WO2020124550A1 - 充电控制方法、待充电设备、无线充电设备及存储介质 - Google Patents

充电控制方法、待充电设备、无线充电设备及存储介质 Download PDF

Info

Publication number
WO2020124550A1
WO2020124550A1 PCT/CN2018/122656 CN2018122656W WO2020124550A1 WO 2020124550 A1 WO2020124550 A1 WO 2020124550A1 CN 2018122656 W CN2018122656 W CN 2018122656W WO 2020124550 A1 WO2020124550 A1 WO 2020124550A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless charging
charging
battery
charged
voltage
Prior art date
Application number
PCT/CN2018/122656
Other languages
English (en)
French (fr)
Inventor
万世铭
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201880097995.4A priority Critical patent/CN112823459B/zh
Priority to EP18943979.7A priority patent/EP3890142A4/en
Priority to PCT/CN2018/122656 priority patent/WO2020124550A1/zh
Publication of WO2020124550A1 publication Critical patent/WO2020124550A1/zh
Priority to US17/323,676 priority patent/US20210273465A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type

Definitions

  • the embodiments of the present application relate to the technical field of wireless communication, and in particular, to a charging control method, a device to be charged, a wireless charging device, and a storage medium.
  • the mobile terminal industry is developing faster and faster. People are no longer limited to using mobile terminals to make calls, but also using mobile terminals to listen to music, watch videos, browse web pages, and play games. Although these newly added functions bring people a happy experience, they all consume a lot of power, which leads to the increasing battery capacity of mobile terminals.
  • the charging method of the terminal is mainly wired charging.
  • the charging device needs to be connected to the charged terminal through the charging cable before charging, and once the charging cable is missing, the terminal cannot be charged.
  • wireless charging has the advantage of not requiring a charging cable, based on existing wireless charging technology standards (such as the Qi standard), it is still impossible to improve the efficiency of wireless charging while overcoming the heating defects of charging.
  • the embodiments of the present application are expected to provide a charging control method, a device to be charged, a wireless charging device, and a storage medium, which can reduce the charging heating of the device to be charged, while also improving the charging efficiency.
  • an embodiment of the present application provides a charging control method.
  • the method is applied to a device to be charged.
  • the method includes:
  • the control command is used to indicate that the transmission power of the wireless charging device needs to be adjusted, so that all The transmission power of the wireless charging device meets the charging power required by the battery in the device to be charged, and the output current of the wireless charging receiving unit in the device to be charged meets a preset current demand range;
  • the wireless charging signal adjusted by the wireless charging device is received by the wireless charging receiving unit to charge the battery.
  • an embodiment of the present application provides a charging control method.
  • the method is applied to a wireless charging device, and the method includes:
  • Adjusting the transmission power of the wireless charging device according to the control instruction so that the transmission power of the wireless charging device meets the charging power required by the battery in the device to be charged, and causes the wireless charging in the device to be charged
  • the output current of the receiving unit meets the preset current demand range.
  • an embodiment of the present application provides a device to be charged, the device to be charged includes: a detection unit, a first control unit, a wireless charging receiving unit, and a charging management unit, wherein,
  • the detection unit is configured to detect the battery voltage and battery current of the battery, and detect the output current of the wireless charging receiving unit;
  • the first control unit is configured to send a control instruction to a wireless charging device according to the detected battery voltage, battery current, and output current; wherein the control instruction is used to instruct the wireless charging device
  • the transmission power of the battery needs to be adjusted so that the transmission power of the wireless charging device meets the charging power required by the battery in the device to be charged and the output current of the wireless charging receiving unit in the device to meet the preset current demand range ;
  • the wireless charging receiving unit is configured to receive the wireless charging signal adjusted by the wireless charging device
  • the charging management unit is configured to charge the battery according to the adjusted wireless charging signal.
  • an embodiment of the present application provides a wireless charging device, the wireless charging device includes: a wireless charging transmitting unit and a second control unit, wherein,
  • the wireless charging transmitting unit is configured to transmit a wireless charging signal
  • the second control unit is configured to receive a control instruction sent by the device to be charged during wireless charging of the device to be charged; and adjust the transmission power of the wireless charging device according to the control instruction, to Make the transmission power of the wireless charging device meet the charging power required by the battery in the device to be charged, and make the output current of the wireless charging receiving unit in the device to meet the preset current demand range.
  • an embodiment of the present application provides a device to be charged, the device to be charged includes: a first memory and a first processor; wherein,
  • the first memory is used to store a computer program that can run on the first processor
  • the first processor is configured to execute the steps of the method according to the first aspect when running the computer program.
  • an embodiment of the present application provides a wireless charging device, the wireless charging device includes: a second memory and a second processor; wherein,
  • the second memory is used to store a computer program that can run on the second processor
  • the second processor is configured to execute the steps of the method according to the second aspect when running the computer program.
  • an embodiment of the present application provides a computer storage medium that stores a charging control program, and when the charging control program is executed by a first processor, the steps of the method according to the first aspect are implemented, Or, when executed by the second processor, the steps of the method according to the second aspect are implemented.
  • Embodiments of the present application provide a charging control method, a device to be charged, a wireless charging device, and a storage medium.
  • the method is applied to a device to be charged, and first detects the battery voltage and current of the battery, and detects the output current of the wireless charging receiving unit And then send control commands to the wireless charging device based on the detected battery voltage, the battery current, and the output current; and finally receive the wireless charging signal adjusted by the wireless charging device through the wireless charging receiving unit, To charge the battery; because the control instruction is used to indicate that the transmission power of the wireless charging device needs to be adjusted, so that the transmission power of the wireless charging device meets the charging power required by the battery in the device to be charged, and the device to be charged
  • the output current of the internal wireless charging receiving unit meets the preset current demand range, which can effectively control the voltage difference between the output voltage of the wireless charging receiving unit and the battery voltage, and can also reduce the charging heating of the device to be charged, while improving the charging effectiveness.
  • FIG. 1 is a schematic diagram of a composition structure of a wireless charging system provided by a related technical solution
  • FIG. 2 is a schematic structural diagram of a wireless charging system according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a charging control method provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a device to be charged according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another charging control method provided by an embodiment of the present application.
  • FIG. 6 is a detailed schematic flowchart of a charging control method provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a device to be charged according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a specific hardware structure of a device to be charged according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a wireless charging device according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a specific hardware structure of a wireless charging device according to an embodiment of the present application.
  • the wireless charging technology originates from the wireless energy transmission technology.
  • the wireless charging methods are mainly divided into three types: electromagnetic induction (or magnetic coupling), radio wave, and electromagnetic resonance.
  • the mainstream wireless charging standards include the Qi standard, the Power Matters Alliance (PMA) standard and the Wireless Power Alliance (Alliance for Wireless Power, A4WP), etc.; both the Qi standard and the PMA standard use electromagnetic induction for wireless
  • the A4WP standard uses electromagnetic resonance for wireless charging.
  • the wireless charging technology for the device to be charged uses electromagnetic induction, and the wireless charging device (such as a wireless charging base) and the device to be charged transmit energy in a magnetic field, and there is no need for a charging cable connection between the two , You can charge the battery in the device to be charged, making charging more convenient.
  • the device to be charged may refer to a terminal, which may include, but is not limited to, being configured to be connected via a wired line (such as via a public switched telephone network (Public Switched Telephone Network, PSTN), digital subscriber line (Digital Subscriber Line) , DSL), digital cable, direct cable connection, and/or another data connection/network) and/or via wireless interface (eg, for cellular networks, wireless local area networks (Wireless Local Area Network, WLAN), such as handheld digital video broadcasting (Digital Video Broadcasting Handheld, DVB-H) network digital TV network, satellite network, AM-FM (Amplitude Modulation-Frequency Modulation, AM-FM) broadcast transmitter, and/or the wireless interface of another communication terminal) receive/ A device that sends communication signals.
  • a wired line such as via a public switched telephone network (Public Switched Telephone Network, PSTN), digital subscriber line (Digital Subscriber Line) , DSL), digital cable, direct cable connection, and/or another data connection/network
  • wireless interface eg
  • a terminal configured to communicate through a wireless interface may be referred to as a “wireless communication terminal”, a “wireless terminal”, and/or a “mobile terminal”, where the mobile terminal includes but is not limited to a mobile phone, a tablet computer, a notebook computer, a palmtop Mobile terminal devices such as computers, personal digital assistants (Personal Digital Assistants, PDAs), portable media players (Portable Media Players, PMPs), navigation devices, etc. may also include fixed terminal devices such as digital TVs and desktop computers.
  • the device to be charged used in the embodiments of the present application may further include a mobile power source, which can store the received charging energy to provide energy to other electronic devices. In the embodiments of the present application, this is not specifically limited.
  • the wireless charging system 10 includes a power supply device 110, a wireless charging device 120, and a device to be charged 130.
  • the wireless charging device 120 includes a wireless charging transmitting unit 121
  • the device to be charged 130 includes a wireless charging receiving unit 131, a charging management unit 132, and a battery 133.
  • the wireless charging device 120 may be, for example, a wireless charging base
  • the device to be charged 130 may be, for example, a terminal.
  • the output voltage and output current of the power supply device 110 are transmitted to the wireless charging device 120.
  • the wireless charging device 120 may convert the output voltage and output current of the power supply device 110 into a wireless charging signal (electromagnetic signal) through the internal wireless charging transmitting unit 121 for transmission.
  • the wireless charging transmitting unit 121 may convert the output current of the power supply device 110 into alternating current, and convert the alternating current into a wireless charging signal through a transmitting coil or a transmitting antenna.
  • the device to be charged 130 may receive the wireless charging signal transmitted by the wireless charging transmitting unit 121 through the wireless charging receiving unit 131 and convert the wireless charging signal into the output voltage and output current of the wireless charging receiving unit 131.
  • the wireless charging receiving unit 131 can convert the wireless charging signal transmitted by the wireless charging transmitting unit 121 into alternating current through a receiving coil or a receiving antenna, and rectify and/or filter the alternating current to convert the alternating current into wireless charging The output voltage and output current of the receiving unit 131.
  • the wireless charging device 120 may pre-negotiate the transmission power of the wireless charging transmitting unit 121 with the device to be charged 130. Assuming that the power negotiated between the wireless charging device 120 and the device to be charged 130 is 5W, the output voltage and output current of the wireless charging receiving unit 131 are generally 5V and 1A. Assuming that the power negotiated between the wireless charging device 120 and the device to be charged 130 is 10.8 W, the output voltage and output current of the wireless charging receiving unit 131 are generally 9 V and 1.2 A.
  • the constant voltage and/or constant current control needs to be performed by the charging management unit 132 first to obtain the expectation of the battery 133 in the device to be charged 130 Charging voltage and/or charging current.
  • the charging management unit 132 may be used to transform the output voltage of the wireless charging receiving unit 131 so that the output voltage and/or output current of the charging management unit 132 meets the requirements of the charging voltage and/or charging current expected by the battery 133.
  • the charging management unit 132 may be, for example, a charging integrated circuit (IC), a buck-boost conversion circuit, or a low dropout linear regulator (LDO).
  • the charging management unit 132 is limited by the reason for the low power conversion efficiency (also referred to as energy conversion efficiency, or circuit conversion efficiency), so that the electrical energy of the unconverted portion is lost in the form of heat. This part of the heat will be focused inside the device 130 to be charged.
  • the design space and heat dissipation space of the device to be charged 130 are very small (for example, the physical size of the mobile terminal used by the user is getting lighter and thinner, and a large number of electronic components are densely arranged in the mobile terminal to improve the performance of the mobile terminal), which This not only increases the difficulty of designing the charging management unit 132, but also makes it difficult to remove the heat focused in the device to be charged 130 in time, thereby causing an abnormality of the device to be charged 130.
  • the wireless charging device 120 may output charging power in a low-voltage and large-current manner, for example, using 5V/4A charging power.
  • the wireless charging transmitting unit 121 can generate a wireless charging signal based on 5V/4A, and accordingly, the wireless charging receiving unit 131 can convert the wireless charging signal into an output voltage/output current of 5V/4A, and 4A
  • the large charging current will cause the transmitting coil of the wireless charging transmitting unit 121 and the receiving coil of the wireless charging receiving unit 131 to generate greater heat during the transmission of electric energy.
  • the heat generated during charging will affect the charging speed, product life, and also reduce product reliability.
  • the wireless charging device 120 in order to reduce the heating of the coil during the wireless charging, a method of low charging power is adopted.
  • the wireless charging device 120 only outputs charging power of up to 7.5 W to charge the charging device 130.
  • the charging speed is slow, and it takes a long time to fully charge the device 130 to be charged.
  • the wireless charging device 120 in order to speed up the charging speed, the wireless charging device 120 increases the charging power (for example, increases 7.5W to 10W) for wireless charging compared to the low charging power method.
  • this charging method does not reduce the charging duration to the expected (for example, less than 100 minutes).
  • heat of the coil or heat of the charging management unit 132 is inevitably caused.
  • the distance between the wireless charging device 120 and the device to be charged 130 is usually very small, and the heat-generating coil of the wireless charging device 120 will transfer heat to the device to be charged 130.
  • the heat of the coil and the charging management unit will be transferred to the battery to a certain extent, and the battery's own heat during the charging process will make the temperature of the battery easily exceed the safe charging range.
  • some related technologies also use heat dissipation technologies such as graphene and heat dissipation plates to dissipate heat during charging.
  • heat dissipation technologies such as graphene and heat dissipation plates to dissipate heat during charging.
  • the effect of these heat dissipation technologies is not ideal, and it will increase the cost of the product, occupy the internal space of the product, and affect the appearance of the product.
  • an embodiment of the present application provides a wireless charging system, which may include a wireless charging signal transmitting device (for example, the aforementioned wireless charging device) and a wireless charging signal receiving device (for example, the aforementioned Device to be charged);
  • a wireless charging signal transmitting device for example, the aforementioned wireless charging device
  • a wireless charging signal receiving device for example, the aforementioned Device to be charged
  • wireless communication can be performed between the wireless charging device and the device to be charged, and the transmission power of the wireless charging device can be adjusted based on the control command sent by the device to be charged, so that the transmission power of the wireless charging device and the battery The currently required charging voltage and/or charging current match.
  • the wireless charging power and the charging speed can be increased according to the charging requirements of the device to be charged.
  • the device to be charged can also detect the output current of the wireless charging receiving unit, so that the wireless charging device can adjust the transmission power based on the control command sent by the device to be charged , So that the output current of the wireless charging receiving unit meets the preset condition.
  • the output current of the wireless charging receiving unit is controlled by the wireless charging device, so that the heating of the wireless charging transmitting unit (which includes the transmitting coil) and the wireless charging receiving unit (which includes the receiving coil) can be controlled to reduce the heating during the charging process. Therefore, compared with the related art, the duration of high-power wireless charging can be extended, the charging speed can be increased, and the charging time can be shortened.
  • the wireless charging system 20 includes a power supply device 210, a wireless charging device 220, and a device to be charged 230 .
  • the power supply device 210 is used to provide power to the wireless charging device 220.
  • the power supply device 210 may include: a rectifier unit, a transformer unit, a control unit, and a charging interface, etc., which can convert an AC input into a DC output to provide to the wireless charging device 220.
  • the power supply device 210 may be an adapter, a power bank, or a vehicle power supply.
  • the power supply device 210 may also directly provide AC power to the wireless charging device 220.
  • the power supply device 210 may be an AC power source.
  • the wireless charging device 220 further includes a unit or module for converting AC power to DC power, for example, a rectification filter unit and a DC/DC conversion unit.
  • the wireless charging device 220 is used to convert the direct current or alternating current provided by the power supply device 210 into a wireless charging signal (electromagnetic signal) to perform power transmission in a wireless manner.
  • the wireless charging device 220 may include a first conversion unit 221, a wireless charging transmission unit 222 and a second control unit 223.
  • the composition structure of the wireless charging device 220 shown in FIG. 2 does not constitute a limitation on the wireless charging device, and the wireless charging device may include more or fewer components than shown, or combine a certain Components, or different component arrangements.
  • the power supply device 210 can be an ordinary adapter, a voltage regulator adapter (that is, the adapter itself can adjust the size of the output voltage), or even a mobile power supply; if the power supply device 210 is a voltage regulator adapter Then, the wireless charging device 220 may remove the first conversion unit 221.
  • the first conversion unit 221 is used to perform direct current/direct current (DC/DC) voltage conversion, mainly to adjust the output voltage of the power supply device 101 to a fixed voltage value and provide it to the wireless charging transmitting unit 222.
  • DC/DC direct current/direct current
  • the wireless charging transmitting unit 222 is configured to convert the DC power provided by the first conversion unit 221 or the DC power provided by the power supply device 210 into AC power that can be coupled to the transmitting coil, and convert the AC power into a wireless charging signal through the transmitting coil for transmission.
  • the wireless charging transmitting unit 222 may include: an inverter unit and a resonance unit.
  • the inverter unit may include a plurality of switch tubes, and the size of the transmit power can be adjusted by controlling the on-time (ie, duty cycle) of the switch tubes.
  • the resonance unit is used for transmitting electrical energy.
  • the resonance unit may include a capacitor and a transmitting coil. By adjusting the operating frequency of the resonance unit, the size of the transmission power of the wireless charging transmission unit 222 can be adjusted.
  • the wireless charging device 220 may be a wireless charging base or a device with an energy storage function, or the like.
  • the wireless charging device 220 When the wireless charging device 220 is a device with an energy storage function, it also includes an energy storage module (for example, a lithium battery 235), which can obtain electrical energy from an external power supply device 210 and store it. Thus, the energy storage module can provide electric energy to the wireless charging and transmitting unit 222.
  • the wireless charging device 220 can obtain electrical energy from the external power supply device 210 in a wired or wireless manner.
  • a wired method for example, is connected to the power supply device 210 through a charging interface (for example, a Type-C interface or a USB interface, etc.) to obtain electrical energy.
  • the wireless charging device 220 may further include a wireless charging receiving unit 231, which may obtain electric energy from a device having a wireless charging function in a wireless manner.
  • the second control unit 223 is used to control the wireless charging process.
  • the second control unit 223 may communicate with the power supply device 210 to determine the output voltage and/or output current of the power supply device.
  • the second control unit 223 can also communicate with the device to be charged 230 to implement charging information (for example, battery 235 voltage information, battery 235 temperature information, charging mode information, etc.) in the device to be charged 230, and perform wireless charging Determination of the charging parameters (eg, charging voltage and/or charging current), etc.
  • the wireless charging device 220 may further include other related hardware, logic devices, units, and/or codes to implement corresponding functions.
  • the wireless charging device 220 may further include a display unit (for example, a light-emitting diode or an LED display screen) for displaying the charging status in real time (for example, charging in progress or terminated, etc.) during the wireless charging process.
  • a display unit for example, a light-emitting diode or an LED display screen
  • the device to be charged 230 includes a wireless charging receiving unit 231, a charging management unit 232, a first control unit 233, a detection unit 234, a battery 235 and a first charging channel 236.
  • a wireless charging receiving unit 231 includes a wireless charging receiving unit 231, a charging management unit 232, a first control unit 233, a detection unit 234, a battery 235 and a first charging channel 236.
  • the composition structure of the device to be charged 230 shown in FIG. 2 does not constitute a limitation on the device to be charged, and the device to be charged may include more or fewer components than shown, or a combination of certain Components, or different component arrangements.
  • the power supply device 210 provides power supply for the wireless charging device 220, the device to be charged 230 is placed on the surface of the wireless charging device 220, and the wireless charging device 220 charges the battery 235 in the device to be charged 230 by electromagnetic induction.
  • a wireless connection is established between the wireless charging device 220 and the device to be charged 230, and the two can also communicate with each other.
  • wireless communication methods include, but are not limited to, Bluetooth communication, Wireless Fidelity (WiFi) communication, high-frequency close-range wireless communication, optical communication, ultrasonic communication, ultra-wideband communication, and mobile communication Wait.
  • WiFi Wireless Fidelity
  • high-frequency close-range wireless communication optical communication
  • ultrasonic communication ultra-wideband communication
  • mobile communication Wait The embodiments of the present application are not specifically limited.
  • the wireless charging receiving unit 231 is used to convert the wireless charging signal transmitted by the wireless charging transmitting unit 222 of the wireless charging device 220 into alternating current through the receiving coil, and rectify and/or filter the alternating current to convert the alternating current into stable
  • the DC power is supplied to the battery 235 for charging.
  • the wireless charging receiving unit 231 includes a receiving coil and an AC/DC conversion unit.
  • the AC/DC conversion unit is used to convert the alternating current received by the receiving coil into direct current.
  • the battery 235 may include a single cell or multiple cells.
  • the multiple cells are connected in series.
  • the charging voltage that the battery 235 can withstand is the sum of the charging voltage that the multiple cells can withstand, which can increase the charging speed and reduce the heating of the charging.
  • the first charging channel 236 may be a wire.
  • a charging management unit 232 may be provided on the first charging channel 236.
  • the charging management unit 232 is configured to perform step-up or step-down processing on the DC power output by the wireless charging receiving unit 231 to obtain the output voltage and output current of the first charging channel 236.
  • the voltage and current values of the direct current output by the first charging channel 236 meet the charging requirements of the battery 235 and can be directly loaded into the battery 235 for charging.
  • the charging management unit 232 may include a voltage conversion unit, and the voltage conversion unit may be a boost conversion circuit, a buck conversion circuit, and a buck-boost conversion circuit
  • the LDO voltage stabilizing circuit may also be a charge pump circuit or even a direct charging circuit, which is not specifically limited in the embodiments of the present application.
  • the detection unit 234 is configured to detect the voltage value and/or current value of the first charging channel 236.
  • the voltage value and/or current value of the first charging channel 236 may refer to the voltage value and/or current value between the wireless charging receiving unit 231 and the charging management unit 232, that is, the output voltage value and/or current of the wireless charging receiving unit 231 value.
  • the voltage value and/or current value on the first charging channel 306 may also refer to the voltage value and/or current value between the charging management unit 232 and the battery 235, that is, the output voltage and/or output current of the charging management unit 232.
  • the detection unit 234 may include a voltage detection unit 234 and a current detection unit 234.
  • the voltage detection unit 234 may be used to sample the voltage on the first charging channel 236 and send the sampled voltage value to the first control unit 233.
  • the voltage detection unit 234 may sample the voltage on the first charging channel 236 by series voltage division.
  • the current detection unit 234 may be used to sample the current on the first charging channel 236 and send the sampled current value to the first control unit 233.
  • the current detection unit 234 may sample and detect the current on the first charging channel 236 through a current-sense resistor and a current-meter.
  • the first control unit 233 is configured to communicate with the second control unit 223 of the wireless charging device 220, and feed back the voltage value and/or current value detected by the detection unit 234 to the second control unit 223.
  • the second control unit 223 can adjust the transmission power of the wireless charging transmitting unit 222 according to the feedback voltage value and/or current value, so that the voltage value and/or current value of the direct current output by the first charging channel 236 and the battery The required charging voltage value and/or current value of 235 are matched.
  • matching with the charging voltage value and/or current value required by the battery 235 includes: the voltage value and/or current value of the direct current output by the first charging channel 236 and the charging voltage value required by the battery 235
