WO2020122159A1 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
WO2020122159A1
WO2020122159A1 PCT/JP2019/048608 JP2019048608W WO2020122159A1 WO 2020122159 A1 WO2020122159 A1 WO 2020122159A1 JP 2019048608 W JP2019048608 W JP 2019048608W WO 2020122159 A1 WO2020122159 A1 WO 2020122159A1
Authority
WO
WIPO (PCT)
Prior art keywords
belt
tire
pneumatic tire
core
sheath
Prior art date
Application number
PCT/JP2019/048608
Other languages
French (fr)
Japanese (ja)
Inventor
紗生 柴田
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2020559302A priority Critical patent/JPWO2020122159A1/en
Publication of WO2020122159A1 publication Critical patent/WO2020122159A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C3/00Tyres characterised by the transverse section
    • B60C3/04Tyres characterised by the transverse section characterised by the relative dimensions of the section, e.g. low profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel

Definitions

  • the present invention relates to a small-diameter pneumatic tire with improved load bearing capacity.
  • Such a small shuttle bus has a total length of about 5 meters and a total width of about 2 meters, and it is assumed that the total vehicle weight may exceed 3 tons.
  • Pneumatic tires mounted on such a small shuttle bus are required to have high load-bearing capacity and space-saving due to smaller diameter.
  • such a pneumatic tire needs to support a large load, and higher durability of the belt is also required.
  • an object of the present invention is to provide a pneumatic tire capable of improving the durability of a belt while achieving a high load bearing capacity and space saving. ..
  • One aspect of the present invention includes a tread (tread 20) that is in contact with a road surface, and a belt layer (belt layer 50) provided inside the tread in the tire radial direction, and is a pneumatic tire mounted on a vehicle (vehicle 1).
  • the outer diameter of the pneumatic tire is 350mm or more, 600mm or less
  • rim width of the rim wheel (rim wheel 100) assembled to the pneumatic tire is RW
  • the pneumatic When the tire width of the tire is SW, the relationship of 0.78 ⁇ RW/SW ⁇ 0.99 is satisfied
  • the belt layer includes a sheath belt (sheath belt 52) spirally wound along the tire circumferential direction.
  • FIG. 1 is an overall schematic side view of a vehicle 1 to which a pneumatic tire 10 is attached.
  • FIG. 2 is a cross-sectional view of the pneumatic tire 10 and the rim wheel 100.
  • FIG. 3 is a unit cross-sectional view of the pneumatic tire 10.
  • FIG. 4A is a perspective view of the belt layer 50 alone during manufacturing.
  • FIG. 4B is a perspective view of the belt layer 50 after manufacturing.
  • FIG. 5 is a diagram showing positioning of a typical tire size based on a combination of a tire shape (tire outer diameter OD and tire width SW) and a rim wheel shape (rim diameter RD and rim width RW).
  • FIG. 1 is an overall schematic side view of a vehicle 1 equipped with a pneumatic tire 10 according to the present embodiment.
  • the vehicle 1 is a four-wheeled vehicle.
  • the vehicle 1 is not limited to four wheels, and may have a six-wheel configuration, an eight-wheel configuration, or the like.
  • the vehicle 1 is equipped with a predetermined number of pneumatic tires 10 according to the wheel configuration. Specifically, the vehicle 1 is equipped with the pneumatic tire 10 assembled to the rim wheel 100 at a predetermined position.
  • the new small shuttle bus belongs to a new small shuttle bus that focuses on transporting people and things in the city.
  • the new small shuttle bus is assumed to be a vehicle having a total length of 4 m to 7 m, a total width of about 2 m, and a total vehicle weight of about 3 t.
  • the size and the total weight of the vehicle are not necessarily limited to the range, and may be out of the range as long as they are small.
  • the small shuttle bus may be used not only for transportation of people but also for transportation of goods, mobile shops, mobile offices, and the like.
  • the small shuttle bus is focused on transporting people and goods in the city, so a relatively low traveling speed range (maximum speed of 70 km/h or less, average speed of about 50 km/h) is assumed. .. Therefore, the hydroplaning countermeasure does not have to be emphasized.
  • the vehicle 1 is an electric vehicle having an automatic driving function (assuming level 4 or higher), but the automatic driving function is not essential and may not be an electric vehicle. Absent.
  • the vehicle 1 is an electric vehicle, it is preferable to use an in-wheel motor (not shown) as a power unit.
  • the in-wheel motor the entire unit may be provided in the inner space of the rim wheel 100, or a part of the unit may be provided in the inner space of the rim wheel 100.
  • the vehicle 1 When using an in-wheel motor, it is preferable that the vehicle 1 has an independent steering function that allows each wheel to be independently steered. As a result, turning on the spot and lateral movement are possible, and the power transmission mechanism is not required, so that the space efficiency of the vehicle 1 can be improved.
  • the pneumatic tire 10 preferably has a diameter as small as possible.
  • the pneumatic tire 10 has a load bearing capacity corresponding to the total weight of the vehicle 1 while reducing the tire outer diameter OD (not shown in FIG. 1, see FIG. 2) in order to satisfy such requirements.
  • the flatness of the pneumatic tire 10 is low from the viewpoint of improving responsiveness.
  • the rim diameter RD of 10 (not shown in FIG. 1, see FIG. 2) is preferably large.
  • FIG. 2 is a sectional view of the pneumatic tire 10 and the rim wheel 100. Specifically, FIG. 2 is a cross-sectional view along the tire width direction and tire radial direction of the pneumatic tire 10 assembled to the rim wheel 100. In FIG. 2, cross-section hatching display is omitted (the same applies to FIG. 3 and subsequent figures).
  • the Pneumatic tire 10 has a relatively small diameter but is wide.
  • the rim diameter RD which is the diameter of the rim wheel 100, is preferably 12 inches or more and 17.5 inches or less.
  • the rim diameter RD may be 10 inches or more and 22 inches or less as long as it satisfies the other numerical range.
  • the rim diameter RD is the outer diameter of the rim body of the rim wheel 100, and does not include the rim flange 110.
  • the tire width SW of the pneumatic tire 10 is preferably 125 mm or more and 255 mm or less. As shown in FIG. 2, the tire width SW means the sectional width of the pneumatic tire 10, and when the pneumatic tire 10 includes a rim guard (not shown), the rim guard portion is not included.
  • the flatness of the pneumatic tire 10 is preferably 35% or more and 75% or less.
  • the flatness ratio is calculated using Equation 1.
  • the tire outer diameter OD which is the outer diameter of the pneumatic tire 10, is 350 mm or more and 600 mm or less.
  • the tire outer diameter OD is preferably 500 mm or less.
  • the pneumatic tire 10 has the following formulas (2) and (3). Meet a relationship.
  • the pneumatic tire 10 preferably satisfies 0.78 ⁇ RW/SW ⁇ 0.98, and more preferably 0.78 ⁇ RW/SW ⁇ 0.95. Further, the pneumatic tire 10 preferably satisfies 0.56 ⁇ RD/OD ⁇ 0.72, and more preferably 0.56 ⁇ RD/OD ⁇ 0.71.
  • the pneumatic tire 10 satisfying such a relationship can have an air volume necessary for supporting the total vehicle weight of the vehicle 1 while having a small diameter.
  • the air volume needs to be 20,000 cm 3 or more in consideration of load bearing performance. Also, in consideration of space saving, it is necessary to be 80,000 cm 3 or less.
  • the rim width RW is not particularly limited as long as the above relationship is satisfied, but it is preferable that the rim width RW is as wide as possible from the viewpoint of securing an air volume.
  • the rim width can be 3.8-7.8J.
  • the ratio of the rim diameter RD to the tire outer diameter OD is small, that is, the flatness ratio is high.
  • the flatness ratio is low from the viewpoint of responsiveness, and in consideration of the accommodation space such as the in-wheel motor, it is preferable that the rim diameter RD is large. Has a trade-off relationship between the air volume and the responsiveness and the accommodation space such as the in-wheel motor.
  • the compatible rim width is about 7.5J.
  • 215/45R12 is another example of a suitable size. In this case, the compatible rim width is about 7.0J.
  • the set internal pressure (normal internal pressure) of the pneumatic tire 10 is assumed to be 400 to 1,100 kPa, and realistically 500 to 900 kPa.
  • the regular internal pressure is, for example, the air pressure corresponding to the maximum load capacity of the JATMA (Japan Automobile Tire Manufacturer's Association) YearBook in Japan, and ETRTO in Europe, TRA in the US, and tire standards of other countries correspond to it.
  • FIG. 3 is a sectional view of the pneumatic tire 10 alone. Specifically, FIG. 3 is a cross-sectional view of the pneumatic tire 10 taken along the tire width direction and the tire radial direction.
  • the pneumatic tire 10 includes a tread 20, a tire side portion 30, a carcass 40, a belt layer 50 and a bead portion 60.
  • Tread 20 is the part that contacts the road surface.
  • a pattern (not shown) is formed on the tread 20 according to the environment in which the pneumatic tire 10 is used and the type of vehicle on which the pneumatic tire 10 is mounted.
  • the tread 20 is formed with a plurality of circumferential grooves including a circumferential main groove 21 and a circumferential main groove 22 extending in the tire circumferential direction.
  • the tire side part 30 is connected to the tread 20 and is located inside the tread 20 in the tire radial direction.
  • the tire side portion 30 is an area from the tire width direction outer end of the tread 20 to the upper end of the bead portion 60.
  • the tire side portion 30 is sometimes called a sidewall or the like.
  • the carcass 40 forms the skeleton of the pneumatic tire 10.
  • the carcass 40 has a radial structure in which carcass cords (not shown) radially arranged along the tire radial direction are covered with a rubber material.
  • the structure is not limited to the radial structure, and may be a bias structure in which the carcass cords are arranged so as to intersect in the tire radial direction.
  • the belt layer 50 is provided inside the tire in the tire radial direction of the tread 20.
  • the belt layer 50 includes a core belt 51 and a sheath belt 52.
  • the core belt 51 is provided from one shoulder portion 26 of the tread 20 to the other shoulder portion 27 of the tread 20.
  • the shoulder portion 26 is an area outside the circumferential main groove 21 in the tire width direction
  • the shoulder portion 27 is an area outside the circumferential main groove 22 in the tire width direction. That is, the shoulder portion 26 and the shoulder portion 27 are regions on the outer side in the tire width direction with respect to the circumferential main groove formed on the outermost side in the tire width direction.
  • the core belt 51 is a belt in which a belt cord 51a (not shown in FIG. 3, see FIG. 4A) inclined at a low angle with respect to the tire width direction is covered with rubber.
  • the sheath belt 52 is a tape-shaped belt including a cord (not shown) and is wound around the entire circumference of the core belt 51.
  • Belt layer 50 provides the same function as the interlaced belt layer. The configuration of the belt layer 50 will be described later.
  • the bead portion 60 is continuous with the tire side portion 30 and is located inside the tire side portion 30 in the tire radial direction.
