WO2020122624A1 - Turbine having assembly of vanes and rotor - Google Patents

Turbine having assembly of vanes and rotor Download PDF

Info

Publication number
WO2020122624A1
WO2020122624A1 PCT/KR2019/017562 KR2019017562W WO2020122624A1 WO 2020122624 A1 WO2020122624 A1 WO 2020122624A1 KR 2019017562 W KR2019017562 W KR 2019017562W WO 2020122624 A1 WO2020122624 A1 WO 2020122624A1
Authority
WO
WIPO (PCT)
Prior art keywords
vane
rotor
guide groove
fluid
turbine
Prior art date
Application number
PCT/KR2019/017562
Other languages
French (fr)
Korean (ko)
Inventor
박정훈
Original Assignee
박정훈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박정훈 filed Critical 박정훈
Publication of WO2020122624A1 publication Critical patent/WO2020122624A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/344Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/18Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present invention relates to a turbine having an assembly of vanes and rotors, and more particularly, to a turbine having an assembly of vanes and rotors having a structure in which the rotor rotates to generate rotational force due to fluid pressure.
  • Turbine is a device that converts the pressure of a working fluid, such as water, oil, gas, steam, etc. into rotational motion to perform various mechanical tasks, and is very useful for internal power conversion means of automobiles, generators, and engines.
  • a working fluid such as water, oil, gas, steam, etc.
  • the technique of rotating the blade by applying a working fluid in a tangential direction to the circumference of the propeller rotating surface is also used, but in this case, the rotation of the propeller may be disturbed due to the resistance caused by the supplied fluid.
  • a very accurate design for the inlet and outlet is required, and there is a problem in that rotation efficiency is low because inflow and outflow of fluid are not performed quickly.
  • the present invention was devised in consideration of the above points, and the structure for guiding the vanes and improving the structure by which the fluid moves by the movement of the vanes to improve the rotational efficiency of the vanes and rotors with improved rotation efficiency is improved.
  • the aim is to provide a turbine with an assembly.
  • the present invention is a body having a fluid inlet hole for the inlet and outlet of the working fluid; A rotor disposed in the interior space of the body and having a plurality of first vane guide grooves radially formed at predetermined intervals along the circumference; A rotating shaft fixed to the center of the rotor; A plurality of vanes that are one-to-one corresponding to the plurality of first vane guide grooves and are slidably fitted to enter and exit the first vane guide grooves; And a cover having a circular second vane guide groove which is formed on an inner surface and an axial hole through which the rotating shaft is fitted and guides the vane, and includes, wherein the axial hole is the second vane guide It is formed at a position off the center of the groove, and when the working fluid is supplied through the fluid entry hole, the rotor rotates and the plurality of vanes slide forward and backward along the first vane guide groove, respectively. It provides a turbine characterized in that it repeatedly protrudes outward
  • a vane arm fitted to the second vane guide groove may be provided at least at one end in the vertical direction of the vane.
  • a guide hole into which the vane arm can be fitted is formed radially, and the vane arm is fitted into the guide hole to prevent the vane from leaving the rotor.
  • a fluid receiving space adjacent to the vane and in communication with the first vane guide groove is provided in the rotor in the state where the vanes are assembled.
  • the fluid inlet hole is an arc of a predetermined length in a circumferential direction on one side of the body.
  • the turbine with the vane and rotor assembly according to the present invention has the following effects.
  • the number of parts can be reduced because the vane can be easily reciprocated in the rotor without an elastic member such as a spring. .
  • FIG. 1 is a perspective view showing the configuration of a turbine according to a preferred embodiment of the present invention.
  • FIG. 2 is a plan view of FIG. 1;
  • Figure 3 is an exploded perspective view of Figure 1;
  • Figure 4 is an internal perspective view showing the arrangement structure of the rotor in Figure 3;
  • Figure 5 is a perspective view showing the inner configuration of the cover in Figure 1;
  • FIG. 1 is a perspective view showing a configuration of a turbine according to a preferred embodiment of the present invention
  • FIG. 2 is a plan view of FIG. 1
  • FIG. 3 is an exploded perspective view of FIG. 1.
  • the turbine according to a preferred embodiment of the present invention is a ring body (1), a rotor (5) disposed inside the body (1) and the rotating shaft (4) fixed to the center, It includes a plurality of vanes 8 radially assembled at predetermined intervals along the circumference of the rotor 5 and a lid 3 for capping the upper and lower openings of the body 1.
  • the body 1 is composed of a ring-shaped frame in which a fluid inlet hole 2 for inflow and outflow of a working fluid is formed on one side.
  • the fluid inlet hole 2 is made of an elongated hole formed in an arc shape by a predetermined length in a circumferential direction on one side of the body 1.
  • the shape, number, and location of the fluid entry and exit holes 2 are not limited to those shown in the drawings, and can be variously modified.
  • the fluid inlet hole 2 may be configured as a separation type in which a portion into which the working fluid flows is formed on one side of the body 1 and a portion on which the discharged fluid is formed on the other side of the body 1.
  • the other side of the body 1 preferably the other side of the fluid inlet hole 2 with reference to the center of the body 1 is discharged by discharging to the outside of the body 1 in advance before discharging the gas
