WO2020121977A1 - Inspection system, and method for acquring image for inspection - Google Patents

Inspection system, and method for acquring image for inspection Download PDF

Info

Publication number
WO2020121977A1
WO2020121977A1 PCT/JP2019/047904 JP2019047904W WO2020121977A1 WO 2020121977 A1 WO2020121977 A1 WO 2020121977A1 JP 2019047904 W JP2019047904 W JP 2019047904W WO 2020121977 A1 WO2020121977 A1 WO 2020121977A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
camera
illumination
detection
stage
Prior art date
Application number
PCT/JP2019/047904
Other languages
French (fr)
Japanese (ja)
Inventor
生嶋 君弥
田中 隆
佐々木 健二
正人 花嶋
拓人 一川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020121977A1 publication Critical patent/WO2020121977A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements

Definitions

  • the present disclosure relates to an inspection system and an image acquisition method for inspection. More specifically, the present disclosure relates to an inspection system for inspecting the appearance of an inspection object, and an image acquisition method for inspection.
  • Patent Document 1 describes an inspection device that performs preliminary positioning of a test piece with a line sensor camera.
  • a line sensor camera is arranged so that the arrangement direction of the photosensors is parallel to the x-axis direction, and an image is taken while moving the xy stage in the y-axis direction to obtain a two-dimensional image. Get a nice image.
  • An object of the present disclosure is to provide an inspection system that can improve inspection efficiency and an image acquisition method for inspection.
  • the inspection system is an inspection system that inspects the appearance of an inspection target.
  • the inspection system includes an inspection camera, a detection camera, a stage, and an adjustment mechanism.
  • the inspection camera is composed of a camera having an image sensor in which a plurality of light receiving elements are two-dimensionally arranged, and images an inspection area including at least a part of the inspection target.
  • the detection camera is a camera having an image sensor in which a plurality of light receiving elements are two-dimensionally arranged, and captures an image of a detection area including the inspection area and wider than the inspection area.
  • the inspection target is placed on the stage.
  • the adjustment mechanism adjusts a relative position between the stage and the inspection camera based on an image of the detection area captured by the detection camera.
  • An inspection image acquisition method is an inspection image acquisition method in an inspection system that inspects the appearance of an inspection target.
  • the image acquisition method for inspection includes three processes.
  • the first process is a process of imaging an inspection area including at least a part of the inspection target with an inspection camera including a camera having an image sensor in which a plurality of light receiving elements are two-dimensionally arranged.
  • the second process is a process of imaging a detection region including the inspection region and wider than the inspection region by a detection camera including a camera having an image sensor in which a plurality of light receiving elements are two-dimensionally arranged.
  • the third process is a process of adjusting the relative position between the inspection camera and the stage on which the inspection target is placed, based on the image of the detection area captured by the detection camera.
  • FIG. 1 is a side view of the inspection system according to the first embodiment, and is a side view when a detection area is imaged by a detection camera.
  • FIG. 2 is a side view of the above inspection system, which is a side view when an inspection region is imaged by an inspection camera.
  • FIG. 3 is a side view of the above inspection system, and is another side view in the case where an inspection region is imaged by an inspection camera.
  • FIG. 4 is a perspective view of the above inspection system with a cover removed.
  • FIG. 5 is a plan view showing the relationship between the inspection area and the detection area of the above inspection system.
  • FIG. 6 is a flow chart for explaining the operation of the above inspection system.
  • FIG. 7 is a schematic diagram of the inspection illumination according to the first modification of the first embodiment.
  • FIG. 7 is a schematic diagram of the inspection illumination according to the first modification of the first embodiment.
  • FIG. 8 is an external perspective view of the inspection system according to the second embodiment.
  • FIG. 9 is an external perspective view of the inspection system according to the first modification of the second embodiment.
  • FIG. 10 is an external perspective view of the inspection system according to the second modification of the second embodiment.
  • FIG. 11 is a plan view of an inspection system according to Modification 3 of Embodiment 2.
  • the inspection system 10 is a system for inspecting the appearance of the inspection target 100.
  • the inspection target 100 is, for example, a chip component such as a resistor, a capacitor, or an inductor. Further, as another example of the inspection target 100, a circuit board, a sheet metal part such as a plate spring, or a resin molded part such as a cover may be used.
  • the inspection system 10 inspects external defects such as dirt, scratches, burrs, and chips on the outer surface of a chip component as the inspection target 100, for example.
  • the inspection system 10 may be incorporated in the manufacturing line of the chip component, or the visual inspection may be performed outside the manufacturing line.
  • the inspection system 10 includes an inspection camera 1, a detection camera 2, a stage 3, and an adjusting mechanism 4, as shown in FIGS. 1 to 4.
  • the inspection camera 1 and the detection camera 2 are area cameras.
  • the “area camera” in the present disclosure refers to a camera having an image pickup device (for example, CCD image sensor or CMOS image sensor) in which a plurality of light receiving devices (for example, photodiodes) are two-dimensionally arranged. That is, according to the area camera, a two-dimensional plane image can be acquired without moving the stage on which the inspection target is placed in one direction unlike the line sensor camera.
  • the inspection camera 1 images the inspection region R1 (see FIG. 5) including the inspection target 100.
  • the detection camera 2 captures an image of a detection region R2 (see FIG. 5) including the inspection region R1 and wider than the inspection region R1.
  • one or more inspection targets 100 are mounted on the stage 3.
  • the “detection region R2” in the present disclosure refers to a region that is set so as to include the entire stage 3 on which one or more inspection targets 100 are placed.
  • the “inspection region R1” in the present disclosure refers to a region that is set so as to include at least a part of one inspection target 100 among one or a plurality of inspection targets 100. Then, when a plurality of inspection objects 100 are placed on the stage 3, the detection region R2 includes a plurality of inspection regions R1.
  • the adjustment mechanism 4 adjusts the relative position between the stage 3 and the inspection camera 1 based on the image of the detection region R2 captured by the detection camera 2.
  • the “relative position” in the present disclosure refers to the position of the inspection camera 1 with respect to the stage 3 in the direction intersecting the optical axis of the inspection camera 1.
  • the detection camera 2 for capturing the detection area R2 including the stage 3 is an area camera. Therefore, unlike the case where the position of the inspection target is detected by the line sensor camera, the position of the inspection target can be detected without moving the stage on which the inspection target is placed in one direction, so that the inspection efficiency can be improved. ..
  • the imaging timing pulse is directly generated from the pulse output of the encoder of the actuator that drives the stage 3, and the synchronous imaging is performed in real time using the image processing dedicated board.
  • the stage 3 when shooting the stage 3 with the area camera, it is sufficient to move the stage 3 to a predetermined position, stop the stage 3, and then shoot with the area camera. No need to synchronize timing. Therefore, in this case, the stage 3 can be photographed with a simpler and less expensive structure than when the stage 3 is photographed with the line sensor camera.
  • the inspection system 10 can be configured at a low cost with a simple structure as compared with the case where the position of the inspection target is detected by the line sensor camera.
  • the length direction (longitudinal direction) of the stage 3 is the X direction
  • the width direction (shorter direction) of the stage 3 is the Y direction
  • the thickness direction of the stage 3 is. It is defined as the Z direction.
  • these directions are not intended to limit the usage direction of the inspection system 10.
  • the arrows in the drawings are shown only for the purpose of description and do not have any substance.
  • the inspection system 10 includes an inspection camera 1, a detection camera 2, a stage 3, and an adjustment mechanism 4. Further, the inspection system 10 includes the inspection illumination 5, the detection illumination 6, the camera actuator 7, and the illumination actuator 8. The inspection system 10 further includes a base 11 and a cover 14.
  • the inspection camera 1 is, for example, an area camera.
  • the area camera is a two-dimensional camera having an image sensor in which a plurality of light receiving elements (for example, photodiodes) are two-dimensionally arranged.
  • the image sensor is, for example, a two-dimensional image sensor such as a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
  • the inspection camera 1 includes a lens 101. As shown in FIG. 3, the lens 101 has a columnar shape elongated in the Z direction. The lens 101 is detachably attached to the inspection camera 1.
  • the inspection camera 1 is attached to the camera actuator 7 by a rectangular arm 12 that is long in the Y direction.
  • the detection camera 2 is an area camera.
  • the detection camera 2 has a wide-angle lens. Therefore, the detection camera 2 can capture an image of the detection area R2 that is wider than the inspection area R1.
  • the detection region R2 is a region including the entire stage 3 on which a plurality of (15 in the first embodiment) inspection objects 100 are placed here (see FIG. 5).
  • the detection camera 2 is attached to the arm 12 by a connecting member 9 formed in a T shape when viewed from the X direction. That is, when the arm 12 to which the inspection camera 1 is attached moves in the Z direction by the camera actuator 7, the detection camera 2 can move in the Z direction. In other words, the detection camera 2 moves together with the inspection camera 1 by the camera actuator 7.
  • the angle of view of the detection camera 2 is wider than the angle of view of the inspection camera 1.
  • the inspection camera 1 and the detection camera 2 are attached to the same arm 12. Therefore, regarding the positional relationship between the inspection camera 1 and the detection camera 2, the other of the inspection camera 1 and the detection camera 2 is reflected when one of the inspection camera 1 and the detection camera 2 is photographed. It is preferable that there is no positional relationship.
  • the stage 3 has a rectangular plate shape that is long in the X direction when viewed from the Z direction.
  • the dimension of the stage 3 in the X direction is, for example, 300 mm
  • the dimension of the stage 3 in the Y direction is, for example, 200 mm. Note that these dimensions are examples and are not intended to be limited to these dimensions.
  • the stage 3 can be moved in the X direction and the Y direction by the adjusting mechanism 4. That is, the stage 3 can be moved in the XY plane by the adjusting mechanism 4.
  • the adjusting mechanism 4 has a first actuator 41 and a second actuator 42, as shown in FIGS. 1 to 4.
  • the first actuator 41 has a rectangular tube shape that is long in the Y direction.
  • the second actuator 42 has a rectangular tube shape that is long in the X direction.
  • the power source of the first actuator 41 and the second actuator 42 is, for example, a motor (electric motor).
  • the second actuator 42 is movable by the first actuator 41 in the longitudinal direction (Y direction) of the first actuator 41. That is, the stage 3 can be moved in the Y direction by moving the second actuator 42 in the Y direction.
  • the stage 3 is movable by the second actuator 42 in the length direction (X direction) of the second actuator 42.
  • the stage 3 can be moved in the X direction and the Y direction by the first actuator 41 and the second actuator 42.
  • the adjustment mechanism 4 moves the stage 3 in a direction (X direction and Y direction) that intersects the optical axis (axis in the Z direction) of the inspection camera 1.
  • the adjustment mechanism 4 is attached to the base 11 such that the length direction of the base 11 formed in the shape of a rectangular plate long in the Y direction and the length direction of the first actuator 41 are parallel to each other.
  • the inspection illumination 5 irradiates the inspection region R1 imaged by the inspection camera 1 with light.
  • the inspection system 10 further includes the inspection illumination 5 that irradiates the inspection region R1 with light.
  • the inspection illumination 5 is, for example, a ring illumination 51 as shown in FIGS. 1 to 4.
  • the ring illumination 51 has an annular light source.
  • the inspection illumination 5 is attached to the illumination actuator 8 by an arm 13 having a rectangular tube shape that is long in the Y direction. In this way, by making the inspection illumination 5 the ring illumination 51, it is difficult for the inspection object 100 to be shaded and the inspection object 100 can be irradiated with uniform light.
  • the ring illumination 51 has, for example, a configuration including a circuit board in which a plurality of light emitting diodes (LEDs) are arranged on the circumference.
  • LEDs light emitting diodes
  • the detection camera 2 is arranged outside the ring illumination 51 (inspection illumination 5) as shown in FIGS. 1 to 3. Specifically, the detection camera 2 is arranged at a position closer to the camera actuator 7 than the ring illumination 51 in the Y direction (a position on the inner side of the ring illumination 51) when viewed from the Z direction. In particular, as shown in FIGS. 1 to 3, it is best to arrange the detection camera 2 at a position close to the outer peripheral surface of the ring illumination 51 in the Y direction. On the other hand, the inspection camera 1 is arranged inside the ring illumination 51 as shown in FIG.
  • the detection camera 2 by disposing the detection camera 2 outside the ring illumination 51, it is possible to reduce the reflection of the inspection camera 1 in the detection region R2 imaged by the detection camera 2. Further, the ring illumination 51 can be downsized as compared with the case where the detection camera 2 is arranged inside the ring illumination 51.
  • the detection illumination 6 irradiates the detection area R2 imaged by the detection camera 2 with light.
  • the inspection system 10 further includes the detection illumination 6 that irradiates the detection region R2 with light. That is, in the inspection system 10 according to the first embodiment, the inspection illumination 5 and the detection illumination 6 are provided separately. According to this configuration, it is possible to realize illumination suitable for each of the inspection region R1 and the detection region R2.
  • the detection illumination 6 has a plurality of (four in the first embodiment) LED elements 61.
  • the plurality of LED elements 61 are respectively provided at four corners of a predetermined rectangle centered on the detection camera 2 when viewed from the Z direction. According to this configuration, it is possible to acquire a clear image as compared with the case where the detection illumination 6 is not provided.
  • the camera actuator 7 moves the inspection camera 1 and the detection camera 2 attached to the arm 12 in the Z direction.
  • the inspection system 10 further includes a camera actuator 7 that moves the inspection camera 1 and the detection camera 2 in a direction toward the inspection target 100 mounted on the stage 3 and a direction away from the inspection target 100.
  • the power source of the camera actuator 7 is, for example, a motor (electric motor).
  • the camera actuator 7 has a rectangular tube shape that is long in the Z direction. The camera actuator 7 moves the inspection camera 1 and the detection camera 2 along the length direction (Z direction) of the camera actuator 7.
  • the illumination actuator 8 moves the inspection illumination 5 attached to the arm 13 in the Z direction.
