WO2020124757A1 - 一种准各向同性高载流超导电缆通电导体 - Google Patents

一种准各向同性高载流超导电缆通电导体 Download PDF

Info

Publication number
WO2020124757A1
WO2020124757A1 PCT/CN2019/074672 CN2019074672W WO2020124757A1 WO 2020124757 A1 WO2020124757 A1 WO 2020124757A1 CN 2019074672 W CN2019074672 W CN 2019074672W WO 2020124757 A1 WO2020124757 A1 WO 2020124757A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
current
quasi
skeleton
superconducting cable
Prior art date
Application number
PCT/CN2019/074672
Other languages
English (en)
French (fr)
Inventor
胡子珩
庞骁刚
章彬
汪桢子
汪伟
Original Assignee
深圳供电局有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳供电局有限公司 filed Critical 深圳供电局有限公司
Publication of WO2020124757A1 publication Critical patent/WO2020124757A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/16Superconductive or hyperconductive conductors, cables, or transmission lines characterised by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/10Multi-filaments embedded in normal conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/12Hollow conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the invention relates to the field of superconducting transmission, in particular to a quasi-isotropic high current carrying superconducting cable conducting conductor.
  • High-temperature superconducting cables Compared with conventional cables, high-temperature superconducting cables have the advantages of high current carrying capacity, tight structure, and small transmission loss. They have development potential in large-scale power transmission or line expansion under limited corridors. Superconducting cables with high transmission voltage and large current carrying capacity have good application prospects.
  • liquid nitrogen is introduced into the smaller pipe, and small holes are opened in the pipe to use latent heat to cool the main pipe, and then in the main cooling channel Passing liquid nitrogen can save the amount of liquid nitrogen and accelerate the cooling rate.
  • the purpose of the present invention is to overcome the shortcomings of the prior art, and to provide a quasi-isotropic high-current-carrying superconducting cable conducting conductor, the superconductor has good isotropy, and the current carrying capacity is large, the fixing effect is good, and the cooling effect is good.
  • the embodiments of the present invention provide a quasi-isotropic high current carrying superconducting cable conducting conductor, which includes a skeleton, a superconductor, a metal covering layer, an insulating layer, a shielding layer and a Protective shell;
  • the skeleton is a hollow metal skeleton, and an inner cooling channel and an outer cooling channel are formed in the hollow portion of the skeleton in the axial direction; a plurality of longitudinal spiral channel grooves are provided on the outer surface of the skeleton at regular intervals along the circumference;
  • Superconductors are stacked in each channel slot, and the superconductor in each channel slot is covered with a metal covering layer;
  • the insulating layer is wound around the outer surface of the skeleton covered with the metal covering layer;
  • a shielding layer is provided on the outer surface of the insulating layer, and the shielding layer is grounded at one end or both ends;
  • a protective shell is provided outside the shielding layer.
  • the cross-sections of the plurality of channel grooves are rectangular, and each channel groove accommodates a plurality of superconductors arranged geometrically symmetrically according to the center, and each superconductor includes multiple layers of superconducting tapes stacked on each other.
  • the two adjacent superconductors in each channel slot are perpendicular to each other.
  • the outer surface of the metal covering layer is arc-shaped.
  • a channel tube along the axial direction provided in the hollow part of the framework an internal cooling channel is formed inside the channel tube, and an external cooling channel is formed between the outer wall of the channel tube and the inner wall of the framework;
  • a plurality of small holes are provided on the tube wall, and the small holes communicate with the inner cooling channel and the outer cooling channel.
  • the outer cooling channel is a one-way flow channel, the refrigerant is injected from one end thereof, and then flows out from the other end thereof.
  • the insulation layer is formed by winding insulation paper with good insulation performance at low temperature and good mechanical performance.
  • the superconducting tape is made of high temperature superconducting material.
  • channel grooves uniformly distributed along the circumference are formed on the metal skeleton, and a plurality of superconductors distributed symmetrically in the center are placed in the channel grooves. Since the superconductors in each channel groove form a center symmetrical distribution, It can make the cable direction less affected by the magnetic field and electric field, and thus has good isotropy;
  • the superconductors in each channel groove are formed by stacking multiple layers of superconducting tapes, and the superconducting tapes are stacked to have a large current density and strong current carrying capacity.
  • liquid nitrogen is firstly pre-cooled through the inner cooling channel. At this time, the liquid nitrogen will spray nitrogen through the small hole to the outer cooling channel to utilize the latent heat
  • the principle is to lower the temperature of the external cooling channel. After cooling to a certain temperature, the liquid nitrogen is passed through the external cooling channel to continue the cooling. This cooling method not only saves the amount of liquid nitrogen, but also accelerates the cooling rate.
  • FIG. 1 is a schematic diagram of the main structure of a quasi-isotropic high-current-carrying superconducting cable conducting conductor provided by the present invention
  • FIG. 2 is a schematic diagram of a cross-sectional structure of a conducting conductor of a quasi-isotropic high current-carrying superconducting cable provided by the present invention.