  • the current value is equal to or floats a preset range (for example, the voltage value floats up and down by 100 mV to 200 mV).
  • the first control unit 233 may be an independent microcontroller unit (MCU) in the device to be charged 230, thereby improving the reliability of control.
  • the first control unit 233 may also be an application processor (Application Processor, AP) in the device to be charged 230, thereby saving hardware costs.
  • Application Processor Application Processor
  • an embodiment of the present application provides a charging control method; first, the battery voltage and current of the battery and the output current of the wireless charging receiving unit are detected; and then the battery is detected according to the detection Voltage, the battery current and the output current, send a control instruction to the wireless charging device, the control instruction is used to indicate that the transmission power of the wireless charging device needs to be adjusted; and finally based on the wireless charging device , The adjusted output voltage and the adjusted output current are output through the wireless charging receiving unit; the battery is charged according to the adjusted output voltage and the adjusted output current; During the charging process of the charging device, it can not only effectively reduce the charging heat of the device to be charged, but also improve the charging efficiency.
  • the embodiments of the present application will be described in detail below with reference to the drawings.
  • FIG. 3 it shows a charging control method provided by an embodiment of the present application.
  • the method is applied to a device to be charged.
  • the method may include:
  • S301 Detect the battery voltage and battery current of the battery, and detect the output current of the wireless charging and receiving unit;
  • S302 Send a control instruction to the wireless charging device according to the detected battery voltage, the battery current, and the output current; wherein the control instruction is used to indicate that the transmission power of the wireless charging device needs to be adjusted to Making the transmission power of the wireless charging device meet the charging power required by the battery in the device to be charged, and making the output current of the wireless charging receiving unit in the device to meet the preset current demand range;
  • S303 Receive the wireless charging signal adjusted by the wireless charging device through the wireless charging receiving unit to charge the battery.
  • the response of the wireless charging device to the control instruction may specifically include that the wireless charging device first determines the target transmit power value to be adjusted according to the control instruction; then according to the to-be-adjusted The target transmit power value determines the corresponding target voltage value and target current value; here, the product of the target voltage value and the target current value is equal to the target transmit power value; finally, the device to be charged receives the adjusted transmit power, so that the wireless charging The transmission power of the device satisfies the charging power required by the battery in the device to be charged, and the output current of the wireless charging receiving unit in the device to be charged meets a preset current demand range.
  • the sending a control instruction to the wireless charging device according to the detected battery voltage, battery current, and output current includes:
  • the determining whether the charging power meets the charging power required by the battery according to the detected battery voltage and the battery current includes:
  • the battery When the battery is in the constant voltage charging stage, determine whether the battery voltage meets the preset constant voltage range; if the battery voltage does not meet the preset constant voltage range, the charging power does not meet the charging requirements of the battery power.
  • the charging power required by the battery in the device to be charged changes; for example, during the constant current (Constant Current (CC) charging stage, as the battery voltage rises, the battery demand The charging power will increase accordingly; when entering the constant voltage (Constant Voltage, CV) charging stage, the charging power required by the battery will gradually decrease. In this way, for different charging stages, since the charging current and charging voltage required by the battery are different, correspondingly, the charging power required by the battery is also different.
  • the charging current and/or charging voltage required by the battery in each charging stage can be preset, or even a preset range corresponding to it (due to the voltage value or current
  • the values are floating, not a constant value); for example, taking a single-cell structure battery with a capacity of 4000mA as an example, during the pre-charge phase, the charging current is 0.03C, and the charging voltage does not exceed 3.6V;
  • the charging current can be set to any value between 1.2C and 1.5C, and the charging voltage is between 3.6V and 4.3V; in the constant voltage phase, the cut-off value of the charging current is 0.01C, and the charging voltage can be set to 4.3 Any value between V and 4.38V; in practical applications, whether it is a preset charging current and/or charging voltage, or a corresponding preset range (such as a preset constant current range and a preset constant voltage) Range) can be specifically set according to the actual situation, which is not
  • the preset current demand range represents the preset output current range of the device to be charged through the wireless charging receiving unit, for example, the preset current demand range is 0.95A to 1.05A; in practical applications, the preset current demand The range is set according to the actual situation. You can set the maximum preset value (such as 1.05A) and the minimum preset value (such as 0.95A) at the same time, or you can only set the maximum preset value (such as 1.05A); this application The embodiment does not specifically limit this.
  • the device to be charged may further include a detection unit (such as the detection unit 234 shown in FIG. 2), which is generally connected in series In the detected circuit, it is used to measure the current and voltage flowing in the detected circuit.
  • the detection unit may be a resistive type (such as a current-sense resistor), a magnetic device (such as a current transformer, a Rogowski coil, a Hall sensor), or a transistor (such as a drain to a source
  • RDS(ON) The on-resistance
  • ratio formula are not specifically limited in the embodiments of the present application.
  • the method before the detecting the battery voltage and battery current of the battery, and detecting the output current of the wireless charging receiving unit, the method further includes:
  • the output voltage and output current of the wireless charging receiving unit are subjected to voltage conversion processing by the charging management unit, and the first charging voltage and the first charging current are obtained after the conversion;
  • the first charging voltage and the first charging current are applied to the battery for charging.
  • the wireless charging transmitting unit in the wireless charging device includes a transmitting coil
  • the wireless charging receiving unit in the device to be charged includes a receiving coil
  • energy transmission is performed by electromagnetic induction between the transmitting coil and the receiving coil
  • the wireless charging receiving unit receives the wireless charging signal and converts it, and outputs the corresponding output voltage and output current after conversion; and then performs voltage conversion processing on the output voltage and output current through the charging management unit to convert the converted first charging voltage
  • the first charging current is applied to the battery in the device to be charged for charging.
  • embodiments of the present application may simultaneously send control commands to the wireless charging device through two control feedback loops ( For example, one control feedback loop based on the detected battery voltage and battery current, and another control feedback loop based on the detected output voltage and/or output current of the wireless charging receiving unit), Based on the simultaneous control of the dual feedback loop, the transmission power of the wireless charging device can be adjusted; according to the adjusted transmission power, the transmission power of the wireless charging device can be matched with the current charging voltage and/or charging current required by the battery It can also make the output current of the wireless charging receiving unit meet the preset conditions; thereby reducing the heating during the charging process and improving the charging efficiency.
  • the charging power whose charging power does not meet the battery demand and/or the output current of the wireless charging receiving unit does not meet the preset current demand range.
  • the wireless charging device can adjust the transmission power by adjusting the operating parameters such as the duty cycle of the switch tube, the operating frequency and the transmission voltage, so that the charging power meets the charging power required by the battery; It includes the following three methods:
  • sending a control instruction to the wireless charging device includes:
  • the charging power does not meet the charging power required by the battery, based on the wireless communication between the device to be charged and the wireless charging device, send a first control instruction to the wireless charging device; wherein, the The first control instruction is used to instruct the wireless charging device to adjust the transmit power by adjusting the duty cycle of the switch tube.
  • sending a control instruction to the wireless charging device includes:
  • the charging power does not meet the charging power required by the battery, based on the wireless communication between the device to be charged and the wireless charging device, send a second control instruction to the wireless charging device; wherein, the second The control instruction is used to instruct the wireless charging device to adjust the transmission power by adjusting the operating frequency.
  • sending a control instruction to the wireless charging device includes:
  • the charging power does not meet the charging power required by the battery, based on the wireless communication between the device to be charged and the wireless charging device, send a third control instruction to the wireless charging device; wherein, the third The control instruction is used to instruct the wireless charging device to adjust the transmission power by adjusting the transmission voltage.
  • wireless charging will first select the frequency conversion working mode; if the frequency conversion working mode still cannot make the charging power meet the charging power required by the battery At this time, wireless charging can also choose fixed frequency operation mode.
  • the wireless charging is in the frequency conversion working mode, and the transmission voltage of the wireless charging device remains unchanged at this time, and is adjusted by adjusting the duty ratio or the operating frequency of the switch tube The transmission power of the wireless charging device, thereby adjusting the charging power received by the wireless charging receiving unit.
  • the output current of the wireless charging receiving unit needs to meet the preset current demand range to control the heating of the coil.
  • the output voltage of the wireless charging and receiving unit can be adjusted by adjusting the duty cycle or working frequency of the switch tube; however, the ratio based on the ratio of the transmitting coil and the receiving coil is generally 1:1.
  • the adjusted output voltage corresponding to the wireless charging receiving unit will not exceed the transmitting voltage of the wireless charging device.
  • the wireless charging device can be in a fixed frequency operating mode at this time, and the output voltage of the wireless charging receiving unit can be changed by adjusting the transmission voltage of the wireless charging device, so that the wireless charging receiving unit A higher output voltage can be obtained.
  • the wireless charging device can also adjust the transmission power by adjusting the operating parameters such as the duty cycle of the switch tube, the operating frequency, and the transmission voltage, so that the output current meets the preset current demand range; including the following three methods:
  • sending a control instruction to the wireless charging device includes:
  • a fourth control instruction is sent to the wireless charging device; wherein, the fourth control instruction It is used to instruct the wireless charging device to adjust the transmit power by adjusting the duty ratio of the switch tube.
  • sending a control instruction to the wireless charging device includes:
  • the wireless charging device When the output current does not meet the preset current demand range, based on the wireless communication between the device to be charged and the wireless charging device, send a fifth control instruction to the wireless charging device; wherein, the fifth control instruction It is used to instruct the wireless charging device to adjust the transmission power by adjusting the operating frequency.
  • sending a control instruction to the wireless charging device includes:
  • the wireless charging device When the output current does not meet the preset current demand range, based on the wireless communication between the device to be charged and the wireless charging device, send a sixth control instruction to the wireless charging device; wherein, the sixth control instruction It is used to instruct the wireless charging device to adjust the transmission power by adjusting the transmission voltage.
  • the output current output by the wireless charging receiving unit can be achieved Adjust so that the output current can meet the preset current demand range; in actual applications, specific settings are made according to actual conditions, which are not specifically limited in the embodiments of the present application.
  • the receiving the wireless charging signal adjusted by the wireless charging device through the wireless charging receiving unit to charge the battery includes:
  • the charging voltage and the charging current are applied to the battery for charging.
  • the voltage conversion process is performed on the adjusted output voltage and the adjusted output current to obtain a charging voltage and a charging current after the conversion, including:
  • a voltage conversion process is performed on the adjusted output voltage and the adjusted output current by a charge pump unit to obtain the charging voltage and the charging current.
  • the device to be charged includes a charging management unit, and the charging management unit can perform voltage conversion processing on the adjusted output voltage and the adjusted output current output by the wireless charging receiving unit, and the converted charging voltage And the charging current is applied to the battery for charging.
  • the charging management unit may be a boost conversion unit, a buck conversion unit, and a buck-boost conversion unit, or a charge pump unit, or even a direct charge unit, etc. ;
  • the embodiments of the present application are not specifically limited.
  • the charge pump unit is composed of multiple switching devices.
  • the heat generated by the current flowing through the switching device is very small, which is almost the same as the current directly passing through the wire.
  • the adjusted output voltage and the adjusted after using the charge pump unit The output current is converted to voltage, which not only can achieve the effect of voltage reduction, but also makes the heat generation lower.
  • the voltage difference between the adjusted output voltage and the charging voltage obtained after voltage conversion needs to be as small as possible.
  • the device to be charged 230 may further include: a second conversion unit 237 and a second charging channel 238.
  • the second charging channel 238 may be a wire.
  • a second conversion unit 237 may be provided on the second charging channel 238 to perform voltage control on the DC power output by the wireless charging receiving unit 231 to obtain the output voltage and output current of the second charging channel 238 to charge the battery 235.
  • the second conversion unit 237 may include a circuit for performing voltage reduction, and output constant-current and/or constant-voltage electrical energy.
  • the wireless charging transmitting unit 222 may use a constant transmission power.
  • the second conversion unit 237 processes the battery 235 to meet the charging requirements of the battery 235
  • the battery 235 is input to charge the battery 235.
  • the constant transmit power does not necessarily mean that the transmit power remains completely unchanged, and it can vary within a certain range, for example, the transmit power is 7.5W, and it floats up and down by 0.5W.
  • the first control circuit 233 is also used to detect the output voltage value of the rectifier circuit in the wireless charging receiving unit 231 and the set target value (for example, it can be output for the set rectifier circuit The maximum voltage value) is compared, the error value is determined, and then the error value is sent to the second control unit 223 in the form of a data packet.
  • the wireless charging device 220 and the device to be charged 230 can be wirelessly charged according to the Qi standard.
  • the data signal containing the above-mentioned error value can be coupled to the coil of the wireless charging receiving unit 231 by signal modulation to be sent to the coil of the wireless charging transmitting unit 222, and then transmitted to the second control unit 223.
  • the second control unit 223 adjusts the transmission parameters of the wireless charging transmitting unit 121 according to the information of the error data packet, for example, the operating frequency of the transmitting coil in the wireless charging transmitting unit 121.
  • the wireless energy transmission control process may include:
  • the first control unit 233 compares the detected output voltage value of the second charging channel 238 with the set target value, determines the error value, and then sends the error value to the second control unit 223 in the form of a data packet;
  • the control unit 223 determines the difference according to the current value of the current transmitting coil and the information of the error data packet, and sets a new operating frequency according to the difference to adjust the size of the transmission power of the wireless charging transmitting unit 222.
  • the charging method for charging the battery 235 through the first charging channel 236 is the first charging mode
  • the method for charging the battery 235 through the second charging channel 238 is called the second charging mode.
  • the wireless charging device 220 and the device to be charged 230 may determine whether to charge the battery 235 in the first charging mode or the second charging mode through handshake communication.
  • the maximum transmission power of the wireless charging transmitting unit 220 when charging the charging device 230 through the first charging mode, the maximum transmission power of the wireless charging transmitting unit 220 may be the first transmission power value.
  • the maximum transmission power of the wireless charging transmission unit 222 may be the second transmission power value.
  • the first transmission power value is greater than the second transmission power value, and therefore, the charging speed of the device to be charged in the first charging mode is greater than the second charging mode.
  • the first control unit 233 switches between the first charging channel 236 and the second charging channel 238 according to the charging mode.
  • the first control unit 233 controls the charging management unit 232 on the first charging channel 236 to work.
  • the first control unit 233 controls the second conversion unit 237 on the second charging channel 238 to operate.
  • the device to be charged includes a first charging channel and a second charging channel, the charging speed of the first charging channel is faster than the charging speed of the second charging channel; the method further includes:
  • the method further includes:
  • the second charging channel is controlled to work.
  • the device to be charged 230 includes a first charging channel 236 and a second charging channel 238, and the charging speed of the first charging channel 236 is faster than that of the second charging channel 238 charging speed; in this way, by detecting the battery temperature of the battery 235, the first control unit 233 can control the switching between the first charging channel 236 and the second charging channel 238 according to the battery temperature;
  • the device to be charged 230 and wireless The charging device 220 can also determine whether to use the first charging channel 236 or the second charging channel 238 to charge the battery 235 through handshake communication; when the handshake communication is successfully established, the first control unit 233 can control the first charging channel 236 to work; otherwise The first control unit 233 can control the operation of the second charging channel 238; thus, the heating of the device to be charged can be reduced, and the charging speed can also be increased.
  • the wireless charging device supports a first wireless charging mode and a second wireless charging mode, and the wireless charging device charges the device to be charged in the first wireless charging mode faster than all The charging speed of the wireless charging device to the device to be charged in the second wireless charging mode; the method further includes:
  • the negotiating to use the first wireless charging mode or the second wireless charging mode for charging based on wireless communication between the device to be charged and the wireless charging device includes: :
  • the battery is charged based on the first wireless charging mode used by the wireless charging device;
  • the battery is charged based on the second wireless charging mode used by the wireless charging device.
  • the wireless charging device 220 can support the first wireless charging mode and the second wireless charging mode, and the wireless charging device 220 charges the device 230 to be charged in the first wireless charging mode The speed is faster than the charging speed of the wireless charging device 220 in the second wireless charging mode to the charging device 230. In other words, compared to the wireless charging device 220 operating in the second wireless charging mode, it takes time for the wireless charging device 220 operating in the first wireless charging mode to charge the battery in the device 230 to be charged with the same capacity Shorter.
  • the second wireless charging mode may be a so-called ordinary wireless charging mode, for example, it may be a traditional wireless charging mode based on the QI standard, PMA standard, or A4WP standard.
  • the first wireless charging mode may be a fast wireless charging mode.
  • the ordinary wireless charging mode may refer to a wireless charging mode in which the transmission power of the wireless charging device 220 is small (usually less than 15W, and the commonly used transmission power is 5W or 10W). In the ordinary wireless charging mode, you want to fully charge a larger-capacity battery (For example, a battery with a capacity of 3000 mAh), it usually takes several hours; while in the fast wireless charging mode, the transmission power of the wireless charging device 220 is relatively large (usually greater than or equal to 15W). Compared with the ordinary wireless charging mode, the charging time required for the wireless charging device 220 to fully charge the battery of the same capacity in the fast wireless charging mode can be significantly shortened and the charging speed is faster.
  • the battery in the device to be charged includes a battery with a single cell structure and a battery with N cells connected in series, where N is a positive integer greater than or equal to 2.
  • the method when the battery is in a constant voltage charging stage, the method further includes:
  • a first preset charging current is acquired, the battery is charged with the first preset charging current at a constant current, and the battery voltage is charged to the first preset limit Voltage; wherein, the first preset limit voltage is greater than or equal to the preset cut-off voltage;
  • the method when the battery is in a constant voltage charging stage, the method further includes:
  • a first preset charging current is acquired, the battery is charged with the first preset charging current at a constant current, and the battery voltage is charged to the first preset limit Voltage; wherein, the first preset limit voltage is greater than or equal to the preset cut-off voltage;
  • the battery is charged at a constant voltage with the Kth preset limit voltage, and when the battery current is less than or equal to the preset cut-off current, charging of the battery is stopped.
  • the wireless charging transmitting unit 222 generates a wireless charging signal based on 10V/2A, and accordingly, the wireless charging receiving unit 231 converts the wireless charging signal into an output voltage/output current of 10V/2A, since the current is reduced from 4A to 2A, The heat generated during power transmission will be reduced accordingly. Therefore, the embodiments of the present application may also use multiple cells connected in series to reduce the heat generated by the wireless charging transmitting unit 222 and the wireless charging receiving unit 231.
  • N 2 as an example.
  • the value of N may be 3 or a positive integer of 3 or more.
  • the more batteries connected in series the smaller the heat generated by the electric energy passing through the wireless charging transmitting unit 222 and the wireless charging receiving unit 231.
  • the embodiment of the present application further reforms the battery structure inside the device to be charged 230, and introduces multiple cells connected in series, Compared with the single-cell scheme, if the same charging speed is to be achieved, the charging current required by the multi-cell battery is 1/N of the charging current required by the single-cell battery (N is the series connection within the device 230 to be charged. In other words, under the premise of ensuring the same charging speed, the embodiment of the present application can greatly reduce the size of the charging current, thereby further reducing the calorific value of the device to be charged 230 during the charging process.
  • the multi-cell batteries may be batteries with the same or similar specifications and parameters.
  • the batteries with the same or similar specifications are convenient for unified management, and the selection of batteries with the same specifications or similar parameters can improve the power saving.
  • the overall performance and service life of the core may be batteries with the same or similar specifications and parameters.
  • the electrical energy output by the first charging channel or the second charging channel is used to charge the multi-cell batteries connected in series.
  • a charging management unit or a second conversion unit may be used to supply power to the charging device 230 after stepping down the voltage of the multi-cell battery.
  • a single cell can also be used for system power supply.
  • the multi-cell batteries can be balanced by the equalizing circuit.
  • the equalization circuit There are many ways to implement the equalization circuit. For example, you can connect loads at both ends of the cell and consume the power of the cell to keep it consistent with the power of other cells, thereby keeping the voltage of each cell consistent.
  • the battery cell with a high power amount can be charged to the battery cell with a low power amount until the voltages of the respective battery cells are the same.
  • the charging process of the battery may include one or more of a trickle charging stage, a constant current charging stage, and a constant voltage charging stage.
  • the charging time and the charging current can be controlled to shorten the charging duration of the constant voltage charging phase or remove the constant voltage charging phase. Therefore, compared with the charging process in the related art, the charging speed can be greatly improved.
  • the battery capacity is determined. According to the relationship between the charging voltage, charging current, charging time, and battery capacity, when the charging voltage is equal to the preset limit voltage Vn, the magnitude of the preset charging current at different stages can be determined.
  • I1, I2, I3...In can be set, and the difference between the two adjacent preset charging currents is ⁇ I, for example, ⁇ I can take a value between 100mA and 1A .
  • the battery when the battery voltage is charged to the preset cut-off voltage, the battery is charged with a constant current at the preset charging current I1 until the battery voltage The preset limit voltage Vn is reached. Since the battery is charged at a constant current with a preset charging current I1, the voltage will drop after stopping. Therefore, the battery is charged with a constant current at the preset charging current I2 until the battery voltage reaches the preset limit voltage Vn. Repeat the above steps until the preset charging current In of the last step is used to charge to the preset limit voltage Vn, then the charging can be stopped. Therefore, by setting the preset limit voltage Vn and the preset charging current in each stage, the constant voltage charging stage in the related art can be omitted, and the charging time is greatly saved.
  • the battery when the battery voltage is charged to the preset cut-off voltage, the battery is charged with a constant current at the preset charging current I1 until the battery The voltage reaches the preset limit voltage Vn. Then, the battery is charged with a constant current at a preset charging current I2 until the battery voltage reaches a preset limit voltage Vn.
  • Vn is used as the charging voltage
  • the constant voltage charging preset time or the current to be charged decreases to the preset value, then stop Charge.
  • the duration of constant-voltage charging is reduced due to the increased charging cut-off voltage, and thus, the charging time can also be greatly saved compared to related technologies.
  • each battery cell can independently perform the charging operation according to the above charging process.
  • the above embodiment provides a charging control method.
  • the method is applied to a device to be charged, and firstly detects the battery voltage and current of the battery, and detects the output current of the wireless charging receiving unit; then according to the detected battery voltage, all The battery current and the output current, send a control command to the wireless charging device; finally receive the wireless charging signal adjusted by the wireless charging device through the wireless charging receiving unit to charge the battery; due to the control command
