WO2020124210A1 - Ensemble anodique et cuve d'electrolyse comprenant cet ensemble anodique - Google Patents

Ensemble anodique et cuve d'electrolyse comprenant cet ensemble anodique Download PDF

Info

Publication number
WO2020124210A1
WO2020124210A1 PCT/CA2019/051798 CA2019051798W WO2020124210A1 WO 2020124210 A1 WO2020124210 A1 WO 2020124210A1 CA 2019051798 W CA2019051798 W CA 2019051798W WO 2020124210 A1 WO2020124210 A1 WO 2020124210A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
sealing bars
sealing
assembly
spill
Prior art date
Application number
PCT/CA2019/051798
Other languages
English (en)
Inventor
Steeve RENAUDIER
Yves Caratini
David Munoz
Original Assignee
Rio Tinto Alcan International Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rio Tinto Alcan International Limited filed Critical Rio Tinto Alcan International Limited
Priority to CA3122500A priority Critical patent/CA3122500A1/fr
Priority to EP19899791.8A priority patent/EP3899104A4/fr
Priority to CN201980083500.7A priority patent/CN113242916B/zh
Publication of WO2020124210A1 publication Critical patent/WO2020124210A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/12Anodes
    • C25C3/125Anodes based on carbon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/16Electric current supply devices, e.g. bus bars