  • the bead portion 60 is locked to the rim wheel 100 and has an annular bead core 61.
  • the carcass 40 is folded back to the outside in the tire width direction via the bead core 61.
  • the folded end 41 of the carcass 40 folded back at the bead portion 60 is provided so as to be wound along the bead core 61.
  • the folded-back end portion 41 is in contact with the tire radial outer end of the bead core 61.
  • a carcass cord is wound around the bead core 61 at the tire radial outer end.
  • the bead portion 60 may be provided with a bead filler on the outer side in the tire radial direction of the bead core. Fur may be provided.
  • FIGS. 4A and 4B show the configuration of the belt layer 50. Specifically, FIG. 4A is a single perspective view of the belt layer 50 during manufacturing, and FIG. 4B is a single perspective view of the belt layer 50 after manufacturing.
  • the belt layer 50 is composed of the core belt 51 and the sheath belt 52.
  • the core belt 51 has a belt cord 51a arranged along the tire width direction.
  • the core belt 51 is an annular belt formed by coating a plurality of belt cords 51a with rubber.
  • the belt cord 51a is preferably slightly inclined with respect to the tire width direction as shown in FIG. 4A. Specifically, it is preferable that the belt cord 51a is inclined in the same direction as the inclination direction of the sheath belt 52 (upward to the left in FIG. 4A).
  • the sheath belt 52 is a tape-shaped belt having a width of about 1 cm, and is wound around the core belt 51 in a spiral shape along the tire circumferential direction. Specifically, the sheath belt 52 is helically wound around the core belt 51 along the tire circumferential direction with a predetermined distance larger than the width of the sheath belt 52.
  • the sheath belt 52 is wound over a plurality of turns in the tire circumferential direction so as not to overlap with the adjacent sheath belts 52, so that the tire radial direction outer side surface of the core belt 51 and the tire radial direction inner side surface of the core belt 51. cover.
  • the longitudinal end portion (not shown) of the tape-shaped sheath belt 52 is wound around the core belt 51 so as not to be located in the shoulder portions 26, 27 and the center region (immediately below the tire equator line).
  • the sheath belt 52 is wound around the entire circumference of the annular core belt 51 as shown in FIG. 4B.
  • the belt layer 50 is composed only of the core belt 51 and the sheath belt 52. As described above, the belt layer 50 provides the same function as the cross belt layer, but in the present embodiment, no additional belt such as a reinforcing belt is provided in addition to the core belt 51 and the sheath belt 52.
  • the number of belt cords 51a driven into the core belt 51 is preferably 15/50 mm or more and 30/50 mm or less.
  • the number of cords to be driven in the sheath belt 52 is preferably 10/50 mm or more and 25/50 mm or less. Further, it is preferable that the number of belt cords 51a driven in is greater than the number of cords driven in the sheath belt 52 (that is, dense).
  • the angle formed by the belt cord 51a and the tire width direction is preferably 20 degrees or more and 60 degrees or less.
  • the angle formed by the cord of the sheath belt 52 with the tire width direction is preferably 50 degrees or more and 80 degrees or less. Further, the angle formed by the cord of the sheath belt 52 with the tire width direction is preferably larger than the angle formed by the belt cord 51a with the tire width direction.
  • the number of turns of the sheath belt 52 in the tire circumferential direction is preferably 3 times or more and 6 times or less in consideration of ensuring performance and productivity.
  • FIG. 5 is a diagram showing a typical tire size positioning based on a combination of a tire shape (tire outer diameter OD and tire width SW) and a rim wheel shape (rim diameter RD and rim width RW).
  • the horizontal axis of the graph shown in FIG. 5 represents the ratio (RW/SW) of the rim width RW and the tire width SW, and the vertical axis represents the ratio of the rim diameter RD and the tire outer diameter OD (RD /OD).
  • typical tire size positions are plotted according to the values of RW/SW and RD/OD.
  • the area of truck/bus tires is low in both RW/SW and RD/OD.
  • the area of tires for passenger cars or light trucks is higher in both RW/SW and RD/OD than tires for trucks and buses.
  • the area A1 is included in the area A1.
  • the area A1 is in the range of 0.78 ⁇ RW/SW ⁇ 0.99 and 0.56 ⁇ RD/OD ⁇ 0.75.
  • Such an area A1 is positioned as an area of a new small-sized shuttle bus tire that focuses on transportation of people and goods in a city like the vehicle 1 described above.
  • RD/OD in the area of new small shuttle bus tires does not differ much from RD/OD in the area of passenger car or light truck tires, and some overlap.
  • RW/SW in the area of new small shuttle bus tires is higher than RW/SW in the area of passenger car or light truck tires.
  • the tire outer diameter OD of the pneumatic tire 10 is 350 mm or more and 600 mm or less. Therefore, the diameter is sufficiently smaller than the size of the vehicle 1, which can contribute to space saving of the vehicle 1.
  • the rim width RW with respect to the tire width SW is wide, that is, a wide tire can be configured and is high. It is easy to secure the air volume necessary to exert the load bearing capacity. Note that if the rim width RW becomes too wide, the tire width SW also widens, space efficiency decreases, and the bead portion 60 easily comes off the rim wheel 100.
  • the relationship of 0.56 ⁇ RD/OD ⁇ 0.75 is satisfied, so that the rim diameter RD is large with respect to the tire outer diameter OD, and the accommodation space for the in-wheel motor etc. is secured. Easy to do.
  • the rim diameter RD becomes too small, the diameter size of the disc brake or the drum brake becomes small. For this reason, the effective contact area of the brake becomes small, and it becomes difficult to secure the required braking performance.
  • the rim diameter RD of the pneumatic tire 10 is preferably 12 inches or more and 17.5 inches or less. This makes it possible to secure a necessary and sufficient air volume and a storage space for the in-wheel motor while maintaining the small diameter. In addition, braking performance and driving performance can be ensured.
  • the tire width SW of the pneumatic tire 10 is preferably 125 mm or more and 255 mm or less. Further, the flatness of the pneumatic tire 10 is preferably 35% or more and 75% or less. As a result, a necessary and sufficient air volume and a storage space for the in-wheel motor and the like can be secured.
  • the belt layer 50 includes the core belt 51 provided from the one shoulder portion 26 of the tread 20 to the other shoulder portion 27 of the tread 20, and spirals along the tire circumferential direction.
  • a sheath belt 52 that is wound around a core belt 51.
  • Such a belt layer 50 has particularly high rigidity in the shoulder portion 26 and the shoulder portion 27 of the tread 20 as compared with a general cross belt layer, and the shoulder concerned in a small diameter tire such as the pneumatic tire 10. The diameter growth of the portion can be effectively suppressed.
  • the tension of the belt layer 50 is relatively lower than that of a tire having a large tire outer diameter OD. Become. Therefore, the diameter growth of the tire is remarkable especially in the shoulder portion where the rigidity of the belt layer is low.
  • the carcass 40 is pulled more strongly in the tire width direction, and the pull in the tire radial direction is relatively low. Therefore, the diameter growth of the tire is remarkable at the shoulder portion.
  • the pneumatic tire 10 must support a large load, and since the internal pressure is set to a high value corresponding to the total weight of the vehicle, there is a concern that the durability of the belt layer may deteriorate. It
  • the belt layer 50 including the core belt 51 and the sheath belt 52 suppresses the diameter growth in the shoulder portion 26 and the shoulder portion 27 of the tread 20.
  • the durability of the belt (belt layer 50) can be improved while achieving high load bearing capacity and space saving.
  • the end portion in the longitudinal direction of the sheath belt 52 wound in a spiral shape is formed on the shoulder portions 26, 27 (that is, the tire is larger than the circumferential main groove formed on the outermost side in the tire radial direction). Since it is not located in the outer region in the width direction) or in the center region (that is, immediately below the tire equator line), it is possible to suppress the occurrence of strain due to the end portion of the sheath belt 52 in the longitudinal direction.
  • the belt cord 51a is inclined in the same direction as the sheath belt 52 is inclined.
  • the core belt 51 and the sheath belt 52 have similar characteristics at the time of deformation, so that the durability of the belt layer 50 is improved.
  • the sheath belt 52 is a tape-shaped belt, and is helically wound around the core belt 51 along the tire circumferential direction with a predetermined distance larger than the width of the sheath belt 52. Further, the sheath belt 52 covers the outer surface of the core belt 51 in the tire radial direction and the inner surface of the core belt 51 in the tire radial direction by being wound a plurality of times in the tire circumferential direction.
  • the belt layer 50 having a high rigidity particularly in the tire width direction end portion over the entire circumference of the tire. Thereby, the durability of the belt layer 50 can be further improved.
  • the belt layer 50 is composed only of the core belt 51 and the sheath belt 52.
  • the belt layer 50 including the core belt 51 and the sheath belt 52 can sufficiently suppress the diameter growth in the shoulder portion 26 and the shoulder portion 27 of the tread 20, a reinforcing belt or the like is further added. No need. As a result, the durability of the belt layer 50 can be improved while suppressing an increase in the weight of the pneumatic tire 10.
  • the pneumatic tire 10 is assumed to satisfy the relationship of 0.56 ⁇ RD/OD ⁇ 0.75, but the relationship does not necessarily have to be satisfied.
  • the folded end portion 41 of the carcass 40 is provided so as to be wound along the bead core 61, but the folded end portion 41 does not have to be wound along the bead core 61. Absent.
  • the sheath belt 52 is spirally wound around the core belt 51 along the tire circumferential direction at a predetermined distance equal to or larger than the width of the sheath belt 52, and the core belt 51 is radially outside the tire radial direction.
  • the sheath belt 52 does not necessarily have to be configured in this way.
  • the sheath belt 52 may be simply spirally wound along the tire circumferential direction without being separated by a predetermined distance, or the tire radial outside surface of the core belt 51 and the tire radial inside of the core belt 51. The sides do not have to be completely covered.
  • the core belt 51 does not necessarily have to be provided. That is, the sheath belt 52 may simply be spirally wound along the tire circumferential direction without covering the core belt 51.
  • Vehicle 10 Pneumatic tire 20 Tread 21, 22 Circumferential main groove 26, 27 Shoulder part 30 Tire side part 40 Carcass 41 Folded end part 50 Belt layer 51 Core belt 51a Belt cord 52 Sheath vest 60 Bead part 61 Bead core 100 Rim wheel 110 Rim flange

