coordinates.
  • the plurality of pressure-sensitive channels 51 include pressure-sensitive channels 511, pressure-sensitive channels 512, pressure-sensitive channels 513, pressure-sensitive channels 514, pressure-sensitive channels 515, pressure-sensitive channels 516, pressure-sensitive channels 517, pressure-sensitive channels 518, and pressure-sensitive channels 519.
  • the pressure sensing channel 511 corresponds to the position of the first sensing electrode 311
  • the pressure sensing channel 512 corresponds to the position of the second sensing electrode 331
  • the pressure sensing channel 513 corresponds to the position of the first sensing electrode 312
  • the pressure sensing channel 514 corresponds to the second sensing
  • the pressure sensing channel 515 corresponds to the position of the first sensing electrode 313
  • the pressure sensing channel 516 corresponds to the position of the second sensing electrode 333
  • the pressure sensing channel 517 corresponds to the position of the first sensing electrode 314.
  • the channel 518 corresponds to the position of the second sensing electrode 334
  • the pressure sensing channel 519 corresponds to the position of the first sensing electrode 315.
  • the processor 203 will obtain two touch positions: The first position coordinate and the second position coordinate.
  • the first position coordinate and the second position coordinate For example, in FIG. 9, when the touch object touches the second sensing electrode 331, the first sensing electrode 312, and the second sensing electrode 332, the processor 203 acquires the first position coordinate M1, the second position coordinate M2, where the first position The coordinate M1 is the actual touch position, and the second position coordinate M2 is the virtual touch position, that is, the processor 203 cannot obtain the exact touch position.
  • the processor 203 can detect that the first touch signal generated by the user's touch operation acquires the first position coordinate and the second position coordinate, it cannot determine which of the first position coordinate and the second position coordinate is the actual touch position.
  • the processor 203 can determine the approximate touch position coordinates (pressure-sensitive touch position) according to the second touch signal, that is, according to the corresponding relationship between different capacitance change values and coordinate positions.
  • the processor 203 can detect the pressure-sensitive conductor layer 50 and the second sensing electrode 331, the first sensing electrode 312, and the second sensing electrode 332 Changes in the capacitance values of the three channels corresponding to the pressure-sensing channel 512, the pressure-sensing channel 513, and the pressure-sensing channel 514, and simultaneously detect the second sensing electrode 333 and the first sensing electrode at the second position coordinate M2
  • the capacitance values of the three channels corresponding to the pressure sensing channel 516, the pressure sensing channel 517, and the pressure sensing channel 518 corresponding to 314 and the second sensing electrode 334 have not changed, and thus the first position coordinate M1 can be determined as the actual touch position.
  • the slight deformation of the pressure-sensitive conductor layer 50 at the pressure-sensitive touch position can easily recognize that the user's actual touch position on the touch panel 201 is the first position coordinate M1 .
  • the processor 203 obtains the first position coordinate M1 and the second position coordinate M2 according to the first touch signal, the processor 203 obtains the pressure-sensitive touch position according to the second touch signal, and the processor 203 according to the pressure-sensitive touch The position determines that one of the first position coordinate and the second position coordinate is an actual touch position.
  • the number of the second sensing electrodes 33 of each electrode unit may be more than two, the second sensing electrodes 33 of the same electrode unit are electrically connected to the same second wiring 37, and the processor 203 is based on the first
  • the touch signal acquires at least two position coordinates, and obtains the pressure-sensitive touch position according to the second touch signal, and the processor 203 determines that one of the at least two position coordinates is the actual touch position according to the pressure-sensitive touch position.
  • the processor 203 obtains a pressure-sensitive touch position according to the second touch signal.
  • the pressure-sensitive touch position is an area including a certain position coordinate range, for example, an area range of a circle with a diameter of R.
  • 203 determines whether the first position coordinate and the second position coordinate are located at the pressure-sensitive touch position, and if the first position coordinate is located at the pressure-sensitive touch position, the second position coordinate is not located at the For a pressure-sensitive touch position, the first position coordinate is the actual touch position, and the second position coordinate is the virtual touch position; if the second position coordinate is at the pressure-sensitive touch position, the first position coordinate is not Located at the pressure-sensitive touch position, the second position coordinate is the actual touch position, and the first position coordinate is the virtual touch position.
  • the processor 203 obtains a pressure-sensitive touch position according to the second touch signal, that is, according to a corresponding relationship between different capacitance changes and coordinate positions, and the processor 203 calculates the first position coordinates and the The first distance between the pressure-sensitive touch positions, and the second distance between the second position coordinates and the pressure-sensitive touch positions, if the first distance is not greater than a preset threshold, the second distance Greater than the preset threshold, the first position coordinate is the actual touch position; if the second distance is not greater than the preset threshold, if the first distance is greater than the preset threshold, then The second position coordinate is an actual touch position, and the first position coordinate is a virtual touch position.
  • the touch layer 30 is combined with the pressure-sensitive conductor layer 50 to reduce the wiring of the frame area while ensuring the accuracy of touch input of the touch panel 201.
  • the present disclosure also provides a touch detection method applied to a touch panel.
  • the touch panel includes a stacked touch layer and a pressure-sensitive conductor layer.
  • Each first sensing electrode of the touch layer is The position of one pressure-sensitive channel of the pressure-sensitive conductor layer corresponds to each second sensing electrode of the touch layer corresponds to the position of one pressure-sensitive channel of the pressure-sensitive conductor layer, the first sense of the touch layer
  • the measuring electrode is electrically connected to the same first wiring, which includes the following steps:
  • Step 101 According to a user's touch operation on the touch panel, the touch layer of the touch panel generates a first touch signal, and the pressure-sensitive conductor layer of the touch panel generates a second touch signal.
  • Step 102 Acquire at least two position coordinates according to the first touch signal, and obtain a pressure-sensitive touch position according to the second touch signal.
  • Step 103 According to the pressure-sensitive touch position, determine one of the at least two position coordinates as the actual touch position.
  • the obtaining the actual touch position according to the at least two position coordinates and the pressure-sensitive touch position includes: determining the at least two positions according to the capacitance change of the pressure-sensitive conductor layer at the pressure-sensitive touch position One of the position coordinates is the actual touch position.
  • the obtaining the actual touch position according to the at least two position coordinates and the pressure-sensitive touch position includes: determining the at least two positions according to the resistance change of the pressure-sensitive conductor layer at the pressure-sensitive touch position One of the position coordinates is the actual touch position.
  • FIG. 11 is a schematic partial plan view of a touch layer provided by a third embodiment of the present disclosure.
  • the touch layer includes a plurality of first sensing electrodes 72 (only five are exemplarily shown in FIG. 11), a plurality of second sensing electrodes 74 (only four are exemplarily shown in FIG. 11), a first The wiring and the plurality of second wirings (only two are exemplarily shown in FIG. 11).
  • the plurality of first sensing electrodes 72 and the plurality of second sensing electrodes 74 are arranged in the same layer, and the plurality of first sensing electrodes 72 are arranged at intervals, and one is arranged between two adjacent first sensing electrodes The second sensing electrode. That is, the first sensing electrodes and the second sensing electrodes are alternately arranged correspondingly.
  • the touch layer of this embodiment has a similar structure to the touch layer 10 provided in the first embodiment, except that this embodiment includes multiple electrode units, each electrode unit includes at least two second sensing electrodes, and the same electrode unit The second sensing electrode is electrically connected to the same second wiring.
  • each adjacent two second sensing electrodes constitute an electrode unit, and the second sensing electrodes in the same electrode unit are connected through the same second wiring.
  • the plurality of first sensing electrodes 72 includes a first sensing electrode 721, a first sensing electrode 722, a first sensing electrode 723, a first sensing electrode 724, and a first sensing electrode 725;
  • the two sensing electrodes 74 include a second sensing electrode 741, a second sensing electrode 742, a second sensing electrode 743, and a second sensing electrode 744.
  • the pattern of each second sensing electrode of the same electrode unit is different, so that each second sensing electrode of the same electrode unit is in contact with the touch object (finger, stylus, etc.)
  • the capacitance change generated by the second sensing electrode and the touch object is different, that is, each second sense electrode generates a different first touch signal when the capacitance changes due to contact with the touch object, thereby causing the processor
  • receiving the first touch signal it is possible to identify which second sensing electrode of the electrode unit is the signal source of the first touch signal according to different first touch signals, and obtain touch parameters such as the touch position to perform corresponding control operations, thereby Avoid misjudgment by the processor of the coordinates of the position touched by the touch object.
  • the pattern of each second sensing electrode of the same electrode unit described in the embodiments of the present disclosure may include a pattern formed by the outer edge shape of the second sensing electrode, or may be the same or different In the case of a pattern formed by the outer edge shape of the second sensing electrode, the shape pattern of the hollow portion provided in the second sensing electrode.
  • the above-mentioned pattern form aims to achieve different effective surface areas of the two second sensing electrodes by making the patterns of the two second sensing electrodes in the same electrode unit different, so that The first touch signal generated after the touch object touches to generate a capacitance change is different.
  • the pattern formed by the outer edge shape of the second sensing electrode may be a rectangle, a trapezoid, a triangle, or other polygons, or may be a figure with an arc-shaped edge.
  • the shape pattern of the hollow portion provided in the second sensing electrode may be rectangular, trapezoidal, triangular, or other polygons, or a figure with an arc-shaped edge, and the hollow portion provided in the second sensing electrode
  • the first sensing electrodes 72 and the second sensing electrodes 74 are alternately arranged, and the second sensing electrodes 741 and the second sensing electrodes 742 constitute an electrode unit, the second sensing electrodes 743, and the second sensing electrodes 744 Make up another electrode unit.
  • the second sensing electrode 741 and the second sensing electrode 742 are both arranged in a rectangular shape.
  • the second sensing electrode 741 has a rectangular hollow portion, and the second sensing electrode 742 does not have a hollow portion.
  • the second sensing electrode 743 and the second sensing electrode 744 are both arranged in a rectangular shape, the second sensing electrode 743 has a rectangular hollow portion, and the second sensing electrode 744 does not have a hollow portion.
  • the second sensing electrode 741, the first sensing electrode 722, and the second sensing electrode 742 when the touch position of the touch object is M, the second sensing electrode 741, the first sensing electrode 722, and the second sensing electrode 742 generate a first touch signal and transmit it to the processor through the second wiring.
  • the processor can recognize the touch position M according to the received first touch signal, so as to achieve the touch recognition function of the touch panel.
  • each electrode unit may have the same electrode unit sequence, and of course, may also have different electrode unit sequences, which can be set by those skilled in the art according to specific circumstances.