Definitions

  • the present invention relates to an anode assembly and an electrolytic cell comprising this anode assembly.
  • Aluminum is conventionally produced by electrolysis in electrolytic cells according to the Hall-Héroult process.
  • Electrolytic cells conventionally comprise a steel box inside which a coating of refractory material is arranged, a cathode of carbonaceous material arranged at the bottom of the box, an electrolytic bath in which the alumina is dissolved, and a plurality of 'anode assemblies comprising at least one anode immersed in the electrolytic bath and an anode rod terminated by a multipod structure having a plurality of logs sealed in the anode.
  • the anode assembly is traditionally suspended from an anode frame via the anode rod.
  • the anodes are more particularly of the prebaked anode type formed from prebaked carbon anode blocks, that is to say baked before introduction into the electrolysis tank.
  • prebaked anode type formed from prebaked carbon anode blocks, that is to say baked before introduction into the electrolysis tank.
  • cover the anodes with a covering product, conventionally alumina and / or the electrolysis bath recovered and ground.
  • the anodes being consumed during the electrolysis reaction, the anode assemblies are therefore regularly replaced by new anode assemblies.
  • the electrolytic cells also include electrical conductors connecting the cathode to the anode frame of the next cell in order to conduct the electrolysis current from cell to cell.
  • the electrolysis cells are connected in series and traversed by an electrolysis current whose intensity can reach several hundreds of thousands of Amperes.
  • One way to increase the productivity of the electrolytic cells is to increase the intensity of the electrolytic current, which results in an increase in the heat produced within the electrolytic cells. To maintain the thermal balance of the electrolysis tanks, it is therefore necessary to dissipate this additional heat resulting from the increase in the intensity of the electrolysis current.
  • the covering product is poured on the new anode in order to constitute a continuous cover as airtight as possible.
  • the anode and avoid surfaces of the anode being in direct contact with air. Due to the high temperature prevailing in the tank near the anodes, any contact of the oxygen in the air with the carbon constituting the anode would cause oxidation of this carbon and therefore deterioration of the anode.
  • the new anode assembly 100 (on the left in the figure) is necessarily located higher than the adjacent anode assembly (s) 100 (s) (on the right in the figure) including the anode 101 is already partly consumed.
  • the covering product 103 poured onto the new anode 104 of the new anode assembly 100 also tends to pour over the adjacent partly consumed anode 101 of the adjacent anode assembly 100 and pass between the logs 105 of the multipod structure 106, or even possibly above the logs 105 and the multipod structure 106.
  • This adjacent anode 101 is thus covered by an additional covering product 103 whose thickness must in particular make it possible to protect the vertical side of new anode 104 from oxidation.
  • This additional cover product 103 comes by collapse and flow between the logs 105 to fill the clearance under the multipod structure 106 and at least partially buries the logs 105 through which part of the heat dissipation takes place.
  • the adjacent anode 101 is over-insulated. To improve the control of the thermal balance of electrolytic cells, it is therefore necessary to control the height of the covering product on all of the anodes of the electrolytic cells.
  • the present invention aims to overcome these drawbacks by proposing an anode assembly making it possible to maintain the thermal equilibrium of this electrolysis tank while increasing its productivity.
  • an anode assembly comprising an anode rod, an anode and connecting means connecting the anode rod to the anode, characterized in that the connecting means comprise two sealing bars extending along an upper face of the anode, as well as a crosspiece connecting the sealing bars to the anode rod, in which the sealing bars comprise a lower part sealed in the anode as well as an upper part extending out of the anode, and wherein the anode assembly includes two anti-spill rims extending along the sealing bars, from the top of the sealing bars to above the junction between the bars sealing and cross it.
  • this anodic assembly prevents overlapping of the sealing bars and ensures control of the height of the covering product on the surface of the anode, in particular between the two sealing bars.
  • the radiant heat fluxes from the surfaces of the sealing bars left free of covering product, and more particularly the upper faces of the sealing bars facing upwards, are kept constant due to the presence of the anti-spill edges. This ensures homogeneity of the heat dissipation over time at the surface of all the anodes of the tank. It therefore becomes possible to increase the intensity of the electrolysis current flowing through a tank equipped with this anode assembly, and therefore the productivity of this tank, while maintaining its thermal equilibrium.
  • sealing bar can partially prevent a flow of roofing product from the adjacent anode to the surface between the sealing bars.
  • the contact surfaces between the sealing bars and the carbon of the anode are greater so that such a configuration promotes an increase in the intensity of the electrolysis current and the dissipation of the heat necessary for this increase. intensity.
  • the weight of such sealing bars may prove to be too great for use in tanks if their height is too great. Therefore, minimization of the height of the sealing bars is preferable. Sealing bars of low height have an increased probability of being buried by the covering product spilled on the adjacent new anode. They are then insulated and can no longer participate in the necessary and desired heat dissipation.
  • Such a minimization of the height of the sealing bars also allows an increase in the height of the anodes of the same differential and therefore greater durability of the anodes and better productivity.
  • Such an increase in the height of the anodes increases the height differences between a new anode and the adjacent anode and therefore the probabilities of burial of the sealing bars with the result stated above.
  • the implementation of anti-spill edges from the top of the sealing bars allows the production and use of an anode assembly having sealing bars of minimum height and weight, ensuring very good electrical conductivity conducive to the operation of the tanks under high electrical intensity and a significant and homogeneous heat dissipation capacity.
  • the sealing bars have two longitudinal edges and the anti-spill edges extend from the longitudinal edges of the sealing bars furthest from the anode rod.
  • the function of the anti-spill edges consisting in preventing the covering product from covering the upper face of the sealing bar is then optimized.
  • the anode assembly comprises two sliding walls extending above the sealing bars from the anti-spill rim and inclined towards the upper face of the anode. This is to prevent any build-up of roofing product on the upper parts of the sealing bars in case the roofing product still passes over the anti-spill edges. Instead, the roofing product slides over the sliding walls and settles on the anode. Heat dissipation by radiation from the upper faces of the sealing bars facing upwards is therefore ensured.
  • the anti-spill edges and the sliding walls also function as a heat sink.
  • the anti-spill rims extend orthogonally to the upper face of the anode.
  • the anti-spill edges include a lower longitudinal edge fixed to the upper part of the sealing bars and an upper longitudinal edge opposite the lower longitudinal edge, the upper longitudinal edge being of length at least equal to that of the edge. lower longitudinal.
  • the lower part of the sealing bars has a width at least equal to its height
  • the thermal conduction from the lower part of the sealing bars, in the anode, to their upper part, outside the anode, is effective and contributes to heat dissipation making it possible to maintain the thermal balance despite an increase in the intensity of the electrolysis current.
  • the anti-spill edges extend up above the cross-member.
  • the anti-spill rims then prevent covering of the cross member, in particular its upper face, by the covering product.
  • the crosspiece extends horizontally between the sealing bars.
  • Such an embodiment minimizes the size of the anode assemblies in the electrolysis tank.
  • the length of the junction between the sealing bar and the crosspiece is less than the length of the sealing bar.
  • the anode comprises two adjacent anode blocks and a single sealing bar per anode block.
  • the invention also relates to an electrolysis tank intended for the production of aluminum comprising at least one anode assembly having the aforementioned characteristics.
  • Figure 1 is a schematic sectional view of two adjacent anode assemblies of the state of the art
  • FIG 2 is a schematic sectional view of two adjacent anode assemblies according to an embodiment of the invention.
  • FIG 3 is a perspective view of an anode assembly according to an embodiment of the invention.
  • FIG. 2 shows an anode assembly 1 according to an embodiment of the invention.
  • the anode assembly 1 is intended to equip an electrolysis tank 2 intended for the production of aluminum according to the Hall-Héroult process.