  • the output current meets the preset current demand range, so that during the charging process of the device to be charged, not only can the charging heat of the device to be charged be effectively reduced, but also the charging efficiency is improved.
  • FIG. 5 it shows a charging control method provided by an embodiment of the present application.
  • the method is applied to a wireless charging device, and the method may include:
  • S501 During wireless charging of the device to be charged, receiving a control instruction sent by the device to be charged;
  • S502 Adjust the transmission power of the wireless charging device according to the control instruction, so that the transmission power of the wireless charging device meets the charging power required by the battery in the device to be charged, and cause the device to be charged
  • the output current of the wireless charging receiving unit meets the preset current demand range.
  • the device to be charged may send a control instruction to the wireless charging device; then the wireless charging device The control command adjusts the transmission power.
  • the wireless charging device can adjust the transmit power by adjusting the parameters such as the duty cycle of the switch tube, the operating frequency, and the transmit voltage, which is not specifically limited in the embodiments of the present application.
  • the adjusting the transmission power of the wireless charging device according to the control instruction includes:
  • the adjusting the transmission power of the wireless charging device according to the control instruction includes:
  • the adjusting the transmission power of the wireless charging device according to the control instruction includes:
  • the adjusting the transmission power of the wireless charging device according to the control instruction includes:
  • the adjusting the transmission power of the wireless charging device according to the control instruction includes:
  • the adjusting the transmission power of the wireless charging device according to the control instruction includes:
  • the wireless charging device can pass the received first Instruction, second instruction or third instruction to adjust the transmission power of the wireless charging device so that the transmission power of the wireless charging device meets the charging power required by the battery in the device to be charged; when the wireless charging receiving unit in the device to be charged When the output current does not meet the preset current demand range, the wireless charging device can also adjust the transmission power of the wireless charging device through the received fourth instruction, fifth instruction, or sixth instruction, so that the wireless charging in the device to be charged The output current of the receiving unit meets the preset current demand range; in this way, by adjusting the transmission power, the transmission power of the wireless charging device can meet the charging power required by the battery in the device to be charged, and the wireless charging reception in the device to be charged The output current of the unit meets the preset current demand range, which can reduce the charging heat of the device to be charged and improve
  • the wireless charging device 220 includes a voltage conversion unit (such as the first conversion unit 221 shown in FIG. 2 ), through a third control instruction or a sixth control instruction To control the transmission voltage of the wireless charging device 220 to adjust.
  • the second control unit 223 may control the first conversion unit 221 so that the output voltage of the first conversion unit 221 changes, thereby adjusting the emission voltage; or the second control unit 223 may The input voltage of the first conversion unit 221 is adjusted (for example, the output voltage of the power supply device 210 shown in FIG. 2 is adjusted), or the output voltage of the first conversion unit 221 is changed, thereby adjusting the emission voltage;
  • specific settings are made according to actual conditions, which are not specifically limited in the embodiments of the present application.
  • the wireless charging device supports a first wireless charging mode and a second wireless charging mode, and the wireless charging device charges the device to be charged in the first wireless charging mode faster than all The charging speed of the wireless charging device to the device to be charged in the second wireless charging mode; the method further includes:
  • the negotiating to use the first wireless charging mode or the second wireless charging mode for charging based on wireless communication between the device to be charged and the wireless charging device includes: :
  • the wireless charging device is controlled to use the second wireless charging mode to charge the device to be charged.
  • the wireless charging device 220 can support the first wireless charging mode and the second wireless charging mode, and the wireless charging device 220 charges the device 230 to be charged in the first wireless charging mode The speed is faster than the charging speed of the wireless charging device 220 in the second wireless charging mode to the charging device 230.
  • the wireless charging device 220 can determine the wireless charging mode to be used by the second control unit 223 based on the wireless communication with the device to be charged 230; for example, when the handshake communication is established successfully, the second control unit 223 can control the wireless The charging device 220 uses the first wireless charging mode to charge the device 230 to be charged, thereby greatly reducing the charging time and increasing the charging speed.
  • the above embodiment provides a charging control method.
  • the method is applied to a wireless charging device.
  • a control instruction sent by the device to be charged is received; according to the control instruction
  • the transmission power of the wireless charging device is adjusted so that the transmission power of the wireless charging device meets the charging power required by the battery in the device to be charged, and the output current of the wireless charging receiving unit in the device to be charged meets a preset Current demand range; in this way, by adjusting the transmission power of the wireless charging device, the charging heating of the device to be charged can be reduced, and the charging efficiency is improved.
  • FIG. 6 shows a detailed flow diagram of a charging control method provided by an embodiment of the present application. Based on the structural example of the wireless charging system shown in FIG. 2, the detailed flow may be include:
  • the wireless charging device transmits a wireless charging signal through the wireless charging transmitting unit
  • the device to be charged receives the wireless charging signal through the wireless charging receiving unit, and the wireless charging receiving unit performs conversion and outputs the corresponding output voltage and output current;
  • the device to be charged detects the battery voltage and battery current of the battery through the detection unit, and detects the output current of the wireless charging receiving unit;
  • S605 Determine whether the transmission power of the wireless charging device meets the charging power required by the battery and/or whether the output current of the wireless charging receiving unit meets a preset current demand range;
  • the wireless charging device receives the control instruction, and adjusts the transmission power of the wireless charging device according to the control instruction, so that the transmission power of the wireless charging device meets the charging power required by the battery, and the wireless charging The output current of the receiving unit meets the preset current demand range;
  • the wireless charging device Based on the adjusted transmission power, the wireless charging device transmits the adjusted wireless charging signal to the device to be charged;
  • the device to be charged receives the adjusted wireless charging signal through the wireless charging receiving unit, and the wireless charging receiving unit performs conversion and outputs the corresponding adjusted output voltage and adjusted output current;
  • S610 Based on the adjusted output voltage and the adjusted output current, the device to be charged charges the battery.
  • the battery to be charged can send a control command to the wireless charging device; then the wireless charging device adjusts the transmission power according to the control command; wherein, the transmission power can be adjusted by changing the parameters such as the duty cycle of the switching tube, the operating frequency, and the transmission voltage.
  • the above embodiment provides a charging control method.
  • the method is applied to a wireless charging system.
  • the device to be charged is located on the surface of the wireless charging device.
  • Energy can be transmitted between the wireless charging device and the device to be charged in the form of a wireless charging signal;
  • the transmission power of the wireless charging device may also be adjusted, so that the transmission power of the wireless charging device meets the charging power required by the battery in the device to be charged, and the charging to be charged
  • the output current of the wireless charging receiving unit in the device meets the preset current demand range, so that the charging heating of the device to be charged can be reduced, and the charging efficiency is improved.
  • FIG. 7 shows the composition of a device to be charged 70 provided by an embodiment of the present application, which may include: a detection unit 701, a first control unit 702, a wireless The charging receiving unit 703 and the charging management unit 704, wherein,
  • the detection unit 701 is configured to detect the battery voltage and battery current of the battery and the output current of the wireless charging receiving unit;
  • the first control unit 702 is configured to send a control instruction to a wireless charging device according to the detected battery voltage, battery current, and output current; wherein the control instruction is used to instruct the wireless charging
  • the transmission power of the device needs to be adjusted so that the transmission power of the wireless charging device meets the charging power required by the battery in the device to be charged, and the output current of the wireless charging receiving unit in the device to meet the preset current requirement range;
  • the wireless charging receiving unit 703 is configured to receive the wireless charging signal adjusted by the wireless charging device
  • the charging management unit 704 is configured to charge the battery according to the adjusted wireless charging signal.
  • the first control unit 702 is specifically configured to determine whether the charging power meets the charging power required by the battery according to the detected battery voltage and the battery current; and according to the detected Output current, to determine whether the output current meets the preset current demand range; and when the charging power does not meet the charging power of the battery demand and/or the output current does not meet the preset current demand range, charge wirelessly The device sends control instructions.
  • the first control unit 702 is specifically configured to determine whether the battery current satisfies a preset constant current range when the battery is in a constant current charging stage; if the battery current does not satisfy a preset constant current Current range, the charging power does not meet the charging power required by the battery; and when the battery is in a constant voltage charging stage, it is determined whether the battery voltage meets a preset constant voltage range; if the battery voltage does not meet If the constant voltage range is preset, the charging power does not meet the charging power required by the battery.
  • the first control unit 702 is specifically configured to be based on wireless communication between the device to be charged and the wireless charging device when the charging power does not meet the charging power required by the battery, Sending a first control instruction to the wireless charging device; wherein the first control instruction is used to instruct the wireless charging device to adjust the transmit power by adjusting the duty cycle of the switch tube.
  • the first control unit 702 is specifically configured to be based on wireless communication between the device to be charged and the wireless charging device when the charging power does not meet the charging power required by the battery, Sending a second control instruction to the wireless charging device; wherein the second control instruction is used to instruct the wireless charging device to adjust the transmission power by adjusting the operating frequency.
  • the first control unit 702 is specifically configured to be based on wireless communication between the device to be charged and the wireless charging device when the charging power does not meet the charging power required by the battery, Sending a third control instruction to the wireless charging device; wherein the third control instruction is used to instruct the wireless charging device to adjust the transmission power by adjusting the transmission voltage.
  • the first control unit 702 is specifically configured to, based on wireless communication between the device to be charged and the wireless charging device, when the output current does not meet a preset current demand range,
  • the charging device sends a fourth control instruction; wherein the fourth control instruction is used to instruct the wireless charging device to adjust the transmit power by adjusting the duty cycle of the switch tube.
  • the first control unit 702 is specifically configured to, based on wireless communication between the device to be charged and the wireless charging device, when the output current does not meet a preset current demand range, The charging device sends a fifth control instruction; wherein the fifth control instruction is used to instruct the wireless charging device to adjust the transmission power by adjusting the operating frequency.
  • the first control unit 702 is specifically configured to, based on wireless communication between the device to be charged and the wireless charging device, when the output current does not meet a preset current demand range,
  • the charging device sends a sixth control instruction; wherein the sixth control instruction is used to instruct the wireless charging device to adjust the transmission power by adjusting the transmission voltage.
  • the wireless charging receiving unit 703 is specifically configured to receive the adjusted wireless charging signal of the wireless charging device, and output the adjusted output voltage and the adjusted output current according to the adjusted wireless charging signal ;
  • the charging management unit 704 is specifically configured to perform voltage conversion processing on the adjusted output voltage and the adjusted output current to obtain a charging voltage and a charging current after the conversion; and convert the charging voltage and the charging Current is applied to the battery for charging.
  • the charging management unit 704 is specifically configured to perform voltage conversion processing on the adjusted output voltage and the adjusted output current through a charge pump unit to obtain the charging voltage and the recharging current.
  • the detection unit 701 is further configured to detect the battery temperature of the battery
  • the first control unit 702 is further configured to control switching between the first charging channel and the second charging channel based on the battery temperature.
  • the first control unit 702 is further configured to establish a handshake communication between the device to be charged and the wireless charging device; and when the handshake communication is successfully established, control the first charging Channel operation; and when the establishment of the handshake communication fails, control the operation of the second charging channel.
  • the wireless charging device supports a first wireless charging mode and a second wireless charging mode, and the wireless charging device charges the device to be charged in the first wireless charging mode faster than the The charging speed of the wireless charging device to the device to be charged in the second wireless charging mode;
  • the first control unit 702 is further configured to be based on wireless communication between the device to be charged and the wireless charging device , Negotiate to use the first wireless charging mode or the second wireless charging mode for charging.
  • the first control unit 702 is specifically configured to establish a handshake communication between the device to be charged and the wireless charging device; and when the handshake communication is successfully established, based on the wireless charging device Using the first wireless charging mode to charge the battery; and when the establishment of the handshake communication fails, charging the battery based on the second wireless charging mode used by the wireless charging device.
  • the battery in the device to be charged 70 includes a battery with a single cell structure and a battery with N cells connected in series, where N is a positive integer greater than or equal to 2.
  • the first control unit 702 is further configured to acquire a first preset charging current when the battery voltage is equal to a preset cut-off voltage, and perform the first preset charging current on the battery Constant current charging, charging the battery voltage to a first preset limit voltage; wherein, the first preset limit voltage is greater than or equal to a preset cut-off voltage; and controlling the first preset charging current according to a preset step Performing the Kth reduction, and then obtaining the Kth preset charging current after the reduction, performing constant current charging on the battery with the Kth preset charging current, and charging the battery voltage to the Kth preset limiting voltage; Wherein, the K+1th preset limit voltage is greater than or equal to the Kth preset limit voltage, and K is a positive integer greater than or equal to 1; and after charging the battery voltage to the Nth preset limit voltage, stop Charge the battery.
  • the first control unit 702 is further configured to acquire a first preset charging current when the battery voltage is equal to a preset cut-off voltage, and perform the first preset charging current on the battery Constant current charging, charging the battery voltage to a first preset limit voltage; wherein, the first preset limit voltage is greater than or equal to a preset cut-off voltage; and controlling the first preset charging current according to a preset step Performing the Kth reduction, and then obtaining the Kth preset charging current after the reduction, performing constant current charging on the battery with the Kth preset charging current, and charging the battery voltage to the Kth preset limiting voltage; Wherein, the K+1th preset limit voltage is greater than or equal to the Kth preset limit voltage, and K is a positive integer greater than or equal to 1; and the battery is charged at a constant voltage with the Kth preset limit voltage when the When the battery current is less than or equal to the preset cut-off current, stop charging the battery.
  • the “unit” may be a part of a circuit, a part of a processor, a part of a program or software, etc. Of course, it may also be a module, or it may be non-modular.
  • each component unit in this embodiment may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or software function modules.
  • the integrated unit is implemented in the form of a software function module and is not sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of this embodiment essentially or It is said that part of the contribution to the existing technology or all or part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes several instructions to make a computer device (may It is a personal computer, a server, or a network device, etc.) or a processor (processor) that performs all or part of the steps of the method described in this embodiment.
  • the foregoing storage media include various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read-only memory (Read Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk, or an optical disk.
  • program codes such as a USB flash drive, a mobile hard disk, a read-only memory (Read Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk, or an optical disk.
  • this embodiment provides a computer storage medium that stores a charging control program that when executed by the first processor implements the method described in the foregoing technical solution shown in FIG. 3 step.
  • First processor 803 Based on the above-mentioned composition of the device to be charged 70 and the computer storage medium, refer to FIG. First processor 803; various components are coupled together through a first bus system 804. It can be understood that the first bus system 804 is used to implement connection and communication between these components; in addition to the data bus, the first bus system 804 also includes a power bus, a control bus, and a status signal bus.
  • the first network interface 801 is used to receive and send signals during the process of sending and receiving information with the wireless charging device
  • the first memory 802 is used to store a computer program that can run on the first processor 803;
  • the first processor 803 is configured to execute:
  • the control command is used to indicate that the transmission power of the wireless charging device needs to be adjusted, so that all The transmission power of the wireless charging device meets the charging power required by the battery in the device to be charged, and the output current of the wireless charging receiving unit in the device to be charged meets a preset current demand range;
  • the wireless charging signal adjusted by the wireless charging device is received by the wireless charging receiving unit to charge the battery.
  • the first memory 802 in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically Erasable programmable read only memory (Electrically, EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDRSDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the first processor 803 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the above method may be completed by instructions in the form of hardware integrated logic circuits or software in the first processor 803.
  • the above-mentioned first processor 803 may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an existing programmable gate array (Field Programmable Gate Array, FPGA) Or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware decoding processor, or may be executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the art, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, and registers.
  • the storage medium is located in the first memory 802, and the first processor 803 reads the information in the first memory 802 and completes the steps of the above method in combination with its hardware.
  • the embodiments described herein may be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application specific integrated circuits (Application Specific Integrated Circuits, ASIC), digital signal processor (Digital Signal Processing, DSP), digital signal processing device (DSP Device, DSPD), programmable Logic device (Programmable Logic Device, PLD), field-programmable gate array (Field-Programmable Gate Array, FPGA), general-purpose processor, controller, microcontroller, microprocessor, others used to perform the functions described in this application Electronic unit or its combination.
  • the techniques described herein may be implemented through modules (eg, procedures, functions, etc.) that perform the functions described herein.
  • the software codes can be stored in memory and executed by the processor.
  • the memory may be implemented in the processor or external to the processor.
  • the first processor 803 is further configured to execute the steps of the method in the foregoing technical solution shown in FIG. 3 when running the computer program.
  • FIG. 9 which shows the composition of a wireless charging device 90 provided by an embodiment of the present application, may include: a wireless charging transmitting unit 901 and a second control unit 902 ,among them,
  • the wireless charging transmitting unit 901 is configured to transmit a wireless charging signal
  • the second control unit 902 is configured to receive a control instruction sent by the device to be charged during wireless charging of the device to be charged; and adjust the transmission power of the wireless charging device according to the control instruction, In order to make the transmission power of the wireless charging device meet the charging power required by the battery in the device to be charged, and make the output current of the wireless charging receiving unit in the device to meet the preset current demand range.
  • the second control unit 902 is specifically configured to receive the first control instruction sent by the device to be charged; adjust the duty cycle of the switch tube of the wireless charging device according to the first control instruction to adjust The transmission power of the wireless charging device.
  • the second control unit 902 is specifically configured to receive the second control instruction sent by the device to be charged; adjust the operating frequency of the wireless charging device according to the second control instruction to adjust the wireless The transmit power of the charging device.
  • the second control unit 902 is specifically configured to receive a third control instruction sent by the device to be charged; adjust the transmission voltage of the wireless charging device according to the third control instruction to adjust the wireless The transmit power of the charging device.
  • the second control unit 902 is specifically configured to receive the fourth control instruction sent by the device to be charged; adjust the duty cycle of the switch tube of the wireless charging device according to the fourth control instruction to adjust The transmission power of the wireless charging device.
  • the second control unit 902 is specifically configured to receive the fifth control instruction sent by the device to be charged; adjust the operating frequency of the wireless charging device according to the fifth control instruction to adjust the wireless The transmit power of the charging device.
  • the second control unit 902 is specifically configured to receive the sixth control instruction sent by the device to be charged; adjust the transmission voltage of the wireless charging device according to the sixth control instruction to adjust the wireless The transmit power of the charging device.
  • the wireless charging device 90 supports a first wireless charging mode and a second wireless charging mode, and the wireless charging device 90 charges the device to be charged in the first wireless charging mode faster than The charging speed of the wireless charging device 90 to the device to be charged in the second wireless charging mode; the second control unit 902 is further configured to be based on the relationship between the device to be charged and the wireless charging device Wireless communication, negotiate to use the first wireless charging mode or the second wireless charging mode for charging.
  • the second control unit 902 is specifically configured to establish a handshake communication between the device to be charged and the wireless charging device; and when the handshake communication is successfully established, control the wireless charging device Using the first wireless charging mode to charge the device to be charged; and when the establishment of the handshake communication fails, controlling the wireless charging device to use the second wireless charging mode to charge the device to be charged.
  • This embodiment provides a computer storage medium that stores a charging control program, and when the charging control program is executed by a second processor, the steps of the method described in the foregoing technical solution shown in FIG. 5 are implemented.
  • FIG. 10 shows a specific hardware structure of the wireless charging device 90 provided by an embodiment of the present application, which may include: a second network interface 1001, a second memory 1002, and Second processor 1003; various components are coupled together through a second bus system 1004.
  • the second bus system 1004 is used to implement connection and communication between these components; in addition to the data bus, the second bus system 1004 also includes a power bus, a control bus, and a status signal bus.
  • the second network interface 1001 is used for receiving and sending signals during the process of sending and receiving information with the device to be charged;
  • the second memory 1002 is used to store a computer program that can run on the second processor 1003;
  • the second processor 1003 is configured to execute:
  • Adjusting the transmission power of the wireless charging device according to the control instruction so that the transmission power of the wireless charging device meets the charging power required by the battery in the device to be charged, and causes the wireless charging in the device to be charged
  • the output current of the receiving unit meets the preset current demand range.
  • the second processor 1003 is further configured to execute the steps of the method described in the foregoing technical solution shown in FIG. 5 when the computer program is run.
  • the battery voltage and battery current of the battery are first detected, and the output current of the wireless charging receiving unit is detected; then, according to the detected battery voltage, the battery current, and the output current, the wireless charging device Sending a control instruction; since the control instruction is used to indicate that the transmission power of the wireless charging device needs to be adjusted, so that the transmission power of the wireless charging device meets the charging power required by the battery in the device to be charged, and the charge to be charged
  • the output current of the wireless charging receiving unit in the device meets the preset current demand range; thus not only can improve the charging efficiency of the device to be charged, but also can effectively control the voltage difference between the output voltage of the wireless charging receiving unit and the battery voltage;
  • the wireless charging receiving unit receives the wireless charging signal adjusted by the wireless charging device to charge the battery; in this way, in the charging process of the device to be charged, not only can the charging heat of the device to be charged be effectively reduced, but also improved Charging efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种充电控制方法、待充电设备(230)、无线充电设备(220)及存储介质,该方法应用于待充电设备(230),包括:检测电池(235)的电池电压和电池电流,以及检测无线充电接收单元(231)的输出电流(S301);根据检测得到的所述电池电压、所述电池电流以及所述输出电流,向无线充电设备(220)发送控制指令;其中,所述控制指令用于指示所述无线充电设备(220)的发射功率需要调整,以使得所述无线充电设备(220)的发射功率满足所述待充电设备(230)内电池(235)需求的充电功率、以及使得所述待充电设备(230)内无线充电接收单元(231)的输出电流满足预设电流需求范围(S302);通过所述无线充电接收单元(231)接收所述无线充电设备(220)调整后的无线充电信号,以为所述电池(235)进行充电(S303)。