  • FIG. 1 shows a main structural schematic diagram of a quasi-isotropic high-current-carrying superconducting cable conducting conductor provided by the present invention.
  • the quasi-isotropic high-current-carrying superconducting cable conducting conductor includes a skeleton 5, a superconductor 3, a metal covering layer 4, an insulating layer 6 provided from the inside to the outside. Shield layer 7 and protective shell 8; among them:
  • the skeleton 5 is a hollow metal skeleton with a certain thickness, which can be made of copper, aluminum, stainless steel or other materials, and an inner cooling channel and an outer cooling channel are formed in the hollow part of the skeleton 5 in the axial direction; specifically, in the skeleton
  • the hollow part is provided with a channel tube 1 along the axial direction, an internal cooling channel 10 is formed inside the channel tube 1, and an external cooling channel 11 is formed between the outer wall of the channel tube 1 and the inner wall of the skeleton 5;
  • a plurality of small holes 12 are provided on the tube wall, and the small holes 12 communicate with the inner cooling channel 10 and the outer cooling channel 11.
  • the inner cooling channel 10 and the outer cooling channel 11 are used as a circulation channel of a coolant (such as liquid nitrogen) for cooling; at the same time, the outer cooling channel 11 is a unidirectional circulation channel, and the refrigerant is injected from one end thereof, and then from The other end flows out.
  • a coolant such as liquid nitrogen
  • a plurality of longitudinal spiral channel grooves 50 are provided on the outer surface of the skeleton 5 at regular intervals along the circumference, for laying the superconductor 3 and placing the metal cover layer 4; in one example, the plurality of channel grooves 50 Arranged uniformly along the axis of the skeleton 5, five channel grooves 50 are shown in FIG. 2, and the cross-sections of the plurality of channel grooves 50 are rectangular.
  • a superconductor 3 is stacked in each channel groove 50, and the superconductor 3 in each channel groove 50 is covered with a metal covering layer 4; wherein, each channel groove 50 accommodates multiple strands in a geometric shape according to the center Symmetrically arranged superconductors 3, each superconductor includes multiple layers of superconducting tape stacked on top of each other.
  • the superconducting tape 30 is made of a high-temperature superconducting material, and the high-temperature superconducting material may be, for example, yttrium barium copper oxide.
  • four superconductors 3 are accommodated in each channel groove 50, and two adjacent superconductors 3 are perpendicular to each other. It can be understood that stacking the superconductors 3 in the channel grooves 50 for transmitting current has strong current carrying capacity, and since the superconductor 3 in each channel groove 50 is symmetrically distributed according to the center, its anisotropy is small.
  • the metal covering layer 4 is made of a metal material, which is filled outside the superconductor 4.
  • the outer surface of the metal covering layer 4 is arc-shaped, so as to form a complete circumference with the outer surface of the skeleton 5, which is convenient for the surface to be covered with an insulating layer
  • the metal covering layer 4 can be used for extruding the superconducting tape to make the structure more compact.
  • the insulating layer 6 is wound around the outer surface of the skeleton 5 covered with the metal covering layer 4; wherein, the insulating layer is made of insulating paper that has good insulating properties at low temperature and good mechanical properties.
  • a shielding layer 7 is provided on the outer surface of the insulating layer 6, and the shielding layer 7 is grounded at one or both ends to form a "Faraday cage" to shield the external electric field of the superconducting cable.
  • a protective shell 8 is provided outside the shielding layer 7 for protecting the current-carrying conductor.
  • the protective shell may be made of non-metallic materials, such as plastic materials.
  • liquid nitrogen is passed into the inner cooling channel 10 of the channel tube 1 for pre-cooling. Since the channel tube 1 is provided with small holes 12 in various directions, the internal After the liquid nitrogen is introduced into the cooling channel 10, nitrogen gas is sprayed outward through these small holes 12, using the latent heat principle to cool the main cooling channel (outer cooling channel 12), and after reaching a certain temperature, the main cooling channel (outer cooling channel 12) ) Pass liquid nitrogen to continue cooling.
  • This cooling method not only saves the amount of liquid nitrogen, but also accelerates the cooling rate.
  • channel grooves uniformly distributed along the circumference are formed on the metal skeleton, and a plurality of superconductors distributed symmetrically in the center are placed in the channel grooves. Since the superconductors in each channel groove form a center symmetrical distribution, It can make the cable direction less affected by the magnetic field and electric field, and thus has good isotropy;
  • the superconductors in each channel groove are formed by stacking multiple layers of superconducting tapes, and the superconducting tapes are stacked to have a large current density and strong current carrying capacity.
  • liquid nitrogen is firstly pre-cooled through the inner cooling channel. At this time, the liquid nitrogen will spray nitrogen through the small hole to the outer cooling channel to utilize the latent heat
  • the principle is to lower the temperature of the external cooling channel. After cooling to a certain temperature, the liquid nitrogen is passed through the external cooling channel to continue the cooling. This cooling method not only saves the amount of liquid nitrogen, but also accelerates the cooling rate.