  • the inspection system 10 further includes the illumination actuator 8 that moves the inspection illumination 5 in a direction approaching the inspection target 100 mounted on the stage 3 and a direction away from the inspection target 100.
  • the power source of the illumination actuator 8 is, for example, a motor (electric motor).
  • the illumination actuator 8 has a rectangular tube shape that is long in the Z direction, and is arranged side by side with the camera actuator 7 in the X direction.
  • the illumination actuator 8 moves the inspection illumination 5 in the length direction (Z direction) of the illumination actuator 8.
  • the base 11 is formed in a rectangular plate shape that is long in the Y direction when viewed from the Z direction.
  • the tips of the base 11 in the Y direction are chamfered so that the distance between them becomes narrower toward the tips when viewed from the Z direction.
  • the stage 3 and the adjusting mechanism 4 are attached to one surface (upper surface) of the base 11.
  • the cover 14 is formed in an L shape when viewed from the X direction.
  • the cover 14 is attached to the base 11 and covers the inspection camera 1, the detection camera 2, the stage 3, the inspection illumination 5, and the detection illumination 6 when viewed from the Z direction.
  • the inspection camera 1 and the detection camera 2 attached to the arm 12 and the inspection illumination 5 attached to the arm 13 can be operated separately.
  • the camera actuator 7 and the illumination actuator 8 operate separately.
  • the focus operation of the inspection camera 1 and the adjustment of the illumination condition of the inspection illumination 5 can be performed separately.
  • the focus operation of the inspection camera 1 means an operation of focusing by moving the inspection camera 1 in the Z direction.
  • the illumination conditions of the inspection illumination 5 are adjusted by moving the inspection illumination 5 in the Z direction such as the illuminance of the illumination light and the incident angle of the illumination light when the inspection object 1 is photographed by the inspection camera 1. It means adjusting the conditions.
  • the cover 14 formed in an L shape when viewed from the X direction has the inspection camera 1 and the detection camera when viewed from the Z direction. 2, the stage 3, the inspection illumination 5, and the detection illumination 6 are attached to the base 11 so as to cover them.
  • the inspection system 10 raises the detection camera 2 to the first raised position by the camera actuator 7 (step S1).
  • the first raised position is a height position where the detection camera 2 can image the detection region R2.
  • the inspection system 10 raises the inspection illumination 5 to the second elevated position by the illumination actuator 8 (step S2).
  • the second raised position is a height position where the inspection illumination 5 is not reflected in the detection area R2 when the detection camera 2 images the detection area R2.
  • the inspection system 10 moves the stage 3 to the first position by the adjusting mechanism 4 (step S3).
  • the first position is a position where the optical axis P2 of the detection camera 2 (see FIG. 1) and the center point P3 of the stage 3 (see FIG. 5) coincide with each other on the XY plane.
  • “match” does not only mean that the optical axis P2 and the center point P3 completely overlap each other on the XY plane, but also that the optical axis P2 is within a predetermined range with respect to the center point P3 on the XY plane.
  • the detection camera 2 When the detection camera 2 is in the first raised position and the stage 3 is in the first position, the detection camera 2 is at a height position where the detection region R2 can be imaged, and the entire stage 3 is included in the detection region R2. (See Figure 5).
  • the inspection system 10 turns on the detection illumination 6 (step S4), and then causes the detection camera 2 to capture an image of the detection region R2 (step S5). Then, the inspection system 10 causes the detection camera 2 to capture an image of the detection region R2, and then turns off the detection illumination 6 (step S6).
  • the inspection system 10 lowers the inspection camera 1 to the first lowered position by the camera actuator 7 (step S7).
  • the first lowered position is a height position where the inspection camera 1 can image the inspection region R1.
  • the inspection system 10 causes the illumination actuator 8 to lower the inspection illumination 5 to the second lowered position (step S8).
  • the inspection system 10 moves the stage 3 to the second position by the adjusting mechanism 4 (step S9).
  • the second position is a position on the XY plane where the optical axis of the inspection camera 1 and the center point of the inspection area of the inspection object 100 coincide with each other.
  • the term “match” in the present disclosure is not limited to the case where the optical axis of the inspection camera 1 and the center point of the inspection area of the inspection object 100 (or the center point of the inspection object 100) completely overlap each other in the XY plane. This includes the case where the optical axis of the inspection camera 1 is within a predetermined range with respect to the center point of the inspection area of the inspection object 100 (or the center point of the inspection object 100) on the XY plane.
  • the inspection system 10 moves the stage 3 based on the image of the detection region R2 captured by the detection camera 2 in step S5. That is, the inspection system 10 adjusts the relative position between the stage 3 and the inspection camera 1 based on the image of the detection region R2 captured by the detection camera 2.
  • the inspection illumination 5 is in the second lowered position, the distance between the inspection illumination 5 and the surface (upper surface) of the inspection object 100 is a predetermined distance, as shown in FIG.
  • the inspection system 10 turns on the inspection illumination 5 (step S10), and then causes the inspection camera 1 to capture an image of the inspection region R1 (step S11). Then, the inspection system 10 causes the inspection camera 1 to capture an image of the inspection region R1 and then turns off the inspection illumination 5 (step S12).
  • the inspection system 10 repeats the processing of steps S9 to S12 when there is another inspection target 100 on the stage 3 (step S13; Yes). On the other hand, the inspection system 10 ends the operation when there is no other inspection target 100 on the stage 3 (step S13; No).
  • the detection camera 2 for capturing the detection area R2 including the stage 3 is an area camera. Therefore, unlike the case where the inspection target is preliminarily positioned by the line sensor camera, the process of moving the stage on which the inspection target is placed in one direction is unnecessary, and the inspection efficiency is improved accordingly. You can Moreover, when the detection region R2 is imaged by the detection camera 2, it is sufficient to move the stage 3 so that the optical axis P2 of the detection camera 2 and the center point P3 of the stage 3 coincide with each other on the XY plane. The moving distance can be shortened.
  • the angle of light that illuminates the surface (upper surface) of the inspection target 100 can be changed by the inspection illumination 5.
  • the distance between the inspection illumination 5 and the surface (upper surface) of the inspection object 100 is reduced, the angle between the traveling direction of the light of the inspection illumination 5 and the normal line of the surface (upper surface) of the inspection object 100 becomes smaller. growing. In this case, it is possible to emphasize the lack of edges and the like. As a result, it is possible to efficiently inspect not only the surface (upper surface) of the inspection object 100, but also the edge of the inspection object 100 and the like.
  • steps S1 to S4 are an example, and the order of steps S1 to S4 may be interchanged.
  • the order of steps S1 and S2 may be exchanged, or the order of steps S2 and S3 may be exchanged.
  • steps S7 to S10 may be changed.
  • step S8 and step S9 may be interchanged, or step S7 and step S10 may be interchanged.
  • the inspection illumination 5 may be kept on until the imaging of the inspection regions R1 of all the inspection objects 100 is completed. That is, step S12 may be omitted until the imaging of the inspection regions R1 of all the inspection targets 100 is completed.
  • the angle of view of the detection camera 2 is wider than that of the inspection camera 1.
  • the detection camera 2 since the detection camera 2 has a wide viewing angle (wide angle), the detection camera 2 is used to detect the position of the inspection target 100, and the adjustment mechanism 4 is used to detect the optical axis of the inspection camera 1. It is possible to efficiently perform the operation of adjusting the relative position between the stage 3 and the inspection camera 1 at a position where the center point of the inspection range of the inspection target 100 (or the center point of the inspection target 100) matches. Further, since the inspection camera 1 has a narrow viewing angle, it is possible to observe minute defects in the inspection target 100 by using the inspection camera 1, so that the inspection can be efficiently performed.
  • the defect size generally required for semiconductor inspection using an image pickup device having a high-magnification lens or an electron microscope is, for example, about 0.5 ⁇ m to several ⁇ m, and finer defects are detected as miniaturization progresses. There is a need to.
  • the defect size found by a general visual inspection is, for example, about several tens ⁇ m to 100 ⁇ m. Along with that, the magnification of the lens also greatly changes.
  • magnification of the lens If the magnification of the lens is high, it is necessary to bring the work to the focal position of the light or electron beam, and position accuracy is required. On the other hand, when the magnification of the lens is low, the work can be inspected if the work is within the field of view of the camera, and the positional accuracy is not so required.
  • the inspection system 10 can employ the detection camera 2 having low position detection accuracy.
  • the first embodiment is only one of the various embodiments of the present disclosure.
  • the first embodiment can be variously modified according to the design and the like as long as the object of the present disclosure can be achieved.
  • the same function as the inspection system 10 may be embodied by an image acquisition method for inspection, a computer program, a non-transitory recording medium recording the computer program, or the like.
  • the image acquisition method for inspection is an image acquisition method for inspection that acquires an image used in the inspection system 10 that inspects the appearance of the inspection target 100.
  • the image acquisition method for inspection includes three processes.
  • the first process is a process of capturing an image of the inspection region R1 including the inspection target 100 by the inspection camera 1 including a camera having an image pickup device in which a plurality of light receiving elements are arranged two-dimensionally (step S11). ..
  • the detection camera 2 including a camera having an image sensor in which a plurality of light receiving elements are two-dimensionally arranged captures an image of a detection area R2 including the inspection area R1 and wider than the inspection area R1. This is the processing (step S5).
  • the third process is a process of adjusting the relative position between the inspection camera 1 and the stage 3 on which the inspection target 100 is placed, based on the image of the detection region R2 captured by the detection camera 2 (step S9). is there.
  • the inspection system 10 in the present disclosure includes a computer system.
  • the computer system mainly has a processor and a memory as hardware.
  • the function as the inspection system 10 in the present disclosure is realized by the processor executing the program recorded in the memory of the computer system.
  • the program may be pre-recorded in the memory of the computer system, may be provided through an electric communication line, or recorded in a non-transitory recording medium such as a memory card, an optical disk, a hard disk drive, etc. that can be read by the computer system. May be provided.
  • the processor of the computer system is composed of one or a plurality of electronic circuits including a semiconductor integrated circuit (IC) or a large scale integrated circuit (LSI).
  • IC semiconductor integrated circuit
  • LSI large scale integrated circuit
  • the integrated circuit such as an IC or an LSI referred to here has a different name depending on the degree of integration, and includes an integrated circuit called a system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration).
  • FPGAs Field-Programmable Gate Arrays
  • the plurality of electronic circuits may be integrated in one chip, or may be distributed and provided in the plurality of chips.
  • the plurality of chips may be integrated in one device, or may be distributed and provided in the plurality of devices.
  • the computer system referred to herein includes a microcontroller having one or more processors and one or more memories. Therefore, the microcontroller is also composed of one or a plurality of electronic circuits including a semiconductor integrated circuit or a large scale integrated circuit.
  • the inspection system 10 It is not an essential configuration of the inspection system 10 that a plurality of functions of the inspection system 10 are integrated in one housing, and the components of the inspection system 10 are distributed and provided in the plurality of housings. Good. Furthermore, at least a part of the functions of the inspection system 10 may be realized by a cloud (cloud computing) or the like.
  • the inspection illumination 5 is the ring illumination 51 in the first embodiment
  • the inspection illumination 5A may be the coaxial incident illumination 52 as shown in FIG. 7.
  • the inspection system according to the first modification will be described with reference to FIG. 7.
  • the inspection system according to the modified example 1 is the same as the inspection system 10 according to the first embodiment except for the inspection illumination 5A, and the same reference numerals are given to the same components for detailed description. Omit it.
  • FIG. 7 it is easy to distinguish the first reflected light reflected by the surface of the half mirror 522 and directed to the inspection target 100 from the second reflected light reflected by the surface of the inspection target 100 and directed to the inspection camera 1.
  • the figures are shifted and illustrated. Actually, the second reflected light is reflected toward the inspection camera 1 at the same position as the incident position of the first reflected light on the inspection target 100.
  • the inspection system according to Modification 1 includes an inspection camera 1, a detection camera 2, a stage 3, and an adjustment mechanism 4. Furthermore, the inspection system includes an inspection illumination 5A, a detection illumination 6, a camera actuator 7, and an illumination actuator 8.
  • the inspection illumination 5A according to the first modification is a coaxial incident illumination 52.
  • the “coaxial epi-illumination 52” in the present disclosure refers to an illumination that irradiates the inspection target 100 with light from the light source 521 from the direction of the optical axis of the inspection camera 1.
  • the coaxial epi-illumination 52 irradiates the inspection region R1 with light from a direction that coincides with the optical axis P1 of the inspection camera 1.
  • the inspection illumination 5A according to the first modification includes a light source 521 and a half mirror 522, as shown in FIG. 7.
  • the light source 521 irradiates the half mirror 522 with light from a direction intersecting the direction of the optical axis of the inspection camera 1.
  • the half mirror 522 is arranged between the inspection camera 1 and the inspection object 100 in a state of being inclined with respect to the optical axis direction of the inspection camera 1.
  • this inspection illumination 5A part of the light (parallel light) emitted from the light source 521 is reflected by the surface of the half mirror 522, and travels toward the inspection target 100 as the first reflected light.
  • the first reflected light traveling toward the inspection target 100 is reflected by the surface of the inspection target 100 and travels toward the inspection camera 1 as second reflected light.
  • the second reflected light passes through the half mirror 522 and travels toward the inspection camera 1.
  • the inspection illumination 5A is the coaxial incident illumination 52, it is effective, for example, when the inspection target 100 is a glossy metal object.
  • the detection camera 2 is arranged outside the ring illumination 51, but the detection camera 2 may be arranged inside the ring illumination 51.
  • the inspection camera 1 and the detection camera 2 are provided separately, but the inspection camera and the detection camera may be combined into one camera. In this case, for example, a method of exchanging lenses depending on whether the camera functions as an inspection camera or a detection camera is possible.
  • both the inspection camera 1 and the detection camera 2 can be moved by one camera actuator 7, but the inspection camera 1 and the detection camera 2 can be moved individually by separate camera actuators.