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

The outer diameter of this pneumatic tire (10) is 350-600 mm, and, defining RW as the rim width of a rim wheel (100) assembled on the pneumatic tire (10) and SW as the tire width of the pneumatic tire, the relation 0.78≤RW/SW≤0.99 holds. A belt layer is wound spirally in the circumferential direction of the tire, and includes a sheath belt.

Description

空気入りタイヤPneumatic tire
 本発明は、耐荷重能力を高めた小径の空気入りタイヤに関する。 The present invention relates to a small-diameter pneumatic tire with improved load bearing capacity.
 従来、交錯ベルト層など、タイヤを構成するベルト状の部材に代えて、複数本の補強コードをゴム被覆したゴムストリップをタイヤ周方向に螺旋状に巻き回すことによって形成した補強部材を備えた空気入りタイヤが知られている(特許文献1参照)。 Conventionally, instead of a belt-shaped member that constitutes a tire, such as a cross belt layer, air provided with a reinforcing member formed by spirally winding a rubber strip obtained by rubber-covering a plurality of reinforcing cords in the tire circumferential direction. A filled tire is known (see Patent Document 1).
 上述した空気入りタイヤによれば、補強部材のタイヤ幅方向端部が折り返された形状となっているため、補強部材のタイヤ幅方向端部の耐久性が向上する。 According to the pneumatic tire described above, since the tire width direction end portion of the reinforcing member is folded back, the durability of the tire width direction end portion of the reinforcing member is improved.
特開2016-215943号公報JP 2016-215943 JP
 近年、都市内での人や物などの輸送に主眼を置いた新たな小型シャトルバスが提案されている。このような小型シャトルバスは、全長5メートル、全幅2メートル程度であり、車両総重量も3トンを超える場合も想定されている。 In recent years, a new small shuttle bus has been proposed that focuses on the transportation of people and goods in the city. Such a small shuttle bus has a total length of about 5 meters and a total width of about 2 meters, and it is assumed that the total vehicle weight may exceed 3 tons.
 このような小型シャトルバスに装着される空気入りタイヤには、高い耐荷重能力と、小径化のよる省スペース化とが求められている。また、このような空気入りタイヤでは、大きな荷重を支持する必要があり、さらに高いベルトの耐久性も求められる。  Pneumatic tires mounted on such a small shuttle bus are required to have high load-bearing capacity and space-saving due to smaller diameter. In addition, such a pneumatic tire needs to support a large load, and higher durability of the belt is also required.
 そこで、本発明は、このような状況に鑑みてなされたものであり、高い耐荷重能力と省スペース化とを達成しつつ、ベルトの耐久性も向上し得る空気入りタイヤの提供を目的とする。 Therefore, the present invention has been made in view of such a situation, and an object of the present invention is to provide a pneumatic tire capable of improving the durability of a belt while achieving a high load bearing capacity and space saving. ..
 本発明の一態様は、路面に接するトレッド(トレッド20)と、前記トレッドのタイヤ径方向内側に設けられるベルト層(ベルト層50)とを備え、車両(車両1)に装着される空気入りタイヤ(空気入りタイヤ10)であって、前記空気入りタイヤの外径は、350mm以上、600mm以下であり、前記空気入りタイヤに組み付けられるリムホイール(リムホイール100)のリム幅をRW、前記空気入りタイヤのタイヤ幅をSWとした場合、0.78≦RW/SW≦0.99の関係を満たし、前記ベルト層は、タイヤ周方向に沿って螺旋状に巻き回されたシースベルト(シースベルト52)を含む。 One aspect of the present invention includes a tread (tread 20) that is in contact with a road surface, and a belt layer (belt layer 50) provided inside the tread in the tire radial direction, and is a pneumatic tire mounted on a vehicle (vehicle 1). (Pneumatic tire 10), the outer diameter of the pneumatic tire is 350mm or more, 600mm or less, rim width of the rim wheel (rim wheel 100) assembled to the pneumatic tire is RW, the pneumatic When the tire width of the tire is SW, the relationship of 0.78≦RW/SW≦0.99 is satisfied, and the belt layer includes a sheath belt (sheath belt 52) spirally wound along the tire circumferential direction.
図1は、空気入りタイヤ10が装着される車両1の全体概略側面図である。FIG. 1 is an overall schematic side view of a vehicle 1 to which a pneumatic tire 10 is attached. 図2は、空気入りタイヤ10及びリムホイール100の断面図である。FIG. 2 is a cross-sectional view of the pneumatic tire 10 and the rim wheel 100. 図3は、空気入りタイヤ10の単体断面図である。FIG. 3 is a unit cross-sectional view of the pneumatic tire 10. 図4Aは、製造途中におけるベルト層50の単体斜視図である。FIG. 4A is a perspective view of the belt layer 50 alone during manufacturing. 図4Bは、製造後におけるベルト層50の単体斜視図である。FIG. 4B is a perspective view of the belt layer 50 after manufacturing. 図5は、タイヤ形状(タイヤ外径OD及びタイヤ幅SW)と、リムホイール形状(リム径RD及びリム幅RW)との組合せに基づく典型的なタイヤサイズのポジショニングを示す図である。FIG. 5 is a diagram showing positioning of a typical tire size based on a combination of a tire shape (tire outer diameter OD and tire width SW) and a rim wheel shape (rim diameter RD and rim width RW).
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 Embodiments will be described below with reference to the drawings. The same functions and configurations are designated by the same or similar reference numerals, and description thereof will be omitted as appropriate.
 (1)空気入りタイヤが装着される車両の概略構成
 図1は、本実施形態に係る空気入りタイヤ10が装着される車両1の全体概略側面図である。図1に示すように、本実施形態では、車両1は、4輪自動車である。なお、車両1は、4輪に限定されず、6輪構成或いは8輪構成などであってもよい。
(1) Schematic configuration of vehicle equipped with pneumatic tire FIG. 1 is an overall schematic side view of a vehicle 1 equipped with a pneumatic tire 10 according to the present embodiment. As shown in FIG. 1, in this embodiment, the vehicle 1 is a four-wheeled vehicle. The vehicle 1 is not limited to four wheels, and may have a six-wheel configuration, an eight-wheel configuration, or the like.
 車両1は、車輪構成に応じて、所定数の空気入りタイヤ10が装着される。具体的には、車両1には、リムホイール100に組み付けられた空気入りタイヤ10が所定位置に装着される。 The vehicle 1 is equipped with a predetermined number of pneumatic tires 10 according to the wheel configuration. Specifically, the vehicle 1 is equipped with the pneumatic tire 10 assembled to the rim wheel 100 at a predetermined position.
 車両1は、都市内での人や物などの輸送に主眼を置いた新たな小型シャトルバスに属する。本実施形態では、新たな小型シャトルバスとは、全長が4m~7m、全幅2m程度であり、車両総重量が3t前後である車両を想定する。但し、サイズ及び車両総重量は、必ずしも当該範囲に限定されず、多少であれば、当該範囲から外れても構わない。 -Vehicle 1 belongs to a new small shuttle bus that focuses on transporting people and things in the city. In the present embodiment, the new small shuttle bus is assumed to be a vehicle having a total length of 4 m to 7 m, a total width of about 2 m, and a total vehicle weight of about 3 t. However, the size and the total weight of the vehicle are not necessarily limited to the range, and may be out of the range as long as they are small.
 また、小型シャトルバスは、必ずしも人の輸送に限らず、物の輸送、移動店舗、移動オフィスなどとして用いられてもよい。 Also, the small shuttle bus may be used not only for transportation of people but also for transportation of goods, mobile shops, mobile offices, and the like.
 さらに、小型シャトルバスは、都市内での人や物などの輸送に主眼が置かれているため、比較的低い走行速度レンジ(最高速度70km/h以下、平均速度50km/h程度)を想定する。このため、ハイドロプレーニング対策は重視されなくても構わない。 In addition, the small shuttle bus is focused on transporting people and goods in the city, so a relatively low traveling speed range (maximum speed of 70 km/h or less, average speed of about 50 km/h) is assumed. .. Therefore, the hydroplaning countermeasure does not have to be emphasized.
 本実施形態では、車両1は、自動運転機能(レベル4以上を想定)を備えた電気自動車であることを前提とするが、自動運転機能は必須ではなく、また、電気自動車でなくても構わない。 In the present embodiment, it is assumed that the vehicle 1 is an electric vehicle having an automatic driving function (assuming level 4 or higher), but the automatic driving function is not essential and may not be an electric vehicle. Absent.
 車両1が電気自動車である場合、インホイールモーター(不図示)をパワーユニットとして用いられることが好ましい。インホイールモーターは、ユニット全体がリムホイール100の内側空間に設けられてもよいし、ユニットの一部がリムホイール100の内側空間に設けられてもよい。 If the vehicle 1 is an electric vehicle, it is preferable to use an in-wheel motor (not shown) as a power unit. As for the in-wheel motor, the entire unit may be provided in the inner space of the rim wheel 100, or a part of the unit may be provided in the inner space of the rim wheel 100.
 また、インホイールモーターを用いる場合、車両1は、各車輪が独立して操舵が可能な独立操舵機能を備えることが好ましい。これにより、その場での転回、及び横方向への移動が可能となるとともに、動力伝達機構が不要となるため、車両1のスペース効率を向上し得る。 When using an in-wheel motor, it is preferable that the vehicle 1 has an independent steering function that allows each wheel to be independently steered. As a result, turning on the spot and lateral movement are possible, and the power transmission mechanism is not required, so that the space efficiency of the vehicle 1 can be improved.
 このように、車両1では、高いスペース効率が要求される。このため、空気入りタイヤ10は、極力小径であることが好ましい。 In this way, vehicle 1 requires high space efficiency. Therefore, the pneumatic tire 10 preferably has a diameter as small as possible.
 一方、車両サイズ及び用途に応じた相応の車両総重量となる車両1に装着されるため、高い耐荷重能力(最大負荷能力)が要求される。 ∙ On the other hand, since it is mounted on the vehicle 1 with a total vehicle weight corresponding to the vehicle size and application, high load capacity (maximum load capacity) is required.
 空気入りタイヤ10は、このような要件を満たすべく、タイヤ外径OD(図1において不図示、図2参照)を小さくしつつ、車両1の車両総重量に対応した耐荷重能力を有する。 The pneumatic tire 10 has a load bearing capacity corresponding to the total weight of the vehicle 1 while reducing the tire outer diameter OD (not shown in FIG. 1, see FIG. 2) in order to satisfy such requirements.
 また、車両1がインホイールモーター及び独立操舵機能を備える場合、応答性向上の観点からは空気入りタイヤ10の偏平率は低いことが好ましく、インホイールモーターなどの収容スペースを考慮すると、空気入りタイヤ10のリム径RD(図1において不図示、図2参照)は、大きいことが好ましい。 Further, when the vehicle 1 has an in-wheel motor and an independent steering function, it is preferable that the flatness of the pneumatic tire 10 is low from the viewpoint of improving responsiveness. The rim diameter RD of 10 (not shown in FIG. 1, see FIG. 2) is preferably large.
 (2)空気入りタイヤの構成
 図2は、空気入りタイヤ10及びリムホイール100の断面図である。具体的には、図2は、リムホイール100に組み付けられた空気入りタイヤ10のタイヤ幅方向及びタイヤ径方向に沿った断面図である。なお、図2では、断面のハッチング表示は、省略されている(図3以降も同様)。
(2) Configuration of Pneumatic Tire FIG. 2 is a sectional view of the pneumatic tire 10 and the rim wheel 100. Specifically, FIG. 2 is a cross-sectional view along the tire width direction and tire radial direction of the pneumatic tire 10 assembled to the rim wheel 100. In FIG. 2, cross-section hatching display is omitted (the same applies to FIG. 3 and subsequent figures).