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

一种准各向同性高载流超导电缆通电导体,其包括从内至外设置的骨架(5)、超导体(3)、金属覆盖层(4)、绝缘层(6)、屏蔽层(7)及以保护外壳(8);其中:骨架(5)为中空的金属骨架,在骨架(5)中空部分沿轴向形成有内冷却通道(10)和外冷却通道(11);在骨架(5)的外表面上沿圆周均匀间隔设置有多个整体呈纵向的螺旋状的通道槽(50);在每一通道槽(50)中堆叠设置有超导体(3),在每一通道槽50)中的超导体(3)上均覆盖有金属覆盖层(4);在覆盖有金属覆盖层(4)的骨架(5)外表面绕设有绝缘层(6);在绝缘层(6)外表面设置有屏蔽层(7),屏蔽层(7)单端或者两端接地;在屏蔽层(7)外设置有保护外壳(8)。该准各向同性高载流超导电缆通电导体的超导体具有良好的各向同性,且载流量大、固定效果好,冷却效果好。

Description

一种准各向同性高载流超导电缆通电导体
本申请要求于2018年12月20日提交中国专利局、申请号为201811563699.7、发明名称为“一种准各向同性高载流超导电缆通电导体”的中国专利申请的优先权,上述专利的全部内容通过引用结合在本申请中。
技术领域
本发明涉及超导传输领域,特别是涉及一种准各向同性高载流超导电缆通电导体。
背景技术
高温超导电缆高温超导电缆相对于常规电缆,具有载流能力高、结构紧、传输损耗小等优势,在大规模电力传输或走廊受限下的线路扩容方面,具有发展潜力。传输电压高、载流容量大的超导电缆具有良好的应用前景。
由于单根带材载流能力有限,多根带材并联应用能提高电流密度,所以多根带材并联使用成为超导电缆通电导体发展的必然趋势。随着第二代超导带材的应用,世界各国相继研究了几种扭曲堆叠式超导电缆结构,可以大大提高载流能力,但是在外磁场下各截面仍然具有各项异性的缺点,而且扭曲形态不能固定,容易在管道内移动。在制冷方面,常规电缆直接留有液氮通道,在管道内先通入氮气预冷,等管道降到一定温度后,通入液氮,这种方法造成氮气的大量浪费。如果在超导电缆中开设两条液氮通道,分别用作预冷却和主冷却,较小管道内通入液氮,管道上开设小孔,利用潜热对主要管道进行降温,然后在主冷却通道通入液氮,则可以节约液氮用量,并加快冷却速度。
发明内容
本发明的目的是克服现有技术的缺点,提供一种准各向同性高载流超导电缆通电导体,其超导体具有良好的各向同性,且载流量大、固定效果好,冷却效果好。
为了解决上述技术问题,本发明的实施例提供一种准各向同性高载流超导电缆通电导体,其包括从内至外设置的骨架、超导体、金属覆盖层、绝缘层、屏蔽层及以保护外壳;其中:
所述骨架为中空的金属骨架,在骨架中空部分沿轴向形成有内冷却通道和外冷却通道;在骨架的外表面上沿圆周均匀间隔设置有多个整体呈纵向的螺旋状的通道槽;
在所述每一通道槽中堆叠设置有超导体,在每一通道槽中的超导体上均覆盖有金属覆盖层;
在覆盖有金属覆盖层的骨架外表面绕设有所述绝缘层;