  • second sensing electrodes of other electrode units are arranged between each second sensing electrode of the same electrode unit. That is, different electrode units are alternately arranged through the second sensing electrodes to form an interdigitated plug.
  • different electrode units may be composed of different numbers of second sensing electrodes, which is not limited in this embodiment.
  • each second sensing electrode is separately connected to the second wiring, thereby reducing the number of wirings and effectively reducing the touch panel
  • the width of the bezel area further promotes the frameless and full-screen development of the touch panel.
  • the plurality of first sensing electrodes 71 includes a first sensing electrode 711, a first sensing electrode 712, a first sensing electrode 713, a first sensing electrode 714 and a first sensing The electrode 715;
  • the plurality of second sensing electrodes 73 include a second sensing electrode 731, a second sensing electrode 732, a second sensing electrode 733, and a second sensing electrode 734.
  • the first sensing electrodes and the second sensing electrodes are alternately arranged, and the second sensing electrodes 731 and the second sensing electrodes 733 constitute an electrode unit, and the second sensing electrodes 732 and the second sensing electrodes 734 constitute another Electrode unit.
  • the two electrode units are interdigitated through their respective second sensing electrodes.
  • the first wiring 75 is connected to the first sensing electrode 711, the first sensing electrode 712, the first sensing electrode 713, the first sensing electrode 714, and the first sensing electrode 715, respectively;
  • the second wiring 77 includes The second wiring 771 connected to the second sensing electrode 731 and the second sensing electrode 733, and the second wiring 772 connected to the second sensing electrode 732 and the second sensing electrode 734, respectively.
  • the first wiring 75, the second wiring 771, and the second wiring 772 are each connected to the processor.
  • the outer edge pattern of the second sensing electrode 731 is set to be rectangular, and has a rectangular hollow portion; the outer edge pattern of the second sensing electrode 733 is set to be rectangular, but does not have a hollow portion.
  • the outer edge pattern of the second sensing electrode 732 is set to be rectangular and has a rectangular cutout; the outer edge pattern of the second sensing electrode 734 is set to be rectangular but does not have a cutout. That is, the electrode unit composed of the second sensing electrode 731 and the second sensing electrode 733 and the second sensing electrode 732 and the second sensing electrode 734 constitute another electrode unit having the same sequence of electrode units.
  • the processor will acquire the second sensing electrode 731, the first sensing electrode 712, and the second sensing electrode 732 through the first The first touch signal transmitted by the second wiring 771, the first wiring 75, and the second wiring 772. Thus, it is determined that the touch position of the touch object is M1.
  • the signal source of the first touch signal of M2 is the second sensing electrode 733 .
  • the first sensing electrode 714 and the second sensing electrode 734 because the patterns of the second sensing electrode 731 and the second sensing electrode 733 are different, the capacitance change caused by contact with the touch object is different, and the first touch signal is different 2.
  • the patterns of the second sensing electrode 732 and the second sensing electrode 734 are different, the capacitance change caused by contact with the touch object is different, and the first touch signal sent is different, so the processor can distinguish the first touch signal received
  • the recognition accurately determines that the touch position of the touch object is the first position coordinate M1. Therefore, the touch panel of this embodiment has higher touch recognition accuracy.
  • the outer edge pattern of the second sensing electrode 731 is set to be rectangular, and has a triangular cutout; the outer edge pattern of the second sensing electrode 733 is set to be rectangular, but does not have a cutout.
  • the outer edge pattern of the second sensing electrode 732 is set to be rectangular and has a triangular cutout; the outer edge pattern of the second sensing electrode 734 is set to be rectangular but does not have a cutout. That is, the electrode unit composed of the second sensing electrode 731 and the second sensing electrode 733 and the second sensing electrode 732 and the second sensing electrode 734 constitute another electrode unit having the same sequence of electrode units.
  • the processor when the touch object touches the first position coordinate M1, the processor will acquire the second sensing electrode 731, the first sensing electrode 712, and the second sensing electrode 732 respectively through the second The first touch signal transmitted by the wiring 771, the first wiring 75, and the second wiring 772. Thus, it is determined that the touch position of the touch object is M1.
  • the principle that the third position coordinate N2 will not be misjudged by the processor is the same as that in the first example above, and will not be repeated here.
  • the N2 position is also transmitted to the processor through the second wiring 771, the first wiring 75, and the second wiring 772, respectively, and the signal source at the N2 position is the same as the M1 position, but due to the second sensing electrode 731 and the second sensing electrode 732
  • the hollow part of is a triangle, and the capacitance change generated when the touched object is in contact with different positions on the same second sensing electrode is different, and the first touch signal sent is also different, so the first touch signal at the N2 position is different from the M1 position. Therefore, the processor can accurately determine the touch position M1 of the touched object according to the received first touch signal, without mistakenly determining the position of N2.
  • the touch recognition accuracy of the touch panel of this embodiment is further improved.
  • Example three as shown in FIG. 14, the outer edge pattern of the second sensing electrode 731 is set as a triangle; the outer edge pattern of the second sensing electrode 733 is set as a rectangle.
  • the outer edge pattern of the second sensing electrode 732 is set as a triangle; the outer edge pattern of the second sensing electrode 734 is set as a rectangle. That is, the electrode unit composed of the second sensing electrode 731 and the second sensing electrode 733 and the second sensing electrode 732 and the second sensing electrode 734 constitute another electrode unit having the same sequence of electrode units.
  • the processor when the touch object touches the M1 position, the processor will acquire the second sensing electrode 731, the first sensing electrode 712, and the second sensing electrode 732 through the second wiring 771, respectively , The first touch signal transmitted by the first wiring 75 and the second wiring 772. Thus, it is determined that the touch position of the touch object is M1.
  • the principle that the N2 position will not be misjudged by the processor is the same as that in the first example above, and will not be repeated here.
  • the principle that the N2 position will not be misjudged by the processor is the same as that in the second example above, and will not be repeated here. This example further improves the touch recognition accuracy of the touch panel of this embodiment, and is easier to process and set up.
  • those skilled in the art can also set up more first sensing electrodes and second sensing electrodes according to the above example without creative efforts, and compose more second sensing electrodes Electrode unit with electrode unit sequence or more second sensing electrodes with different patterns to form a longer electrode unit sequence (the number of second sensing electrodes included in the electrode unit sequence is the length of the electrode unit sequence ), so that the touch panel has better touch recognition accuracy and fewer wirings.
  • the plurality of first sensing electrodes 71 includes a first sensing electrode 711, a first sensing electrode 712, a first sensing electrode 713, a first sensing electrode 714, a first sensing electrode 715, the first sensing electrode 716 and the first sensing electrode 717;
  • the plurality of second sensing electrodes 73 include a second sensing electrode 731, a second sensing electrode 732, a second sensing electrode 733, a second sensing The electrode 734, the second sensing electrode 735, and the second sensing electrode 736.
  • the first sensing electrode 71 and the second sensing electrode 73 are alternately arranged with each other, and the second sensing electrode 731, the second sensing electrode 733, and the second sensing electrode 735 constitute an electrode unit, and the second sensing electrode 732 , The second sensing electrode 734 and the second sensing electrode 736 constitute another electrode unit.
  • the two electrode units are interdigitated through their respective second sensing electrodes.
  • the first sensing electrodes are all connected to the same first wiring, and the two electrode units are respectively connected to the corresponding two second wirings.
  • the outer edge patterns of the second sensing electrode 731, the second sensing electrode 732, the second sensing electrode 733, the second sensing electrode 734, the second sensing electrode 735, and the second sensing electrode 736 are all set in a rectangular shape.
  • the second sensing electrode 731 and the second sensing electrode 732 have a triangular hollow;
  • the second sensing electrode 733 and the second sensing electrode 734 have a rectangular hollow;
  • the measuring electrode 736 does not have a hollow part, and respectively constitute two identical electrode unit sequences with three second sensing electrodes.
  • the second sensing electrode can also be set in other patterns, such as the outer edge shape or cutout of ellipse, triangle, circle, etc.
  • FIG. 15 is only an example.
  • the first sense The number of the sensing electrode and the second sensing electrode should be set according to specific requirements, and there is no limit to the specific setting of the second sensing electrode in the electrode unit sequence, as long as each in the same electrode unit sequence
  • the patterns of the second sensing electrodes may be different from each other.
  • the plurality of first sensing electrodes 71 includes a first sensing electrode 711, a first sensing electrode 712, a first sensing electrode 713, a first sensing electrode 714, a first sensing electrode 715 , The first sensing electrode 716 and the first sensing electrode 717;
  • the plurality of second sensing electrodes 73 includes a second sensing electrode 731, a second sensing electrode 732, a second sensing electrode 733, a second sensing electrode 734, the second sensing electrode 735 and the second sensing electrode 736.
  • the first sensing electrode and the second sensing electrode are alternately arranged with each other, and the second sensing electrode 731 and the second sensing electrode 734 constitute an electrode unit; the second sensing electrode 732 and the second sensing electrode 735 constitute another An electrode unit; the second sensing electrode 733 and the second sensing electrode 736 constitute yet another electrode unit.
  • the three electrode units are interdigitated through their respective second sensing electrodes.
  • the first sensing electrodes are all connected to the same first wiring, and the three electrode units are respectively connected to the corresponding second wiring.
  • the outer edge patterns of the second sensing electrode 731, the second sensing electrode 732, the second sensing electrode 733, the second sensing electrode 734, the second sensing electrode 735, and the second sensing electrode 736 are all set in a rectangular shape.
  • the second sensing electrode 731, the second sensing electrode 732 and the second sensing electrode 733 have triangular hollow parts; the second sensing electrode 734, the second sensing electrode 735 and the second sensing electrode 736 do not have The hollow parts respectively constitute three electrode unit sequences with two second sensing electrodes.
  • the second sensing electrode can also be set to other specific situations, such as an outer edge pattern or a hollow portion of an ellipse, triangle, circle, etc.
  • the number of sensing electrodes and second sensing electrodes should be set according to specific requirements, and there is no limit to the specific settings of the second sensing electrodes in the electrode unit sequence, as long as they are in the same electrode unit sequence
  • the patterns of the second sensing electrodes may be different from each other.
  • the present disclosure provides a touch panel, a touch device, and a touch detection method. Since multiple first sensing electrodes are electrically connected to the same first wiring, the channels of the multiple first sensing electrodes are connected. In one channel, each first sensing electrode is prevented from being connected by a single wiring, thereby reducing the number of wirings, thereby reducing the space occupied by the wiring, which is beneficial to the development of touch accuracy of the touch panel and responding to the requirements of narrow bezels. It can be widely used in the field of touch and display technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