  • the anode assembly 1 comprises an anode rod 10, an anode 20, connecting means comprising two sealing bars 30 and a crosspiece 40 connecting the anode rod 10 to the anode 20, as well as two anti-spill edges 51.
  • the anode rod 10 is intended to conduct an electrolysis current from an anode frame (not shown) of the electrolysis tank 2 to the crosspiece 40.
  • the anode rod 10 extends in a vertical direction.
  • the vertical direction Z is therefore defined as the direction in which the anode rod 10 extends.
  • the transverse direction Y is defined as the direction orthogonal to the anode rod 10 and parallel to a direction defined by the sealing bars 30.
  • the longitudinal direction X is defined as the direction orthogonal to the vertical Z and transverse Y directions.
  • the anode 20 is formed of one or more anode blocks 21 of carbon material.
  • the anode blocks 21 are intended to be immersed in an electrolytic bath 3 of the electrolysis tank 2.
  • the anode assembly 1 comprises an anode 20 formed by two adjacent anode blocks 21.
  • the anode blocks 21 have the shape of a rectangular parallelepiped.
  • the anode blocks 21 are parallel.
  • the anode blocks 21 extend longitudinally in the transverse direction Y, that is to say preferably orthogonally to the length of the tank 2 electrolysis.
  • the transverse direction Y also corresponds to the direction of circulation of the electrolysis current from cell to cell on the scale of an aluminum smelter.
  • each anode block 21 includes an upper face 210, intended to be covered by a covering product 4, and an opposite lower face 21 1, intended to be consumed in the electrolytic bath during the electrolysis reaction.
  • each anode block 21 also has four lateral faces 212 joining the lower 21 and upper 21 faces 210.
  • the connecting means comprise two sealing bars 30 and the crosspiece 40 which make it possible to electrically and mechanically connect the anode rod 10 to the anode blocks 21.
  • the anode blocks 21 are suspended from the anode rod 10 via the sealing bars 30 and the crosspiece 40, and the electrolysis current is conducted from the anode rod 10 to the anode blocks 21 via the crosspiece 40 and the electrically conductive sealing bars 30.
  • the anode assembly 1 includes two sealing bars 30.
  • Each sealing bar 30 is sealed, in particular by means of cast iron, in a recess formed in an anode block 21 and advantageously extends parallel to the longitudinal direction of the anode block 21.
  • each anode block 21 receives a single sealing bar 30, as can be seen in the figures.
  • the sealing bars 30 extend in the transverse direction Y, parallel to a longitudinal edge 213 of the anode blocks 21, preferably over a major part of the length of these anode blocks 21. It will be noted that the sealing bars 30 may preferably be arranged in the center of the upper face 210 of the anode blocks 21.
  • the sealing bars 30 have a lower part 31 which extends in the anode block 21, under the upper face 210, and an upper part 32 which extends outside the anode block 21, above the upper face 210.
  • the upper part 32 may have an upper face 320 and two lateral faces including an internal lateral face 321, anode rod side 10, and an opposite external lateral face 322. Part of the upper part 32 must not be covered by the covering product 4, in particular the upper face 320.
  • the lower part 31 is preferably wider than high, in order to increase the thermal extraction from the carbon of the anode block 21 to the upper part 32, that is to say up to the outside of the cover.
  • the sealing bars 30 have a constant cross section XZ, vertical XY and / or longitudinal YZ. According to the embodiments visible in the figures, the sealing bars 30 have the shape of a rectangular parallelepiped.
  • the crosspiece 40 has two ends 41, each fixed to one of the sealing bars 30, in particular at their upper part 32 and more precisely at their upper face 320.
  • a central part 42 of the crosspiece 40 is also fixed to the anode rod 10.
  • the crosspiece 40 extends linearly from one end 41 to the other essentially in the longitudinal direction X.
  • the crosspiece 40 is advantageously horizontal in order to limit the size of the anode assembly 1 in the tank 2 and more particularly under the ceiling of the superstructure and the casing of the tank 2, as shown in Figures 2 and 3, that is to say parallel to the plane XY, therefore orthogonal to the rod 10 anode.
  • the crosspiece 40 is in the form of a rectangular parallelepiped.
  • the length of the junction between the sealing bars 30 and the crosspiece 40 is less than the length of the sealing bars 30.
  • the anode assembly 1 comprises at least two anti-spill edges 51, in the form of a plate, each arranged on one of the sealing bars 30.
  • the anti-spill edges 51 are configured to prevent the spillage of the covering product 4 on the sealing bars 30, more particularly on the upper faces 320, and between the sealing bars 30, in particular in the clearance 5 under the crosspiece 40 when the assembly adjacent anode is changed and cover product 4 spilled at the space between the adjacent anode assemblies.
  • the anti-spill edges 51 therefore make it possible to control the height of this cover on at least a portion of the upper face 210 of the anode blocks 21 and to prevent burial of the sealing bars 30 and potentially of the crosspiece 40.
  • the anti-spill rims 51 project from the upper face 320 of the upper part 32 of the sealing bars 30, preferably along an external longitudinal edge 323 of the upper part 32 .
  • the anti-spill edges 51 may be more particularly formed of a plate whose thickness is much less than the width of the upper face of the sealing bars, in particular more than 5 times less.
  • the anti-spill edges 51 advantageously extend all along the sealing bars 30. As illustrated in FIG. 2, the anti-spill rims 51 extend longitudinally parallel to a longitudinal direction of the anode blocks 21. The anti-spill edges 51 are in particular parallel to an anode block 21 of an adjacent anode assembly. The anti-spill edges 51 are arranged orthogonally to the longitudinal edges of the electrolysis tank 2.
  • the anti-spill rims 51 can extend in the extension of the external lateral face 322 of the sealing bars 30.
  • the anti-spill rims 51 may preferably extend parallel to the anode rod 10 and especially in the vertical YZ plane.
  • the anti-spill edges 51 and the corresponding external lateral faces 322 can therefore be coplanar.
  • the anti-spill edges 51 have a lower edge 510, fixed for example by welding to the corresponding sealing bar 30, on the upper part 32, and an upper edge 51 1, opposite the lower edge 510.
  • the anti-spill edges 51 precisely their upper edges 51 1, extend at a height greater than that of the junction between the crosspiece 40 and the sealing bars 30, or even at a height equal to or greater than the junction between the crosspiece 40 and the rod 10 anode.
  • the anti-spill edges 51 extend in particular up to a height equal to or greater than that of the ends 41, or even of the central part 42 of the crosspiece 40.
  • the lower longitudinal edge 510 is preferably of length equal to or less than that of the upper longitudinal edge 51 1.
  • the anti-spill edges 51 may have a rectangular shape, when the lower and upper edges 510, 51 1 are the same length.
  • the external lateral face 322 of the sealing bars 30 as well as an external face 512 of the anti-spill edges 51 form a blocking wall preventing the covering product 4 from passing over the sealing bars 30 and the crosspiece 40 and from fill the space between the sealing bars 30. It will be noted that the external faces 512 of the two anti-spill edges 51 are opposite.
  • the anode assembly 1 can advantageously comprise two sliding walls 52 which extend above the upper parts 32 and are inclined in the direction of the anode 20, in particular in the direction of the internal lateral face 321, in order to allow the product Cover 4 to slide instead of burying the sealing bars 30 if the cover product 4 nevertheless inadvertently passes over the edge 51 anti-spill. Furthermore, these sliding walls 52 also make it possible to reinforce the mechanical strength of the anti-spill edges 51 during cleaning operations.
  • the sliding walls 52 include an upper edge 520 and a lower edge 521 situated at a height less than that of the upper edge 520.
  • the upper edge 520 can be fixed to an internal face 513 of the rim 51.
  • the lower edge 521 advantageously extends at least up to or in line with an internal longitudinal edge 324 of the upper part 32.
  • the sliding wall 52 and the anti-spill rim 51 can also act as a heat sink arranged on the sealing bars 30 in order to dissipate the heat emitted by the Joule effect due to the circulation of the electrolysis current in the tank. 2 of electrolysis.
  • the anode rod 10, the cross 40, the sealing bars 30, the flanges 51 anti-spill and the sliding walls 52 may be made of steel.
  • any other electrically conductive material other than steel, such as aluminum, could be suitable in the area above the cover, in particular for the anode rod 10 and the crosspiece 40.
  • the invention also relates to the electrolysis tank 2 intended for the production of aluminum according to the Hall-Héroult process and comprising one or more anode assemblies 1 as described above.
  • the tank 2 is rectangular in shape and preferably extends in length along the longitudinal axis X.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Microwave Tubes (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