在所述绝缘层外表面设置有屏蔽层,所述屏蔽层单端或者两端接地;
在所述屏蔽层外设置有保护外壳。
其中,所述多个通道槽的横截面为矩形,每一通道槽中容设多股按照中心呈几何对称排列的超导体,每股超导体包括多层相互堆叠超导带。
其中,所述每一通道槽中相邻的两股超导体相互垂直。
其中,在所述骨架上开设有5条通道槽,每一通道槽中容设4股超导体。
其中,所述金属覆盖层外表面为弧形。
其中,在所述骨架中空部分设置有一沿轴向的通道管,所述通道管内部形成内冷却通道,所述通道管外壁与所述骨架的内壁之间形成外冷却通道;在所述通道管管壁上设置有多个小孔,所述小孔连通所述内冷却通道和外冷却通道。
其中,所述外冷却通道为单向流通通道,制冷剂从其一端注入,然后从其另一端流出。
其中,所述绝缘层采用低温下具有良好绝缘性能且机械性能良好的绝缘纸绕制而成。
其中,所述超导带采用高温超导材料制作而成。
实施本发明实施例,具有如下有益效果:
在本发明的实施例中,在金属骨架上上形成沿圆周均匀分布的通道槽,且在通道槽中放置多股呈中心对称分布的超导体,由于每个通道槽中的超导体形成中心对称分布,可以使电缆方向受磁场与电场影响小,从而具有良好 的各向同性;
其次,由于超导体设置在通道槽中,且上面采用金属覆盖层进行挤压覆盖,对超导体的固定效果非常好;
而且,每一通道槽中的超导体均为多层超导带堆叠而成,对超导带进行堆叠而具有大电流密度,载流能力强。
另外,由于在金属骨架的中空部分设置有内冷却通道和外冷却通道,先在内冷却通道中通入液氮进行预冷却,此时液氮会通过小孔向外冷却通道喷射氮气,利用潜热原理,给外冷却通道降温,降到一定温度后,在外冷却通道通入液氮继续降温,这种冷却方式不仅节约液氮用量,而且加快冷却速度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,根据这些附图获得其他的附图仍属于本发明的范畴。
图1本发明提供的一种准各向同性高载流超导电缆通电导体的主要结构示意图;
图2为本发明提供的一种准各向同性高载流超导电缆通电导体的横截面结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都属于本发明保护的范围。
如图1所示,示出了本发明提供的一种准各向同性高载流超导电缆通电导体的主要结构示意图。一并结合图2所示,在本实施例中,所述准各向同 性高载流超导电缆通电导体包括从内至外设置的骨架5、超导体3、金属覆盖层4、绝缘层6、屏蔽层7及以保护外壳8;其中:
所述骨架5为具有一定厚度的中空的金属骨架,其可以采用铜、铝、不锈钢等材料,在骨架5中空部分沿轴向形成有内冷却通道和外冷却通道;具体地,在所述骨架中空部分设置有一沿轴向的通道管1,所述通道管1内部形成内冷却通道10,所述通道管1外壁与所述骨架5的内壁之间形成外冷却通道11;在所述通道管管壁上设置有多个小孔12,所述小孔12连通所述内冷却通道10和外冷却通道11。所述内冷却通道10和外冷却通道11作为冷却剂(如液氮)的流通通道,用于制冷;同时,所述外冷却通道11为单向流通通道,制冷剂从其一端注入,然后从其另一端流出。