本公开公开了一种触摸面板(101)、触摸装置(100)及触摸检测方法,涉及触摸技术领域,触摸面板(101)包括触摸层(10),所述触摸层(10)用于响应用户触摸而产生第一触摸信号,所述触摸层(10)包括多个第一感测电极(11)、多个第二感测电极(13)、一个第一布线(15)及多个第二布线(17),所述多个第一感测电极(11)与同一个第一布线(15)电性连接,所述多个第二感测电极(13)与所述多个第二布线(17)电性连接。多个第一感测电极(11)间隔设置,相邻的两个第一感测电极(11)形成间隙,每个第二感测电极(13)对应一个间隙设置。由于多个第一感测电极(11)与同一个第一布线(15)电性连接,即将多个第一感测电极(11)的通道连成一个通道,避免每个第一感测电极(11)通过单个布线连接,从而减少布线的数量。

Description

触摸面板、触摸装置及触摸检测方法
相关申请的交叉引用
本申请要求于2018年12月19日提交中国专利局的申请号为PCT/CN2018/122103、名称为“触摸面板、触摸装置及触摸检测方法”的国际专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及触摸技术领域,特别涉及一种触摸面板、触摸装置及触摸检测方法。
背景技术
电容式触摸屏已经广泛应用于通讯、消费类电子、仪器、仪表等应用领域。目前,为了提高相同尺寸的电容式触摸屏中触摸输入的精度,需在相同尺寸的区域内设置更多的感测电极。然而,每个感测电极均需引出引线与触摸芯片电性连接,有限的空间仅能布置有限的引线。如此,不利于电容式触摸屏的发展。
发明内容
为解决上述问题,本公开实施例公开一种触摸面板、触摸装置及触摸检测方法。
一种触摸面板,包括触摸层,触摸层用于响应用户触摸而产生第一触摸信号,触摸层包括多个第一感测电极及多个第二感测电极,多个第一感测电极与同一个第一布线电性连接,多个第二感测电极与多个第二布线电性连接;多个第一感测电极间隔设置,相邻的两个第一感测电极形成间隙,每个第二感测电极对应一个间隙设置。
一种触摸装置,其包括如上所述的触摸面板。
一种应用于触摸面板上的触摸检测方法,所述触摸面板包括层叠设置的触摸层与压感导体层,所述触摸层的每个第一感测电极与所述压感导体层的一个压感通道的位置对应,所述触摸层的每个第二感测电极与所述压感导体层的一个压感通道的位置对应,所述触摸层的第一感测电极与同一个第一布线电性连接,所述触摸检测方法包括:
根据用户在触摸面板上的触摸操作,所述触摸面板的触摸层产生第一触摸信号,所述触摸面板的压感导体层产生第二触摸信号;
根据所述第一触摸信号获取至少两个位置坐标,根据所述第二触摸信号获取压感触摸位置;
根据所述压感触摸位置,确定所述至少两个位置坐标中的一个位置坐标为实际触摸位置。
本公开提供的触摸面板、触摸装置及触摸检测方法,由于多个第一感测电极与同一个第一布线电性连接,即将多个第一感测电极的通道连成一个通道,避免每个第一感测电极 通过单个布线连接,从而减少布线的数量,进而减少布线所占空间,有利于触摸面板的触摸精确度的发展。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开第一实施方式提供的一种触摸装置的结构框图。
图2为本公开第一实施方式提供的触摸层的部分平面示意图。
图3为触摸层的部分结构示意图。
图4为触摸对象在触摸面板的触摸位置为L时的简单示意图。
图5为本公开第二实施方式提供的一种触摸装置的结构框图。
图6为本公开第二实施方式提供的触摸面板的叠层结构示意图。
图7为本公开第二实施方式提供的触摸层的部分平面示意图。
图8为压感导体层的部分平面示意图。
图9为触摸对象在触摸面板的触摸位置为M1时的简单示意图。
图10为本公开提供的触摸检测方法的流程图。
图11为本公开第三实施方式提供的触摸层的平面示意图之一。
图12为本公开第三实施方式提供的触摸层的平面示意图之二。
图13为本公开第三实施方式提供的触摸层的平面示意图之三。
图14为本公开第三实施方式提供的触摸层的平面示意图之四。
图15为本公开第三实施方式提供的触摸层的平面示意图之五。
图16为本公开第三实施方式提供的触摸层的平面示意图之六。
图标:10-触摸层;100-触摸装置;101-触摸面板;1011-功能区;1013-边框区;1015-第一边框区;1017-第二边框区;103-处理器;11-第一感测电极;111、112、113、114、115-第一感测电极;13-第二感测电极;131、132、133、134-第二感测电极;15-第一布线;17-第二布线;171、172、173、174-第二布线;200-触摸装置;201-触摸面板;203-处理器;30-触摸层;31-第一感测电极;311、312、313、314、315-第一感测电极;33-第二感测电极;331、332、333、334-第二感测电极;35-第一布线;37-第二布线;371、373-第二布线;50-压感导体层;51-压感通道;71-第一感测电极;711、712、713、714、715、716、717-第一感测电极;72-第一感测电极;721、722、723、724、725-第一感测电极;73-第二感测电极;731、732、733、734、735、736-第二感测电极;74-第二感测电极;741、742、743、744-第二感测电极;75-第一布线;77-第二布线;771、772-第二布线;511、512、513、514、 515、516、517、518、519-压感通道;C11a、C11b、C12a、C12b、C13a、C13b、C14a、C14b-互电容;M1-第一位置坐标;M2-第二位置坐标;N2-第三位置坐标;M-触摸位置。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合附图对本公开的技术方案进行清楚、完整地描述,所描述的实施例是本公开一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本公开实施例的组件可以以不同的配置来设计。
因此,以下对在附图中提供的本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本公开的描述中,需要说明的是,如出现术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等,其所指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,如出现术语“第一”、“第二”、“第三”仅配置成描述目的,而不能理解为指示或暗示相对重要性。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,如出现术语“安装”、“设置”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
请参阅图1,图1为本公开第一实施方式提供的一种触摸装置的结构框图。触摸装置100包括触摸面板101及与触摸面板101电性连接的处理器103。触摸面板101包括触摸层10,触摸层10用于响应用户触摸而产生第一触摸信号。处理器103用于接收触摸面板101上的触摸层10响应用户触摸产生的第一触摸信号并确定用户触摸输入的触摸参数,并根据触摸参数进行相应的控制操作。所述触摸参数包括触摸位置等。
触摸面板101可以为柔性触摸面板,也可以为刚性触摸面板。触摸装置100可以为手机、平板电脑、阅读器、游戏机等具触摸输入功能的装置。可以理解,触摸装置100还包括其他必要或非必要结构,例如显示面板等,在此不作赘述。
请参阅图2,图2为触摸面板的触摸层的部分平面示意图。触摸层10包括多个第一感测电极11、多个第二感测电极13、一个第一布线15及多个第二布线17。多个第一感测电 极11通过同一个第一布线15而实现与处理器103电性连接,多个第二感测电极13通过多个第二布线17而实现与处理器103电性连接。
由于多个第一感测电极11与同一个第一布线15电性连接,即将多个第一感测电极11的通道连成一个通道,避免每个第一感测电极11通过单个布线连接,从而减少布线的数量,进而减少布线所占空间,有利于触摸面板101的触摸输入精确度的发展。
本实施方式中,每个第二感测电极13对应与一个第二布线17电性连接。
多个第一感测电极11与多个第二感测电极13同层设置。多个第一感测电极11间隔排列,相邻的两个第一感测电极11之间设一个第二感测电极13,多个第二感测电极13间隔排列,相邻的两个第二感测电极13之间设一个第一感测电极11。换而言之,第一感测电极11与第二感测电极13相互交替设置。