  • the detection camera 2 may have a structure in which it is fixed at a fixed position without moving. Since the detection camera 2 generally has a smaller lens diameter and a deeper depth of field than the inspection camera 1, even if the detection camera 2 is fixed at a fixed position, the inspection target 100 Even if the height of the subject changes within a certain range, it remains in focus.
  • the adjustment mechanism 4 moves the stage 3 to adjust the relative position between the stage 3 and the inspection camera 1.
  • the adjustment mechanism moves the inspection camera 1 to adjust the stage 3 and the inspection camera 1.
  • the relative position to the camera 1 may be adjusted.
  • the structure in which the adjusting mechanism moves the stage 3 in one direction orthogonal to the direction of the optical axis of the inspection camera 1, and the inspection direction in the direction orthogonal to the moving direction of the stage 3 and the optical axis direction of the inspection camera 1 The relative position between the stage 3 and the inspection camera 1 may be adjusted by providing a structure for moving the inspection camera 1.
  • the adjusting mechanism moves the stage 3 in the X direction, and the inspection camera 1 is moved in the Y direction.
  • a structure including a moving structure may be used.
  • the camera inspection camera 1, detection camera 2 and the illumination (inspection illumination 5, detection illumination 6) are arranged on the same side with respect to the inspection target 100.
  • the appearance of the inspection target 100 is inspected on the basis of the reflected light.
  • the inspection target 100 may be arranged between the camera and the illumination, and the appearance of the inspection target 100 may be inspected based on the transmitted light from the illumination.
  • the inspection system 10 directly detects the position of the inspection target 100 based on the image of the detection region R2 captured by the detection camera 2.
  • the inspection system 10 determines the inspection target 100 based on the pitch of the recesses for accommodating the inspection target 100 provided in the tray.
  • the position of may be detected indirectly.
  • the inspection system 10 detects the inspection target 100 based on the position of the marks arranged on the tray to indicate the positional relationship of the inspection target 100. The position may be detected indirectly.
  • the height of the inspection illumination 5 is changed according to the inspection site (front surface, side surface) of the inspection object 100.
  • the height of the inspection illumination 5 is changed according to the type of the inspection object. May be.
  • the inspection camera 1 images the inspection region R1 including the inspection target 100, but the inspection camera 1 may be configured to image the inspection region R1 including a part of the inspection target 100. Further, the inspection camera 1 may be configured to inspect the entire inspection target 100 by imaging a part of the inspection target 100 a plurality of times. When the inspection camera 1 images a part of the inspection object 100 a plurality of times, the relative position between the stage 3 and the inspection camera 1 may be adjusted by the adjustment mechanism 4 before the inspection camera 1 takes an image. it can.
  • the adjusting mechanism 4 is configured by the first actuator 41 and the second actuator 42, the stage 3 is moved by the first actuator 41 in the X direction, and the second actuator 42 is used.
  • the stage 3 in the Y direction By moving the stage 3 in the Y direction, the relative position between the stage 3 and the inspection camera 1 is adjusted. That is, in the inspection system 10 according to the first embodiment, the relative position between the stage 3 and the inspection camera 1 is adjusted by fixing the inspection camera 1 and moving the stage 3 in the X direction and the Y direction. doing.
  • the stage 3 can be moved in the X direction, and the moving unit 16 (described later) including the inspection camera 1 can be moved in the Y direction. , The relative position between the stage 3 and the inspection camera 1 is adjusted.
  • the inspection system 10A according to the second embodiment will be described with reference to FIG.
  • the same components as those of the inspection system 10 according to the first embodiment are denoted by the same reference numerals and the description thereof will be omitted.
  • the inspection system 10A includes an inspection camera 1, a detection camera 2, a stage 3, and an adjustment mechanism 4.
  • the inspection system 10A further includes an inspection illumination 5, a detection illumination (not shown), a camera actuator 7, an illumination actuator 8, and a housing 15.
  • the adjustment mechanism 4 includes a moving unit 16 and a stage actuator 17.
  • the inspection camera 1 is an area camera as in the first embodiment.
  • the inspection camera 1 images the inspection region R1 (see FIG. 5).
  • the inspection region R1 is a region including at least a part of the inspection target 100.
  • the inspection camera 1 can be moved in the Z direction by the camera actuator 7. In other words, the camera actuator 7 moves the inspection camera 1 in a direction approaching the inspection target 100 mounted on the stage 3 and a direction away from the inspection target 100.
  • the detection camera 2 is an area camera.
  • the detection camera 2 has an image sensor 21.
  • the image pickup device 21 is arranged such that the image pickup surface is on the stage 3 side (downward).
  • the detection camera 2 images the detection area R2 (see FIG. 5).
  • the detection area R2 is an area set to include the entire stage 3.
  • the detection camera 2 is attached to a case 161 (described later) of the moving unit 16. Therefore, the position of the detection camera 2 is fixed in the Z direction.
  • the stage 3 is a rectangular plate shape that is long in the X direction when viewed from the Z direction.
  • the stage 3 is attached to the stage actuator 17, and is movable in the X direction together with the stage actuator 17. That is, the stage actuator 17 (adjustment mechanism 4) moves the stage 3 in the first direction intersecting the optical axis of the inspection camera 1.
  • the first direction is the X direction.
  • the inspection illumination 5 is the ring illumination 51 as in the first embodiment.
  • the inspection illumination 5 can be moved in the Z direction by the illumination actuator 8.
  • the illumination actuator 8 moves the inspection illumination 5 in a direction approaching the inspection target 100 mounted on the stage 3 and a direction away from the inspection target 100.
  • the camera actuator 7 that drives the inspection camera 1 and the illumination actuator 8 that drives the inspection illumination 5 operate independently.
  • the inspection illumination 5 is not limited to the ring illumination 51 and may be the coaxial incident illumination 52 (see FIG. 7), for example, as in the first embodiment.
  • Detecting illumination includes multiple LED elements.
  • the plurality of LED elements are arranged at positions where light can be emitted to the detection region R2 including the entire stage 3.
  • the positions of the plurality of LED elements of the detection illumination are, for example, the lower surface of the detection camera 2 or the lower surface of the inspection illumination 5 (ring illumination 51).
  • the stage actuator 17 as the adjusting mechanism 4 includes a synchronous motor, and is movable in the X direction by driving the synchronous motor.
  • the stage actuator 17 is attached to the stage 3. Then, by moving the stage actuator 17 in the X direction, the stage 3 can be moved in the X direction.
  • the moving unit 16 as the adjusting mechanism 4 includes the inspection camera 1, the detection camera 2, the inspection illumination 5, the detection illumination, the camera actuator 7 and the illumination actuator 8 described above, and a case 161 for housing them. Have.
  • the moving unit 16 can be moved in the Y direction by a Y direction actuator (not shown). That is, the inspection camera 1, the detection camera 2, the inspection illumination 5, and the detection illumination can be moved in the Y direction by the Y direction actuator.
  • the moving unit 16 (adjustment mechanism 4) moves the inspection camera 1 in the second direction that intersects the optical axis of the inspection camera 1 and intersects the first direction.
  • the second direction is the Y direction.
  • the case 161 has a box shape that is long in the Z direction, as shown in FIG. In FIG. 8, the case 161 is configured by combining two case pieces from the X direction. The lower end of the case 161 is formed to have a size capable of accommodating the ring illumination 51 as the inspection illumination 5 and the detection camera 2 in the X direction. In the second embodiment, the detection camera 2 is held by the case 161.
  • the housing 15 has a base 151 and a body 152, as shown in FIG.
  • the base 151 has a rectangular shape that is long in the Y direction when viewed from the Z direction.
  • the rear end portion of the base 151 in the Y direction is chamfered so that the distance between the base 151 and the rear end portion becomes narrower toward the rear end when viewed from the Z direction.
  • the body 152 includes a first body 1521 and a second body 1522.
  • the first body 1521 has a box shape that is long in the Z direction when viewed from the X direction, and extends from one surface of the base 151 (the upper surface in FIG. 8) along the Z direction.
  • the second body 1522 has a box shape that is long in the Y direction when viewed from the X direction, and is one end portion (the upper end portion in FIG. 8) of the first body 1521 in the Z direction and one end portion of the first body 1521 in the Y direction. It extends along the Y direction from (the left end portion in FIG. 8).
  • the inspection system 10A raises the inspection illumination 5 to the first elevated position by the illumination actuator 8.
  • the first raised position is a height position where the inspection illumination 5 is not reflected in the detection region R2 when the detection camera 2 images the detection region R2.
  • the inspection system 10A adjusts the relative position between the detection camera 2 and the stage 3 by the adjustment mechanism 4. At this time, the inspection system 10A moves the detection camera 2 in the Y direction by moving the stage 3 in the X direction by the stage actuator 17 and moving the moving unit 16 in the Y direction.
  • the inspection system 10A turns on the detection illumination and then causes the detection camera 2 to image the detection region R2. Then, the inspection system 10A causes the detection camera 2 to capture an image of the detection region R2, and then turns off the detection illumination.
  • the inspection system 10A lowers the inspection camera 1 to the first lowered position by the camera actuator 7.
  • the first lowered position is a height position where the inspection camera 1 can image the inspection region R1.
  • the inspection system 10A causes the inspection actuator 5 to descend to the second descending position by the illumination actuator 8.
  • the second lowered position is a height position where the inspection illumination 5 can irradiate the inspection region R1 with light.
  • the inspection system 10A adjusts the relative position between the inspection camera 1 and the stage 3 by the adjustment mechanism 4. At this time, the inspection system 10A moves the stage 3 in the X direction and moves the moving unit 16 (the inspection camera 1) in the Y direction based on the image of the detection region R2 captured by the detection camera 2.
  • the order of the operation of lowering the inspection camera 1 to the first lowered position, the operation of lowering the inspection illumination 5 to the second lowered position, and the operation of adjusting the relative position between the inspection camera 1 and the stage 3 are as described above.
  • the order of may be different. For example, after adjusting the relative position between the inspection camera 1 and the stage 3, the inspection camera 1 may be lowered to the first lowered position, and the inspection illumination 5 may be further lowered to the second lowered position.
  • the inspection system 10A turns on the inspection illumination 5 and then causes the inspection camera 1 to image the inspection region R1. Then, the inspection system 10A causes the inspection camera 1 to capture an image of the inspection region R1 and then turns off the inspection illumination 5.
  • the detection camera 2 for imaging the detection region R2 including the stage 3 is an area camera. Therefore, unlike the case where the position of the inspection target is detected by the line sensor camera, the position of the inspection target can be detected without moving the stage on which the inspection target is placed in one direction, so that the inspection efficiency can be improved. ..
  • the detection camera 2 is held in the case 161 of the moving unit 16. Therefore, there is an advantage that the position adjustment in the Z direction is unnecessary for the detection camera 2. Further, in the inspection system 10A according to the second embodiment, the inspection camera 1 is raised by the camera actuator 7 and the inspection illumination 5 is raised by the illumination actuator 8 to secure the field of view of the detection camera 2. be able to.
  • the inspection system 10B includes an inspection camera 1, a detection camera 2, a stage 3, and an adjustment mechanism 4, as shown in FIG.
  • the inspection system 10B further includes an inspection illumination 5, a detection illumination (not shown), a camera actuator 7, an illumination actuator 8, and a housing 15.
  • the adjustment mechanism 4 includes a moving unit 16 and a stage actuator 17. In addition, in FIG. 9, the illustration of the case 161 of the moving unit 16 is omitted.
  • the detection camera 2 is attached to the inspection illumination 5 via the attachment member 18.
  • the mounting member 18 has a semi-elliptical shape when viewed from the Z direction.
  • the detection camera 2 is fixed to the side surface (end surface) of the mounting member 18 in the X direction. Therefore, in the state where the detection camera 2 is attached to the inspection illumination 5 via the attachment member 18, the inspection camera 1 and the inspection illumination 5 and the detection camera 2 are arranged in the X direction.
  • the detection camera 2 is movable in the Z direction together with the inspection illumination 5 by moving the illumination actuator 8 in the Z direction.
  • the detection camera 2 when the detection camera 2 is attached to the inspection illumination 5, there is an advantage that the inspection camera 1 and the inspection illumination 5 are less likely to be in the visual field of the detection camera 2. Furthermore, in this case, since the distance between the stage 3 and the detection camera 2 can be secured by moving the illumination actuator 8 in the Z direction, an image with little distortion (entire image of the stage 3) can be obtained. It becomes possible to acquire.
  • the inspection system 10C includes an inspection camera 1, a detection camera 2, a stage 3, and an adjusting mechanism 4, as shown in FIG.
  • the inspection system 10C further includes an inspection illumination 5, a detection illumination (not shown), a camera actuator 7, an illumination actuator 8, and a housing 15.
  • the adjustment mechanism 4 includes a moving unit 16 and a stage actuator 17. Note that the illustration of the case 161 of the moving unit 16 is omitted in FIG. 10.
  • the detection camera 2 is attached to the inspection camera 1 via the attachment member 19.
  • the mounting member 19 has an L shape when viewed from the Y direction.
  • the detection camera 2 is attached to the inspection camera 1 (strictly speaking, the camera actuator 7) by the attachment member 19. Therefore, in the state where the detection camera 2 is attached to the inspection illumination 5 via the attachment member 19, the inspection camera 1 and the inspection illumination 5 and the detection camera 2 are aligned in the X direction.
  • the detection camera 2 can move in the Z direction together with the inspection camera 1 by moving the camera actuator 7 in the Z direction.
  • the detection camera 2 when the detection camera 2 is attached to the inspection camera 1, there is an advantage that the inspection camera 1 and the inspection illumination 5 are less likely to enter the visual field of the detection camera 2. Furthermore, in this case, since the distance between the stage 3 and the detection camera 2 can be secured by moving the camera actuator 7 in the Z direction, an image with little distortion (entire image of the stage 3) can be obtained. It becomes possible to acquire.
