WO2020124393A1 - 基于微流控的微泡发生芯片及其制备方法和应用 - Google Patents

基于微流控的微泡发生芯片及其制备方法和应用 Download PDF

Info

Publication number
WO2020124393A1
WO2020124393A1 PCT/CN2018/121864 CN2018121864W WO2020124393A1 WO 2020124393 A1 WO2020124393 A1 WO 2020124393A1 CN 2018121864 W CN2018121864 W CN 2018121864W WO 2020124393 A1 WO2020124393 A1 WO 2020124393A1
Authority
WO
WIPO (PCT)
Prior art keywords
microfluidic
microfluidic channel
layer
microporous structure
microbubble
Prior art date
Application number
PCT/CN2018/121864
Other languages
English (en)
French (fr)
Inventor
郑海荣
孟龙
张文俊
牛丽丽
周伟
蔡飞燕
李飞
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2018/121864 priority Critical patent/WO2020124393A1/zh
Publication of WO2020124393A1 publication Critical patent/WO2020124393A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals

Definitions

  • the present application relates to the field of microfluidic technology, and in particular, to a microbubble generating chip based on microfluidic, and a preparation method and application thereof.
  • micro-fluidic chips also called Lab-on-a-Chip
  • the analysis system has the advantages of fast analysis speed, low reagent consumption, low use cost, easy integration and automation.
  • Microfluidic chips have been widely used in the fields of chemistry, biology and medicine.
  • microbubbles In the microfluidic cavity, the formation of microbubbles is diverse, and common ones include external injection (Marmottant P, et al. Nature, 2003, 423 (6936): 153-156.), and laser induction (Zhao C, Nat .commun., 2013, 4: 2305.) and microstructure (Ahmed D, Nat.commun., 2016, 7.) and other formation methods. It is difficult to control the size of microbubbles by injecting air into the outside to form microbubbles. Laser-induced microbubbles are generated by instantaneous generation of large amounts of thermal cavitation.
  • the microstructures are micro-fluidic channels with notched microstructures on the sides. , In a semi-cylindrical shape.
  • microbubbles formed by these existing structures and methods have certain limitations, which is not conducive to further application.
  • One of the purposes of this application is to provide a microfluidic-based microbubble generating chip, which has a simple structure and forms a large number of hemispherical microbubbles without affecting the physical and chemical properties of the liquid in the microfluidic channel, which is convenient for application and can be used for Enrichment or screening of the same or different particles can also be used to study the mechanism of sonoluminescence.
  • the second objective of the present application is to provide a method for preparing the microfluidic generation microchip based on microfluidics, which has the same advantages as the microfluidic generation microchip based on microfluidics.
  • the preparation method is simple and the cost is low.
  • the third objective of the present application is to provide a microbubble generating chip based on the above microfluidic generating chip or a microfluidic generating chip based on the above microfluidic manufacturing method.
  • the fourth object of the present application is to provide a microbubble generating chip prepared by the above microfluidic based microbubble generating chip or the microfluidic based microbubble generating chip preparation method in multi-microbubble electroluminescence application.
  • a microfluidic generation microbubble generation chip including a substrate, and a microfluidic channel layer disposed opposite to the substrate, the microfluidic channel layer has a microfluidic A cavity, a microporous structure layer is provided between the substrate and the microfluidic cavity layer, the microporous structure layer has a number of micropores; the microporous structure layer is seamlessly combined with the substrate , The microfluidic channel layer is bonded to the microporous structure layer, and the microfluidic channel corresponds to the positions of several micropores.
  • the micropores of the micropore structure layer are arranged in an array
  • the diameter of the micropores arranged in the array is the same or the gradient changes in the same direction.
  • both ends of the microfluidic channel of the microfluidic channel layer are independently provided with sample ports;
  • a sample dispersion structure is further provided in the microfluidic channel of the microfluidic channel layer.
  • a positioning structure is independently provided on the microfluidic channel layer and the microporous structure layer.
  • the material of the microfluidic-based microbubble generating chip includes one of silicon material, glass quartz material, organic polymer material or paper material;
  • the material of the substrate is glass quartz material
  • the materials of the microfluidic channel layer and the microporous structure layer are independently organic polymer materials, preferably siloxane polymer materials, and more preferably PDMS materials.
  • a method for preparing the microfluidic generation microchip based on microfluidics described above includes the following steps:
  • microfluidic channel layer with microfluidic channels and the microporous structure layer with several micropores are independently prepared, and the microfluidic channel layer and the microporous structure layer are bonded to make the microfluidic
  • the control cavity channel corresponds to a number of micropore positions, and the micropore structure layer is seamlessly combined on the substrate to obtain a microbubble generating chip based on microfluidics.
  • the processing methods of the microfluidic channel layer and the microporous structure layer independently include photolithography, laser etching, template casting, or template heat
  • the pressing method is preferably a photolithography method.
  • the preparation method of the microfluidic generation microbubble generation chip includes the following steps:
  • Oxygen plasma treatment is performed on the microfluidic channel layer and the microporous structure layer independently, the microfluidic channel layer and the microporous structure layer are bonded together, and seamlessly combined on the substrate Flow control microbubble generation chip.
  • microbubble generation chip based on the above microfluidic generation microbubble generation chip or a microfluidization based microbubble generation chip preparation method described above. Application of microbial enrichment screening.
  • micro-bubble generation chip based on the above-mentioned micro-fluidic generation micro-bubble generation chip or the above-mentioned micro-fluidization based micro-bubble generation chip preparation method in multi-microbubbles sonoluminescence.
  • microfluidic microbubble generation chip structure is simple and low cost, by providing a microporous structure layer with a number of micropores under the microfluidic cavity, after the chip is filled with liquid, due to the existence of liquid surface tension, After the liquid flows through the microporous structure, a liquid-air film will be formed, so that a microbubble will be generated on each micropore, and several micropores will generate several microbubbles.
  • This structure chip does not affect the physical and chemical properties of the liquid in the microfluidic cavity A large number of hemispherical microbubbles can be formed under the premise.