  • An air vent hole 11 for adjusting pressure may be formed.
  • the shape, number, and location of the air vent hole 11 are not limited to those shown in the drawings and can be variously modified.
  • the rotor 5 is rotatably arranged in the inner space of the body 1.
  • the rotor 5 is arranged such that its center is eccentric to one side with respect to the center of the body 1. Therefore, as shown in FIG. 4, one side of the rotor 5 (A, hereinafter referred to as a'contact portion') is disposed substantially in contact or adjacent to one inner wall of the body 1, the other of the rotor 5
  • the side (B) is spaced from the inner wall of the body (1) to form a space to be filled with fluid.
  • the rotating shaft 4 is fixed to the center of the rotor 5 and penetrates the cover 3 coupled to the body 1 and is exposed to the outside.
  • a plurality of first vane guide grooves 6 are formed at a predetermined interval along the circumference of the rotor 5.
  • Each first vane guide groove (6) is fitted with a vane (8) and arranged radially.
  • the first vane guide groove 6 is formed to a size capable of guiding the vane 8 sliding forward and backward in the radial direction of the rotor 5.
  • the plurality of vanes 8 correspond one to one to the plurality of first vane guide grooves 6 formed in the rotor 5 and are fitted into the first vane guide grooves 6 so that they can slide forward and backward to the rotor 5 Is assembled.
  • the vane 8 is formed in a substantially flat shape, and both ends of the width direction are formed to be round.
  • a vane arm 9 having a cylindrical (or elliptical column) shape that can be fitted to the second vane guide groove 10 is protruded.
  • the vane 8 slides forward and backward along the first vane guide groove 6 and repeatedly protrudes outward from the outer circumferential surface of the rotor 5, thereby substantially acting as a piston.
  • the rotor 5 is provided with a fluid receiving space 6a adjacent to the vane 8 in a state where the vane 8 is assembled and at the same time communicating with the first vane guide groove 6.
  • the fluid receiving space 6a is preferably located on the right side of the vane 8. That is, from the viewpoint of looking down the rotor 5 in FIG. 4, a plurality of vanes 8 are respectively assembled in the first vane guide groove 6, and the fluid receiving space is located on the right side of each vane 8 ( 6a) exists.
  • the fluid receiving space 6a is filled with fluid during operation of the turbine.
  • the cover 3 is configured in a disc shape to cap the upper and lower opening portions of the body 1.
  • an axis hole 3a into which the rotation shaft 4 is fitted is formed eccentrically.
  • the shaft hole 3a is formed at a position off the center of the second vane guide groove 10.
  • a circular second vane guide groove 10 is formed on the inner surface of the cover 3 to guide the movement of the vane 8.
  • the vane arm 9 is inserted into the second vane guide groove 10 so that the vane arm 9 moves along the second vane guide groove 10 when the vane 8 is moved. That is, the second vane guide groove 10 serves to guide the movement of the vane arm 9. It is preferable that a step is formed around the second vane guide groove 10 to guide the peripheral portion of the vane arm 9.
  • a guide elongated hole 7 through which a vane arm 9 is fitted is formed radially.
  • the vane arm 9 is constrained by the guide hole 7 formed in the rotor 5 to prevent the vane 8 from leaving the rotor 5.
  • the guide hole 7 is formed radially on the upper and lower plane portions of the rotor 5 and communicates with the first vane guide groove 6.
  • the vane arm 9 provided on the upper and lower ends of the vane 8 is inserted into the second vane guide groove 10 provided in the cover 3, and thus the second vane guide groove 10 Let's go along the circular path. That is, by maintaining the contact of the vane arm 9 with the second vane guide groove 10, the movement of the vane 8 rotating together with the rotor 5 is guided.
  • the vane arm (9) is constrained by the guide hole (7) to prevent the vane (8) from escaping out of the rotor (5). do.
  • a separate guide ring is additionally installed on the inner wall of the body 1 and the end of the vane 8 can be rotated in close contact with the guide ring.
  • Turbine according to a preferred embodiment of the present invention having the configuration as described above, when supplying the working fluid through the fluid inlet hole (2), the plurality of vanes (8) radially reciprocating relative to the rotor (5) to move the piston And the force is applied to the vane 8 from the working fluid, so that the rotor 5 rotates.
  • the rotor 5 is provided with a fluid receiving space 6a for adjusting the pressure balance for each vane 8, so that the vane 8 smoothly enters and exits along the first vane guide groove 6 to perform piston movement.
  • a fluid receiving space 6a for adjusting the pressure balance for each vane 8, so that the vane 8 smoothly enters and exits along the first vane guide groove 6 to perform piston movement.
  • the fluid remaining in the fluid receiving space 6a enters, for example, the contact portion A located in the first quadrant and is compressed before the vane 8, and then passes through the contact portion A.
  • the vane 8 since the pressure is lowered again after discharging the fluid when moving to the second quadrant, the vane 8 easily slides along the first vane guide groove 6 and repeatedly protrudes outward from the outer peripheral surface of the rotor 5 It can interact with fluids.
  • the present invention can be applied to various power generation devices using a fluid as an energy source, and can be used as an alternative energy source, and can be very usefully applied to engines or power conversion means of devices requiring large horsepower, such as automobiles and ships.
  • it can be applied to products such as steam turbines using solar heat, incineration, waste heat, or rotating devices such as rotating grills for camping.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Hydraulic Motors (AREA)