  • an inspection system 10D includes an inspection camera (not shown), a detection camera 2, a stage 3, and an adjusting mechanism 4 (only the moving unit 16 is shown in FIG. 11). And are equipped with.
  • the inspection system 10D further includes an inspection illumination 5, a detection illumination (not shown), a camera actuator (not shown), an illumination actuator (not shown), and a housing 15. I have it.
  • the adjusting mechanism 4 includes a moving unit 16 and a stage actuator (not shown).
  • the detection camera 2 is attached to the side surface of the second body 1522 of the housing 15 extending along the Y direction. Specifically, the detection camera 2 is attached to a side surface of the second body 1522 opposite to the side surface to which the moving unit 16 is attached. In other words, the detection camera 2 is directly attached to the housing 15 without the adjustment mechanism 4.
  • the stage 3 is configured to move only in the X direction and not move in the Y direction. Therefore, when the stage 3 is photographed, the detection camera 2 is moved in the Y direction.
  • the detection camera 2 may not be provided, and the detection camera 2 may be disposed on the side surface of the housing 15. Further, since the moment applied to the Y-direction actuator can be reduced as compared with the case where the detection camera 2 is held by the moving unit 16, the Y-direction actuator can be downsized.
  • the detection camera 2 when the detection camera 2 is attached to the housing 15, by raising the inspection camera 1 by the camera actuator 7 and raising the inspection illumination 5 by the illumination actuator 8, The field of view of the camera 2 can be secured.
  • the detection camera 2 is housed inside the case 161, but the detection camera 2 may be aligned with the moving unit 16 in the first direction.
  • the detection camera 2 may be attached to, for example, one side surface of the case 161 of the moving unit 16 in the X direction.
  • the X direction is the first direction, and the moving unit 16 and the detection camera 2 are lined up in the first direction. According to this configuration, there is an advantage that the position adjustment of the detection camera 2 in the optical axis direction of the inspection camera 1 is unnecessary.
  • the inspection system (10; 10A to 10D) is the inspection system (10; 10A to 10D) that inspects the appearance of the inspection target (100).
  • the inspection system (10; 10A to 10D) includes an inspection camera (1), a detection camera (2), a stage (3), and an adjusting mechanism (4).
  • the inspection camera (1) is composed of a camera having an image sensor in which a plurality of light receiving elements are arranged two-dimensionally, and images the inspection region (R1) including at least a part of the inspection target (100).
  • the detection camera (2) is composed of a camera having an image pickup device in which a plurality of light receiving elements are two-dimensionally arranged, includes an inspection region (R1), and is a detection region (R2) wider than the inspection region (R1). Image.
  • the inspection target (100) is placed on the stage (3).
  • the adjustment mechanism (4) adjusts the relative position between the stage (3) and the inspection camera (1) based on the image of the detection region (R2) taken by the detection camera (2).
  • the process of moving the stage on which the inspection target is placed in one direction is unnecessary, and the inspection efficiency is correspondingly increased. Can be improved.
  • the inspection target (100) is plural in the first aspect.
  • the adjustment mechanism (4) moves the stage (3) in a direction (X direction and Y direction) that intersects the optical axis (axis in the Z direction) of the inspection camera (1), and thereby a plurality of inspection targets (100
  • the inspection camera (1) is arranged at each position of (1).
  • the inspection camera (1) can be arranged at each position of the plurality of inspection objects (100).
  • the inspection system (10; 10A to 10D) according to the third aspect further includes an inspection illumination (5) in the first or second aspect.
  • the inspection illumination (5) irradiates the inspection region (R1) with light.
  • the inspection illumination (5) is a ring illumination (51) having an annular light source.
  • a clearer image can be acquired as compared with the case where the inspection illumination (5) is not provided. Further, since the inspection illumination (5) is the ring illumination (51), it is difficult for the inspection object (100) to have a shadow, and the inspection object (100) can be irradiated with uniform light.
  • the detection camera (2) is arranged outside the ring illumination (51) in the radial direction.
  • the ring illumination (51) can be downsized as compared with the case where the detection camera (2) is arranged inside the ring illumination (51).
  • the inspection system (10) further includes the camera actuator (7) and the illumination actuator (8) in the third or fourth aspect.
  • the camera actuator (7) moves the inspection camera (1) in a direction toward the inspection object (100) mounted on the stage (3) and in a direction away from the inspection object (100).
  • the illumination actuator (8) moves the inspection illumination (5) toward the inspection target (100) mounted on the stage (3) and in the direction away from the inspection target (100).
  • the camera actuator (7) and the illumination actuator (8) operate independently.
  • the focus operation of the inspection camera (1) and the adjustment of the illumination condition of the inspection illumination (5) can be performed separately.
  • the detection camera (2) is attached to the inspection illumination (5).
  • the detection camera (2) is attached to the inspection camera (1).
  • the inspection system (10D) according to the eighth aspect further includes a housing (15) in any one of the first to seventh aspects.
  • the detection camera (1) is directly attached to the housing (15) without the adjustment mechanism (4).
  • the adjustment mechanism (4) has a first direction (eg, the first direction) intersecting the optical axis of the inspection camera (1).
  • the stage (3) is moved in the (X direction).
  • the adjustment mechanism (4) moves the inspection camera (1) in a second direction (for example, the Y direction) that intersects the optical axis of the inspection camera (1) and intersects the first direction.
  • the actuator for moving the stage 3 can be downsized as compared with the case where the stage 3 is moved in both the X direction and the Y direction.
  • the adjustment mechanism (4) includes a moving unit (16) that can move in the second direction (for example, the Y direction).
  • the inspection camera (1) is aligned with the moving unit (16) in the first direction (for example, the X direction).
  • the angle of view of the detection camera (2) is wider than the angle of view of the inspection camera (1).
  • the detection camera (2) since the detection camera (2) has a wide viewing angle (wide angle), the position of the inspection target (100) is detected using the detection camera (2) and the adjustment mechanism (4) is used.
  • the operation of adjusting the relative position between the stage (3) and the inspection camera (1) at a position where the optical axis of the inspection camera (1) and the center point of the inspection target 100 coincide can be efficiently performed. ..
  • the inspection camera (1) since the inspection camera (1) has a narrow viewing angle, it is possible to observe minute defects in the inspection target (100) using the inspection camera (1), so that the inspection can be performed efficiently. it can.
  • the image acquisition method for inspection is the image acquisition method for inspection in the inspection system (10) for inspecting the appearance of the inspection target (100).
  • the image acquisition method for inspection includes three processes.
  • the first process is an inspection area (R1) including at least a part of an inspection object (100) in an inspection camera (1) including a camera having an image pickup device in which a plurality of light receiving elements are arranged two-dimensionally. Is a process for imaging.
  • a detection camera (2) including a camera having an image sensor in which a plurality of light receiving elements are two-dimensionally arranged includes an inspection region (R1) and is more than the inspection region (R1). This is a process of imaging a wide detection area (R2).
  • the third process is the relative movement between the inspection camera (1) and the stage (3) on which the inspection target (100) is placed, based on the image of the detection region (R2) captured by the detection camera (2). This is the process of adjusting the position.
  • the order of the above three processes is arbitrary.
  • the second process and the third process may be performed before the first process.
  • the process of moving the stage on which the inspection target is placed in one direction is unnecessary, and the inspection efficiency is correspondingly increased. Can be improved.
  • the inspection system (10) further includes an inspection illumination (5A) that irradiates the inspection region (R1) with light in the first or second aspect.
  • the inspection illumination (5A) is a coaxial epi-illumination (52).
  • the coaxial incident illumination (52) irradiates the inspection region (R1) with light from a direction coinciding with the optical axis (P1) of the inspection camera (1).
  • the inspection system (10) according to the fourteenth aspect further includes the detection illumination (6) in any one of the first to fourth and thirteenth aspects.
  • the detection illumination (6) irradiates the detection area (R2) with light.
  • the inspection system (10) further includes the inspection illumination (5; 5A) in the fourteenth aspect.
  • the inspection illumination (5; 5A) irradiates the inspection region (R1) with light.
  • the inspection illumination (5; 5A) and the detection illumination (6) are separately provided.
  • the inspection system (10) further includes a camera actuator (7) according to any one of the first to fourth and thirteenth to fifteenth aspects.
  • the camera actuator (7) moves the inspection camera (1) in a direction toward the inspection object (100) mounted on the stage (3) and in a direction away from the inspection object (100).
  • the focus operation of the inspection camera (1) can be performed.
  • the detection camera (2) moves together with the inspection camera (1) by the camera actuator (7).
  • the focus operation of both the inspection camera (1) and the detection camera (2) can be performed by one camera actuator (7).
  • the inspection system (10) further comprises an inspection illumination (5) and an illumination actuator (8) according to any one of the first to fourth and thirteenth to seventeenth aspects.
  • the inspection illumination (5) irradiates the inspection region (R1) with light.
  • the illumination actuator (8) moves the inspection illumination (5) toward the inspection target (100) mounted on the stage (3) and in the direction away from the inspection target (100).
  • the illumination condition of the inspection illumination (5) can be adjusted.
  • the configurations according to the second to eleventh and thirteenth to eighteenth aspects are not essential for the inspection system (10; 10A to 10D) and can be omitted as appropriate.

Abstract

The present disclosure aims to improve inspection efficiency. An inspection system (10) according to the present disclosure comprises an inspection camera (1), a detection camera (2), a stage (3), and an adjustment mechanism (4). The inspection camera (1) comprises a camera having an image-capturing element in which a plurality of photodetectors are arranged two-dimensionally, and the inspection camera (1) captures an image of an area for inspection including at least a portion of subject (100) to be inspected. The detection camera (2) comprises a camera having an image-capturing element in which a plurality of photodetectors arranged two-dimensionally, and the detection camera (2) captures an image of a detection area that includes and is wider than the inspection area. The subject (100) to be inspected is carried by the stage (3). The adjustment mechanism (4) adjusts the relative position between the stage (3) and the inspection camera (1) on the basis of an image of the detection area image-captured by the detection camera (2).

Description

検査システム、及び検査用の画像取得方法Inspection system and image acquisition method for inspection
 本開示は、検査システム、及び検査用の画像取得方法に関する。より詳細には、本開示は、検査対象の外観を検査するための検査システム、及び検査用の画像取得方法に関する。 The present disclosure relates to an inspection system and an image acquisition method for inspection. More specifically, the present disclosure relates to an inspection system for inspecting the appearance of an inspection object, and an image acquisition method for inspection.
 特許文献1には、ラインセンサカメラにて試験片の予備的な位置決めを行う検査装置が記載されている。特許文献1に記載の検査装置では、光センサの配列方向がx軸方向と平行となるようラインセンサカメラを配置し、x-yステージをy軸方向に移動させながら撮像して、二次元的な画像を得る。 Patent Document 1 describes an inspection device that performs preliminary positioning of a test piece with a line sensor camera. In the inspection device described in Patent Document 1, a line sensor camera is arranged so that the arrangement direction of the photosensors is parallel to the x-axis direction, and an image is taken while moving the xy stage in the y-axis direction to obtain a two-dimensional image. Get a nice image.
 特許文献1に記載の検査装置(検査システム)では、試験片(検査対象)の予備的な位置決めを行うための画像を、x-yステージをy軸方向に移動させながらラインセンサカメラにて撮像しており、検査効率がよくなかった。 In the inspection device (inspection system) described in Patent Document 1, an image for performing preliminary positioning of a test piece (inspection target) is imaged by a line sensor camera while moving an xy stage in the y-axis direction. The inspection efficiency was not good.
特開2000-88764号公報Japanese Unexamined Patent Publication No. 2000-887764.
 本開示の目的は、検査効率を向上させることができる検査システム、及び検査用の画像取得方法を提供することにある。 An object of the present disclosure is to provide an inspection system that can improve inspection efficiency and an image acquisition method for inspection.
 本開示の一態様に係る検査システムは、検査対象の外観を検査する検査システムである。前記検査システムは、検査用カメラと、検出用カメラと、ステージと、調整機構と、を備える。前記検査用カメラは、複数の受光素子が二次元に配列されている撮像素子を有するカメラからなり、前記検査対象の少なくとも一部を含む検査領域を撮像する。前記検出用カメラは、複数の受光素子が二次元に配列されている撮像素子を有するカメラからなり、前記検査領域を含み、かつ前記検査領域よりも広い検出領域を撮像する。前記ステージは、前記検査対象が載せられる。前記調整機構は、前記検出用カメラにて撮像された前記検出領域の画像に基づいて、前記ステージと前記検査用カメラとの相対位置を調整する。 The inspection system according to one aspect of the present disclosure is an inspection system that inspects the appearance of an inspection target. The inspection system includes an inspection camera, a detection camera, a stage, and an adjustment mechanism. The inspection camera is composed of a camera having an image sensor in which a plurality of light receiving elements are two-dimensionally arranged, and images an inspection area including at least a part of the inspection target. The detection camera is a camera having an image sensor in which a plurality of light receiving elements are two-dimensionally arranged, and captures an image of a detection area including the inspection area and wider than the inspection area. The inspection target is placed on the stage. The adjustment mechanism adjusts a relative position between the stage and the inspection camera based on an image of the detection area captured by the detection camera.
 本開示の一態様に係る検査用の画像取得方法は、検査対象の外観を検査する検査システムにおける検査用の画像取得方法である。前記検査用の画像取得方法は、3つの処理を含む。第1の処理は、複数の受光素子が二次元に配列されている撮像素子を有するカメラからなる検査用カメラにて、前記検査対象の少なくとも一部を含む検査領域を撮像する処理である。第2の処理は、複数の受光素子が二次元に配列されている撮像素子を有するカメラからなる検出用カメラにて、前記検査領域を含み、かつ前記検査領域よりも広い検出領域を撮像する処理である。第3の処理は、前記検出用カメラにて撮像された前記検出領域の画像に基づいて、前記検査対象が載せられるステージと前記検査用カメラとの相対位置を調整する処理である。 An inspection image acquisition method according to an aspect of the present disclosure is an inspection image acquisition method in an inspection system that inspects the appearance of an inspection target. The image acquisition method for inspection includes three processes. The first process is a process of imaging an inspection area including at least a part of the inspection target with an inspection camera including a camera having an image sensor in which a plurality of light receiving elements are two-dimensionally arranged. The second process is a process of imaging a detection region including the inspection region and wider than the inspection region by a detection camera including a camera having an image sensor in which a plurality of light receiving elements are two-dimensionally arranged. Is. The third process is a process of adjusting the relative position between the inspection camera and the stage on which the inspection target is placed, based on the image of the detection area captured by the detection camera.