Description

充电控制方法、待充电设备、无线充电设备及存储介质 技术领域
本申请实施例涉及无线通信技术领域,尤其涉及一种充电控制方法、待充电设备、无线充电设备及存储介质。
背景技术
移动终端行业发展越来越快,人们不再局限于使用移动终端拨打电话,还使用移动终端听音乐、观看视频、浏览网页和玩游戏。虽然这些新增加的功能带给了人们欢乐体验,但是无一不高耗电,导致移动终端的电池容量也越来越大。
目前,终端的充电方式主要是以有线充电为主。这样,当用户为终端充电时,需要通过充电线缆连接充电设备和被充电的终端才可以进行充电,一旦充电线缆缺失,则无法为终端充电。虽然无线充电具有无需充电线缆的优势,但是基于现有的无线充电技术标准(比如Qi标准),仍然无法在克服充电发热缺陷的同时而提高无线充电效率。
发明内容
有鉴于此,本申请实施例期望提供一种充电控制方法、待充电设备、无线充电设备及存储介质,可以减小待充电设备的充电发热,同时还提升了充电效率。
本申请实施例的技术方案可以如下实现:
第一方面,本申请实施例提供了一种充电控制方法,所述方法应用于待充电设备,所述方法包括:
检测电池的电池电压和电池电流,以及检测无线充电接收单元的输出电流;
根据检测得到的所述电池电压、所述电池电流以及所述输出电流,向无线充电设备发送控制指令;其中,所述控制指令用于指示所述无线充电设备的发射功率需要调整,以使得所述无线充电设备的发射功率满足所述待充电设备内电池需求的充电功率、以及使得所述待充电设备内无线充电接收单元的输出电流满足预设电流需求范围;
通过所述无线充电接收单元接收所述无线充电设备调整后的无线充电信号,以为所述电池进行充电。
第二方面,本申请实施例提供了一种充电控制方法,所述方法应用于无线充电设备,所述方法包括:
在对待充电设备进行无线充电的过程中,接收所述待充电设备发送的控制指令;
根据所述控制指令对所述无线充电设备的发射功率进行调整,以使得所述无线充电设备的发射功率满足所述待充电设备内电池需求的充电功率、以及使得所述待充电设备内无线充电接收单元的输出电流满足预设电流需求范围。
第三方面,本申请实施例提供了一种待充电设备,所述待充电设备包括:检测单元、第一控制单元、无线充电接收单元和充电管理单元,其中,
所述检测单元,配置为检测电池的电池电压和电池电流,以及检测无线充电接收单元的输出电流;
所述第一控制单元,配置为根据检测得到的所述电池电压、所述电池电流以及所述输出电流,向无线充电设备发送控制指令;其中,所述控制指令用于指示所述无线充电设备的发射功率需要调整,以使得所述无线充电设备的发射功率满足所述待充电设备内电池需求的充电功率、以及使得所述待充电设备内无线充电接收单元的输出电流满足预设电流需求范围;
所述无线充电接收单元,配置为接收所述无线充电设备调整后的无线充电信号;
所述充电管理单元,配置为根据所述调整后的无线充电信号,为所述电池进行充电。
第四方面,本申请实施例提供了一种无线充电设备,所述无线充电设备包括:无线充电发射单元和第二控制单元,其中,
所述无线充电发射单元,配置为发射无线充电信号;
所述第二控制单元,配置为在对待充电设备进行无线充电的过程中,接收所述待充电设备发送的控制指令;以及根据所述控制指令对所述无线充电设备的发射功率进行调整,以使得所述无线充电设备的发射功率满足所述待充电设备内电池需求的充电功率、以及使得所述待充电设备内无线充电接收单元的 输出电流满足预设电流需求范围。
第五方面,本申请实施例提供了一种待充电设备,所述待充电设备包括:第一存储器和第一处理器;其中,
所述第一存储器,用于存储能够在所述第一处理器上运行的计算机程序;
所述第一处理器,用于在运行所述计算机程序时,执行如第一方面所述方法的步骤。
第六方面,本申请实施例提供了一种无线充电设备,所述无线充电设备包括:第二存储器和第二处理器;其中,
所述第二存储器,用于存储能够在所述第二处理器上运行的计算机程序;
所述第二处理器,用于在运行所述计算机程序时,执行如第二方面所述方法的步骤。
第七方面,本申请实施例提供了一种计算机存储介质,所述计算机存储介质存储有充电控制程序,所述充电控制程序被第一处理器执行时实现如第一方面所述方法的步骤、或者被第二处理器执行时实现如第二方面所述方法的步骤。
本申请实施例提供了一种充电控制方法、待充电设备、无线充电设备及存储介质,该方法应用于待充电设备,首先检测电池的电池电压和电池电流,以及检测无线充电接收单元的输出电流;然后根据检测得到的所述电池电压、所述电池电流以及所述输出电流,向无线充电设备发送控制指令;最后通过所述无线充电接收单元接收所述无线充电设备调整后的无线充电信号,以为所述电池进行充电;由于控制指令用于指示所述无线充电设备的发射功率需要调整,以使得无线充电设备的发射功率满足待充电设备内电池需求的充电功率、以及使得所述待充电设备内无线充电接收单元的输出电流满足预设电流需求范围,从而可以有效控制无线充电接收单元的输出电压与电池电压之间的压差,还能够减小待充电设备的充电发热,同时提升了充电效率。
附图说明
图1为相关技术方案提供的一种无线充电系统的组成结构示意图;
图2为本申请实施例提供的一种无线充电系统的组成结构示意图;
图3为本申请实施例提供的一种充电控制方法的流程示意图;
图4为本申请实施例提供的一种待充电设备的组成结构示意图;
图5为本申请实施例提供的另一种充电控制方法的流程示意图;
图6为本申请实施例提供的一种充电控制方法的详细流程示意图;
图7为本申请实施例提供的一种待充电设备的组成结构示意图;
图8为本申请实施例提供的一种待充电设备的具体硬件结构示意图;
图9为本申请实施例提供的一种无线充电设备的组成结构示意图;
图10为本申请实施例提供的一种无线充电设备的具体硬件结构示意图。
具体实施方式
为了能够更加详尽地了解本申请实施例的特点与技术内容,下面结合附图对本申请实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本申请实施例。
无线充电技术源于无线电能传输技术,按照无线充电原理的不同,无线充电方式主要分为电磁感应式(或者磁耦合式)、无线电波式和电磁共振式三种方式。目前,主流的无线充电标准包括Qi标准、电源事物联盟(Power Matters Alliance,PMA)标准和无线电源联盟(Alliance for Wireless Power,A4WP)等;其中,Qi标准和PMA标准均采用电磁感应式进行无线充电,A4WP标准采用电磁共振式进行无线充电。而在本申请实施例中,针对待充电设备的无线充电技术采用电磁感应式,无线充电设备(比如无线充电底座)和待充电设备之间以磁场传送能量,两者之间无需充电线缆连接,就可以实现为待充电设备中的电池充电,使得充电更加便捷。
可以理解地,待充电设备可以是指终端,该终端可以包括,但不限于被设置成经由有线线路连接(如经由公共交换电话网络(Public Switched Telephone Network,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由无线接口(例如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如手持数字视频广播(Digital Video Broadcasting Handheld,DVB-H)网络的数字电视网络、卫星网络、调幅-调频(Amplitude Modulation-Frequency Modulation,AM-FM)广播发送器,以及/或另一通信终端的无线接口)接收/发送通信信号的设备。其中,被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端” 以及/或“移动终端”,这里的移动终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、便捷式媒体播放器(Portable Media Player,PMP)、导航装置等移动式终端设备,还可以包括诸如数字TV、台式计算机等固定式终端设备。另外,本申请实施例中所使用到的待充电设备还可以包括移动电源,该移动电源能够将所接收的充电能量进行存储,以向其他电子设备提供能量。在本申请实施例中,对此不作具体限定。
下面结合图1,对相关技术方案提供的无线充电方式进行介绍。
参见图1,其示出了相关技术方案提供的一种无线充电系统10的组成结构示意图;如图1所示,无线充电系统10包括电源提供设备110、无线充电设备120以及待充电设备130。其中,无线充电设备120包括无线充电发射单元121,待充电设备130包括无线充电接收单元131、充电管理单元132和电池133。这里,无线充电设备120例如可以是无线充电底座,待充电设备130例如可以是终端。
电源提供设备110与无线充电设备120连接之后,会将电源提供设备110的输出电压和输出电流传输至无线充电设备120。
无线充电设备120可以通过内部的无线充电发射单元121将电源提供设备110的输出电压和输出电流转换成无线充电信号(电磁信号)进行发射。例如,该无线充电发射单元121可以将电源提供设备110的输出电流转换成交流电,并通过发射线圈或发射天线将该交流电转换成无线充电信号。
待充电设备130可以通过无线充电接收单元131接收无线充电发射单元121发射的无线充电信号,并将该无线充电信号转换成无线充电接收单元131的输出电压和输出电流。例如,该无线充电接收单元131可以通过接收线圈或接收天线将无线充电发射单元121发射的无线充电信号转换成交流电,并对该交流电进行整流和/或滤波等操作,将该交流电转换成无线充电接收单元131的输出电压和输出电流。
在一些实施例中,在无线充电之前,无线充电设备120可与待充电设备130预先协商无线充电发射单元121的发射功率。假设无线充电设备120与待充电设备130之间协商的功率为5W,则无线充电接收单元131的输出电压和输出电流一般为5V和1A。假设无线充电设备120与待充电设备130之间协商的功率为10.8W,则无线充电接收单元131的输出电压和输出电流一般为9V和1.2A。
若无线充电接收单元131的输出电压并不适合直接加载到电池133两端,则需要先经过充电管理单元132进行恒压和/或恒流控制,以得到待充电设备130内的电池133所预期的充电电压和/或充电电流。
充电管理单元132可用于对无线充电接收单元131的输出电压进行变换,以使得充电管理单元132的输出电压和/或输出电流满足电池133所预期的充电电压和/或充电电流的需求。在一些实施例中,充电管理单元132例如可以是充电集成电路(integrated circuit,IC),升降压式(Buck-Boost)变换电路或低压差线性稳压电路(Low Dropout Regulator,LDO)等。
充电管理单元132受限于功率转换效率(也可称为能量转换效率,或电路转换效率)低下的原因,致使未被转换部分的电能以热量的形式散失。这部分热量会聚焦在待充电设备130的内部。待充电设备130的设计空间和散热空间都很小(例如,用户使用的移动终端物理尺寸越来越轻薄,同时移动终端内密集排布了大量的电子元器件以提升移动终端的性能),这不但提升了充电管理单元132的设计难度,还会导致聚焦在待充电设备130内的热量很难及时移除,进而引发待充电设备130的异常。
为了降低充电管理单元132的发热,无线充电设备120可采用低压大电流的方式输出充电功率,例如,采用5V/4A的充电功率。作为一种可能的实现方式,无线充电发射单元121可以基于5V/4A生成无线充电信号,相应地,无线充电接收单元131可以将无线充电信号转换成5V/4A的输出电压/输出电流,而4A的大充电电流会导致无线充电发射单元121的发射线圈和无线充电接收单元131的接收线圈在电能传输过程中产生较大热量。充电过程中的发热会影响充电速度、产品寿命,以及还会降低产品可靠性。
综上,如何减小无线充电过程中的发热成为亟需解决的问题。
在一些相关技术中,为了减小无线充电过程中线圈的发热,会采用低充电功率的方式,例如,无线充电设备120只输出最高7.5W的充电功率对待充电设备130进行充电。这样的充电方式,充电速度慢,需要花费很长的时间才能将待充电设备130的电量充满。
在另一些相关技术中,相比于低充电功率的方式,为了加快充电速度,无线充电设备120提高充电功率(例如,将7.5W提高到10W)进行无线充电。但是,这样的充电方式,并没有将充电时长缩小到预期(例如,小于100分钟)。如上所述,当采用高功率进行无线充电时,必然会引起线圈的发热或充电管理单元132的发热。在采用磁耦合方式进行无线充电的系统中,无线充电设备120和待充电设备130之间的距离,通常是很小的,无线充电设备120的发热的线圈会将热传递给待充电设备130。而对于待充电设备130自身,其线圈和充电管理单元的发热,会一定程度传递给电池,再加上电池在充电过程中自身的发热,会使得电池的温度很容易超过安全充电范围。当线圈的发热、充电管理单元的发热以及电池的发热,超过安全范围时,必须再回到低充电功率(例如,7.5W)或暂停充电的方式,来保证 充电的安全。因此,该相关技术中,虽然提高了无线充电的最大充电功率,但是采用最大充电功率充电的时长是很短的,而只是短时间内的较高功率无线充电,并不会将充电时长缩短到预期。
此外,为了减少发热,一些相关技术中还采用石墨烯、散热板等散热技术,在充电过程中进行散热。然而,这些散热技术的效果并不理想,而且会增加产品成本,占用产品的内部空间,影响产品美观。
为解决上述问题,本申请一实施例提供一种无线充电系统,该无线充电系统可以包括无线充电信号的发射装置(例如,上述的无线充电设备)与无线充电信号的接收装置(例如,上述的待充电设备);这里,无线充电设备与待充电设备之间能够进行无线通信,且该无线充电设备的发射功率可以基于待充电设备发送的控制指令进行调节,使得无线充电设备的发射功率与电池当前所需的充电电压和/或充电电流相匹配。由此,可根据待充电设备的充电需求,提高无线充电功率,提高充电速度。
其次,为了避免无线充电接收单元的输出电流过大,待充电设备也可以对无线充电接收单元的输出电流进行检测,这样,无线充电设备可以基于待充电设备所发送的控制指令对发射功率进行调节,使得无线充电接收单元的输出电流满足预设条件。
通过无线充电设备控制无线充电接收单元的输出电流,从而可以控制无线充电发射单元(其包括发射线圈)和无线充电接收单元(其包括接收线圈)的发热,减小充电过程中的发热。由此,相比于相关技术,可以延长高功率无线充电的时长,提高充电速度,并缩短充电时间。
下面结合图2,对本申请实施例提供的无线充电方式进行详细介绍。
参见图2,其示出了本申请实施例提供的一种无线充电系统20的组成结构示意图;如图2所示,无线充电系统20包括电源提供设备210、无线充电设备220和待充电设备230。
电源提供设备210,用于向无线充电设备220提供电能。该电源提供设备210可包括:整流单元、变压单元、控制单元和充电接口等,可实现将交流电输入转换为直流电输出,以提供给无线充电设备220。例如,电源提供设备210可为适配器、充电宝或车载电源等。
在一些实施例中,电源提供设备210还可直接将交流电提供给无线充电设备220。例如,电源提供设备210可为交流电源。当电源提供设备210为交流电源时,无线充电设备220还包括用于将交流电转换为直流电的单元或模块,例如,整流滤波单元和DC/DC变换单元等。
无线充电设备220,用于将电源提供设备210提供的直流电或交流电,转换成无线充电信号(电磁信号),以通过无线的方式进行电力传输。
在一些实施例中,如图2所示,无线充电设备220可以包括第一变换单元221、无线充电发射单元222和第二控制单元223。本领域技术人员可以理解,图2中所示出的无线充电设备220的组成结构并不构成对无线充电设备的限定,无线充电设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
需要说明的是,电源提供设备210可以为普通适配器,也可以为调压适配器(即,适配器自身能够调整输出电压的大小),甚至还可以为移动电源等;若电源提供设备210为调压适配器,则无线充电设备220可以去掉第一变换单元221。这里,第一变换单元221用于进行直流/直流(DC/DC)的电压变换,主要是将电源提供设备101的输出电压调节到一个固定电压值并提供给无线充电发射单元222。
无线充电发射单元222,用于将第一变换单元221提供的直流电或电源提供设备210提供的直流电转换为可耦合到发射线圈的交流电,并通过发射线圈将该交流电转换成无线充电信号进行发射。
在一些实施例中,无线充电发射单元222可包括:逆变单元和谐振单元。逆变单元可包括多个开关管,通过控制开关管的导通时间(即,占空比)可调节发射功率的大小。谐振单元,用于将电能传输出去,例如,谐振单元可包括电容和发射线圈。通过调整谐振单元的工作频率,可以调节无线充电发射单元222发射功率的大小。
在一些实施例中,无线充电设备220可为无线充电底座或具有储能功能的设备等。当无线充电设备220为具有储能功能的设备时,其还包括储能模块(例如,锂电池235),可从外部的电源提供设备210获取电能并进行存储。由此,储能模块可将电能提供给无线充电发射单元222。本领域技术人员可以理解,无线充电设备220可通过有线或无线的方式从外部的电源提供设备210获取电能。其中,有线的方式,例如,通过充电接口(例如,Type-C接口或者USB接口等)与电源提供设备210连接,获取电能。无线的方式,例如,无线充电设备220还可以包括无线充电接收单元231,其可通过无线的方式从具有无线充电功能的设备获取电能。
第二控制单元223,用于对无线充电过程进行控制。例如,第二控制单元223可与电源提供设备210进行通信,以确定电源提供设备的输出电压和/或输出电流。或,第二控制单元223还可与待充电设备230进行通信,实现充电信息(例如,待充电设备230内的电池235电压信息、电池235温度信息、充电模式信息等)的交互、进行无线充电的充电参数(例如,充电电压和/或充电电流)确定等。
本领域技术人员可以理解,无线充电设备220还可包括其它相关硬件、逻辑器件、单元和/或编码, 以实现相应的功能。例如,无线充电设备220还可包括显示单元(例如,可为发光二极管或LED显示屏),用于在无线充电过程中,实时显示充电状态(例如,充电进行中或终止等)。本申请实施例不作具体限定。
在一些实施例中,如图2所示,待充电设备230包括无线充电接收单元231、充电管理单元232、第一控制单元233、检测单元234、电池235和第一充电通道236。本领域技术人员可以理解,图2中所示出的待充电设备230的组成结构并不构成对待充电设备的限定,待充电设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
需要说明的是,电源提供设备210为无线充电设备220提供供电电源,待充电设备230放置于无线充电设备220的表面,无线充电设备220通过电磁感应方式为待充电设备230内的电池235充电。这里,无线充电设备220和待充电设备230之间建立有无线连接,两者还可以相互通信。
在一些实施例中,无线通信的方式包括但不限于蓝牙通信、无线保真(Wireless Fidelity,WiFi)通信、基于高载波频率的近距离无线通信、光通信、超声波通信、超宽带通信和移动通信等。本申请实施例不作具体限定。
无线充电接收单元231,用于通过接收线圈将无线充电设备220的无线充电发射单元222发射的无线充电信号转换成交流电,并对该交流电进行整流和/或滤波等操作,将该交流电转换成稳定的直流电,以提供给电池235充电。
在一些实施例中,无线充电接收单元231包括:接收线圈和AC/DC变换单元。AC/DC变换单元,用于将接收线圈接收到的交流电转换为直流电。
在一些实施例中,电池235可包括单电芯或多电芯。电池235包括多电芯时,该多个电芯之间为串联关系。由此,电池235可承受的充电电压为多个电芯可承受的充电电压之和,可提高充电速度,减少充电发热。
在一些实施例中,第一充电通道236可为导线。在第一充电通道236上可设置充电管理单元232。
充电管理单元232,用于对无线充电接收单元231输出的直流电进行升压或者降压处理,得到第一充电通道236的输出电压和输出电流。在一些实施例中,该第一充电通道236输出的直流电的电压值和电流值,符合电池235的充电需求,可直接加载至电池235充电。
在一些实施例中,充电管理单元232可以包括电压变换单元,电压变换单元可以是升压式(Boost)变换电路、降压式(Buck)变换电路、升降压式(Buck-Boost)变换电路和LDO稳压电路,还可以是电荷泵(Charge Pump)电路,甚至也可以是直充电路等,本申请实施例不作具体限定。
检测单元234,用于检测第一充电通道236的电压值和/或电流值。第一充电通道236的电压值和/或电流值可以指无线充电接收单元231与充电管理单元232之间的电压值和/或电流值,即无线充电接收单元231的输出电压值和/或电流值。或者,第一充电通道306上的电压值和/或电流值也可以指充电管理单元232与电池235之间电压值和/或电流值,即充电管理单元232的输出电压和/或输出电流。
在一些实施例中,检测单元234可以包括:电压检测单元234和电流检测单元234。电压检测单元234可用于对第一充电通道236上的电压进行采样,并将采样后的电压值发送给第一控制单元233。在一些实施例中,电压检测单元234可以通过串联分压的方式对第一充电通道236上的电压进行采样。电流检测单元234可用于对第一充电通道236上的电流进行采样,并将采样后的电流值发送给第一控制单元233。在一些实施例中,电流检测单元234可以通过检流电阻和检流计对第一充电通道236上的电流进行采样检测。
第一控制单元233,用于与无线充电设备220的第二控制单元223进行通信,将检测单元234检测到电压值和/或电流值反馈给第二控制单元223。由此,第二控制单元223可根据该反馈的电压值和/或电流值,调整无线充电发射单元222的发射功率,使得第一充电通道236输出的直流电的电压值和/或电流值与电池235所需的充电电压值和/或电流值相匹配。
需要说明的是,“与电池235所需的充电电压值和/或电流值相匹配”包括:第一充电通道236输出的直流电的电压值和/或电流值与电池235所需的充电电压值和/或电流值相等或浮动预设范围(例如,电压值上下浮动100毫伏~200毫伏)。
在一些实施例中,第一控制单元233可以为待充电设备230中的独立的微控制单元(Microcontroller Unit,MCU),由此,可提高控制的可靠性。在一些实施例中,第一控制单元233也可以为待充电设备230中的应用处理器(Application Processor,AP),由此,可节省硬件成本。本申请实施例不作具体限定。
基于图2所示的无线充电系统20,本申请实施例提供一种充电控制方法;首先检测电池的电池电压和电池电流,以及检测无线充电接收单元的输出电流;然后根据检测得到的所述电池电压、所述电池电流以及所述输出电流,向无线充电设备发送控制指令,所述控制指令用于指示所述无线充电设备的发 射功率需要调整;最后基于所述无线充电设备对所述控制指令的响应,通过所述无线充电接收单元输出调整后的输出电压和调整后的输出电流;根据所述调整后的输出电压和所述调整后的输出电流,为所述电池进行充电;从而在待充电设备的充电过程中,不仅能够有效减小待充电设备的充电发热,同时还提升了充电效率。下面将结合附图对本申请各实施例进行详细描述。
参见图3,其示出了本申请实施例提供的一种充电控制方法,该方法应用于待充电设备,该方法可以包括:
S301:检测电池的电池电压和电池电流,以及检测无线充电接收单元的输出电流;
S302:根据检测得到的所述电池电压、所述电池电流以及所述输出电流,向无线充电设备发送控制指令;其中,所述控制指令用于指示所述无线充电设备的发射功率需要调整,以使得所述无线充电设备的发射功率满足所述待充电设备内电池需求的充电功率、以及使得所述待充电设备内无线充电接收单元的输出电流满足预设电流需求范围;
S303:通过所述无线充电接收单元接收所述无线充电设备调整后的无线充电信号,以为所述电池进行充电。
需要说明的是,“所述无线充电设备对所述控制指令的响应”,具体地,可以包括无线充电设备根据所述控制指令首先确定待调整的目标发射功率值;然后根据所述待调整的目标发射功率值确定出对应的目标电压值和目标电流值;这里,目标电压值和目标电流值的乘积等于目标发射功率值;最后待充电设备接收调整后的发射功率,以使得所述无线充电设备的发射功率满足所述待充电设备内电池需求的充电功率、以及使得所述待充电设备内无线充电接收单元的输出电流满足预设电流需求范围。
在一些实施例中,所述根据检测得到的所述电池电压、所述电池电流以及所述输出电流,向无线充电设备发送控制指令,包括:
根据检测得到的所述电池电压和所述电池电流,判断充电功率是否满足所述电池需求的充电功率;
根据检测得到的所述输出电流,判断所述输出电流是否满足预设电流需求范围;
当所述充电功率不满足所述电池需求的充电功率和/或所述输出电流不满足预设电流需求范围时,向无线充电设备发送控制指令。
进一步地,在一些实施例中,所述根据检测得到的所述电池电压和所述电池电流,判断充电功率是否满足所述电池需求的充电功率,包括:
当所述电池处于恒流充电阶段时,判断所述电池电流是否满足预设恒流范围;若所述电池电流不满足预设恒流范围,则所述充电功率不满足所述电池需求的充电功率;
当所述电池处于恒压充电阶段时,判断所述电池电压是否满足预设恒压范围;若所述电池电压不满足预设恒压范围,则所述充电功率不满足所述电池需求的充电功率。
需要说明的是,在待充电设备的充电过程中,待充电设备内电池需求的充电功率是变化的;例如,在恒流(Constant Current,CC)充电阶段,随着电池电压的上升,电池需求的充电功率会随之增大;当进入恒压(Constant Voltage,CV)充电阶段之后,电池需求的充电功率会逐渐下降。这样,针对不同的充电阶段,由于电池所需求的充电电流和充电电压是不同的,相应的,电池所需求的充电功率也不相同。也就是说,在待充电设备进入无线充电模式之后,可以预先设定各充电阶段电池所需求的充电电流和/或充电电压,甚至也可以是与之对应的预设范围(由于电压值或者电流值都是存在浮动的,并不是一个恒定值);举例来说,以4000mA容量的单电芯结构电池为例,在预充阶段,充电电流为0.03C,充电电压不超过3.6V;在恒流阶段,充电电流可以设置为1.2C~1.5C之间的任意值,充电电压处于3.6V~4.3V之间;在恒压阶段,充电电流的截止值为0.01C,充电电压可以设置为4.3V~4.38V之间的任意值;而在实际应用中,无论是预先设定的充电电流和/或充电电压,还是与之对应的预设范围(比如预设恒流范围和预设恒压范围),都可以根据实际情况进行具体设定,本申请实施例对此不作具体限定。
另外,预设电流需求范围表示预先设定的待充电设备通过无线充电接收单元所输出的输出电流范围,比如该预设电流需求范围为0.95A~1.05A;在实际应用中,预设电流需求范围根据实际情况进行具体设定,可以同时设定最大预设值(比如1.05A)和最小预设值(比如0.95A),也可以只设定最大预设值(比如1.05A);本申请实施例对此不作具体限定。
还需要说明的是,针对电池电压和电池电流以及无线充电接收单元的输出电流的检测,待充电设备还可以包括检测单元(比如图2中所示的检测单元234),该检测单元一般串联在被检测回路中,用于测量被检测回路中流动的电流以及电压。在本申请实施例中,检测单元可以是电阻式(比如检流电阻),也可以是磁器件(比如电流互感器、罗氏线圈、霍尔传感器),还可以是晶体管(比如漏极到源极的导通电阻(RDS(ON))、比率式),本申请实施例不作具体限定。
在一些实施例中,在所述检测电池的电池电压和电池电流,以及检测无线充电接收单元的输出电流之前,所述方法还包括:
接收无线充电设备所发射的无线充电信号,并通过无线充电接收单元将所述无线充电信号进行转换,得到所述无线充电接收单元所输出的输出电压和输出电流;
将所述无线充电接收单元的输出电压和输出电流通过充电管理单元进行电压变换处理,变换后得到第一充电电压和第一充电电流;
将所述第一充电电压和所述第一充电电流加载至所述电池进行充电。
需要说明的是,无线充电设备中的无线充电发射单元包含有发射线圈,待充电设备中的无线充电接收单元包含有接收线圈;通过发射线圈和接收线圈之间的电磁感应进行能量传输,然后由无线充电接收单元接收无线充电信号并将其进行转换,转换后输出对应的输出电压和输出电流;再针对输出电压和输出电流通过充电管理单元进行电压变换处理,将变换后得到的第一充电电压和第一充电电流加载至待充电设备内的电池进行充电。
然而,在上述充电过程中,为了提升减小发热和提高充电效率,还需要实时检测电池所对应的电池电压和电池电流,以及无线接收单元的输出电流。这样,由于无线充电设备与待充电设备之间能够进行无线通信,而且该无线充电设备的发射功率可以基于待充电设备发送的控制指令进行调节,使得无线充电设备的发射功率与电池当前所需的充电电压和/或充电电流相匹配;同时通过对发射功率进行调节,还使得无线充电接收单元的输出电流满足预设条件,而且通过无线充电设备控制无线充电接收单元的输出电流,从而可以控制无线充电发射单元(其包括发射线圈)和无线充电接收单元(其包括接收线圈)的发热,进一步减小充电过程中的发热。
进一步地,为了使得充电功率满足电池需求的充电功率,而且无线充电接收单元的输出电流满足预设电流需求范围,本申请实施例可以通过两条控制反馈环路同时向无线充电设备发送控制指令(比如,根据所检测到的电池电压和电池电流所提供的一条控制反馈环路,以及根据所检测到的无线充电接收单元的输出电压和/或输出电流所提供的另一条控制反馈环路),基于双反馈环路的同时控制,可以对无线充电设备的发射功率进行调整;根据调整后的发射功率,可以使得无线充电设备的发射功率与电池当前所需的充电电压和/或充电电流相匹配,还可以使得无线充电接收单元的输出电流满足预设条件;从而减小了充电过程的发热,提高了充电效率。下面将针对充电功率不满足所述电池需求的充电功率和/或无线充电接收单元的输出电流不满足预设电流需求范围的情况进行详细描述。
可以理解地,为了提高充电功率和充电速度,无线充电设备可以通过调整开关管占空比、工作频率和发射电压等工作参数来实现发射功率的调整,以使得充电功率满足电池需求的充电功率;包括以下三种方式:
可选地,所述当所述充电功率不满足所述电池需求的充电功率和/或所述输出电流不满足预设电流需求范围时,向无线充电设备发送控制指令,包括:
当所述充电功率不满足所述电池需求的充电功率时,基于所述待充电设备与所述无线充电设备之间的无线通信,向所述无线充电设备发送第一控制指令;其中,所述第一控制指令用于指示所述无线充电设备通过调整开关管占空比以实现发射功率的调整。
可选地,所述当所述充电功率不满足所述电池需求的充电功率和/或所述输出电流不满足预设电流需求范围时,向无线充电设备发送控制指令,包括:
当所述充电功率不满足所述电池需求的充电功率时,基于所述待充电设备与所述无线充电设备之间的无线通信,向无线充电设备发送第二控制指令;其中,所述第二控制指令用于指示所述无线充电设备通过调整工作频率以实现发射功率的调整。
可选地,所述当所述充电功率不满足所述电池需求的充电功率和/或所述输出电流不满足预设电流需求范围时,向无线充电设备发送控制指令,包括:
当所述充电功率不满足所述电池需求的充电功率时,基于所述待充电设备与所述无线充电设备之间的无线通信,向无线充电设备发送第三控制指令;其中,所述第三控制指令用于指示所述无线充电设备通过调整发射电压以实现发射功率的调整。
还需要说明的是,当充电功率不满足所述电池需求的充电功率时,一般而言,无线充电首先会选择变频工作模式;假如变频工作模式仍然无法使得充电功率满足所述电池需求的充电功率,此时无线充电也可以选择定频工作模式。
具体地,当充电功率不满足所述电池需求的充电功率时,假定无线充电处于变频工作模式,此时无线充电设备的发射电压保持不变的,通过调整开关管占空比或者工作频率来调整无线充电设备的发射功率,从而调整无线充电接收单元接收到的充电功率。由于无线充电接收单元的输出电流需要满足预设电流需求范围,以控制线圈的发热。也就是说,通过调整开关管占空比或者工作频率,可调整无线充电接收单元的输出电压;但是基于发射线圈和接收线圈的比例取值一般为1:1,通过调整开关管占空比或者工作频率的方式,无线充电接收单元对应的调整后的输出电压不会超过无线充电设备的发射电压。这样, 当无线充电接收单元需求更高的输出电压时,此时无线充电设备可以处于定频工作模式,通过调整无线充电设备的发射电压来改变无线充电接收单元的输出电压,从而无线充电接收单元能够得到更高的输出电压。简而言之,无论是调整无线充电设备的开关管占空比,还是调整无线充电设备的工作频率,甚至是调整无线充电设备的发射电压,都可以实现对待充电设备内无线充电接收单元所接收到的充电功率以及无线充电接收单元的输出电压和输出电流的调整;在实际应用中,根据实际情况进行具体设定,本申请实施例对此不作具体限定。
可以理解地,基于待充电设备的充电过程,除了检测电池电压和电池电流之外,同时为了控制线圈的发热,还会对无线充电接收单元的输出电流进行检测,并根据检测得到的输出电流,判断所述输出电流是否满足预设电流需求范围。具体来说,无线充电设备也可以通过调整开关管占空比、工作频率和发射电压等工作参数来实现发射功率的调整,以使得输出电流满足预设电流需求范围;包括以下三种方式:
可选地,所述当所述充电功率不满足所述电池需求的充电功率和/或所述输出电流不满足预设电流需求范围时,向无线充电设备发送控制指令,包括:
当所述输出电流不满足预设电流需求范围时,基于所述待充电设备与所述无线充电设备之间的无线通信,向无线充电设备发送第四控制指令;其中,所述第四控制指令用于指示所述无线充电设备通过调整开关管占空比以实现发射功率的调整。
可选地,所述当所述充电功率不满足所述电池需求的充电功率和/或所述输出电流不满足预设电流需求范围时,向无线充电设备发送控制指令,包括:
当所述输出电流不满足预设电流需求范围时,基于所述待充电设备与所述无线充电设备之间的无线通信,向无线充电设备发送第五控制指令;其中,所述第五控制指令用于指示所述无线充电设备通过调整工作频率以实现发射功率的调整。
可选地,所述当所述充电功率不满足所述电池需求的充电功率和/或所述输出电流不满足预设电流需求范围时,向无线充电设备发送控制指令,包括:
当所述输出电流不满足预设电流需求范围时,基于所述待充电设备与所述无线充电设备之间的无线通信,向无线充电设备发送第六控制指令;其中,所述第六控制指令用于指示所述无线充电设备通过调整发射电压以实现发射功率的调整。
需要说明的是,无论是调整无线充电设备的开关管占空比,还是调整无线充电设备的工作频率,甚至是调整无线充电设备的发射电压,都可以实现无线充电接收单元所输出的输出电流的调整,以使得输出电流能够满足预设电流需求范围;在实际应用中,根据实际情况进行具体设定,本申请实施例对此不作具体限定。
在一些实施例中,所述通过所述无线充电接收单元接收所述无线充电设备调整后的无线充电信号,以为所述电池进行充电,包括:
通过所述无线充电接收单元接收所述无线充电设备调整后的无线充电信号,由所述无线充电接收单元输出调整后的输出电压和调整后的输出电流;
对所述调整后的输出电压和所述调整后的输出电流进行电压变换处理,变换后得到充电电压和充电电流;
将所述充电电压和所述充电电流加载至所述电池进行充电。
进一步地,在一些实施例中,所述对所述调整后的输出电压和所述调整后的输出电流进行电压变换处理,变换后得到充电电压和充电电流,包括:
通过电荷泵charge pump单元对所述调整后的输出电压和所述调整后的输出电流进行电压变换处理,得到所述充电电压和所述充电电流。
需要说明的是,待充电设备中包含有充电管理单元,通过充电管理单元可以对无线充电接收单元所输出的调整后的输出电压和调整后的输出电流进行电压变换处理,变换后得到的充电电压和充电电流加载至电池充电。在本申请实施例中,充电管理单元可以是升压式变换单元、降压式变换单元和升降压式变换单元,还可以是电荷泵(charge pump)单元,甚至也可以是直充单元等;本申请实施例不作具体限定。
以charge pump单元为例,charge pump是由多个开关器件构成,电流流过开关器件所产生的热量很小,几乎与电流直接经过导线相当,采用charge pump单元对调整后的输出电压和调整后的输出电流进行电压变换处理,不但可以达到降压效果,而且还使得发热较低。另外,调整后的输出电压和电压变换后得到的充电电压之间的压差需要越小越好,通过控制无线充电接收单元的输出电压与电池电压之间的压差,进一步减小了待充电设备的充电发热,进而提升了充电效率。
参见图4,其示出了本申请实施例提供的一种待充电设备的组成结构示意图;如图4所示,待充电设备230还可以包括:第二变换单元237和第二充电通道238。第二充电通道238可为导线。在第二充 电通道238上可设置第二变换单元237,用于对无线充电接收单元231输出的直流电进行电压控制,得到第二充电通道238的输出电压和输出电流,以对电池235进行充电。
在一些实施例中,第二变换单元237可包括:用于进行降压的电路,并且输出恒流和/或恒压的电能。
当采用第二充电通道238对电池235进行充电时,无线充电发射单元222可采用恒定发射功率,无线充电接收单元231接收到无线充电信号后,由第二变换单元237处理为满足电池235充电需求的电压和电流后,输入电池235实现对电池235的充电。本领域技术人员可以理解,在一些实施例中,恒定发射功率不一定是发射功率完全保持不变,其可在一定的范围内变动,例如,发射功率为7.5W,其上下浮动0.5W。
在该实施例中,第一控制电路233,还用于根据检测到的无线充电接收单元231中整流电路的输出电压值与设定的目标值(例如,可为设定的整流电路需要输出的最大电压值)进行比较,确定误差值,再将误差值通过数据包的形式发送给第二控制单元223。
在一些实施例中,通过第二充电通道238对电池235进行充电时,无线充电设备220和待充电设备230可按照Qi标准进行无线充电。由此,可通过信号调制的方式,将包含上述误差值的数据信号耦合到无线充电接收单元231的线圈以发送给无线充电发射单元222的线圈,再传输给第二控制单元223。第二控制单元223根据误差数据包的信息,调整无线充电发射单元121的发射参数,例如,无线充电发射单元121中发射线圈的工作频率等。
在本申请实施例中,通过第二充电通道238对电池235进行充电时,无线电能传输控制过程可包括:
第一控制单元233根据检测到的第二充电通道238的输出电压值与设定的目标值进行比较,确定误差值,再将误差值通过数据包的形式发送给第二控制单元223;第二控制单元223根据当前发射线圈的电流值和误差数据包的信息,确定差值,并根据差值设定新的工作频率,以调节无线充电发射单元222的发射功率的大小。
在本申请实施例中,通过第一充电通道236对电池235进行充电的充电方式为第一充电模式,通过第二充电通道238对电池235进行充电的方式称为第二充电模式。无线充电设备220和待充电设备230可通过握手通信确定采用第一充电模式还是第二充电模式对电池235进行充电。
在本申请实施例中,在无线充电设备220侧,当通过第一充电模式对待充电设备230进行充电时,无线充电发射单元220的最大发射功率可为第一发射功率值。而通过第二充电模式对待充电设备230进行充电时,无线充电发射单元222的最大发射功率可为第二发射功率值。其中,第一发射功率值大于第二发射功率值,由此,采用第一充电模式对待充电设备的充电速度大于第二充电模式。
在待充电设备230侧,第一控制单元233根据充电模式,在第一充电通道236和第二充电通道238之间进行切换。当采用第一充电模式时,第一控制单元233控制第一充电通道236上的充电管理单元232工作。当采用第二充电模式时,第一控制单元233控制第二充电通道238上的第二变换单元237工作。
在一些实施例中,所述待充电设备包括第一充电通道和第二充电通道,所述第一充电通道的充电速度快于所述第二充电通道的充电速度;所述方法还包括:
检测所述电池的电池温度;
基于所述电池温度,控制所述第一充电通道和所述第二充电通道之间的切换。
进一步地,在一些实施例中,所述方法还包括:
建立所述待充电设备与所述无线充电设备之间的握手通信;
当所述握手通信建立成功时,控制所述第一充电通道工作;
当所述握手通信建立失败时,控制所述第二充电通道工作。
需要说明的是,结合图4所示的待充电设备,待充电设备230包括第一充电通道236和第二充电通道238,所述第一充电通道236的充电速度快于所述第二充电通道238的充电速度;这样,通过检测电池235的电池温度,第一控制单元233可以根据电池温度来控制第一充电通道236和第二充电通道238之间的切换;另外,待充电设备230和无线充电设备220还可以通过握手通信来确定采用第一充电通道236还是第二充电通道238对电池235进行充电;当握手通信建立成功时,第一控制单元233可以控制第一充电通道236工作;否则第一控制单元233可以控制第二充电通道238工作;从而可以减小待充电设备的发热,而且还提高了充电速度。
在一些实施例中,所述无线充电设备支持第一无线充电模式和第二无线充电模式,所述无线充电设备在所述第一无线充电模式下对所述待充电设备的充电速度快于所述无线充电设备在所述第二无线充电模式下对所述待充电设备的充电速度;所述方法还包括:
基于所述待充电设备与所述无线充电设备之间的无线通信,协商使用所述第一无线充电模式或所述 第二无线充电模式进行充电。
进一步地,在一些实施例中,所述基于所述待充电设备与所述无线充电设备之间的无线通信,协商使用所述第一无线充电模式或所述第二无线充电模式进行充电,包括:
建立所述待充电设备与所述无线充电设备之间的握手通信;
当所述握手通信建立成功时,基于所述无线充电设备使用的所述第一无线充电模式,为所述电池进行充电;
当所述握手通信建立失败时,基于所述无线充电设备使用的所述第二无线充电模式,为所述电池进行充电。
需要说明的是,结合图2所示的无线充电系统,无线充电设备220可以支持第一无线充电模式和第二无线充电模式,无线充电设备220在第一无线充电模式下对待充电设备230的充电速度快于无线充电设备220在第二无线充电模式下对待充电设备230的充电速度。换句话说,相较于工作在第二无线充电模式下的无线充电设备220来说,工作在第一无线充电模式下的无线充电设备220充满相同容量的待充电设备230中的电池的耗时更短。
这里,第二无线充电模式可为称为普通无线充电模式,例如可以是传统的基于QI标准、PMA标准或A4WP标准的无线充电模式。第一无线充电模式可为快速无线充电模式。该普通无线充电模式可以指无线充电设备220的发射功率较小(通常小于15W,常用的发射功率为5W或10W)的无线充电模式,在普通无线充电模式下想要完全充满一较大容量电池(如3000毫安时容量的电池),通常需要花费数个小时的时间;而在快速无线充电模式下,无线充电设备220的发射功率相对较大(通常大于或等于15W)。相较于普通无线充电模式而言,无线充电设备220在快速无线充电模式下完全充满相同容量电池所需要的充电时间能够明显缩短、充电速度更快。
在一些实施例中,所述待充电设备内的电池包括单电芯结构的电池和N个电芯串联结构的电池,N为大于等于2的正整数。
可选地,在一些实施例中,当所述电池处于恒压充电阶段时,所述方法还包括:
当所述电池电压等于预设截止电压时,获取第一预设充电电流,以所述第一预设充电电流对所述电池进行恒流充电,将所述电池电压充电到第一预设限制电压;其中,所述第一预设限制电压大于等于预设截止电压;
控制所述第一预设充电电流按照预设步长进行第K次减小,减小后得到第K预设充电电流,以所述第K预设充电电流对所述电池进行恒流充电,将所述电池电压充电到第K预设限制电压;其中,所述第K+1预设限制电压大于等于第K预设限制电压,K为大于等于1的正整数;
在将所述电池电压充电到第K预设限制电压之后,停止对所述电池进行充电。
可选地,在一些实施例中,当所述电池处于恒压充电阶段时,所述方法还包括:
当所述电池电压等于预设截止电压时,获取第一预设充电电流,以所述第一预设充电电流对所述电池进行恒流充电,将所述电池电压充电到第一预设限制电压;其中,所述第一预设限制电压大于等于预设截止电压;
控制所述第一预设充电电流按照预设步长进行第K次减小,减小后得到第K预设充电电流,以所述第K预设充电电流对所述电池进行恒流充电,将所述电池电压充电到第K预设限制电压;其中,所述第K+1预设限制电压大于等于第K预设限制电压,K为大于等于1的正整数;
以所述第K预设限制电压对所述电池进行恒压充电,当所述电池电流小于等于预设截止电流时,停止对所述电池进行充电。
需要说明的是,本申请实施例所提供的电池235可以包括一节电芯,也可以包括相互串联的N节电芯(N为大于等于2的正整数)。以N=2为例,电池235可以包括第一电芯和第二电芯,且第一电芯和第二电芯相互串联。以充电功率等于20W,单节电芯的充电电压等于5V为例进行说明。为了满足串联双电芯对充电电压的要求,第一充电通道236的输出电压/输出电流需要维持在10V/2A。这样一来,无线充电发射单元222基于10V/2A生成无线充电信号,相应地,无线充电接收单元231将无线充电信号转换成10V/2A的输出电压/输出电流,由于电流从4A降低至2A,电能传输过程产生的热量就会相应降低。因此,本申请实施例也可以采用相互串联的多节电芯,以降低无线充电发射单元222和无线充电接收单元231产生的热量。
上文是以N=2为例进行说明的,实际应用中,N的取值可以是3,也可以是3以上的正整数。相互串联的电芯越多,电能经过无线充电发射单元222和无线充电接收单元231所产生的热量就越小。
还需要说明的是,为了保证充电速度,并进一步缓解待充电设备230的发热现象,本申请实施例对待充电设备230内部的电池结构进行了进一步的改造,引入了相互串联的多节电芯,与单电芯方案相比,如果要达到同等的充电速度,多节电芯所需的充电电流为单节电芯所需的充电电流的1/N(N为待充电 设备230内的相互串联的电芯的数目),换句话说,在保证同等充电速度的前提下,本申请实施例可以大幅降低充电电流的大小,从而进一步减少待充电设备230在充电过程的发热量。
在本申请实施例中,多节电芯可以是规格、参数相同或相近的电芯,规格相同或相近的电芯便于统一管理,且选取规格、参数相同或相近的电芯能够提高多节电芯的整体性能和使用寿命。
在充电的过程中,第一充电通道或第二充电通道输出的电能用于对串联的多节电芯充电。在供电过程中,可采用充电管理单元或者第二变换单元将多节电芯的电压降压后对待充电设备230进行系统供电。也可采用单节电芯进行系统供电。
为了保持多节电芯的电量均衡,在充放电过程中,可通过均衡电路对多节电芯进行电量均衡。均衡电路的实现方式很多,例如,可以在电芯两端连接负载,消耗电芯的电量,使其与其它电芯的电量保持一致,从而使得各个电芯的电压保持一致。或者,可以使电量高的电芯为电量低的电芯充电,直到各个电芯的电压一致为止。
如前所述,电池的充电过程可包括涓流充电阶段、恒流充电阶段和恒压充电阶段中的一个或多个。在本申请实施例中,为了进一步提高充电速度,还可以通过对充电电压和充电电流的控制,实现缩短恒压充电阶段的充电时长或去掉恒压充电阶段。从而,相比于相关技术中的充电过程,可极大的提高充电速度。
在一些实施例中,设置一高于电池的预设截止电压的预先限制电压Vn,以及设置多个预设充电电流[I1、I2、I3、……、In],n为大于等于1的正整数。其中,I1≥I2≥I3……≥In。应理解,预设限制电压Vn跟电池的体系和采用的材料等相关。在一些实施例中,若预先限制电压(可以是电池的标准截止电压)为V0,可将Vn设置为V0+△V,例如,△V可在0.05V到0.1V之间取值。充电电流I1、I2、……、In的值也跟电池的体系和采用的材料等相关。
当电池体系确定后,电池的容量确定,根据充电电压、充电电流、充电时间和电池容量的关系,当充电电压等于预设限制电压Vn时,可确定不同阶段的预设充电电流的大小。在一些实施例中,可设置I1、I2、I3……In中,相邻两个预设充电电流之间的差值均为△I,例如,△I可在100mA到1A之间进行取值。
在一些实施例中,无论是采用上述的第一充电通道,还是第二充电通道,当电池电压被充到预设截止电压时,以预设充电电流I1对电池进行恒流充电,直到电池电压达到预设限制电压Vn。由于,电池以预设充电电流I1进行恒流充电,停止后电压会产生回落。因此,再对电池以预设充电电流I2进行恒流充电,直到电池电压达到预设限制电压Vn。重复以上步骤,直至使用最后一个步次的预设充电电流In充电至预设限制电压Vn,则可停止充电。由此,通过设置预设限制电压Vn,以及各个阶段的预设充电电流,可省去相关技术中的恒压充电阶段,节极大的省充电时间。
在另一些实施例中,无论是采用上述的第一充电通道,还是第二充电通道,当电池电压被充到预设截止电压时,以预设充电电流I1对电池进行恒流充电,直到电池电压达到预设限制电压Vn。再对电池以预设充电电流I2进行恒流充电,直到电池电压达到预设限制电压Vn。重复以上步骤,直至使用最后一个步次的预设充电电流In充电至预设限制电压Vn,则以Vn为充电电压,恒压充电预设时间或待充电电流减小到预设值,则停止充电。相比于前述省去恒压充电阶段,该实施例中由于提高的充电截止电压,减小了恒压充电的时长,由此,相比相关技术,也可极大的节省充电时间。