Abstract

The present invention relates to a turbine having an assembly of vanes and a rotor and, more specifically, to a turbine having an assembly of vanes and a rotor, the turbine having a structure in which the rotor rotates by the pressure of fluid so as to generate rotating power, and enabling a device to be simplified and improving rotational efficiency.

Description

베인 및 로터의 조립체를 구비한 터빈Turbine with vane and rotor assembly
본 출원은 2018년 12월 13일에 출원된 한국특허출원 제10-2018-0161350호와 2019년 3월 11일에 출원된 한국특허출원 제10-2019-0027498호에 기초한 우선권을 주장하며, 상기 출원들의 명세서 및 도면에 개시된 모든 내용은 본 출원에 포함된다.This application claims priority based on Korean Patent Application No. 10-2018-0161350 filed on December 13, 2018 and Korean Patent Application No. 10-2019-0027498 filed on March 11, 2019, above All content disclosed in the specification and drawings of the applications is included in the present application.
본 발명은 베인 및 로터의 조립체를 구비한 터빈에 관한 것으로서, 더욱 상세하게는 유체의 압력에 의해 로터가 회전하여 회전력을 발생시키는 구조를 가진 베인 및 로터의 조립체를 구비한 터빈에 관한 것이다.The present invention relates to a turbine having an assembly of vanes and rotors, and more particularly, to a turbine having an assembly of vanes and rotors having a structure in which the rotor rotates to generate rotational force due to fluid pressure.
터빈은 물이나 오일, 가스, 증기 등과 같은 작동유체의 압력을 회전운동으로 변환하여 각종 기계적 일을 수행하도록 하는 장치로서, 발전기를 비롯하여 자동차의 내부 동력전환수단이나 엔진 등에 매우 유용하게 사용된다.Turbine is a device that converts the pressure of a working fluid, such as water, oil, gas, steam, etc. into rotational motion to perform various mechanical tasks, and is very useful for internal power conversion means of automobiles, generators, and engines.
이러한 터빈으로는 현재 다양한 구조가 알려져 있는데, 대부분의 터빈에는 프로펠러(propeller)에 의해 유체의 압력이 회전운동으로 전환되도록 하는 구성이 널리 사용되고 있다. 그러나, 이 방식은 보통 프로펠러의 날개가 회전함에 따라 형성되는 회전면에 대하여 수직으로 유체의 유입 및 배출이 이루어지는 방식으로 동작이 되므로 회전면의 면적과 유체의 유입면적이 일치하지 않을 경우 그 효율이 현저히 떨어지는 문제가 있으며, 프로펠러를 지지하는 수단에 의해 유체의 흐름이 방해받게 되는 취약점이 있다.Various structures are currently known as such turbines. In most turbines, a configuration in which a fluid pressure is converted into a rotational motion by a propeller is widely used. However, this method usually operates in such a way that fluid flows in and out perpendicularly to the rotating surface formed as the blades of the propeller rotate, so the efficiency is significantly lowered when the area of the rotating surface and the flow area of the fluid do not match. There is a problem, and there is a vulnerability in that the flow of the fluid is disturbed by means of supporting the propeller.
대안으로, 프로펠러 회전면의 원주에 대한 접선방향으로 작동유체를 가하여 날개를 회전시키는 기술도 사용되고 있으나, 이 방식의 경우 공급되는 유체에 의한 저항으로 인해 프로펠러의 회전이 오히려 방해받는 현상이 발생할 수 있으므로 유체 유입구와 토출구에 대한 매우 정확한 설계가 요구되고, 유체의 유입 및 배출이 신속히 이루어지지 않아 회전효율이 낮은 문제가 있다.Alternatively, the technique of rotating the blade by applying a working fluid in a tangential direction to the circumference of the propeller rotating surface is also used, but in this case, the rotation of the propeller may be disturbed due to the resistance caused by the supplied fluid. A very accurate design for the inlet and outlet is required, and there is a problem in that rotation efficiency is low because inflow and outflow of fluid are not performed quickly.
본 발명은 상기와 같은 점을 고려하여 창안된 것으로서, 베인의 이동에 의해 유체가 이동하여 회전력을 발생시키고 베인을 가이드하기 위한 구조가 개선되어 장치의 간소화가 가능하고 회전 효율성이 향상된 베인 및 로터의 조립체를 구비한 터빈을 제공하는 데 그 목적이 있다.The present invention was devised in consideration of the above points, and the structure for guiding the vanes and improving the structure by which the fluid moves by the movement of the vanes to improve the rotational efficiency of the vanes and rotors with improved rotation efficiency is improved. The aim is to provide a turbine with an assembly.
상기와 같은 목적을 달성하기 위해 본 발명은 작동 유체의 유입과 토출을 위한 유체출입공이 형성된 바디; 상기 바디의 내부공간에 배치되고 둘레를 따라 정해진 간격으로 복수개의 제1 베인 가이드홈들이 방사상으로 형성된 로터; 상기 로터의 중심에 고정된 회전축; 상기 복수개의 제1 베인 가이드홈들에 일대일 대응하고 상기 제1 베인 가이드홈에 대해 출입하도록 슬라이딩 가능하게 끼워진 복수개의 베인; 및 상기 바디의 개방 부분을 캡핑하고 상기 회전축이 끼워지는 축공과 안쪽면에 형성되어 상기 베인을 가이드하는 원형의 제2 베인 가이드홈을 구비한 덮개;를 포함하고, 상기 축공은 상기 제2 베인 가이드홈의 중심으로부터 벗어난 위치에 형성되고, 상기 유체출입공을 통한 작동 유체의 공급 시, 상기 로터가 회전함과 아울러 상기 복수개의 베인이 각각 상기 제1 베인 가이드홈을 따라 전,후진 슬라이딩하여 상기 로터의 외주면 바깥쪽으로 반복적으로 돌출되는 것을 특징으로 하는 터빈을 제공한다.In order to achieve the above object, the present invention is a body having a fluid inlet hole for the inlet and outlet of the working fluid; A rotor disposed in the interior space of the body and having a plurality of first vane guide grooves radially formed at predetermined intervals along the circumference; A rotating shaft fixed to the center of the rotor; A plurality of vanes that are one-to-one corresponding to the plurality of first vane guide grooves and are slidably fitted to enter and exit the first vane guide grooves; And a cover having a circular second vane guide groove which is formed on an inner surface and an axial hole through which the rotating shaft is fitted and guides the vane, and includes, wherein the axial hole is the second vane guide It is formed at a position off the center of the groove, and when the working fluid is supplied through the fluid entry hole, the rotor rotates and the plurality of vanes slide forward and backward along the first vane guide groove, respectively. It provides a turbine characterized in that it repeatedly protrudes outward on the outer peripheral surface of the.