Cet ensemble (1) anodique comprend une tige (10) anodique, une anode (20) et des moyens de liaison reliant la tige (10) anodique à l'anode (20). Les moyens de liaison comprennent deux barres (30) de scellement s'étendant le long d'une face (210) supérieure de l'anode (20), ainsi qu'une traverse (40) reliant les barres (30) de scellement à la tige (10) anodique. Les barres (30) de scellement comprennent une partie (31) inférieure scellée dans l'anode (20) ainsi qu'une partie (32) supérieure s'étendant hors de l'anode (20). L'ensemble (1) anodique comprend deux rebords (51) anti-déversement s'étendant le long des barres (30) de scellement, depuis la partie (32) supérieure des barres (30) de scellement jusqu'au-dessus de la jonction entre les barres (30) de scellement et la traverse (40).

Description

Description
Titre : Ensemble anodique et cuve d’électrolyse comprenant cet ensemble anodique
La présente invention concerne un ensemble anodique et une cuve d’électrolyse comprenant cet ensemble anodique.
L’aluminium est classiquement produit par électrolyse dans des cuves d’électrolyse selon le procédé de Hall-Héroult.
Les cuves d’électrolyse comprennent classiquement un caisson en acier à l’intérieur duquel est agencé un revêtement en matériau réfractaire, une cathode en matériau carboné agencée au fond du caisson, un bain électrolytique dans lequel est dissout l’alumine, et une pluralité d’ensembles anodiques comportant au moins une anode plongée dans le bain électrolytique ainsi qu’une tige anodique terminée par une structure multipode présentant une pluralité de rondins scellés dans l’anode. L’ensemble anodique est traditionnellement suspendu à un cadre anodique par l’intermédiaire de la tige anodique.
Les anodes sont plus particulièrement de type anodes précuites formées de blocs anodiques carbonés précuits, c’est-à-dire cuits avant introduction dans la cuve d’électrolyse. Pour éviter une oxydation spontanée du carbone des anodes au contact de l’oxygène et maintenir l’équilibre thermique de la cuve d’électrolyse, notamment une température de bain électrolytique stable aux alentours de 950°C, il est connu de recouvrir les anodes avec un produit de couverture, classiquement de l’alumine et/ou du bain d’électrolyse récupéré et broyé. Les anodes étant consommées au cours de la réaction d’électrolyse, les ensembles anodiques sont donc régulièrement remplacés par des ensembles anodiques neufs.
Les cuves d’électrolyse comprennent en outre des conducteurs électriques reliant la cathode au cadre anodique de la cuve suivante afin de conduire le courant d’électrolyse de cuve en cuve. Ainsi, les cuves d’électrolyse sont connectées en série et parcourues par un courant d’électrolyse dont l’intensité peut atteindre plusieurs centaines de milliers d’Ampère.
Pour augmenter la productivité des cuves d’électrolyse, une solution consiste à augmenter l’intensité du courant d’électrolyse, ce qui entraîne une augmentation de la chaleur produite au sein des cuves d’électrolyse. Pour maintenir l’équilibre thermique des cuves d’électrolyse, il est donc nécessaire de dissiper ce surcroît de chaleur résultant de la hausse de l’intensité du courant d’électrolyse.
Lors d’un changement d’ensemble anodique, du produit de couverture est déversé sur l’anode neuve afin de constituer une couverture continue la plus hermétique possible de l’anode et éviter que des surfaces de l’anode ne soient au contact direct de l’air. Du fait de la température élevée régnant dans la cuve à proximité des anodes, tout contact de l’oxygène de l’air avec le carbone constituant l’anode entraînerait une oxydation de ce carbone et donc une détérioration de l’anode. Comme illustré sur la figure 1 , l’ensemble anodique 100 neuf (à gauche sur la figure) est nécessairement situé plus haut que le ou les ensembles anodique(s) 100 adjacent(s) (à droite sur la figure) dont l’anode 101 est déjà en partie consommée. De ce fait, le produit de couverture 103 déversé sur l’anode neuve 104 de l’ensemble anodique 100 neuf tend également à se déverser au-dessus de l’anode 101 adjacente en partie consommée de l’ensemble anodique 100 adjacent et à passer entre les rondins 105 de la structure multipode 106, voire possiblement au-dessus des rondins 105 et de la structure multipode 106. Cette anode 101 adjacente est ainsi recouverte par un surcroît de produit 103 de couverture dont l’épaisseur doit notamment permettre de protéger le flanc vertical de l’anode neuve 104 de l’oxydation. Ce surcroît de produit 103 de couverture vient par effondrement et écoulement entre les rondins 105 combler le dégagement sous la structure multipode 106 et ensevelit au moins en partie les rondins 105 par lesquels s’opère une partie de la dissipation thermique. Par conséquent, afin de protéger les flancs verticaux de l’anode neuve 104, l’anode adjacente 101 est sur-calorifugée. Pour améliorer le contrôle de l’équilibre thermique des cuves d’électrolyse, il est donc nécessaire de contrôler la hauteur du produit de couverture sur l’ensemble des anodes des cuves d’électrolyse.
La présente invention vise à pallier ces inconvénients en proposant un ensemble anodique permettant de maintenir l’équilibre thermique de cette cuve d’électrolyse tout en augmentant sa productivité.
A cet effet, la présente invention a pour objet un ensemble anodique comprenant une tige anodique, une anode et des moyens de liaison reliant la tige anodique à l’anode, caractérisé en ce que les moyens de liaison comprennent deux barres de scellement s’étendant le long d’une face supérieure de l’anode, ainsi qu’une traverse reliant les barres de scellement à la tige anodique, dans lequel les barres de scellement comprennent une partie inférieure scellée dans l’anode ainsi qu’une partie supérieure s’étendant hors de l’anode, et dans lequel l’ensemble anodique comprend deux rebords anti-déversement s’étendant le long des barres de scellement, depuis la partie supérieure des barres de scellement jusqu’au-dessus de la jonction entre les barres de scellement et la traverse.
Ainsi, cet ensemble anodique prévient un recouvrement des barres de scellement et assure une maîtrise de la hauteur du produit de couverture sur la surface de l’anode, notamment entre les deux barres de scellement. Les flux de chaleur par rayonnement depuis les surfaces des barres de scellement laissées exemptes de produit de couverture, et plus particulièrement les faces supérieures des barres de scellement orientées vers le haut, sont maintenus constants du fait de la présence des rebords anti-déversement. Cela assure une homogénéité de la dissipation thermique dans le temps au niveau de la surface de toutes les anodes de la cuve. Il devient de ce fait possible d’augmenter l’intensité du courant d’électrolyse parcourant une cuve équipée de cet ensemble anodique, donc la productivité de cette cuve, tout en maintenant son équilibre thermique.
Plus particulièrement, un remplacement de plusieurs rondins par une barre de scellement peut permettre d’éviter en partie un écoulement de produit de couverture depuis l’anode adjacente jusqu’à la surface entre les barres de scellement. En outre, les surfaces de contacts entre les barres de scellement et le carbone de l’anode sont plus importantes de sorte qu’une telle configuration favorise une augmentation d’intensité du courant d’électrolyse et la dissipation de la chaleur nécessaire à cette augmentation d’intensité. Toutefois, le poids de telles barres de scellement peut s’avérer trop important pour une utilisation en cuve si leur hauteur est trop importante. Par conséquent, une minimisation de la hauteur des barres de scellement est préférable. Des barres de scellement de faible hauteur présentent des probabilités accrues d’être ensevelies par le produit de couverture déversé sur l’anode neuve adjacente. Elles sont alors calorifugées et ne peuvent plus participer à la dissipation de chaleur nécessaire et recherchée. Une telle minimisation de la hauteur des barres de scellement permet en outre une augmentation de la hauteur des anodes du même différentiel et donc une durabilité plus importante des anodes et une meilleure productivité. Une telle augmentation de la hauteur des anodes augmente les différences de hauteur entre une anode neuve et l’anode adjacente et donc les probabilités d’enfouissement des barres de scellement avec le résultat énoncé ci-dessus. La mise en œuvre de rebords anti-déversement depuis la partie supérieure des barres de scellement permet la réalisation et l'utilisation d’ensemble anodique ayant des barres de scellement de hauteur et poids minimisés, assurant une très bonne conductivité électrique propice à un fonctionnement des cuves sous haute intensité électrique et une capacité de dissipation thermique importante et homogène.