 空気入りタイヤ10は、比較的小径である一方、幅広である。具体的には、リムホイール100の径であるリム径RDは、12インチ以上、17.5インチ以下であることが好ましい。但し、リム径RDは、他の数値範囲を満たすのであれば、10インチ以上、22インチ以下であってもよい。  Pneumatic tire 10 has a relatively small diameter but is wide. Specifically, the rim diameter RD, which is the diameter of the rim wheel 100, is preferably 12 inches or more and 17.5 inches or less. However, the rim diameter RD may be 10 inches or more and 22 inches or less as long as it satisfies the other numerical range.
 図2に示すように、リム径RDは、リムホイール100のリム本体部分の外径であり、リムフランジ110の部分は含まない。 As shown in FIG. 2, the rim diameter RD is the outer diameter of the rim body of the rim wheel 100, and does not include the rim flange 110.
 また、空気入りタイヤ10のタイヤ幅SWは、125mm以上、255mm以下であることが好ましい。図2に示すように、タイヤ幅SWは、空気入りタイヤ10の断面幅を意味し、空気入りタイヤ10がリムガード(不図示)を備える場合、リムガード部分は含まれない。 Also, the tire width SW of the pneumatic tire 10 is preferably 125 mm or more and 255 mm or less. As shown in FIG. 2, the tire width SW means the sectional width of the pneumatic tire 10, and when the pneumatic tire 10 includes a rim guard (not shown), the rim guard portion is not included.
 さらに、空気入りタイヤ10の偏平率は、35%以上、75%以下であることが好ましい。なお、偏平率は、式1を用いて算出される。 Furthermore, the flatness of the pneumatic tire 10 is preferably 35% or more and 75% or less. The flatness ratio is calculated using Equation 1.
  偏平率(%)=タイヤ断面高さH/タイヤ幅SW(断面幅)×100 …(式1)
 空気入りタイヤ10の外径であるタイヤ外径ODは、350mm以上、600mm以下である。なお、タイヤ外径ODは、500mm以下であることが好ましい。
Flatness (%) = tire cross-section height H / tire width SW (cross-section width) x 100 (Equation 1)
The tire outer diameter OD, which is the outer diameter of the pneumatic tire 10, is 350 mm or more and 600 mm or less. The tire outer diameter OD is preferably 500 mm or less.
 タイヤ外径ODがこのようなサイズであって、空気入りタイヤ10に組み付けられるリムホイール100のリム幅をリム幅RWとした場合、空気入りタイヤ10は、(式2)及び(式3)の関係を満たす。 When the tire outer diameter OD is such a size, and the rim width of the rim wheel 100 assembled to the pneumatic tire 10 is the rim width RW, the pneumatic tire 10 has the following formulas (2) and (3). Meet a relationship.
  0.78≦RW/SW≦0.99 …(式2)
  0.56≦RD/OD≦0.75 …(式3)
 なお、空気入りタイヤ10は、0.78≦RW/SW≦0.98を満たすことが好ましく、0.78≦RW/SW≦0.95を満たすことがより好ましい。また、空気入りタイヤ10は、0.56≦RD/OD≦0.72を満たすことが好ましく、0.56≦RD/OD≦0.71を満たすことがより好ましい。
0.78≦RW/SW≦0.99 (Equation 2)
0.56≦RD/OD≦0.75 (Equation 3)
The pneumatic tire 10 preferably satisfies 0.78≦RW/SW≦0.98, and more preferably 0.78≦RW/SW≦0.95. Further, the pneumatic tire 10 preferably satisfies 0.56≦RD/OD≦0.72, and more preferably 0.56≦RD/OD≦0.71.
 このような関係を満たす空気入りタイヤ10は、小径でありながら、車両1の車両総重量を支持するために必要なエアボリュームを確保し得る。具体的には、エアボリュームは、荷重支持性能を考慮すると20,000cm3以上必要である。また、省スペース化を考慮すると80,000cm3以下であることが必要である。 The pneumatic tire 10 satisfying such a relationship can have an air volume necessary for supporting the total vehicle weight of the vehicle 1 while having a small diameter. Specifically, the air volume needs to be 20,000 cm 3 or more in consideration of load bearing performance. Also, in consideration of space saving, it is necessary to be 80,000 cm 3 or less.
 なお、上述の関係を満たすのであれば、リム幅RWは、特に限定されないが、エアボリュームを確保する観点からは、なるべく広いことが好ましい。例えば、リム幅は、3.8~7.8Jとすることができる。 Note that the rim width RW is not particularly limited as long as the above relationship is satisfied, but it is preferable that the rim width RW is as wide as possible from the viewpoint of securing an air volume. For example, the rim width can be 3.8-7.8J.
 また、同じくエアボリュームを確保する観点からは、タイヤ外径ODに対するリム径RDの比率が小さい、つまり、偏平率が高いことが好ましい。但し、上述したように、応答性の観点からは偏平率が低いことが好ましく、また、インホイールモーターなどの収容スペースを考慮すると、リム径RDは大きいことが好ましいため、偏平率及びリム径RDは、エアボリュームと、応答性及びインホイールモーターなどの収容スペースとにおいてトレードオフの関係となる。 Also, from the viewpoint of securing the air volume, it is preferable that the ratio of the rim diameter RD to the tire outer diameter OD is small, that is, the flatness ratio is high. However, as described above, it is preferable that the flatness ratio is low from the viewpoint of responsiveness, and in consideration of the accommodation space such as the in-wheel motor, it is preferable that the rim diameter RD is large. Has a trade-off relationship between the air volume and the responsiveness and the accommodation space such as the in-wheel motor.
 空気入りタイヤ10としての好適なサイズの一例としては、205/40R15が挙げられる。また適合リム幅は、7.5J程度である。なお、好適なサイズの他の例としては、215/45R12が挙げられる。この場合、適合リム幅は、7.0J程度である。 205/40R15 is an example of a suitable size for the pneumatic tire 10. The compatible rim width is about 7.5J. 215/45R12 is another example of a suitable size. In this case, the compatible rim width is about 7.0J.
 さらに、特に限定されないが、空気入りタイヤ10の設定内圧(正規内圧)は、400~1,100kPa、現実的には、500~900kPaを想定する。なお、正規内圧とは、例えば、日本ではJATMA(日本自動車タイヤ協会)のYearBookにおける最大負荷能力に対応する空気圧であり、欧州ではETRTO、米国ではTRA、その他各国のタイヤ規格が対応する。 Furthermore, although not particularly limited, the set internal pressure (normal internal pressure) of the pneumatic tire 10 is assumed to be 400 to 1,100 kPa, and realistically 500 to 900 kPa. The regular internal pressure is, for example, the air pressure corresponding to the maximum load capacity of the JATMA (Japan Automobile Tire Manufacturer's Association) YearBook in Japan, and ETRTO in Europe, TRA in the US, and tire standards of other countries correspond to it.
 また、空気入りタイヤ10が負担する荷重は、500~1,500kgf、現実的には、900kgf程度を想定する。 Also, assume that the pneumatic tire 10 will bear a load of 500 to 1,500 kgf, realistically about 900 kgf.
 図3は、空気入りタイヤ10の単体断面図である。具体的には、図3は、空気入りタイヤ10のタイヤ幅方向及びタイヤ径方向に沿った断面図である。 FIG. 3 is a sectional view of the pneumatic tire 10 alone. Specifically, FIG. 3 is a cross-sectional view of the pneumatic tire 10 taken along the tire width direction and the tire radial direction.
 図3に示すように、空気入りタイヤ10は、トレッド20、タイヤサイド部30、カーカス40、ベルト層50及びビード部60を備える。 As shown in FIG. 3, the pneumatic tire 10 includes a tread 20, a tire side portion 30, a carcass 40, a belt layer 50 and a bead portion 60.
 トレッド20は、路面と接する部分である。トレッド20には、空気入りタイヤ10の使用環境や装着される車両の種別に応じたパターン(不図示)が形成される。  Tread 20 is the part that contacts the road surface. A pattern (not shown) is formed on the tread 20 according to the environment in which the pneumatic tire 10 is used and the type of vehicle on which the pneumatic tire 10 is mounted.
 本実施形態では、トレッド20には、タイヤ周方向に延びる周方向主溝21及び周方向主溝22を含む複数の周方向溝が形成される。 In the present embodiment, the tread 20 is formed with a plurality of circumferential grooves including a circumferential main groove 21 and a circumferential main groove 22 extending in the tire circumferential direction.
 タイヤサイド部30は、トレッド20に連なり、トレッド20のタイヤ径方向内側に位置する。タイヤサイド部30は、トレッド20のタイヤ幅方向外側端からビード部60の上端までの領域である。タイヤサイド部30は、サイドウォールなどと呼ばれることもある。  The tire side part 30 is connected to the tread 20 and is located inside the tread 20 in the tire radial direction. The tire side portion 30 is an area from the tire width direction outer end of the tread 20 to the upper end of the bead portion 60. The tire side portion 30 is sometimes called a sidewall or the like.
 カーカス40は、空気入りタイヤ10の骨格を形成する。カーカス40は、タイヤ径方向に沿って放射状に配置されたカーカスコード(不図示)がゴム材料によって被覆されたラジアル構造である。但し、ラジアル構造に限定されず、カーカスコードがタイヤ径方向に交錯するように配置されたバイアス構造でも構わない。 The carcass 40 forms the skeleton of the pneumatic tire 10. The carcass 40 has a radial structure in which carcass cords (not shown) radially arranged along the tire radial direction are covered with a rubber material. However, the structure is not limited to the radial structure, and may be a bias structure in which the carcass cords are arranged so as to intersect in the tire radial direction.
 ベルト層50は、トレッド20のタイヤ径方向内側に設けられる。ベルト層50は、コアベルト51及びシースベルト52によって構成される。 The belt layer 50 is provided inside the tire in the tire radial direction of the tread 20. The belt layer 50 includes a core belt 51 and a sheath belt 52.
 コアベルト51は、トレッド20の一方のショルダー部26からトレッド20の他方のショルダー部27に亘って設けられる。ショルダー部26は、周方向主溝21よりもタイヤ幅方向外側の領域であり、ショルダー部27は、周方向主溝22よりもタイヤ幅方向外側の領域である。つまり、ショルダー部26及びショルダー部27は、最もタイヤ幅方向外側に形成されている周方向主溝よりもタイヤ幅方向外側の領域である。 The core belt 51 is provided from one shoulder portion 26 of the tread 20 to the other shoulder portion 27 of the tread 20. The shoulder portion 26 is an area outside the circumferential main groove 21 in the tire width direction, and the shoulder portion 27 is an area outside the circumferential main groove 22 in the tire width direction. That is, the shoulder portion 26 and the shoulder portion 27 are regions on the outer side in the tire width direction with respect to the circumferential main groove formed on the outermost side in the tire width direction.
 コアベルト51は、タイヤ幅方向に対して低角度で傾斜したベルトコード51a(図3において不図示、図4A参照)をゴム被覆したベルトである。シースベルト52は、コード(不図示)を含むテープ状のベルトであり、コアベルト51の全周に亘って巻き付けられる。ベルト層50は、交錯ベルト層と同様の機能を提供する。なお、ベルト層50の構成については、さらに後述する。 The core belt 51 is a belt in which a belt cord 51a (not shown in FIG. 3, see FIG. 4A) inclined at a low angle with respect to the tire width direction is covered with rubber. The sheath belt 52 is a tape-shaped belt including a cord (not shown) and is wound around the entire circumference of the core belt 51. Belt layer 50 provides the same function as the interlaced belt layer. The configuration of the belt layer 50 will be described later.
 ビード部60は、タイヤサイド部30に連なり、タイヤサイド部30のタイヤ径方向内側に位置する。ビード部60は、リムホイール100に係止され、円環状のビードコア61を有する。
カーカス40は、ビードコア61を介してタイヤ幅方向外側に折り返されている。
The bead portion 60 is continuous with the tire side portion 30 and is located inside the tire side portion 30 in the tire radial direction. The bead portion 60 is locked to the rim wheel 100 and has an annular bead core 61.
The carcass 40 is folded back to the outside in the tire width direction via the bead core 61.