図1は、実施形態1に係る検査システムの側面図であって、検出用カメラにて検出領域を撮像する場合の側面図である。FIG. 1 is a side view of the inspection system according to the first embodiment, and is a side view when a detection area is imaged by a detection camera. 図2は、同上の検査システムの側面図であって、検査用カメラにて検査領域を撮像する場合の側面図である。FIG. 2 is a side view of the above inspection system, which is a side view when an inspection region is imaged by an inspection camera. 図3は、同上の検査システムの側面図であって、検査用カメラにて検査領域を撮像する場合の別の側面図である。FIG. 3 is a side view of the above inspection system, and is another side view in the case where an inspection region is imaged by an inspection camera. 図4は、同上の検査システムからカバーを取り外した状態の斜視図である。FIG. 4 is a perspective view of the above inspection system with a cover removed. 図5は、同上の検査システムの検査領域と検出領域との関係を示す平面図である。FIG. 5 is a plan view showing the relationship between the inspection area and the detection area of the above inspection system. 図6は、同上の検査システムの動作を説明するフローチャートである。FIG. 6 is a flow chart for explaining the operation of the above inspection system. 図7は、実施形態1の変形例1に係る検査用照明の模式図である。FIG. 7 is a schematic diagram of the inspection illumination according to the first modification of the first embodiment. 図8は、実施形態2に係る検査システムの外観斜視図である。FIG. 8 is an external perspective view of the inspection system according to the second embodiment. 図9は、実施形態2の変形例1に係る検査システムの外観斜視図である。FIG. 9 is an external perspective view of the inspection system according to the first modification of the second embodiment. 図10は、実施形態2の変形例2に係る検査システムの外観斜視図である。FIG. 10 is an external perspective view of the inspection system according to the second modification of the second embodiment. 図11は、実施形態2の変形例3に係る検査システムの平面図である。FIG. 11 is a plan view of an inspection system according to Modification 3 of Embodiment 2.
 (実施形態1)
 (1)検査システムの概要
 以下、実施形態1に係る検査システム10の概要について、図1~図4を参照して説明する。
(Embodiment 1)
(1) Outline of Inspection System Hereinafter, an outline of the inspection system 10 according to the first embodiment will be described with reference to FIGS. 1 to 4.
 実施形態1に係る検査システム10は、検査対象100の外観を検査するためのシステムである。検査対象100は、例えば、抵抗、コンデンサ、インダクタ等のチップ部品である。また、検査対象100の他の例としては、回路基板や、板ばねなどの板金部品や、カバーなどの樹脂成形部品などでもよい。検査システム10は、例えば、検査対象100としてのチップ部品などの外表面の汚れ、キズ、バリ、欠け等の外観上の欠陥を検査する。なお、検査システム10は、チップ部品の製造ラインに組み込まれていてもよいし、製造ライン外で外観検査を行ってもよい。 The inspection system 10 according to the first embodiment is a system for inspecting the appearance of the inspection target 100. The inspection target 100 is, for example, a chip component such as a resistor, a capacitor, or an inductor. Further, as another example of the inspection target 100, a circuit board, a sheet metal part such as a plate spring, or a resin molded part such as a cover may be used. The inspection system 10 inspects external defects such as dirt, scratches, burrs, and chips on the outer surface of a chip component as the inspection target 100, for example. The inspection system 10 may be incorporated in the manufacturing line of the chip component, or the visual inspection may be performed outside the manufacturing line.
 実施形態1に係る検査システム10は、図1~図4に示すように、検査用カメラ1と、検出用カメラ2と、ステージ3と、調整機構4と、を備える。検査用カメラ1及び検出用カメラ2は、それぞれエリアカメラからなる。本開示でいう「エリアカメラ」とは、複数の受光素子(例えばフォトダイオード)が二次元に配列されている撮像素子(例えば、CCDイメージセンサやCMOSイメージセンサ)を有するカメラをいう。つまり、エリアカメラによれば、ラインセンサカメラのように検査対象が載せられたステージを一方向に移動させることなく、二次元の平面画像を取得することができる。 The inspection system 10 according to the first embodiment includes an inspection camera 1, a detection camera 2, a stage 3, and an adjusting mechanism 4, as shown in FIGS. 1 to 4. The inspection camera 1 and the detection camera 2 are area cameras. The “area camera” in the present disclosure refers to a camera having an image pickup device (for example, CCD image sensor or CMOS image sensor) in which a plurality of light receiving devices (for example, photodiodes) are two-dimensionally arranged. That is, according to the area camera, a two-dimensional plane image can be acquired without moving the stage on which the inspection target is placed in one direction unlike the line sensor camera.
 検査用カメラ1は、検査対象100を含む検査領域R1(図5参照)を撮像する。検出用カメラ2は、検査領域R1を含み、検査領域R1よりも広い検出領域R2(図5参照)を撮像する。ここで、ステージ3上には、1個以上の検査対象100が搭載される。本開示でいう「検出領域R2」とは、単数もしくは複数の検査対象100が載せられているステージ3全体を含むように設定される領域をいう。また、本開示でいう「検査領域R1」とは、単数もしくは複数の検査対象100のうち1つの検査対象100の少なくとも一部を含むように設定される領域をいう。そして、複数の検査対象100がステージ3上に載せられている場合、検出領域R2には、複数の検査領域R1が含まれることになる。 The inspection camera 1 images the inspection region R1 (see FIG. 5) including the inspection target 100. The detection camera 2 captures an image of a detection region R2 (see FIG. 5) including the inspection region R1 and wider than the inspection region R1. Here, one or more inspection targets 100 are mounted on the stage 3. The “detection region R2” in the present disclosure refers to a region that is set so as to include the entire stage 3 on which one or more inspection targets 100 are placed. Further, the “inspection region R1” in the present disclosure refers to a region that is set so as to include at least a part of one inspection target 100 among one or a plurality of inspection targets 100. Then, when a plurality of inspection objects 100 are placed on the stage 3, the detection region R2 includes a plurality of inspection regions R1.
 ステージ3には、例えば検査対象100としての複数(実施形態1では15個)のチップ部品が載せられる。調整機構4は、検出用カメラ2にて撮像された検出領域R2の画像に基づいて、ステージ3と検査用カメラ1との相対位置を調整する。本開示でいう「相対位置」とは、検査用カメラ1の光軸と交差する方向における、ステージ3に対する検査用カメラ1の位置をいう。 On the stage 3, for example, a plurality of (15 in the first embodiment) chip parts as the inspection target 100 are mounted. The adjustment mechanism 4 adjusts the relative position between the stage 3 and the inspection camera 1 based on the image of the detection region R2 captured by the detection camera 2. The “relative position” in the present disclosure refers to the position of the inspection camera 1 with respect to the stage 3 in the direction intersecting the optical axis of the inspection camera 1.
 実施形態1に係る検査システム10では、上述したように、ステージ3を含む検出領域R2を撮像するための検出用カメラ2がエリアカメラである。そのため、ラインセンサカメラにて検査対象の位置を検出する場合と異なり、検査対象が載せられたステージを一方向に移動させることなく検査対象の位置を検出できるので、検査効率を向上させることができる。 In the inspection system 10 according to the first embodiment, as described above, the detection camera 2 for capturing the detection area R2 including the stage 3 is an area camera. Therefore, unlike the case where the position of the inspection target is detected by the line sensor camera, the position of the inspection target can be detected without moving the stage on which the inspection target is placed in one direction, so that the inspection efficiency can be improved. ..
 ここで、ラインセンサカメラでステージ3を撮影する場合、ステージ3の位置とラインセンサカメラの撮影タイミングとを同期させる必要がある。それは、一般的に、アクチュエータは同期モータを使用しているため、理想的な定速制御が難しいからである。したがって、この場合には、ステージ3を駆動するアクチュエータのエンコーダのパルス出力から撮影タイミングパルスを直接生成し、画像処理専用ボードを用いてリアルタイムに同期撮影を行う。 When shooting the stage 3 with the line sensor camera, it is necessary to synchronize the position of the stage 3 with the shooting timing of the line sensor camera. This is because, in general, since the actuator uses a synchronous motor, ideal constant speed control is difficult. Therefore, in this case, the imaging timing pulse is directly generated from the pulse output of the encoder of the actuator that drives the stage 3, and the synchronous imaging is performed in real time using the image processing dedicated board.
 これに対して、エリアカメラでステージ3を撮影する場合、ステージ3を所定位置まで移動させて、ステージ3を停止させた後にエリアカメラで撮影すればよいため、ステージ3の位置とエリアカメラの撮影タイミングとを同期させる必要がない。したがって、この場合には、ラインセンサカメラでステージ3を撮影する場合に比べて、簡易で、かつ安価な構成でステージ3を撮影することができる。 On the other hand, when shooting the stage 3 with the area camera, it is sufficient to move the stage 3 to a predetermined position, stop the stage 3, and then shoot with the area camera. No need to synchronize timing. Therefore, in this case, the stage 3 can be photographed with a simpler and less expensive structure than when the stage 3 is photographed with the line sensor camera.
 以上の結果、ラインセンサカメラにて検査対象の位置を検出する場合と比べて、検査システム10は簡易な構造で低コストに構成することが可能である。 As a result of the above, the inspection system 10 can be configured at a low cost with a simple structure as compared with the case where the position of the inspection target is detected by the line sensor camera.
 (2)検査システムの構成
 次に、実施形態1に係る検査システム10の構成について、図1~図5を参照して説明する。以下の説明では、図1~図5に示すように、ステージ3の長さ方向(長手方向)をX方向、ステージ3の幅方向(短手方向)をY方向、ステージ3の厚さ方向をZ方向と規定する。ただし、これらの方向は、検査システム10の使用方向を限定する趣旨ではない。また、図面中の矢印は説明のために表記しているに過ぎず、実体を伴わない。
(2) Configuration of Inspection System Next, the configuration of the inspection system 10 according to the first embodiment will be described with reference to FIGS. 1 to 5. In the following description, as shown in FIGS. 1 to 5, the length direction (longitudinal direction) of the stage 3 is the X direction, the width direction (shorter direction) of the stage 3 is the Y direction, and the thickness direction of the stage 3 is. It is defined as the Z direction. However, these directions are not intended to limit the usage direction of the inspection system 10. Further, the arrows in the drawings are shown only for the purpose of description and do not have any substance.
 実施形態1に係る検査システム10は、図1~図4に示すように、検査用カメラ1と、検出用カメラ2と、ステージ3と、調整機構4と、を備えている。さらに、検査システム10は、検査用照明5と、検出用照明6と、カメラ用アクチュエータ7と、照明用アクチュエータ8と、を備えている。また、検査システム10は、ベース11と、カバー14と、を更に備えている。 As shown in FIGS. 1 to 4, the inspection system 10 according to the first embodiment includes an inspection camera 1, a detection camera 2, a stage 3, and an adjustment mechanism 4. Further, the inspection system 10 includes the inspection illumination 5, the detection illumination 6, the camera actuator 7, and the illumination actuator 8. The inspection system 10 further includes a base 11 and a cover 14.
 検査用カメラ1は、例えば、エリアカメラである。エリアカメラは、複数の受光素子(例えばフォトダイオード)が二次元に配列されている撮像素子を有する二次元カメラである。撮像素子は、例えば、CCD(Charge Coupled Device)イメージセンサ、又はCMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等の二次元イメージセンサである。検査用カメラ1は、レンズ101を備えている。レンズ101は、図3に示すように、Z方向に長い円柱状である。このレンズ101は、検査用カメラ1に着脱可能に装着されている。したがって、レンズ101を交換することで、検査対象の大きさや、検査項目などに適した倍率や視野角などへ調整することができる。したがって、検査に適したレンズ101を検査用カメラ1へ装着することにより、1つの検査対象100の少なくとも一部を含む領域を検査領域R1に設定することができる。検査用カメラ1は、図4に示すように、Y方向に長い角筒状のアーム12によってカメラ用アクチュエータ7に取り付けられている。 The inspection camera 1 is, for example, an area camera. The area camera is a two-dimensional camera having an image sensor in which a plurality of light receiving elements (for example, photodiodes) are two-dimensionally arranged. The image sensor is, for example, a two-dimensional image sensor such as a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor. The inspection camera 1 includes a lens 101. As shown in FIG. 3, the lens 101 has a columnar shape elongated in the Z direction. The lens 101 is detachably attached to the inspection camera 1. Therefore, by exchanging the lens 101, it is possible to adjust the size of the inspection target, the magnification and the viewing angle suitable for the inspection item, and the like. Therefore, by mounting the lens 101 suitable for inspection on the inspection camera 1, it is possible to set an area including at least a part of one inspection target 100 as the inspection area R1. As shown in FIG. 4, the inspection camera 1 is attached to the camera actuator 7 by a rectangular arm 12 that is long in the Y direction.