Selon un mode de réalisation avantageux, les barres de scellement comportent deux bords longitudinaux et les rebords anti-déversement s’étendent depuis les bords longitudinaux des barres de scellement les plus éloignés de la tige anodique.
La fonction des rebords anti-déversement consistant à empêcher le produit de couverture de recouvrir la face supérieure de la barre de scellement est alors optimisée.
Selon un mode de réalisation, l’ensemble anodique comprend deux parois de glissement s’étendant au-dessus des barres de scellement depuis le rebord anti-déversement et inclinées en direction de la face supérieure de l’anode. Cela permet d’empêcher toute accumulation de produit de couverture sur les parties supérieures des barres de scellement pour le cas où du produit de couverture passe quand même au-dessus des rebords anti-déversement. Au lieu de cela, le produit de couverture glisse sur les parois de glissement et se dépose sur l’anode. La dissipation thermique par rayonnement depuis les faces supérieures des barres de scellement orientées vers le haut est donc assurée.
Les rebords anti-déversement et les parois de glissement ont en outre une fonction de dissipateur thermique.
Selon un mode de réalisation, les rebords anti-déversement s’étendent orthogonalement à la face supérieure de l’anode.
Selon un mode de réalisation, les rebords anti-déversement comprennent un bord longitudinal inférieur fixé à la partie supérieure des barres de scellement et un bord longitudinal supérieur opposé au bord longitudinal inférieur, le bord longitudinal supérieur étant de longueur au moins égale à celle du bord longitudinal inférieur.
Selon un mode de réalisation, la partie inférieure des barres de scellement a une largeur au moins égale à sa hauteur
Ainsi, la conduction thermique depuis la partie inférieure des barres de scellement, dans l’anode, jusqu’à leur partie supérieure, en dehors de l’anode, est efficace et contribue à une dissipation thermique permettant de maintenir l’équilibre thermique en dépit d’une augmentation d’intensité du courant d’électrolyse.
Selon un mode de réalisation avantageux, les rebords anti-déversement s’étendent jusqu’au-dessus de la traverse.
Les rebords anti-déversement empêchent alors un recouvrement de la traverse, notamment sa face supérieure, par le produit de couverture.
Selon un mode de réalisation avantageux, la traverse s’étend horizontalement entre les barres de scellement.
Un tel mode de réalisation minimise l’encombrement des ensembles anodiques dans la cuve d’électrolyse.
Selon un mode de réalisation avantageux, la longueur de la jonction entre la barre de scellement et la traverse est inférieure à la longueur de la barre de scellement.
Cette jonction est plus particulièrement réalisée de manière centrée sur la longueur de la barre de scellement. Un tel mode de réalisation permet de minimiser le poids de l’ensemble anodique et facilite le déversement volontaire d’une épaisseur contrôlée de produit de couverture sur l’anode entre les barres de scellement et plus spécialement sous la tige anodique. Selon un mode de réalisation, l’anode comprend deux blocs anodiques adjacents et une unique barre de scellement par bloc anodique.
Selon un autre aspect, l’invention a aussi pour objet une cuve d’électrolyse destinée à la production d’aluminium comprenant au moins un ensemble anodique ayant les caractéristiques précitées.
D’autres caractéristiques et avantages de la présente invention ressortiront clairement de la description détaillée ci-après d’un mode de réalisation, donné à titre d’exemple non limitatif, en référence aux dessins annexés dans lesquels :
[Fig 1] La figure 1 est une vue schématique en coupe de deux ensembles anodiques adjacents de l’état de la technique,
[Fig 2] La figure 2 est une vue schématique en coupe de deux ensembles anodiques adjacents selon un mode de réalisation de l’invention,
[Fig 3] La figure 3 est une vue en perspective d’un ensemble anodique selon un mode de réalisation de l’invention.
La figure 2 montre un ensemble anodique 1 selon un mode de réalisation de l’invention. L’ensemble anodique 1 est destiné à équiper une cuve d’électrolyse 2 destinée à la production d’aluminium selon le procédé de Hall-Héroult.
L’ensemble anodique 1 comprend une tige 10 anodique, une anode 20, des moyens de liaison comprenant deux barres 30 de scellement et une traverse 40 reliant la tige 10 anodique à l’anode 20, ainsi que deux rebords 51 anti-déversement.
La tige 10 anodique est destinée à conduire un courant d’électrolyse depuis un cadre anodique (non représenté) de la cuve 2 d’électrolyse jusqu’à la traverse 40. La tige 10 anodique s’étend selon une direction verticale. Dans la présente demande, la direction verticale Z est donc définie comme la direction dans laquelle s’étend la tige 10 anodique. La direction transversale Y est définie comme la direction orthogonale à la tige 10 anodique et parallèle à une direction définie par les barres 30 de scellement. La direction longitudinale X est définie comme la direction orthogonale aux directions verticale Z et transversale Y.
L’anode 20 est formée d’un ou plusieurs blocs 21 anodiques en matériau carboné. Les blocs 21 anodiques sont destinés à être immergés dans un bain 3 électrolytique de la cuve 2 d’électrolyse. De préférence, l’ensemble 1 anodique comprend une anode 20 formée de deux blocs 21 anodiques adjacents. Comme illustré sur la figure 3, les blocs 21 anodiques ont une forme de parallélépipède rectangle. Les blocs 21 anodiques sont parallèles. Les blocs 21 anodiques s’étendent longitudinalement selon la direction transversale Y, c’est-à-dire de préférence orthogonalement à la longueur de la cuve 2 d’électrolyse. La direction transversale Y correspond aussi au sens de circulation du courant d’électrolyse de cuve en cuve à l’échelle d’une aluminerie.
Comme représenté par exemple sur la figure 3, chaque bloc 21 anodique comprend une face 210 supérieure, destinée à être couverte par un produit 4 de couverture, et une face 21 1 inférieure opposée, destinée à être consommée dans le bain électrolytique au cours de la réaction d’électrolyse. Selon les figures, chaque bloc 21 anodique présente aussi quatre faces 212 latérales joignant les faces inférieure 21 1 et supérieure 210.
Les moyens de liaison comprennent deux barres 30 de scellement et la traverse 40 qui permettent de connecter électriquement et mécaniquement la tige 10 anodique aux blocs 21 anodiques. Ainsi, les blocs 21 anodiques sont suspendus à la tige 10 anodique par l’intermédiaire des barres 30 de scellement et de la traverse 40, et le courant d’électrolyse est conduit de la tige 10 anodique aux blocs 21 anodiques via la traverse 40 et les barres 30 de scellement électriquement conductrices.
L’ensemble 1 anodique comprend deux barres 30 de scellement. Chaque barre 30 de scellement est scellée, notamment au moyen de fonte, dans un évidement formé dans un bloc 21 anodique et s’étend avantageusement de façon parallèle à la direction longitudinale du bloc 21 anodique. De préférence, chaque bloc 21 anodique reçoit une unique barre 30 de scellement, comme cela est visible sur les figures. Les barres 30 de scellement s’étendent selon la direction transversale Y, parallèlement à un bord 213 longitudinal des blocs 21 anodiques, de préférence sur une majeure partie de la longueur de ces blocs 21 anodiques. On notera que les barres 30 de scellement peuvent être préférentiellement agencées au centre de la face 210 supérieure des blocs anodiques 21.