进一步地,触摸面板101还包括功能区1011及绕功能区1011设置的边框区1013。多个第一感测电极11与多个第二感测电极13均位于功能区1011。第一布线15及第二布线17位于边框区1013。边框区1013包括第一边框区1015及第二边框区1017。功能区1011位于第一边框区1015与第二边框区1017之间,即第一边框区1015与第二边框区1017分别位于功能区1011的两侧,第一布线15位于第一边框区1015,多个第一感测电极11与位于第一边框区1015的同个第一布线15电性连接;多个第二布线17位于第二边框区1017,多个第二感测电极13与位于第二边框区1017的多个第二布线17电性连接。由于多个第一感测电极11与位于第一边框区1015的同个第一布线15电性连接,能够有效减小边框区1013的宽度,有利于触摸面板101的无框化及全屏化发展。另外,由于减小边框区1013的布线数量,有利于提高第一边框区1015的防静电效果。
本实施方式中,每个第二感测电极13对应与一个第二布线17电性连接,多个第二布线17均向同一方向延伸,以方便与处理器103电性连接。
图2中仅示例性地示出第一感测电极11的数量为5个,第二感测电极13的数量为4个,以及第二布线17的数量为4个。多个第一感测电极11包括第一感测电极111、第一感测电极112、第一感测电极113、第一感测电极114与第一感测电极115。多个第二感测电极13包括第二感测电极131、第二感测电极132、第二感测电极133及第二感测电极134。第一感测电极111、第二感测电极131、第一感测电极112、第二感测电极132、第一感测电极113、第二感测电极133、第一感测电极114、第二感测电极134、第一感测电极115依次排列。多个第二布线17包括第二布线171、第二布线172、第二布线173及第二布线174。第二布线171与第二感测电极131电性相接,第二布线172与第二感测电极132电性相接,第二布线173与第二感测电极133电性相接,第二布线174与第二感测电极134电性相接。可以理解,不限定第一感测电极11的数量,不限定第二感测电极13的数量,不 限定第二布线17的数量,通常设尽可能多的第一感测电极11的数量及第二感测电极13的数量,以提高触摸面板101的触摸分辨率。
请参阅图3,图3为触摸层的部分结构示意图。由于第一感测电极11与第二感测电极13相互交替设置,第一感测电极11与相邻的第二感测电极13之间形成互电容,第二感测电极13与相邻的第一感测电极11之间形成互电容。其中,第一感测电极111与第二感测电极131之间形成互电容C11a,第二感测电极131与第一感测电极112之间形成互电容C11b,第一感测电极112与第二感测电极132之间形成互电容C12a,第二感测电极132与第一感测电极113之间形成互电容C12b,第一感测电极113与第二感测电极133之间形成互电容C13a,第二感测电极133与第一感测电极114之间形成互电容C13b,第一感测电极114与第二感测电极134之间形成互电容C14a,第二感测电极134与第一感测电极115之间形成互电容C14b。
每个第一感测电极11与每个第二感测电极13均对应触摸面板101上一位置坐标。当触摸对象(手指、触控笔等触摸对象)在触摸面板101上进行触摸时,触摸面板101与触摸对象接触的位置会发生电容变化生成第一触摸信号。处理器103根据第一触摸信号,即根据不同电容变化值与坐标位置之间的相应关系获取触摸位置等触摸参数。处理器103根据所述触摸参数进行相应的控制操作。
以下对处理器103如何判断触摸对象在触摸面板101进行触摸时的触摸位置进行说明。
例如,请参阅图4,图4为触摸对象在触摸面板的触摸位置为L时的简单示意图,触摸位置L在第二感测电极131、第一感测电极112、第二感测电极132上。
若触摸对象在第二感测电极131上的触摸面积与在第二感测电极132上的触摸面积相同,所述触摸面积为触摸对象与触摸面板101的接触面积,处理器103可检测到第二感测电极131与第二感测电极132的电容变化相同,处理器103即可判断触摸位置L在第二感测电极131与第二感测电极132中间。若触摸对象在第二感测电极131上的触摸面积大于在第二感测电极132上的触摸面积,处理器103根据第二感测电极131与第二感测电极132的电容变化,即可判断触摸位置L在Y方向(图4中箭头方向)上偏向第二感测电极131。
又如,触摸位置仅在第二感测电极131及第一感测电极112上。若处理器103检测到第二感测电极131及第一感测电极112的电容值变化值一致,处理器103即可判断出触摸位置在第二感测电极131及第一感测电极112之间;若处理器103检测到第二感测电极131电容变化值大于第一感测电极112的电容变化值,即在Y方向上触摸位置偏向第二感测电极131。具体数值可通过其不同电容变化值与坐标位置之间的相应关系算出。
请参阅图5,图5为本公开第二实施方式提供的触摸装置的结构框图。触摸装置200包括触摸面板201及与触摸面板201电性连接的处理器203。请参阅图6,图6为本公开第 二实施方式提供的触摸面板的叠层结构示意图。触摸面板201包括层叠设置的触摸层30及压感导体层50。本实施方式中,触摸层30与触摸面板201的最外侧相邻设置。触摸层30用于响应用户的触摸而产生第一触摸信号。压感导体层50用于响应用户的触摸而产生第二触摸信号。本实施方式中,压感导体层50与触摸层30共同形成电容式压感结构,即触摸面板201受力形变时,会引起触摸面板201对应位置处的压感导体层50与触摸层30之间的电容变化,使得压感导体层50产生第二触摸信号。在其他实施方式中,压感导体层50可以电阻式压感结构,或者压感导体层50可以为自电容式压感结构。
请参阅图7,图7为本公开第二实施方式提供的触摸层的部分平面示意图。触摸层30包括多个第一感测电极31(图7中仅示例性地示出5个)、多个第二感测电极33(图7中仅示例性地示出4个)、一个第一布线35及多个第二布线37(图7中仅示例性地示出2个)。
多个第一感测电极31与多个第二感测电极33同层设置。多个第一感测电极31间隔排列,相邻的两个第一感测电极31之间设一个第二感测电极33,多个第二感测电极33间隔排列,相邻的两个第二感测电极33之间设一个第一感测电极31。换而言之,第一感测电极31与第二感测电极33相互交替设置。
本实施方式的触摸层30与第一实施方式提供的触摸层10结构相似,不同在于,触摸层30还包括多个电极单元,每个电极单元包括两个第二感测电极33,同个电极单元的第二感测电极33与同一个第二布线37电性连接。
同个电极单元的两第二感测电极33间至少设有其他电极单元的一个第二感测电极33,避免触摸盲点,提高触摸面板201的可靠性。即每两个第二感测电极33组成一个电极单元。
多个第一感测电极31包括第一感测电极311、第一感测电极312、第一感测电极313、第一感测电极314与第一感测电极315;多个第二感测电极33包括第二感测电极331、第二感测电极332、第二感测电极333、第二感测电极334。第一感测电极311、第二感测电极331、第一感测电极312、第二感测电极332、第一感测电极313、第二感测电极333、第一感测电极314、第二感测电极334及第一感测电极315依次排列。
第二感测电极331与第二感测电极333组成一个电极单元,第二感测电极332与第二感测电极334组成一个电极单元。第二布线37包括第二布线371及第二布线373。其中,第二感测电极331与第二感测电极333与同个第二布线371电性连接,第二感测电极332与第二感测电极334同个第二布线373电性连接。
由于同个电极单元的两个第二感测电极33与同个第二布线37电性连接,避免每个第二感测电极33通过单个布线连接,从而减少布线的数量,能够有效减小触摸面板201的边框区的宽度,进一步有利于触摸面板201的无框化及全屏化发展。
图8为压感导体层的部分平面示意图。压感导体层50包括同层设置的多个压感通道51。 每个第一感测电极31和每个第二感测电极33分别与一个压感通道51位置对应。即每个第一感测电极31与对应的压感通道51具有触摸面板201上的相同的位置坐标,每个第二感测电极33与对应的压感通道51具有触摸面板201上的相同的位置坐标。
多个压感通道51包括压感通道511、压感通道512、压感通道513、压感通道514、压感通道515、压感通道516、压感通道517、压感通道518及压感通道519。压感通道511对应第一感测电极311的位置,压感通道512对应第二感测电极331的位置,压感通道513对应第一感测电极312的位置,压感通道514对应第二感测电极332的位置,压感通道515对应第一感测电极313的位置,压感通道516对应第二感测电极333的位置,压感通道517对应第一感测电极314的位置,压感通道518对应第二感测电极334的位置,压感通道519对应第一感测电极315的位置。
由于同个电极单元的两个第二感测电极33与同个第二布线37电性连接,当触摸对象触摸在触摸面板201的某个位置时,处理器203会得出两个触摸位置:第一位置坐标及第二位置坐标。例如图9,当触摸对象触摸第二感测电极331、第一感测电极312、第二感测电极332时,处理器203获取第一位置坐标M1、第二位置坐标M2,其中第一位置坐标M1为实际触摸位置,第二位置坐标M2为虚拟触摸位置,即处理器203无法得到确切触摸位置。处理器203虽能够检测到因用户触摸操作而产生的第一触摸信号获取到第一位置坐标及第二位置坐标,但无法判别出第一位置坐标与第二位置坐标中的哪一个为实际触摸位置。