在骨架5的外表面上沿圆周均匀间隔设置有多个整体呈纵向的螺旋状的通道槽50,用于铺设超导体3和放置金属覆盖层4;在一个例子中,所述多个通道槽50沿所述骨架5的轴心均匀间隔排列,图2中示出了5个通道槽50,所述多个通道槽50的横截面为矩形。
在所述每一通道槽50中堆叠设置有超导体3,在每一通道槽50中的超导体3上均覆盖有金属覆盖层4;其中,每一通道槽50中容设多股按照中心呈几何对称排列的超导体3,每股超导体包括多层相互堆叠超导带。所述超导带30采用高温超导材料制作而成,所述高温超导材料可以诸如钇钡铜氧化物等。在图2示出的例子中,所述每一通道槽50中容设了4股超导体3,且相邻的两股超导体3相互垂直。可以理解的是,在通道槽50中堆叠超导体3用于传输电流,其载流能力强,而且由于各通道槽50中的超导体3按照中心对称分布,其各向异性小。
同时,所述金属覆盖层4采用金属材料,其填充在超导体4外,金属覆盖层4外表面为弧形,从而与骨架5外表面形成完整的圆周,便于表面包覆绝缘层;而且,所述金属覆盖层4可用于挤压超导带材,使得结构更加紧凑。
在覆盖有金属覆盖层4的骨架5外表面绕设有所述绝缘层6;其中,所述绝缘层采用低温下具有良好绝缘性能且机械性能良好的绝缘纸绕制而成。
在所述绝缘层6外表面设置有屏蔽层7,所述屏蔽层7单端或者两端接地,形成“法拉第笼”,屏蔽超导电缆对外的电场。
在所述屏蔽层7外设置有保护外壳8,用于保护通电导体,所述保护外壳可以采用非金属材料制成,例如塑胶材料等。
在本实施例的具体实施中,在电缆开始冷却前,先在通道管1的内冷却通道10中通入液氮进行预冷却,由于该通道管1上设置各个方向的小孔12,在内冷却通道10中通入液氮后通过这些小孔12向外喷射氮气,利用潜热原理,给主冷却通道(外冷却通道12)降温,降到一定温度后,在主冷却通道(外冷却通道12)通入液氮继续降温。这种冷却方式不仅节约液氮用量,而且加快冷却速度。
实施本发明实施例,具有如下有益效果:
在本发明的实施例中,在金属骨架上上形成沿圆周均匀分布的通道槽,且在通道槽中放置多股呈中心对称分布的超导体,由于每个通道槽中的超导体形成中心对称分布,可以使电缆方向受磁场与电场影响小,从而具有良好的各向同性;
其次,由于超导体设置在通道槽中,且上面采用金属覆盖层进行挤压覆盖,对超导体的固定效果非常好;
而且,每一通道槽中的超导体均为多层超导带堆叠而成,对超导带进行堆叠而具有大电流密度,载流能力强。
另外,由于在金属骨架的中空部分设置有内冷却通道和外冷却通道,先在内冷却通道中通入液氮进行预冷却,此时液氮会通过小孔向外冷却通道喷射氮气,利用潜热原理,给外冷却通道降温,降到一定温度后,在外冷却通道通入液氮继续降温,这种冷却方式不仅节约液氮用量,而且加快冷却速度。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同 要素。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (9)