 ビード部60において折り返されたカーカス40の折り返し端部41は、ビードコア61に沿って巻き付けられるように設けられている。折り返し端部41は、ビードコア61のタイヤ径方向外側端に接している。具体的には、カーカス40の折り返し端部41では、カーカスコードがビードコア61のタイヤ径方向外側端に巻き付けられている。 The folded end 41 of the carcass 40 folded back at the bead portion 60 is provided so as to be wound along the bead core 61. The folded-back end portion 41 is in contact with the tire radial outer end of the bead core 61. Specifically, at the folded-back end portion 41 of the carcass 40, a carcass cord is wound around the bead core 61 at the tire radial outer end.
 なお、ビード部60には、ビードコアのタイヤ径方向外側にビードフィラーが設けられてもよいし、ビード部60で折り返されているカーカス40などがリムホイール100と擦れて摩耗することを防止するチェーファーが設けられてもよい。 The bead portion 60 may be provided with a bead filler on the outer side in the tire radial direction of the bead core. Fur may be provided.
 (3)ベルト層50の構成
 図4A及び図4Bは、ベルト層50の構成を示す。具体的には、図4Aは、製造途中におけるベルト層50の単体斜視図であり、図4Bは、製造後におけるベルト層50の単体斜視図である。
(3) Configuration of Belt Layer 50 FIGS. 4A and 4B show the configuration of the belt layer 50. Specifically, FIG. 4A is a single perspective view of the belt layer 50 during manufacturing, and FIG. 4B is a single perspective view of the belt layer 50 after manufacturing.
 上述したように、ベルト層50は、コアベルト51及びシースベルト52によって構成される。図4Aに示すように、コアベルト51は、タイヤ幅方向に沿って配置されたベルトコード51aを有する。コアベルト51は、複数のベルトコード51aをゴム被覆することによって形成された円環状のベルトである。 As described above, the belt layer 50 is composed of the core belt 51 and the sheath belt 52. As shown in FIG. 4A, the core belt 51 has a belt cord 51a arranged along the tire width direction. The core belt 51 is an annular belt formed by coating a plurality of belt cords 51a with rubber.
 なお、ベルトコード51aは、図4Aに示すように、タイヤ幅方向に対して多少傾斜していることが好ましい。具体的には、ベルトコード51aは、シースベルト52の傾斜方向と同一方向(図4Aでは左上がり)に傾斜していることが好ましい。 Note that the belt cord 51a is preferably slightly inclined with respect to the tire width direction as shown in FIG. 4A. Specifically, it is preferable that the belt cord 51a is inclined in the same direction as the inclination direction of the sheath belt 52 (upward to the left in FIG. 4A).
 シースベルト52は、幅が1cm程度のテープ状のベルトであり、タイヤ周方向に沿って螺旋状にコアベルト51に巻き回される。具体的には、シースベルト52は、シースベルト52の幅以上の所定距離を隔ててタイヤ周方向に沿って螺旋状にコアベルト51に巻き回される。 The sheath belt 52 is a tape-shaped belt having a width of about 1 cm, and is wound around the core belt 51 in a spiral shape along the tire circumferential direction. Specifically, the sheath belt 52 is helically wound around the core belt 51 along the tire circumferential direction with a predetermined distance larger than the width of the sheath belt 52.
 シースベルト52が、隣接するシースベルト52と重複しないようにタイヤ周方向において複数周回に亘って巻き回されることによって、コアベルト51のタイヤ径方向外側面、及びコアベルト51のタイヤ径方向内側面を覆う。 The sheath belt 52 is wound over a plurality of turns in the tire circumferential direction so as not to overlap with the adjacent sheath belts 52, so that the tire radial direction outer side surface of the core belt 51 and the tire radial direction inner side surface of the core belt 51. cover.
 また、テープ状であるシースベルト52の長手方向の端部(不図示)は、ショルダー部26, 27、及びセンター領域(タイヤ赤道線直下)には位置しないようにコアベルト51に巻き回される。 Also, the longitudinal end portion (not shown) of the tape-shaped sheath belt 52 is wound around the core belt 51 so as not to be located in the shoulder portions 26, 27 and the center region (immediately below the tire equator line).
 シースベルト52は、図4Bに示すように、円環状のコアベルト51の全周に亘って巻き付けられる。 The sheath belt 52 is wound around the entire circumference of the annular core belt 51 as shown in FIG. 4B.
 また、本実施形態では、ベルト層50は、コアベルト51及びシースベルト52のみによって構成される。上述したように、ベルト層50は、交錯ベルト層と同様の機能を提供するが、本実施形態では、コアベルト51及びシースベルト52以外に、補強ベルトなどの追加のベルトは設けられていない。 Further, in the present embodiment, the belt layer 50 is composed only of the core belt 51 and the sheath belt 52. As described above, the belt layer 50 provides the same function as the cross belt layer, but in the present embodiment, no additional belt such as a reinforcing belt is provided in addition to the core belt 51 and the sheath belt 52.
 コアベルト51におけるベルトコード51aの打ち込み本数は、15本/50mm以上、30本/50mm以下であることが好ましい。また、シースベルト52におけるコードの打ち込み本数は、10本/50mm以上、25本/50mm以下であることが好ましい。また、ベルトコード51aの打ち込み本数は、シースベルト52におけるコードの打ち込み本数よりも多い(つまり、密)なことが好ましい。 The number of belt cords 51a driven into the core belt 51 is preferably 15/50 mm or more and 30/50 mm or less. The number of cords to be driven in the sheath belt 52 is preferably 10/50 mm or more and 25/50 mm or less. Further, it is preferable that the number of belt cords 51a driven in is greater than the number of cords driven in the sheath belt 52 (that is, dense).
 ベルトコード51aがタイヤ幅方向と成す角度は、20度以上、60度以下であることが好ましい。シースベルト52のコードがタイヤ幅方向と成す角度は、50度以上、80度以下であることが好ましい。また、シースベルト52のコードがタイヤ幅方向と成す角度は、ベルトコード51aがタイヤ幅方向と成す角度よりも大きいことが好ましい。 The angle formed by the belt cord 51a and the tire width direction is preferably 20 degrees or more and 60 degrees or less. The angle formed by the cord of the sheath belt 52 with the tire width direction is preferably 50 degrees or more and 80 degrees or less. Further, the angle formed by the cord of the sheath belt 52 with the tire width direction is preferably larger than the angle formed by the belt cord 51a with the tire width direction.
 シースベルト52のタイヤ周方向における折り返し回数は、性能確保及び生産性を考慮すると、3回以上、6回以下であることが好ましい。 The number of turns of the sheath belt 52 in the tire circumferential direction is preferably 3 times or more and 6 times or less in consideration of ensuring performance and productivity.
 (4)作用・効果
 次に、上述した空気入りタイヤ10の作用・効果について説明する。図5は、タイヤ形状(タイヤ外径OD及びタイヤ幅SW)と、リムホイール形状(リム径RD及びリム幅RW)との組合せに基づく典型的なタイヤサイズのポジショニングを示す図である。
(4) Action/Effect Next, the action/effect of the pneumatic tire 10 described above will be described. FIG. 5 is a diagram showing a typical tire size positioning based on a combination of a tire shape (tire outer diameter OD and tire width SW) and a rim wheel shape (rim diameter RD and rim width RW).
 具体的には、図5に示すグラフの横軸は、リム幅RWとタイヤ幅SWとの比率(RW/SW)を示し、縦軸は、リム径RDとタイヤ外径ODとの比率(RD/OD)を示す。図5では、RW/SW及びRD/ODの値に従って、典型的なタイヤサイズのポジションがプロットされている。 Specifically, the horizontal axis of the graph shown in FIG. 5 represents the ratio (RW/SW) of the rim width RW and the tire width SW, and the vertical axis represents the ratio of the rim diameter RD and the tire outer diameter OD (RD /OD). In FIG. 5, typical tire size positions are plotted according to the values of RW/SW and RD/OD.
 図5に示すように、トラック・バス用タイヤの領域は、RW/SW及びRD/OD共に低い。乗用車または小型トラック用タイヤの領域は、RW/SW及びRD/OD共に、トラック・バス用タイヤよりも高い。 As shown in Figure 5, the area of truck/bus tires is low in both RW/SW and RD/OD. The area of tires for passenger cars or light trucks is higher in both RW/SW and RD/OD than tires for trucks and buses.
 上述した空気入りタイヤ10としての好適なサイズの一例である215/45R12は、領域A1に含まれる。領域A1は、上述したように、0.78≦RW/SW≦0.99であり、0.56≦RD/OD≦0.75の範囲である。このような領域A1は、上述した車両1のように、都市内での人や物などの輸送に主眼を置いた新小型シャトルバス用タイヤの領域と位置付けられる。 215/45R12, which is an example of a suitable size for the pneumatic tire 10 described above, is included in the area A1. As described above, the area A1 is in the range of 0.78≦RW/SW≦0.99 and 0.56≦RD/OD≦0.75. Such an area A1 is positioned as an area of a new small-sized shuttle bus tire that focuses on transportation of people and goods in a city like the vehicle 1 described above.
 新小型シャトルバス用タイヤの領域のRD/ODは、乗用車または小型トラック用タイヤの領域のRD/ODと大きく変わらず、一部は重複している。一方、新小型シャトルバス用タイヤの領域のRW/SWは、乗用車または小型トラック用タイヤの領域のRW/SWよりも高い。 RD/OD in the area of new small shuttle bus tires does not differ much from RD/OD in the area of passenger car or light truck tires, and some overlap. On the other hand, RW/SW in the area of new small shuttle bus tires is higher than RW/SW in the area of passenger car or light truck tires.
 上述したように、空気入りタイヤ10のタイヤ外径ODは、350mm以上、600mm以下である。このため、車両1のサイズと比較して十分に小径であり、車両1の省スペース化に貢献し得る。 As described above, the tire outer diameter OD of the pneumatic tire 10 is 350 mm or more and 600 mm or less. Therefore, the diameter is sufficiently smaller than the size of the vehicle 1, which can contribute to space saving of the vehicle 1.
 また、領域A1に含まれるサイズの空気入りタイヤ10によれば、0.78≦RW/SW≦0.99の関係を満たすため、タイヤ幅SWに対するリム幅RWが広く、つまり、幅広のタイヤを構成でき、高い耐荷重能力を発揮するために必要なエアボリュームを確保し易い。なお、リム幅RWが広くなり過ぎると、タイヤ幅SWも広がりスペース効率が低下するとともに、ビード部60がリムホイール100から外れやすくなる。 Further, according to the pneumatic tire 10 of the size included in the region A1, since the relationship of 0.78≦RW/SW≦0.99 is satisfied, the rim width RW with respect to the tire width SW is wide, that is, a wide tire can be configured and is high. It is easy to secure the air volume necessary to exert the load bearing capacity. Note that if the rim width RW becomes too wide, the tire width SW also widens, space efficiency decreases, and the bead portion 60 easily comes off the rim wheel 100.
 さらに、領域A1に含まれるサイズの空気入りタイヤ10によれば、0.56≦RD/OD≦0.75の関係を満たすため、タイヤ外径ODに対するリム径RDが大きく、インホイールモーターなどの収容スペースを確保し易い。なお、リム径RDが小さくなり過ぎると、ディスクブレーキまたはドラムブレーキの径サイズが小さくなる。このため、有効なブレーキの接触面積が小さくなり、必要な制動性能の確保が難しくなる。 Furthermore, according to the pneumatic tire 10 of the size included in the region A1, the relationship of 0.56≦RD/OD≦0.75 is satisfied, so that the rim diameter RD is large with respect to the tire outer diameter OD, and the accommodation space for the in-wheel motor etc. is secured. Easy to do. When the rim diameter RD becomes too small, the diameter size of the disc brake or the drum brake becomes small. For this reason, the effective contact area of the brake becomes small, and it becomes difficult to secure the required braking performance.
 すなわち、空気入りタイヤ10によれば、新たな小型シャトルバスなどに装着される場合において、さらに高い耐荷重能力を有しつつ、高いスペース効率を達成し得る。 That is, according to the pneumatic tire 10, when it is mounted on a new small shuttle bus or the like, it is possible to achieve high space efficiency while having a higher load bearing capacity.
