WO2020122371A1 - Polyolefin and method for preparing same - Google Patents

Polyolefin and method for preparing same Download PDF

Info

Publication number
WO2020122371A1
WO2020122371A1 PCT/KR2019/012003 KR2019012003W WO2020122371A1 WO 2020122371 A1 WO2020122371 A1 WO 2020122371A1 KR 2019012003 W KR2019012003 W KR 2019012003W WO 2020122371 A1 WO2020122371 A1 WO 2020122371A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
alkyl
polyolefin
aryl
substituted
Prior art date
Application number
PCT/KR2019/012003
Other languages
French (fr)
Korean (ko)
Inventor
김라연
전성해
허은정
김지성
Original Assignee
한화솔루션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화솔루션 주식회사 filed Critical 한화솔루션 주식회사
Priority to US17/296,991 priority Critical patent/US20210395412A1/en
Priority to JP2021533173A priority patent/JP7223139B2/en
Priority to CN201980081827.0A priority patent/CN113195558B/en
Priority to EP19897225.9A priority patent/EP3896102A4/en
Publication of WO2020122371A1 publication Critical patent/WO2020122371A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/52Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from boron, aluminium, gallium, indium, thallium or rare earths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/09Cyclic bridge, i.e. Cp or analog where the bridging unit linking the two Cps or analogs is part of a cyclic group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/02Low molecular weight, e.g. <100,000 Da.
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+

Definitions

  • the present invention relates to a polyolefin and a method for producing the same, and more particularly, to a polyolefin having a low molecular weight and low viscosity properties using a transition metal compound for an olefin polymerization catalyst and a method for manufacturing the same.
  • Metallocene catalyst which is one of the catalysts used to polymerize olefins, is a compound in which a ligand such as a cyclopentadienyl group, an indenyl group, or a cycloheptadienyl group is coordinated to a transition metal or a transition metal halogen compound.
  • the metallocene catalyst is a single-site catalyst composed of the metallocene compound and a co-catalyst such as methylaluminoxane.
  • the polymer polymerized with the metallocene catalyst has a narrow molecular weight distribution and a pore size. The monomer distribution is uniform, and the copolymerization activity is higher than that of the Ziegler-Natta catalyst.
  • the problem to be solved by the present invention is an olefin polymerization catalyst having a high stability even at high temperature and an excellent reactivity with an olefin, including a transition metal compound for an olefin polymerization catalyst, and polymerization using the same to obtain excellent physical properties such as low molecular weight and low viscosity. It is to provide the polyolefin which has.
  • the polyolefin according to one embodiment for solving the above problems is formed by copolymerization of an olefinic monomer and a comonomer under an olefin polymerization catalyst including a transition metal compound for an olefin polymerization catalyst represented by the following Chemical Formula 1, and a weight average molecular weight (Weight The average molecular weight (Mw) may be 20,000 or less.
  • M is titanium (Ti), zirconium (Zr) or hafnium (Hf)
  • X are each independently halogen, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl , C 6-20 aryl, C 1-20 alkyl C 6-20 aryl, C 6-20 aryl C 1-20 alkyl, C 1-20 alkylamido, C 6-20 arylamido or C 1-20 alkyl Ridene
  • R 1 to R 4 are each independently hydrogen, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, C 6-20 aryl, C 1-20 alkyl C 6-20 aryl , C 6-20 aryl C 1-20 alkyl, C 1-20 alkylamido, C 6-20 arylamido or C 1-20 alkylidene
  • R 5 and R 6 are each independently C 1-20 alkyl , C 2-20 alkenyl, C 2-20 alkynyl, C 6-20
  • the polyolefin may have a viscosity measured at 177°C of 5000 cP to 10000 cP.
  • the polyolefin may have a number average molecular weight (Mn) of 10,000 or less, and a molecular weight distribution (MWD) defined by the following Equation 1 may range from 2 to 3.
  • the olefinic monomer may be ethylene, and the co-monomer may be 1-octene.
  • X is each independently halogen or C 1-20 alkyl
  • R 1 , R 3 , and R 4 are each hydrogen
  • R 2 is C 1-20 alkyl
  • R 5 and R 6 are each independently As C 1-20 Alkyl or C 6-20 Aryl, or connected to each other to form a substituted or unsubstituted aliphatic C 4-20 ring
  • the R 7 to R 10 are two adjacent to each other are connected to each other to be substituted or unsubstituted Aromatic C 5-20 ring.
  • the R 5 and R 6 are each independently methyl (methyl), or may be connected to each other to form an aliphatic C 4 ring.
  • the R 7 to R 10 may be connected to two adjacent ones to form a substituted or unsubstituted aromatic C 6 .
  • the Chemical Formula 1 may be at least one of the following Chemical Formulas 1-1 to 1-12.
  • M is zirconium or hafnium, and X is each independently halogen or C 1-20 alkyl
  • the Chemical Formula 1 may be at least one of the following Chemical Formulas A to D.
  • the method for producing a polyolefin according to an embodiment for solving the above problems includes forming a polyolefin by polymerizing an olefin-based monomer and a comonomer under an olefin polymerization catalyst including a transition metal compound represented by the following Chemical Formula 1 Can be.
  • M is titanium (Ti), zirconium (Zr) or hafnium (Hf)
  • X are each independently halogen, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl , C 6-20 aryl, C 1-20 alkyl C 6-20 aryl, C 6-20 aryl C 1-20 alkyl, C 1-20 alkylamido, C 6-20 arylamido or C 1-20 alkyl Ridene
  • R 1 to R 4 are each independently hydrogen, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, C 6-20 aryl, C 1-20 alkyl C 6-20 aryl , C 6-20 aryl C 1-20 alkyl, C 1-20 alkylamido, C 6-20 arylamido or C 1-20 alkylidene
  • R 5 and R 6 are each independently C 1-20 alkyl , C 2-20 alkenyl, C 2-20 alkynyl, C 6-20
  • the Chemical Formula 1 may be at least one of the following Chemical Formulas 1-1 to 1-12.
  • M is zirconium or hafnium, and X is each independently halogen or C 1-20 alkyl
  • the Chemical Formula 1 may be at least one of the following Chemical Formulas A to D.
  • the olefin polymerization catalyst may have a catalytic activity ranging from 160 kg-PE/g-Cat to 200 kg-PE/g-Cat.
  • the polyolefin may have a weight average molecular weight (Mw) of 20,000 or less.
  • the polyolefin may have a viscosity measured at 177°C of 5000 cP to 10000 cP.
  • the polyolefin may have a number average molecular weight (Mn) of 10,000 or less, and a molecular weight distribution (MWD) defined by the following Equation 1 may range from 2 to 3.
  • the olefinic monomer may be ethylene, and the comonomer may be 1-octene.
  • the olefin polymerization catalyst may further include a cocatalyst compound.
  • the cocatalyst compound may include at least one of a compound represented by the following formula (I), a compound represented by the formula (II), and a compound represented by the formula (III).
  • n is an integer of 2 or more, and R a is a halogen atom, a C 1-20 hydrocarbon group, or a C 1-20 hydrocarbon group substituted with halogen
  • D is aluminum (Al) or boron (B)
  • R b , R c and R d are each independently a halogen atom, a C 1-20 hydrocarbon group, or a C 1-20 hydrocarbon group substituted with halogen. Or a C 1-20 alkoxy group
  • L is a neutral or cationic Lewis base
  • [LH] + and [L] + are Br ⁇ nsted acids
  • Z is a group 13 element
  • A is each independently substituted or unsubstituted C 6- 20 aryl group or a substituted or unsubstituted C 1-20 alkyl group
  • the polyolefin polymerized using the olefin polymerization catalyst that has high stability at high temperature and reacts with the olefin, including the transition metal compound of the present invention, may have excellent properties such as low molecular weight and low viscosity.
  • the olefin polymerization catalyst comprising the transition metal compound of the present invention has a high synthetic yield and can be easily produced by an economical method, and thus has excellent commercial practicality.
  • C AB means “carbon number A or more and B or less”
  • a to B means “A or more and B or less”
  • substituted or unsubstituted” means "at least one hydrogen of a hydrocarbon compound or hydrocarbon derivative is halogen, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, C 6-20 aryl, C 1- Means substituted with 20 alkyl C 6-20 aryl, C 6-20 aryl C 1-20 alkyl, C 1-20 alkylamido, C 6-20 arylamido or C 1-20 alkylidene,” “Unsubstituted” means “at least one hydrogen of a hydrocarbon compound or hydrocarbon derivative is halogen, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, C 6-20 aryl, C 1-20 alkyl C 6-20 aryl, C 6-20 halogen
  • the polyolefin according to an embodiment of the present invention may be formed by copolymerizing an olefinic monomer and a comonomer.
  • Polyolefins are homopolymers or copolymers polymerized by polymerization reaction such as free radical, cationic, coordination, condensation, and addition. ), but is not limited thereto.
  • the polyolefin may be prepared by gas phase polymerization, solution polymerization or slurry polymerization.
  • the solvent that can be used when the polyolefin is prepared by solution polymerization or slurry polymerization include C 5-12 aliphatic hydrocarbon solvents such as pentane, hexane, heptane, nonane, decane and isomers thereof; Aromatic hydrocarbon solvents such as toluene and benzene; Hydrocarbon solvents substituted with chlorine atoms such as dichloromethane and chlorobenzene; Although a mixture of these etc. are mentioned, it is not limited to these.
  • the olefinic monomers are C 2-20 alpha-olefin, C 1-20 diolefin, C 3-20 cyclo-olefin and C 3-20 cyclodiolefin. It may be one or more selected from the group consisting of.
  • the olefinic monomer is ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene , 1-dodecene, 1-tetradecene, 1-hexadecene, and the like
  • the polyolefin may be a homopolymer containing only one olefin-based monomer exemplified above, or a copolymer containing two or more kinds.
  • the polyolefin may be a copolymer of ethylene and 1-octene, but is not limited thereto.
  • the polyolefin according to an embodiment of the present invention may have a weight average molecular weight (Mw) of 20,000 or less.
  • the polyolefin is polymerized under a catalyst containing a transition metal compound for an olefin polymerization catalyst, which will be described later, and may have low molecular weight and low viscosity properties compared to the same olefin polymer.
  • the transition metal compound has a high catalytic activity with respect to the olefinic monomer, and can polymerize a low molecular weight polyolefin even when a relatively small amount of hydrogen (H 2 ) is injected.
  • the polyolefin according to an embodiment of the present invention has a low molecular weight and thus exhibits low viscosity, and accordingly, the polyolefin may be used as a raw material for a wax or adhesive.
  • the polyolefin may have a viscosity measured at 177°C of 5000 cP to 10000 cP. A detailed description of this will be described later with reference to the experimental example.
  • the polyolefin may have a number average molecular weight (Mn) of 10,000 or less, and a molecular weight distribution (MWD) defined by Equation 1 below It may have a range of 2 to 3.
  • the polyolefin of the present invention may be formed by polymerizing an olefinic monomer under an olefin polymerization catalyst.
  • the polyolefin according to an embodiment of the present invention may be polymerized under an olefin polymerization catalyst including a transition metal compound for an olefin polymerization catalyst represented by Chemical Formula 1 below.
  • M may be titanium (Ti), zirconium (Zr), or hafnium (Hf). Specifically, M may be zirconium or hafnium.
  • X is each independently halogen, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, C 6-20 aryl, C 1-20 alkyl C 6-20 aryl, C 6-20 aryl C 1-20 alkyl, C 1-20 alkylamido, C 6-20 arylamido or C 1-20 alkylidene.
  • X may be each independently halogen or C 1-20 alkyl. More specifically, X may be each independently chlorine (Cl) or methyl (methyl).
  • R 1 to R 4 are each independently hydrogen, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, C 6-20 aryl, C 1-20 alkyl C 6-20 aryl, C 6 -20 aryl C 1-20 alkyl, C 1-20 alkylamido, C 6-20 arylamido or C 1-20 alkylidene.
  • R 1 , R 3 and R 4 are each hydrogen, and R 2 may be C 1-20 alkyl. More specifically, R 1 , R 3 and R 4 are each hydrogen, and R 2 may be n-butyl.
  • R 5 and R 6 are each independently C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, C 6-20 aryl, C 1-20 alkyl C 6-20 aryl, C 6-20 Aryl C 1-20 alkyl, C 1-20 alkylamido, C 6-20 arylamido or C 1-20 alkylidene, or may be linked to each other to form a substituted or unsubstituted C 4-20 ring.
  • R 5 and R 6 are each independently C 1-20 alkyl or C 6-20 aryl, or may be connected to each other to form a substituted or unsubstituted aliphatic C 4-20 ring. More specifically, R 5 and R 6 are each independently methyl, or may be connected to each other to form an aliphatic C 4 ring.
  • R 7 to R 10 may be connected to two neighboring groups to form a substituted or unsubstituted C 4-20 ring. Specifically, R 7 to R 10 may be connected to two neighboring groups to form a substituted or unsubstituted aromatic C 5-20 ring. More specifically, R 7 to R 10 may be connected to two neighboring groups to form a substituted or unsubstituted aromatic C 6 ring. Two neighboring R 7 to R 10 may mean R 7 and R 8 or R 9 and R 10 .
  • the aromatic C 6 ring may be substituted with one or more of halogen, C 6-20 aryl, C 1-20 alkylsilyl, C 1-20 alkyloxy and C 1-20 alkylamino.
  • the halogen is fluorine (F)
  • the C 6-20 aryl is phenyl
  • the C 1-20 alkylsilyl is trimethylsilyl (-SiMe 3 )
  • the C 1-20 alkyloxy is methyl Oxy(methyloxy[methoxy], -OMe)
  • the C 1-20 alkylamino may be dimethylamino (-NMe 2 ).
  • the transition metal compound may be represented by at least one of the following Chemical Formulas 1-1 to 1-12.
  • M is zirconium or hafnium, and X may be each independently halogen or C 1-20 alkyl.
  • the transition metal compound may be any one or more of the following Formulas A to D.
  • the transition metal compound may be a compound of Formula A.
  • Formula A by containing hafnium (Hf) as the central metal, the olefin polymerization catalyst for polyolefin polymerization containing Formula A may have excellent properties in controlling the molecular weight and copolymerization of the polyolefin.
  • the bridge substituent between the cyclopentadiene groups in the transition metal compound of the formula (A) is a cyclobutyl group (Cyclobutyl)
  • the activity and polymerization of the olefin polymerization catalyst compared to the case where the bridge substituent is an alkyl (alkyl) It has excellent performance characteristics.
  • the olefin polymerization catalyst for polyolefin polymerization may include at least one of the transition metal compounds illustrated above and a cocatalyst compound.
  • the cocatalyst compound may include one or more of a compound represented by the following formula (I), a compound represented by the formula (II), and a compound represented by the formula (III).
  • n is an integer of 2 or more
  • R a may be a halogen atom, a C 1-20 hydrocarbon group, or a C 1-20 hydrocarbon group substituted with halogen.
  • R a may be methyl, ethyl, n-butyl or isobutyl, but is not limited thereto.
  • D is aluminum (Al) or boron (B), and Rb, Rc, and Rd are each independently a halogen atom, a C 1-20 hydrocarbon group, or a C 1-20 hydrocarbon group substituted with halogen, or C 1- It may be a 20 alkoxy group.
  • Rb, Rc and Rd may each independently be methyl or isobutyl
  • D is boron
  • Rb, Rc and Rd may each be pentafluorophenyl, but It is not limited.
  • L is a neutral or cationic Lewis base
  • [LH] + or [L] + is Br ⁇ nsted acid
  • Z is a group 13 element
  • A is each independently substituted or unsubstituted C 6- It may be a 20 aryl group or a substituted or unsubstituted C 1-20 alkyl group.
  • the [LH] + may be a dimethylanilinium cation dimethyl, wherein [Z (A) 4] - is [B (C 6 F 5) 4] - can be a, the [L] + is [( C 6 H 5 ) 3 C] + , but is not limited thereto.
  • the olefin polymerization catalyst may further include a carrier.
  • the carrier is not particularly limited as long as it can support a transition metal compound for an olefin polymerization catalyst and a cocatalyst compound.
  • the carrier can be carbon, silica, alumina, zeolite, magnesium chloride, and the like.
  • a physical adsorption method or a chemical adsorption method can be used as a method of supporting the transition metal compound for the olefin polymerization catalyst and the cocatalyst compound on a carrier.
  • the physical adsorption method is a method in which a solution in which a transition metal compound for an olefin polymerization catalyst is dissolved is contacted with a carrier and then dried, and a solution in which a transition metal compound for an olefin polymerization catalyst and a cocatalyst compound is dissolved is contacted with a carrier.
  • a method in which a transition metal compound for an olefin polymerization catalyst is dissolved is contacted with a carrier, followed by drying and preparing a carrier carrying a transition metal compound for an olefin polymerization catalyst, and separately, a solution in which the cocatalyst compound is dissolved After contact with the carrier and dried to prepare a carrier carrying the cocatalyst compound, it may be a method of mixing them.
  • the chemical adsorption method is a method in which a cocatalyst compound is first supported on a surface of a carrier, and then a transition metal compound for an olefin polymerization catalyst is supported on a cocatalyst compound, or a functional group on the surface of the carrier (for example, In the case of silica, it may be a method of covalently bonding a hydroxy group (-OH) on the silica surface with a catalyst compound.
  • the sum of the supported amounts of the main catalyst compound containing the transition metal compound may be 0.001 mmol to 1 mmol based on 1 g of the carrier, and the supported amount of the cocatalyst compound may be 2 mmol to 15 mmol on the basis of 1 g of the carrier.
  • Such a carrier is not necessarily included, and its use can be appropriately selected as necessary.
  • the olefin polymerization catalyst comprising the transition metal compound of the present invention has stability at high temperature and has excellent reactivity with olefins, particularly ⁇ -olefins, so it is easy to polymerize olefins, has high catalytic activity, and has low molecular weight and low viscosity. It is possible to manufacture polyolefins having properties.
  • Cyclobutylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] dilithium (342 mg, 0.86 mmol) prepared in Preparation Example 1-6 was dissolved in toluene (40 mL) in HfCl4 (277 mg). , 0.86 mmol) was slowly added to a solution of toluene (5 mL) at -30 °C, and the temperature was gradually raised to room temperature and stirred for 12 hours. After completion of the reaction, it was extracted with toluene and filtered.
  • MeMgBr (448 in Cyclobutylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] hafnium dichloride (273 mg, 0.43 mmol) prepared in Preparation Example 1-7 was dispersed in toluene (20 mL). A solution diluted in mg, 1.30 mmol, 3.0 M in diethyl ether) in toluene (5 mL) was slowly added at -30 °C and stirred for 4 hours while refluxing at 70 °C. After completion of the reaction, it was extracted with toluene and filtered.
  • Cyclobutylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] dilithium (127 mg, 0.32 mmol) prepared in Preparation Example 1-6 was dissolved in toluene (10 mL) in ZrCl4 (74 mg). , 0.32 mmol) was slowly added at -30 °C and the solution dispersed in toluene (3 mL) was slowly raised to room temperature and stirred for 12 hours. After completion of the reaction, it was extracted with toluene and filtered.
  • Ifpropylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] dilithium (566 mg, 1.47 mmol) prepared in Preparation Example 3-2 was dissolved in toluene (40 mL) in HfCl4 (472 mg). , 1.47 mmol) was slowly added to a solution of toluene (10 mL) at -30 °C, and the temperature was gradually raised to room temperature and stirred for 12 hours. After completion of the reaction, it was extracted with toluene and filtered.
  • MeMgBr (468) was added to a solution of Isopropylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] hafnium dichloride (400 mg, 0.65 mmol) prepared in Preparation Example 3-3 in toluene (20 mL).
  • a solution diluted in mg, 1.36 mmol, 3.0 M in diethyl ether) in toluene (2 mL) was slowly added at -30 °C and stirred for 2 hours while refluxing at 70 °C. After completion of the reaction, it was extracted with toluene and filtered.
  • Ethylene and 1-octene were copolymerized as follows using an olefin polymerization catalyst including the compound of Formula A prepared in Preparation Example 1.
  • an olefin polymerization catalyst containing the compound of formula A prepared in Preparation Example 1 was used, and the catalyst was dissolved in a certain amount of the compound of formula A in a hexane solvent and treated with triisobutylaluminum (TiBA), It was injected directly into the reactor.
  • TiBA triisobutylaluminum
  • the polymer melted in the reactor passes through the reactor discharge stream, enters the separator, separates unreacted ethylene and 1-octene from a hexane solvent, and then drying them in a vacuum oven at 80° C. for 12 hours or more [ethylene]-[1 -Octene] Polyolefin was prepared.
  • ethylene as an olefinic monomer was injected at a flow rate of 8.3 g/min, and comonomer 1-octene at a flow rate of 8 g/min, and formula A of Preparation Example 1 was 0.044 g/min as an olefin polymerization catalyst.
  • Hydrogen (H 2 ) was introduced at a flow rate of 0.2 g/hr to prepare a polyolefin, and the polyolefin thus prepared is hereinafter referred to as'Example 1'.
  • Example 2 except for injecting 1-octene as a comonomer at a flow rate of 12 g/min, a polyolefin was prepared in the same manner, and the polyolefin thus prepared is hereinafter referred to as'Example 2'.
  • Ethylene and 1-hexene were copolymerized as follows using an olefin polymerization catalyst including a compound of Formula E.
  • Example 1 the transition metal compound of Formula E is injected at a flow rate of 0.049 g/min as an olefin polymerization catalyst, 10 g/min of 1-octene as a comonomer, and 0 g/hr of hydrogen (H 2 ).
  • a polyolefin was prepared in the same manner, except that it was injected at a flow rate of, and the polyolefin thus prepared is hereinafter referred to as'Comparative Example 1'.
  • Comparative Example 1 a polyolefin was prepared in the same manner, except that 1-octene was injected as a comonomer at a flow rate of 12 g/min, and the polyolefin thus prepared is hereinafter referred to as'Comparative Example 2'.
  • Comparative Example 3 except for injecting 1-octene as a comonomer at a flow rate of 8 g/min and hydrogen (H 2 ) at a flow rate of 0.3 g/hr, a polyolefin was prepared in the same manner, and the polyolefin thus prepared Is hereinafter referred to as'Comparative Example 3'.
  • Comparative Example 3 a polyolefin was prepared in the same manner, except that 1-octene was injected as a comonomer at a flow rate of 12 g/min, and the polyolefin thus prepared is hereinafter referred to as'Comparative Example 4'.
  • Example 1 Example 2 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Catalyst type Formula A Formula E Catalyst (g/min) 0.044 0.044 0.049 0.049 0.049 0.049 Ethylene (C2, g/min) 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 1-octene (C8, g/min) 8 12 10 12 8 12 C8/C2(Molar rate) 0.24 0.36 0.3 0.36 0.24 0.36 Catalytic activity (kg-PE/g-cat) 167 194 124 20.2 136 150 H 2 (g/hr) 0.2 0.2 0 0 0.3 0.3 Reaction temperature ( 0 C) 152 151 152 150 149 150 Density(g/cc) 0.880 0.863 0.863 0.868 0.875 0.858 Mn (3D-GPC) 8,077 6,519 71,450 100,416 25,279 30,456 MW (3D-GPC) 19,45
  • the olefin polymerization catalyst containing the compound of Formula A has high catalytic activity, and the polyolefin polymerized under the catalyst has properties of low molecular weight and low viscosity. Able to know.
  • Comparative Examples 1 to 4 it can be seen that the olefin polymerization catalyst containing the compound of Formula E has low catalytic activity, and the polyolefin polymerized under the catalyst has a high molecular weight.
  • the polyolefin according to an embodiment of the present invention has a high catalytic activity and is polymerized under an olefin polymerization catalyst including a transition metal compound having excellent molecular weight control and copolymerizability, and a low molecular weight and It can have low-viscosity properties.