Comme représenté sur la figure 2, les barres 30 de scellement ont une partie 31 inférieure qui s’étend dans le bloc 21 anodique, sous la face 210 supérieure, et une partie 32 supérieure qui s’étend hors du bloc 21 anodique, au-dessus de la face 210 supérieure. La partie 32 supérieure peut présenter une face 320 supérieure et deux faces latérales dont une face latérale interne 321 , côté tige 10 anodique, et une face latérale externe 322 opposée. Une partie de la partie 32 supérieure ne doit pas être recouverte par le produit 4 de couverture, notamment la face 320 supérieure.
On notera par ailleurs que la partie 31 inférieure est de préférence plus large que haute, afin d’augmenter l’extraction thermique depuis le carbone du bloc 21 anodique jusqu’à la partie 32 supérieure, c’est-à-dire jusqu’à l’extérieur de la couverture.
De préférence, les barres 30 de scellement ont une section transversale XZ, verticale XY et/ou longitudinale YZ constante. Selon les exemples de réalisation visibles sur les figures, les barres 30 de scellement ont une forme de parallélépipède rectangle. La traverse 40 présente deux extrémités 41 , chacune fixée à l’une des barres 30 de scellement, notamment à leur partie 32 supérieure et plus précisément à leur face 320 supérieure. Une partie 42 centrale de la traverse 40 est par ailleurs fixée à la tige 10 anodique. De préférence, la traverse 40 s’étend linéairement d’une extrémité 41 à l’autre essentiellement selon la direction longitudinale X. La traverse 40 est avantageusement horizontale afin de limiter l’encombrement de l’ensemble 1 anodique dans la cuve 2 et plus particulièrement sous le plafond de la superstructure et le capotage de la cuve 2, comme représenté sur les figures 2 et 3, c’est-à-dire parallèle au plan XY, donc orthogonale à la tige 10 anodique. Selon l’exemple des figures 2 et 3, la traverse 40 est a une forme de parallélépipède rectangle. Comme représenté sur la figure 3, la longueur de la jonction entre les barres 30 de scellement et la traverse 40 est inférieure à la longueur des barres 30 de scellement.
L’ensemble 1 anodique comprend au moins deux rebords 51 anti-déversement, en forme de plaque, agencés chacun sur l’une des barres 30 de scellement. Les rebords 51 antidéversement sont configurés pour empêcher le déversement du produit 4 de couverture sur les barres 30 de scellement, plus particulièrement sur les faces 320 supérieures, et entre les barres 30 de scellement, notamment dans le dégagement 5 sous traverse 40 lorsque l’ensemble anodique adjacent est changé et du produit 4 de couverture déversé au niveau de l’espace entre les ensembles anodiques adjacents. Les rebords 51 antidéversement permettent donc de contrôler la hauteur de cette couverture sur au moins une portion de la face supérieure 210 des blocs 21 anodiques et d’empêcher un enfouissement des barres 30 de scellement et potentiellement de la traverse 40.
Comme visible sur la figure 2, les rebords 51 anti-déversement s’étendent en saillie depuis la face 320 supérieure de la partie 32 supérieure des barres 30 de scellement, de préférence le long d’un bord longitudinal externe 323 de la partie 32 supérieure.
Les rebords 51 anti-déversement peuvent être plus particulièrement formés d’une plaque dont l’épaisseur est bien inférieure à la largeur de la face supérieure des barres de scellement, notamment plus de 5 fois inférieure.
Les rebords 51 anti-déversement s’étendent avantageusement tout le long des barres 30 de scellement. Comme illustré sur la figure 2, les rebords 51 anti-déversement s’étendent longitudinalement de façon parallèle à une direction longitudinale des blocs 21 anodiques. Les rebords 51 anti-déversement sont notamment parallèles à un bloc 21 anodique d’un ensemble anodique adjacent. Les rebords 51 anti-déversement sont agencés orthogonalement aux bords longitudinaux de la cuve 2 d’électrolyse.
On remarquera que les rebords 51 anti-déversement peuvent s’étendre dans le prolongement de la face latérale externe 322 des barres 30 de scellement. Les rebords 51 anti-déversement peuvent s’étendre de préférence parallèlement à la tige 10 anodique et notamment au plan vertical YZ. Les rebords 51 anti-déversement et les faces latérales externes 322 correspondantes peuvent donc être coplanaires.
Les rebords 51 anti-déversement ont un bord 510 inférieur, fixé par exemple par soudage à la barre 30 de scellement correspondante, sur la partie 32 supérieure, et un bord 51 1 supérieur, opposé au bord 510 inférieur.
Les rebords 51 anti-déversement, précisément leurs bords supérieurs 51 1 , s’étendent à une hauteur supérieure à celle de la jonction entre la traverse 40 et les barres 30 de scellement, voire à une hauteur égale ou supérieure à la jonction entre la traverse 40 et la tige 10 anodique. Ainsi, les rebords 51 anti-déversement s’étendent notamment jusqu’à une hauteur égale ou supérieure à celle des extrémités 41 , voire de la partie 42 centrale de la traverse 40.
On notera que le bord 510 longitudinal inférieur est préférentiellement de longueur égale ou inférieure à celle du bord 51 1 longitudinal supérieur. Les rebords 51 anti-déversement peuvent avoir une forme rectangulaire, quand les bords 510, 51 1 inférieur et supérieur sont de même longueur.
La face latérale externe 322 des barres 30 de scellement ainsi qu’une face externe 512 des rebords 51 anti-déversement forment une paroi de blocage empêchant le produit 4 de couverture de passer par-dessus les barres 30 de scellement et la traverse 40 et de combler l’espace entre les barres 30 de scellement. On notera que les faces 512 externes des deux rebords 51 anti-déversement sont opposées.
L’ensemble 1 anodique peut avantageusement comprendre deux parois 52 de glissement qui s’étendent au-dessus des parties 32 supérieures et sont inclinées en direction de l’anode 20, notamment en direction de la face latérale interne 321 , afin de permettre au produit 4 de couverture de glisser au lieu d’ensevelir les barres 30 de scellement si du produit 4 de couverture passe malgré tout par inadvertance par-dessus le rebord 51 antidéversement. Par ailleurs ces parois 52 de glissement permettent également de renforcer la tenue mécanique des rebords 51 anti-déversement lors des opérations de nettoyage.
Les parois 52 de glissement comprennent un bord 520 supérieur et un bord 521 inférieur situé à une hauteur inférieure à celle du bord 520 supérieur. Le bord supérieur 520 peut être fixé à une face 513 interne du rebord 51. Le bord 521 inférieur s’étend avantageusement au moins jusqu’à un bord longitudinal interne 324 de la partie 32 supérieure ou au droit de celui-ci.
La paroi 52 de glissement et le rebord 51 anti-déversement peuvent jouer en outre le rôle de dissipateur thermique agencé sur les barres 30 de scellement afin de dissiper la chaleur émise par effet Joule du fait de la circulation du courant d’électrolyse dans la cuve 2 d’électrolyse. On notera que la tige 10 anodique, la traverse 40, les barres 30 de scellement, les rebords 51 anti-déversement et les parois 52 de glissement peuvent être en acier. Néanmoins, tout autre matériau électriquement conducteur autre que l’acier, tel que l'aluminium, pourrait convenir dans la zone au-dessus de la couverture, notamment pour la tige 10 anodique et la traverse 40.
L’invention concerne aussi la cuve 2 d’électrolyse destinée à la production d’aluminium selon le procédé de Hall-Héroult et comprenant un ou plusieurs ensembles 1 anodiques tels que décrits précédemment. La cuve 2 est de forme rectangulaire et s’étend préférentiellement en longueur selon l’axe longitudinal X.
Bien entendu, l’invention n’est nullement limitée au mode de réalisation décrit ci-dessus, ce mode de réalisation n’ayant été donné qu’à titre d’exemple. Des modifications sont possibles, notamment du point de vue de la constitution des divers dispositifs ou par la substitution d’équivalents techniques, sans sortir pour autant du domaine de protection de l’invention.