由于触摸对象触摸在触摸面板201上时会有一定压力,使得触摸面板201在对应位置处发生形变,触摸面板201对应位置处的压感导体层50与触摸层30之间的距离d发生变化,致使电容发生变化而产生第二触摸信号。处理器203根据所述第二触摸信号,即根据不同电容变化值与坐标位置之间相应的关系即可判断大概触摸位置坐标(压感触摸位置)。
如图9所示例中,当在第一位置坐标M1位置触摸,处理器203可以检测到压感导体层50与第二感测电极331、第一感测电极312、第二感测电极332处相对应的压感通道512、压感通道513及压感通道514的三个通道的电容数值上的变化,同时检测到与第二位置坐标M2处第二感测电极333、第一感测电极314及第二感测电极334对应的压感通道516、压感通道517及压感通道518的三个通道的电容数值未发生变化,进而可判断出第一位置坐标M1为实际触摸位置。因为第一位置坐标M1与第二位置坐标M2相隔一定距离,通过压感导体层50在压感触摸位置的微小形变能轻易识别出用户在触摸面板201上的实际触摸位置为第一位置坐标M1。
即,处理器203根据所述第一触摸信号获取第一位置坐标M1及第二位置坐标M2,处理器203根据所述第二触摸信号获取压感触摸位置,处理器203根据所述压感触摸位置确定所述第一位置坐标与所述第二位置坐标中的一个为实际触摸位置。
可以理解,每个电极单元的第二感测电极33的数量可以为两个以上,同个电极单元的第二感测电极33与同一个第二布线37电性连接,处理器203根据第一触摸信号获取至少两个位置坐标,根据所述第二触摸信号获取压感触摸位置,处理器203根据所述压感触摸位置确定所述至少两个位置坐标中的一个为实际触摸位置。
在一实施方式中,处理器203根据所述第二触摸信号获取压感触摸位置,所述压感触摸位置为包括一定位置坐标范围的区域,例如以一直径为R的圆的区域范围,处理器203判断所述第一位置坐标及所述第二位置坐标是否位于所述压感触摸位置,若所述第一位置坐标位于所述压感触摸位置,所述第二位置坐标不位于所述压感触摸位置,则所述第一位置坐标为实际触摸位置,所述第二位置坐标为虚拟触摸位置;若所述第二位置坐标位于所述压感触摸位置,所述第一位置坐标不位于所述压感触摸位置,则所述第二位置坐标为实际触摸位置,所述第一位置坐标为虚拟触摸位置。
在一实施方式中,处理器203根据所述第二触摸信号,即根据不同电容变化值与坐标位置之间相应的关系获取压感触摸位置,处理器203计算所述第一位置坐标与所述压感触摸位置之间的第一间距,及所述第二位置坐标与所述压感触摸位置之间的第二间距,若所述第一间距不大于预设阀值,所述第二间距大于所述预设阀值,则所述第一位置坐标为实际触摸位置;若所述第二间距不大于所述预设阀值,若所述第一间距大于所述预设阀值,则所述第二位置坐标为实际触摸位置,所述第一位置坐标为虚拟触摸位置。
本实施方式中提供的触摸面板201及触摸装置200,触摸层30结合压感导体层50,在减少边框区布线的同时,确保触摸面板201的触摸输入的精确度。
请参阅图10,本公开还提供一种应用于触摸面板的触摸检测方法,所述触摸面板包括层叠设置的触摸层与压感导体层,所述触摸层的每个第一感测电极与所述压感导体层的一个压感通道的位置对应,所述触摸层的每个第二感测电极与所述压感导体层的一个压感通道的位置对应,所述触摸层的第一感测电极与同一个第一布线电性连接,其包括以下步骤:
步骤101,根据用户在触摸面板上的触摸操作,所述触摸面板的触摸层产生第一触摸信号,所述触摸面板的压感导体层产生第二触摸信号。
步骤102,根据所述第一触摸信号获取至少两个位置坐标,根据所述第二触摸信号获取压感触摸位置。
步骤103,根据所述压感触摸位置,确定所述至少两个位置坐标中的一个位置坐标为实际触摸位置。
所述根据所述至少两个位置坐标及所述压感触摸位置,获取实际触摸位置,包括:根据所述压感导体层在所述压感触摸位置的电容变化,确定所述至少两个位置坐标中的一个位置坐标为实际触摸位置。
所述根据所述至少两个位置坐标及所述压感触摸位置,获取实际触摸位置,包括:根据所述压感导体层在所述压感触摸位置的电阻变化,确定所述至少两个位置坐标中的一个位置坐标为实际触摸位置。
请参阅图11,图11为本公开第三实施方式提供的触摸层的部分平面示意图。触摸层包括多个第一感测电极72(图11中仅示例性地示出5个)、多个第二感测电极74(图11中仅示例性地示出4个)、一个第一布线以及多个第二布线(图11中仅示例性地示出2个)。
多个第一感测电极72与多个第二感测电极74为同层设置,并且多个第一感测电极72间隔排列,在相邻的两个第一感测电极之间设置有一个第二感测电极。即第一感测电极与第二感测电极对应交替排列设置。
本实施方式的触摸层与第一实施方式提供的触摸层10结构相似,不同在于,本实施方式包括多个电极单元,每个电极单元至少包括两个第二感测电极,并且同一个电极单元的第二感测电极与同一个第二布线电性连接。
如图11,每相邻两个第二感测电极组成一个电极单元,同一电极单元中的第二感测电极通过同一个第二布线连接。示例的,多个第一感测电极72包括第一感测电极721、第一感测电极722、第一感测电极723、第一感测电极724及第一感测电极725;多个第二感测电极74包括第二感测电极741、第二感测电极742、第二感测电极743及第二感测电极744。
在本实施方式中,同个电极单元的每个第二感测电极的图案均不相同,以使同个电极单元的每个第二感测电极在与触摸对象(手指、触控笔等)发生接触时,该第二感测电极与触摸对象产生的电容变化有所不同,即每个第二感测电极在与触摸对象接触发生电容变化以生成的第一触摸信号不同,进而使处理器根据接收到第一触摸信号,能够根据不同的第一触摸信号识别第一触摸信号的信号源为该电极单元的哪个第二感测电极,获取触摸位置等触摸参数以进行相应的控制操作,从而避免处理器对触摸对象触摸的位置坐标的误判。
需要说明的是,本公开实施例中所述的同个电极单元的每个第二感测电极的图案,可以包括第二感测电极的外边缘形状形成的图案,也可以是相同或者不同的第二感测电极的外边缘形状形成的图案的情况下,在第二感测电极内设置的镂空部的形状图案。上述的图案形式,目的是为了通过使同一电极单元中两个第二感测电极的图案不同,达到所述两个第二感测电极的有效表面积不同,以便在两个第二感测电极与触摸对象发生接触产生电容变化后生成的第一触摸信号不同。例如,第二感测电极的外边缘形状形成的图案可以是矩形、梯形、三角形或者其他多边形,还可以是带有弧形边缘的图形。同样的,第二感测电极内设置的镂空部的形状图案可以是矩形、梯形、三角形或者其他多边形,还可以是带有弧形边缘的图形,而且,第二感测电极内设置的镂空部也可以是多个,多个镂空部的形状图案可以相同,也可以不同。以下以能够实现功能且加工制作难度较低、良率高的形式进 行举例说明。
示例地,第一感测电极72与第二感测电极74交替排列,且第二感测电极741和第二感测电极742组成电极单元、第二感测电极743和第二感测电极744组成另一个电极单元。第二感测电极741和第二感测电极742均设置为矩形,第二感测电极741具有矩形镂空部,而第二感测电极742不具有镂空部。同样地,第二感测电极743和第二感测电极744均设置为矩形,第二感测电极743具有矩形镂空部,而第二感测电极744不具有镂空部。
示例性的,当触摸对象的触摸位置为M时,第二感测电极741、第一感测电极722及第二感测电极742会产生第一触摸信号并通过第二布线传输至处理器。处理器能够根据接收到的第一触摸信号识别出触摸位置M,从而达到该触摸面板的触摸识别功能。
当然,在实际使用中,根据上述示例还可以相应增加和设置第一感测电极以及第二感测电极的个数,并且还可以将更多的具有不同图案的第二感测电极连接至同一第二布线组成具有电极单元序列的电极单元。从而提高触摸面板的触摸识别精度。在实际使用中,每个电极单元之间可以具有相同的电极单元序列,当然,也可以具有不同的电极单元序列,对此本领域技术人员可以根据具体情况而设定。
为避免出现触摸盲点,通常同一电极单元的每个第二感测电极之间还排列有其他电极单元的第二感测电极。即不同的电极单元通过第二感测电极交替排列形成叉指型插合。其中,不同的电极单元可以由不同个数的第二感测电极组成,本实施方式中,对此不做限制。
由于同个电极单元的第二感测电极与同个第二布线电性连接,避免了每个第二感测电极分别单独与第二布线连接,从而减少了布线的数量,有效减小触摸面板的边框区的宽度,进一步的促进触摸面板的无框化及全屏化发展。
如图12所示,示例地,多个第一感测电极71包括第一感测电极711、第一感测电极712、第一感测电极713、第一感测电极714及第一感测电极715;多个第二感测电极73包括第二感测电极731、第二感测电极732、第二感测电极733及第二感测电极734。