当电池为多电芯时,上述方法中,需监测每一电芯的电压是都达到预设截止电压和预设限制电压。当有任一电芯的电压达到预设截止电压或预设限制电压时,执行充电电流的变换操作。或者,在一些实施例中,也可以将已经达到预设截止电压或预设限制电压的电芯的充电通路断开,而继续对未达到预设截止电压或预设限制电压的电芯执行充电。即,每一电芯都可独立按照上述的充电过程进行充电操作。
上述实施例提供了一种充电控制方法,该方法应用于待充电设备,首先检测电池的电池电压和电池电流,以及检测无线充电接收单元的输出电流;然后根据检测得到的所述电池电压、所述电池电流以及所述输出电流,向无线充电设备发送控制指令;最后通过所述无线充电接收单元接收所述无线充电设备调整后的无线充电信号,以为所述电池进行充电;由于所述控制指令用于指示所述无线充电设备的发射功率需要调整,以使得所述无线充电设备的发射功率满足所述待充电设备内电池需求的充电功率、以及使得所述待充电设备内无线充电接收单元的输出电流满足预设电流需求范围,从而在待充电设备的充电过程中,不仅能够有效减小待充电设备的充电发热,同时还提升了充电效率。
参见图5,其示出了本申请实施例提供的一种充电控制方法,该方法应用于无线充电设备,该方法可以包括:
S501:在对待充电设备进行无线充电的过程中,接收所述待充电设备发送的控制指令;
S502:根据所述控制指令对所述无线充电设备的发射功率进行调整,以使得所述无线充电设备的发射功率满足所述待充电设备内电池需求的充电功率、以及使得所述待充电设备内无线充电接收单元的 输出电流满足预设电流需求范围。
需要说明的是,当待充电设备的充电功率不满足电池需求的充电功率和/或输出电流不满足预设电流需求范围时,待充电设备可以向无线充电设备发送控制指令;然后无线充电设备根据控制指令对发射功率进行调整。这里,无线充电设备可以通过调整开关管占空比、工作频率和发射电压等参数以实现发射功率的调整,本申请实施例不作具体限定。
还需要说明的是,“当根据所述控制指令对所述无线充电设备的发射功率进行调整”,具体地,可以包括无线充电设备根据所述控制指令首先确定待调整的目标发射功率值;然后根据所述待调整的目标发射功率值确定出对应的目标电压值和目标电流值;这里,目标电压值和目标电流值的乘积等于目标发射功率值;最后将调整后的发射功率通过无线充电发射单元以无线充电信号形式发射出去。
在一些实施例中,所述根据所述控制指令对所述无线充电设备的发射功率进行调整,包括:
接收待充电设备所发送的第一控制指令;根据所述第一控制指令调整所述无线充电设备的开关管占空比,以调整所述无线充电设备的发射功率。
在一些实施例中,所述根据所述控制指令对所述无线充电设备的发射功率进行调整,包括:
接收待充电设备所发送的第二控制指令;根据所述第二控制指令调整所述无线充电设备的工作频率,以调整所述无线充电设备的发射功率。
在一些实施例中,所述根据所述控制指令对所述无线充电设备的发射功率进行调整,包括:
接收待充电设备所发送的第三控制指令;根据所述第三控制指令调整所述无线充电设备的发射电压,以调整所述无线充电设备的发射功率。
在一些实施例中,所述根据所述控制指令对所述无线充电设备的发射功率进行调整,包括:
接收待充电设备所发送的第四控制指令;根据所述第四控制指令调整所述无线充电设备的开关管占空比,以调整所述无线充电设备的发射功率。
在一些实施例中,所述根据所述控制指令对所述无线充电设备的发射功率进行调整,包括:
接收待充电设备所发送的第五控制指令;根据所述第五控制指令调整所述无线充电设备的工作频率,以调整所述无线充电设备的发射功率。
在一些实施例中,所述根据所述控制指令对所述无线充电设备的发射功率进行调整,包括:
接收待充电设备所发送的第六控制指令;根据所述第六控制指令调整所述无线充电设备的发射电压,以调整所述无线充电设备的发射功率。
需要说明的是,基于无线充电设备与待充电设备之间的无线通信,当无线充电设备的发射功率不满足待充电设备内电池所需求的充电功率时,无线充电设备可以通过所接收的第一指令、第二指令或者第三指令来对无线充电设备的发射功率进行调整,以使得无线充电设备的发射功率满足待充电设备内电池所需求的充电功率;当待充电设备内无线充电接收单元的输出电流不满足预设电流需求范围时,无线充电设备还可以通过所接收的第四指令、第五指令或者第六指令来对无线充电设备的发射功率进行调整,以使得待充电设备内无线充电接收单元的输出电流满足预设电流需求范围;这样,通过对发射功率进行调整,可以使得无线充电设备的发射功率满足待充电设备内电池所需求的充电功率,以及使得待充电设备内无线充电接收单元的输出电流满足预设电流需求范围,从而能够减小待充电设备的充电发热,提高了充电效率。
还需要说明的是,结合图2所示的无线充电系统,无线充电设备220内包含有电压变换单元(比如图2所示的第一变换单元221),通过第三控制指令或者第六控制指令来控制无线充电设备220的发射电压进行调整。具体地,可以是由第二控制单元223对第一变换单元221的控制,使得第一变换单元221的输出电压发生变化,从而实现对发射电压的调整;还可以是由第二控制单元223对第一变换单元221的输入电压进行调整(比如图2所示的电源提供设备210的输出电压进行调整),也可以使得第一变换单元221的输出电压发生变化,从而实现对发射电压的调整;在实际应用中,根据实际情况进行具体设定,本申请实施例对此不作具体限定。
在一些实施例中,所述无线充电设备支持第一无线充电模式和第二无线充电模式,所述无线充电设备在所述第一无线充电模式下对所述待充电设备的充电速度快于所述无线充电设备在所述第二无线充电模式下对所述待充电设备的充电速度;所述方法还包括:
基于所述待充电设备与所述无线充电设备之间的无线通信,协商使用所述第一无线充电模式或所述第二无线充电模式进行充电。
进一步地,在一些实施例中,所述基于所述待充电设备与所述无线充电设备之间的无线通信,协商使用所述第一无线充电模式或所述第二无线充电模式进行充电,包括:
建立所述待充电设备与所述无线充电设备之间的握手通信;
当所述握手通信建立成功时,控制所述无线充电设备使用所述第一无线充电模式为所述待充电设备 进行充电;
当所述握手通信建立失败时,控制所述无线充电设备使用所述第二无线充电模式为所述待充电设备进行充电。
需要说明的是,结合图2所示的无线充电系统,无线充电设备220可以支持第一无线充电模式和第二无线充电模式,无线充电设备220在第一无线充电模式下对待充电设备230的充电速度快于无线充电设备220在第二无线充电模式下对待充电设备230的充电速度。这样,无线充电设备220可以基于与待充电设备230之间的无线通信,通过第二控制单元223来确定所使用的无线充电模式;比如当握手通信建立成功时,第二控制单元223可以控制无线充电设备220使用第一无线充电模式为待充电设备230进行充电,从而能够大大缩短充电时间,提高了充电速度。
上述实施例提供了一种充电控制方法,该方法应用于无线充电设备,首先在对待充电设备进行无线充电的过程中,接收所述待充电设备发送的控制指令;根据所述控制指令对所述无线充电设备的发射功率进行调整,以使得所述无线充电设备的发射功率满足所述待充电设备内电池需求的充电功率、以及使得所述待充电设备内无线充电接收单元的输出电流满足预设电流需求范围;这样,通过对无线充电设备的发射功率进行调整,可以减小待充电设备的充电发热,提高了充电效率。
基于前述实施例相同的发明构思,参见图6,其示出了本申请实施例提供的一种充电控制方法的详细流程示意图,基于图2所示的无线充电系统的结构示例,该详细流程可以包括:
S601:无线充电设备通过无线充电发射单元发射无线充电信号;
S602:待充电设备通过无线充电接收单元接收所述无线充电信号,由无线充电接收单元进行转换并输出对应的输出电压和输出电流;
S603:基于所述输出电压和输出电流,无线充电设备为电池进行充电;
S604:待充电设备通过检测单元检测电池的电池电压和电池电流,以及检测无线充电接收单元的输出电流;
S605:判断无线充电设备的发射功率是否满足所述电池需求的充电功率和/或所述无线充电接收单元的输出电流是否满足预设电流需求范围;
S606:当无线充电设备的发射功率不满足所述电池需求的充电功率和/或所述无线充电接收单元的输出电流不满足预设电流需求范围时,待充电设备向无线充电设备发送控制指令;
S607:无线充电设备接收所述控制指令,并根据所述控制指令对无线充电设备的发射功率进行调整,以使得无线充电设备的发射功率满足所述电池需求的充电功率、以及使得所述无线充电接收单元的输出电流满足预设电流需求范围;
S608:基于所述调整后的发射功率,无线充电设备向待充电设备发射调整后的无线充电信号;
S609:待充电设备通过所述无线充电接收单元接收所述调整后的无线充电信号,由无线充电接收单元进行转换并输出对应的调整后的输出电压和调整后的输出电流;
S610:基于调整后的输出电压和调整后的输出电流,待充电设备为电池进行充电。
需要说明的是,当待充电设备所接收的充电功率不满足待充电设备内电池需求的充电功率和/或待充电设备内无线充电接收单元的输出电流不满足预设电流需求范围时,待充电设备可以向无线充电设备发送控制指令;然后无线充电设备根据控制指令对发射功率进行调整;其中,发射功率可以通过开关管占空比、工作频率和发射电压等参数的变化而进行调整,本申请实施例不作具体限定。
上述实施例提供了一种充电控制方法,该方法应用于无线充电系统,待充电设备位于无线充电设备的表面,无线充电设备和待充电设备之间可以通过无线充电信号形式进行能量传输;在为待充电设备的电池充电过程中,还可以对无线充电设备的发射功率进行调整,以使得所述无线充电设备的发射功率满足所述待充电设备内电池需求的充电功率、以及使得所述待充电设备内无线充电接收单元的输出电流满足预设电流需求范围,从而能够减小待充电设备的充电发热,提高了充电效率。
基于前述图3所示技术方案相同的发明构思,参见图7,其示出了本申请实施例提供的一种待充电设备70的组成,可以包括:检测单元701、第一控制单元702、无线充电接收单元703和充电管理单元704,其中,
所述检测单元701,配置为检测电池的电池电压和电池电流,以及检测无线充电接收单元的输出电流;
所述第一控制单元702,配置为根据检测得到的所述电池电压、所述电池电流以及所述输出电流,向无线充电设备发送控制指令;其中,所述控制指令用于指示所述无线充电设备的发射功率需要调整,以使得所述无线充电设备的发射功率满足所述待充电设备内电池需求的充电功率、以及使得所述待充电设备内无线充电接收单元的输出电流满足预设电流需求范围;
所述无线充电接收单元703,配置为接收所述无线充电设备调整后的无线充电信号;
所述充电管理单元704,配置为根据所述调整后的无线充电信号,为所述电池进行充电。
在上述方案中,所述第一控制单元702,具体配置为根据检测得到的所述电池电压和所述电池电流,判断充电功率是否满足所述电池需求的充电功率;以及根据检测得到的所述输出电流,判断所述输出电流是否满足预设电流需求范围;以及当所述充电功率不满足所述电池需求的充电功率和/或所述输出电流不满足预设电流需求范围时,向无线充电设备发送控制指令。
在上述方案中,所述第一控制单元702,具体配置为当所述电池处于恒流充电阶段时,判断所述电池电流是否满足预设恒流范围;若所述电池电流不满足预设恒流范围,则所述充电功率不满足所述电池需求的充电功率;以及当所述电池处于恒压充电阶段时,判断所述电池电压是否满足预设恒压范围;若所述电池电压不满足预设恒压范围,则所述充电功率不满足所述电池需求的充电功率。
在上述方案中,所述第一控制单元702,具体配置为当所述充电功率不满足所述电池需求的充电功率时,基于所述待充电设备与所述无线充电设备之间的无线通信,向所述无线充电设备发送第一控制指令;其中,所述第一控制指令用于指示所述无线充电设备通过调整开关管占空比以实现发射功率的调整。
在上述方案中,所述第一控制单元702,具体配置为当所述充电功率不满足所述电池需求的充电功率时,基于所述待充电设备与所述无线充电设备之间的无线通信,向无线充电设备发送第二控制指令;其中,所述第二控制指令用于指示所述无线充电设备通过调整工作频率以实现发射功率的调整。
在上述方案中,所述第一控制单元702,具体配置为当所述充电功率不满足所述电池需求的充电功率时,基于所述待充电设备与所述无线充电设备之间的无线通信,向无线充电设备发送第三控制指令;其中,所述第三控制指令用于指示所述无线充电设备通过调整发射电压以实现发射功率的调整。
在上述方案中,所述第一控制单元702,具体配置为当所述输出电流不满足预设电流需求范围时,基于所述待充电设备与所述无线充电设备之间的无线通信,向无线充电设备发送第四控制指令;其中,所述第四控制指令用于指示所述无线充电设备通过调整开关管占空比以实现发射功率的调整。
在上述方案中,所述第一控制单元702,具体配置为当所述输出电流不满足预设电流需求范围时,基于所述待充电设备与所述无线充电设备之间的无线通信,向无线充电设备发送第五控制指令;其中,所述第五控制指令用于指示所述无线充电设备通过调整工作频率以实现发射功率的调整。
在上述方案中,所述第一控制单元702,具体配置为当所述输出电流不满足预设电流需求范围时,基于所述待充电设备与所述无线充电设备之间的无线通信,向无线充电设备发送第六控制指令;其中,所述第六控制指令用于指示所述无线充电设备通过调整发射电压以实现发射功率的调整。
在上述方案中,所述无线充电接收单元703,具体配置为接收所述无线充电设备调整后的无线充电信号,根据所述调整后的无线充电信号输出调整后的输出电压和调整后的输出电流;
所述充电管理单元704,具体配置为对所述调整后的输出电压和所述调整后的输出电流进行电压变换处理,变换后得到充电电压和充电电流;以及将所述充电电压和所述充电电流加载至所述电池进行充电。
在上述方案中,所述充电管理单元704,具体配置为通过电荷泵charge pump单元对所述调整后的输出电压和所述调整后的输出电流进行电压变换处理,得到所述充电电压和所述充电电流。
在上述方案中,所述检测单元701,还配置为检测所述电池的电池温度;
所述第一控制单元702,还配置为基于所述电池温度,控制所述第一充电通道和所述第二充电通道之间的切换。
在上述方案中,所述第一控制单元702,还配置为建立所述待充电设备与所述无线充电设备之间的握手通信;以及当所述握手通信建立成功时,控制所述第一充电通道工作;以及当所述握手通信建立失败时,控制所述第二充电通道工作。
在上述方案中,所述无线充电设备支持第一无线充电模式和第二无线充电模式,所述无线充电设备在所述第一无线充电模式下对所述待充电设备的充电速度快于所述无线充电设备在所述第二无线充电模式下对所述待充电设备的充电速度;所述第一控制单元702,还配置为基于所述待充电设备与所述无线充电设备之间的无线通信,协商使用所述第一无线充电模式或所述第二无线充电模式进行充电。
在上述方案中,所述第一控制单元702,具体配置为建立所述待充电设备与所述无线充电设备之间的握手通信;以及当所述握手通信建立成功时,基于所述无线充电设备使用的所述第一无线充电模式,为所述电池进行充电;以及当所述握手通信建立失败时,基于所述无线充电设备使用的所述第二无线充电模式,为所述电池进行充电。
在上述方案中,所述待充电设备70内的电池包括单电芯结构的电池和N个电芯串联结构的电池,N为大于等于2的正整数。
在上述方案中,所述第一控制单元702,还配置为当所述电池电压等于预设截止电压时,获取第一预设充电电流,以所述第一预设充电电流对所述电池进行恒流充电,将所述电池电压充电到第一预设限 制电压;其中,所述第一预设限制电压大于等于预设截止电压;以及控制所述第一预设充电电流按照预设步长进行第K次减小,减小后得到第K预设充电电流,以所述第K预设充电电流对所述电池进行恒流充电,将所述电池电压充电到第K预设限制电压;其中,所述第K+1预设限制电压大于等于第K预设限制电压,K为大于等于1的正整数;以及在将所述电池电压充电到第N预设限制电压之后,停止对所述电池进行充电。
在上述方案中,所述第一控制单元702,还配置为当所述电池电压等于预设截止电压时,获取第一预设充电电流,以所述第一预设充电电流对所述电池进行恒流充电,将所述电池电压充电到第一预设限制电压;其中,所述第一预设限制电压大于等于预设截止电压;以及控制所述第一预设充电电流按照预设步长进行第K次减小,减小后得到第K预设充电电流,以所述第K预设充电电流对所述电池进行恒流充电,将所述电池电压充电到第K预设限制电压;其中,所述第K+1预设限制电压大于等于第K预设限制电压,K为大于等于1的正整数;以及以所述第K预设限制电压对所述电池进行恒压充电,当所述电池电流小于等于预设截止电流时,停止对所述电池进行充电。
可以理解地,在本实施例中,“单元”可以是部分电路、部分处理器、部分程序或软件等,当然也可以是模块,还可以是非模块化的。另外,在本实施例中的各组成单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所述集成的单元如果以软件功能模块的形式实现并非作为独立的产品进行销售或使用时,可以存储在一个计算机可读取存储介质中,基于这样的理解,本实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或processor(处理器)执行本实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
因此,本实施例提供了一种计算机存储介质,该计算机存储介质存储有充电控制程序,所述充电控制程序被第一处理器执行时实现如前述图3所示的技术方案中所述方法的步骤。
基于上述待充电设备70的组成以及计算机存储介质,参见图8,其示出了本申请实施例提供的待充电设备70的具体硬件结构,可以包括:第一网络接口801、第一存储器802和第一处理器803;各个组件通过第一总线系统804耦合在一起。可理解,第一总线系统804用于实现这些组件之间的连接通信;第一总线系统804除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
进一步地,第一网络接口801,用于在与无线充电设备之间进行收发信息过程中,信号的接收和发送;
第一存储器802,用于存储能够在第一处理器803上运行的计算机程序;
第一处理器803,用于在运行所述计算机程序时,执行:
检测电池的电池电压和电池电流,以及检测无线充电接收单元的输出电流;
根据检测得到的所述电池电压、所述电池电流以及所述输出电流,向无线充电设备发送控制指令;其中,所述控制指令用于指示所述无线充电设备的发射功率需要调整,以使得所述无线充电设备的发射功率满足所述待充电设备内电池需求的充电功率、以及使得所述待充电设备内无线充电接收单元的输出电流满足预设电流需求范围;
通过所述无线充电接收单元接收所述无线充电设备调整后的无线充电信号,以为所述电池进行充电。
可以理解,本申请实施例中的第一存储器802可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本文描述的系统和方法的第一存储器802旨在包括但不限于这些和任意其它适合类型的存储器。
而第一处理器803可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各 步骤可以通过第一处理器803中的硬件的集成逻辑电路或者软件形式的指令完成。上述的第一处理器803可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于第一存储器802,第一处理器803读取第一存储器802中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
可选地,作为另一个实施例,第一处理器803还配置为在运行所述计算机程序时,执行前述图3所示的技术方案中所述方法的步骤。
基于前述图5所示技术方案相同的发明构思,参见图9,其示出了本申请实施例提供的一种无线充电设备90的组成,可以包括:无线充电发射单元901和第二控制单元902,其中,
所述无线充电发射单元901,配置为发射无线充电信号;
所述第二控制单元902,配置为在对待充电设备进行无线充电的过程中,接收所述待充电设备发送的控制指令;以及根据所述控制指令对所述无线充电设备的发射功率进行调整,以使得所述无线充电设备的发射功率满足所述待充电设备内电池需求的充电功率、以及使得所述待充电设备内无线充电接收单元的输出电流满足预设电流需求范围。
在上述方案中,所述第二控制单元902,具体配置为接收待充电设备所发送的第一控制指令;根据所述第一控制指令调整所述无线充电设备的开关管占空比,以调整所述无线充电设备的发射功率。
在上述方案中,所述第二控制单元902,具体配置为接收待充电设备所发送的第二控制指令;根据所述第二控制指令调整所述无线充电设备的工作频率,以调整所述无线充电设备的发射功率。
在上述方案中,所述第二控制单元902,具体配置为接收待充电设备所发送的第三控制指令;根据所述第三控制指令调整所述无线充电设备的发射电压,以调整所述无线充电设备的发射功率。
在上述方案中,所述第二控制单元902,具体配置为接收待充电设备所发送的第四控制指令;根据所述第四控制指令调整所述无线充电设备的开关管占空比,以调整所述无线充电设备的发射功率。
在上述方案中,所述第二控制单元902,具体配置为接收待充电设备所发送的第五控制指令;根据所述第五控制指令调整所述无线充电设备的工作频率,以调整所述无线充电设备的发射功率。
在上述方案中,所述第二控制单元902,具体配置为接收待充电设备所发送的第六控制指令;根据所述第六控制指令调整所述无线充电设备的发射电压,以调整所述无线充电设备的发射功率。
在上述方案中,所述无线充电设备90支持第一无线充电模式和第二无线充电模式,所述无线充电设备90在所述第一无线充电模式下对所述待充电设备的充电速度快于所述无线充电设备90在所述第二无线充电模式下对所述待充电设备的充电速度;所述第二控制单元902,还配置为基于所述待充电设备与所述无线充电设备之间的无线通信,协商使用所述第一无线充电模式或所述第二无线充电模式进行充电。
在上述方案中,所述第二控制单元902,具体配置为建立所述待充电设备与所述无线充电设备之间的握手通信;以及当所述握手通信建立成功时,控制所述无线充电设备使用所述第一无线充电模式为所述待充电设备进行充电;以及当所述握手通信建立失败时,控制所述无线充电设备使用所述第二无线充电模式为所述待充电设备进行充电。
本实施例提供了一种计算机存储介质,该计算机存储介质存储有充电控制程序,所述充电控制程序被第二处理器执行时实现如前述图5所示的技术方案中所述方法的步骤。
基于上述无线充电设备90的组成以及计算机存储介质,参见图10,其示出了本申请实施例提供的无线充电设备90的具体硬件结构,可以包括:第二网络接口1001、第二存储器1002和第二处理器1003;各个组件通过第二总线系统1004耦合在一起。可理解,第二总线系统1004用于实现这些组件之间的连接通信;第二总线系统1004除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
进一步地,第二网络接口1001,用于在与待充电设备之间进行收发信息过程中,信号的接收和发送;
第二存储器1002,用于存储能够在第二处理器1003上运行的计算机程序;
第二处理器1003,用于在运行所述计算机程序时,执行:
在对待充电设备进行无线充电的过程中,接收所述待充电设备发送的控制指令;
根据所述控制指令对所述无线充电设备的发射功率进行调整,以使得所述无线充电设备的发射功率满足所述待充电设备内电池需求的充电功率、以及使得所述待充电设备内无线充电接收单元的输出电流满足预设电流需求范围。
可选地,作为另一个实施例,第二处理器1003还配置为在运行所述计算机程序时,执行前述图5所示的技术方案中所述方法的步骤。
可以理解,第二存储器1002与第一存储器802的硬件功能类似,第二处理器1003与第一处理器803的硬件功能类似;这里不再详述。
需要说明的是:本申请实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
工业实用性
本申请实施例中,首先检测电池的电池电压和电池电流,以及检测无线充电接收单元的输出电流;然后根据检测得到的所述电池电压、所述电池电流以及所述输出电流,向无线充电设备发送控制指令;由于控制指令用于指示所述无线充电设备的发射功率需要调整,以使得所述无线充电设备的发射功率满足所述待充电设备内电池需求的充电功率、以及使得所述待充电设备内无线充电接收单元的输出电流满足预设电流需求范围;从而不仅可以提高待充电设备的充电效率,还可以有效控制无线充电接收单元的输出电压与电池电压之间的压差;最后通过所述无线充电接收单元接收所述无线充电设备调整后的无线充电信号,以为所述电池进行充电;这样在待充电设备的充电过程中,不仅能够有效减小待充电设备的充电发热,同时还提升了充电效率。