  • the chip using the structure of the present application can expand the limitations of its application using the traditional structure, and has a broader application prospect.
  • microbubbles Under external stimulation, multiple microbubbles generate a common vibration, which can not only achieve the mixing of microfluidics, but also adjust the input energy or frequency to change the vibration amplitude of the microbubbles, capture different particles, and achieve the enrichment of cells, microspheres or microorganisms And screening.
  • the multi-microbubbles undergo intense periodic contraction under the excitation of external signals, which can generate picosecond flashes, can realize multi-microbubbles sonoluminescence, and advance the research on the theoretical mechanism and application.
  • the chip of this structure can resonate multiple microbubbles at a lower input energy (input power below 15W), effectively avoiding the thermal effect of the chip.
  • FIG. 1 is a schematic structural diagram of a microbubble in a chip separation state according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of the back structure of the microfluidic channel layer in FIG. 1;
  • FIG. 3 is a plan view of a microporous structure layer according to an embodiment of this application.
  • FIG. 4 is a plan view of a microfluidic cavity layer according to an embodiment of the present application.
  • FIG. 5 is a plan view of a microbubble generating chip according to an embodiment of this application.
  • FIG. 6 is a schematic diagram of an enlarged structure of micropore arrangement of a micropore structure layer according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an enlarged structure of a micropore arrangement of a micropore structure layer according to another embodiment of the present application.
  • FIG. 8 is a schematic diagram of a sample dispersion structure according to an embodiment of this application.
  • FIG. 9 is a schematic diagram of manufacturing a microporous structure layer and a microfluidic channel layer according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the capture situation of PS beads with a diameter of 1 micrometer in the microbubble generating chip of Example 2;
  • FIG. 11 is a schematic diagram of the capture situation of PS beads with a diameter of 10 microns in the microbubble generating chip of Example 2;
  • FIG. 12 is a capture diagram of PS balls with different diameters at different positions.
  • a microfluidic generation microbubble generation chip including a substrate, and a microfluidic channel layer disposed opposite to the substrate, the microfluidic channel layer has a microfluidic cavity Channels, a microporous structure layer is provided between the substrate and the microfluidic cavity channel layer, the microporous structure layer has a number of micropores; the microporous structure layer is seamlessly combined with the substrate, the microfluidic cavity channel layer and the microporous structure The layers are bonded, and the microfluidic channels correspond to the positions of several micropores.
  • the microbubble generating chip includes a substrate 100, a microporous structure layer 200, and a microfluidic channel layer 300 in this order from bottom to top.
  • the materials of the substrate 100, the microporous structure layer 200, and the microfluidic channel layer 300 independently include, but are not limited to, silicon materials, glass quartz materials, organic polymer materials, or paper materials.
  • the material of the substrate 100 is, for example, a glass quartz material, and an exemplary substrate is a glass slide.
  • the microporous structure layer 200 is a sheet layer having a structure of a plurality of micropores 210, and the arrangement and size of the micropores are not limited, and the size of the micropores may be the same or different.
  • the preparation method of the microporous structure layer is not limited, and conventional processing methods in the field of microfluidic chips can be used.
  • the material of the microporous structure layer is not limited.
  • the material of the microporous structure layer is, for example, an organic polymer material, which may be a siloxane polymer material.
  • An exemplary material of the microporous structure layer is PDMS. (Polydimethylsiloxane, polydimethylsiloxane).
  • the microfluidic channel layer 300 is a layer with a microfluidic channel 310 structure, and the shape and size of the microfluidic channel are not limited.
  • the microfluidic channel is configured to pass liquid, which may be water or PBS buffer , Blood or other liquid to be tested.
  • the preparation method of the microfluidic cavity layer is not limited, and conventional processing methods in the field of microfluidic chips can be used.
  • the material of the microfluidic channel layer is not limited.
  • the material of the microfluidic channel layer is, for example, an organic polymer material, and the material of an exemplary microfluidic channel layer is PDMS (poly two Methylsiloxane, polydimethylsiloxane).
  • the microfluidic channel layer is bonded to the microporous structure layer, and the bonding method is not limited.
  • the conventional bonding method in the field of microfluidic chips can be used, such as thermal bonding, anodic bonding, or low temperature bonding.
  • the microfluidic channel corresponds to the position of several micropores, the alignment during bonding makes several micropore structures correspond to the microfluidic channel structure, that is, several micropores fall within the range of the microfluidic channel, so that the liquid flows from The microchannel can be covered when the cavity flows through.
  • micro-porous structure layer is seamlessly combined with the substrate. Seamless bonding means that the micro-porous structure layer and the substrate are completely bonded. There is no gap or air between the two layers, and finally a micro-bubble generating chip is formed.
  • both ends of the microfluidic channel of the microfluidic channel layer are independently provided with sample ports 320.
  • This application is based on a microfluidic microbubble generation chip.
  • a microporous structure layer with a number of micropores under the microfluidic cavity By providing a microporous structure layer with a number of micropores under the microfluidic cavity, after the chip passes through the liquid, the liquid flows through the microporous structure due to the presence of the surface tension of the liquid Afterwards, a liquid-air film will be formed, so that a microbubble will be generated on each micropore, and several micropores will generate several microbubbles.
  • This structure chip can form a large amount without affecting the physical and chemical properties of the liquid in the microfluidic channel Hemispherical microbubble is a micro-multi-microbubble synchronous generating device with simple structure. Such a microbubble generating chip is beneficial to expand its application.
  • the micro-bubble generating chip of the present application has a simple structure and low cost, low input energy, and the input power is generally below 15W to resonate multiple micro-bubbles, effectively avoiding the thermal effect of the chip.