상기 베인의 상하방향 적어도 일단에는 상기 제2 베인 가이드홈에 끼워지는 베인암이 마련될 수 있다.A vane arm fitted to the second vane guide groove may be provided at least at one end in the vertical direction of the vane.
상기 로터에는 상기 베인암이 끼워질 수 있는 가이드장공이 방사상으로 형성되어 있고, 상기 베인암이 상기 가이드장공에 끼워져서 상기 베인이 상기 로터에서 이탈하는 것이 방지될 수 있다.In the rotor, a guide hole into which the vane arm can be fitted is formed radially, and the vane arm is fitted into the guide hole to prevent the vane from leaving the rotor.
상기 베인이 조립된 상태에서 상기 베인에 인접하고 상기 제1 베인 가이드홈과 연통되는 유체수용공간이 상기 로터에 마련되는 것이 바람직하다.It is preferable that a fluid receiving space adjacent to the vane and in communication with the first vane guide groove is provided in the rotor in the state where the vanes are assembled.
상기 유체출입공은 상기 바디의 일측에 원주 방향으로 정해진 길이만큼 호The fluid inlet hole is an arc of a predetermined length in a circumferential direction on one side of the body.
형태로 형성된 장공인 것이 바람직하다.It is preferably a long hole formed in the form.
상기 바디의 타측에 형성된 에어벤트 홀;을 더 포함할 수 있다.It may further include; an air vent hole formed on the other side of the body.
본 발명에 따른 베인 및 로터의 조립체를 구비한 터빈은 다음과 같은 효과를 가진다.The turbine with the vane and rotor assembly according to the present invention has the following effects.
첫째, 베인 및 베인암과 베인 가이드홈, 유체수용공간 등의 상호 작용에 의해 유체 압력 밸런스가 조절되므로, 스프링과 같은 탄성부재 없이도 베인을 로터에서 용이하게 왕복 이동시킬 수 있으므로 부품수를 줄일 수 있다.First, since the fluid pressure balance is adjusted by the interaction of the vane, vane arm, vane guide groove, and fluid receiving space, the number of parts can be reduced because the vane can be easily reciprocated in the rotor without an elastic member such as a spring. .
둘째, 베인이 로터 내에 구속되어 로터의 외부로 이탈되지 않으므로 고속에서도 안정적인 회전이 이루어질 수 있다.Second, since the vane is constrained within the rotor and does not deviate from the outside of the rotor, stable rotation can be achieved even at high speed.
셋째, 유체압 발생 시 저속에도 유체의 누수가 적고 압력발생에 대하여 토크변동이 적다.Third, when the fluid pressure is generated, leakage of the fluid is low even at low speed and torque fluctuation is small in relation to the pressure generation.
넷째, 경박단소형으로 제작될 수 있으므로 제작비가 적고 휴대와 이동이 편리하다.Fourth, since it can be manufactured in a compact size, it has low production cost and is convenient to carry and move.
도 1은 본 발명의 바람직한 실시예에 따른 터빈의 구성을 도시하는 사시도.1 is a perspective view showing the configuration of a turbine according to a preferred embodiment of the present invention.
도 2는 도 1의 평면도.FIG. 2 is a plan view of FIG. 1;
도 3은 도 1의 분해 사시도.Figure 3 is an exploded perspective view of Figure 1;
도 4는 도 3에서 로터의 배치 구조를 도시한 내부 사시도.Figure 4 is an internal perspective view showing the arrangement structure of the rotor in Figure 3;
도 5는 도 1에서 덮개의 안쪽 구성을 도시한 사시도.Figure 5 is a perspective view showing the inner configuration of the cover in Figure 1;
도 1은 본 발명의 바람직한 실시예에 따른 터빈의 구성을 도시하는 사시도, 도 2는 도 1의 평면도, 도 3은 도 1의 분해 사시도이다.1 is a perspective view showing a configuration of a turbine according to a preferred embodiment of the present invention, FIG. 2 is a plan view of FIG. 1, and FIG. 3 is an exploded perspective view of FIG. 1.
도 1 내지 도 3을 참조하면, 본 발명의 바람직한 실시예에 따른 터빈은 링형 바디(1)와, 바디(1)의 내부에 배치되고 중심에는 회전축(4)이 고정된 로터(5)와, 로터(5)의 둘레를 따라 정해진 간격을 두고 방사상으로 조립된 복수개의 베인(8)과, 바디(1)의 상면 및 하면 개방 부분을 캡핑하는 덮개(3)를 포함한다.1 to 3, the turbine according to a preferred embodiment of the present invention is a ring body (1), a rotor (5) disposed inside the body (1) and the rotating shaft (4) fixed to the center, It includes a plurality of vanes 8 radially assembled at predetermined intervals along the circumference of the rotor 5 and a lid 3 for capping the upper and lower openings of the body 1.
바디(1)는 작동 유체의 유입과 토출을 위한 유체출입공(2)이 일측에 형성되어 있는 링형 프레임으로 구성된다. 유체출입공(2)은 바디(1)의 일측에 원주 방향으로 정해진 길이만큼 호 형태로 형성된 장공으로 이루어진다. 유체출입공(2)의 형태 및 개수와 위치 등은 도면에 도시된 것에 한정되지 않고 다양하게 변형이 가능하다. 또한, 유체출입공(2)은 작동 유체가 유입되는 부분이 바디(1)의 일측에 형성되고 토출되는 부분이 바디(1)의 타측에 형성된 분리식으로 구성될 수도 있다.The body 1 is composed of a ring-shaped frame in which a fluid inlet hole 2 for inflow and outflow of a working fluid is formed on one side. The fluid inlet hole 2 is made of an elongated hole formed in an arc shape by a predetermined length in a circumferential direction on one side of the body 1. The shape, number, and location of the fluid entry and exit holes 2 are not limited to those shown in the drawings, and can be variously modified. In addition, the fluid inlet hole 2 may be configured as a separation type in which a portion into which the working fluid flows is formed on one side of the body 1 and a portion on which the discharged fluid is formed on the other side of the body 1.
유체가 가스인 경우 바디(1)의 타측, 바람직하게 바디(1)의 중심을 기준으로 유체출입공(2)의 반대편에는 가스를 토출하기 전에 미리 소정량 바디(1)의 외부로 배기하여 토출 압력을 조절하기 위한 에어벤트 홀(11)이 형성될 수 있다. 여기서, 에어벤트 홀(11)의 형태 및 개수와 위치 등은 도면에 도시된 것에 한정되지 않고 다양하게 변형이 가능하다.When the fluid is a gas, the other side of the body 1, preferably the other side of the fluid inlet hole 2 with reference to the center of the body 1, is discharged by discharging to the outside of the body 1 in advance before discharging the gas An air vent hole 11 for adjusting pressure may be formed. Here, the shape, number, and location of the air vent hole 11 are not limited to those shown in the drawings and can be variously modified.