  1. 一种准各向同性高载流超导电缆通电导体,其包括从内至外设置的骨架、超导体、金属覆盖层、绝缘层、屏蔽层及以保护外壳;其中:
    所述骨架为中空的金属骨架,在骨架中空部分沿轴向形成有内冷却通道和外冷却通道;在骨架的外表面上沿圆周均匀间隔设置有多个整体呈纵向的螺旋状的通道槽;
    在所述每一通道槽中堆叠设置有超导体,在每一通道槽中的超导体上均覆盖有金属覆盖层;
    在覆盖有金属覆盖层的骨架外表面绕设有所述绝缘层;
    在所述绝缘层外表面设置有屏蔽层,所述屏蔽层单端或者两端接地;
    在所述屏蔽层外设置有保护外壳。
  2. 如权利要求1所述的准各向同性高载流超导电缆通电导体,其中,所述多个通道槽的横截面为矩形,每一通道槽中容设多股按照中心呈几何对称排列的超导体,每股超导体包括多层相互堆叠超导带。
  3. 如权利要求2所述的准各向同性高载流超导电缆通电导体,其中,所述每一通道槽中相邻的两股超导体相互垂直。
  4. 如权利要求3所述的准各向同性高载流超导电缆通电导体,其中,在所述骨架上开设有5条通道槽,每一通道槽中容设4股超导体。
  5. 如权利要求1至4任一项所述的准各向同性高载流超导电缆通电导体,其中,所述金属覆盖层外表面为弧形。
  6. 如权利要求5所述的准各向同性高载流超导电缆通电导体,其中,在所述骨架中空部分设置有一沿轴向的通道管,所述通道管内部形成内冷却通道,所述通道管外壁与所述骨架的内壁之间形成外冷却通道;在所述通道 管管壁上设置有多个小孔,所述小孔连通所述内冷却通道和外冷却通道。
  7. 如权利要求6所述的准各向同性高载流超导电缆通电导体,其中,所述外冷却通道为单向流通通道,制冷剂从其一端注入,然后从其另一端流出。
  8. 如权利要求7所述的准各向同性高载流超导电缆通电导体,其中,所述绝缘层采用低温下具有良好绝缘性能且机械性能良好的绝缘纸绕制而成。
  9. 如权利要求8所述的准各向同性高载流超导电缆通电导体,其中,所述超导带采用高温超导材料制作而成。
PCT/CN2019/074672 2018-12-20 2019-02-03 一种准各向同性高载流超导电缆通电导体 WO2020124757A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811563699.7A CN109637739B (zh) 2018-12-20 2018-12-20 一种准各向同性高载流超导电缆通电导体
CN201811563699.7 2018-12-20

Publications (1)

Publication Number Publication Date
WO2020124757A1 true WO2020124757A1 (zh) 2020-06-25

Family

ID=66075882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074672 WO2020124757A1 (zh) 2018-12-20 2019-02-03 一种准各向同性高载流超导电缆通电导体

Country Status (2)