其中,第一感测电极与第二感测电极交替排列,且第二感测电极731和第二感测电极733组成电极单元、第二感测电极732和第二感测电极734组成另一个电极单元。两个电极单元之间通过各自的第二感测电极呈叉指型插合。
第一布线75分别与第一感测电极711、第一感测电极712、第一感测电极713、第一感测电极714及第一感测电极715连接;第二布线77包括分别与第二感测电极731和第二感测电极733连接的第二布线771,以及分别与第二感测电极732和第二感测电极734连接的第二布线772。第一布线75、第二布线771以及第二布线772均分别与处理器连接。
示例一,如图12所示,第二感测电极731的外边缘图案设置为矩形,且具有矩形的镂空部;第二感测电极733的外边缘图案设置为矩形,但不具有镂空部。第二感测电极732 的外边缘图案设置为矩形,且具有矩形镂空部;第二感测电极734的外边缘图案设置为矩形,但不具有镂空部。即由第二感测电极731、第二感测电极733组成的电极单元和第二感测电极732、第二感测电极734组成另一个电极单元具有相同的电极单元序列。
该示例的触摸面板,示例性的,当触摸对象触摸至第一位置坐标M1时,处理器会获取到第二感测电极731、第一感测电极712以及第二感测电极732分别通过第二布线771、第一布线75以及第二布线772传输的第一触摸信号。从而确定触摸对象的触摸位置为M1。尽管第二位置坐标M2的第一触摸信号同样分别通过第二布线771、第一布线75以及第二布线772传输至处理器,但是M2的第一触摸信号的信号源为第二感测电极733、第一感测电极714以及第二感测电极734,由于第二感测电极731与第二感测电极733的图案不同,与触摸对象接触产生的电容变化不同,发出的第一触摸信号不同、第二感测电极732与第二感测电极734的图案不同,与触摸对象接触产生的电容变化不同,发出的第一触摸信号不同,所以处理器能够对收到的第一触摸信号进行区分识别精准确定触摸对象的触摸位置为第一位置坐标M1。因此本实施方式的触摸面板具有更高的触摸识别精度。
示例二,如图13所示,第二感测电极731的外边缘图案设置为矩形,且具有三角形镂空部;第二感测电极733的外边缘图案设置为矩形,但不具有镂空部。第二感测电极732的外边缘图案设置为矩形,且具有三角形镂空部;第二感测电极734的外边缘图案设置为矩形,但不具有镂空部。即由第二感测电极731、第二感测电极733组成的电极单元和第二感测电极732、第二感测电极734组成另一个电极单元具有相同的电极单元序列。
该示例的触摸面板,示例性的当触摸对象触摸至第一位置坐标M1时,处理器会获取到第二感测电极731、第一感测电极712以及第二感测电极732分别通过第二布线771、第一布线75以及第二布线772传输的第一触摸信号。从而确定触摸对象的触摸位置为M1。第三位置坐标N2不会被处理器误判的原理与上述示例一相同,此处不做赘述。N2位置同样分别通过第二布线771、第一布线75以及第二布线772传输至处理器,且N2位置的信号源与M1位置相同,但是由于第二感测电极731以及第二感测电极732的镂空部为三角形,同一第二感测电极上不同位置与触摸对象接触时产生的电容变化不同,发出的第一触摸信号也就不相同,所以N2位置的第一触摸信号与M1位置的不同,因此处理器能够根据收到的第一触摸信号精准确定触摸对象的触摸位置M1,而不会误判为N2位置。进一步的提高本实施方式触摸面板的触摸识别精度。
示例三,如图14,第二感测电极731的外边缘图案设置为三角形;第二感测电极733的外边缘图案设置为矩形。第二感测电极732的外边缘图案设置为三角形;第二感测电极734的外边缘图案设置为矩形。即由第二感测电极731、第二感测电极733组成的电极单元和第二感测电极732、第二感测电极734组成另一个电极单元具有相同的电极单元序列。
该示例的触摸面板,示例性的,当触摸对象触摸至M1位置时,处理器会获取到第二感测电极731、第一感测电极712以及第二感测电极732分别通过第二布线771、第一布线75以及第二布线772传输的第一触摸信号。从而确定触摸对象的触摸位置为M1。N2位置不会被处理器误判的原理与上述示例一相同,此处不做赘述。N2位置不会被处理器误判的原理与上述示例二相同,此处也不做赘述。该示例进一步的提高本实施方式触摸面板的触摸识别精度,且更容易加工设置。
在本实施方式中,本领域技术人员还可以在不付出创造性劳动的情况下,根据上述示例设置更多的第一感测电极以及第二感测电极,并将第二感测电极组成更多的具有电极单元序列的电极单元,或将更多具有不同图案的第二感测电极组成更长的电极单元序列(电极单元序列包括的第二感测电极个数即为该电极单元序列的长度),以使该触摸面板具有更好的触摸识别精度以及拥有更少的布线个数。
例如,如图15所示,多个第一感测电极71包括第一感测电极711、第一感测电极712、第一感测电极713、第一感测电极714、第一感测电极715、第一感测电极716以及第一感测电极717;多个第二感测电极73包括第二感测电极731、第二感测电极732、第二感测电极733、第二感测电极734、第二感测电极735以及第二感测电极736。其中,第一感测电极71与第二感测电极73相互交替排列,且第二感测电极731、第二感测电极733及第二感测电极735组成电极单元,第二感测电极732、第二感测电极734及第二感测电极736组成另一个电极单元。两个电极单元之间通过各自的第二感测电极呈叉指型插合。第一感测电极均连接至同一第一布线,两个电极单元分别连接至对应的两个第二布线。
第二感测电极731、第二感测电极732、第二感测电极733、第二感测电极734、第二感测电极735以及第二感测电极736的外边缘图案均设置为矩形。其中,第二感测电极731、第二感测电极732具有三角形的镂空部;第二感测电极733、第二感测电极734具有矩形的镂空部;第二感测电极735、第二感测电极736不具有镂空部,分别组成两个具有三个第二感测电极的相同电极单元序列。当然,在实际应用中,第二感测电极还可以设置为其他图案,例如椭圆形、三角形、圆形等的外边缘形状或镂空部,图15仅作为示例,在实际应用中,第一感测电极和第二感测电极的个数应根据具体需求进行设置,并且此处对于电极单元序列中的第二感测电极的具体情况分别为何种设置不做限制,只要同一电极单元序列中各个第二感测电极的图案相互不同即可。
又例如,如图16,多个第一感测电极71包括第一感测电极711、第一感测电极712、第一感测电极713、第一感测电极714、第一感测电极715、第一感测电极716以及第一感测电极717;多个第二感测电极73包括第二感测电极731、第二感测电极732、第二感测电极733、第二感测电极734、第二感测电极735以及第二感测电极736。其中,第一感测 电极与第二感测电极相互交替排列,且第二感测电极731、第二感测电极734组成电极单元;第二感测电极732、第二感测电极735组成另一电极单元;第二感测电极733、第二感测电极736组成又一个电极单元。三个电极单元之间通过各自的第二感测电极呈叉指型插合。第一感测电极均连接至同一第一布线,三个电极单元分别连接至对应的第二布线。
第二感测电极731、第二感测电极732、第二感测电极733、第二感测电极734、第二感测电极735以及第二感测电极736的外边缘图案均设置为矩形。其中,第二感测电极731、第二感测电极732及第二感测电极733具有三角形的镂空部;第二感测电极734、第二感测电极735及第二感测电极736不具有镂空部,分别组成三个具有两个第二感测电极的电极单元序列。当然,在实际应用中,第二感测电极还可以设置为其他具体情况,例如椭圆形、三角形、圆形等的外边缘图案或镂空部,图16仅作为示例,在实际应用中,第一感测电极和第二感测电极的个数应根据具体需求进行设置,并且此处对于电极单元序列中的第二感测电极的具体情况分别为何种设置不做限制,只要同一电极单元序列中各个第二感测电极的图案相互不同即可。
以上两个举例,分别例举了增加电极单元长度以进一步减少第二布线个数、增加电极单元个数以进一步提高触摸面板触摸精度两种本实施方式中在不付出创造性劳动下,本领域技术人员即可实现的使该触摸面板具有更好的触摸识别精度以及拥有更少的布线个数的方案。当然,本领域技术人员基于本实施方式还能够再进行其他变形设置,此处不再赘述。
以上所述是本公开的优选实施例,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本公开的保护范围。
工业实用性
综上所述,本公开提供了一种触摸面板、触摸装置及触摸检测方法,由于多个第一感测电极与同一个第一布线电性连接,即将多个第一感测电极的通道连成一个通道,避免每个第一感测电极通过单个布线连接,从而减少布线的数量,进而减少布线所占空间,有利于触摸面板的触摸精确度的发展及响应窄边框的要求。可在触控及显示技术领域广泛应用。