Abstract

A polyolefin and a method for preparing same are provided. The polyolefin is formed by copolymerizing an olefin-based monomer and a comonomer in the presence of an olefin polymerization catalyst comprising a transition metal compound for an olefin polymerization catalyst represented by formula 1, and the weight average molecular weight (Mw) thereof may be 20,000 or less. The description of formula 1 is the same as that in the description of the invention.

Description

폴리올레핀 및 이의 제조 방법Polyolefin and its manufacturing method
본 발명은 폴리올레핀 및 이의 제조 방법에 관한 것으로, 보다 구체적으로는 올레핀 중합 촉매용 전이금속 화합물을 이용하여 저분자량 및 저점도의 특성을 갖는 폴리올레핀 및 이의 제조 방법에 관한 것이다.The present invention relates to a polyolefin and a method for producing the same, and more particularly, to a polyolefin having a low molecular weight and low viscosity properties using a transition metal compound for an olefin polymerization catalyst and a method for manufacturing the same.
올레핀을 중합하는데 이용되는 촉매의 하나인 메탈로센 촉매는 전이금속 또는 전이금속 할로겐 화합물에 사이클로펜타디에닐기, 인데닐기, 사이클로헵타디에닐기 등의 리간드가 배위 결합된 화합물로서 샌드위치 구조를 기본적인 형태로 갖는다. Metallocene catalyst, which is one of the catalysts used to polymerize olefins, is a compound in which a ligand such as a cyclopentadienyl group, an indenyl group, or a cycloheptadienyl group is coordinated to a transition metal or a transition metal halogen compound. Have
메탈로센 촉매는 상기 메탈로센 화합물과 메틸알루미녹산 등의 조촉매를 포함하여 구성되는 단일 활성점 촉매(single-site catalyst)로서, 상기 메탈로센 촉매로 중합된 고분자는 분자량 분포가 좁고 공단량체의 분포가 균일하며, 지글러-나타(Ziegler-Natta) 촉매에 비해 공중합 활성도가 높다.The metallocene catalyst is a single-site catalyst composed of the metallocene compound and a co-catalyst such as methylaluminoxane. The polymer polymerized with the metallocene catalyst has a narrow molecular weight distribution and a pore size. The monomer distribution is uniform, and the copolymerization activity is higher than that of the Ziegler-Natta catalyst.
다만, 여전히 상업적으로 이용하기에는 많은 어려움이 있기 때문에, 고온에서도 높은 안정성 또는 올레핀과의 우수한 반응성을 갖는 촉매 개발 및 경제성을 바탕으로 한 제조 기술이 요구된다.However, since there are still many difficulties in commercial use, a manufacturing technique based on development and economic efficiency of a catalyst having high stability or excellent reactivity with olefin is required even at high temperatures.
본 발명이 해결하고자 하는 과제는 올레핀 중합 촉매용 전이금속 화합물과 이를 포함하여 고온에서도 높은 안정성과 올레핀과의 우수한 반응성을 갖는 올레핀 중합 촉매 및 이를 이용하여 중합됨으로써 저분자량 및 저점도 등의 우수한 물성을 갖는 폴리올레핀을 제공하는 것이다.The problem to be solved by the present invention is an olefin polymerization catalyst having a high stability even at high temperature and an excellent reactivity with an olefin, including a transition metal compound for an olefin polymerization catalyst, and polymerization using the same to obtain excellent physical properties such as low molecular weight and low viscosity. It is to provide the polyolefin which has.
본 발명의 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The problems of the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned will be clearly understood by those skilled in the art from the following description.
상기 과제를 해결하기 위한 일 실시예에 따른 폴리올레핀은 올레핀계 단량체와 공단량체가 하기 화학식 1로 표현되는 올레핀 중합 촉매용 전이금속 화합물을 포함하는 올레핀 중합 촉매 하에서 공중합되어 형성되며, 중량 평균 분자량(Weight average molecular weight, Mw)이 2만 이하일 수 있다.The polyolefin according to one embodiment for solving the above problems is formed by copolymerization of an olefinic monomer and a comonomer under an olefin polymerization catalyst including a transition metal compound for an olefin polymerization catalyst represented by the following Chemical Formula 1, and a weight average molecular weight (Weight The average molecular weight (Mw) may be 20,000 or less.
<화학식 1><Formula 1>
Figure PCTKR2019012003-appb-img-000001
Figure PCTKR2019012003-appb-img-000001
(상기 화학식 1에서, M은 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)이고, X는 각각 독립적으로 할로겐, C 1-20 알킬, C 2-20 알케닐, C 2-20 알키닐, C 6-20 아릴, C 1-20 알킬 C 6-20 아릴, C 6-20 아릴 C 1-20 알킬, C 1-20 알킬아미도, C 6-20 아릴아미도 또는 C 1-20 알킬리덴이며, R 1 내지 R 4는 각각 독립적으로 수소, C 1-20 알킬, C 2-20 알케닐, C 2-20 알키닐, C 6-20 아릴, C 1-20 알킬 C 6-20 아릴, C 6-20 아릴 C 1-20 알킬, C 1-20 알킬아미도, C 6-20 아릴아미도 또는 C 1-20 알킬리덴이고, R 5 및 R 6은 각각 독립적으로 C 1-20 알킬, C 2-20 알케닐, C 2-20 알키닐, C 6-20 아릴, C 1-20 알킬 C 6-20 아릴, C 6-20 아릴 C 1-20 알킬, C 1-20 알킬아미도, C 6-20 아릴아미도 또는 C 1-20 알킬리덴이거나, 서로 연결되어 치환 또는 비치환된 C 4-20 고리를 형성하며, R 7 내지 R 10은 이웃하는 2개가 서로 연결되어 치환 또는 비치환된 C 4-20 고리를 형성한다)(In the formula 1, M is titanium (Ti), zirconium (Zr) or hafnium (Hf), X are each independently halogen, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl , C 6-20 aryl, C 1-20 alkyl C 6-20 aryl, C 6-20 aryl C 1-20 alkyl, C 1-20 alkylamido, C 6-20 arylamido or C 1-20 alkyl Ridene, R 1 to R 4 are each independently hydrogen, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, C 6-20 aryl, C 1-20 alkyl C 6-20 aryl , C 6-20 aryl C 1-20 alkyl, C 1-20 alkylamido, C 6-20 arylamido or C 1-20 alkylidene, R 5 and R 6 are each independently C 1-20 alkyl , C 2-20 alkenyl, C 2-20 alkynyl, C 6-20 aryl, C 1-20 alkyl C 6-20 aryl, C 6-20 aryl C 1-20 alkyl, C 1-20 alkylamido , C 6-20 arylamido or C 1-20 alkylidene, or are connected to each other to form a substituted or unsubstituted C 4-20 ring, and R 7 to R 10 are connected or substituted by two neighboring two groups Form a substituted C 4-20 ring)
상기 폴리올레핀은 177℃에서 측정된 점도가 5000 cP 내지 10000 cP의 범위를 가질 수 있다.The polyolefin may have a viscosity measured at 177°C of 5000 cP to 10000 cP.
상기 폴리올레핀은 수평균 분자량(Number average molecular weight, Mn)이 1만 이하이고, 하기 수학식 1로 정의되는 분자량 분포(Molecular Weight Disribution, MWD)가 2 내지 3의 범위를 가질 수 있다.The polyolefin may have a number average molecular weight (Mn) of 10,000 or less, and a molecular weight distribution (MWD) defined by the following Equation 1 may range from 2 to 3.
[수학식 1][Equation 1]
Mw/MnMw/Mn
상기 올레핀계 단량체는 에틸렌이고, 상기 공 단량체는 1-옥텐일 수 있다.The olefinic monomer may be ethylene, and the co-monomer may be 1-octene.
상기 X는 각각 독립적으로 할로겐 또는 C 1-20 알킬이고, 상기 R 1, R 3, 및 R 4는 각각 수소이며, 상기 R 2는 C 1-20 알킬이고, 상기 R 5 및 R 6은 각각 독립적으로 C 1-20 알킬 또는 C 6-20 아릴이거나, 서로 연결되어 치환 또는 비치환된 지방족 C 4-20 고리를 형성하고, 상기 R 7 내지 R 10은 이웃하는 2개가 서로 연결되어 치환 또는 비치환된 방향족 C 5-20 고리를 형성할 수 있다.X is each independently halogen or C 1-20 alkyl, R 1 , R 3 , and R 4 are each hydrogen, R 2 is C 1-20 alkyl, and R 5 and R 6 are each independently As C 1-20 Alkyl or C 6-20 Aryl, or connected to each other to form a substituted or unsubstituted aliphatic C 4-20 ring, the R 7 to R 10 are two adjacent to each other are connected to each other to be substituted or unsubstituted Aromatic C 5-20 ring.
상기 R 5 및 R 6은 각각 독립적으로 메틸(methyl)이거나, 서로 연결되어 지방족 C 4 고리를 형성할 수 있다.The R 5 and R 6 are each independently methyl (methyl), or may be connected to each other to form an aliphatic C 4 ring.
상기 R 7 내지 R 10은 이웃하는 2개가 서로 연결되어 치환 또는 비치환된 방향족 C 6를 형성할 수 있다.The R 7 to R 10 may be connected to two adjacent ones to form a substituted or unsubstituted aromatic C 6 .
상기 화학식 1은 하기 화학식 1-1 내지 화학식 1-12 중 적어도 어느 하나일 수 있다.The Chemical Formula 1 may be at least one of the following Chemical Formulas 1-1 to 1-12.
<화학식 1-1><Formula 1-1>
Figure PCTKR2019012003-appb-img-000002
Figure PCTKR2019012003-appb-img-000002
<화학식 1-2><Formula 1-2>
Figure PCTKR2019012003-appb-img-000003
Figure PCTKR2019012003-appb-img-000003
<화학식 1-3><Formula 1-3>
Figure PCTKR2019012003-appb-img-000004
Figure PCTKR2019012003-appb-img-000004
<화학식 1-4><Formula 1-4>
Figure PCTKR2019012003-appb-img-000005
Figure PCTKR2019012003-appb-img-000005
<화학식 1-5><Formula 1-5>
Figure PCTKR2019012003-appb-img-000006
Figure PCTKR2019012003-appb-img-000006
<화학식 1-6><Formula 1-6>
Figure PCTKR2019012003-appb-img-000007
Figure PCTKR2019012003-appb-img-000007
<화학식 1-7><Formula 1-7>
Figure PCTKR2019012003-appb-img-000008
Figure PCTKR2019012003-appb-img-000008
<화학식 1-8><Formula 1-8>
Figure PCTKR2019012003-appb-img-000009
Figure PCTKR2019012003-appb-img-000009
<화학식 1-9><Formula 1-9>
Figure PCTKR2019012003-appb-img-000010
Figure PCTKR2019012003-appb-img-000010
<화학식 1-10><Formula 1-10>
Figure PCTKR2019012003-appb-img-000011
Figure PCTKR2019012003-appb-img-000011
<화학식 1-11><Formula 1-11>
Figure PCTKR2019012003-appb-img-000012
Figure PCTKR2019012003-appb-img-000012
<화학식 1-12><Formula 1-12>
Figure PCTKR2019012003-appb-img-000013
Figure PCTKR2019012003-appb-img-000013
(상기 화학식 1-1 내지 화학식 1-12에서, M은 지르코늄 또는 하프늄이고, X는 각각 독립적으로 할로겐 또는 C 1-20 알킬이다)(In the formulas 1-1 to 1-12, M is zirconium or hafnium, and X is each independently halogen or C 1-20 alkyl)
상기 화학식 1은 하기 화학식 A 내지 화학식 D 중 적어도 어느 하나 일 수 있다.The Chemical Formula 1 may be at least one of the following Chemical Formulas A to D.
<화학식 A><Formula A>
Figure PCTKR2019012003-appb-img-000014
Figure PCTKR2019012003-appb-img-000014
<화학식 B><Formula B>
Figure PCTKR2019012003-appb-img-000015
Figure PCTKR2019012003-appb-img-000015
<화학식 C><Formula C>
Figure PCTKR2019012003-appb-img-000016
Figure PCTKR2019012003-appb-img-000016
<화학식 D><Formula D>
Figure PCTKR2019012003-appb-img-000017
Figure PCTKR2019012003-appb-img-000017
상기 과제를 해결하기 위한 일 실시예에 따른 폴리올레핀의 제조 방법은 하기 화학식 1로 표현되는 전이금속 화합물을 포함하는 올레핀 중합 촉매 하에, 올레핀계 단량체와 공단량체를 중합하여 폴리올레핀을 형성하는 단계를 포함할 수 있다.The method for producing a polyolefin according to an embodiment for solving the above problems includes forming a polyolefin by polymerizing an olefin-based monomer and a comonomer under an olefin polymerization catalyst including a transition metal compound represented by the following Chemical Formula 1 Can be.
<화학식 1><Formula 1>
Figure PCTKR2019012003-appb-img-000018
Figure PCTKR2019012003-appb-img-000018
(상기 화학식 1에서, M은 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)이고, X는 각각 독립적으로 할로겐, C 1-20 알킬, C 2-20 알케닐, C 2-20 알키닐, C 6-20 아릴, C 1-20 알킬 C 6-20 아릴, C 6-20 아릴 C 1-20 알킬, C 1-20 알킬아미도, C 6-20 아릴아미도 또는 C 1-20 알킬리덴이며, R 1 내지 R 4는 각각 독립적으로 수소, C 1-20 알킬, C 2-20 알케닐, C 2-20 알키닐, C 6-20 아릴, C 1-20 알킬 C 6-20 아릴, C 6-20 아릴 C 1-20 알킬, C 1-20 알킬아미도, C 6-20 아릴아미도 또는 C 1-20 알킬리덴이고, R 5 및 R 6은 각각 독립적으로 C 1-20 알킬, C 2-20 알케닐, C 2-20 알키닐, C 6-20 아릴, C 1-20 알킬 C 6-20 아릴, C 6-20 아릴 C 1-20 알킬, C 1-20 알킬아미도, C 6-20 아릴아미도 또는 C 1-20 알킬리덴이거나, 서로 연결되어 치환 또는 비치환된 C 4-20 고리를 형성하며, R 7 내지 R 10은 이웃하는 2개가 서로 연결되어 치환 또는 비치환된 C 4-20 고리를 형성한다)(In the formula 1, M is titanium (Ti), zirconium (Zr) or hafnium (Hf), X are each independently halogen, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl , C 6-20 aryl, C 1-20 alkyl C 6-20 aryl, C 6-20 aryl C 1-20 alkyl, C 1-20 alkylamido, C 6-20 arylamido or C 1-20 alkyl Ridene, R 1 to R 4 are each independently hydrogen, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, C 6-20 aryl, C 1-20 alkyl C 6-20 aryl , C 6-20 aryl C 1-20 alkyl, C 1-20 alkylamido, C 6-20 arylamido or C 1-20 alkylidene, R 5 and R 6 are each independently C 1-20 alkyl , C 2-20 alkenyl, C 2-20 alkynyl, C 6-20 aryl, C 1-20 alkyl C 6-20 aryl, C 6-20 aryl C 1-20 alkyl, C 1-20 alkylamido , C 6-20 arylamido or C 1-20 alkylidene, or are connected to each other to form a substituted or unsubstituted C 4-20 ring, and R 7 to R 10 are connected or substituted by two neighboring two groups Form a substituted C 4-20 ring)
상기 화학식 1은 하기 화학식 1-1 내지 화학식 1-12 중 적어도 어느 하나일 수 있다.The Chemical Formula 1 may be at least one of the following Chemical Formulas 1-1 to 1-12.
<화학식 1-1><Formula 1-1>
Figure PCTKR2019012003-appb-img-000019
Figure PCTKR2019012003-appb-img-000019
<화학식 1-2><Formula 1-2>
Figure PCTKR2019012003-appb-img-000020
Figure PCTKR2019012003-appb-img-000020
<화학식 1-3><Formula 1-3>
Figure PCTKR2019012003-appb-img-000021
Figure PCTKR2019012003-appb-img-000021
<화학식 1-4><Formula 1-4>
Figure PCTKR2019012003-appb-img-000022
Figure PCTKR2019012003-appb-img-000022
<화학식 1-5><Formula 1-5>
Figure PCTKR2019012003-appb-img-000023
Figure PCTKR2019012003-appb-img-000023
<화학식 1-6><Formula 1-6>
Figure PCTKR2019012003-appb-img-000024
Figure PCTKR2019012003-appb-img-000024
<화학식 1-7><Formula 1-7>
Figure PCTKR2019012003-appb-img-000025
Figure PCTKR2019012003-appb-img-000025
<화학식 1-8><Formula 1-8>
Figure PCTKR2019012003-appb-img-000026
Figure PCTKR2019012003-appb-img-000026
<화학식 1-9><Formula 1-9>
Figure PCTKR2019012003-appb-img-000027
Figure PCTKR2019012003-appb-img-000027
<화학식 1-10><Formula 1-10>
Figure PCTKR2019012003-appb-img-000028
Figure PCTKR2019012003-appb-img-000028
<화학식 1-11><Formula 1-11>
Figure PCTKR2019012003-appb-img-000029
Figure PCTKR2019012003-appb-img-000029
<화학식 1-12><Formula 1-12>
Figure PCTKR2019012003-appb-img-000030
Figure PCTKR2019012003-appb-img-000030
(상기 화학식 1-1 내지 화학식 1-12에서, M은 지르코늄 또는 하프늄이고, X는 각각 독립적으로 할로겐 또는 C 1-20 알킬이다)(In the formulas 1-1 to 1-12, M is zirconium or hafnium, and X is each independently halogen or C 1-20 alkyl)
상기 화학식 1은 하기 화학식 A 내지 화학식 D 중 적어도 어느 하나 일 수 있다.The Chemical Formula 1 may be at least one of the following Chemical Formulas A to D.
<화학식 A><Formula A>
Figure PCTKR2019012003-appb-img-000031
Figure PCTKR2019012003-appb-img-000031
<화학식 B><Formula B>
Figure PCTKR2019012003-appb-img-000032
Figure PCTKR2019012003-appb-img-000032
<화학식 C><Formula C>
Figure PCTKR2019012003-appb-img-000033
Figure PCTKR2019012003-appb-img-000033
<화학식 D><Formula D>
Figure PCTKR2019012003-appb-img-000034
Figure PCTKR2019012003-appb-img-000034
상기 올레핀 중합 촉매는 촉매 활성이 160 kg-PE/g-Cat 내지 200 kg-PE/g-Cat의 범위를 가질 수 있다.The olefin polymerization catalyst may have a catalytic activity ranging from 160 kg-PE/g-Cat to 200 kg-PE/g-Cat.
상기 폴리올레핀은 중량 평균 분자량(Weight average molecular weight, Mw)이 2만 이하일 수 있다.The polyolefin may have a weight average molecular weight (Mw) of 20,000 or less.
상기 폴리올레핀은 177℃에서 측정된 점도가 5000 cP 내지 10000 cP의 범위를 가질 수 있다.The polyolefin may have a viscosity measured at 177°C of 5000 cP to 10000 cP.
상기 폴리올레핀은 수평균 분자량(Number average molecular weight, Mn)이 1만 이하이고, 하기 수학식 1로 정의되는 분자량 분포(Molecular Weight Disribution, MWD)가 2 내지 3의 범위를 가질 수 있다.The polyolefin may have a number average molecular weight (Mn) of 10,000 or less, and a molecular weight distribution (MWD) defined by the following Equation 1 may range from 2 to 3.
[수학식 1][Equation 1]
Mw/MnMw/Mn
상기 올레핀계 단량체는 에틸렌이고, 상기 공단량체는 1-옥텐일 수 있다.The olefinic monomer may be ethylene, and the comonomer may be 1-octene.