 空気入りタイヤ10のリム径RDは、12インチ以上、17.5インチ以下であることが好ましい。これにより、小径を維持しつつ、必要十分なエアボリューム及びインホイールモーターなどの収容スペースを確保し得る。また、制動性能及び駆動性能も確保できる。 The rim diameter RD of the pneumatic tire 10 is preferably 12 inches or more and 17.5 inches or less. This makes it possible to secure a necessary and sufficient air volume and a storage space for the in-wheel motor while maintaining the small diameter. In addition, braking performance and driving performance can be ensured.
 また、空気入りタイヤ10のタイヤ幅SWは、125mm以上、255mm以下であることが好ましい。さらに、空気入りタイヤ10の偏平率は、35%以上、75%以下であることが好ましい。これにより、必要十分なエアボリューム及びインホイールモーターなどの収容スペースを確保し得る。 Also, the tire width SW of the pneumatic tire 10 is preferably 125 mm or more and 255 mm or less. Further, the flatness of the pneumatic tire 10 is preferably 35% or more and 75% or less. As a result, a necessary and sufficient air volume and a storage space for the in-wheel motor and the like can be secured.
 さらに、本実施形態では、上述したように、ベルト層50は、トレッド20の一方のショルダー部26からトレッド20の他方のショルダー部27に亘って設けられるコアベルト51と、タイヤ周方向に沿って螺旋状にコアベルト51に巻き回されたシースベルト52とを含む。 Further, in the present embodiment, as described above, the belt layer 50 includes the core belt 51 provided from the one shoulder portion 26 of the tread 20 to the other shoulder portion 27 of the tread 20, and spirals along the tire circumferential direction. A sheath belt 52 that is wound around a core belt 51.
 このようなベルト層50は、一般的な交錯ベルト層と比較して、特にトレッド20のショルダー部26及びショルダー部27の剛性が高く、空気入りタイヤ10のような小径タイヤで懸念される当該ショルダー部の径成長を効果的に抑制し得る。 Such a belt layer 50 has particularly high rigidity in the shoulder portion 26 and the shoulder portion 27 of the tread 20 as compared with a general cross belt layer, and the shoulder concerned in a small diameter tire such as the pneumatic tire 10. The diameter growth of the portion can be effectively suppressed.
 具体的には、空気入りタイヤ10のタイヤ外径ODが小さいため、カーカス40の張力が一定であると仮定すると、相対的にベルト層50の張力が、タイヤ外径ODが大きいタイヤよりも低くなる。このため、特に、ベルト層の剛性が低いショルダー部では、タイヤの径成長が顕著である。 Specifically, since the tire outer diameter OD of the pneumatic tire 10 is small, assuming that the tension of the carcass 40 is constant, the tension of the belt layer 50 is relatively lower than that of a tire having a large tire outer diameter OD. Become. Therefore, the diameter growth of the tire is remarkable especially in the shoulder portion where the rigidity of the belt layer is low.
 また、空気入りタイヤ10の偏平率が低いため、カーカス40がタイヤ幅方向により強く引っ張られ、相対的にタイヤ径方向への引っ張りが低くなる。このため、やはり、ショルダー部ではタイヤの径成長が顕著である。 Also, since the flatness of the pneumatic tire 10 is low, the carcass 40 is pulled more strongly in the tire width direction, and the pull in the tire radial direction is relatively low. Therefore, the diameter growth of the tire is remarkable at the shoulder portion.
 さらに、空気入りタイヤ10は、上述したように、大きな荷重を支持しなくてはならず、また、車両総重量に対応した高い内圧に設定されるため、ベルト層の耐久性の悪化が懸念される。 Further, as described above, the pneumatic tire 10 must support a large load, and since the internal pressure is set to a high value corresponding to the total weight of the vehicle, there is a concern that the durability of the belt layer may deteriorate. It
 空気入りタイヤ10では、コアベルト51及びシースベルト52によって構成されるベルト層50によって、このようなトレッド20のショルダー部26及びショルダー部27における径成長が抑制される。 In the pneumatic tire 10, the belt layer 50 including the core belt 51 and the sheath belt 52 suppresses the diameter growth in the shoulder portion 26 and the shoulder portion 27 of the tread 20.
 すなわち、空気入りタイヤ10によれば、高い耐荷重能力と省スペース化とを達成しつつ、ベルト(ベルト層50)の耐久性も向上し得る。 That is, according to the pneumatic tire 10, the durability of the belt (belt layer 50) can be improved while achieving high load bearing capacity and space saving.
 また、本実施形態では、螺旋状に巻き回されるシースベルト52の長手方向の端部は、ショルダー部26, 27(つまり、最もタイヤ径方向外側に形成されている周方向主溝よりもタイヤ幅方向外側の領域)、及びセンター領域(つまり、タイヤ赤道線直下)には位置しないため、シースベルト52の長手方向の端部に起因する歪の発生を抑制し得る。 In addition, in the present embodiment, the end portion in the longitudinal direction of the sheath belt 52 wound in a spiral shape is formed on the shoulder portions 26, 27 (that is, the tire is larger than the circumferential main groove formed on the outermost side in the tire radial direction). Since it is not located in the outer region in the width direction) or in the center region (that is, immediately below the tire equator line), it is possible to suppress the occurrence of strain due to the end portion of the sheath belt 52 in the longitudinal direction.
 さらに、本実施形態では、ベルトコード51aは、シースベルト52の傾斜方向と同一方向に傾斜している。これにより、コアベルト51及びシースベルト52は、同様な変形時の特性を有するため、ベルト層50の耐久性が向上する。 Further, in the present embodiment, the belt cord 51a is inclined in the same direction as the sheath belt 52 is inclined. As a result, the core belt 51 and the sheath belt 52 have similar characteristics at the time of deformation, so that the durability of the belt layer 50 is improved.
 本実施形態では、シースベルト52は、テープ状のベルトであり、シースベルト52の幅以上の所定距離を隔ててタイヤ周方向に沿って螺旋状にコアベルト51に巻き回される。また、シースベルト52は、タイヤ周方向において複数周回に亘って巻き回されることによって、コアベルト51のタイヤ径方向外側面、及びコアベルト51のタイヤ径方向内側面を覆う。 In the present embodiment, the sheath belt 52 is a tape-shaped belt, and is helically wound around the core belt 51 along the tire circumferential direction with a predetermined distance larger than the width of the sheath belt 52. Further, the sheath belt 52 covers the outer surface of the core belt 51 in the tire radial direction and the inner surface of the core belt 51 in the tire radial direction by being wound a plurality of times in the tire circumferential direction.
 このため、タイヤ全周に亘って、特にタイヤ幅方向端部の剛性が高いベルト層50を提供し得る。これにより、ベルト層50の耐久性をさらに向上し得る。 Therefore, it is possible to provide the belt layer 50 having a high rigidity particularly in the tire width direction end portion over the entire circumference of the tire. Thereby, the durability of the belt layer 50 can be further improved.
 本実施形態では、ベルト層50は、コアベルト51及びシースベルト52のみによって構成される。上述したように、コアベルト51及びシースベルト52によって構成されるベルト層50は、トレッド20のショルダー部26及びショルダー部27における径成長を十分に抑制することができるため、さらに補強ベルトなどを追加する必要がない。これにより、空気入りタイヤ10の重量増を抑制しつつ、ベルト層50の耐久性を向上し得る。 In the present embodiment, the belt layer 50 is composed only of the core belt 51 and the sheath belt 52. As described above, since the belt layer 50 including the core belt 51 and the sheath belt 52 can sufficiently suppress the diameter growth in the shoulder portion 26 and the shoulder portion 27 of the tread 20, a reinforcing belt or the like is further added. No need. As a result, the durability of the belt layer 50 can be improved while suppressing an increase in the weight of the pneumatic tire 10.
 (5)その他の実施形態
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(5) Other Embodiments The contents of the present invention have been described above with reference to the examples, but the present invention is not limited to these descriptions, and various modifications and improvements are possible. It is obvious to the trader.
 例えば、上述した実施形態では、空気入りタイヤ10が、0.56≦RD/OD≦0.75の関係を満たすとしたが、当該関係は、必ずしも満たしていなくても構わない。 For example, in the above-described embodiment, the pneumatic tire 10 is assumed to satisfy the relationship of 0.56≦RD/OD≦0.75, but the relationship does not necessarily have to be satisfied.
 また、上述した実施形態では、カーカス40の折り返し端部41は、ビードコア61に沿って巻き付けられるように設けられていたが、折り返し端部41は、ビードコア61に沿って巻き付けられていなくても構わない。 Further, in the above-described embodiment, the folded end portion 41 of the carcass 40 is provided so as to be wound along the bead core 61, but the folded end portion 41 does not have to be wound along the bead core 61. Absent.
 さらに、上述した実施形態では、シースベルト52は、シースベルト52の幅以上の所定距離を隔ててタイヤ周方向に沿って螺旋状にコアベルト51に巻き回されるとともに、コアベルト51のタイヤ径方向外側面、及びコアベルト51のタイヤ径方向内側面を覆っていたが、シースベルト52は、必ずしもこのように構成されなくても構わない。 Further, in the above-described embodiment, the sheath belt 52 is spirally wound around the core belt 51 along the tire circumferential direction at a predetermined distance equal to or larger than the width of the sheath belt 52, and the core belt 51 is radially outside the tire radial direction. Although the side surface and the inner side surface of the core belt 51 in the tire radial direction are covered, the sheath belt 52 does not necessarily have to be configured in this way.
 例えば、シースベルト52は、所定距離を隔てることなく、タイヤ周方向に沿って単純に螺旋状に巻き回されてもよいし、コアベルト51のタイヤ径方向外側面、及びコアベルト51のタイヤ径方向内側面は、完全に覆われていなくても構わない。 For example, the sheath belt 52 may be simply spirally wound along the tire circumferential direction without being separated by a predetermined distance, or the tire radial outside surface of the core belt 51 and the tire radial inside of the core belt 51. The sides do not have to be completely covered.
 また、コアベルト51は必ずしも設けられていなくても構わない。つまり、シースベルト52は、コアベルト51を覆わずに、単純にタイヤ周方向に沿って螺旋状に巻き回されてもよい。 Also, the core belt 51 does not necessarily have to be provided. That is, the sheath belt 52 may simply be spirally wound along the tire circumferential direction without covering the core belt 51.
 上記のように、本発明の実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。 As described above, the embodiments of the present invention have been described, but it should not be understood that the descriptions and drawings forming a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples, and operation techniques will be apparent to those skilled in the art.
 1 車両
 10 空気入りタイヤ
 20 トレッド
 21, 22 周方向主溝
 26, 27 ショルダー部
 30 タイヤサイド部
 40 カーカス
 41 折り返し端部
 50 ベルト層
 51 コアベルト
 51a ベルトコード
 52 シースベスト
 60 ビード部
 61 ビードコア
 100 リムホイール
 110 リムフランジ
1 Vehicle 10 Pneumatic tire 20 Tread 21, 22 Circumferential main groove 26, 27 Shoulder part 30 Tire side part 40 Carcass 41 Folded end part 50 Belt layer 51 Core belt 51a Belt cord 52 Sheath vest 60 Bead part 61 Bead core 100 Rim wheel 110 Rim flange