Claims (25)

  1. 一种触摸面板,其特征在于,包括触摸层,所述触摸层用于响应用户触摸而产生第一触摸信号,所述触摸层包括多个第一感测电极及多个第二感测电极,所述多个第一感测电极与同一个第一布线电性连接,所述多个第二感测电极与多个第二布线电性连接;所述多个第一感测电极间隔设置,相邻的两个第一感测电极形成间隙,每个所述第二感测电极对应一个间隙设置。
  2. 如权利要求1所述的触摸面板,其特征在于,每个第二感测电极对应与一个第二布线电性连接。
  3. 如权利要求1所述的触摸面板,其特征在于,所述触摸层包括多个电极单元,每个电极单元包括至少两个第二感测电极,每个电极单元的第二感测电极与同一个第二布线电性连接。
  4. 如权利要求3所述的触摸面板,其特征在于,同个电极单元的两个第二感测电极之间至少设有其他电极单元的一个第二感测电极。
  5. 如权利要求1-4任意一项所述的触摸面板,其特征在于,所述多个第二布线向同一方向延伸。
  6. 如权利要求1-5任意一项所述的触摸面板,其特征在于,所述多个第一感测电极与所述多个第二感测电极同层设置。
  7. 如权利要求1-6任意一项所述的触摸面板,其特征在于,所述触摸面板还包括与所述触摸层层叠设置的压感导体层,所述压感导体层用于响应用户的触摸而产生第二触摸信号,所述压感导体层包括多个压感通道,每个第一感测电极与一个压感通道的位置对应,每个第二感测电极与一个压感通道对应。
  8. 如权利要求7所述的触摸面板,其特征在于,所述压感导体层与所述触摸层之间形成电容式压感结构。
  9. 如权利要求7所述的触摸面板,其特征在于,所述压感导体层为电阻式压感结构。
  10. 如权利要求3或4所述的触摸面板,其特征在于,同个所述电极单元的第二感测电极的图案互不相同以排列形成电极单元序列。
  11. 如权利要求10所述的触摸面板,其特征在于,每个所述电极单元的电极单元序列相同。
  12. 如权利要求10或11所述的触摸面板,其特征在于,所述同个所述电极单元的第二感测电极的图案互不相同包括,所述第二感测电极具有不同形状的镂空部,所述 镂空部在所述第二感测电极中沿第一方向设置;和/或,所述第二感测电极的外边缘形成的图案不相同;其中,所述第一方向与所述第二感测电极的排列设置方向垂直。
  13. 如权利要求12所述的触摸面板,其特征在于,每个所述电极单元包括两个第二感测电极,两个所述第二感测电极的外边缘形成的图案为矩形,其中一个所述第二感测电极中设置有镂空部。
  14. 如权利要求13所述的触摸面板,其特征在于,所述镂空部为多边形。
  15. 如权利要求12所述的触摸面板,其特征在于,每个所述电极单元包括两个所述第二感测电极,两个所述第二感测电极的外边缘形成的图案分别为三角形和矩形。
  16. 如权利要求1至15任意一项所述的触摸面板,其特征在于,所述触摸面板包括功能区及绕所述功能区设置的边框区,所述多个第一感测电极与所述多个第二感测电极均设于所述功能区,所述第一布线与所述多个第二布线位于所述边框区。
  17. 如权利要求16所述的触摸面板,其特征在于,所述边框区包括第一边框区及第二边框区,所述功能区位于所述第一边框区与所述第二边框区之间,所述第一布线位于所述第一边框区,所述第二布线位于所述第二边框区。
  18. 一种触摸装置,其特征在于,所述触摸装置包括如权利要求1-17任意一项所述的触摸面板及处理器,所述处理器用于接收所述触摸层响应用户触摸而产生的第一触摸信号,并根据所述第一触摸信号确定用户输入的触摸参数。
  19. 如权利要求18所述的触摸装置,其特征在于,所述触摸面板还包括与所述触摸层层叠设置的压感导体层,所述压感导体层用于响应用户的触摸而产生第二触摸信号,所述压感导体层包括多个压感通道,每个第一感测电极与一个压感通道的位置对应,每个第二感测电极与一个压感通道的位置对应,所述处理器结合所述第一触摸信号及所述第二触摸信号确定用户输入的触摸参数。
  20. 如权利要求19所述的触摸装置,其特征在于,所述触摸层还包括多个电极单元,至少两个第二感测电极组成一个电极单元,同个电极单元的第二感测电极与同一个第二布线电性连接,所述处理器根据所述第一触摸信号获取至少两个位置坐标,所述处理器根据所述第二触摸信号获取压感触摸位置,所述处理器根据所述压感触摸位置确定所述至少两个位置坐标中的一个为实际触摸位置。
  21. 如权利要求18所述的触摸装置,其特征在于,所述触摸层包括多个电极单元,每个电极单元包括至少两个第二感测电极,每个所述电极单元的第二感测电极与同一个第二布线电性连接;同个所述电极单元的两个第二感测电极之间至少设有其他电极单元的一个第二感测电极;同个所述电极单元的两个第二感测电极的图案互不相同以排列形成电极单元序列。
  22. 一种应用于触摸面板上的触摸检测方法,其特征在于,所述触摸面板包括层叠设置的触摸层与压感导体层,所述触摸层的每个第一感测电极与所述压感导体层的一个压感通道的位置对应,所述触摸层的每个第二感测电极与所述压感导体层的一个压感通道的位置对应,所述触摸层的第一感测电极与同一个第一布线电性连接,所述触摸检测方法包括:
    根据用户在触摸面板上的触摸操作,所述触摸面板的触摸层产生第一触摸信号,所述触摸面板的压感导体层产生第二触摸信号;
    根据所述第一触摸信号获取至少两个位置坐标,根据所述第二触摸信号获取压感触摸位置;
    根据所述压感触摸位置,确定所述至少两个位置坐标中的一个位置坐标为实际触摸位置。
  23. 如权利要求22所述的触摸检测方法,其特征在于,所述根据所述压感触摸位置,确定所述至少两个位置坐标中的一个位置坐标为实际触摸位置,包括:根据所述压感导体层在所述压感触摸位置的电容变化,确定所述至少两个位置坐标中的一个位置坐标为实际触摸位置。
  24. 如权利要求22所述的触摸检测方法,其特征在于,所述根据所述至少两个位置坐标及所述压感触摸位置,获取实际触摸位置,包括:根据所述压感导体层在所述压感触摸位置的电阻变化,确定所述至少两个位置坐标中的一个位置坐标为实际触摸位置。
  25. 一种应用于触摸面板上的触摸检测方法,其特征在于,用于如权利要求10-17任一项的触摸面板的触摸操作,所述触摸检测方法包括:
    根据用户在所述触摸面板上的触摸操作位置,在所述触摸面板上对应的第一感测电极和第二感测电极产生触摸信号;
    根据所述触摸信号获取所述触摸操作的位置坐标。
PCT/CN2019/081320 2018-12-19 2019-04-03 触摸面板、触摸装置及触摸检测方法 WO2020124868A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980049346.1A CN112639701A (zh) 2018-12-19 2019-04-03 触摸面板、触摸装置及触摸检测方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/122103 WO2020124439A1 (zh) 2018-12-19 2018-12-19 触摸面板、触摸装置及触摸检测方法
CNPCT/CN2018/122103 2018-12-19