로터(5)는 바디(1)의 내부공간에 회전 가능하게 배치된다. 로터(5)는 그 중심이 바디(1)의 중심에 대하여 한쪽으로 편심되게 배치된다. 따라서, 도 4에 도시된 바와 같이 로터(5)의 한쪽(A, 이하 '접점부'라고 함)은 바디(1)의 한쪽 내벽에 실질적으로 접촉 또는 인접하게 배치되고, 로터(5)의 다른쪽(B)은 바디(1)의 내벽으로부터 이격되어 유체가 채워질 수 있는 공간이 형성된다.The rotor 5 is rotatably arranged in the inner space of the body 1. The rotor 5 is arranged such that its center is eccentric to one side with respect to the center of the body 1. Therefore, as shown in FIG. 4, one side of the rotor 5 (A, hereinafter referred to as a'contact portion') is disposed substantially in contact or adjacent to one inner wall of the body 1, the other of the rotor 5 The side (B) is spaced from the inner wall of the body (1) to form a space to be filled with fluid.
회전축(4)은 로터(5)의 중심에 고정되고 바디(1)에 결합된 덮개(3)를 관통하여 바깥으로 노출된다.The rotating shaft 4 is fixed to the center of the rotor 5 and penetrates the cover 3 coupled to the body 1 and is exposed to the outside.
로터(5)에는 둘레를 따라 정해진 간격으로 복수개의 제1 베인 가이드홈(6)들이 형성되어 있다. 각각의 제1 베인 가이드홈(6)에는 베인(8)이 끼워져서 방사상으로 배치된다. 제1 베인 가이드홈(6)은 베인(8)이 로터(5)의 반경 방향으로 전,후 슬라이딩하는 이동을 가이드할 수 있는 크기로 형성된다.A plurality of first vane guide grooves 6 are formed at a predetermined interval along the circumference of the rotor 5. Each first vane guide groove (6) is fitted with a vane (8) and arranged radially. The first vane guide groove 6 is formed to a size capable of guiding the vane 8 sliding forward and backward in the radial direction of the rotor 5.
복수개의 베인(8)은 로터(5)에 형성된 복수개의 제1 베인 가이드홈(6)들에 일대일 대응하고 제1 베인 가이드홈(6)에 끼워져서 전,후 슬라이딩 가능하게 로터(5)에 조립된다. 베인(8)은 실질적으로 평판 형태로 구성되고 폭방향 양단 끝부분은 라운드지게 형성된다. 베인(8)의 상하 양단에는 제2 베인 가이드홈(10)에 끼워질 수 있는 원기둥(또는 타원기둥) 형상의 베인암(9)이 돌출 형성되어 있다. 베인(8)은 제1 베인 가이드홈(6)을 따라 전,후진 슬라이딩하여 반복적으로 로터(5)의 외주면 바깥으로 돌출되어 실질적으로 피스톤 작용을 하게 된다.The plurality of vanes 8 correspond one to one to the plurality of first vane guide grooves 6 formed in the rotor 5 and are fitted into the first vane guide grooves 6 so that they can slide forward and backward to the rotor 5 Is assembled. The vane 8 is formed in a substantially flat shape, and both ends of the width direction are formed to be round. At the upper and lower ends of the vane 8, a vane arm 9 having a cylindrical (or elliptical column) shape that can be fitted to the second vane guide groove 10 is protruded. The vane 8 slides forward and backward along the first vane guide groove 6 and repeatedly protrudes outward from the outer circumferential surface of the rotor 5, thereby substantially acting as a piston.
도 4에 나타난 바와 같이 로터(5)에는, 베인(8)이 조립된 상태에서 베인(8)에 인접하는 동시에 제1 베인 가이드홈(6)과 연통되는 유체수용공간(6a)이 마련되어 있다. 로터(5)가 시계방향으로 회전하도록 설정되는 경우 유체수용공간(6a)은 베인(8)의 오른편에 위치하는 것이 바람직하다. 즉, 도 4에서 로터(5)를 위에서 내려다 본 시점에서, 복수개의 베인(8)들이 각각 제1 베인 가이드홈(6)에 조립된 상태에서 각각의 베인(8)의 오른편에는 유체수용공간(6a)이 존재한다. 터빈의 작동 시 유체수용공간(6a)에는 유체가 채워진다. 로터(5)의 시계방향 회전시 유체수용공간(6a)에 잔류하는 유체는 베인(8)보다 먼저 접점부(A)에 진입하여 압축되었다가 접점부(A)를 지난 후에는 다시 압력이 낮아짐으로써 압력의 균형을 맞춰주는 역할을 한다. 이러한 압력 밸런스 조절 작용에 의해, 베인(8)은 원활하게 제1 베인 가이드홈(6)에서 전,후 슬라이딩하여 피스톤 운동을 수행할 수 있다.As shown in FIG. 4, the rotor 5 is provided with a fluid receiving space 6a adjacent to the vane 8 in a state where the vane 8 is assembled and at the same time communicating with the first vane guide groove 6. When the rotor 5 is set to rotate clockwise, the fluid receiving space 6a is preferably located on the right side of the vane 8. That is, from the viewpoint of looking down the rotor 5 in FIG. 4, a plurality of vanes 8 are respectively assembled in the first vane guide groove 6, and the fluid receiving space is located on the right side of each vane 8 ( 6a) exists. The fluid receiving space 6a is filled with fluid during operation of the turbine. When the rotor 5 rotates clockwise, the fluid remaining in the fluid receiving space 6a enters the contact portion A before the vane 8 and is compressed, and after passing through the contact portion A, the pressure again decreases. It serves to balance pressure. By this pressure balance adjustment action, the vane 8 can smoothly slide forward and backward in the first vane guide groove 6 to perform piston movement.
덮개(3)는 원반 형태로 구성되어 바디(1)의 상하 개방 부분을 캡핑한다. 덮개(3)에는 회전축(4)이 끼워지는 축공(3a)이 편심되게 형성되어 있다. 축공(3a)은 제2 베인 가이드홈(10)의 중심으로부터 벗어난 위치에 형성된다. 도 5에 도시된 바와 같이 덮개(3)의 안쪽면에는 베인(8)의 이동을 가이드하는 원형의 제2 베인 가이드홈(10)이 형성되어 있다. 제2 베인 가이드홈(10)에는 베인암(9)의 끝부분이 끼워져서 베인(8)의 이동시 베인암(9)이 제2 베인 가이드홈(10)을 따라 이동한다. 즉, 제2 베인 가이드홈(10)은 베인암(9)의 이동을 안내하는 작용을 한다. 제2 베인 가이드홈(10) 주변에는 단차가 형성되어 베인암(9)의 주변부를 가이드하는 것이 바람직하다.The cover 3 is configured in a disc shape to cap the upper and lower opening portions of the body 1. On the cover 3, an axis hole 3a into which the rotation shaft 4 is fitted is formed eccentrically. The shaft hole 3a is formed at a position off the center of the second vane guide groove 10. As illustrated in FIG. 5, a circular second vane guide groove 10 is formed on the inner surface of the cover 3 to guide the movement of the vane 8. The vane arm 9 is inserted into the second vane guide groove 10 so that the vane arm 9 moves along the second vane guide groove 10 when the vane 8 is moved. That is, the second vane guide groove 10 serves to guide the movement of the vane arm 9. It is preferable that a step is formed around the second vane guide groove 10 to guide the peripheral portion of the vane arm 9.