 検出用カメラ2は、検査用カメラ1と同様、エリアカメラである。検出用カメラ2は、広角レンズを備えている。そのため、検出用カメラ2は、検査領域R1よりも広い検出領域R2を撮像することができる。検出領域R2は、ここでは複数(実施形態1では15個)の検査対象100が載せられているステージ3全体を含む領域である(図5参照)。検出用カメラ2は、図2及び図3に示すように、X方向から見てT字状に形成された連結部材9によってアーム12に取り付けられている。つまり、検査用カメラ1が取り付けられているアーム12がカメラ用アクチュエータ7によってZ方向に移動することにより、検出用カメラ2はZ方向に移動可能である。言い換えると、検出用カメラ2は、カメラ用アクチュエータ7によって検査用カメラ1と共に移動する。実施形態1では、検出用カメラ2の画角は、検査用カメラ1の画角よりも広角である。 Like the inspection camera 1, the detection camera 2 is an area camera. The detection camera 2 has a wide-angle lens. Therefore, the detection camera 2 can capture an image of the detection area R2 that is wider than the inspection area R1. The detection region R2 is a region including the entire stage 3 on which a plurality of (15 in the first embodiment) inspection objects 100 are placed here (see FIG. 5). As shown in FIGS. 2 and 3, the detection camera 2 is attached to the arm 12 by a connecting member 9 formed in a T shape when viewed from the X direction. That is, when the arm 12 to which the inspection camera 1 is attached moves in the Z direction by the camera actuator 7, the detection camera 2 can move in the Z direction. In other words, the detection camera 2 moves together with the inspection camera 1 by the camera actuator 7. In the first embodiment, the angle of view of the detection camera 2 is wider than the angle of view of the inspection camera 1.
 ここで、実施形態1に係る検査システム10では、検査用カメラ1と検出用カメラ2とが同じアーム12に取り付けられている。そのため、検査用カメラ1と検出用カメラ2との位置関係については、検査用カメラ1と検出用カメラ2との一方の撮影時において、検査用カメラ1と検出用カメラ2との他方が写り込まない位置関係にあることが好ましい。 Here, in the inspection system 10 according to the first embodiment, the inspection camera 1 and the detection camera 2 are attached to the same arm 12. Therefore, regarding the positional relationship between the inspection camera 1 and the detection camera 2, the other of the inspection camera 1 and the detection camera 2 is reflected when one of the inspection camera 1 and the detection camera 2 is photographed. It is preferable that there is no positional relationship.
 ステージ3は、図4及び図5に示すように、Z方向から見てX方向に長い矩形の板状である。ステージ3のX方向の寸法は、例えば300mmであり、ステージ3のY方向の寸法は、例えば200mmである。なお、これらの寸法は一例であり、これらの寸法に限定する趣旨ではない。ステージ3の一面(上面)には、複数の検査対象100が、例えば格子状に配置される。実施形態1では、複数の検査対象100は、X方向において5列に並んでおり、Y方向において3列に並んでいる。ステージ3は、調整機構4によってX方向及びY方向に移動可能である。つまり、ステージ3は、調整機構4によってXY平面内を移動可能である。 As shown in FIGS. 4 and 5, the stage 3 has a rectangular plate shape that is long in the X direction when viewed from the Z direction. The dimension of the stage 3 in the X direction is, for example, 300 mm, and the dimension of the stage 3 in the Y direction is, for example, 200 mm. Note that these dimensions are examples and are not intended to be limited to these dimensions. On one surface (upper surface) of the stage 3, a plurality of inspection targets 100 are arranged, for example, in a grid pattern. In the first embodiment, the plurality of inspection objects 100 are arranged in five rows in the X direction and three rows in the Y direction. The stage 3 can be moved in the X direction and the Y direction by the adjusting mechanism 4. That is, the stage 3 can be moved in the XY plane by the adjusting mechanism 4.
 調整機構4は、図1~図4に示すように、第1アクチュエータ41と、第2アクチュエータ42と、を有している。第1アクチュエータ41は、Y方向に長い角筒状である。第2アクチュエータ42は、X方向に長い角筒状である。第1アクチュエータ41及び第2アクチュエータ42の動力源は、例えばモータ(電動機)である。第2アクチュエータ42は、第1アクチュエータ41によって、第1アクチュエータ41の長さ方向(Y方向)に移動可能である。つまり、第2アクチュエータ42をY方向に移動させることによって、ステージ3はY方向に移動可能である。また、ステージ3は、第2アクチュエータ42によって、第2アクチュエータ42の長さ方向(X方向)に移動可能である。つまり、ステージ3は、第1アクチュエータ41及び第2アクチュエータ42によって、X方向及びY方向に移動可能である。言い換えると、調整機構4は、検査用カメラ1の光軸(Z方向の軸)と交差する方向(X方向及びY方向)にステージ3を移動させる。調整機構4は、Y方向に長い矩形の板状に形成されたベース11の長さ方向と第1アクチュエータ41の長さ方向とが平行になるように、ベース11に取り付けられている。 The adjusting mechanism 4 has a first actuator 41 and a second actuator 42, as shown in FIGS. 1 to 4. The first actuator 41 has a rectangular tube shape that is long in the Y direction. The second actuator 42 has a rectangular tube shape that is long in the X direction. The power source of the first actuator 41 and the second actuator 42 is, for example, a motor (electric motor). The second actuator 42 is movable by the first actuator 41 in the longitudinal direction (Y direction) of the first actuator 41. That is, the stage 3 can be moved in the Y direction by moving the second actuator 42 in the Y direction. The stage 3 is movable by the second actuator 42 in the length direction (X direction) of the second actuator 42. That is, the stage 3 can be moved in the X direction and the Y direction by the first actuator 41 and the second actuator 42. In other words, the adjustment mechanism 4 moves the stage 3 in a direction (X direction and Y direction) that intersects the optical axis (axis in the Z direction) of the inspection camera 1. The adjustment mechanism 4 is attached to the base 11 such that the length direction of the base 11 formed in the shape of a rectangular plate long in the Y direction and the length direction of the first actuator 41 are parallel to each other.
 検査用照明5は、検査用カメラ1によって撮像される検査領域R1に対して光を照射する。言い換えると、検査システム10は、検査領域R1に対して光を照射する検査用照明5を更に備えている。検査用照明5は、図1~図4に示すように、例えばリング照明51である。リング照明51は、環状の光源を有している。検査用照明5は、Y方向に長い角筒状のアーム13によって照明用アクチュエータ8に取り付けられている。このように、検査用照明5をリング照明51にすることにより、検査対象100に影ができにくく、検査対象100に対して均一な光を照射することができる。リング照明51は、例えば、複数の発光ダイオード(LED:Light Emitting Diode)を円周上に配置した回路基板を含む構成である。 The inspection illumination 5 irradiates the inspection region R1 imaged by the inspection camera 1 with light. In other words, the inspection system 10 further includes the inspection illumination 5 that irradiates the inspection region R1 with light. The inspection illumination 5 is, for example, a ring illumination 51 as shown in FIGS. 1 to 4. The ring illumination 51 has an annular light source. The inspection illumination 5 is attached to the illumination actuator 8 by an arm 13 having a rectangular tube shape that is long in the Y direction. In this way, by making the inspection illumination 5 the ring illumination 51, it is difficult for the inspection object 100 to be shaded and the inspection object 100 can be irradiated with uniform light. The ring illumination 51 has, for example, a configuration including a circuit board in which a plurality of light emitting diodes (LEDs) are arranged on the circumference.
 ここで、実施形態1に係る検査システム10では、検出用カメラ2は、図1~図3に示すように、リング照明51(検査用照明5)の外側に配置されている。具体的には、検出用カメラ2は、Z方向から見て、Y方向においてリング照明51よりもカメラ用アクチュエータ7に近い位置(リング照明51の奥側の位置)に配置されている。特に、図1~図3に示すように、Y方向においてリング照明51の外周面に近接する位置に検出用カメラ2を配置するのが最もよい。一方、検査用カメラ1は、図4に示すように、リング照明51の内側に配置されている。このように、リング照明51の外側に検出用カメラ2を配置することにより、検出用カメラ2にて撮像される検出領域R2内への検査用カメラ1の写り込みを低減することができる。さらに、リング照明51の内側に検出用カメラ2を配置する場合に比べて、リング照明51を小型化することができる。 Here, in the inspection system 10 according to the first embodiment, the detection camera 2 is arranged outside the ring illumination 51 (inspection illumination 5) as shown in FIGS. 1 to 3. Specifically, the detection camera 2 is arranged at a position closer to the camera actuator 7 than the ring illumination 51 in the Y direction (a position on the inner side of the ring illumination 51) when viewed from the Z direction. In particular, as shown in FIGS. 1 to 3, it is best to arrange the detection camera 2 at a position close to the outer peripheral surface of the ring illumination 51 in the Y direction. On the other hand, the inspection camera 1 is arranged inside the ring illumination 51 as shown in FIG. As described above, by disposing the detection camera 2 outside the ring illumination 51, it is possible to reduce the reflection of the inspection camera 1 in the detection region R2 imaged by the detection camera 2. Further, the ring illumination 51 can be downsized as compared with the case where the detection camera 2 is arranged inside the ring illumination 51.
 検出用照明6は、検出用カメラ2によって撮像される検出領域R2に対して光を照射する。言い換えると、検査システム10は、検出領域R2に対して光を照射する検出用照明6を更に備えている。つまり、実施形態1に係る検査システム10では、検査用照明5と検出用照明6とが別々に設けられている。この構成によれば、検査領域R1及び検出領域R2の各々に適した照明を実現することができる。検出用照明6は、複数(実施形態1では4個)のLED素子61を有している。複数のLED素子61は、Z方向から見て、検出用カメラ2を中心とする所定の長方形の四隅にそれぞれ設けられている。この構成によれば、検出用照明6がない場合に比べて鮮明な画像を取得することができる。 The detection illumination 6 irradiates the detection area R2 imaged by the detection camera 2 with light. In other words, the inspection system 10 further includes the detection illumination 6 that irradiates the detection region R2 with light. That is, in the inspection system 10 according to the first embodiment, the inspection illumination 5 and the detection illumination 6 are provided separately. According to this configuration, it is possible to realize illumination suitable for each of the inspection region R1 and the detection region R2. The detection illumination 6 has a plurality of (four in the first embodiment) LED elements 61. The plurality of LED elements 61 are respectively provided at four corners of a predetermined rectangle centered on the detection camera 2 when viewed from the Z direction. According to this configuration, it is possible to acquire a clear image as compared with the case where the detection illumination 6 is not provided.
 カメラ用アクチュエータ7は、アーム12に取り付けられている検査用カメラ1及び検出用カメラ2をZ方向に移動させる。言い換えると、検査システム10は、ステージ3に載せられている検査対象100に近づく向き、及び検査対象100から離れる向きに検査用カメラ1及び検出用カメラ2を移動させるカメラ用アクチュエータ7を更に備えている。カメラ用アクチュエータ7の動力源は、例えばモータ(電動機)である。カメラ用アクチュエータ7は、Z方向に長い角筒状である。カメラ用アクチュエータ7は、カメラ用アクチュエータ7の長さ方向(Z方向)に沿って検査用カメラ1及び検出用カメラ2を移動させる。 The camera actuator 7 moves the inspection camera 1 and the detection camera 2 attached to the arm 12 in the Z direction. In other words, the inspection system 10 further includes a camera actuator 7 that moves the inspection camera 1 and the detection camera 2 in a direction toward the inspection target 100 mounted on the stage 3 and a direction away from the inspection target 100. There is. The power source of the camera actuator 7 is, for example, a motor (electric motor). The camera actuator 7 has a rectangular tube shape that is long in the Z direction. The camera actuator 7 moves the inspection camera 1 and the detection camera 2 along the length direction (Z direction) of the camera actuator 7.
 照明用アクチュエータ8は、アーム13に取り付けられている検査用照明5をZ方向に移動させる。言い換えると、検査システム10は、ステージ3に載せられている検査対象100に近づく向き、及び検査対象100から離れる向きに検査用照明5を移動させる照明用アクチュエータ8を更に備えている。照明用アクチュエータ8の動力源は、例えばモータ(電動機)である。照明用アクチュエータ8は、Z方向に長い角筒状であって、X方向においてカメラ用アクチュエータ7と横並びに配置されている。照明用アクチュエータ8は、照明用アクチュエータ8の長さ方向(Z方向)に検査用照明5を移動させる。 The illumination actuator 8 moves the inspection illumination 5 attached to the arm 13 in the Z direction. In other words, the inspection system 10 further includes the illumination actuator 8 that moves the inspection illumination 5 in a direction approaching the inspection target 100 mounted on the stage 3 and a direction away from the inspection target 100. The power source of the illumination actuator 8 is, for example, a motor (electric motor). The illumination actuator 8 has a rectangular tube shape that is long in the Z direction, and is arranged side by side with the camera actuator 7 in the X direction. The illumination actuator 8 moves the inspection illumination 5 in the length direction (Z direction) of the illumination actuator 8.
 ベース11は、Z方向から見てY方向に長い矩形の板状に形成されている。ベース11のY方向における先端部には、Z方向から見て先端に近づくほど互いの間隔が狭くなるような面取りが施されている。ベース11の一面(上面)には、ステージ3及び調整機構4が取り付けられている。 The base 11 is formed in a rectangular plate shape that is long in the Y direction when viewed from the Z direction. The tips of the base 11 in the Y direction are chamfered so that the distance between them becomes narrower toward the tips when viewed from the Z direction. The stage 3 and the adjusting mechanism 4 are attached to one surface (upper surface) of the base 11.
 カバー14は、X方向から見てL字状に形成されている。カバー14は、ベース11に取り付けられた状態で、Z方向から見て、検査用カメラ1、検出用カメラ2、ステージ3、検査用照明5及び検出用照明6を覆っている。 The cover 14 is formed in an L shape when viewed from the X direction. The cover 14 is attached to the base 11 and covers the inspection camera 1, the detection camera 2, the stage 3, the inspection illumination 5, and the detection illumination 6 when viewed from the Z direction.