Country Link
CN (1) CN109637739B (zh)
WO (1) WO2020124757A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110060815A (zh) * 2019-04-19 2019-07-26 中国科学院合肥物质科学研究院 一种应用于CICC的高温超导ReBCO线缆结构制作方法
CN110600188A (zh) * 2019-08-30 2019-12-20 中国科学院合肥物质科学研究院 用于强磁场和聚变堆托卡马克超导磁体的高温超导电缆
CN110706860B (zh) * 2019-08-30 2021-03-19 中国科学院合肥物质科学研究院 一种用于大电流、强磁场的高温超导罗贝尔绕组电缆
CN110570988A (zh) * 2019-09-24 2019-12-13 深圳供电局有限公司 三相高温超导通电导体
CN110838389B (zh) * 2019-11-14 2021-04-27 中国科学院合肥物质科学研究院 一种高温超导电缆铜基带材支撑环扣锁机构
CN110767376B (zh) * 2019-11-14 2020-12-08 中国科学院合肥物质科学研究院 一种适用于提高高温超导复合化导体力学性能的热成型方法
CN110828058B (zh) * 2019-11-14 2021-04-06 中国科学院合肥物质科学研究院 一种基于分瓣堆叠结构的高载流高温超导复合化导体
CN111584150A (zh) * 2020-04-01 2020-08-25 北京交通大学 一种cicc导体
CN112072606B (zh) * 2020-07-31 2021-12-07 深圳供电局有限公司 三相同轴超导电缆终端系统及其组装方法
CN113223774B (zh) * 2021-04-29 2022-05-06 北京航空航天大学 一种超导电缆及其冷却方法
CN113470889A (zh) * 2021-08-09 2021-10-01 广东电网有限责任公司 一种堆叠式超导电缆
CN113571253B (zh) * 2021-08-25 2022-11-04 北京智诺嘉能源科技有限公司 一种改进corc圆芯导体的多槽超导缆线
CN114141421A (zh) * 2021-11-02 2022-03-04 深圳供电局有限公司 一种高电流密度超导缆线

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714443A (ja) * 1993-06-22 1995-01-17 Chubu Electric Power Co Inc 酸化物超電導電力ケーブル
CN1530967A (zh) * 2003-03-10 2004-09-22 北京云电英纳超导电缆有限公司 具有双层冷却通道结构的热绝缘高温超导电缆
CN103493152A (zh) * 2011-02-18 2014-01-01 科罗拉多州立大学董事会(法人团体) 超导电缆及其制造方法
US20140378312A1 (en) * 2011-12-14 2014-12-25 Railway Technical Research Institute Superconducting cable, and device and method for cooling superconducting cable
CN204884672U (zh) * 2015-07-27 2015-12-16 天津晓星电气有限公司 一种节能电缆
CN106898433A (zh) * 2017-04-18 2017-06-27 中国地质大学(武汉) 超导石墨烯复合薄膜线/带材及电缆
CN107346681A (zh) * 2017-07-27 2017-11-14 华北电力大学 一种基于ReBCO各向同性超导股线的卢瑟福电缆
CN107564623A (zh) * 2017-07-27 2018-01-09 华北电力大学 一种基于ReBCO各向同性超导股线的管内电缆导体
CN108428516A (zh) * 2018-06-08 2018-08-21 东部超导科技(苏州)有限公司 一种高电流密度堆叠式高温超导消磁电缆的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2574815B2 (ja) * 1987-10-21 1997-01-22 株式会社日立製作所 極低温液化冷凍装置
JP3678465B2 (ja) * 1995-08-04 2005-08-03 株式会社フジクラ 超電導電力ケーブル
JPH11235009A (ja) * 1998-02-18 1999-08-27 Toshiba Corp 超電導回転電機の回転子の電流リード
CN100514508C (zh) * 2006-02-28 2009-07-15 北京英纳超导技术有限公司 超导组合件及其制备方法
US8437819B2 (en) * 2008-10-08 2013-05-07 Massachusetts Institute Of Technology Superconductor cable
CN103219124B (zh) * 2013-04-26 2015-06-10 宁波健信机械有限公司 采用外供液氮冷却可拔段的高温超导电流引线
CN107631105B (zh) * 2017-09-15 2019-01-22 四川师范大学 液化页岩气-液氮-超导直流电缆复合能源管道设计方法
CN209525971U (zh) * 2018-12-20 2019-10-22 深圳供电局有限公司 一种准各向同性高载流超导电缆通电导体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714443A (ja) * 1993-06-22 1995-01-17 Chubu Electric Power Co Inc 酸化物超電導電力ケーブル
CN1530967A (zh) * 2003-03-10 2004-09-22 北京云电英纳超导电缆有限公司 具有双层冷却通道结构的热绝缘高温超导电缆
CN103493152A (zh) * 2011-02-18 2014-01-01 科罗拉多州立大学董事会(法人团体) 超导电缆及其制造方法
US20140378312A1 (en) * 2011-12-14 2014-12-25 Railway Technical Research Institute Superconducting cable, and device and method for cooling superconducting cable
CN204884672U (zh) * 2015-07-27 2015-12-16 天津晓星电气有限公司 一种节能电缆
CN106898433A (zh) * 2017-04-18 2017-06-27 中国地质大学(武汉) 超导石墨烯复合薄膜线/带材及电缆
CN107346681A (zh) * 2017-07-27 2017-11-14 华北电力大学 一种基于ReBCO各向同性超导股线的卢瑟福电缆
CN107564623A (zh) * 2017-07-27 2018-01-09 华北电力大学 一种基于ReBCO各向同性超导股线的管内电缆导体
CN108428516A (zh) * 2018-06-08 2018-08-21 东部超导科技(苏州)有限公司 一种高电流密度堆叠式高温超导消磁电缆的制备方法