  • the micropores of the micropore structure layer are arranged in an array.
  • Array arrangement refers to the regular arrangement of microbubbles.
  • the size of these microbubbles can be the same or different.
  • Arranged in an array structure can realize high-throughput and large-scale capture of particles, especially the gradient array structure can achieve different particles to be captured at different positions.
  • the micropores arranged in the array have the same diameter, that is, an array of microbubbles of equal diameter.
  • An exemplary microwell array has two adjacent rows of microwells in a staggered arrangement.
  • the diameter of the micropores arranged in the array changes in a gradient along the same direction, and the same direction may be the length direction (X direction) where the plane of the micropore structure layer is located, or micropores.
  • the gradient change can increase or decrease the gradient, that is, a gradient microbubble array with a larger or smaller diameter.
  • the same particle can be captured when the micropore array is of equal diameter, and the function of capturing and screening different particles can be achieved when the micropore array is of gradient diameter.
  • the microfluidic channel layer of the microfluidic channel layer 300 is further provided with a sample dispersion structure 330.
  • the sample dispersion structure is integrated during the preparation of the microfluidic channel layer.
  • the sample dispersion structure is arranged in the cavity near the sample port.
  • the shape of the sample dispersion structure is not limited, as long as the liquid enters the cavity from the sample port. The shunt effect is sufficient.
  • the substances in the liquid are evenly distributed in the microfluidic channel.
  • the microfluidic channel layer 300 and the microporous structure layer 200 are independently provided with positioning structures 340.
  • the positioning structure is independently set on the microfluidic cavity layer and the micropore structure layer. By directly aligning the positioning structure, that is, Accurate bonding can be achieved so that the positions of several micropores correspond to the structure of the microfluidic cavity, and several micropores fall within the range of the microfluidic cavity.
  • An exemplary microbubbles generation chip based on microfluidics includes, from bottom to top, a substrate, a microporous structure layer and a microfluidic channel layer, the microporous structure layer has a number of micropores arranged in an array, The micropore diameter is the same or the gradient changes in the same direction.
  • the microfluidic channel layer is provided with a microfluidic channel, both ends of the microfluidic channel are independently provided with a sample port, and a sample is also provided in the microfluidic channel Decentralized structure, the microfluidic channel layer and the microporous structure layer are independently provided with positioning structures, and the microfluidic channel of the microfluidic channel layer corresponds to several micropore positions of the microporous structure layer through the positioning structure Bonding, the microporous structure layer is seamlessly combined with the substrate.
  • the sample to be tested When in use, the sample to be tested is injected into the microfluidic cavity through a sample port through a hose through a hose.
  • the sample to be tested flows through the micropore array after passing through the sample dispersion structure. Due to the surface tension of the liquid, air-liquid is formed at the micropore structure
  • the membrane can also be filled with other gases in advance to evacuate the air at the structure. Under the excitation of external ultrasound, the microbubbles generate a common vibration, thereby generating a microfluidic field.
  • the microfluidic can be used to directly infect the organisms in the cavity.
  • Contact and non-damage control and screening can control the magnitude of the force by adjusting the input signal size, and control the amplitude of microbubbles vibration, so as to achieve the enrichment and screening of cells, microspheres or microorganisms, and microfluidic mixing.
  • Applications in fields such as biochips due to the periodic rapid relaxation motion on the surface of the microbubbles, the microbubbles will emit picosecond flashes, which can be used to study the mechanism of multiple microbubble sonoluminescence.
  • a method for preparing a microfluidic generation microbubble generation chip comprising the following steps: independently preparing a microfluidic channel layer having a microfluidic channel and having several microfluidic channels The microporous structure layer of the hole, the microfluidic channel layer and the microporous structure layer are bonded, so that the microfluidic channel corresponds to a number of micropore positions, and the microporous structure layer is seamlessly combined on the substrate to obtain Microfluidic generation chip based on microfluidic.
  • the manufacturing methods of the microfluidic channel layer and the microporous structure layer include, but are not limited to, photolithography, laser etching, template casting, or template hot pressing, and an example is photolithography.
  • photolithography e.g., photolithography
  • the use of soft lithography to process microporous structures to generate microbubbles is more convenient than other existing methods, and the size and location of microbubbles can be designed according to needs.
  • the bonding method is not limited, and thermal bonding, anodic bonding, or low-temperature bonding can be used.
  • the preparation method of the microbubble generating chip of the present application is simple, low-cost and effective.
  • an exemplary method includes: spin-coating a photoresist on a substrate and masking after curing After exposure under the film plate, the designed pattern can be left after development, pour PDMS into the base material forming the pattern structure, and then remove the bond after curing.
  • the principle of exposure and development is: the area irradiated by ultraviolet light, the cross-linking reaction occurs inside the photoresist, which is the illuminated area; the cross-linking reaction does not occur inside the photoresist, so that the cured area of the illuminated area is much greater than the unexposed area After the developer is soaked and cleaned, the area exposed to light remains and other areas are dissolved.
  • An example of the substrate is a silicon wafer.
  • a method for preparing a microfluidic generation microbubble generation chip includes the following steps:
  • Oxygen plasma treatment is performed on the microfluidic channel layer and the microporous structure layer independently, the microfluidic channel layer and the microporous structure layer are bonded together, and seamlessly combined on the substrate Flow control microbubble generation chip.
  • a micro-bubble generating chip based on the above-mentioned micro-fluidic generating chip or a micro-bubble generating chip based on the preparation method of the micro-fluidic based micro-fluid generating chip.