로터(5)에는 베인암(9)이 끼워져서 관통될 수 있는 가이드장공(7)이 방사상으로 형성되어 있다. 베인암(9)은 로터(5)에 형성된 가이드장공(7)에 의해 구속되어 베인(8)이 로터(5)에서 이탈하는 것을 방지한다. 가이드장공(7)은 로터(5)의 상,하 평면부분에 방사상으로 형성되고 제1 베인 가이드홈(6)과 연통된다.In the rotor 5, a guide elongated hole 7 through which a vane arm 9 is fitted is formed radially. The vane arm 9 is constrained by the guide hole 7 formed in the rotor 5 to prevent the vane 8 from leaving the rotor 5. The guide hole 7 is formed radially on the upper and lower plane portions of the rotor 5 and communicates with the first vane guide groove 6.
유체출입공(2)을 통한 작동 유체의 공급 시, 로터(5)가 회전하면서 복수개의 베인(8)이 각각 제1 베인 가이드홈(6)에 대하여 전,후진 슬라이딩하여 베인(8)이 반복적으로 로터(5)의 외주면 바깥으로 돌출되어 피스톤 운동을 함으로써 작동 유체와 상호작용을 한다.When the working fluid is supplied through the fluid inlet hole 2, while the rotor 5 rotates, the plurality of vanes 8 slide forward and backward with respect to the first vane guide groove 6, so that the vanes 8 are repeated. By protruding outward from the outer circumferential surface of the rotor 5, the piston moves to interact with the working fluid.
또한, 로터(5)의 회전 시 베인(8)의 상,하단에 마련된 베인암(9)은 덮개(3)에 마련된 제2 베인 가이드홈(10)에 끼워져서 제2 베인 가이드홈(10)의 원형 경로를 따라 이동한다. 즉, 베인암(9)이 제2 베인 가이드홈(10)과의 접촉을 유지함으로써 로터(5)와 함께 회전하는 베인(8)의 이동이 가이드된다. 베인(8)이 전진 슬라이딩하여 로터(5)의 외주면 바깥으로 돌출되었을 때 베인암(9)은 가이드장공(7)에 의해 구속되므로 로터(5)의 외부로 베인(8)이 이탈되는 것이 방지된다.In addition, when the rotor 5 is rotated, the vane arm 9 provided on the upper and lower ends of the vane 8 is inserted into the second vane guide groove 10 provided in the cover 3, and thus the second vane guide groove 10 Let's go along the circular path. That is, by maintaining the contact of the vane arm 9 with the second vane guide groove 10, the movement of the vane 8 rotating together with the rotor 5 is guided. When the vane (8) slides forward and protrudes outside the outer circumferential surface of the rotor (5), the vane arm (9) is constrained by the guide hole (7) to prevent the vane (8) from escaping out of the rotor (5). do.
부가적으로, 바디(1)의 내벽에는 별도의 가이드링이 추가로 설치되고 베인(8)의 끝부분은 상기 가이드링에 밀착된 상태로 회전될 수 있다.Additionally, a separate guide ring is additionally installed on the inner wall of the body 1 and the end of the vane 8 can be rotated in close contact with the guide ring.
상기와 같은 구성을 가진 본 발명의 바람직한 실시예에 따른 터빈은 유체출입공(2)을 통해 작동 유체를 공급하면 복수개의 베인(8)들이 로터(5)에 대해 방사상으로 왕복 이동하면서 피스톤 운동을 하고 작동 유체로부터 베인(8)에 힘이 가해져서 로터(5)가 회전하게 된다.Turbine according to a preferred embodiment of the present invention having the configuration as described above, when supplying the working fluid through the fluid inlet hole (2), the plurality of vanes (8) radially reciprocating relative to the rotor (5) to move the piston And the force is applied to the vane 8 from the working fluid, so that the rotor 5 rotates.
로터(5)에는 각각의 베인(8)마다 압력 밸런스 조절을 위한 유체수용공간(6a)이 형성되어 있어 베인(8)이 원활하게 제1 베인 가이드홈(6)을 따라 출입하여 피스톤 운동이 이루어질 수 있다. 로터(5)의 시계방향 회전시 유체수용공간(6a)에 잔류하는 유체는 베인(8)보다 먼저 예컨대, 1사분면에 위치한 접점부(A)에 진입하여 압축되었다가 접점부(A)를 지나 예컨대, 2사분면으로 이동했을 때 유체를 토출한 후에 다시 압력이 낮아지므로 베인(8)은 용이하게 제1 베인 가이드홈(6)을 따라 슬라이딩하며 반복적으로 로터(5)의 외주면 바깥쪽으로 돌출되어 작동 유체와 상호작용을 할 수 있다.The rotor 5 is provided with a fluid receiving space 6a for adjusting the pressure balance for each vane 8, so that the vane 8 smoothly enters and exits along the first vane guide groove 6 to perform piston movement. Can be. When the rotor 5 rotates clockwise, the fluid remaining in the fluid receiving space 6a enters, for example, the contact portion A located in the first quadrant and is compressed before the vane 8, and then passes through the contact portion A. For example, since the pressure is lowered again after discharging the fluid when moving to the second quadrant, the vane 8 easily slides along the first vane guide groove 6 and repeatedly protrudes outward from the outer peripheral surface of the rotor 5 It can interact with fluids.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.Although the present invention has been described above by way of limited examples and drawings, the present invention is not limited by this, and will be described below by the person skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the equal scope of the claims.
본 발명은 유체를 에너지원으로 하는 각종 발전장치에 적용되어 대체 에너지원으로 사용될 수 있으며, 자동차나 선박 등과 같이 대마력의 동력이 요구되는 장치의 엔진이나 동력전환수단 등에 매우 유용하게 적용될 수 있다. 또한, 태양열, 소각, 폐열 등을 이용하는 증기터빈이나 캠핑용 회전그릴 등의 회전장치와 같은 제품에 응용될 수 있다.The present invention can be applied to various power generation devices using a fluid as an energy source, and can be used as an alternative energy source, and can be very usefully applied to engines or power conversion means of devices requiring large horsepower, such as automobiles and ships. In addition, it can be applied to products such as steam turbines using solar heat, incineration, waste heat, or rotating devices such as rotating grills for camping.