상기 올레핀 중합 촉매는 조촉매 화합물을 더 포함할 수 있다.The olefin polymerization catalyst may further include a cocatalyst compound.
상기 조촉매 화합물은 하기 화학식 Ⅰ로 표현되는 화합물, 화학식 Ⅱ로 표현되는 화합물 및 화학식 Ⅲ로 표현되는 화합물 중 적어도 어느 하나를 포함할 수 있다.The cocatalyst compound may include at least one of a compound represented by the following formula (I), a compound represented by the formula (II), and a compound represented by the formula (III).
<화학식 Ⅰ><Formula Ⅰ>
Figure PCTKR2019012003-appb-img-000035
Figure PCTKR2019012003-appb-img-000035
(상기 화학식 A에서 n은 2 이상의 정수이고, R a는 할로겐 원자, C 1-20 탄화수소기 또는 할로겐으로 치환된 C 1-20 탄화수소기이다)(In Formula A, n is an integer of 2 or more, and R a is a halogen atom, a C 1-20 hydrocarbon group, or a C 1-20 hydrocarbon group substituted with halogen)
<화학식 Ⅱ><Formula Ⅱ>
Figure PCTKR2019012003-appb-img-000036
Figure PCTKR2019012003-appb-img-000036
(상기 화학식 B에서 D는 알루미늄(Al) 또는 보론(B)이고, R b, R c 및 R d는 각각 독립적으로 할로겐 원자, C 1-20 탄화수소기, 할로겐으로 치환된 C 1-20 탄화수소기 또는 C 1-20 알콕시기이다)(In the formula B, D is aluminum (Al) or boron (B), and R b , R c and R d are each independently a halogen atom, a C 1-20 hydrocarbon group, or a C 1-20 hydrocarbon group substituted with halogen. Or a C 1-20 alkoxy group)
<화학식 Ⅲ><Formula Ⅲ>
[L-H] +[Z(A) 4] - 또는 [L] +[Z(A) 4] - [LH] + [Z (A ) 4] - or [L] + [Z (A ) 4] -
(상기 화학식 C에서 L은 중성 또는 양이온성 루이스 염기이고, [L-H] + 및 [L] +는 브뢴스테드 산이며 Z는 13족 원소이고, A는 각각 독립적으로 치환 또는 비치환된 C 6-20 아릴기이거나 치환 또는 비치환된 C 1-20 알킬기이다)(In the formula C, L is a neutral or cationic Lewis base, [LH] + and [L] + are Brønsted acids, Z is a group 13 element, and A is each independently substituted or unsubstituted C 6- 20 aryl group or a substituted or unsubstituted C 1-20 alkyl group)
기타 실시예의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.Details of other embodiments are included in the detailed description and drawings.
본 발명의 전이금속 화합물을 포함하여 고온에서도 높은 안정성을 갖고 올레핀과 반응하는 올레핀 중합 촉매를 이용하여 중합된 폴리올레핀은 저분자량 및 저점도 등의 우수한 물성을 가질 수 있다.The polyolefin polymerized using the olefin polymerization catalyst that has high stability at high temperature and reacts with the olefin, including the transition metal compound of the present invention, may have excellent properties such as low molecular weight and low viscosity.
또한, 본 발명의 전이금속 화합물을 포함하는 올레핀 중합 촉매는 합성 수율이 높으며 경제적인 방법으로도 용이하게 제조할 수 있기 때문에, 상업적인 실용성이 우수하다.In addition, the olefin polymerization catalyst comprising the transition metal compound of the present invention has a high synthetic yield and can be easily produced by an economical method, and thus has excellent commercial practicality.
본 발명의 실시예들에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.The effects according to the embodiments of the present invention are not limited by the contents exemplified above, and more various effects are included in the present specification.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. Advantages and features of the present invention, and methods for achieving them will be clarified with reference to embodiments described below in detail together with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various different forms, and only the embodiments allow the disclosure of the present invention to be complete, and the ordinary knowledge in the technical field to which the present invention pertains. It is provided to fully inform the holder of the scope of the invention, and the invention is only defined by the scope of the claims.
본 명세서에서, 용어 "C A-B"는 "탄소수가 A 이상이고 B 이하"인 것을 의미하고, 용어 "A 내지 B"는 "A 이상이고 B 이하"인 것을 의미하며, 용어 "치환 또는 비치환된"에서 "치환된"은 "탄화수소 화합물 또는 탄화수소 유도체의 적어도 하나의 수소가 할로겐, C 1-20 알킬, C 2-20 알케닐, C 2-20 알키닐, C 6-20 아릴, C 1-20 알킬 C 6-20 아릴, C 6-20 아릴 C 1-20 알킬, C 1-20 알킬아미도, C 6-20 아릴아미도 또는 C 1-20 알킬리덴으로 치환된" 것을 의미하고, "비치환된"은 "탄화수소 화합물 또는 탄화수소 유도체의 적어도 하나의 수소가 할로겐, C 1-20 알킬, C 2-20 알케닐, C 2-20 알키닐, C 6-20 아릴, C 1-20 알킬 C 6-20 아릴, C 6-20 아릴 C 1-20 알킬, C 1-20 알킬아미도, C 6-20 아릴아미도 또는 C 1-20 알킬리덴으로 치환되지 않은" 것을 의미한다.In the present specification, the term "C AB "means "carbon number A or more and B or less", and the term "A to B" means "A or more and B or less" and the term "substituted or unsubstituted""Substitutedfrom" means "at least one hydrogen of a hydrocarbon compound or hydrocarbon derivative is halogen, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, C 6-20 aryl, C 1- Means substituted with 20 alkyl C 6-20 aryl, C 6-20 aryl C 1-20 alkyl, C 1-20 alkylamido, C 6-20 arylamido or C 1-20 alkylidene," “Unsubstituted” means “at least one hydrogen of a hydrocarbon compound or hydrocarbon derivative is halogen, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, C 6-20 aryl, C 1-20 alkyl C 6-20 aryl, C 6-20 aryl C 1-20 alkyl, C 1-20 alkylamido, C 6-20 arylamido or C 1-20 alkylidene.
본 발명의 일 실시예에 따른 폴리올레핀은 올레핀계 단량체와 공단량체가 공중합되어 형성될 수 있다. The polyolefin according to an embodiment of the present invention may be formed by copolymerizing an olefinic monomer and a comonomer.
폴리올레핀은, 예를 들어 자유 라디칼(free radical), 양이온(cationic), 배위(coordination), 축합(condensation), 첨가(addition) 등의 중합반응에 의해 중합된 단독중합체(homopolymer) 또는 공중합체(copolymer)일 수 있으나, 이에 제한되는 것은 아니다.Polyolefins are homopolymers or copolymers polymerized by polymerization reaction such as free radical, cationic, coordination, condensation, and addition. ), but is not limited thereto.
예시적인 실시예에서, 폴리올레핀은 기상 중합법, 용액 중합법 또는 슬러리 중합법 등으로 제조될 수 있다. 폴리올레핀이 용액 중합법 또는 슬러리 중합법으로 제조되는 경우 사용될 수 있는 용매의 예로서, 펜탄, 헥산, 헵탄, 노난, 데칸 및 이들의 이성질체와 같은 C 5-12 지방족 탄화수소 용매; 톨루엔, 벤젠과 같은 방향족 탄화수소 용매; 디클로로메탄, 클로로벤젠과 같은 염소 원자로 치환된 탄화수소 용매; 이들의 혼합물 등을 들 수 있으나, 이들만으로 한정되는 것은 아니다.In an exemplary embodiment, the polyolefin may be prepared by gas phase polymerization, solution polymerization or slurry polymerization. Examples of the solvent that can be used when the polyolefin is prepared by solution polymerization or slurry polymerization include C 5-12 aliphatic hydrocarbon solvents such as pentane, hexane, heptane, nonane, decane and isomers thereof; Aromatic hydrocarbon solvents such as toluene and benzene; Hydrocarbon solvents substituted with chlorine atoms such as dichloromethane and chlorobenzene; Although a mixture of these etc. are mentioned, it is not limited to these.
올레핀계 단량체는 C 2-20 알파-올레핀(α-olefin), C 1-20 디올레핀(diolefin), C 3-20 사이클로올레핀(cyclo-olefin) 및 C 3-20 사이클로디올레핀(cyclodiolefin)으로 이루어진 군에서 선택되는 하나 이상일 수 있다.The olefinic monomers are C 2-20 alpha-olefin, C 1-20 diolefin, C 3-20 cyclo-olefin and C 3-20 cyclodiolefin. It may be one or more selected from the group consisting of.
예시적인 실시예에서, 올레핀계 단량체는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센 및 1-헥사데센 등일 수 있고, 폴리올레핀은 상기 예시된 올레핀계 단량체를 1종만 포함하는 단독중합체이거나 2종 이상 포함하는 공중합체일 수 있다.In an exemplary embodiment, the olefinic monomer is ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene , 1-dodecene, 1-tetradecene, 1-hexadecene, and the like, and the polyolefin may be a homopolymer containing only one olefin-based monomer exemplified above, or a copolymer containing two or more kinds.
바람직하게는, 폴리올레핀은 에틸렌과 1-옥텐이 공중합된 공중합체일 수 있으나, 이에 한정되는 것은 아니다.Preferably, the polyolefin may be a copolymer of ethylene and 1-octene, but is not limited thereto.
본 발명의 일 실시예에 따른 폴리올레핀은 중량 평균 분자량(Weight average molecular weight, Mw)이 2만 이하일 수 있다. The polyolefin according to an embodiment of the present invention may have a weight average molecular weight (Mw) of 20,000 or less.
폴리올레핀은 후술하는 올레핀 중합 촉매용 전이금속 화합물을 포함하는 촉매 하에 중합되어, 동일한 올레핀계 중합체에 비해 저분자량 및 저점도의 특성을 가질 수 있다. 상기 전이금속 화합물은 올레핀계 단량체에 대하여 높은 촉매활성을 가지며, 비교적 적은 양의 수소(H 2) 주입시에도 저분자량의 폴리올레핀을 중합할 수 있다. 본 발명의 일 실시예에 따른 폴리올레핀은 저분자량을 가짐으로써 저점도 특성이 나타나고, 이에 따라 폴리올레핀은 왁스(Wax), 접착제의 원료로 사용될 수 있다. The polyolefin is polymerized under a catalyst containing a transition metal compound for an olefin polymerization catalyst, which will be described later, and may have low molecular weight and low viscosity properties compared to the same olefin polymer. The transition metal compound has a high catalytic activity with respect to the olefinic monomer, and can polymerize a low molecular weight polyolefin even when a relatively small amount of hydrogen (H 2 ) is injected. The polyolefin according to an embodiment of the present invention has a low molecular weight and thus exhibits low viscosity, and accordingly, the polyolefin may be used as a raw material for a wax or adhesive.
본 발명의 일 실시예에 따르면, 폴리올레핀은 177℃에서 측정된 점도가 5000 cP 내지 10000 cP의 범위를 가질 수 있다. 이에 대한 자세한 설명은 실험예를 참조하여 후술하기로 한다.According to an embodiment of the present invention, the polyolefin may have a viscosity measured at 177°C of 5000 cP to 10000 cP. A detailed description of this will be described later with reference to the experimental example.
또한, 본 발명의 일 실시예에 따르면, 폴리올레핀은 1만 이하의 수평균 분자량(Number average molecular weight, Mn)을 가질 수 있고, 하기 수학식 1으로 정의되는 분자량 분포(Molecular weight distribution, MWD)가 2 내지 3의 범위를 가질 수 있다.In addition, according to one embodiment of the present invention, the polyolefin may have a number average molecular weight (Mn) of 10,000 or less, and a molecular weight distribution (MWD) defined by Equation 1 below It may have a range of 2 to 3.
[수학식 1][Equation 1]
MWD = Mw/MnMWD = Mw/Mn
한편, 상술한 바와 같이, 본 발명의 폴리올레핀은 올레핀 중합 촉매 하에 올레핀계 단량체를 중합시켜 형성될 수 있다.Meanwhile, as described above, the polyolefin of the present invention may be formed by polymerizing an olefinic monomer under an olefin polymerization catalyst.
본 발명의 일 실시예에 따른 폴리올레핀은 하기 화학식 1로 표현되는 올레핀 중합 촉매용 전이금속 화합물을 포함하는 올레핀 중합 촉매 하에서 중합될 수 있다. The polyolefin according to an embodiment of the present invention may be polymerized under an olefin polymerization catalyst including a transition metal compound for an olefin polymerization catalyst represented by Chemical Formula 1 below.
<화학식 1><Formula 1>
Figure PCTKR2019012003-appb-img-000037
Figure PCTKR2019012003-appb-img-000037
상기 화학식 1에서 M은 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)일 수 있다. 구체적으로, M은 지르코늄 또는 하프늄일 수 있다.In Chemical Formula 1, M may be titanium (Ti), zirconium (Zr), or hafnium (Hf). Specifically, M may be zirconium or hafnium.
X는 각각 독립적으로 할로겐, C 1-20 알킬, C 2-20 알케닐, C 2-20 알키닐, C 6-20 아릴, C 1-20 알킬 C 6-20 아릴, C 6-20 아릴 C 1-20 알킬, C 1-20 알킬아미도, C 6-20 아릴아미도 또는 C 1-20 알킬리덴일 수 있다. 구체적으로, X는 각각 독립적으로 할로겐 또는 C 1-20 알킬일 수 있다. 보다 구체적으로는, X는 각각 독립적으로 염소(Cl) 또는 메틸(methyl)일 수 있다.X is each independently halogen, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, C 6-20 aryl, C 1-20 alkyl C 6-20 aryl, C 6-20 aryl C 1-20 alkyl, C 1-20 alkylamido, C 6-20 arylamido or C 1-20 alkylidene. Specifically, X may be each independently halogen or C 1-20 alkyl. More specifically, X may be each independently chlorine (Cl) or methyl (methyl).
R 1 내지 R 4는 각각 독립적으로 수소, C 1-20 알킬, C 2-20 알케닐, C 2-20 알키닐, C 6-20 아릴, C 1-20 알킬 C 6-20 아릴, C 6-20 아릴 C 1-20 알킬, C 1-20 알킬아미도, C 6-20 아릴아미도 또는 C 1-20 알킬리덴일 수 있다. 구체적으로, R 1, R 3 및 R 4는 각각 수소이고, R 2는 C 1-20 알킬일 수 있다. 더욱 구체적으로, R 1, R 3 및 R 4는 각각 수소이고, R 2는 노르말부틸(n-butyl)일 수 있다.R 1 to R 4 are each independently hydrogen, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, C 6-20 aryl, C 1-20 alkyl C 6-20 aryl, C 6 -20 aryl C 1-20 alkyl, C 1-20 alkylamido, C 6-20 arylamido or C 1-20 alkylidene. Specifically, R 1 , R 3 and R 4 are each hydrogen, and R 2 may be C 1-20 alkyl. More specifically, R 1 , R 3 and R 4 are each hydrogen, and R 2 may be n-butyl.
R 5 및 R 6은 각각 독립적으로 C 1-20 알킬, C 2-20 알케닐, C 2-20 알키닐, C 6-20 아릴, C 1-20 알킬 C 6-20 아릴, C 6-20 아릴 C 1-20 알킬, C 1-20 알킬아미도, C 6-20 아릴아미도 또는 C 1-20 알킬리덴이거나, 서로 연결되어 치환 또는 비치환된 C 4-20 고리를 형성할 수 있다. 구체적으로, R 5 및 R 6은 각각 독립적으로 C 1-20 알킬 또는 C 6-20 아릴이거나, 서로 연결되어 치환 또는 비치환된 지방족 C 4-20 고리를 형성할 수 있다. 보다 구체적으로는, R 5 및 R 6은 각각 독립적으로 메틸(methyl)이거나, 서로 연결되어 지방족 C 4 고리를 형성할 수 있다.R 5 and R 6 are each independently C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, C 6-20 aryl, C 1-20 alkyl C 6-20 aryl, C 6-20 Aryl C 1-20 alkyl, C 1-20 alkylamido, C 6-20 arylamido or C 1-20 alkylidene, or may be linked to each other to form a substituted or unsubstituted C 4-20 ring. Specifically, R 5 and R 6 are each independently C 1-20 alkyl or C 6-20 aryl, or may be connected to each other to form a substituted or unsubstituted aliphatic C 4-20 ring. More specifically, R 5 and R 6 are each independently methyl, or may be connected to each other to form an aliphatic C 4 ring.
R 7 내지 R 10은 이웃하는 2개가 서로 연결되어 치환 또는 비치환된 C 4-20 고리를 형성할 수 있다. 구체적으로, R 7 내지 R 10은 이웃하는 2개가 서로 연결되어 치환 또는 비치환된 방향족 C 5-20 고리를 형성할 수 있다. 보다 구체적으로는, R 7 내지 R 10은 이웃하는 2개가 서로 연결되어 치환 또는 비치환된 방향족 C 6 고리를 형성할 수 있다. R 7 내지 R 10 중 이웃하는 2개란 R 7과 R 8 또는 R 9와 R 10을 의미하는 것일 수 있다.R 7 to R 10 may be connected to two neighboring groups to form a substituted or unsubstituted C 4-20 ring. Specifically, R 7 to R 10 may be connected to two neighboring groups to form a substituted or unsubstituted aromatic C 5-20 ring. More specifically, R 7 to R 10 may be connected to two neighboring groups to form a substituted or unsubstituted aromatic C 6 ring. Two neighboring R 7 to R 10 may mean R 7 and R 8 or R 9 and R 10 .
상기 방향족 C 6 고리는 할로겐, C 6-20 아릴, C 1-20 알킬실릴(alkylsilyl), C 1-20 알킬옥시(alkyloxy) 및 C 1-20 알킬아미노(alkylamino) 중 하나 이상으로 치환될 수 있다. 구체적으로, 상기 할로겐은 불소(F)이고, 상기 C 6-20 아릴은 페닐이며, 상기 C 1-20 알킬실릴은 트리메틸실릴(trimethylsilyl, -SiMe 3)이고, 상기 C 1-20 알킬옥시는 메틸옥시(methyloxy[methoxy], -OMe)이며, 상기 C 1-20 알킬아미노는 다이메틸아미노(dimethylamino, -NMe 2)일 수 있다.The aromatic C 6 ring may be substituted with one or more of halogen, C 6-20 aryl, C 1-20 alkylsilyl, C 1-20 alkyloxy and C 1-20 alkylamino. have. Specifically, the halogen is fluorine (F), the C 6-20 aryl is phenyl, the C 1-20 alkylsilyl is trimethylsilyl (-SiMe 3 ), and the C 1-20 alkyloxy is methyl Oxy(methyloxy[methoxy], -OMe), and the C 1-20 alkylamino may be dimethylamino (-NMe 2 ).
상기 전이금속 화합물은 구체적으로, 하기 화학식 1-1 내지 화학식 1-12 중 적어도 하나로 표현될 수 있다.Specifically, the transition metal compound may be represented by at least one of the following Chemical Formulas 1-1 to 1-12.
<화학식 1-1><Formula 1-1>
Figure PCTKR2019012003-appb-img-000038
Figure PCTKR2019012003-appb-img-000038
<화학식 1-2><Formula 1-2>
Figure PCTKR2019012003-appb-img-000039
Figure PCTKR2019012003-appb-img-000039
<화학식 1-3><Formula 1-3>
Figure PCTKR2019012003-appb-img-000040