  • microbubbles After the liquid flows through several micropores, multiple microbubbles are formed, and the microbubbles are hemispherical. Under the excitation of an external piezoelectric transducer, the microbubbles vibrate to generate a microflow field, and the generated flow field is symmetrical. Symmetrical vortices are available For liquid mixing, when the two liquids flow into the microfluidic channel, the two liquids are fully mixed under multi-microbubble resonance.
  • the vibration amplitude of microbubbles of different diameters is different. By controlling the diameter of the micropores, multiple microbubbles of different diameters can be generated. Through the vibration of multiple microbubbles, different particles (such as cells, microspheres, and microorganisms) can be captured. , To achieve the role of enrichment and screening.
  • a microbubble generation chip produced by the above microfluidic generation microbubble generation chip or the above microfluidization based microbubble generation chip preparation method. Application in luminescence.
  • the multi-microbubbles formed by the chip undergo periodic rapid relaxation movement under the action of external excitation.
  • the microbubbles vibrate more violently, and the microbubbles will emit picosecond flashes, which can be used for multi-microbubbles Sonoluminescence.
  • the glass slide is a high-transparency medical glass slide.
  • a microfluidic generation chip based on microfluidic includes a glass slide, a microporous structure layer and a microfluidic channel layer in sequence from bottom to top, and the microporous structure layer has a number of micropores arranged in an array, and the micropores The diameters are all 40 microns.
  • the microfluidic channel layer is provided with a microfluidic channel. Both ends of the microfluidic channel are independently provided with sample ports.
  • the microfluidic channel is also provided with a sample dispersion structure.
  • control cavity channel layer and the microporous structure layer are independently provided with positioning structures, and through the positioning structure, the microfluidic channel channels of the microfluidic channel layer and the micropore positions of the microporous structure layer are correspondingly bonded.
  • the structural layer is seamlessly integrated with the slide.
  • a preparation method of a micro-bubble generation chip based on micro-fluidics includes the following steps:
  • the negative glue SU-8 3025 is spin-coated at 500 rpm for 15 s and 2000 rpm for 30 s on the spin coater;
  • PDMS main agent and hardener are mixed evenly in a mass ratio of 10:1;
  • the PDMS layer of the microfluidic channel and the PDMS layer of the microporous structure are independently treated with oxygen plasma for 30s, and then the PDMS layer of the microfluidic channel and the PDMS layer of the microporous structure are bonded together (the cavity can be made by positioning the structure
  • the channels correspond to the positions of several micro-wells) and are attached to the slide glass;
  • a microfluidic generation chip based on microfluidic includes a glass slide, a microporous structure layer and a microfluidic channel layer in sequence from bottom to top, and the microporous structure layer has a number of micropores arranged in an array, and the micropores The diameter is increased from a minimum of 20 microns along the length of the microporous structure layer to a group of three with a gradient of 10 microns to 60 microns.
  • the microfluidic channel layer is provided with a microfluidic channel, both ends of the microfluidic channel
  • the sample ports are independently provided, and the sample dispersion structure is also provided in the microfluidic channel.
  • the microfluidic channel layer and the microporous structure layer are independently provided with positioning structures. The positioning structure enables the microfluidic channel layer
  • the microfluidic cavity is correspondingly bonded to several micropore positions of the micropore structure layer, and the micropore structure layer is seamlessly combined with the glass slide.
  • the preparation method of the microbubble generation chip based on microfluidic is the same as that in Example 1.
  • a microbubbles generating chip based on microfluidics includes a glass slide, a microporous structure layer and a microfluidic channel layer in order from bottom to top.
  • the microporous structure layer has a number of randomly arranged micropores and microfluids
  • the microfluidic channel is provided with a microfluidic channel, the two ends of the microfluidic channel are independently provided with sample ports, the microfluidic channel is also provided with a sample dispersion structure, a microfluidic channel layer and a microporous structure
  • Each layer is independently provided with a positioning structure, and through the positioning structure, the microfluidic channel of the microfluidic channel layer is correspondingly bonded to several micropore positions of the microporous structure layer, and the microporous structure layer is seamless with the glass slide Combine.
  • the preparation method of the microbubble generation chip based on microfluidic is the same as that in Example 1.
  • Example 1 The difference between this comparative example and Example 1 is that the microporous structure layer has a micropore with a diameter of 40 micrometers. The preparation method is adjusted accordingly.
  • microbubble generating chips of Example 2 and Comparative Example 1 were used to conduct PS (Polystyrene Polystyrene, abbreviated as PS) bead capture test.
  • PS Polystyrene Polystyrene
  • the peristaltic pump was used to inject the PS diluent into the cavity, and the ultrasonic coupling agent was used to couple the PZT and the glass slide together.
  • the signal generator input energy to stimulate the PZT to work.
  • the vibration of the PZT caused the vibration of the microbubbles due to the different diameters.
  • the second-order radiation force and acoustic microfluidics of the particles at different diameters of microbubbles are different, so PS balls of different diameters can be captured at different positions, so as to achieve screening.
  • the capture of the PS beads with a diameter of 1 micrometer in the gradient microbubble array structure of Example 2 is shown in FIG. 10, as can be seen from FIG. 10, the PS beads are mainly captured at the microbubble diameter of 20 micrometers.
  • the capture of the PS beads with a diameter of 10 ⁇ m in the gradient microbubble array structure of Example 2 is shown in FIG. 11. As can be seen from FIG. 11, the PS beads are mainly captured at the microbubble diameter of 50 ⁇ m.
  • FIG. 12 is a capture diagram of PS balls with different diameters at different positions.
  • the device can be configured to screen cells of different diameters for blood detection of diseases.
  • the single microbubbles of Comparative Example 1 can only achieve single and small amount of particles.
  • PS beads with a diameter of 2 microns form a pair of symmetrical acoustic microflow fields in the microbubble of Comparative Example 1 with a diameter of 40 microns. vortex.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本申请公开了一种基于微流控的微泡发生芯片及其制备方法和应用,涉及微流控技术领域。基于微流控的微泡发生芯片包括基片,以及与所述基片相对设置的微流控腔道层,所述微流控腔道层具有微流控腔道,所述基片和所述微流控腔道层之间设有微孔结构层,所述微孔结构层具有若干微孔;所述微孔结构层与所述基片无缝结合,所述微流控腔道层与所述微孔结构层键合,微流控腔道与若干微孔位置对应。本申请的微泡发生芯片结构简单,在不影响微流控腔道内液体物理化学性质的前提下形成大量半球形微泡,拓宽了其应用,可用于相同或不同粒子的富集或筛选,也可用于研究多微孔声致发光机理。