Also Published As

Publication number Publication date
CN109637739B (zh) 2024-02-09
CN109637739A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
WO2020124757A1 (zh) 一种准各向同性高载流超导电缆通电导体
KR101156972B1 (ko) 자기적으로 분리된 초전도 전도체를 포함하는 전류 전송시스템
US20050173149A1 (en) Triaxial superconducting cable and termination therefor
JPWO2013157513A1 (ja) 超電導ケーブルの接続構造
US6730851B2 (en) Superconducting cable and current transmission and/or distribution network including the superconducting cable
CN109411148A (zh) 一种真空绝缘超导电缆结构
CN110570988A (zh) 三相高温超导通电导体
GB1267110A (zh)
CN111403102B (zh) 一种具有高散热效率的超导导体支架
EP1323172A2 (en) Superconducting cable
CN109065257A (zh) 一种双层电磁屏蔽高温超导电缆
CN209525971U (zh) 一种准各向同性高载流超导电缆通电导体
US20020153162A1 (en) Superconducting cable
CN1530967A (zh) 具有双层冷却通道结构的热绝缘高温超导电缆
CN110808122A (zh) 一种基于临界电流准各向同性高工程电流密度高温超导股线的cicc导体
Fisher et al. Design, analysis, and fabrication of a tri-axial cable system
Shibata et al. Development of high temperature superconducting power cable prototype system
JPH02299108A (ja) 超電導ケーブル
Kwag et al. A study on the composite dielectric properties for an HTS cable
CN113571253B (zh) 一种改进corc圆芯导体的多槽超导缆线
Miura et al. 66 kV-2 kA peak load test of high-Tc superconducting model cable
CN210073450U (zh) 一种模块化的高温超导电缆
US20120103659A1 (en) Superconducting cable system
Mukoyama et al. Test results of a 30 m high-Tc superconducting power cable
Kelley et al. Application of HTS wire and cables to power transmission: State of the art and opportunities

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19897942

Country of ref document: EP

Kind code of ref document: A1