Figure PCTKR2019012003-appb-img-000040
<화학식 1-4><Formula 1-4>
Figure PCTKR2019012003-appb-img-000041
Figure PCTKR2019012003-appb-img-000041
<화학식 1-5><Formula 1-5>
Figure PCTKR2019012003-appb-img-000042
Figure PCTKR2019012003-appb-img-000042
<화학식 1-6><Formula 1-6>
Figure PCTKR2019012003-appb-img-000043
Figure PCTKR2019012003-appb-img-000043
<화학식 1-7><Formula 1-7>
Figure PCTKR2019012003-appb-img-000044
Figure PCTKR2019012003-appb-img-000044
<화학식 1-8><Formula 1-8>
Figure PCTKR2019012003-appb-img-000045
Figure PCTKR2019012003-appb-img-000045
<화학식 1-9><Formula 1-9>
Figure PCTKR2019012003-appb-img-000046
Figure PCTKR2019012003-appb-img-000046
<화학식 1-10><Formula 1-10>
Figure PCTKR2019012003-appb-img-000047
Figure PCTKR2019012003-appb-img-000047
<화학식 1-11><Formula 1-11>
Figure PCTKR2019012003-appb-img-000048
Figure PCTKR2019012003-appb-img-000048
<화학식 1-12><Formula 1-12>
Figure PCTKR2019012003-appb-img-000049
Figure PCTKR2019012003-appb-img-000049
상기 화학식 1-1 내지 화학식 1-12에서 M은 지르코늄 또는 하프늄이고, X는 각각 독립적으로 할로겐 또는 C 1-20 알킬일 수 있다.In Formulas 1-1 to 1-12, M is zirconium or hafnium, and X may be each independently halogen or C 1-20 alkyl.
예시적인 실시예에서, 상기 전이금속 화합물은 하기 화학식 A 내지 화학식 D 중 어느 하나 이상일 수 있다.In an exemplary embodiment, the transition metal compound may be any one or more of the following Formulas A to D.
<화학식 A><Formula A>
Figure PCTKR2019012003-appb-img-000050
Figure PCTKR2019012003-appb-img-000050
<화학식 B><Formula B>
Figure PCTKR2019012003-appb-img-000051
Figure PCTKR2019012003-appb-img-000051
<화학식 C><Formula C>
Figure PCTKR2019012003-appb-img-000052
Figure PCTKR2019012003-appb-img-000052
<화학식 D><Formula D>
Figure PCTKR2019012003-appb-img-000053
Figure PCTKR2019012003-appb-img-000053
바람직하게는, 상기 전이금속 화합물은 상기 화학식 A의 화합물일 수 있다. 화학식 A는 중심금속으로 하프늄(Hf)을 포함함으로써, 화학식 A를 포함하는 폴리올레핀 중합용 올레핀 중합 촉매는 폴리올레핀의 분자량 조절과 공중합성에서 우수한 특성을 가질 수 있다. 또한, 화학식 A의 전이금속 화합물에서 사이클로펜타다이엔(Cyclopentadiene)기 사이의 브릿지 치환기가 사이클로뷰틸기(Cyclobutyl)인 경우, 상기 브릿지 치환기가 알킬(alkyl)인 경우에 비하여 올레핀 중합 촉매의 활성 및 중합 성능이 우수한 특징이 있다. Preferably, the transition metal compound may be a compound of Formula A. Formula A by containing hafnium (Hf) as the central metal, the olefin polymerization catalyst for polyolefin polymerization containing Formula A may have excellent properties in controlling the molecular weight and copolymerization of the polyolefin. In addition, when the bridge substituent between the cyclopentadiene groups in the transition metal compound of the formula (A) is a cyclobutyl group (Cyclobutyl), the activity and polymerization of the olefin polymerization catalyst compared to the case where the bridge substituent is an alkyl (alkyl) It has excellent performance characteristics.
한편, 본 발명의 일 실시예에 따른 폴리올레핀 중합용 올레핀 중합 촉매는 상기 예시된 전이금속 화합물들 중 하나 이상과 조촉매 화합물을 포함할 수 있다.On the other hand, the olefin polymerization catalyst for polyolefin polymerization according to an embodiment of the present invention may include at least one of the transition metal compounds illustrated above and a cocatalyst compound.
조촉매 화합물은 하기 화학식 Ⅰ로 표현되는 화합물, 화학식 Ⅱ로 표현되는 화합물 및 화학식 Ⅲ로 표현되는 화합물 중 하나 이상을 포함할 수 있다.The cocatalyst compound may include one or more of a compound represented by the following formula (I), a compound represented by the formula (II), and a compound represented by the formula (III).
<화학식 Ⅰ><Formula Ⅰ>
Figure PCTKR2019012003-appb-img-000054
Figure PCTKR2019012003-appb-img-000054
상기 화학식 Ⅰ에서 n은 2 이상의 정수이고, R a는 할로겐 원자, C 1-20 탄화수소기 또는 할로겐으로 치환된 C 1-20 탄화수소기일 수 있다. 구체적으로, 상기 R a는 메틸, 에틸, n-부틸 또는 이소부틸일 수 있으나, 이에 한정되는 것은 아니다.In Formula (I), n is an integer of 2 or more, and R a may be a halogen atom, a C 1-20 hydrocarbon group, or a C 1-20 hydrocarbon group substituted with halogen. Specifically, R a may be methyl, ethyl, n-butyl or isobutyl, but is not limited thereto.
<화학식 Ⅱ><Formula Ⅱ>
Figure PCTKR2019012003-appb-img-000055
Figure PCTKR2019012003-appb-img-000055
상기 화학식 Ⅱ에서 D는 알루미늄(Al) 또는 보론(B)이고, Rb, Rc 및 Rd는 각각 독립적으로 할로겐 원자, C 1-20 탄화수소기, 할로겐으로 치환된 C 1-20 탄화수소기 또는 C 1-20 알콕시기일 수 있다. 구체적으로, 상기 D가 알루미늄일 때 상기 Rb, Rc 및 Rd는 각각 독립적으로 메틸 또는 이소부틸일 수 있고, 상기 D가 보론일 때 상기 Rb, Rc 및 Rd는 각각 펜타플루오로페닐일 수 있으나, 이에 한정되는 것은 아니다.In Formula II, D is aluminum (Al) or boron (B), and Rb, Rc, and Rd are each independently a halogen atom, a C 1-20 hydrocarbon group, or a C 1-20 hydrocarbon group substituted with halogen, or C 1- It may be a 20 alkoxy group. Specifically, when D is aluminum, Rb, Rc and Rd may each independently be methyl or isobutyl, and when D is boron, Rb, Rc and Rd may each be pentafluorophenyl, but It is not limited.
<화학식 Ⅲ><Formula Ⅲ>
[L-H] +[Z(A) 4] - 또는 [L] +[Z(A) 4] - [LH] + [Z (A ) 4] - or [L] + [Z (A ) 4] -
상기 화학식 Ⅲ에서 L은 중성 또는 양이온성 루이스 염기이고, [L-H] + 또는 [L] +는 브뢴스테드 산이며, Z는 13족 원소이고, A는 각각 독립적으로 치환 또는 비치환된 C 6-20 아릴기이거나 치환 또는 비치환된 C 1-20 알킬기일 수 있다. 구체적으로, 상기 [L-H] +는 디메틸아닐리늄 양이온일 수 있고, 상기 [Z(A) 4] -는 [B(C 6F 5) 4] -일 수 있으며, 상기 [L] +는 [(C 6H 5) 3C] +일 수 있으나, 이에 한정되는 것은 아니다.In the formula (III), L is a neutral or cationic Lewis base, [LH] + or [L] + is Brønsted acid, Z is a group 13 element, and A is each independently substituted or unsubstituted C 6- It may be a 20 aryl group or a substituted or unsubstituted C 1-20 alkyl group. Specifically, the [LH] + may be a dimethylanilinium cation dimethyl, wherein [Z (A) 4] - is [B (C 6 F 5) 4] - can be a, the [L] + is [( C 6 H 5 ) 3 C] + , but is not limited thereto.
상기 올레핀 중합 촉매는 담체를 더 포함할 수 있다.The olefin polymerization catalyst may further include a carrier.
담체는 올레핀 중합 촉매용 전이금속 화합물과 조촉매 화합물을 담지할 수 있는 것이면 특별히 제한되지 않는다. 예시적인 실시예에서, 담체는 탄소, 실리카, 알루미나, 제올라이트, 염화 마그네슘 등일 수 있다.The carrier is not particularly limited as long as it can support a transition metal compound for an olefin polymerization catalyst and a cocatalyst compound. In an exemplary embodiment, the carrier can be carbon, silica, alumina, zeolite, magnesium chloride, and the like.
담체에 올레핀 중합 촉매용 전이금속 화합물 및 조촉매 화합물을 담지하는 방법으로서, 물리적 흡착 방법 또는 화학적 흡착 방법이 사용될 수 있다. As a method of supporting the transition metal compound for the olefin polymerization catalyst and the cocatalyst compound on a carrier, a physical adsorption method or a chemical adsorption method can be used.
예시적인 실시예에서, 물리적 흡착 방법은 올레핀 중합 촉매용 전이금속 화합물이 용해된 용액을 담체에 접촉시킨 후 건조하는 방법, 올레핀 중합 촉매용 전이금속 화합물과 조촉매 화합물이 용해된 용액을 담체에 접촉시킨 후 건조하는 방법 또는 올레핀 중합 촉매용 전이금속 화합물이 용해된 용액을 담체에 접촉시킨 후 건조하고 올레핀 중합 촉매용 전이금속 화합물이 담지된 담체를 제조하고, 이와 별개로 조촉매 화합물이 용해된 용액을 담체에 접촉시킨 후 건조하여 조촉매 화합물이 담지된 담체를 제조한 후, 이들을 혼합하는 방법 등일 수 있다.In an exemplary embodiment, the physical adsorption method is a method in which a solution in which a transition metal compound for an olefin polymerization catalyst is dissolved is contacted with a carrier and then dried, and a solution in which a transition metal compound for an olefin polymerization catalyst and a cocatalyst compound is dissolved is contacted with a carrier. After drying, a method in which a transition metal compound for an olefin polymerization catalyst is dissolved is contacted with a carrier, followed by drying and preparing a carrier carrying a transition metal compound for an olefin polymerization catalyst, and separately, a solution in which the cocatalyst compound is dissolved After contact with the carrier and dried to prepare a carrier carrying the cocatalyst compound, it may be a method of mixing them.
예시적인 실시예에서, 화학적 흡착 방법은 담체의 표면에 조촉매 화합물을 먼저 담지시킨 후, 조촉매 화합물에 올레핀 중합 촉매용 전이금속 화합물을 담지시키는 방법, 또는 담체의 표면의 작용기(예를 들어, 실리카의 경우 실리카 표면의 히드록시기(-OH))와 촉매 화합물을 공유 결합시키는 방법 등일 수 있다.In an exemplary embodiment, the chemical adsorption method is a method in which a cocatalyst compound is first supported on a surface of a carrier, and then a transition metal compound for an olefin polymerization catalyst is supported on a cocatalyst compound, or a functional group on the surface of the carrier (for example, In the case of silica, it may be a method of covalently bonding a hydroxy group (-OH) on the silica surface with a catalyst compound.
전이금속 화합물을 포함하는 주촉매 화합물의 담지량의 총합은 담체 1g을 기준으로 0.001mmol 내지 1mmol일 수 있으며, 조촉매 화합물의 담지량은 담체 1g을 기준으로 2mmol 내지 15mmol일 수 있다.The sum of the supported amounts of the main catalyst compound containing the transition metal compound may be 0.001 mmol to 1 mmol based on 1 g of the carrier, and the supported amount of the cocatalyst compound may be 2 mmol to 15 mmol on the basis of 1 g of the carrier.
그러나, 이와 같은 담체는 필수적으로 포함해야 하는 것은 아니며, 필요에 따라 그 사용 여부를 적절하게 선택할 수 있다.However, such a carrier is not necessarily included, and its use can be appropriately selected as necessary.
본 발명의 전이금속 화합물을 포함하는 올레핀 중합 촉매는 고온에서 안정성을 가지며 올레핀, 특히 α-올레핀과의 반응성이 우수하기 때문에 올레핀을 중합하는 것이 용이하여 높은 촉매 활성을 가지고, 저분자량 및 저점도의 특성을 갖는 폴리올레핀 제조가 가능하다.The olefin polymerization catalyst comprising the transition metal compound of the present invention has stability at high temperature and has excellent reactivity with olefins, particularly α-olefins, so it is easy to polymerize olefins, has high catalytic activity, and has low molecular weight and low viscosity. It is possible to manufacture polyolefins having properties.
이는 특히 본 발명의 전이금속 화합물 중 R 7 내지 R 10의 이웃하는 2개가 서로 연결되어 치환 또는 비치환된 방향족 C 6 고리를 형성하는 경우 상대적으로 전자가 풍부하여 올레핀의 (공)중합 반응성이 향상됨에 기인하는 것일 수 있으나, 이에 제한되는 것은 아니다.This is particularly the case where two adjacent R 7 to R 10 of the transition metal compound of the present invention are connected to each other to form a substituted or unsubstituted aromatic C 6 ring, which is relatively rich in electrons, thereby improving the (co)polymerization reactivity of olefins It may be due to, but is not limited to.
이하, 본 발명의 올레핀 중합 촉매용 전이금속 화합물 중 상기 화학식 A 내지 D로 표현되는 화합물에 대한 구체적인 제조예에 대해 서술한다.Hereinafter, specific production examples of the compounds represented by the formulas A to D among the transition metal compounds for the olefin polymerization catalyst of the present invention will be described.
<제조예 1> 화학식 A의 화합물 제조<Production Example 1> Preparation of a compound of formula (A)
제조예 1-1: 1,1’-binaphthyl-2,2’-dicarboxylic acid의 제조Preparation Example 1-1: Preparation of 1,1'-binaphthyl-2,2'-dicarboxylic acid
2,2’-dibromo-1,1’-binaphthyl (3.85 g, 9.34 mmol)을 THF (40 mL)에 희석한 용액에 t-BuLi (15.8 g, 41.1 mmol, 1.7 M in pentane)을 -78 ℃에서 첨가한 후 1 시간 동안 교반하였다. CO2 기체를 -78 ℃에서 3분 동안 주입한 뒤 온도를 서서히 상온으로 올려 12 시간 동안 교반하였다. 0 ℃에서 10 % HCl을 첨가하여 반응을 종결한 후 진공 하에서 THF를 제거하였다. Ethyl acetate로 추출하여 유기층을 분리하고, chloroform으로 재결정하여 하기와 같은 1H-NMR 스펙트럼을 갖는 흰색 고체 화합물인 2,2’-dibromo-1,1’-binaphthyl 3.49 g (quant.)을 얻었다. To a solution of 2,2'-dibromo-1,1'-binaphthyl (3.85 g, 9.34 mmol) diluted in THF (40 mL), t-BuLi (15.8 g, 41.1 mmol, 1.7 M in pentane) was added at -78°C. After the addition, the mixture was stirred for 1 hour. CO2 gas was injected at -78°C for 3 minutes, and then the temperature was gradually raised to room temperature and stirred for 12 hours. After the reaction was terminated by adding 10% HCl at 0°C, THF was removed under vacuum. The organic layer was separated by extraction with ethyl acetate, and recrystallized with chloroform to obtain 3.49 g (quant.) of 2,2'-dibromo-1,1'-binaphthyl, a white solid compound having the following 1H-NMR spectrum.
1H-NMR (DMSO-d6, 300 MHz): δ 12.4 (s, 2H), 8.11-8.00 (m, 6H), 7.54 (t, 2H), 7.27 (t, 2H), 6.87 (d, 2H).1H-NMR (DMSO-d6, 300 MHz): δ 12.4 (s, 2H), 8.11-8.00 (m, 6H), 7.54 (t, 2H), 7.27 (t, 2H), 6.87 (d, 2H).
제조예 1-2: 7H-dibenzo[c,g]fluoren-7-one의 제조Preparation Example 1-2: Preparation of 7H-dibenzo[c,g]fluoren-7-one
상기 제조예 1-1에서 제조한 1,1’-binaphthyl-2,2’-dicarboxylic acid (3.02 g, 8.82 mmol)와 acetic anhydride (30 mL)를 혼합하여 140 ℃에서 1 시간 30분 동안 교반하였다. 진공 하에서 acetic anhydride를 제거한 후 남은 반응액을 300 ℃에서 3 시간 동안 교반하였다. Dichloromethane으로 여과한 후 컬럼 크로마토그래피 (hexane : dichloromethane = 1 : 1, v/v)를 통해 하기와 같은 1H-NMR 스펙트럼을 갖는 빨간색 고체 화합물인 7H-dibenzo[c,g]fluoren-7-one 1.17 g (47 %)을 얻었다. 1,1'-binaphthyl-2,2'-dicarboxylic acid (3.02 g, 8.82 mmol) prepared in Preparation Example 1-1 and acetic anhydride (30 mL) were mixed and stirred at 140°C for 1 hour 30 minutes. . After removing acetic anhydride under vacuum, the remaining reaction solution was stirred at 300°C for 3 hours. After filtering with dichloromethane, 7H-dibenzo[c,g]fluoren-7-one 1.17 as a red solid compound having the following 1H-NMR spectrum through column chromatography (hexane: dichloromethane = 1: 1, v/v) g (47%).
1H-NMR (CDCl3, 300 MHz): δ 8.37-8.33 (m, 2H), 7.92-7.87 (m, 2H), 7.83 (d, 2H), 7.77 (d, 2H), 7.60-7.55 (m, 4H).1H-NMR (CDCl3, 300 MHz): δ 8.37-8.33 (m, 2H), 7.92-7.87 (m, 2H), 7.83 (d, 2H), 7.77 (d, 2H), 7.60-7.55 (m, 4H ).
제조예 1-3: 7H-dibenzo[c,g]fluorene의 제조Preparation Example 1-3: Preparation of 7H-dibenzo[c,g]fluorene
상기 제조에 1-2에서 제조한 7H-dibenzo[c,g]fluoren-7-one (641 mg, 2.29 mmol), N2H4·H2O (2.86 g, 57.2 mmol) 및 KOH (385 mg, 6.86 mmol)을 diethylene glycol (30 mL)에 분산시킨 용액을 170 ℃에서 3 시간 동안 교반하였다. 0 ℃에서 10 % HCl을 첨가하여 반응을 종결한 후 생성된 고체를 여과하였다. 진공 하에서 건조하여 하기와 같은 1H-NMR 스펙트럼을 갖는 어두운 갈색 고체 화합물인 7H-dibenzo[c,g]fluorene 603 mg (99%)을 얻었다.7H-dibenzo[c,g]fluoren-7-one (641 mg, 2.29 mmol), N2H4·H2O (2.86 g, 57.2 mmol) and KOH (385 mg, 6.86 mmol) prepared in 1-2 were prepared in the above preparation. The solution dispersed in diethylene glycol (30 mL) was stirred at 170° C. for 3 hours. The reaction was terminated by adding 10% HCl at 0° C. and the resulting solid was filtered. It was dried under vacuum to obtain 603 mg (99%) of 7H-dibenzo[c,g]fluorene, a dark brown solid compound having the following 1H-NMR spectrum.
1H-NMR (CDCl3, 300 MHz): δ 8.73 (d, 2H), 7.97 (d, 2H), 7.86 (d, 2H), 7.73 (d, 2H), 7.59-7.48 (m, 4H), 4.13 (s, 2H).1H-NMR (CDCl3, 300 MHz): δ 8.73 (d, 2H), 7.97 (d, 2H), 7.86 (d, 2H), 7.73 (d, 2H), 7.59-7.48 (m, 4H), 4.13 ( s, 2H).
제조예 1-4: (7H-dibenzo[c,g]fluorene) lithium의 제조Preparation Example 1-4: Preparation of (7H-dibenzo[c,g]fluorene) lithium