Description

基于微流控的微泡发生芯片及其制备方法和应用 技术领域
本申请涉及微流控技术领域,具体而言,涉及一种基于微流控的微泡发生芯片及其制备方法和应用。
背景技术
随着微纳加工技术的日益成熟,微流控芯片(也称芯片实验室,Lab-on-a-Chip)发展迅速,微流控芯片是一类以微通道网络为结构特征的微型反应或分析系统,由于具有分析速度快、试剂消耗少、使用成本低、易集成和自动化等优点,微流控芯片已在化学、生物和医学等领域的研究中得到广泛的应用。
在微流控腔道内,微泡的形成方法多种多样,常见的有外部注入(Marmottant P,et al.Nature,2003,423(6936):153-156.)、激光诱导(Zhao C,Nat.commun.,2013,4:2305.)和微结构(Ahmed D,Nat.commun.,2016,7.)等形成方式。外部注入空气形成微泡难以控制微泡尺寸,激光诱导形成微泡是通过瞬间产生大量热空化产生的,微结构是微流控腔道侧面设置缺口微结构,形成的微泡是侧面微泡,呈半圆柱形。
现有的这些结构和方法形成的微泡具有一定的局限性,不利于进一步应用。
因此,所期望的是获得一种新的微泡形成方式,其能够解决上述问题中的至少一个。
有鉴于此,特提出本申请。
发明内容
本申请的目的之一在于提供一种基于微流控的微泡发生芯片,结构简单,在不影响微流控腔道内液体物理化学性质的前提下形成大量半球形微泡,便于应用,可用于相同或不同粒子的富集或筛选,也可用于研究声致发光机理。
本申请的目的之二在于提供一种上述基于微流控的微泡发生芯片的制备方法,具有与上述基于微流控的微泡发生芯片相同的优势,此外,制备方法简单且成本低廉。
本申请的目的之三在于提供一种上述基于微流控的微泡发生芯片或上述基于微流控的微泡发生芯片的制备方法制得的微泡发生芯片在微流体混合或对细胞、微球和微生物的富集筛选中的应用。
本申请的目的之四在于提供一种上述基于微流控的微泡发生芯片或上述基于微流控的微泡发生芯片的制备方法制得的微泡发生芯片在多微泡声致发光中的应用。
为了实现本申请的上述目的,特采用以下技术方案:
第一方面,提供了一种基于微流控的微泡发生芯片,包括基片,以及与所述基片相对设置的微流控腔道层,所述微流控腔道层具有微流控腔道,所述基片和所述微流控腔道层 之间设有微孔结构层,所述微孔结构层具有若干微孔;所述微孔结构层与所述基片无缝结合,所述微流控腔道层与所述微孔结构层键合,微流控腔道与若干微孔位置对应。
优选地,在本申请提供的技术方案的基础上,所述微孔结构层的微孔呈阵列排布;
优选地,阵列排布的微孔直径相同或沿同一方向梯度变化。
优选地,在本申请提供的技术方案的基础上,所述微流控腔道层的微流控腔道两端均独立地设有样品口;
优选地,所述微流控腔道层的微流控腔道中还设有样品分散结构。
优选地,在本申请提供的技术方案的基础上,所述微流控腔道层和所述微孔结构层上均独立地设有定位结构。
优选地,在本申请提供的技术方案的基础上,所述基于微流控的微泡发生芯片的材质包括硅材料、玻璃石英材料、有机高分子聚合物材料或纸质材料中的一种;
优选地,所述基片的材质为玻璃石英材料;
优选地,所述微流控腔道层和所述微孔结构层的材质均独立地为有机高分子聚合物材料,优选为硅氧烷聚合物材料,进一步优选为PDMS材料。
第二方面,提供了一种上述基于微流控的微泡发生芯片的制备方法,包括以下步骤:
独立地制备具有微流控腔道的微流控腔道层和具有若干微孔的微孔结构层,将所述微流控腔道层和所述微孔结构层进行键合,使微流控腔道与若干微孔位置对应,并将微孔结构层无缝结合在基片上,得到基于微流控的微泡发生芯片。
优选地,在本申请提供的技术方案的基础上,所述微流控腔道层和所述微孔结构层的加工方法独立地包括光刻法、激光刻蚀法、模板浇注法或模板热压法,优选为光刻法。
优选地,在本申请提供的技术方案的基础上,基于微流控的微泡发生芯片的制备方法包括以下步骤:
(a)独立地制备微流控腔道层和微孔结构层:在基材上旋涂光刻胶,利用光刻工艺在基材上获得所需要的光刻胶结构;然后将PDMS与硬化剂混合后倒入具有光刻胶结构的基材上,固化后分别得到微流控腔道层和微孔结构层;
(b)在微流控腔道层的微流控腔道两端打孔;
(c)对微流控腔道层和微孔结构层独立地进行氧等离子处理,将微流控腔道层和微孔结构层键合在一起,并无缝结合在基片上,得到基于微流控的微泡发生芯片。
第三方面,提供了一种上述基于微流控的微泡发生芯片或上述基于微流控的微泡发生芯片的制备方法制得的微泡发生芯片在微流体混合或对细胞、微球和微生物的富集筛选中的应用。
第四方面,提供了一种上述基于微流控的微泡发生芯片或上述基于微流控的微泡发生 芯片的制备方法制得的微泡发生芯片在多微泡声致发光中的应用。
与已有技术相比,本申请具有如下有益效果:
本申请基于微流控的微泡发生芯片结构简单且成本低,通过在微流控腔道下方设置具有若干微孔的微孔结构层,使芯片通入液体后,由于液体表面张力的存在,液体流过微孔结构后会形成液体-空气膜,从而在每个微孔上会产生一个微泡,若干微孔产生若干微泡,该结构芯片在不影响微流控腔道内液体物理化学性质的前提下可以形成大量半球形微泡。利用本申请结构的芯片可扩展使用传统结构其应用的局限性,具有更广阔的应用前景。在外界刺激下,多微泡产生共振动,不仅能实现微流体的混合,而且通过调整输入能量或频率可改变微泡振动幅度,对不同粒子进行捕获,实现细胞、微球或微生物的富集和筛选。多微泡在外部信号激励下发生剧烈的周期性收缩,可产生皮秒级的闪光,可实现多微泡声致发光,推进其理论机理与应用的研究。此外,该结构芯片在较低的输入能量下(输入功率15W以下)即可使多微泡产生共振,有效避免芯片的热效应。
附图说明
图1为本申请一种实施方式的微泡发生芯片分离状态下的结构示意图;
图2为图1中微流控腔道层的背面结构示意图;
图3为本申请一种实施方式的微孔结构层的平面图;
图4为本申请一种实施方式的微流控腔道层的平面图;
图5为本申请一种实施方式的微泡发生芯片的平面图;
图6为本申请一种实施方式的微孔结构层微孔排布放大结构示意图;
图7为本申请另一种实施方式的微孔结构层微孔排布放大结构示意图;
图8为本申请一种实施方式的样品分散结构示意图;
图9为本申请一种实施方式的微孔结构层和微流控腔道层制作示意图;
图10为直径为1微米的PS小球在实施例2的微泡发生芯片的捕获情况示意图;
图11为直径为10微米的PS小球在实施例2的微泡发生芯片的捕获情况示意图;
图12为不同直径的PS小球在不同位置的捕获图。
图示:100-基片;200-微孔结构层;210-微孔;300-微流控腔道层;310-微流控腔道;320-样品口;330-样品分散结构;340-定位结构。
具体实施方式