Claims (6)

  1. 작동 유체의 유입과 토출을 위한 유체출입공이 형성된 바디;A body having a fluid inlet hole for inflow and outflow of a working fluid;
    상기 바디의 내부공간에 배치되고 둘레를 따라 정해진 간격으로 복수개의 제It is arranged in the interior space of the body and a plurality of agents at predetermined intervals along the perimeter.
    1 베인 가이드홈들이 방사상으로 형성된 로터;1 vane guide grooves are formed in a radial rotor;
    상기 로터의 중심에 고정된 회전축;A rotating shaft fixed to the center of the rotor;
    상기 복수개의 제1 베인 가이드홈들에 일대일 대응하고 상기 제1 베인 가이One-to-one correspondence to the plurality of first vane guide grooves and the first vane guy
    드홈에 대해 출입하도록 슬라이딩 가능하게 끼워진 복수개의 베인; 및A plurality of vanes slidably fitted to enter and exit the de-home; And
    상기 바디의 개방 부분을 캡핑하고 상기 회전축이 끼워지는 축공과 안쪽면에Capping the open part of the body, and the shaft and the inner surface of the rotary shaft is fitted
    형성되어 상기 베인을 가이드하는 원형의 제2 베인 가이드홈을 구비한 덮개;를 포함하고,It is formed is a cover having a circular second vane guide groove to guide the vane; includes,
    상기 축공은 상기 제2 베인 가이드홈의 중심으로부터 벗어난 위치에 형성되The shaft hole is formed at a position off the center of the second vane guide groove
    고,High,
    상기 유체출입공을 통한 작동 유체의 공급 시, 상기 로터가 회전함과 아울러 상기 복수개의 베인이 각각 상기 제1 베인 가이드홈을 따라 전,후진 슬라이딩하여 상기 로터의 외주면 바깥쪽으로 반복적으로 돌출되어 상기 바디와 상기 로터 사이의 공간에 있는 작동 유체와 상호작용을 하는 것을 특징으로 하는 터빈.When the working fluid is supplied through the fluid inlet hole, the rotor rotates and the plurality of vanes respectively slide forward and backward along the first vane guide groove to repeatedly protrude outward from the outer circumferential surface of the rotor, and the body And a working fluid in a space between the rotor and the rotor.
  2. 제1항에 있어서,According to claim 1,
    상기 베인의 상하방향 적어도 일단에는 상기 제2 베인 가이드홈에 끼워지는 베인암이 마련된 것을 특징으로 하는 터빈.Turbine characterized in that the vane arm is fitted to the second vane guide groove at least one end in the vertical direction of the vane.
  3. 제2항에 있어서,According to claim 2,
    상기 로터에는 상기 베인암이 끼워질 수 있는 가이드장공이 방사상으로 형성되어 있고,A guide hole into which the vane arm can be fitted is radially formed in the rotor,
    상기 베인암이 상기 가이드장공에 끼워져서 상기 베인이 상기 로터에서 이탈하는 것이 방지되는 것을 특징으로 하는 터빈.Turbine, characterized in that the vane arm is inserted into the guide hole to prevent the vane from leaving the rotor.
  4. 제1항에 있어서,According to claim 1,
    상기 베인이 조립된 상태에서 상기 베인에 인접하고 상기 제1 베인 가이드홈과 연통되는 유체수용공간이 상기 로터에 형성된 것을 특징으로 하는 터빈.Turbine characterized in that the vane in the assembled state is adjacent to the vane and a fluid receiving space communicating with the first vane guide groove is formed in the rotor.
  5. 제1항에 있어서,According to claim 1,
    상기 유체출입공은 상기 바디의 일측에 원주 방향으로 정해진 길이만큼 호 형태로 형성된 장공인 것을 특징으로 하는 터빈.The fluid inlet hole is a turbine characterized in that the long hole formed in an arc shape for a predetermined length in the circumferential direction on one side of the body.
  6. 제5항에 있어서,The method of claim 5,
    상기 바디의 타측에 형성된 에어벤트 홀;을 더 포함하는 것을 특징으로 하는 터빈.Turbine further comprising; an air vent hole formed on the other side of the body.
PCT/KR2019/017562 2018-12-13 2019-12-12 Turbine having assembly of vanes and rotor WO2020122624A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0161350 2018-12-13
KR20180161350 2018-12-13
KR1020190027498A KR102122152B1 (en) 2018-12-13 2019-03-11 Turbine improved in assembly of vane and rotor
KR10-2019-0027498 2019-03-11