Claims (57)

  1. 一种充电控制方法,所述方法应用于待充电设备,所述方法包括:
    检测电池的电池电压和电池电流,以及检测无线充电接收单元的输出电流;
    根据检测得到的所述电池电压、所述电池电流以及所述输出电流,向无线充电设备发送控制指令;其中,所述控制指令用于指示所述无线充电设备的发射功率需要调整,以使得所述无线充电设备的发射功率满足所述待充电设备内电池需求的充电功率、以及使得所述待充电设备内无线充电接收单元的输出电流满足预设电流需求范围;
    通过所述无线充电接收单元接收所述无线充电设备调整后的无线充电信号,以为所述电池进行充电。
  2. 根据权利要求1所述的方法,其中,所述根据检测得到的所述电池电压、所述电池电流以及所述输出电流,向无线充电设备发送控制指令,包括:
    根据检测得到的所述电池电压和所述电池电流,判断充电功率是否满足所述电池需求的充电功率;
    根据检测得到的所述输出电流,判断所述输出电流是否满足预设电流需求范围;
    当所述充电功率不满足所述电池需求的充电功率和/或所述输出电流不满足预设电流需求范围时,向无线充电设备发送控制指令。
  3. 根据权利要求2所述的方法,其中,所述根据检测得到的所述电池电压和所述电池电流,判断充电功率是否满足所述电池需求的充电功率,包括:
    当所述电池处于恒流充电阶段时,判断所述电池电流是否满足预设恒流范围;若所述电池电流不满足预设恒流范围,则所述充电功率不满足所述电池需求的充电功率;
    当所述电池处于恒压充电阶段时,判断所述电池电压是否满足预设恒压范围;若所述电池电压不满足预设恒压范围,则所述充电功率不满足所述电池需求的充电功率。
  4. 根据权利要求2所述的方法,其中,所述当所述充电功率不满足所述电池需求的充电功率和/或所述输出电流不满足预设电流需求范围时,向无线充电设备发送控制指令,包括:
    当所述充电功率不满足所述电池需求的充电功率时,基于所述待充电设备与所述无线充电设备之间的无线通信,向所述无线充电设备发送第一控制指令;其中,所述第一控制指令用于指示所述无线充电设备通过调整开关管占空比以实现发射功率的调整。
  5. 根据权利要求2所述的方法,其中,所述当所述充电功率不满足所述电池需求的充电功率和/或所述输出电流不满足预设电流需求范围时,向无线充电设备发送控制指令,包括:
    当所述充电功率不满足所述电池需求的充电功率时,基于所述待充电设备与所述无线充电设备之间的无线通信,向无线充电设备发送第二控制指令;其中,所述第二控制指令用于指示所述无线充电设备通过调整工作频率以实现发射功率的调整。
  6. 根据权利要求2所述的方法,其中,所述当所述充电功率不满足所述电池需求的充电功率和/或所述输出电流不满足预设电流需求范围时,向无线充电设备发送控制指令,包括:
    当所述充电功率不满足所述电池需求的充电功率时,基于所述待充电设备与所述无线充电设备之间的无线通信,向无线充电设备发送第三控制指令;其中,所述第三控制指令用于指示所述无线充电设备通过调整发射电压以实现发射功率的调整。
  7. 根据权利要求2所述的方法,其中,所述当所述充电功率不满足所述电池需求的充电功率和/或所述输出电流不满足预设电流需求范围时,向无线充电设备发送控制指令,包括:
    当所述输出电流不满足预设电流需求范围时,基于所述待充电设备与所述无线充电设备之间的无线通信,向无线充电设备发送第四控制指令;其中,所述第四控制指令用于指示所述无线充电设备通过调整开关管占空比以实现发射功率的调整。
  8. 根据权利要求2所述的方法,其中,所述当所述充电功率不满足所述电池需求的充电功率和/或所述输出电流不满足预设电流需求范围时,向无线充电设备发送控制指令,包括:
    当所述输出电流不满足预设电流需求范围时,基于所述待充电设备与所述无线充电设备之间的无线通信,向无线充电设备发送第五控制指令;其中,所述第五控制指令用于指示所述无线充电设备通过调整工作频率以实现发射功率的调整。
  9. 根据权利要求2所述的方法,其中,所述当所述充电功率不满足所述电池需求的充电功率和/或所述输出电流不满足预设电流需求范围时,向无线充电设备发送控制指令,包括:
    当所述输出电流不满足预设电流需求范围时,基于所述待充电设备与所述无线充电设备之间的无线通信,向无线充电设备发送第六控制指令;其中,所述第六控制指令用于指示所述无线充电设备通过调 整发射电压以实现发射功率的调整。
  10. 根据权利要求1至9任一项所述的方法,其中,所述通过所述无线充电接收单元接收所述无线充电设备调整后的无线充电信号,以为所述电池进行充电,包括:
    通过所述无线充电接收单元接收所述无线充电设备调整后的无线充电信号,由所述无线充电接收单元输出调整后的输出电压和调整后的输出电流;
    对所述调整后的输出电压和所述调整后的输出电流进行电压变换处理,变换后得到充电电压和充电电流;
    将所述充电电压和所述充电电流加载至所述电池进行充电。
  11. 根据权利要求10所述的方法,其中,所述对所述调整后的输出电压和所述调整后的输出电流进行电压变换处理,变换后得到充电电压和充电电流,包括:
    通过电荷泵charge pump单元对所述调整后的输出电压和所述调整后的输出电流进行电压变换处理,得到所述充电电压和所述充电电流。
  12. 根据权利要求1至11任一项所述的方法,其中,所述待充电设备包括第一充电通道和第二充电通道,所述第一充电通道的充电速度快于所述第二充电通道的充电速度;所述方法还包括:
    检测所述电池的电池温度;
    基于所述电池温度,控制所述第一充电通道和所述第二充电通道之间的切换。
  13. 根据权利要求12所述的方法,其中,所述方法还包括:
    建立所述待充电设备与所述无线充电设备之间的握手通信;
    当所述握手通信建立成功时,控制所述第一充电通道工作;
    当所述握手通信建立失败时,控制所述第二充电通道工作。
  14. 根据权利要求1至13任一项所述的方法,其中,所述无线充电设备支持第一无线充电模式和第二无线充电模式,所述无线充电设备在所述第一无线充电模式下对所述待充电设备的充电速度快于所述无线充电设备在所述第二无线充电模式下对所述待充电设备的充电速度;所述方法还包括:
    基于所述待充电设备与所述无线充电设备之间的无线通信,协商使用所述第一无线充电模式或所述第二无线充电模式进行充电。
  15. 根据权利要求14所述的方法,其中,所述基于所述待充电设备与所述无线充电设备之间的无线通信,协商使用所述第一无线充电模式或所述第二无线充电模式进行充电,包括:
    建立所述待充电设备与所述无线充电设备之间的握手通信;
    当所述握手通信建立成功时,基于所述无线充电设备使用的所述第一无线充电模式,为所述电池进行充电;
    当所述握手通信建立失败时,基于所述无线充电设备使用的所述第二无线充电模式,为所述电池进行充电。
  16. 根据权利要求1至15任一项所述的方法,其中,所述待充电设备内的电池包括单电芯结构的电池和N个电芯串联结构的电池,N为大于等于2的正整数。
  17. 根据权利要求1至16任一项所述的方法,其中,当所述电池处于恒压充电阶段时,所述方法还包括:
    当所述电池电压等于预设截止电压时,获取第一预设充电电流,以所述第一预设充电电流对所述电池进行恒流充电,将所述电池电压充电到第一预设限制电压;其中,所述第一预设限制电压大于等于预设截止电压;
    控制所述第一预设充电电流按照预设步长进行第K次减小,减小后得到第K预设充电电流,以所述第K预设充电电流对所述电池进行恒流充电,将所述电池电压充电到第K预设限制电压;其中,所述第K+1预设限制电压大于等于第K预设限制电压,K为大于等于1的正整数;
    在将所述电池电压充电到第K预设限制电压之后,停止对所述电池进行充电。
  18. 根据权利要求1至16任一项所述的方法,其中,当所述电池处于恒压充电阶段时,所述方法还包括:
    当所述电池电压等于预设截止电压时,获取第一预设充电电流,以所述第一预设充电电流对所述电池进行恒流充电,将所述电池电压充电到第一预设限制电压;其中,所述第一预设限制电压大于等于预设截止电压;
    控制所述第一预设充电电流按照预设步长进行第K次减小,减小后得到第K预设充电电流,以所述第K预设充电电流对所述电池进行恒流充电,将所述电池电压充电到第K预设限制电压;其中,所述第K+1预设限制电压大于等于第K预设限制电压,K为大于等于1的正整数;
    以所述第K预设限制电压对所述电池进行恒压充电,当所述电池电流小于等于预设截止电流时, 停止对所述电池进行充电。
  19. 一种充电控制方法,所述方法应用于无线充电设备,所述方法包括:
    在对待充电设备进行无线充电的过程中,接收所述待充电设备发送的控制指令;
    根据所述控制指令对所述无线充电设备的发射功率进行调整,以使得所述无线充电设备的发射功率满足所述待充电设备内电池需求的充电功率、以及使得所述待充电设备内无线充电接收单元的输出电流满足预设电流需求范围。
  20. 根据权利要求19所述的方法,其中,所述根据所述控制指令对所述无线充电设备的发射功率进行调整,包括:
    接收待充电设备所发送的第一控制指令;根据所述第一控制指令调整所述无线充电设备的开关管占空比,以调整所述无线充电设备的发射功率。
  21. 根据权利要求19所述的方法,其中,所述根据所述控制指令对所述无线充电设备的发射功率进行调整,包括:
    接收待充电设备所发送的第二控制指令;根据所述第二控制指令调整所述无线充电设备的工作频率,以调整所述无线充电设备的发射功率。
  22. 根据权利要求19所述的方法,其中,所述根据所述控制指令对所述无线充电设备的发射功率进行调整,包括:
    接收待充电设备所发送的第三控制指令;根据所述第三控制指令调整所述无线充电设备的发射电压,以调整所述无线充电设备的发射功率。
  23. 根据权利要求19所述的方法,其中,所述根据所述控制指令对所述无线充电设备的发射功率进行调整,包括:
    接收待充电设备所发送的第四控制指令;根据所述第四控制指令调整所述无线充电设备的开关管占空比,以调整所述无线充电设备的发射功率。
  24. 根据权利要求19所述的方法,其中,所述根据所述控制指令对所述无线充电设备的发射功率进行调整,包括:
    接收待充电设备所发送的第五控制指令;根据所述第五控制指令调整所述无线充电设备的工作频率,以调整所述无线充电设备的发射功率。
  25. 根据权利要求19所述的方法,其中,所述根据所述控制指令对所述无线充电设备的发射功率进行调整,包括:
    接收待充电设备所发送的第六控制指令;根据所述第六控制指令调整所述无线充电设备的发射电压,以调整所述无线充电设备的发射功率。
  26. 根据权利要求19至25任一项所述的方法,其中,所述无线充电设备支持第一无线充电模式和第二无线充电模式,所述无线充电设备在所述第一无线充电模式下对所述待充电设备的充电速度快于所述无线充电设备在所述第二无线充电模式下对所述待充电设备的充电速度;所述方法还包括:
    基于所述待充电设备与所述无线充电设备之间的无线通信,协商使用所述第一无线充电模式或所述第二无线充电模式进行充电。
  27. 根据权利要求26所述的方法,其中,所述基于所述待充电设备与所述无线充电设备之间的无线通信,协商使用所述第一无线充电模式或所述第二无线充电模式进行充电,包括:
    建立所述待充电设备与所述无线充电设备之间的握手通信;
    当所述握手通信建立成功时,控制所述无线充电设备使用所述第一无线充电模式为所述待充电设备进行充电;
    当所述握手通信建立失败时,控制所述无线充电设备使用所述第二无线充电模式为所述待充电设备进行充电。
  28. 一种待充电设备,所述待充电设备包括:检测单元、第一控制单元、无线充电接收单元和充电管理单元,其中,
    所述检测单元,配置为检测电池的电池电压和电池电流,以及检测无线充电接收单元的输出电流;
    所述第一控制单元,配置为根据检测得到的所述电池电压、所述电池电流以及所述输出电流,向无线充电设备发送控制指令;其中,所述控制指令用于指示所述无线充电设备的发射功率需要调整,以使得所述无线充电设备的发射功率满足所述待充电设备内电池需求的充电功率、以及使得所述待充电设备内无线充电接收单元的输出电流满足预设电流需求范围;
    所述无线充电接收单元,配置为接收所述无线充电设备调整后的无线充电信号;
    所述充电管理单元,配置为根据所述调整后的无线充电信号,为所述电池进行充电。
  29. 根据权利要求28所述的待充电设备,其中,所述第一控制单元,具体配置为根据检测得到的 所述电池电压和所述电池电流,判断充电功率是否满足所述电池需求的充电功率;以及根据检测得到的所述输出电流,判断所述输出电流是否满足预设电流需求范围;以及当所述充电功率不满足所述电池需求的充电功率和/或所述输出电流不满足预设电流需求范围时,向无线充电设备发送控制指令。
  30. 根据权利要求29所述的待充电设备,其中,所述第一控制单元,具体配置为当所述电池处于恒流充电阶段时,判断所述电池电流是否满足预设恒流范围;若所述电池电流不满足预设恒流范围,则所述充电功率不满足所述电池需求的充电功率;以及当所述电池处于恒压充电阶段时,判断所述电池电压是否满足预设恒压范围;若所述电池电压不满足预设恒压范围,则所述充电功率不满足所述电池需求的充电功率。
  31. 根据权利要求29所述的待充电设备,其中,所述第一控制单元,具体配置为当所述充电功率不满足所述电池需求的充电功率时,基于所述待充电设备与所述无线充电设备之间的无线通信,向所述无线充电设备发送第一控制指令;其中,所述第一控制指令用于指示所述无线充电设备通过调整开关管占空比以实现发射功率的调整。
  32. 根据权利要求29所述的待充电设备,其中,所述第一控制单元,具体配置为当所述充电功率不满足所述电池需求的充电功率时,基于所述待充电设备与所述无线充电设备之间的无线通信,向无线充电设备发送第二控制指令;其中,所述第二控制指令用于指示所述无线充电设备通过调整工作频率以实现发射功率的调整。
  33. 根据权利要求29所述的待充电设备,其中,所述第一控制单元,具体配置为当所述充电功率不满足所述电池需求的充电功率时,基于所述待充电设备与所述无线充电设备之间的无线通信,向无线充电设备发送第三控制指令;其中,所述第三控制指令用于指示所述无线充电设备通过调整发射电压以实现发射功率的调整。
  34. 根据权利要求29所述的待充电设备,其中,所述第一控制单元,具体配置为当所述输出电流不满足预设电流需求范围时,基于所述待充电设备与所述无线充电设备之间的无线通信,向无线充电设备发送第四控制指令;其中,所述第四控制指令用于指示所述无线充电设备通过调整开关管占空比以实现发射功率的调整。
  35. 根据权利要求29所述的待充电设备,其中,所述第一控制单元,具体配置为当所述输出电流不满足预设电流需求范围时,基于所述待充电设备与所述无线充电设备之间的无线通信,向无线充电设备发送第五控制指令;其中,所述第五控制指令用于指示所述无线充电设备通过调整工作频率以实现发射功率的调整。
  36. 根据权利要求29所述的待充电设备,其中,所述第一控制单元,具体配置为当所述输出电流不满足预设电流需求范围时,基于所述待充电设备与所述无线充电设备之间的无线通信,向无线充电设备发送第六控制指令;其中,所述第六控制指令用于指示所述无线充电设备通过调整发射电压以实现发射功率的调整。
  37. 根据权利要求28至36任一项所述的待充电设备,其中,所述无线充电接收单元,具体配置为接收所述无线充电设备调整后的无线充电信号,根据所述调整后的无线充电信号输出调整后的输出电压和调整后的输出电流;
    所述充电管理单元,具体配置为对所述调整后的输出电压和所述调整后的输出电流进行电压变换处理,变换后得到充电电压和充电电流;以及将所述充电电压和所述充电电流加载至所述电池进行充电。
  38. 根据权利要求37所述的待充电设备,其中,所述充电管理单元,具体配置为通过电荷泵charge pump单元对所述调整后的输出电压和所述调整后的输出电流进行电压变换处理,得到所述充电电压和所述充电电流。
  39. 根据权利要求28至38任一项所述的待充电设备,其中,所述检测单元,还配置为检测所述电池的电池温度;
    所述第一控制单元,还配置为基于所述电池温度,控制所述第一充电通道和所述第二充电通道之间的切换。
  40. 根据权利要求39所述的待充电设备,其中,所述第一控制单元,还配置为建立所述待充电设备与所述无线充电设备之间的握手通信;以及当所述握手通信建立成功时,控制所述第一充电通道工作;以及当所述握手通信建立失败时,控制所述第二充电通道工作。
  41. 根据权利要求28至40任一项所述的待充电设备,其中,所述无线充电设备支持第一无线充电模式和第二无线充电模式,所述无线充电设备在所述第一无线充电模式下对所述待充电设备的充电速度快于所述无线充电设备在所述第二无线充电模式下对所述待充电设备的充电速度;所述第一控制单元,还配置为基于所述待充电设备与所述无线充电设备之间的无线通信,协商使用所述第一无线充电模式或所述第二无线充电模式进行充电。
  42. 根据权利要求41所述的待充电设备,其中,所述第一控制单元,具体配置为建立所述待充电设备与所述无线充电设备之间的握手通信;以及当所述握手通信建立成功时,基于所述无线充电设备使用的所述第一无线充电模式,为所述电池进行充电;以及当所述握手通信建立失败时,基于所述无线充电设备使用的所述第二无线充电模式,为所述电池进行充电。
  43. 根据权利要求28至42任一项所述的待充电设备,其中,所述待充电设备内的电池包括单电芯结构的电池和N个电芯串联结构的电池,N为大于等于2的正整数。
  44. 根据权利要求28至43任一项所述的待充电设备,其中,所述第一控制单元,还配置为当所述电池电压等于预设截止电压时,获取第一预设充电电流,以所述第一预设充电电流对所述电池进行恒流充电,将所述电池电压充电到第一预设限制电压;其中,所述第一预设限制电压大于等于预设截止电压;以及控制所述第一预设充电电流按照预设步长进行第K次减小,减小后得到第K预设充电电流,以所述第K预设充电电流对所述电池进行恒流充电,将所述电池电压充电到第K预设限制电压;其中,所述第K+1预设限制电压大于等于第K预设限制电压,K为大于等于1的正整数;以及在将所述电池电压充电到第N预设限制电压之后,停止对所述电池进行充电。
  45. 根据权利要求28至43任一项所述的待充电设备,其中,所述第一控制单元,还配置为当所述电池电压等于预设截止电压时,获取第一预设充电电流,以所述第一预设充电电流对所述电池进行恒流充电,将所述电池电压充电到第一预设限制电压;其中,所述第一预设限制电压大于等于预设截止电压;以及控制所述第一预设充电电流按照预设步长进行第K次减小,减小后得到第K预设充电电流,以所述第K预设充电电流对所述电池进行恒流充电,将所述电池电压充电到第K预设限制电压;其中,所述第K+1预设限制电压大于等于第K预设限制电压,K为大于等于1的正整数;以及以所述第K预设限制电压对所述电池进行恒压充电,当所述电池电流小于等于预设截止电流时,停止对所述电池进行充电。
  46. 一种无线充电设备,所述无线充电设备包括:无线充电发射单元和第二控制单元,其中,
    所述无线充电发射单元,配置为发射无线充电信号;
    所述第二控制单元,配置为在对待充电设备进行无线充电的过程中,接收所述待充电设备发送的控制指令;以及根据所述控制指令对所述无线充电设备的发射功率进行调整,以使得所述无线充电设备的发射功率满足所述待充电设备内电池需求的充电功率、以及使得所述待充电设备内无线充电接收单元的输出电流满足预设电流需求范围。
  47. 根据权利要求46所述的无线充电设备,其中,所述第二控制单元,具体配置为接收待充电设备所发送的第一控制指令;根据所述第一控制指令调整所述无线充电设备的开关管占空比,以调整所述无线充电设备的发射功率。
  48. 根据权利要求46所述的无线充电设备,其中,所述第二控制单元,具体配置为接收待充电设备所发送的第二控制指令;根据所述第二控制指令调整所述无线充电设备的工作频率,以调整所述无线充电设备的发射功率。
  49. 根据权利要求46所述的无线充电设备,其中,所述第二控制单元,具体配置为接收待充电设备所发送的第三控制指令;根据所述第三控制指令调整所述无线充电设备的发射电压,以调整所述无线充电设备的发射功率。
  50. 根据权利要求46所述的无线充电设备,其中,所述第二控制单元,具体配置为接收待充电设备所发送的第四控制指令;根据所述第四控制指令调整所述无线充电设备的开关管占空比,以调整所述无线充电设备的发射功率。
  51. 根据权利要求46所述的无线充电设备,其中,所述第二控制单元,具体配置为接收待充电设备所发送的第五控制指令;根据所述第五控制指令调整所述无线充电设备的工作频率,以调整所述无线充电设备的发射功率。
  52. 根据权利要求46所述的无线充电设备,其中,所述第二控制单元,具体配置为接收待充电设备所发送的第六控制指令;根据所述第六控制指令调整所述无线充电设备的发射电压,以调整所述无线充电设备的发射功率。
  53. 根据权利要求46至52任一项所述的无线充电设备,其中,所述无线充电设备支持第一无线充电模式和第二无线充电模式,所述无线充电设备在所述第一无线充电模式下对所述待充电设备的充电速度快于所述无线充电设备在所述第二无线充电模式下对所述待充电设备的充电速度;所述第二控制单元,还配置为基于所述待充电设备与所述无线充电设备之间的无线通信,协商使用所述第一无线充电模式或所述第二无线充电模式进行充电。
  54. 根据权利要求53所述的无线充电设备,其中,所述第二控制单元,具体配置为建立所述待充电设备与所述无线充电设备之间的握手通信;以及当所述握手通信建立成功时,控制所述无线充电设备 使用所述第一无线充电模式为所述待充电设备进行充电;以及当所述握手通信建立失败时,控制所述无线充电设备使用所述第二无线充电模式为所述待充电设备进行充电。
  55. 一种待充电设备,所述待充电设备包括:第一存储器和第一处理器;其中,
    所述第一存储器,用于存储能够在所述第一处理器上运行的计算机程序;
    所述第一处理器,用于在运行所述计算机程序时,执行如权利要求1至18任一项所述方法的步骤。
  56. 一种无线充电设备,所述无线充电设备包括:第二存储器和第二处理器;其中,
    所述第二存储器,用于存储能够在所述第二处理器上运行的计算机程序;
    所述第二处理器,用于在运行所述计算机程序时,执行如权利要求19至27任一项所述方法的步骤。
  57. 一种计算机存储介质,其中,所述计算机存储介质存储有充电控制程序,所述充电控制程序被第一处理器执行时实现如权利要求1至18任一项所述方法的步骤、或者被第二处理器执行时实现如权利要求19至27任一项所述方法的步骤。
PCT/CN2018/122656 2018-12-21 2018-12-21 充电控制方法、待充电设备、无线充电设备及存储介质 WO2020124550A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880097995.4A CN112823459B (zh) 2018-12-21 2018-12-21 充电控制方法、待充电设备、无线充电设备及存储介质
EP18943979.7A EP3890142A4 (en) 2018-12-21 2018-12-21 Charging control method, device to be charged, wireless charging device and storage medium
PCT/CN2018/122656 WO2020124550A1 (zh) 2018-12-21 2018-12-21 充电控制方法、待充电设备、无线充电设备及存储介质
US17/323,676 US20210273465A1 (en) 2018-12-21 2021-05-18 Charging control method, device to-be-charged and wireless charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/122656 WO2020124550A1 (zh) 2018-12-21 2018-12-21 充电控制方法、待充电设备、无线充电设备及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/323,676 Continuation-In-Part US20210273465A1 (en) 2018-12-21 2021-05-18 Charging control method, device to-be-charged and wireless charging device