下面将结合实施例对本申请的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本申请,而不应视为限制本申请的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
根据本申请的一个方面,提供了一种基于微流控的微泡发生芯片,包括基片,以及与基片相对设置的微流控腔道层,微流控腔道层具有微流控腔道,基片和微流控腔道层之间设有微孔结构层,微孔结构层具有若干微孔;微孔结构层与基片无缝结合,微流控腔道层与微孔结构层键合,微流控腔道与若干微孔位置对应。
如图1-图5所示,微泡发生芯片由下至上依次包括基片100、微孔结构层200和微流控腔道层300。
基片100、微孔结构层200和微流控腔道层300的材质均独立地包括但不限于硅材料、玻璃石英材料、有机高分子聚合物材料或纸质材料等。
基片100的材质示例性的例如为玻璃石英材料,一种示例性的基片为载玻片。
微孔结构层200是具有若干微孔210结构的片层,对若干微孔的排布和尺寸不作限定,若干微孔大小可以相同,也可以不同。
对微孔结构层的制备方法不作限定,可采用微流控芯片领域常规加工方式进行。
对微孔结构层的材质不作限定,微孔结构层的材质示例性的例如为有机高分子聚合物材料,可为硅氧烷聚合物材料,一种示例性的微孔结构层的材质为PDMS(聚二甲基硅氧烷,polydimethylsiloxane)。
微流控腔道层300是具有微流控腔道310结构的片层,对微流控腔道的形状和尺寸不作限定,微流控腔道配置成通过液体,可以是水、PBS缓冲液、血液或其他待检测液体。
对微流控腔道层的制备方法不作限定,可采用微流控芯片领域常规加工方式进行。
对微流控腔道层的材质不作限定,微流控腔道层的材质示例性的例如为有机高分子聚合物材料,一种示例性的微流控腔道层的材质为PDMS(聚二甲基硅氧烷,polydimethylsiloxane)。
微流控腔道层与微孔结构层键合,对键合方法不作限定,可采用微流控芯片领域常规键合方法进行,例如可以采用热键合、阳极键合或低温键合等方式,微流控腔道与若干微孔位置对应,键合时对准使若干微孔结构与微流控腔道结构相对应,即若干微孔落入微流控腔道范围内,使液体从腔道流过时能够覆盖微孔。
微孔结构层与基片无缝结合,无缝结合是指微孔结构层与基片之间完全贴合,两层之间不存在空隙或者空气,最终形成微泡发生芯片。
在一种实施方式中,如图4所示,微流控腔道层的微流控腔道两端均独立地设有样品口320。
本申请基于微流控的微泡发生芯片通过在微流控腔道下方设置具有若干微孔的微孔结构层,使芯片通入液体后,由于液体表面张力的存在,液体流过微孔结构后会形成液体-空气膜,从而在每个微孔上会产生一个微泡,若干微孔产生若干微泡,该结构芯片在不影响 微流控腔道内液体物理化学性质的前提下可以形成大量半球形微泡,是一种结构简单的微型多微泡同步发生装置,这样的微泡发生芯片有利于扩展其应用。通过外界刺激(例如超声)被液体包围的空气和周围液体存在压力差,使得微泡产生稳态空化,发生共振,生成微流场,利用这一特点不仅能实现微流体的混合,而且通过调整输入能量或者输入频率来改变微泡振动幅度,可以对不同粒子进行捕获,实现细胞、微球和微生物的富集和筛选。此外,多微泡在外部信号激励下发生剧烈的周期性收缩,可产生皮秒级的闪光,可实现多微泡声致发光,推进其理论机理与应用的研究。
本申请的微泡发生芯片结构简单且成本低,输入能量低,输入功率一般在15W以下即可使多微泡产生共振,有效避免芯片的热效应。
在一种实施方式中,微孔结构层的微孔呈阵列排布。
阵列排布是指微泡的排布方式呈一定规律性。这些微泡的尺寸可以相同,也可以不同。
设置成阵列结构可实现粒子的高通量和大规模的捕获,尤其是渐变阵列结构可实现不同粒子在不同位置被捕获。
一种示例性的实施方式,如图6所示,阵列排布的微孔直径相同,也就是呈等直径的微泡阵列。
示例性的微孔阵列相邻两行微孔呈交错排列。
另一种示例性的实施方式,如图7所示,阵列排布的微孔直径沿同一方向梯度变化,同一方向可以是微孔结构层平面所在的长度方向(X方向),也可以是微孔结构层平面所在的宽度方向(Y方向),梯度变化可以梯度增加或梯度减小,也就是呈直径越来越大或越来越小的渐变型微泡阵列。
由于不同直径的微泡振动幅度不一样,微孔阵列为等直径微孔时,可实现相同粒子的捕获,微孔阵列为渐变直径微孔时,可实现不同粒子的捕获筛选等功能。
在一种实施方式中,如图8所示,微流控腔道层300的微流控腔道中还设有样品分散结构330。
样品分散结构在制备微流控腔道层时一体形成的,腔道内靠近样品口位置排布设有样品分散结构,对样品分散结构的形状不作限定,只要使液体从样品口进入腔道后起到分流作用即可。
通过设置样品分散结构,使液体中物质(例如细胞和微生物等)均匀分布在微流控腔道内。
在一种实施方式中,微流控腔道层300和微孔结构层200上均独立地设有定位结构340。
由于腔道和微孔结构在显微镜下才能看清,为了实现快速和准确键合,在微流控腔道层和微孔结构层上独立地设置定位结构,通过直接将定位结构对准,即可实现准确键合, 使若干微孔位置与微流控腔道结构对应,若干微孔落入微流控腔道范围内。
一种示例性的基于微流控的微泡发生芯片,从下到上依次包括基片、微孔结构层和微流控腔道层,微孔结构层上具有若干阵列排布的微孔,微孔直径相同或沿同一方向梯度变化,微流控腔道层上设有微流控腔道,微流控腔道两端均独立地设有样品口,微流控腔道中还设有样品分散结构,微流控腔道层和微孔结构层上均独立地设有定位结构,通过定位结构使微流控腔道层的微流控腔道与微孔结构层的若干微孔位置对应键合,微孔结构层与基片无缝结合。
使用时,待测样品用注射器通过软管经样品口注入微流控腔道,待测样品经样品分散结构之后流过微孔阵列,由于液体的表面张力,在微孔结构处形成空气-液体膜,也可以提前充入其他气体,将结构处的空气排空,在外部超声的激励下,微泡产生共振动,从而生成微流场,利用微流可以对腔道内的生物体进行无直接接触和无损伤的操控和筛选,且可通过调节输入信号大小控制作用力大小,控制微泡振动幅度,从而实现细胞、微球或微生物的富集和筛选、微流体混合,可在病理检测和生物芯片等领域应用;由于微泡表面发生周期性快速舒张运动,微泡会迸发出皮秒级的闪光,可用于多微泡声致发光机理研究。
根据本申请的第二个方面,提供了一种基于微流控的微泡发生芯片的制备方法,包括以下步骤:独立地制备具有微流控腔道的微流控腔道层和具有若干微孔的微孔结构层,将微流控腔道层和微孔结构层进行键合,使微流控腔道与若干微孔位置对应,并将微孔结构层无缝结合在基片上,得到基于微流控的微泡发生芯片。
微流控腔道层和微孔结构层的制作方法包括但不限定于光刻法、激光刻蚀法、模板浇注法或模板热压法,示例性的例如为光刻法。利用软光刻技术加工微孔结构产生微泡比现有的其他方法更方便,且微泡大小和位置可根据需要设计。
对键合的方式不作限定,可以采用热键合、阳极键合或低温键合等方式。
本申请微泡发生芯片的制备方法简单、成本低廉且有效。