Publications (1)

Publication Number Publication Date
WO2020122624A1 true WO2020122624A1 (en) 2020-06-18

Family

ID=71070552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017562 WO2020122624A1 (en) 2018-12-13 2019-12-12 Turbine having assembly of vanes and rotor

Country Status (2)

Country Link
KR (1) KR102122152B1 (en)
WO (1) WO2020122624A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030072668A1 (en) * 2001-10-11 2003-04-17 Patterson David C. Fluid turbine device
KR100533695B1 (en) * 2003-08-08 2005-12-05 학교법인 인제학원 Vane type turbine
JP2009041395A (en) * 2007-08-07 2009-02-26 Nippon Telegr & Teleph Corp <Ntt> Rotating device
KR101116511B1 (en) * 2011-10-05 2012-02-28 이병록 Air vane motor having liners
KR101175713B1 (en) * 2012-05-23 2012-08-21 정의섭 Vane motor using high-pressure fluid and apparatus for generating electricity having the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030072668A1 (en) * 2001-10-11 2003-04-17 Patterson David C. Fluid turbine device
KR100533695B1 (en) * 2003-08-08 2005-12-05 학교법인 인제학원 Vane type turbine
JP2009041395A (en) * 2007-08-07 2009-02-26 Nippon Telegr & Teleph Corp <Ntt> Rotating device
KR101116511B1 (en) * 2011-10-05 2012-02-28 이병록 Air vane motor having liners
KR101175713B1 (en) * 2012-05-23 2012-08-21 정의섭 Vane motor using high-pressure fluid and apparatus for generating electricity having the same

Also Published As

Publication number Publication date
KR102122152B1 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
RU2741681C9 (en) Blade air-driven engine
RU2683076C2 (en) Centrifugal separator
GB2386849A (en) Hero-turbine centrifuge with drainage enhancing baffle devices
WO2020122624A1 (en) Turbine having assembly of vanes and rotor
FI58538C (en) MOTOR OCH / ELLER PUMP
EP3350447B1 (en) Multi-vane impeller device
WO2016167456A1 (en) Volute casing and rotary machine having same
EP2283209B1 (en) Rotary combustion engine and hydraulic motor
GB1566687A (en) Pump
CN114174635A (en) Pulse turbine and turbine device
EP2539565B1 (en) Rotary type internal combustion engine
US5575587A (en) Tide-operated driving system
EP0639714B1 (en) Turbine pump
FI98473C (en) Rotary piston machine
CN109026693B (en) Pump body assembly, compressor and air conditioner
US10598019B1 (en) Turbine engine with a fire chamber and a helical fan
KR20000059970A (en) Vane motor
CN201363270Y (en) Vane type rotator pump
CA2193750A1 (en) Fixed-displacement vane-type hydraulic machine
SU885621A1 (en) Submersible electric centrifugal pump
EP0625629B1 (en) Turbine
US6241464B1 (en) Governor mechanism for a rotary device
GB2334760A (en) Vane pumps or motors
JPS62178776A (en) Vane type motor
RU177800U1 (en) WIND ENGINE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19896048

Country of ref document: EP

Kind code of ref document: A1