Claims

Revendications
1. Ensemble (1) anodique comprenant une tige (10) anodique, une anode (20) et des moyens de liaison reliant la tige (10) anodique à l’anode (20), caractérisé en ce que les moyens de liaison comprennent deux barres (30) de scellement s’étendant le long d’une face (210) supérieure de l’anode (20), ainsi qu’une traverse (40) reliant les barres (30) de scellement à la tige (10) anodique, dans lequel les barres (30) de scellement comprennent une partie (31) inférieure scellée dans l’anode (20) ainsi qu’une partie (32) supérieure s’étendant hors de l’anode (20), et dans lequel l’ensemble (1) anodique comprend deux rebords (51) anti-déversement s’étendant le long des barres (30) de scellement, depuis la partie (32) supérieure des barres (30) de scellement jusqu’au- dessus de la jonction entre les barres (30) de scellement et la traverse (40).
2. Ensemble (1) anodique selon la revendication 1 , dans lequel les barres (30) de scellement comportent deux bords (323, 324) longitudinaux et les rebords (51) antidéversement s’étendent depuis les bords (323) longitudinaux des barres (30) de scellement les plus éloignés de la tige (10) anodique.
3. Ensemble (1) anodique selon la revendication 1 ou 2, dans lequel l’ensemble anodique (1) comprend deux parois (52) de glissement s’étendant au-dessus des barres (30) de scellement depuis le rebord (51) anti-déversement et inclinées en direction de la face (210) supérieure de l’anode (20).
4. Ensemble (1) anodique selon l’une des revendications précédentes, dans lequel les rebords (51) anti-déversement s’étendent orthogonalement à la face (210) supérieure de l’anode (20).
5. Ensemble (1) anodique selon l’une des revendications précédentes, dans lequel les rebords (51) anti-déversement comprennent un bord (510) longitudinal inférieur fixé à la partie (32) supérieure des barres (30) de scellement et un bord (51 1) longitudinal supérieur opposé au bord (510) longitudinal inférieur, le bord (51 1) longitudinal supérieur étant de longueur au moins égale à celle du bord (510) longitudinal inférieur.
6. Ensemble (1) anodique selon l’une des revendications précédentes, dans lequel la partie (31) inférieure des barres (30) de scellement a une largeur au moins égale à sa hauteur.
7. Ensemble (1) anodique selon l’une des revendications précédentes, dans lequel les rebords (51) anti-déversement s’étendent jusqu’au-dessus de la traverse (40).
8. Ensemble (1) anodique selon l’une des revendications précédentes, dans lequel la traverse (40) s’étend horizontalement entre les barres (30) de scellement.
9. Ensemble (1) anodique selon l’une des revendications précédentes, dans lequel la longueur de la jonction entre la barre (30) de scellement et la traverse (40) est inférieure à la longueur de la barre (30) de scellement.
10. Ensemble (1) anodique selon l’une des revendications précédentes, dans lequel l’anode (20) comprend deux blocs (21) anodiques adjacents et une unique barre (30) de scellement par bloc (21) anodique.
1 1. Cuve d’électrolyse destinée à la production d’aluminium comprenant au moins un ensemble (1) anodique selon l’une des revendications précédentes.
PCT/CA2019/051798 2018-12-20 2019-12-12 Ensemble anodique et cuve d'electrolyse comprenant cet ensemble anodique WO2020124210A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3122500A CA3122500A1 (fr) 2018-12-20 2019-12-12 Ensemble anodique et cuve d'electrolyse comprenant cet ensemble anodique
EP19899791.8A EP3899104A4 (fr) 2018-12-20 2019-12-12 Ensemble anodique et cuve d'electrolyse comprenant cet ensemble anodique
CN201980083500.7A CN113242916B (zh) 2018-12-20 2019-12-12 阳极组件以及包括该阳极组件的电解池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR18/73567 2018-12-20
FR1873567A FR3090700B1 (fr) 2018-12-20 2018-12-20 Ensemble anodique et cuve d’électrolyse comprenant cet ensemble anodique

Publications (1)

Publication Number Publication Date
WO2020124210A1 true WO2020124210A1 (fr) 2020-06-25