图9为一种实施方式的微孔结构层和微流控腔道层制作示意图,如图9所示,一种示例性的方法包括:在基材上旋涂光刻胶,固化后在掩膜版下进行曝光,显影后就能留下设计好的图形,将PDMS倒入形成图形结构的基材中,固化后揭下键合即可。
曝光显影原理为:受紫外光照射的区域,光刻胶内部发生交联反应,为受到光照区域;光刻胶内部不发生交联反应,从而使得受光照的区域固化程度远大于未受到光照区域,在显影液浸泡清洗后,受到光照的区域保留下来,其他区域被溶解。
基材示例性的例如为硅片。
在一种实施方式中,基于微流控的微泡发生芯片的制备方法包括以下步骤:
(a)独立地制备微流控腔道层和微孔结构层:在基材上旋涂光刻胶,利用光刻工艺在 基材上获得所需要的光刻胶结构;然后将PDMS与硬化剂混合后倒入具有光刻胶结构的基材上,固化后分别得到微流控腔道层和微孔结构层;
(b)在微流控腔道层的微流控腔道两端打孔;
(c)对微流控腔道层和微孔结构层独立地进行氧等离子处理,将微流控腔道层和微孔结构层键合在一起,并无缝结合在基片上,得到基于微流控的微泡发生芯片。
根据本申请的第三个方面,提供了一种上述基于微流控的微泡发生芯片或上述基于微流控的微泡发生芯片的制备方法制得的微泡发生芯片在微流体混合或对细胞、微球和微生物的富集筛选中的应用。
液体流过若干微孔后,形成多微泡,且微泡为半球形,在外部压电换能器激励下微泡振动产生微流场,且产生的流场是对称的,对称涡旋可用于液体混合,当两种液体流入微流控通道内,两种液体在多微泡共振下实现充分混合。
不同直径的微泡振动幅度不一样,通过控制微孔的直径,可产生不同直径的多微泡,通过多微泡的振动,可实现对不同粒子(例如细胞、微球和微生物等)的捕获,达到富集和筛选作用。
根据本申请的第四个方面,提供了一种上述基于微流控的微泡发生芯片或上述基于微流控的微泡发生芯片的制备方法制得的微泡发生芯片在多微泡声致发光中的应用。
芯片形成的多微泡在外部激励的作用下,发生周期性快速舒张运动,在能量增加的情况下,微泡振动更为剧烈,微泡会迸发出皮秒级的闪光,可用于多微泡声致发光中。
为了进一步了解本申请,下面结合具体实施例和对比例对本申请方法和效果做进一步详细的说明。下列实施例仅用于说明本申请,而不应视为限制本申请的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
所述的载玻片为高透光医用载玻片。
实施例1
一种基于微流控的微泡发生芯片,从下到上依次包括载玻片、微孔结构层和微流控腔道层,微孔结构层上具有若干阵列排布的微孔,微孔直径均为40微米,微流控腔道层上设有微流控腔道,微流控腔道两端均独立地设有样品口,微流控腔道中还设有样品分散结构,微流控腔道层和微孔结构层上均独立地设有定位结构,通过定位结构使微流控腔道层的微流控腔道与微孔结构层的若干微孔位置对应键合,微孔结构层与载玻片无缝结合。
一种基于微流控的微泡发生芯片的制备方法,包括以下步骤:
1、分别独立地制备微流控腔道层和微孔结构层:
(1)将洁净的硅片放在95℃的热板上烘烤30min;
(2)冷却后,负胶SU-8 3025在匀胶旋涂仪上以500rpm旋涂15s、2000rpm旋涂30s;
(3)旋涂后的硅片放在95℃的热板上烘烤30min;
(4)冷却后,将含有微流控腔道结构或微孔结构的菲林片置于光刻胶区域正上方,通过光刻机对光刻胶进行曝光;
(5)在95℃的热板上烘烤15min;
(6)PDMS主剂与硬化剂以质量比10:1的比例混合均匀;
(7)倒入含有微流控腔道结构或微孔结构的硅片上,抽真空15min,除去PDMS里面的气泡;
(8)在80℃下固化1h;
(9)揭下固化后的PDMS,独立地得到微流控腔道PDMS层和微孔结构PDMS层,用孔径为0.75mm的打孔器在微流控腔道PDMS层的腔道液体入口和出口处打孔;
2、键合:
(10)将微流控腔道PDMS层和微孔结构PDMS层独立地经氧等离子处理30s,然后微流控腔道PDMS层和微孔结构PDMS层键合在一起(可通过定位结构使腔道和若干微孔位置对应),并贴合在载玻片上;
(11)放在80℃烘箱中烘烤30min,得到基于微流控的微泡发生芯片。
实施例2
一种基于微流控的微泡发生芯片,从下到上依次包括载玻片、微孔结构层和微流控腔道层,微孔结构层上具有若干阵列排布的微孔,微孔直径从最小20微米沿微孔结构层长度方向以三个为一组按10微米梯度增大至60微米,微流控腔道层上设有微流控腔道,微流控腔道两端均独立地设有样品口,微流控腔道中还设有样品分散结构,微流控腔道层和微孔结构层上均独立地设有定位结构,通过定位结构使微流控腔道层的微流控腔道与微孔结构层的若干微孔位置对应键合,微孔结构层与载玻片无缝结合。
基于微流控的微泡发生芯片的制备方法同实施例1。
实施例3
一种基于微流控的微泡发生芯片,从下到上依次包括载玻片、微孔结构层和微流控腔道层,微孔结构层上具有若干随机排布的微孔,微流控腔道层上设有微流控腔道,微流控腔道两端均独立地设有样品口,微流控腔道中还设有样品分散结构,微流控腔道层和微孔结构层上均独立地设有定位结构,通过定位结构使微流控腔道层的微流控腔道与微孔结构层的若干微孔位置对应键合,微孔结构层与载玻片无缝结合。
基于微流控的微泡发生芯片的制备方法同实施例1。
对比例1
本对比例与实施例1的区别在于,微孔结构层上具有一个微孔,微孔直径40微米。制备方法进行对应调整。
应用实施例 PS小球捕获试验
分别采用实施例2和对比例1的微泡发生芯片进行PS(聚苯乙烯Polystyrene,缩写PS)小球捕获试验,试验方法如下:
通过蠕动泵,将PS小球稀释液注入腔道,用超声耦合剂将PZT和载玻片耦合在一起,信号发生器输入能量,激励PZT工作,PZT的振动引起微泡的振动,由于不同直径的颗粒在不同的直径的微泡处受到的二阶辐射力和声微流大小不同,因此可以使得不同直径的PS小球在不同位置被捕获,从而实现筛选。
直径为1微米的PS小球在实施例2渐变型微泡阵列结构的捕获情况如图10所示,从图10可以看出,PS小球主要在微泡直径为20微米处被捕获。
直径为10微米的PS小球在实施例2渐变型微泡阵列结构的捕获情况如图11所示,从图11可以看出,PS小球主要在微泡直径50微米处被捕获。
图12为不同直径的PS小球在不同位置的捕获图。
从图12中可以看出,1μm和10μm的颗粒由于直径的区别被不同直径的微泡捕获,由于这种差异性,可将该装置配置成筛选不同直径的细胞,用于血液检测疾病。
而对比例1的单微泡只能实现单一的和少量的颗粒的筛选,直径为2微米的PS小球在对比例1微泡直径为40微米产生的声微流场中形成一对对称的涡流。
可见,本申请能实现高通量和大规模筛选。
尽管已用具体实施例来说明和描述了本申请,然而应意识到,在不背离本申请的精神和范围的情况下可以作出许多其它的更改和修改。因此,这意味着在所附权利要求中包括属于本申请范围内的所有这些变化和修改。