 実施形態1に係る検査システム10では、アーム12に取り付けられている検査用カメラ1及び検出用カメラ2と、アーム13に取り付けられている検査用照明5とを別々に動作させることができる。言い換えると、カメラ用アクチュエータ7と照明用アクチュエータ8とが別々に動作する。この構成によれば、検査用カメラ1のフォーカス動作と検査用照明5の照明条件の調整とを別々に行うことができる。ここで、検査用カメラ1のフォーカス動作は、検査用カメラ1をZ方向に移動させることによりピントを合わせる動作のことを意味する。また、検査用照明5の照明条件の調整は、検査用照明5をZ方向に移動させることにより検査用カメラ1で検査対象100を撮影する際の照明光の照度や照明光の入射角度などの条件の調整を行うことを意味する。 In the inspection system 10 according to the first embodiment, the inspection camera 1 and the detection camera 2 attached to the arm 12 and the inspection illumination 5 attached to the arm 13 can be operated separately. In other words, the camera actuator 7 and the illumination actuator 8 operate separately. According to this configuration, the focus operation of the inspection camera 1 and the adjustment of the illumination condition of the inspection illumination 5 can be performed separately. Here, the focus operation of the inspection camera 1 means an operation of focusing by moving the inspection camera 1 in the Z direction. The illumination conditions of the inspection illumination 5 are adjusted by moving the inspection illumination 5 in the Z direction such as the illuminance of the illumination light and the incident angle of the illumination light when the inspection object 1 is photographed by the inspection camera 1. It means adjusting the conditions.
 実施形態1に係る検査システム10では、図1~図3に示すように、X方向から見てL字状に形成されたカバー14が、Z方向から見て、検査用カメラ1、検出用カメラ2、ステージ3、検査用照明5及び検出用照明6を覆うようにベース11に取り付けられている。 In the inspection system 10 according to the first embodiment, as shown in FIGS. 1 to 3, the cover 14 formed in an L shape when viewed from the X direction has the inspection camera 1 and the detection camera when viewed from the Z direction. 2, the stage 3, the inspection illumination 5, and the detection illumination 6 are attached to the base 11 so as to cover them.
 (3)検査システムの動作
 次に、実施形態1に係る検査システム10の動作について、図1~図3、及び図6を参照して説明する。以下では、検査用カメラ1が、ステージ3上に載せられている複数の検査対象100のうち中央に位置している検査対象100を含む検査領域R1を撮像する場合について説明する。なお、それ以外の検査対象100についても同様であり、ここでは説明を省略する。
(3) Operation of Inspection System Next, the operation of the inspection system 10 according to the first embodiment will be described with reference to FIGS. 1 to 3 and 6. Hereinafter, a case where the inspection camera 1 captures an image of the inspection region R1 including the inspection object 100 located at the center among the plurality of inspection objects 100 mounted on the stage 3 will be described. The same applies to the other inspection targets 100, and a description thereof will be omitted here.
 まず、検査システム10は、カメラ用アクチュエータ7によって検出用カメラ2を第1上昇位置まで上昇させる(ステップS1)。第1上昇位置は、検出用カメラ2が検出領域R2を撮像できる高さ位置である。続けて、検査システム10は、照明用アクチュエータ8によって検査用照明5を第2上昇位置まで上昇させる(ステップS2)。第2上昇位置は、検出用カメラ2が検出領域R2を撮像する際に検査用照明5が検出領域R2内に写り込まない高さ位置である。 First, the inspection system 10 raises the detection camera 2 to the first raised position by the camera actuator 7 (step S1). The first raised position is a height position where the detection camera 2 can image the detection region R2. Subsequently, the inspection system 10 raises the inspection illumination 5 to the second elevated position by the illumination actuator 8 (step S2). The second raised position is a height position where the inspection illumination 5 is not reflected in the detection area R2 when the detection camera 2 images the detection area R2.
 さらに、検査システム10は、調整機構4によってステージ3を第1位置に移動させる(ステップS3)。第1位置は、XY平面において検出用カメラ2の光軸P2(図1参照)とステージ3の中心点P3(図5参照)とが一致する位置である。本開示でいう「一致する」とは、XY平面において光軸P2と中心点P3とが完全に重なる場合だけでなく、XY平面において中心点P3に対して光軸P2が所定範囲内に収まっている場合を含む。検出用カメラ2が第1上昇位置にあり、ステージ3が第1位置にある状態では、検出用カメラ2が検出領域R2を撮像できる高さ位置であり、ステージ3全体が検出領域R2に含まれる(図5参照)。 Further, the inspection system 10 moves the stage 3 to the first position by the adjusting mechanism 4 (step S3). The first position is a position where the optical axis P2 of the detection camera 2 (see FIG. 1) and the center point P3 of the stage 3 (see FIG. 5) coincide with each other on the XY plane. In the present disclosure, “match” does not only mean that the optical axis P2 and the center point P3 completely overlap each other on the XY plane, but also that the optical axis P2 is within a predetermined range with respect to the center point P3 on the XY plane. Including the case When the detection camera 2 is in the first raised position and the stage 3 is in the first position, the detection camera 2 is at a height position where the detection region R2 can be imaged, and the entire stage 3 is included in the detection region R2. (See Figure 5).
 次に、検査システム10は、検出用照明6を点灯させた後(ステップS4)、検出用カメラ2に検出領域R2を撮像させる(ステップS5)。そして、検査システム10は、検出用カメラ2に検出領域R2を撮像させた後、検出用照明6を消灯させる(ステップS6)。 Next, the inspection system 10 turns on the detection illumination 6 (step S4), and then causes the detection camera 2 to capture an image of the detection region R2 (step S5). Then, the inspection system 10 causes the detection camera 2 to capture an image of the detection region R2, and then turns off the detection illumination 6 (step S6).
 その後、検査システム10は、カメラ用アクチュエータ7によって検査用カメラ1を第1下降位置まで下降させる(ステップS7)。第1下降位置は、検査用カメラ1が検査領域R1を撮像できる高さ位置である。続けて、検査システム10は、照明用アクチュエータ8によって検査用照明5を第2下降位置まで下降させる(ステップS8)。 After that, the inspection system 10 lowers the inspection camera 1 to the first lowered position by the camera actuator 7 (step S7). The first lowered position is a height position where the inspection camera 1 can image the inspection region R1. Then, the inspection system 10 causes the illumination actuator 8 to lower the inspection illumination 5 to the second lowered position (step S8).
 さらに、検査システム10は、調整機構4によってステージ3を第2位置に移動させる(ステップS9)。第2位置は、XY平面において検査用カメラ1の光軸と検査対象100における検査領域の中心点とが一致する位置である。本開示でいう「一致する」とは、XY平面において検査用カメラ1の光軸と検査対象100における検査領域の中心点(あるいは検査対象100の中心点)とが完全に重なる場合だけでなく、XY平面において検査対象100における検査領域の中心点(あるいは検査対象100の中心点)に対して検査用カメラ1の光軸が所定範囲内に収まっている場合を含む。このとき、検査システム10は、ステップS5において検出用カメラ2にて撮像された検出領域R2の画像に基づいて、ステージ3を移動させる。つまり、検査システム10は、検出用カメラ2にて撮像された検出領域R2の画像に基づいて、ステージ3と検査用カメラ1との相対位置を調整する。検査用照明5が第2下降位置にある状態では、図2に示すように、検査用照明5と検査対象100の表面(上面)との間の距離は所定の距離である。 Further, the inspection system 10 moves the stage 3 to the second position by the adjusting mechanism 4 (step S9). The second position is a position on the XY plane where the optical axis of the inspection camera 1 and the center point of the inspection area of the inspection object 100 coincide with each other. The term “match” in the present disclosure is not limited to the case where the optical axis of the inspection camera 1 and the center point of the inspection area of the inspection object 100 (or the center point of the inspection object 100) completely overlap each other in the XY plane. This includes the case where the optical axis of the inspection camera 1 is within a predetermined range with respect to the center point of the inspection area of the inspection object 100 (or the center point of the inspection object 100) on the XY plane. At this time, the inspection system 10 moves the stage 3 based on the image of the detection region R2 captured by the detection camera 2 in step S5. That is, the inspection system 10 adjusts the relative position between the stage 3 and the inspection camera 1 based on the image of the detection region R2 captured by the detection camera 2. When the inspection illumination 5 is in the second lowered position, the distance between the inspection illumination 5 and the surface (upper surface) of the inspection object 100 is a predetermined distance, as shown in FIG.
 その後、検査システム10は、検査用照明5を点灯させた後(ステップS10)、検査用カメラ1に検査領域R1を撮像させる(ステップS11)。そして、検査システム10は、検査用カメラ1に検査領域R1を撮像させた後、検査用照明5を消灯させる(ステップS12)。 After that, the inspection system 10 turns on the inspection illumination 5 (step S10), and then causes the inspection camera 1 to capture an image of the inspection region R1 (step S11). Then, the inspection system 10 causes the inspection camera 1 to capture an image of the inspection region R1 and then turns off the inspection illumination 5 (step S12).
 検査システム10は、ステージ3上に他の検査対象100がある場合(ステップS13;Yes)には、ステップS9~S12の処理を繰り返す。一方、検査システム10は、ステージ3上に他の検査対象100がない場合(ステップS13;No)には、動作を終了する。 The inspection system 10 repeats the processing of steps S9 to S12 when there is another inspection target 100 on the stage 3 (step S13; Yes). On the other hand, the inspection system 10 ends the operation when there is no other inspection target 100 on the stage 3 (step S13; No).
 実施形態1に係る検査システム10では、上述したように、ステージ3を含む検出領域R2を撮像するための検出用カメラ2がエリアカメラである。そのため、ラインセンサカメラにて検査対象の予備的な位置決めを行う場合のように、検査対象が載せられているステージを一方向に移動させる処理が不要であり、その分、検査効率を向上させることができる。また、検出用カメラ2にて検出領域R2を撮像する際に、XY平面において検出用カメラ2の光軸P2とステージ3の中心点P3とが一致するようにステージ3を移動させるだけでよく、移動距離を短くすることができる。 In the inspection system 10 according to the first embodiment, as described above, the detection camera 2 for capturing the detection area R2 including the stage 3 is an area camera. Therefore, unlike the case where the inspection target is preliminarily positioned by the line sensor camera, the process of moving the stage on which the inspection target is placed in one direction is unnecessary, and the inspection efficiency is improved accordingly. You can Moreover, when the detection region R2 is imaged by the detection camera 2, it is sufficient to move the stage 3 so that the optical axis P2 of the detection camera 2 and the center point P3 of the stage 3 coincide with each other on the XY plane. The moving distance can be shortened.
 ところで、実施形態1に係る検査システム10では、検査用照明5によって検査対象100の表面(上面)を照らす光の角度を変化させることができる。検査用照明5と検査対象100の表面(上面)との距離を小さくした場合には、検査用照明5の光の進む方向と検査対象100の表面(上面)の法線との間の角度が大きくなる。この場合、エッジの欠け等を強調することができる。この結果、検査対象100の表面(上面)のキズ等だけでなく、検査対象100のエッジの欠け等についても効率的に検査することができる。 By the way, in the inspection system 10 according to the first embodiment, the angle of light that illuminates the surface (upper surface) of the inspection target 100 can be changed by the inspection illumination 5. When the distance between the inspection illumination 5 and the surface (upper surface) of the inspection object 100 is reduced, the angle between the traveling direction of the light of the inspection illumination 5 and the normal line of the surface (upper surface) of the inspection object 100 becomes smaller. growing. In this case, it is possible to emphasize the lack of edges and the like. As a result, it is possible to efficiently inspect not only the surface (upper surface) of the inspection object 100, but also the edge of the inspection object 100 and the like.
 なお、上述のステップS1~S4の順序については一例であって、ステップS1~S4の順序が入れ替わっていてもよい。例えば、ステップS1とステップS2の順序が入れ替わっていてもよいし、ステップS2とステップS3の順序が入れ替わっていてもよい。また、ステップS7~S10の順序についても入れ替わっていてもよい。例えば、ステップS8とステップS9とが入れ替わっていてもよいし、ステップS7とステップS10とが入れ替わっていてもよい。さらに、検査対象100が複数である場合には、すべての検査対象100の検査領域R1の撮像が完了するまで検査用照明5を点灯させ続けてもよい。つまり、すべての検査対象100の検査領域R1の撮像が完了するまでステップS12を省略してもよい。 Note that the order of steps S1 to S4 described above is an example, and the order of steps S1 to S4 may be interchanged. For example, the order of steps S1 and S2 may be exchanged, or the order of steps S2 and S3 may be exchanged. Further, the order of steps S7 to S10 may be changed. For example, step S8 and step S9 may be interchanged, or step S7 and step S10 may be interchanged. Furthermore, when there are a plurality of inspection objects 100, the inspection illumination 5 may be kept on until the imaging of the inspection regions R1 of all the inspection objects 100 is completed. That is, step S12 may be omitted until the imaging of the inspection regions R1 of all the inspection targets 100 is completed.
 実施形態1に係る検査システム10では、検出用カメラ2の画角が検査用カメラ1の画角よりも広角である。この構成によれば、検出用カメラ2が広視野角(広角)であるので、検出用カメラ2を用いて検査対象100の位置を検出し、調整機構4を用いて検査用カメラ1の光軸と検査対象100の検査範囲の中心点(あるいは検査対象100の中心点)とが一致する位置にステージ3と検査用カメラ1との相対位置を調整する動作を効率的に行うことができる。また、検査用カメラ1が狭視野角であるので、検査用カメラ1を用いて検査対象100の微細な欠陥を観察することができるため、検査を効率的に行うことができる。 In the inspection system 10 according to the first embodiment, the angle of view of the detection camera 2 is wider than that of the inspection camera 1. According to this configuration, since the detection camera 2 has a wide viewing angle (wide angle), the detection camera 2 is used to detect the position of the inspection target 100, and the adjustment mechanism 4 is used to detect the optical axis of the inspection camera 1. It is possible to efficiently perform the operation of adjusting the relative position between the stage 3 and the inspection camera 1 at a position where the center point of the inspection range of the inspection target 100 (or the center point of the inspection target 100) matches. Further, since the inspection camera 1 has a narrow viewing angle, it is possible to observe minute defects in the inspection target 100 by using the inspection camera 1, so that the inspection can be efficiently performed.