상기 제조예 1-3에서 제조한 7H-dibenzo[c,g]fluorene (585 mg, 2.20 mmol)을 diethyl ether (50 mL)에 희석한 용액에 n-BuLi (980 mg, 2.30 mmol, 1.6 M in Hexane)을 -30 ℃에서 천천히 첨가한 후 온도를 서서히 상온으로 올려 12 시간 동안 교반하였다. 생성된 고체를 여과한 후 진공 하에서 건조하여 황토색 고체 화합물인 (7H-dibenzo[c,g]fluorene) lithium 598 mg (100 %)을 얻었다.7-dibenzo[c,g]fluorene (585 mg, 2.20 mmol) prepared in Preparation Example 1-3 was diluted in diethyl ether (50 mL) in n-BuLi (980 mg, 2.30 mmol, 1.6 M in Hexane) was slowly added at -30 °C, and the temperature was gradually raised to room temperature and stirred for 12 hours. The resulting solid was filtered and dried under vacuum to obtain 598 mg (100%) lithium (7H-dibenzo[c,g]fluorene), an ocher solid compound.
제조예 1-5: 9-[1-(2,4-Cyclopentadien-1-yl)-1-cyclobutyl]-7H-dibenzo[c,g] fluorene의 제조Preparation Example 1-5: Preparation of 9-[1-(2,4-Cyclopentadien-1-yl)-1-cyclobutyl]-7H-dibenzo[c,g] fluorene
상기 제조예 1-4에서 제조한 (7H-dibenzo[c,g]fluorene) lithium (596 mg, 2.19 mmol)을 diethyl ether (35 mL)에 분산시킨 용액에 5-cyclobutylidene-1,3-cyclopentadiene (518 mg, 4.38 mmol)을 diethyl ether (10 mL)에 희석한 용액을 -30 ℃에서 천천히 첨가한 뒤 온도를 서서히 상온으로 올려 3일 동안 교반하였다. 반응 종결 후 diethyl ether와 aqueous NH4Cl로 추출하여 유기층을 분리하였다. Hexane으로 재결정하여 하기와 같은 1H-NMR 스펙트럼을 갖는 흰색 고체 화합물인 9-[1-(2,4-Cyclopentadien-1-yl)-1-cyclobutyl]-7H-dibenzo[c,g] fluorene 654 mg (78 %)을 얻었다. 5-cyclobutylidene-1,3-cyclopentadiene in a solution in which (7H-dibenzo[c,g]fluorene) lithium (596 mg, 2.19 mmol) prepared in Preparation Example 1-4 was dispersed in diethyl ether (35 mL). 518 mg, 4.38 mmol) was slowly added to a solution diluted in diethyl ether (10 mL) at -30 °C, and the temperature was gradually raised to room temperature and stirred for 3 days. After completion of the reaction, the organic layer was separated by extraction with diethyl ether and aqueous NH4Cl. Recrystallized with Hexane, 9-[1-(2,4-Cyclopentadien-1-yl)-1-cyclobutyl]-7H-dibenzo[c,g] fluorene 654 mg, a white solid compound having the following 1H-NMR spectrum (78%).
1H-NMR (CDCl3, 300 MHz): δ 8.56-8.47 (m, 2H), 7.95-7.89 (m, 2H), 7.79-7.76 (m, 4H), 7.50-7.44 (m, 4H), 5.96-5.81 (m, 1H), 5.74-5.67 (m, 1H), 5.59-5.50 (m, 1H), 4.42 (d, 1H), 2.99-2.79 (m, 2H), 2.58-2.44 (m, 2H), 2.39-2.02 (m, 2H), 2.01-1.94 (m, 2H). 1H-NMR (CDCl3, 300 MHz): δ 8.56-8.47 (m, 2H), 7.95-7.89 (m, 2H), 7.79-7.76 (m, 4H), 7.50-7.44 (m, 4H), 5.96-5.81 (m, 1H), 5.74-5.67 (m, 1H), 5.59-5.50 (m, 1H), 4.42 (d, 1H), 2.99-2.79 (m, 2H), 2.58-2.44 (m, 2H), 2.39 -2.02 (m, 2H), 2.01-1.94 (m, 2H).
제조예 1-6: Cyclobutylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] dilithium의 제조Preparation Example 1-6: Preparation of Cyclobutylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] dilithium
상기 제조예 1-5에서 제조한 9-[1-(2,4-Cyclopentadien-1-yl)-1-cyclobutyl]-7H-dibenzo[c,g] fluorene (319 mg, 0.83 mmol)을 diethyl ether (35 mL)에 희석한 용액에 n-BuLi (741 mg, 1.74 mmol, 1.6 M in Hexane)을 -30 ℃에서 천천히 첨가한 후 온도를 서서히 상온으로 올려 12 시간 동안 교반하였다. 생성된 고체를 여과한 후 진공 하에서 건조하여 황토색 고체 화합물인 Cyclobutylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] dilithium 368 mg (quant., ether adduct)을 얻었다.9-[1-(2,4-Cyclopentadien-1-yl)-1-cyclobutyl]-7H-dibenzo[c,g] fluorene (319 mg, 0.83 mmol) prepared in Preparation Example 1-5 was diethyl ether To the solution diluted in (35 mL), n-BuLi (741 mg, 1.74 mmol, 1.6 M in Hexane) was slowly added at -30 °C, and the temperature was gradually raised to room temperature and stirred for 12 hours. The resulting solid was filtered and dried under vacuum to obtain Cyclobutylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] dilithium 368 mg (quant., ether adduct), an ocher solid compound.
제조예 1-7: Cyclobutylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] hafnium dichloride의 제조Preparation Example 1-7: Preparation of Cyclobutylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] hafnium dichloride
상기 제조예 1-6에서 제조한 Cyclobutylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] dilithium (342 mg, 0.86 mmol)을 toluene (40 mL)에 분산시킨 용액에 HfCl4 (277 mg, 0.86 mmol)을 toluene (5 mL)에 분산시킨 용액을 -30 ℃에서 천천히 첨가한 뒤 온도를 서서히 상온으로 올려 12 시간 동안 교반하였다. 반응 종결 후 toluene으로 추출하여 여과하였다. 진공 하에서 toluene을 제거한 후 hexane으로 세척하여 하기와 같은 1H-NMR 스펙트럼을 갖는 노란색 고체 화합물인 Cyclobutylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] hafnium dichloride 335 mg (61 %)을 얻었다.Cyclobutylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] dilithium (342 mg, 0.86 mmol) prepared in Preparation Example 1-6 was dissolved in toluene (40 mL) in HfCl4 (277 mg). , 0.86 mmol) was slowly added to a solution of toluene (5 mL) at -30 °C, and the temperature was gradually raised to room temperature and stirred for 12 hours. After completion of the reaction, it was extracted with toluene and filtered. After removing toluene under vacuum, washed with hexane to give Cyclobutylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] hafnium dichloride 335 mg (61%) as a yellow solid compound having the following 1H-NMR spectrum. Got.
1H-NMR (C6D6, 300 MHz): δ 9.10 (d, 2H), 7.69 (d, 2H), 7.39-7.24 (m, 8H), 6.02 (t, 2H), 5.44 (t, 2H), 2.90-2.77 (m, 2H), 2.58 (t, 2H), 2.26-2.14 (m, 1H), 1.88-1.74 (m, 1H).1H-NMR (C6D6, 300 MHz): δ 9.10 (d, 2H), 7.69 (d, 2H), 7.39-7.24 (m, 8H), 6.02 (t, 2H), 5.44 (t, 2H), 2.90- 2.77 (m, 2H), 2.58 (t, 2H), 2.26-2.14 (m, 1H), 1.88-1.74 (m, 1H).
제조예 1-8: Cyclobutylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] hafnium dimethyl의 제조Preparation Example 1-8: Preparation of Cyclobutylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] hafnium dimethyl
상기 제조예 1-7에서 제조한 Cyclobutylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] hafnium dichloride (273 mg, 0.43 mmol)을 toluene (20 mL)에 분산시킨 용액에 MeMgBr (448 mg, 1.30 mmol, 3.0 M in diethyl ether)을 toluene (5 mL)에 희석한 용액을 -30 ℃에서 천천히 첨가한 뒤 70 ℃에서 reflux시키면서 4 시간 동안 교반하였다. 반응 종결 후 toluene으로 추출하여 여과하였다. 진공 하에서 toluene을 제거한 후 hexane으로 세척하여 하기와 같은 1H-NMR 스펙트럼을 갖는 노란색 고체 화합물인 Cyclobutylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] hafnium dimethyl (하기 화학식 A의 화합물) 182 mg (71 %)을 얻었다.MeMgBr (448 in Cyclobutylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] hafnium dichloride (273 mg, 0.43 mmol) prepared in Preparation Example 1-7 was dispersed in toluene (20 mL). A solution diluted in mg, 1.30 mmol, 3.0 M in diethyl ether) in toluene (5 mL) was slowly added at -30 °C and stirred for 4 hours while refluxing at 70 °C. After completion of the reaction, it was extracted with toluene and filtered. After removing toluene under vacuum, washing with hexane, Cyclobutylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] hafnium dimethyl (compound of formula (A) below) having a 1H-NMR spectrum as shown below 182 mg (71%) were obtained.
1H-NMR (C6D6, 300 MHz): δ 9.22 (d, 2H), 7.73 (d, 2H), 7.46-7.22 (m, 8H), 6.03 (t, 2H), 5.40 (t, 2H), 2.90-2.80 (m, 2H), 2.68-2.58 (m, 2H), 2.34-2.18 (m, 1H), 1.92-1.84 (m, 1H), -1.37 (s, 6H).1H-NMR (C6D6, 300 MHz): δ 9.22 (d, 2H), 7.73 (d, 2H), 7.46-7.22 (m, 8H), 6.03 (t, 2H), 5.40 (t, 2H), 2.90- 2.80 (m, 2H), 2.68-2.58 (m, 2H), 2.34-2.18 (m, 1H), 1.92-1.84 (m, 1H), -1.37 (s, 6H).
<화학식 A><Formula A>
Figure PCTKR2019012003-appb-img-000056
Figure PCTKR2019012003-appb-img-000056
<제조예 2> 화학식 B의 화합물 제조<Production Example 2> Preparation of a compound of formula (B)
제조예 2-1: Cyclobutylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] zirconium dichloride의 제조Preparation Example 2-1: Preparation of Cyclobutylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] zirconium dichloride
상기 제조예 1-6에서 제조한 Cyclobutylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] dilithium (127 mg, 0.32 mmol)을 toluene (10 mL)에 분산시킨 용액에 ZrCl4 (74 mg, 0.32 mmol)을 toluene (3 mL)에 분산시킨 용액을 -30 ℃에서 천천히 첨가한 뒤 온도를 서서히 상온으로 올려 12 시간 동안 교반하였다. 반응 종결 후 toluene으로 추출하여 여과하였다. 진공 하에서 toluene을 제거한 후 hexane으로 세척하여 하기와 같은 1H-NMR 스펙트럼을 갖는 주황색 고체 화합물인 Cyclobutylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] zirconium dichloride (하기 화학식 B의 화합물) 128 mg (74 %)을 얻었다.Cyclobutylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] dilithium (127 mg, 0.32 mmol) prepared in Preparation Example 1-6 was dissolved in toluene (10 mL) in ZrCl4 (74 mg). , 0.32 mmol) was slowly added at -30 °C and the solution dispersed in toluene (3 mL) was slowly raised to room temperature and stirred for 12 hours. After completion of the reaction, it was extracted with toluene and filtered. Cyclobutylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] zirconium dichloride (compound of formula B below), which is an orange solid compound having the following 1H-NMR spectrum by washing with hexane after removing toluene under vacuum 128 mg (74%) were obtained.
1H-NMR (C6D6, 300 MHz): δ 9.15 (d, 2H), 7.72 (d, 2H), 7.42-7.30 (m, 8H), 6.11 (t, 2H), 5.52 (t, 2H), 2.92-2.82 (m, 2H), 2.60 (t, 2H), 2.28-2.16 (m, 1H), 1.92-1.82 (m, 1H).1H-NMR (C6D6, 300 MHz): δ 9.15 (d, 2H), 7.72 (d, 2H), 7.42-7.30 (m, 8H), 6.11 (t, 2H), 5.52 (t, 2H), 2.92- 2.82 (m, 2H), 2.60 (t, 2H), 2.28-2.16 (m, 1H), 1.92-1.82 (m, 1H).
<화학식 B><Formula B>
Figure PCTKR2019012003-appb-img-000057
Figure PCTKR2019012003-appb-img-000057
<제조예 3> 화학식 C의 화합물 제조<Production Example 3> Preparation of a compound of formula (C)
제조예 3-1: 2,2-[(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] propane의 제조Preparation Example 3-1: Preparation of 2,2-[(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] propane
상기 제조예 1-4에서 제조한 (7H-dibenzo[c,g]fluorene) lithium (893 mg, 3.28 mmol)을 diethyl ether (35 mL)에 분산시킨 용액에 6,6-dimethylfulvene (522 mg, 4.92 mmol)을 diethyl ether (5 mL)에 희석한 용액을 -78 ℃에서 천천히 첨가한 뒤 온도를 서서히 상온으로 올려 12 시간 동안 교반하였다. 반응 종결 후 diethyl ether와 aqueous NH4Cl로 추출하여 유기층을 분리하였다. 컬럼 크로마토그래피 (hexane 100 %)를 통해 하기와 같은 1H-NMR 스펙트럼을 갖는 연미색 고체 화합물인 2,2-[(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] propane 907 mg (74 %)을 얻었다.6,6-dimethylfulvene (522 mg, 4.92) in a solution in which (7H-dibenzo[c,g]fluorene) lithium (893 mg, 3.28 mmol) prepared in Preparation Example 1-4 was dispersed in diethyl ether (35 mL). mmol) was diluted in diethyl ether (5 mL), and slowly added at -78 °C, then the temperature was gradually raised to room temperature and stirred for 12 hours. After completion of the reaction, the organic layer was separated by extraction with diethyl ether and aqueous NH4Cl. 2,2-[(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] propane 907 mg (74, light yellow solid compound having the following 1H-NMR spectrum through column chromatography (hexane 100%)) %).
1H-NMR (CDCl3, 300 MHz): δ 8.61 (d, 2H), 7.91 (d, 2H), 7.74-7.66 (m, 2H), 7.52-7.46 (m, 4H), 7.41 (d, 1H), 7.32 (d, 1H), 7.00-6.64 (m, 1H), 6.57-6.45 (m, 1H), 6.16-5.87 (m, 1H), 4.33 (d, 1H), 3.24-3.08 (m, 2H), 1.08 (s, 3H), 1.07 (s, 3H).1H-NMR (CDCl3, 300 MHz): δ 8.61 (d, 2H), 7.91 (d, 2H), 7.74-7.66 (m, 2H), 7.52-7.46 (m, 4H), 7.41 (d, 1H), 7.32 (d, 1H), 7.00-6.64 (m, 1H), 6.57-6.45 (m, 1H), 6.16-5.87 (m, 1H), 4.33 (d, 1H), 3.24-3.08 (m, 2H), 1.08 (s, 3H), 1.07 (s, 3H).
제조예 3-2: Isopropylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] dilithium의 제조Preparation Example 3-2: Preparation of Isopropylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] dilithium
상기 제조예 3-1에서 제조한 2,2-[(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] propane (519 mg, 1.39 mmol)을 diethyl ether (10 mL)에 희석한 용액에 n-BuLi (1.24 mg, 2.93 mmol, 1.6 M in Hexane)을 -30 ℃에서 천천히 첨가한 후 온도를 서서히 상온으로 올려 12 시간 동안 교반하였다. 생성된 고체를 여과한 후 진공 하에서 건조하여 노란색 고체 화합물인 Isopropylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] dilithium 600 mg (quant., ether adduct)을 얻었다.2,2-[(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] propane (519 mg, 1.39 mmol) prepared in Preparation Example 3-1 was diluted with diethyl ether (10 mL). After slowly adding n-BuLi (1.24 mg, 2.93 mmol, 1.6 M in Hexane) at -30°C, the temperature was gradually raised to room temperature and stirred for 12 hours. The resulting solid was filtered and dried under vacuum to obtain Isopropylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] dilithium 600 mg (quant., ether adduct), a yellow solid compound.
제조예 3-3: Isopropylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] hafnium dichloride의 제조Preparation Example 3-3: Preparation of Isopropylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] hafnium dichloride
상기 제조예 3-2에서 제조한 Isopropylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] dilithium (566 mg, 1.47 mmol)을 toluene (40 mL)에 분산시킨 용액에 HfCl4 (472 mg, 1.47 mmol)을 toluene (10 mL)에 분산시킨 용액을 -30 ℃에서 천천히 첨가한 뒤 온도를 서서히 상온으로 올려 12 시간 동안 교반하였다. 반응 종결 후 toluene으로 추출하여 여과하였다. 진공 하에서 toluene을 제거한 후 hexane으로 세척하여 하기와 같은 1H-NMR 스펙트럼을 갖는 노란색 고체 화합물인 Isopropylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] hafnium dichloride 549 mg (60 %)을 얻었다.Ifpropylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] dilithium (566 mg, 1.47 mmol) prepared in Preparation Example 3-2 was dissolved in toluene (40 mL) in HfCl4 (472 mg). , 1.47 mmol) was slowly added to a solution of toluene (10 mL) at -30 °C, and the temperature was gradually raised to room temperature and stirred for 12 hours. After completion of the reaction, it was extracted with toluene and filtered. After removing toluene under vacuum, washing with hexane gave Isopropylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] hafnium dichloride 549 mg (60%) as a yellow solid compound having the following 1H-NMR spectrum. Got.
1H-NMR (CDCl3, 300 MHz): δ 8.84 (d, 2H), 7.95 (d, 2H), 7.88-7.82 (m, 2H), 7.61-7.54 (m, 4H), 7.49 (d, 2H), 6.30 (t, 2H), 5.88 (t, 2H), 2.48 (s, 6H).1H-NMR (CDCl3, 300 MHz): δ 8.84 (d, 2H), 7.95 (d, 2H), 7.88-7.82 (m, 2H), 7.61-7.54 (m, 4H), 7.49 (d, 2H), 6.30 (t, 2H), 5.88 (t, 2H), 2.48 (s, 6H).
제조예 3-4: Isopropylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] hafnium dimethyl의 제조Preparation Example 3-4: Preparation of Isopropylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] hafnium dimethyl