Claims (10)

  1. 一种基于微流控的微泡发生芯片,其特征在于,包括基片,以及与所述基片相对设置的微流控腔道层,所述微流控腔道层具有微流控腔道,所述基片和所述微流控腔道层之间设有微孔结构层,所述微孔结构层具有若干微孔;所述微孔结构层与所述基片无缝结合,所述微流控腔道层与所述微孔结构层键合,微流控腔道与若干微孔位置对应。
  2. 按照权利要求1所述的基于微流控的微泡发生芯片,其特征在于,所述微孔结构层的微孔呈阵列排布;
    优选地,阵列排布的微孔直径相同或沿同一方向梯度变化。
  3. 按照权利要求1所述的基于微流控的微泡发生芯片,其特征在于,所述微流控腔道层的微流控腔道两端均独立地设有样品口;
    优选地,所述微流控腔道层的微流控腔道中还设有样品分散结构。
  4. 按照权利要求1-3任一项所述的基于微流控的微泡发生芯片,其特征在于,所述微流控腔道层和所述微孔结构层上均独立地设有定位结构。
  5. 按照权利要求1-3任一项所述的基于微流控的微泡发生芯片,其特征在于,所述基片的材质为玻璃石英材料;
    优选地,所述微流控腔道层和所述微孔结构层的材质均独立地为有机高分子聚合物材料,优选为硅氧烷聚合物材料,进一步优选为PDMS材料。
  6. 一种权利要求1-5任一项所述的基于微流控的微泡发生芯片的制备方法,其特征在于,包括以下步骤:
    独立地制备具有微流控腔道的微流控腔道层和具有若干微孔的微孔结构层,将所述微流控腔道层和所述微孔结构层进行键合,使微流控腔道与若干微孔位置对应,并将微孔结构层无缝结合在基片上,得到基于微流控的微泡发生芯片。
  7. 权利要求6所述的基于微流控的微泡发生芯片的制备方法,其特征在于,所述微流控腔道层和所述微孔结构层的加工方法独立地包括光刻法、激光刻蚀法、模板浇注法或模板热压法,优选为光刻法。
  8. 权利要求6所述的基于微流控的微泡发生芯片的制备方法,其特征在于,包括以下步骤:
    (a)独立地制备微流控腔道层和微孔结构层:在基材上旋涂光刻胶,利用光刻工艺在基材上获得所需要的光刻胶结构;然后将PDMS与硬化剂混合后倒入具有光刻胶结构的基材上,固化后分别得到微流控腔道层和微孔结构层;
    (b)在微流控腔道层的微流控腔道两端打孔;
    (c)对微流控腔道层和微孔结构层独立地进行氧等离子处理,将微流控腔道层和微孔结构层键合在一起,并无缝结合在基片上,得到基于微流控的微泡发生芯片。
  9. 一种权利要求1-5任一项所述的基于微流控的微泡发生芯片或权利要求6-8任一项所述的基于微流控的微泡发生芯片的制备方法制得的微泡发生芯片在微流体混合或对细胞、微球和微生物的富集筛选中的应用。
  10. 一种权利要求1-5任一项所述的基于微流控的微泡发生芯片或权利要求6-8任一项所述的基于微流控的微泡发生芯片的制备方法制得的微泡发生芯片在多微泡声致发光中的应用。
PCT/CN2018/121864 2018-12-18 2018-12-18 基于微流控的微泡发生芯片及其制备方法和应用 WO2020124393A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/121864 WO2020124393A1 (zh) 2018-12-18 2018-12-18 基于微流控的微泡发生芯片及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/121864 WO2020124393A1 (zh) 2018-12-18 2018-12-18 基于微流控的微泡发生芯片及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2020124393A1 true WO2020124393A1 (zh) 2020-06-25

Family

ID=71100582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121864 WO2020124393A1 (zh) 2018-12-18 2018-12-18 基于微流控的微泡发生芯片及其制备方法和应用

Country Status (1)

Country Link
WO (1) WO2020124393A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101158694A (zh) * 2007-09-21 2008-04-09 中国科学院上海微系统与信息技术研究所 一种集成微孔膜的微流控芯片的制备方法
US8623284B2 (en) * 2009-08-03 2014-01-07 Omega Optics, Inc. Photonic crystal microarray layouts for enhanced sensitivity and specificity of label-free multiple analyte sensing, biosensing and diagnostic assay
CN106814185A (zh) * 2017-01-11 2017-06-09 东南大学 一种基于回音壁模式微腔阵列的微流控检测芯片
CN108239661A (zh) * 2016-12-23 2018-07-03 中国科学院深圳先进技术研究院 微流控装置、将物质导入细胞的系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101158694A (zh) * 2007-09-21 2008-04-09 中国科学院上海微系统与信息技术研究所 一种集成微孔膜的微流控芯片的制备方法
US8623284B2 (en) * 2009-08-03 2014-01-07 Omega Optics, Inc. Photonic crystal microarray layouts for enhanced sensitivity and specificity of label-free multiple analyte sensing, biosensing and diagnostic assay
CN108239661A (zh) * 2016-12-23 2018-07-03 中国科学院深圳先进技术研究院 微流控装置、将物质导入细胞的系统及方法
CN106814185A (zh) * 2017-01-11 2017-06-09 东南大学 一种基于回音壁模式微腔阵列的微流控检测芯片

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAO, ZHANGFENG ET AL.: "Microbubble Oscillation Induced Acoustic Micromixing in Microfluidic Device", ACTA PHYSICA SINICA, vol. 67, no. 19, 5 October 2018 (2018-10-05), XP055715861 *

Similar Documents

Publication Publication Date Title
CN111334403A (zh) 基于微流控的微泡发生芯片及其制备方法和应用
US11065616B2 (en) Methods of making microfluidic devices
CN102240534B (zh) 一种3d微混合微流控芯片的制作方法
TW201412401A (zh) 數位微流體操控裝置及操控方法
Abate et al. Functionalized glass coating for PDMS microfluidic devices
CN107824105B (zh) 一种基于移动气泡的可调节溶液浓度梯度的微混合器
Chen et al. Rapid and flexible actuation of droplets via a low-adhesive and deformable magnetically functionalized membrane
CN108212231A (zh) 一种微流宏观流体控芯片及其制备方法
WO2020124393A1 (zh) 基于微流控的微泡发生芯片及其制备方法和应用
JP2005214798A (ja) ポリマーシートの製造方法
US20190022294A1 (en) Augmentation of mass transfer using oscillation
CN104096609A (zh) 一种胶体晶体纸芯片及制备方法
JP2005262522A (ja) ポリマーシートの製造方法
CN113694974B (zh) 光热诱导气泡辅助固体表面上液滴运动装置及使用方法
CN112973986B (zh) 一种离心装置
Huang et al. ZnO/glass-based SAW tweezer for dexterous particle patterning and patterned cell culturing
KR101053772B1 (ko) 마이크로 플루이딕 칩 몰드를 제조하기 위한 성형 모듈, 이를 이용한 마이크로 플루이딕 칩 몰드 제조 방법 및 이에 의해 제조된 마이크로 플루이딕 칩 몰드
Murakami et al. Mems mixer as an example of a novel construction method of microfluidics by discrete microparts
JP4513626B2 (ja) マイクロチャネル基板作製用鋳型の作製方法
JP4622617B2 (ja) マイクロチャネル基板作製用鋳型の作製方法
CN102923643A (zh) 基于工业标准印刷电路板工艺的新型微流控芯片制作方法
Mizoi et al. Deformation of Cell Passing through Micro Slit between Micro Ridges
JP2004317128A (ja) マイクロチャンネル構造体とマイクロチップデバイス
Chen et al. Fast fabrication of a 3D prototyping microfluidic device for liquid cross-flow and droplet high-throughput generation
Sato et al. 3D sheath flow using hydrodynamic position control of the sample flow

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943965

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18943965

Country of ref document: EP

Kind code of ref document: A1