Claims (5)

  1.  路面に接するトレッドと、前記トレッドのタイヤ径方向内側に設けられるベルト層とを備え、車両に装着される空気入りタイヤであって、
     前記空気入りタイヤの外径は、350mm以上、600mm以下であり、
     前記空気入りタイヤに組み付けられるリムホイールのリム幅をRW、
     前記空気入りタイヤのタイヤ幅をSWとした場合、
     0.78≦RW/SW≦0.99の関係を満たし、
     前記ベルト層は、タイヤ周方向に沿って螺旋状に巻き回されたシースベルトを含む空気入りタイヤ。
    A pneumatic tire equipped with a tread in contact with a road surface and a belt layer provided on the tire radial inner side of the tread, the pneumatic tire being mounted on a vehicle,
    The outer diameter of the pneumatic tire is 350 mm or more, 600 mm or less,
    The rim width of the rim wheel that is assembled to the pneumatic tire is RW,
    When the tire width of the pneumatic tire is set to SW,
    Satisfies the relationship of 0.78≦RW/SW≦0.99,
    The belt layer is a pneumatic tire including a sheath belt spirally wound along a tire circumferential direction.
  2.  前記空気入りタイヤの外径をOD、
     前記空気入りタイヤのリム径をRDとした場合、
     0.56≦RD/OD≦0.75
    の関係を満たす請求項1に記載の空気入りタイヤ。
    OD the outer diameter of the pneumatic tire,
    When the rim diameter of the pneumatic tire is RD,
    0.56≦RD/OD≦0.75
    The pneumatic tire according to claim 1, which satisfies the relationship.
  3.  前記ベルト層は、前記トレッドの一方のショルダー部から前記トレッドの他方のショルダー部に亘って設けられるコアベルトを備え、
     前記シースベルトは、タイヤ周方向に沿って螺旋状に前記コアベルトに巻き回される請求項1または2に記載の空気入りタイヤ。
    The belt layer comprises a core belt provided from one shoulder portion of the tread to the other shoulder portion of the tread,
    The pneumatic tire according to claim 1, wherein the sheath belt is helically wound around the core belt along a tire circumferential direction.
  4.  前記シースベルトは、
     テープ状のベルトであり、
     前記シースベルトの幅以上の所定距離を隔ててタイヤ周方向に沿って螺旋状に前記コアベルトに巻き回され、
     タイヤ周方向において複数周回に亘って巻き回されることによって、前記コアベルトのタイヤ径方向外側面、及び前記コアベルトのタイヤ径方向内側面を覆う請求項3に記載の空気入りタイヤ。
    The sheath belt is
    It is a tape-shaped belt,
    Spirally wound around the core belt along the tire circumferential direction with a predetermined distance larger than the width of the sheath belt,
    4. The pneumatic tire according to claim 3, wherein the pneumatic tire covers the tire radial outer surface of the core belt and the tire radial inner surface of the core belt by being wound around the tire circumferential direction for a plurality of turns.
  5.  前記コアベルトは、タイヤ幅方向に沿って配置されたベルトコードを有し、
     前記ベルト層は、前記コアベルト及び前記シースベルトのみによって構成される請求項3または4に記載の空気入りタイヤ。
    The core belt has a belt cord arranged along the tire width direction,
    The pneumatic tire according to claim 3, wherein the belt layer includes only the core belt and the sheath belt.
PCT/JP2019/048608 2018-12-13 2019-12-12 Pneumatic tire WO2020122159A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020559302A JPWO2020122159A1 (en) 2018-12-13 2019-12-12 Pneumatic tires