상기 제조예 3-3에서 제조한 Isopropylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] hafnium dichloride (400 mg, 0.65 mmol)을 toluene (20 mL)에 분산시킨 용액에 MeMgBr (468 mg, 1.36 mmol, 3.0 M in diethyl ether)을 toluene (2 mL)에 희석한 용액을 -30 ℃에서 천천히 첨가한 뒤 70 ℃에서 reflux시키면서 2 시간 동안 교반하였다. 반응 종결 후 toluene으로 추출하여 여과하였다. 진공 하에서 toluene을 제거한 후 hexane으로 세척하여 하기와 같은 1H-NMR 스펙트럼을 갖는 노란색 고체 화합물인 Isopropylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] hafnium dimethyl (하기 화학식 C의 화합물) 241 mg (64 %)을 얻었다.MeMgBr (468) was added to a solution of Isopropylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] hafnium dichloride (400 mg, 0.65 mmol) prepared in Preparation Example 3-3 in toluene (20 mL). A solution diluted in mg, 1.36 mmol, 3.0 M in diethyl ether) in toluene (2 mL) was slowly added at -30 °C and stirred for 2 hours while refluxing at 70 °C. After completion of the reaction, it was extracted with toluene and filtered. Isopropylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] hafnium dimethyl (compound of formula C below), which is a yellow solid compound having the following 1H-NMR spectrum by washing with hexane after removing toluene under vacuum 241 mg (64%) was obtained.
1H-NMR (CDCl3, 300 MHz): δ 8.92 (d, 2H), 7.84 (t, 4H), 7.60-7.46 (m, 4H), 7.41 (d, 2H), 6.23 (t, 2H), 5.66 (t, 2H), 2.26 (s, 6H), -1.82 (s, 6H).1H-NMR (CDCl3, 300 MHz): δ 8.92 (d, 2H), 7.84 (t, 4H), 7.60-7.46 (m, 4H), 7.41 (d, 2H), 6.23 (t, 2H), 5.66 ( t, 2H), 2.26 (s, 6H), -1.82 (s, 6H).
<화학식 C><Formula C>
Figure PCTKR2019012003-appb-img-000058
Figure PCTKR2019012003-appb-img-000058
<제조예 4> 화학식 D의 화합물 제조<Production Example 4> Preparation of a compound of formula (D)
제조예 4-1: Isopropylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] zirconium dichloride의 제조Preparation Example 4-1: Preparation of Isopropylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] zirconium dichloride
상기 제조예 3-2에서 제조한 Isopropylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] dilithium (176 mg, 0.46 mmol)을 toluene (20 mL)에 분산시킨 용액에 ZrCl4 (107 mg, 0.46 mmol)을 toluene (5 mL)에 분산시킨 용액을 -30 ℃에서 천천히 첨가한 뒤 온도를 서서히 상온으로 올려 12 시간 동안 교반하였다. 반응 종결 후 toluene으로 추출하여 여과하였다. 진공 하에서 toluene을 제거한 후 hexane으로 세척하여 하기와 같은 1H-NMR 스펙트럼을 갖는 적갈색 고체 화합물인 Isopropylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] zirconium dichloride (하기 화학식 D의 화합물) 107 mg (44 %)을 얻었다.ZrCl4 (107 mg) in a solution in which Isopropylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] dilithium (176 mg, 0.46 mmol) prepared in Preparation Example 3-2 was dispersed in toluene (20 mL). , 0.46 mmol) was slowly added to a solution of toluene (5 mL) at -30 °C, and the temperature was gradually raised to room temperature and stirred for 12 hours. After completion of the reaction, it was extracted with toluene and filtered. Isopropylidene [(cyclopentadienyl)-(7H-dibenzo[c,g]fluorenyl)] zirconium dichloride (compound of formula D below), which is a red-brown solid compound having the following 1H-NMR spectrum by washing with hexane after removing toluene under vacuum 107 mg (44%) were obtained.
1H-NMR (CDCl3, 300 MHz): δ 8.87 (d, 2H), 7.95-7.84 (m, 4H), 7.62-7.50 (m, 6H), 6.37 (t, 2H), 5.94 (t, 2H), 2.48 (s, 6H).1H-NMR (CDCl3, 300 MHz): δ 8.87 (d, 2H), 7.95-7.84 (m, 4H), 7.62-7.50 (m, 6H), 6.37 (t, 2H), 5.94 (t, 2H), 2.48 (s, 6 H).
<화학식 D><Formula D>
Figure PCTKR2019012003-appb-img-000059
Figure PCTKR2019012003-appb-img-000059
폴리올레핀 중합 실시예 (에틸렌/1-옥텐 공중합체의 제조)Polyolefin polymerization example (preparation of ethylene/1-octene copolymer)
<실시예 1> 화학식 A의 화합물을 포함하는 올레핀 중합 촉매를 이용한 에틸렌 및 1-옥텐 공중합체의 합성(1)<Example 1> Synthesis of ethylene and 1-octene copolymer using olefin polymerization catalyst comprising compound of formula A (1)
상기 제조예 1에서 제조한 화학식 A의 화합물을 포함하는 올레핀 중합 촉매를 이용하여 다음과 같이 에틸렌과 1-옥텐을 공중합하였다.Ethylene and 1-octene were copolymerized as follows using an olefin polymerization catalyst including the compound of Formula A prepared in Preparation Example 1.
먼저, 온도 조절용 자켓을 이용하여 850 mL의 반응기를 140℃ 내지 150℃로 가열한 후, 헥산(hexane)용매, 1-옥텐(1-Octene, C 8), 수소, 스케빈저 및 에틸렌(Ethylene, C 2)을 연속적으로 공급하면서 반응기의 압력을 90bar 로 유지하였다. 촉매와 조촉매는 각각 연속적으로 반응기에 직접 주입하였으며, 조촉매의 경우, 디메틸아닐리늄테트라키스(펜타플루오로페닐)보레이트를 사용하였고, 스캐빈저의 경우, 트리이소뷰틸알루미늄(tri-iso-butylaluminium, TiBA)을 사용하였다. First, after heating the reactor of 850 mL to 140 ℃ to 150 ℃ using a jacket for temperature control, hexane (hexane) solvent, 1-octene (1-Octene, C 8 ), hydrogen, scavenger and ethylene (Ethylene) , C 2 ) while continuously maintaining the pressure of the reactor at 90 bar. The catalyst and the cocatalyst were continuously injected directly into the reactor, and in the case of the cocatalyst, dimethylaniliniumtetrakis(pentafluorophenyl)borate was used, and in the case of the scavenger, tri-iso-butylaluminium , TiBA).
촉매의 경우, 상기 제조예 1에서 제조한 화학식 A의 화합물을 포함하는 올레핀 중합 촉매를 이용하였으며, 촉매는 일정량의 화학식 A의 화합물을 헥산 용매에 녹이고 이를 트리이소뷰틸알루미늄(TiBA)으로 처리하고, 반응기에 직접 주입하였다. In the case of the catalyst, an olefin polymerization catalyst containing the compound of formula A prepared in Preparation Example 1 was used, and the catalyst was dissolved in a certain amount of the compound of formula A in a hexane solvent and treated with triisobutylaluminum (TiBA), It was injected directly into the reactor.
상기 반응기에서 용융된 중합체는 반응기 배출스트림을 통과해 분리기로 들어가고, 미반응된 에틸렌과 1-옥텐을 헥산용매로부터 분리한 후, 이를 80℃ 진공 오븐에서 12시간 이상 건조하여 [에틸렌]-[1-옥텐] 폴리올레핀을 제조하였다.The polymer melted in the reactor passes through the reactor discharge stream, enters the separator, separates unreacted ethylene and 1-octene from a hexane solvent, and then drying them in a vacuum oven at 80° C. for 12 hours or more [ethylene]-[1 -Octene] Polyolefin was prepared.
상기 제조과정에서, 올레핀계 단량체로 에틸렌을 8.3 g/min, 공단량체로 1-옥텐을 8 g/min의 유량으로 주입하였으며, 올레핀 중합 촉매로 상기 제조예 1의 화학식 A를 0.044 g/min, 수소(H 2)를 0.2 g/hr의 유량으로 투입하여 폴리올레핀을 제조하였으며, 이와 같이 제조된 폴리올레핀을 이하 '실시예 1'이라 지칭한다.In the above manufacturing process, ethylene as an olefinic monomer was injected at a flow rate of 8.3 g/min, and comonomer 1-octene at a flow rate of 8 g/min, and formula A of Preparation Example 1 was 0.044 g/min as an olefin polymerization catalyst. Hydrogen (H 2 ) was introduced at a flow rate of 0.2 g/hr to prepare a polyolefin, and the polyolefin thus prepared is hereinafter referred to as'Example 1'.
<실시예 2> 화학식 A의 화합물을 포함하는 올레핀 중합 촉매를 이용한 에틸렌 및 1-옥텐 공중합체의 합성(2)<Example 2> Synthesis of ethylene and 1-octene copolymer using olefin polymerization catalyst comprising compound of Formula A (2)
상기 실시예 1에서, 공단량체로 1-옥텐을 12 g/min의 유량으로 주입 것을 제외하고는 동일한 방법으로 폴리올레핀을 제조하였으며, 이와 같이 제조된 폴리올레핀을 이하 '실시예 2'라 지칭한다.In Example 1, except for injecting 1-octene as a comonomer at a flow rate of 12 g/min, a polyolefin was prepared in the same manner, and the polyolefin thus prepared is hereinafter referred to as'Example 2'.
<비교예 1> 화학식 E의 화합물을 포함하는 올레핀 중합 촉매를 이용한 에틸렌 및 1-헥센 공중합체의 합성 (1)<Comparative Example 1> Synthesis of ethylene and 1-hexene copolymer using olefin polymerization catalyst comprising compound of formula E (1)
하기 화학식 E의 화합물을 포함하는 올레핀 중합 촉매를 이용하여 다음과 같이 에틸렌과 1-헥센을 공중합하였다.Ethylene and 1-hexene were copolymerized as follows using an olefin polymerization catalyst including a compound of Formula E.
<화학식 E><Formula E>
Figure PCTKR2019012003-appb-img-000060
Figure PCTKR2019012003-appb-img-000060
상기 실시예 1에서, 올레핀 중합 촉매로 상기 화학식 E의 전이금속 화합물을 0.049g/min의 유량으로 주입하고, 공단량체로 1-옥텐을 10 g/min, 수소(H 2)를 0 g/hr의 유량으로 주입한 것을 제외하고는 동일한 방법으로 폴리올레핀을 제조하였으며, 이와 같이 제조된 폴리올레핀을 이하 '비교예 1'이라 지칭한다.In Example 1, the transition metal compound of Formula E is injected at a flow rate of 0.049 g/min as an olefin polymerization catalyst, 10 g/min of 1-octene as a comonomer, and 0 g/hr of hydrogen (H 2 ). A polyolefin was prepared in the same manner, except that it was injected at a flow rate of, and the polyolefin thus prepared is hereinafter referred to as'Comparative Example 1'.
<비교예 2> 화학식 E의 화합물을 포함하는 올레핀 중합 촉매를 이용한 에틸렌 및 1-헥센 공중합체의 합성 (2)<Comparative Example 2> Synthesis of ethylene and 1-hexene copolymer using an olefin polymerization catalyst containing a compound of Formula E (2)
상기 비교예 1에서, 공단량체로 1-옥텐을 12 g/min의 유량으로 주입한 것을 제외하고는 동일한 방법으로 폴리올레핀을 제조하였으며, 이와 같이 제조된 폴리올레핀을 이하 '비교예 2'이라 지칭한다.In Comparative Example 1, a polyolefin was prepared in the same manner, except that 1-octene was injected as a comonomer at a flow rate of 12 g/min, and the polyolefin thus prepared is hereinafter referred to as'Comparative Example 2'.
<비교예 3> 화학식 E의 화합물을 포함하는 올레핀 중합 촉매를 이용한 에틸렌 및 1-헥센 공중합체의 합성 (3)<Comparative Example 3> Synthesis of ethylene and 1-hexene copolymer using olefin polymerization catalyst containing compound of formula E (3)
상기 비교예 1에서, 공단량체로 1-옥텐을 8 g/min, 수소(H 2)를 0.3 g/hr의 유량으로 주입한 것을 제외하고는 동일한 방법으로 폴리올레핀을 제조하였으며, 이와 같이 제조된 폴리올레핀을 이하 '비교예 3'이라 지칭한다.In Comparative Example 1, except for injecting 1-octene as a comonomer at a flow rate of 8 g/min and hydrogen (H 2 ) at a flow rate of 0.3 g/hr, a polyolefin was prepared in the same manner, and the polyolefin thus prepared Is hereinafter referred to as'Comparative Example 3'.
<비교예 4> 화학식 E의 화합물을 포함하는 올레핀 중합 촉매를 이용한 에틸렌 및 1-헥센 공중합체의 합성 (4)<Comparative Example 4> Synthesis of ethylene and 1-hexene copolymer using olefin polymerization catalyst containing compound of formula E (4)
상기 비교예 3에서, 공단량체로 1-옥텐을 12 g/min의 유량으로 주입한 것을 제외하고는 동일한 방법으로 폴리올레핀을 제조하였으며, 이와 같이 제조된 폴리올레핀을 이하 '비교예 4'라 지칭한다.In Comparative Example 3, a polyolefin was prepared in the same manner, except that 1-octene was injected as a comonomer at a flow rate of 12 g/min, and the polyolefin thus prepared is hereinafter referred to as'Comparative Example 4'.
<실험예> <Experimental Example>
상기 실시예 1, 2 및 비교예 1 내지 4 각각 제조된 폴리올레핀의 물성과 상기 화학식 A 및 화학식 E의 촉매 활성을 측정하였으며, 그 결과를 하기 표 1에 나타내었다. 하기 표 1에서, 각 실시예 및 비교예들은 밀도는 상온에서, 분자량(3D-GPC)은 160℃에서, 브룩필드점도(Brookfield, cP)는 177℃에서 측정하였다.The physical properties of the polyolefins prepared in Examples 1, 2 and Comparative Examples 1 to 4 and the catalytic activity of Formulas A and E were measured, and the results are shown in Table 1 below. In Table 1, in each of Examples and Comparative Examples, the density was measured at room temperature, the molecular weight (3D-GPC) at 160°C, and the Brookfield viscosity (Brookfield, cP) at 177°C.
실시예 1Example 1 실시예 2Example 2 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 비교예 4Comparative Example 4
촉매종류Catalyst type 화학식 AFormula A 화학식 EFormula E
촉매(g/min)Catalyst (g/min) 0.0440.044 0.0440.044 0.0490.049 0.0490.049 0.0490.049 0.0490.049
에틸렌(C2, g/min)Ethylene (C2, g/min) 8.38.3 8.38.3 8.38.3 8.38.3 8.38.3 8.38.3
1-옥텐 (C8, g/min)1-octene (C8, g/min) 88 1212 1010 1212 88 1212
C8/C2(Molar rate)C8/C2(Molar rate) 0.240.24 0.360.36 0.30.3 0.360.36 0.240.24 0.360.36
촉매활성(kg-PE/g-cat)Catalytic activity (kg-PE/g-cat) 167167 194194 124124 20.220.2 136136 150150
H 2(g/hr)H 2 (g/hr) 0.20.2 0.20.2 00 00 0.30.3 0.30.3
반응온도( 0C)Reaction temperature ( 0 C) 152152 151151 152152 150150 149149 150150
Density(g/cc)Density(g/cc) 0.8800.880 0.8630.863 0.8630.863 0.8680.868 0.8750.875 0.8580.858
Mn(3D-GPC)Mn (3D-GPC) 8,0778,077 6,5196,519 71,45071,450 100,416100,416 25,27925,279 30,45630,456
MW(3D-GPC)MW (3D-GPC) 19,45119,451 17,49117,491 124,282124,282 158,924158,924 48,76148,761 51,86851,868
MWD(3D-GPC)MWD (3D-GPC) 2.412.41 2.682.68 1.741.74 1.581.58 1.931.93 1.701.70
점도(Brook field, cP at 177℃)Viscosity (Brook field, cP at 177℃) 9,9989,998 5,5495,549 측정불가Measurement impossible 측정불가Measurement impossible 250,000250,000 2,950,0002,950,000
상기 표 1에 나타난 바와 같이, 실시예 1 및 2의 경우, 화학식 A의 화합물을 포함하는 올레핀 중합 촉매는 높은 촉매 활성을 가지며, 상기 촉매 하에 중합된 폴리올레핀은 저분자량 및 저점도의 특성을 갖는 것을 알 수 있다. 반면에, 비교예 1 내지 4의 경우, 화학식 E의 화합물을 포함하는 올레핀 중합 촉매는 낮은 촉매 활성을 가지며, 상기 촉매 하에 중합된 폴리올레핀은 고분자량을 갖는 것을 알 수 있다. As shown in Table 1, in the case of Examples 1 and 2, the olefin polymerization catalyst containing the compound of Formula A has high catalytic activity, and the polyolefin polymerized under the catalyst has properties of low molecular weight and low viscosity. Able to know. On the other hand, in the case of Comparative Examples 1 to 4, it can be seen that the olefin polymerization catalyst containing the compound of Formula E has low catalytic activity, and the polyolefin polymerized under the catalyst has a high molecular weight.
특히, 실시예 1 및 2와 비교예 3 및 4를 비교하면, 실시예 1 및 2에 낮은 수소(H 2) 투입량을 가짐에도 불구하고, 저분자랑의 폴리올레핀을 제조할 수 있었다. 또한, 주입되는 촉매의 양이 많을수록 중합된 폴리올레핀의 분자량이 낮아지는 경향성이 있으나, 실시예 1 및 2의 경우, 비교예 1 내지 4보다 작은 량의 촉매를 사용하였음에도 제조된 폴리올레핀이 더 작은 분자량을 갖는 것을 알 수 있었다. In particular, comparing Examples 1 and 2 with Comparative Examples 3 and 4, despite having low hydrogen (H 2 ) inputs in Examples 1 and 2, it was possible to produce low molecular weight polyolefins. In addition, the higher the amount of the injected catalyst tends to lower the molecular weight of the polymerized polyolefin, but in the case of Examples 1 and 2, even though a catalyst having a smaller amount than Comparative Examples 1 to 4 was used, the prepared polyolefin had a smaller molecular weight. It was found to have.
즉, 본 발명의 일 실시예에 따른 폴리올레핀은 높은 촉매 활성을 가지며 분자량 조절과 공중합성이 우수한 전이금속 화합물을 포함하는 올레핀 중합 촉매 하에서 중합되어, 비교적 적은 량의 촉매와 수소가 투입되더라도 저분자량 및 저점도의 특성을 가질 수 있다.That is, the polyolefin according to an embodiment of the present invention has a high catalytic activity and is polymerized under an olefin polymerization catalyst including a transition metal compound having excellent molecular weight control and copolymerizability, and a low molecular weight and It can have low-viscosity properties.
이상, 예시된 화학 구조식들과 제조예들 등을 참고하여 발명의 사상에 속하는 실시예들을 구체적으로 설명하였다. 다만, 예시된 화학 구조식들과 제조예들 등으로 발명의 사상이 제한되는 것은 아니고, 예시된 화학 구조식들과 제조예들 등을 기반으로 발명의 사상은 다양하게 변형될 수 있다. 예시된 화학 구조식들과 제조예들 등은 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 사상의 범주를 완전하게 알려주기 위해 제공되는 것이며, 발명의 사상의 권리범위는 청구항의 범주에 의해 정의될 뿐이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.In the above, embodiments belonging to the spirit of the invention have been described in detail with reference to the illustrated chemical structural formulas and manufacturing examples. However, the spirit of the invention is not limited to the illustrated chemical structural formulas and manufacturing examples, and the spirit of the invention may be variously modified based on the illustrated chemical structural formulas and manufacturing examples. The illustrated chemical structural formulas, manufacturing examples, and the like are provided to completely inform a person of ordinary skill in the art to which the invention pertains, and the scope of the spirit of the invention is defined in the scope of the claims. It is only defined by. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.