Publications (1)

Publication Number Publication Date
WO2020124550A1 true WO2020124550A1 (zh) 2020-06-25

Family

ID=71100166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122656 WO2020124550A1 (zh) 2018-12-21 2018-12-21 充电控制方法、待充电设备、无线充电设备及存储介质

Country Status (4)

Country Link
US (1) US20210273465A1 (zh)
EP (1) EP3890142A4 (zh)
CN (1) CN112823459B (zh)
WO (1) WO2020124550A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102328496B1 (ko) * 2017-04-07 2021-11-17 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 무선 충전 시스템, 장치, 방법 및 충전 대기 기기
CN113328155B (zh) * 2021-05-19 2023-12-12 上海煌潮科技有限公司 一种适用于石墨烯改性电池的超快充电方法
CN113985170A (zh) * 2021-10-26 2022-01-28 杭州电子科技大学 基于无线电能传输装置的传输效率自动测量系统及方法
CN114977370B (zh) * 2022-03-09 2023-03-14 深圳市南霸科技有限公司 一种充电系统
EP4283823A1 (en) * 2022-05-24 2023-11-29 Samsung Electronics Co., Ltd. Electronic device, wireless charging method, and nontransitory computer-readable medium
CN117526471A (zh) * 2022-07-28 2024-02-06 北京小米移动软件有限公司 应用于穿戴设备的无线充电电路及穿戴设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013717A (zh) * 2010-12-03 2011-04-13 清华大学 植入式医疗仪器用具有对位自动提示功能的无线充电方法
CN104283293A (zh) * 2014-09-29 2015-01-14 深圳市泰金田科技有限公司 谐振-移频实现汽车无线充电的方法及系统
CN104467130A (zh) * 2014-11-10 2015-03-25 深圳市兴吉胜电子有限公司 无线充电器
CN105226779A (zh) * 2015-10-19 2016-01-06 广东欧珀移动通信有限公司 无线充电设备及其控制方法和控制装置
US20160172887A1 (en) * 2014-12-10 2016-06-16 Tatung Company Charging apparatus and charging method thereof
CN106026231A (zh) * 2016-05-30 2016-10-12 广东欧珀移动通信有限公司 一种无线充电方法及装置
CN108270251A (zh) * 2016-12-30 2018-07-10 比亚迪股份有限公司 无线充电方法、装置和系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5597022B2 (ja) * 2009-05-13 2014-10-01 キヤノン株式会社 給電装置、及び制御方法
US9125663B2 (en) * 2011-11-08 2015-09-08 Olympus Corporation Treatment instrument system with thermally deformable absorbent member and slidable holding surface
KR20160104449A (ko) * 2015-02-26 2016-09-05 (주)디아이디 부하 감지 적응 무선 충전 시스템 및 방법
CN109728622A (zh) * 2016-09-21 2019-05-07 深圳市大疆创新科技有限公司 电源的充电方法、充电控制系统、充电装置及无人机
CN107317062A (zh) * 2017-06-30 2017-11-03 宁德时代新能源科技股份有限公司 电池充电方法、装置和计算机可读存储介质
CN207652058U (zh) * 2017-07-31 2018-07-24 珠海市魅族科技有限公司 一种充电装置及电子设备
CN108199438A (zh) * 2018-01-24 2018-06-22 广东小天才科技有限公司 一种无线充电方法及接收端设备
CN108448673B (zh) * 2018-03-29 2020-08-18 维沃移动通信有限公司 一种充电方法、移动终端和充电器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013717A (zh) * 2010-12-03 2011-04-13 清华大学 植入式医疗仪器用具有对位自动提示功能的无线充电方法
CN104283293A (zh) * 2014-09-29 2015-01-14 深圳市泰金田科技有限公司 谐振-移频实现汽车无线充电的方法及系统
CN104467130A (zh) * 2014-11-10 2015-03-25 深圳市兴吉胜电子有限公司 无线充电器
US20160172887A1 (en) * 2014-12-10 2016-06-16 Tatung Company Charging apparatus and charging method thereof
CN105226779A (zh) * 2015-10-19 2016-01-06 广东欧珀移动通信有限公司 无线充电设备及其控制方法和控制装置
CN106026231A (zh) * 2016-05-30 2016-10-12 广东欧珀移动通信有限公司 一种无线充电方法及装置
CN108270251A (zh) * 2016-12-30 2018-07-10 比亚迪股份有限公司 无线充电方法、装置和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3890142A4 *

Also Published As

Publication number Publication date
EP3890142A4 (en) 2021-12-29
US20210273465A1 (en) 2021-09-02
EP3890142A1 (en) 2021-10-06
CN112823459A (zh) 2021-05-18
CN112823459B (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
WO2020124550A1 (zh) 充电控制方法、待充电设备、无线充电设备及存储介质
TWI657644B (zh) 待充電裝置和充電方法
US11462931B2 (en) Charging method and charging apparatus
WO2020124588A1 (zh) 电池供电电路、待充电设备及充电控制方法
WO2020124572A1 (zh) 一种充电控制方法、装置及计算机存储介质
WO2021093704A1 (zh) 待充电设备、系统以及无线充电方法、存储介质
CN113169561B (zh) 无线充电方法、待充电设备、无线充电装置及存储介质
WO2020124582A1 (zh) 接收装置和无线充电方法
WO2020124595A1 (zh) 一种充电控制方法、装置及计算机存储介质
WO2018188006A1 (zh) 待充电设备和充电方法
RU2730547C1 (ru) Способ зарядки и зарядное устройство
WO2020206700A1 (zh) 待充电设备及充放电控制方法
US11979051B2 (en) Wireless charging methods and device to-be-charged
WO2020191540A1 (zh) 供电装置、电子设备和供电方法
WO2018068523A1 (zh) 电池管理电路和方法、均衡电路和方法以及待充电设备
WO2020124571A1 (zh) 充电装置、待充电设备、充电方法及计算机存储介质
WO2020133081A1 (zh) 充电方法和装置、待充电设备、存储介质及芯片系统
WO2020124573A1 (zh) 发射装置、接收装置、电源提供设备及无线充电方法
WO2020147127A1 (zh) 无线充电控制方法和充电控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018943979

Country of ref document: EP

Effective date: 20210629