Family

ID=67107566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2019/051798 WO2020124210A1 (fr) 2018-12-20 2019-12-12 Ensemble anodique et cuve d'electrolyse comprenant cet ensemble anodique

Country Status (6)

Country Link
EP (1) EP3899104A4 (fr)
CN (1) CN113242916B (fr)
AR (1) AR117448A1 (fr)
CA (1) CA3122500A1 (fr)
FR (1) FR3090700B1 (fr)
WO (1) WO2020124210A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3121938A1 (fr) * 2021-04-16 2022-10-21 Rio Tinto Alcan International Limited Multipode et ensemble anodique

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4490233A (en) * 1982-05-18 1984-12-25 Aluminium De Grece Process for thermally insulating precalcined anodes in electrolysis cells for the production of aluminum
WO2007132081A2 (fr) * 2006-05-15 2007-11-22 E.C.L. Procede de fabrication d'anodes pour la production d'aluminium par electrolyse ignee, lesdites anodes et leur utilisation
CN106757164A (zh) * 2017-01-24 2017-05-31 贵阳铝镁设计研究院有限公司 一种铝电解槽用阳极覆盖方法和装置
CN109023427A (zh) * 2018-08-14 2018-12-18 福建省南平铝业股份有限公司 一种电解铝阳极装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4129494A (en) * 1977-05-04 1978-12-12 Norman Telfer E Electrolytic cell for electrowinning of metals
AUPQ218899A0 (en) * 1999-08-13 1999-09-02 Jakovac, Vjekoslav Anode assembly comprising separation of electrical and mechanical functions of the assembly
WO2008015158A2 (fr) * 2006-08-04 2008-02-07 Rasselstein Gmbh Procédé pour fabriquer une tôle résistante à la corrosion et façonnable
US8679303B2 (en) * 2009-11-14 2014-03-25 Airgenerate, Llc Refillable anode
FR3016899B1 (fr) * 2014-01-27 2016-01-15 Rio Tinto Alcan Int Ltd Cuve d'electrolyse destinee a la production d'aluminium et usine d'electrolyse comprenant cette cuve.
FR3016894B1 (fr) * 2014-01-27 2017-09-01 Rio Tinto Alcan Int Ltd Cuve d'electrolyse comportant un ensemble anodique contenu dans une enceinte de confinement
NZ733895A (en) * 2015-02-13 2018-09-28 Norsk Hydro As An anode for use in an electrolysis process for production of aluminium in cells of hall-heroult type, and a method for making same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4490233A (en) * 1982-05-18 1984-12-25 Aluminium De Grece Process for thermally insulating precalcined anodes in electrolysis cells for the production of aluminum
WO2007132081A2 (fr) * 2006-05-15 2007-11-22 E.C.L. Procede de fabrication d'anodes pour la production d'aluminium par electrolyse ignee, lesdites anodes et leur utilisation
CN106757164A (zh) * 2017-01-24 2017-05-31 贵阳铝镁设计研究院有限公司 一种铝电解槽用阳极覆盖方法和装置
CN109023427A (zh) * 2018-08-14 2018-12-18 福建省南平铝业股份有限公司 一种电解铝阳极装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3899104A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3121938A1 (fr) * 2021-04-16 2022-10-21 Rio Tinto Alcan International Limited Multipode et ensemble anodique

Also Published As

Publication number Publication date
FR3090700B1 (fr) 2021-01-01
CA3122500A1 (fr) 2020-06-25
AR117448A1 (es) 2021-08-04
CN113242916B (zh) 2024-07-30
EP3899104A4 (fr) 2024-07-24
FR3090700A1 (fr) 2020-06-26
EP3899104A1 (fr) 2021-10-27
CN113242916A (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
CA2559372C (fr) Element cathodique pour l'equipement d'une cellule d'electrolyse destinee a la production d'aluminium
EP3030696B1 (fr) Dispositif d' electrolyse et ensemble anodique destines a la production d'aluminium, cellule d' electrolyse et installation comportant un tel dispositif
EP2459777A1 (fr) Anode rainuree de cuve d'electrolyse
EP0167461B1 (fr) Anode carbonée à rondins partiellement rétrécis destinée aux cuves pour la production d'aluminium par électrolyse
EP3899104A1 (fr) Ensemble anodique et cuve d'electrolyse comprenant cet ensemble anodique
EP0169152B1 (fr) Bloc cathodique modulaire et cathode à faible chute de tension pour cuves d'électrolyse hall-héroult
FR2921074A1 (fr) Anode rainuree de cuve d'electrolyse
CA2935439A1 (fr) Cuve d'electrolyse comportant un dispositif de levage d'ensembles anodiques
EP3030694B1 (fr) Cuve d'electrolyse destinee a la production d'aluminium et usine d'electrolyse comprenant cette cuve
CA2496683C (fr) Procede de prechauffage d'une cuve pour la production d'aluminium par electrolyse
FR3121938A1 (fr) Multipode et ensemble anodique
FR2976593A1 (fr) Cuve d'electrolyse destinee a etre utilisee pour produire de l'aluminium
WO2015017925A1 (fr) Cuve d'électrolyse à plancher crénelé
LU83152A1 (fr) Appareil pour relier electriquement des cuves electrolytiques
WO2016128826A1 (fr) Cuve d'electrolyse
FR3016899A1 (fr) Cuve d'electrolyse destinee a la production d'aluminium et usine d'electrolyse comprenant cette cuve.
FR3028265A1 (fr) Procede de manutention d'une pluralite d'anodes destinees a la production d'aluminium par electrolyse ignee
EP3099843A1 (fr) Dispositif de stockage d'une charge au-dessus d'une cuve d'électrolyse
CA3122504A1 (fr) Ensemble anodique et procede de fabrication associe
FR3016900A1 (fr) Dispositif d'electrolyse et ensemble anodique destines a la production d'aluminium, cellule d'electrolyse et installation comportant un tel dispositif.
FR2610332A1 (fr) Elements precuits en carbone constituant les anodes des cellules de production d'aluminium par electrolyse ignee
OA17792A (fr) Cuve d'électrolyse destinée à la production d'aluminium et usine d'électrolyse comprenant cette cuve
FR2604449A1 (fr) Cathode pour les cuves d'electrolyse a diaphragme
CH396423A (fr) Cuve électrolytique pour la production d'aluminium
OA17791A (fr) Dispositif d'électrolyse et ensemble anodique destinés à la production d'aluminium, cellule d'électrolyse et installation comportant un tel dispositif

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899791

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3122500

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019899791

Country of ref document: EP

Effective date: 20210720