Claims (19)

  1. 올레핀계 단량체와 공단량체가 하기 화학식 1로 표현되는 올레핀 중합 촉매용 전이금속 화합물을 포함하는 올레핀 중합 촉매 하에서 공중합되어 형성되며, 중량 평균 분자량(Weight average molecular weight, Mw)이 2만 이하인 폴리올레핀. A polyolefin having an olefinic monomer and a comonomer copolymerized under an olefin polymerization catalyst containing a transition metal compound for an olefin polymerization catalyst represented by the following Chemical Formula 1, and having a weight average molecular weight (Mw) of 20,000 or less.
    <화학식 1><Formula 1>
    Figure PCTKR2019012003-appb-img-000061
    Figure PCTKR2019012003-appb-img-000061
    (상기 화학식 1에서,(In the formula 1,
    M은 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)이고,M is titanium (Ti), zirconium (Zr) or hafnium (Hf),
    X는 각각 독립적으로 할로겐, C 1-20 알킬, C 2-20 알케닐, C 2-20 알키닐, C 6-20 아릴, C 1-20 알킬 C 6-20 아릴, C 6-20 아릴 C 1-20 알킬, C 1-20 알킬아미도, C 6-20 아릴아미도 또는 C 1-20 알킬리덴이며,X is each independently halogen, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, C 6-20 aryl, C 1-20 alkyl C 6-20 aryl, C 6-20 aryl C 1-20 alkyl, C 1-20 alkylamido, C 6-20 arylamido or C 1-20 alkylidene,
    R 1 내지 R 4는 각각 독립적으로 수소, C 1-20 알킬, C 2-20 알케닐, C 2-20 알키닐, C 6-20 아릴, C 1-20 알킬 C 6-20 아릴, C 6-20 아릴 C 1-20 알킬, C 1-20 알킬아미도, C 6-20 아릴아미도 또는 C 1-20 알킬리덴이고,R 1 to R 4 are each independently hydrogen, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, C 6-20 aryl, C 1-20 alkyl C 6-20 aryl, C 6 -20 aryl C 1-20 alkyl, C 1-20 alkylamido, C 6-20 arylamido or C 1-20 alkylidene,
    R 5 및 R 6은 각각 독립적으로 C 1-20 알킬, C 2-20 알케닐, C 2-20 알키닐, C 6-20 아릴, C 1-20 알킬 C 6-20 아릴, C 6-20 아릴 C 1-20 알킬, C 1-20 알킬아미도, C 6-20 아릴아미도 또는 C 1-20 알킬리덴이거나, 서로 연결되어 치환 또는 비치환된 C 4-20 고리를 형성하며,R 5 and R 6 are each independently C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, C 6-20 aryl, C 1-20 alkyl C 6-20 aryl, C 6-20 Aryl C 1-20 alkyl, C 1-20 alkylamido, C 6-20 arylamido or C 1-20 alkylidene, or linked to each other to form a substituted or unsubstituted C 4-20 ring,
    R 7 내지 R 10은 이웃하는 2개가 서로 연결되어 치환 또는 비치환된 C 4-20 고리를 형성한다)R 7 to R 10 are two adjacent ones connected to each other to form a substituted or unsubstituted C 4-20 ring)
  2. 제1 항에 있어서, According to claim 1,
    상기 폴리올레핀은 177℃에서 측정된 점도가 5000 cP 내지 10000 cP의 범위를 갖는 폴리올레핀.The polyolefin is a polyolefin having a viscosity measured at 177 ℃ range of 5000 cP to 10000 cP.
  3. 제2 항에 있어서, According to claim 2,
    상기 폴리올레핀은 수평균 분자량(Number average molecular weight, Mn)이 1만 이하이고, The polyolefin has a number average molecular weight (Mn) of 10,000 or less,
    하기 수학식 1로 정의되는 분자량 분포(Molecular Weight Disribution, MWD)가 2 내지 3의 범위를 갖는 폴리올레핀.A polyolefin having a molecular weight distribution (MWD) defined in Equation 1 below in the range of 2 to 3.
    [수학식 1][Equation 1]
    Mw/MnMw/Mn
  4. 제1 항에 있어서, According to claim 1,
    상기 올레핀계 단량체는 에틸렌이고, 상기 공 단량체는 1-옥텐인 폴리올레핀.The olefin-based monomer is ethylene, and the co-monomer is 1-octene polyolefin.
  5. 제1 항에 있어서,According to claim 1,
    상기 X는 각각 독립적으로 할로겐 또는 C 1-20 알킬이고,X is each independently halogen or C 1-20 alkyl,
    상기 R 1, R 3, 및 R 4는 각각 수소이며,R 1 , R 3 , and R 4 are each hydrogen,
    상기 R 2는 C 1-20 알킬이고,R 2 is C 1-20 alkyl,
    상기 R 5 및 R 6은 각각 독립적으로 C 1-20 알킬 또는 C 6-20 아릴이거나, 서로 연결되어 치환 또는 비치환된 지방족 C 4-20 고리를 형성하고,R 5 and R 6 are each independently C 1-20 alkyl or C 6-20 aryl, or connected to each other to form a substituted or unsubstituted aliphatic C 4-20 ring,
    상기 R 7 내지 R 10은 이웃하는 2개가 서로 연결되어 치환 또는 비치환된 방향족 C 5-20 고리를 형성하는 폴리올레핀.The R 7 to R 10 are polyolefins in which two neighboring groups are connected to each other to form a substituted or unsubstituted aromatic C 5-20 ring.
  6. 제5 항에 있어서,The method of claim 5,
    상기 R 5 및 R 6은 각각 독립적으로 메틸(methyl)이거나, 서로 연결되어 지방족 C 4 고리를 형성하는 폴리올레핀.The R 5 and R 6 are each independently methyl (methyl), or a polyolefin that is connected to each other to form an aliphatic C 4 ring.
  7. 제5 항에 있어서,The method of claim 5,
    상기 R 7 내지 R 10은 이웃하는 2개가 서로 연결되어 치환 또는 비치환된 방향족 C 6를 형성하는 폴리올레핀.The R 7 to R 10 are polyolefins in which two neighboring groups are connected to each other to form a substituted or unsubstituted aromatic C 6 .
  8. 제1 항에 있어서,According to claim 1,
    상기 화학식 1은 하기 화학식 1-1 내지 화학식 1-12 중 적어도 어느 하나인 폴리올레핀.The Formula 1 is at least one of the following Formula 1-1 to Formula 1-12 polyolefin.
    <화학식 1-1><Formula 1-1>
    Figure PCTKR2019012003-appb-img-000062
    Figure PCTKR2019012003-appb-img-000062
    <화학식 1-2><Formula 1-2>
    Figure PCTKR2019012003-appb-img-000063
    Figure PCTKR2019012003-appb-img-000063
    <화학식 1-3><Formula 1-3>
    Figure PCTKR2019012003-appb-img-000064
    Figure PCTKR2019012003-appb-img-000064
    <화학식 1-4><Formula 1-4>
    Figure PCTKR2019012003-appb-img-000065
    Figure PCTKR2019012003-appb-img-000065
    <화학식 1-5><Formula 1-5>
    Figure PCTKR2019012003-appb-img-000066
    Figure PCTKR2019012003-appb-img-000066
    <화학식 1-6><Formula 1-6>
    Figure PCTKR2019012003-appb-img-000067
    Figure PCTKR2019012003-appb-img-000067
    <화학식 1-7><Formula 1-7>
    Figure PCTKR2019012003-appb-img-000068
    Figure PCTKR2019012003-appb-img-000068
    <화학식 1-8><Formula 1-8>
    Figure PCTKR2019012003-appb-img-000069
    Figure PCTKR2019012003-appb-img-000069
    <화학식 1-9><Formula 1-9>
    Figure PCTKR2019012003-appb-img-000070
    Figure PCTKR2019012003-appb-img-000070
    <화학식 1-10><Formula 1-10>
    Figure PCTKR2019012003-appb-img-000071
    Figure PCTKR2019012003-appb-img-000071
    <화학식 1-11><Formula 1-11>
    Figure PCTKR2019012003-appb-img-000072
    Figure PCTKR2019012003-appb-img-000072
    <화학식 1-12><Formula 1-12>
    Figure PCTKR2019012003-appb-img-000073
    Figure PCTKR2019012003-appb-img-000073
    (상기 화학식 1-1 내지 화학식 1-12에서,(In the above formula 1-1 to formula 1-12,
    M은 지르코늄 또는 하프늄이고,M is zirconium or hafnium,
    X는 각각 독립적으로 할로겐 또는 C 1-20 알킬이다)X are each independently halogen or C 1-20 alkyl)
  9. 제8 항에 있어서,The method of claim 8,
    상기 화학식 1은 하기 화학식 A 내지 화학식 D 중 적어도 어느 하나 인 폴리올레핀.The formula 1 is at least one of the following formula A to formula D polyolefin.
    <화학식 A><Formula A>
    Figure PCTKR2019012003-appb-img-000074
    Figure PCTKR2019012003-appb-img-000074
    <화학식 B><Formula B>
    Figure PCTKR2019012003-appb-img-000075
    Figure PCTKR2019012003-appb-img-000075
    <화학식 C><Formula C>
    Figure PCTKR2019012003-appb-img-000076
    Figure PCTKR2019012003-appb-img-000076
    <화학식 D><Formula D>
    Figure PCTKR2019012003-appb-img-000077
    Figure PCTKR2019012003-appb-img-000077
  10. 하기 화학식 1로 표현되는 전이금속 화합물을 포함하는 올레핀 중합 촉매 하에, 올레핀계 단량체와 공단량체를 중합하여 폴리올레핀을 형성하는 단계를 포함하는 폴리올레핀의 제조 방법.A method for producing a polyolefin, comprising forming a polyolefin by polymerizing an olefinic monomer and a comonomer under an olefin polymerization catalyst comprising a transition metal compound represented by the following Chemical Formula 1.
    <화학식 1><Formula 1>
    Figure PCTKR2019012003-appb-img-000078
    Figure PCTKR2019012003-appb-img-000078
    (상기 화학식 1에서,(In the formula 1,
    M은 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)이고,M is titanium (Ti), zirconium (Zr) or hafnium (Hf),
    X는 각각 독립적으로 할로겐, C 1-20 알킬, C 2-20 알케닐, C 2-20 알키닐, C 6-20 아릴, C 1-20 알킬 C 6-20 아릴, C 6-20 아릴 C 1-20 알킬, C 1-20 알킬아미도, C 6-20 아릴아미도 또는 C 1-20 알킬리덴이며,X is each independently halogen, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, C 6-20 aryl, C 1-20 alkyl C 6-20 aryl, C 6-20 aryl C 1-20 alkyl, C 1-20 alkylamido, C 6-20 arylamido or C 1-20 alkylidene,
    R 1 내지 R 4는 각각 독립적으로 수소, C 1-20 알킬, C 2-20 알케닐, C 2-20 알키닐, C 6-20 아릴, C 1-20 알킬 C 6-20 아릴, C 6-20 아릴 C 1-20 알킬, C 1-20 알킬아미도, C 6-20 아릴아미도 또는 C 1-20 알킬리덴이고,R 1 to R 4 are each independently hydrogen, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, C 6-20 aryl, C 1-20 alkyl C 6-20 aryl, C 6 -20 aryl C 1-20 alkyl, C 1-20 alkylamido, C 6-20 arylamido or C 1-20 alkylidene,
    R 5 및 R 6은 각각 독립적으로 C 1-20 알킬, C 2-20 알케닐, C 2-20 알키닐, C 6-20 아릴, C 1-20 알킬 C 6-20 아릴, C 6-20 아릴 C 1-20 알킬, C 1-20 알킬아미도, C 6-20 아릴아미도 또는 C 1-20 알킬리덴이거나, 서로 연결되어 치환 또는 비치환된 C 4-20 고리를 형성하며,R 5 and R 6 are each independently C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, C 6-20 aryl, C 1-20 alkyl C 6-20 aryl, C 6-20 Aryl C 1-20 alkyl, C 1-20 alkylamido, C 6-20 arylamido or C 1-20 alkylidene, or linked to each other to form a substituted or unsubstituted C 4-20 ring,
    R 7 내지 R 10은 이웃하는 2개가 서로 연결되어 치환 또는 비치환된 C 4-20 고리를 형성한다)R 7 to R 10 are two adjacent ones connected to each other to form a substituted or unsubstituted C 4-20 ring)
  11. 제10 항에 있어서,The method of claim 10,
    상기 화학식 1은 하기 화학식 1-1 내지 화학식 1-12 중 적어도 어느 하나인 폴리올레핀의 제조방법.The Chemical Formula 1 is a method for producing a polyolefin that is at least one of the following Chemical Formulas 1-1 to 1-12.
    <화학식 1-1><Formula 1-1>
    Figure PCTKR2019012003-appb-img-000079
    Figure PCTKR2019012003-appb-img-000079
    <화학식 1-2><Formula 1-2>
    Figure PCTKR2019012003-appb-img-000080
    Figure PCTKR2019012003-appb-img-000080
    <화학식 1-3><Formula 1-3>
    Figure PCTKR2019012003-appb-img-000081
    Figure PCTKR2019012003-appb-img-000081
    <화학식 1-4><Formula 1-4>
    Figure PCTKR2019012003-appb-img-000082
    Figure PCTKR2019012003-appb-img-000082
    <화학식 1-5><Formula 1-5>
    Figure PCTKR2019012003-appb-img-000083
    Figure PCTKR2019012003-appb-img-000083
    <화학식 1-6><Formula 1-6>
    Figure PCTKR2019012003-appb-img-000084
    Figure PCTKR2019012003-appb-img-000084
    <화학식 1-7><Formula 1-7>
    Figure PCTKR2019012003-appb-img-000085
    Figure PCTKR2019012003-appb-img-000085
    <화학식 1-8><Formula 1-8>
    Figure PCTKR2019012003-appb-img-000086
    Figure PCTKR2019012003-appb-img-000086
    <화학식 1-9><Formula 1-9>
    Figure PCTKR2019012003-appb-img-000087
    Figure PCTKR2019012003-appb-img-000087
    <화학식 1-10><Formula 1-10>
    Figure PCTKR2019012003-appb-img-000088
    Figure PCTKR2019012003-appb-img-000088
    <화학식 1-11><Formula 1-11>
    Figure PCTKR2019012003-appb-img-000089
    Figure PCTKR2019012003-appb-img-000089
    <화학식 1-12><Formula 1-12>
    Figure PCTKR2019012003-appb-img-000090
    Figure PCTKR2019012003-appb-img-000090
    (상기 화학식 1-1 내지 화학식 1-12에서,(In the above formula 1-1 to formula 1-12,
    M은 지르코늄 또는 하프늄이고,M is zirconium or hafnium,
    X는 각각 독립적으로 할로겐 또는 C 1-20 알킬이다)X are each independently halogen or C 1-20 alkyl)
  12. 제11 항에 있어서,The method of claim 11,
    상기 화학식 1은 하기 화학식 A 내지 화학식 D 중 적어도 어느 하나 인 폴리올레핀의 제조방법.The formula 1 is a method for producing a polyolefin of at least one of the following formula A to formula D.
    <화학식 A><Formula A>
    Figure PCTKR2019012003-appb-img-000091
    Figure PCTKR2019012003-appb-img-000091
    <화학식 B><Formula B>
    Figure PCTKR2019012003-appb-img-000092
    Figure PCTKR2019012003-appb-img-000092
    <화학식 C><Formula C>
    Figure PCTKR2019012003-appb-img-000093
    Figure PCTKR2019012003-appb-img-000093
    <화학식 D><Formula D>
    Figure PCTKR2019012003-appb-img-000094
    Figure PCTKR2019012003-appb-img-000094
  13. 제12 항에 있어서, The method of claim 12,
    상기 올레핀 중합 촉매는 촉매 활성이 160 kg-PE/g-Cat 내지 200 kg-PE/g-Cat의 범위를 갖는 폴리올레핀의 제조방법.The olefin polymerization catalyst has a catalytic activity of 160 kg-PE/g-Cat to 200 kg-PE/g-Cat.
  14. 제10 항에 있어서, The method of claim 10,
    상기 폴리올레핀은 중량 평균 분자량(Weight average molecular weight, Mw)이 2만 이하인 폴리올레핀의 제조 방법. The polyolefin is a method for producing a polyolefin having a weight average molecular weight (Mw) of 20,000 or less.
  15. 제14 항에 있어서, The method of claim 14,
    상기 폴리올레핀은 177℃에서 측정된 점도가 5000 cP 내지 10000 cP의 범위를 갖는 폴리올레핀의 제조 방법.The polyolefin has a viscosity measured at 177°C of 5000 cP to 10000 cP.
  16. 제15 항에 있어서, The method of claim 15,
    상기 폴리올레핀은 수평균 분자량(Number average molecular weight, Mn)이 1만 이하이고, 하기 수학식 1로 정의되는 분자량 분포(Molecular Weight Disribution, MWD)가 2 내지 3의 범위를 갖는 폴리올레핀의 제조방법.The polyolefin has a number average molecular weight (Mn) of 10,000 or less, and a molecular weight distribution (Molecular Weight Disribution, MWD) defined by the following Equation 1 has a range of 2-3.
    [수학식 1][Equation 1]
    Mw/MnMw/Mn
  17. 제10 항에 있어서, The method of claim 10,
    상기 올레핀계 단량체는 에틸렌이고, 상기 공단량체는 1-옥텐인 폴리올레핀의 제조 방법.The olefinic monomer is ethylene, and the comonomer is 1-octene.
  18. 제10 항에 있어서, The method of claim 10,
    상기 올레핀 중합 촉매는 조촉매 화합물을 더 포함하는 폴리올레핀의 제조 방법.The olefin polymerization catalyst is a method for producing a polyolefin further comprising a co-catalyst compound.
  19. 제18 항에 있어서, The method of claim 18,
    상기 조촉매 화합물은 하기 화학식 Ⅰ로 표현되는 화합물, 화학식 Ⅱ로 표현되는 화합물 및 화학식 Ⅲ로 표현되는 화합물 중 적어도 어느 하나를 포함하는 폴리올레핀의 제조방법.The co-catalyst compound is a method for producing a polyolefin comprising at least one of a compound represented by the following formula (I), a compound represented by the formula (II) and a compound represented by the formula (III).
    <화학식 Ⅰ><Formula Ⅰ>
    Figure PCTKR2019012003-appb-img-000095
    Figure PCTKR2019012003-appb-img-000095
    (상기 화학식 A에서 n은 2 이상의 정수이고, (In Formula A, n is an integer of 2 or more,
    R a는 할로겐 원자, C 1-20 탄화수소기 또는 할로겐으로 치환된 C 1-20 탄화수소기이다)R a is a halogen atom, a C 1-20 hydrocarbon group or a C 1-20 hydrocarbon group substituted with halogen)
    <화학식 Ⅱ><Formula Ⅱ>
    Figure PCTKR2019012003-appb-img-000096
    Figure PCTKR2019012003-appb-img-000096
    (상기 화학식 B에서 D는 알루미늄(Al) 또는 보론(B)이고,(D in the formula B is aluminum (Al) or boron (B),
    R b, R c 및 R d는 각각 독립적으로 할로겐 원자, C 1-20 탄화수소기, 할로겐으로 치환된 C 1-20 탄화수소기 또는 C 1-20 알콕시기이다)R b , R c and R d are each independently a halogen atom, a C 1-20 hydrocarbon group, a C 1-20 hydrocarbon group substituted with halogen, or a C 1-20 alkoxy group)
    <화학식 Ⅲ><Formula Ⅲ>
    [L-H] +[Z(A) 4] - 또는 [L] +[Z(A) 4] - [LH] + [Z (A ) 4] - or [L] + [Z (A ) 4] -
    (상기 화학식 C에서 L은 중성 또는 양이온성 루이스 염기이고,(In the formula C, L is a neutral or cationic Lewis base,
    [L-H] + 및 [L] +는 브뢴스테드 산이며[LH] + and [L] + are Brønsted acids
    Z는 13족 원소이고,Z is a group 13 element,
    A는 각각 독립적으로 치환 또는 비치환된 C 6-20 아릴기이거나 치환 또는 비치환된 C 1-20 알킬기이다)A is each independently a substituted or unsubstituted C 6-20 aryl group or a substituted or unsubstituted C 1-20 alkyl group)
PCT/KR2019/012003 2018-12-11 2019-09-17 Polyolefin and method for preparing same WO2020122371A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/296,991 US20210395412A1 (en) 2018-12-11 2019-09-17 Polyolefin and method for preparing same
JP2021533173A JP7223139B2 (en) 2018-12-11 2019-09-17 Polyolefin and its manufacturing method
CN201980081827.0A CN113195558B (en) 2018-12-11 2019-09-17 Polyolefin and method for producing same
EP19897225.9A EP3896102A4 (en) 2018-12-11 2019-09-17 Polyolefin and method for preparing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180158913A KR102382131B1 (en) 2018-12-11 2018-12-11 Polyolefin and method for manufacturing the same
KR10-2018-0158913 2018-12-11