Publications (1)

Publication Number Publication Date
WO2020124868A1 true WO2020124868A1 (zh) 2020-06-25

Family

ID=71102387

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/122103 WO2020124439A1 (zh) 2018-12-19 2018-12-19 触摸面板、触摸装置及触摸检测方法
PCT/CN2019/081320 WO2020124868A1 (zh) 2018-12-19 2019-04-03 触摸面板、触摸装置及触摸检测方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122103 WO2020124439A1 (zh) 2018-12-19 2018-12-19 触摸面板、触摸装置及触摸检测方法

Country Status (2)

Country Link
CN (2) CN113168249A (zh)
WO (2) WO2020124439A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104122706A (zh) * 2014-07-14 2014-10-29 深圳市华星光电技术有限公司 彩色滤光片基板及显示装置
US20160179250A1 (en) * 2014-12-22 2016-06-23 Alps Electric Co., Ltd. Input device, and method and program for controlling the same
CN107102763A (zh) * 2016-02-19 2017-08-29 株式会社日本显示器 触摸检测装置、带触摸检测功能的显示装置及控制方法
CN107562245A (zh) * 2016-07-01 2018-01-09 南昌欧菲光科技有限公司 触摸显示装置及电子设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203191952U (zh) * 2013-02-22 2013-09-11 宸鸿光电科技股份有限公司 触摸板结构
CN103823592B (zh) * 2014-02-26 2017-04-26 汕头超声显示器技术有限公司 一种带有力学感应功能的显示装置
CN103970355B (zh) * 2014-04-30 2017-10-27 上海天马微电子有限公司 一种触摸面板及触摸装置
CN104281327B (zh) * 2014-10-29 2017-04-05 合肥鑫晟光电科技有限公司 触摸屏及其制作方法和显示装置
KR102371677B1 (ko) * 2015-04-30 2022-03-07 삼성디스플레이 주식회사 터치 표시 장치 및 그 구동 방법
CN104793825B (zh) * 2015-04-30 2018-04-20 京东方科技集团股份有限公司 一种触控输入设备和触摸显示设备
CN105094435B (zh) * 2015-08-13 2018-10-30 业成光电(深圳)有限公司 触控面板
CN108268175A (zh) * 2018-01-19 2018-07-10 昆山国显光电有限公司 触控结构、触控屏及触控显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104122706A (zh) * 2014-07-14 2014-10-29 深圳市华星光电技术有限公司 彩色滤光片基板及显示装置
US20160179250A1 (en) * 2014-12-22 2016-06-23 Alps Electric Co., Ltd. Input device, and method and program for controlling the same
CN107102763A (zh) * 2016-02-19 2017-08-29 株式会社日本显示器 触摸检测装置、带触摸检测功能的显示装置及控制方法
CN107562245A (zh) * 2016-07-01 2018-01-09 南昌欧菲光科技有限公司 触摸显示装置及电子设备

Also Published As

Publication number Publication date
WO2020124439A1 (zh) 2020-06-25
CN112639701A (zh) 2021-04-09
CN113168249A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
KR101085776B1 (ko) 터치 패널 및 그 터치 패널을 이용한 입력 인식 장치
EP2811379B1 (en) Touch liquid crystal display device
CN107422932B (zh) 显示面板、移动终端及其驱动方法
KR101080183B1 (ko) 가장자리 위치 인식 특성이 개선된 접촉 감지 장치
EP2638458B1 (en) Touch device for determining real coordinates of multiple touch points and method thereof
TWI509486B (zh) 觸控面板
US8659575B2 (en) Touch panel device of digital capacitive coupling type with high sensitivity
JP5439565B2 (ja) タッチパネル及びその製造方法
WO2015154361A1 (zh) 触摸屏及显示装置
JP2010055612A (ja) 多点タッチセンサーシステム
US10802655B2 (en) Touch panel and touch panel device
JP2010055613A (ja) 多点タッチセンサーシステムのオペレーション方法
CN103513825A (zh) 触控装置
CN105404430B (zh) 3d压感触摸屏及其制造方法以及3d压感触控实现方法
TW201342179A (zh) 電容式觸控面板的導電圖案結構
JP2013218647A (ja) 静電容量式タッチパネルの導電模様構造、およびその構成方法
US20190384458A1 (en) Touchscreen and Touch Display Apparatus
JP2014170334A (ja) 静電容量式タッチパネルおよびそれを用いた手持ち式電子機器
US10936093B2 (en) Position detection sensor and position detection module
KR20110125838A (ko) 정전용량 방식의 다중 입력 터치 스크린
US11334204B2 (en) Touch component, touch apparatus, and touch-control method
WO2020124868A1 (zh) 触摸面板、触摸装置及触摸检测方法
KR102124625B1 (ko) 터치 입력 장치
CN218100202U (zh) 电容式触摸屏和电子设备
KR101183060B1 (ko) 서로 다른 2가지 이상의 저항 성분을 갖는 아이티오를 구비한 터치 패널 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898337

Country of ref document: EP

Kind code of ref document: A1