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018233629 2018-12-13
JP2018-233629 2018-12-13

Publications (1)

Publication Number Publication Date
WO2020122159A1 true WO2020122159A1 (en) 2020-06-18

Family

ID=71076532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048608 WO2020122159A1 (en) 2018-12-13 2019-12-12 Pneumatic tire

Country Status (2)

Country Link
JP (1) JPWO2020122159A1 (en)
WO (1) WO2020122159A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022177031A1 (en) * 2021-02-22 2022-08-25 横浜ゴム株式会社 Tire

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322205A (en) * 1976-08-11 1978-03-01 Uniroyal Sa Pneumatic tire reinforcing belt assembly
JPH07315008A (en) * 1994-05-27 1995-12-05 Fuji Seiko Kk Breaker belt for pneumatic tire
JPH0939513A (en) * 1995-07-26 1997-02-10 Yokohama Rubber Co Ltd:The Pneumatic radial tire
JP2001088502A (en) * 1999-09-20 2001-04-03 Bridgestone Corp Assembly of tire and wheel
JP2002178720A (en) * 2000-10-23 2002-06-26 Goodyear Tire & Rubber Co:The Triangular bead construction for pneumatic tire with extended load carrying capacity
JP2009190546A (en) * 2008-02-14 2009-08-27 Bridgestone Corp Low pressure pneumatic tire
JP2010001006A (en) * 2008-05-19 2010-01-07 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2017043202A (en) * 2015-08-26 2017-03-02 横浜ゴム株式会社 Pneumatic tire

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851046Y2 (en) * 1982-07-05 1983-11-21 横浜ゴム株式会社 spare tire
JP2951458B2 (en) * 1991-12-12 1999-09-20 株式会社ブリヂストン Spare tire

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322205A (en) * 1976-08-11 1978-03-01 Uniroyal Sa Pneumatic tire reinforcing belt assembly
JPH07315008A (en) * 1994-05-27 1995-12-05 Fuji Seiko Kk Breaker belt for pneumatic tire
JPH0939513A (en) * 1995-07-26 1997-02-10 Yokohama Rubber Co Ltd:The Pneumatic radial tire
JP2001088502A (en) * 1999-09-20 2001-04-03 Bridgestone Corp Assembly of tire and wheel
JP2002178720A (en) * 2000-10-23 2002-06-26 Goodyear Tire & Rubber Co:The Triangular bead construction for pneumatic tire with extended load carrying capacity
JP2009190546A (en) * 2008-02-14 2009-08-27 Bridgestone Corp Low pressure pneumatic tire
JP2010001006A (en) * 2008-05-19 2010-01-07 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2017043202A (en) * 2015-08-26 2017-03-02 横浜ゴム株式会社 Pneumatic tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022177031A1 (en) * 2021-02-22 2022-08-25 横浜ゴム株式会社 Tire

Also Published As

Publication number Publication date
JPWO2020122159A1 (en) 2021-09-27

Similar Documents

Publication Publication Date Title
WO2020122169A1 (en) Pneumatic tire
WO2020122165A1 (en) Tire
WO2020122240A1 (en) Pneumatic tire
WO2020122159A1 (en) Pneumatic tire
EP0882607B1 (en) Pneumatic radial tyre
JP2021059194A (en) Run flat tire
JP2017124763A (en) Pneumatic tire
US20220339964A1 (en) Pneumatic tire
JP7309754B2 (en) pneumatic tire
JP7311459B2 (en) pneumatic tire
JP2021059197A (en) Pneumatic tire
JP7482673B2 (en) Pneumatic tires
JP2024086392A (en) Pneumatic tires
JP2021059196A (en) Run flat tire
JP2021059198A (en) Pneumatic tire
JP2006168395A (en) Radial tire for motorcycle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897408

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559302

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19897408

Country of ref document: EP

Kind code of ref document: A1