Publications (1)

Publication Number Publication Date
WO2020122371A1 true WO2020122371A1 (en) 2020-06-18

Family

ID=71076066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/012003 WO2020122371A1 (en) 2018-12-11 2019-09-17 Polyolefin and method for preparing same

Country Status (6)

Country Link
US (1) US20210395412A1 (en)
EP (1) EP3896102A4 (en)
JP (1) JP7223139B2 (en)
KR (1) KR102382131B1 (en)
CN (1) CN113195558B (en)
WO (1) WO2020122371A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114230702B (en) * 2022-01-17 2023-10-13 万华化学集团股份有限公司 Olefin polymerization catalyst with naphthoxy skeleton, preparation method and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027124A1 (en) * 1999-10-08 2001-04-19 Mitsui Chemicals, Inc. Metallocene compound, process for producing metallocene compound, olefin polymerization catalyst, process for producing polyolefin, and polyolefin
US20030139284A1 (en) * 2000-04-27 2003-07-24 Industrial Technology Research Institute Catalyst composition for preparing olefin polymers
JP2004051676A (en) * 2002-07-16 2004-02-19 Mitsui Chemicals Inc Production method for ethylene copolymer
KR20060058670A (en) * 2004-03-31 2006-05-30 미쓰이 가가쿠 가부시키가이샤 Process for producing olefin polymers
KR20160121566A (en) * 2014-03-28 2016-10-19 미쓰이 가가쿠 가부시키가이샤 /- ethylene/-olefin copolymer and lubricating oil

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5451649A (en) * 1991-05-09 1995-09-19 Phillips Petroleum Company Organometallic fluorenyl compounds, preparation, and use
EP0707016B1 (en) * 1994-10-13 1997-09-24 Japan Polyolefins Co., Ltd. Catalyst component for producing polyolefin, catalyst for producing polyolefin comprising the catalyst component, and process for producing polyolefin in the presence of the catalyst
JP3537236B2 (en) * 1994-10-13 2004-06-14 昭和電工株式会社 Catalyst component for producing polyolefin, catalyst for producing polyolefin containing the component, and method for producing polyolefin
ID16442A (en) * 1996-01-22 1997-10-02 Dow Chemical Co WEIGHT POLYMER ETHYLENE ULTRA LOW MOLECULES
JP2005200452A (en) * 2004-01-13 2005-07-28 Mitsui Chemicals Inc METHOD FOR PRODUCING alpha-OLEFIN (CO)POLYMER
JP2006176760A (en) * 2004-11-26 2006-07-06 Mitsui Chemicals Inc Synthetic lubricating oil and lubricating oil composition
JPWO2006126610A1 (en) * 2005-05-25 2008-12-25 三井化学株式会社 Transition metal compound, catalyst for olefin polymerization, and process for producing olefin polymer
JP2010150334A (en) * 2008-12-24 2010-07-08 Mitsui Chemicals Inc Method for producing ethylenic wax
KR101711788B1 (en) * 2016-03-09 2017-03-14 한화케미칼 주식회사 Hybride catalyst compositon, preparation method thereof, and manufactured polyolefin using the same
KR102193693B1 (en) * 2018-03-21 2020-12-21 한화솔루션 주식회사 Transition metal compound used to prepare catalyst for polymerizing olefin, catalyst for polymerizing olefin comprising the same and polyolefin polymerized by using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027124A1 (en) * 1999-10-08 2001-04-19 Mitsui Chemicals, Inc. Metallocene compound, process for producing metallocene compound, olefin polymerization catalyst, process for producing polyolefin, and polyolefin
US20030139284A1 (en) * 2000-04-27 2003-07-24 Industrial Technology Research Institute Catalyst composition for preparing olefin polymers
JP2004051676A (en) * 2002-07-16 2004-02-19 Mitsui Chemicals Inc Production method for ethylene copolymer
KR20060058670A (en) * 2004-03-31 2006-05-30 미쓰이 가가쿠 가부시키가이샤 Process for producing olefin polymers
KR20160121566A (en) * 2014-03-28 2016-10-19 미쓰이 가가쿠 가부시키가이샤 /- ethylene/-olefin copolymer and lubricating oil

Also Published As

Publication number Publication date
CN113195558B (en) 2023-10-03
CN113195558A (en) 2021-07-30
KR102382131B1 (en) 2022-04-01
EP3896102A4 (en) 2022-09-07
JP7223139B2 (en) 2023-02-15
KR20200071318A (en) 2020-06-19
US20210395412A1 (en) 2021-12-23
JP2022512356A (en) 2022-02-03
EP3896102A1 (en) 2021-10-20

Similar Documents

Publication Publication Date Title
WO2017188602A1 (en) Hybrid supported metallocene catalyst, and polyolefin resin having excellent processability and using same
WO2015046932A1 (en) Olefin-based polymer
WO2016072783A1 (en) Ligand compound, transition metal compound, and catalyst composition containing same
WO2017099491A1 (en) Olefin-based polymer
WO2015046930A1 (en) Catalytic composition and method for preparing polymer including same
WO2018088820A1 (en) Ligand compound, transition metal compound, and catalyst composition containing same
WO2020171631A1 (en) Olefin-based polymer
WO2020101373A1 (en) Supported catalyst for propylene polymerization and method for producing polypropylene resin using same
WO2022039418A1 (en) Catalyst containing hybrid transition metal compound, olefin-based polymer produced by using same, and methods for producing catalyst and polymer
WO2019132471A1 (en) Olefin-based polymer
WO2021111282A1 (en) Transition metal compound, catalyst composition comprising same, and method for producing olefin polymer using catalyst composition
WO2020122371A1 (en) Polyolefin and method for preparing same
WO2023191519A1 (en) Transition metal compound for olefin polymerization catalyst, olefin polymerization catalyst comprising same, and polyolefin polymerized using same
WO2020130718A1 (en) Polyolefin
WO2017111553A1 (en) Catalyst composition comprising novel transition metal compound
WO2020218874A1 (en) Ligand compound, transition metal compound, and catalyst composition comprising same
WO2021020778A1 (en) Transition metal compound for olefin polymerization catalyst, olefin polymerization catalyst including same, and polyolefin polymerized using same
WO2019182290A1 (en) Transition metal compound for olefin polymerization catalyst, olefin polymerization catalyst including same, and polyolefin polymerized by using olefin polymerization catalyst
WO2018106029A1 (en) Transition metal compound for olefin polymerization catalyst, olefin polymerization catalyst comprising same, and polyolefin polymerized using same
WO2018106028A1 (en) Transition metal compound for olefin polymerization catalyst, olefin polymerization catalyst comprising same, and polyolefin polymerized using same
WO2016076509A1 (en) Ligand compound, transition metal compound, and catalyst composition containing compounds
WO2019132477A1 (en) Olefin-based polymer
WO2019093720A1 (en) Transition metal compound for olefin polymerization catalyst, olefin polymerization catalyst comprising same, and polyolefin polymerized using same
WO2018122693A1 (en) NOVEL CYCLOPENTA[B]THIOPHENYL TRANSITION METAL COMPOUND, TRANSITION METAL CATALYST COMPOSITION COMPRISING SAME, AND METHOD FOR PREPARING ETHYLENE HOMOPOLYMERS OR COPOLYMERS OF ETHYLENE AND α-OLEFINS USING SAME
WO2022114635A1 (en) Transition metal compound, catalyst comprising same, and method for preparing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897225

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021533173

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019897225

Country of ref document: EP

Effective date: 20210712