 ここで、引用文献1のような半導体検査に特化した検査装置の場合、ラインセンサカメラ及びその制御機構といった高精度で、かつ高価な構成が必要である。しかしながら、例えば、電子部品、プリント基板のような検査対象を想定した汎用検査を考慮すると、検査対象と検査カメラの相対位置精度はさほど必要ない。 Here, in the case of an inspection device specialized in semiconductor inspection as in the cited document 1, a highly accurate and expensive configuration such as a line sensor camera and its control mechanism is required. However, considering a general-purpose inspection assuming an inspection target such as an electronic component or a printed circuit board, the relative positional accuracy between the inspection target and the inspection camera is not so much required.
 例えば、一般的に高倍率のレンズを持つ撮像素子又は電子顕微鏡を用いる半導体検査に必要な欠陥サイズは、例えば、0.5μm~数μm程度であり、微細化が進むと更に微細な欠陥を検出する必要がある。一方、一般的な目視検査で発見する欠陥サイズは、例えば、数十μm~100μm程度である。それに伴い、レンズの倍率も大きく異なる。 For example, the defect size generally required for semiconductor inspection using an image pickup device having a high-magnification lens or an electron microscope is, for example, about 0.5 μm to several μm, and finer defects are detected as miniaturization progresses. There is a need to. On the other hand, the defect size found by a general visual inspection is, for example, about several tens μm to 100 μm. Along with that, the magnification of the lens also greatly changes.
 レンズの倍率が高い場合、光や電子線の焦点位置にワークを持っていく必要があり、位置精度が求められる。一方、レンズの倍率が低い場合、ワークがカメラ視野に入っていれば検査可能であり、位置精度もあまり必要ない。 If the magnification of the lens is high, it is necessary to bring the work to the focal position of the light or electron beam, and position accuracy is required. On the other hand, when the magnification of the lens is low, the work can be inspected if the work is within the field of view of the camera, and the positional accuracy is not so required.
 そして、参照画像と比較する場合には、画像処理による位置合わせで十分であることが多く、さらに検査照明の輝度分布がフラットなものを採用すれば、位置ずれによる輝度バラツキを抑えることができ、より好適な検査システムを実現することができる。また、位置ずれが大きい場合でも、ワークがカメラ視野内に入っていれば、画像処理にてワークの重心を割り出し、ワークの重心がカメラ視野の中心となるように、ステージをX方向及びY方向に制御することも可能である。以上のことから、実施形態1に係る検査システム10では、位置検出精度の低い検出用カメラ2を採用することができる。 Then, when comparing with the reference image, the alignment by image processing is often sufficient, and if the inspection illumination has a flat luminance distribution, it is possible to suppress the luminance variation due to the positional deviation, A more suitable inspection system can be realized. Even if the positional deviation is large, if the work is within the camera field of view, the center of gravity of the work is determined by image processing, and the stage is moved in the X and Y directions so that the center of gravity of the work becomes the center of the camera field of view. It is also possible to control to. From the above, the inspection system 10 according to the first embodiment can employ the detection camera 2 having low position detection accuracy.
 (4)変形例
 実施形態1は、本開示の様々な実施形態の一つに過ぎない。実施形態1は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。また、検査システム10と同様の機能は、検査用の画像取得方法、コンピュータプログラム、又はコンピュータプログラムを記録した非一時的な記録媒体等で具現化されてもよい。
(4) Modified Example The first embodiment is only one of the various embodiments of the present disclosure. The first embodiment can be variously modified according to the design and the like as long as the object of the present disclosure can be achieved. Further, the same function as the inspection system 10 may be embodied by an image acquisition method for inspection, a computer program, a non-transitory recording medium recording the computer program, or the like.
 一態様に係る検査用の画像取得方法は、検査対象100の外観を検査する検査システム10に用いられる画像を取得する検査用の画像取得方法である。検査用の画像取得方法は、3つの処理を含む。第1の処理は、複数の受光素子が二次元に配列されている撮像素子を有するカメラからなる検査用カメラ1にて、検査対象100を含む検査領域R1を撮像する処理(ステップS11)である。第2の処理は、複数の受光素子が二次元に配列されている撮像素子を有するカメラからなる検出用カメラ2にて、検査領域R1を含み、かつ検査領域R1よりも広い検出領域R2を撮像する処理(ステップS5)である。第3の処理は、検出用カメラ2にて撮像された検出領域R2の画像に基づいて、検査対象100が載せられるステージ3と検査用カメラ1との相対位置を調整する処理(ステップS9)である。 The image acquisition method for inspection according to one aspect is an image acquisition method for inspection that acquires an image used in the inspection system 10 that inspects the appearance of the inspection target 100. The image acquisition method for inspection includes three processes. The first process is a process of capturing an image of the inspection region R1 including the inspection target 100 by the inspection camera 1 including a camera having an image pickup device in which a plurality of light receiving elements are arranged two-dimensionally (step S11). .. In the second process, the detection camera 2 including a camera having an image sensor in which a plurality of light receiving elements are two-dimensionally arranged captures an image of a detection area R2 including the inspection area R1 and wider than the inspection area R1. This is the processing (step S5). The third process is a process of adjusting the relative position between the inspection camera 1 and the stage 3 on which the inspection target 100 is placed, based on the image of the detection region R2 captured by the detection camera 2 (step S9). is there.
 以下、実施形態1の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。 The following is a list of modifications of the first embodiment. The modifications described below can be applied in appropriate combination.
 本開示における検査システム10は、コンピュータシステムを含んでいる。コンピュータシステムは、ハードウェアとしてのプロセッサ及びメモリを主構成とする。コンピュータシステムのメモリに記録されたプログラムをプロセッサが実行することによって、本開示における検査システム10としての機能が実現される。プログラムは、コンピュータシステムのメモリに予め記録されてもよく、電気通信回線を通じて提供されてもよく、コンピュータシステムで読み取り可能なメモリカード、光学ディスク、ハードディスクドライブ等の非一時的記録媒体に記録されて提供されてもよい。コンピュータシステムのプロセッサは、半導体集積回路(IC)又は大規模集積回路(LSI)を含む1ないし複数の電子回路で構成される。ここでいうIC又はLSI等の集積回路は、集積の度合いによって呼び方が異なっており、システムLSI、VLSI(Very Large Scale Integration)、又はULSI(Ultra Large Scale Integration)と呼ばれる集積回路を含む。さらに、LSIの製造後にプログラムされる、FPGA(Field-Programmable Gate Array)、又はLSI内部の接合関係の再構成若しくはLSI内部の回路区画の再構成が可能な論理デバイスについても、プロセッサとして採用することができる。複数の電子回路は、1つのチップに集約されていてもよいし、複数のチップに分散して設けられていてもよい。複数のチップは、1つの装置に集約されていてもよいし、複数の装置に分散して設けられていてもよい。ここでいうコンピュータシステムは、1以上のプロセッサ及び1以上のメモリを有するマイクロコントローラを含む。したがって、マイクロコントローラについても、半導体集積回路又は大規模集積回路を含む1ないし複数の電子回路で構成される。 The inspection system 10 in the present disclosure includes a computer system. The computer system mainly has a processor and a memory as hardware. The function as the inspection system 10 in the present disclosure is realized by the processor executing the program recorded in the memory of the computer system. The program may be pre-recorded in the memory of the computer system, may be provided through an electric communication line, or recorded in a non-transitory recording medium such as a memory card, an optical disk, a hard disk drive, etc. that can be read by the computer system. May be provided. The processor of the computer system is composed of one or a plurality of electronic circuits including a semiconductor integrated circuit (IC) or a large scale integrated circuit (LSI). The integrated circuit such as an IC or an LSI referred to here has a different name depending on the degree of integration, and includes an integrated circuit called a system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration). Furthermore, FPGAs (Field-Programmable Gate Arrays) that are programmed after the manufacture of LSIs, or logic devices that can be reconfigured for junction relationships within LSIs or for circuit blocks within LSIs should also be adopted as processors. You can The plurality of electronic circuits may be integrated in one chip, or may be distributed and provided in the plurality of chips. The plurality of chips may be integrated in one device, or may be distributed and provided in the plurality of devices. The computer system referred to herein includes a microcontroller having one or more processors and one or more memories. Therefore, the microcontroller is also composed of one or a plurality of electronic circuits including a semiconductor integrated circuit or a large scale integrated circuit.
 検査システム10における複数の機能が、1つの筐体内に集約されていることは検査システム10に必須の構成ではなく、検査システム10の構成要素は、複数の筐体に分散して設けられていてもよい。さらに、検査システム10の少なくとも一部の機能がクラウド(クラウドコンピューティング)等によって実現されてもよい。 It is not an essential configuration of the inspection system 10 that a plurality of functions of the inspection system 10 are integrated in one housing, and the components of the inspection system 10 are distributed and provided in the plurality of housings. Good. Furthermore, at least a part of the functions of the inspection system 10 may be realized by a cloud (cloud computing) or the like.
 (4.1)変形例1
 実施形態1では、検査用照明5がリング照明51であるが、図7に示すように、検査用照明5Aが同軸落射照明52であってもよい。以下、変形例1に係る検査システムについて、図7を参照して説明する。なお、変形例1に係る検査システムでは、検査用照明5A以外の構成については実施形態1に係る検査システム10と同様であり、同一の構成要素には同一の符号を付して詳細な説明を省略する。
(4.1) Modification 1
Although the inspection illumination 5 is the ring illumination 51 in the first embodiment, the inspection illumination 5A may be the coaxial incident illumination 52 as shown in FIG. 7. Hereinafter, the inspection system according to the first modification will be described with reference to FIG. 7. The inspection system according to the modified example 1 is the same as the inspection system 10 according to the first embodiment except for the inspection illumination 5A, and the same reference numerals are given to the same components for detailed description. Omit it.
 また、図7では、ハーフミラー522の表面で反射して検査対象100に向かう第1反射光と、検査対象100の表面で反射して検査用カメラ1に向かう第2反射光とを区別しやすいようにずらして図示している。実際には、第2反射光は、検査対象100における第1反射光の入射位置と同じ位置で検査用カメラ1に向けて反射することになる。 Further, in FIG. 7, it is easy to distinguish the first reflected light reflected by the surface of the half mirror 522 and directed to the inspection target 100 from the second reflected light reflected by the surface of the inspection target 100 and directed to the inspection camera 1. The figures are shifted and illustrated. Actually, the second reflected light is reflected toward the inspection camera 1 at the same position as the incident position of the first reflected light on the inspection target 100.
 変形例1に係る検査システムは、検査用カメラ1と、検出用カメラ2と、ステージ3と、調整機構4と、を備える。さらに、検査システムは、検査用照明5Aと、検出用照明6と、カメラ用アクチュエータ7と、照明用アクチュエータ8と、を備える。 The inspection system according to Modification 1 includes an inspection camera 1, a detection camera 2, a stage 3, and an adjustment mechanism 4. Furthermore, the inspection system includes an inspection illumination 5A, a detection illumination 6, a camera actuator 7, and an illumination actuator 8.
 変形例1に係る検査用照明5Aは、同軸落射照明52である。本開示でいう「同軸落射照明52」とは、検査用カメラ1の光軸の方向から、光源521からの光を検査対象100に対して照射する照明をいう。言い換えると、同軸落射照明52は、検査用カメラ1の光軸P1と一致する方向から検査領域R1に対して光を照射する。変形例1に係る検査用照明5Aは、図7に示すように、光源521と、ハーフミラー522と、を有している。光源521は、ハーフミラー522に対して、検査用カメラ1の光軸の方向と交差する方向から光を照射する。ハーフミラー522は、検査用カメラ1の光軸の方向に対して傾斜した状態で、検査用カメラ1と検査対象100との間に配置されている。 The inspection illumination 5A according to the first modification is a coaxial incident illumination 52. The “coaxial epi-illumination 52” in the present disclosure refers to an illumination that irradiates the inspection target 100 with light from the light source 521 from the direction of the optical axis of the inspection camera 1. In other words, the coaxial epi-illumination 52 irradiates the inspection region R1 with light from a direction that coincides with the optical axis P1 of the inspection camera 1. The inspection illumination 5A according to the first modification includes a light source 521 and a half mirror 522, as shown in FIG. 7. The light source 521 irradiates the half mirror 522 with light from a direction intersecting the direction of the optical axis of the inspection camera 1. The half mirror 522 is arranged between the inspection camera 1 and the inspection object 100 in a state of being inclined with respect to the optical axis direction of the inspection camera 1.
 この検査用照明5Aでは、光源521から照射された光(平行光)の一部がハーフミラー522の表面で反射し、第1反射光として検査対象100に向かう。検査対象100に向かった第1反射光は、検査対象100の表面で反射し、第2反射光として検査用カメラ1に向かう。このとき、第2反射光は、ハーフミラー522を透過して検査用カメラ1に向かう。検査用照明5Aが同軸落射照明52である場合には、例えば検査対象100が光沢のある金属の物体である場合に有効である。 In this inspection illumination 5A, part of the light (parallel light) emitted from the light source 521 is reflected by the surface of the half mirror 522, and travels toward the inspection target 100 as the first reflected light. The first reflected light traveling toward the inspection target 100 is reflected by the surface of the inspection target 100 and travels toward the inspection camera 1 as second reflected light. At this time, the second reflected light passes through the half mirror 522 and travels toward the inspection camera 1. When the inspection illumination 5A is the coaxial incident illumination 52, it is effective, for example, when the inspection target 100 is a glossy metal object.
 (4.2)その他の変形例
 実施形態1では、検出用カメラ2がリング照明51の外側に配置されているが、検出用カメラ2は、リング照明51の内側に配置されていてもよい。
(4.2) Other Modifications In the first embodiment, the detection camera 2 is arranged outside the ring illumination 51, but the detection camera 2 may be arranged inside the ring illumination 51.
 実施形態1では、検査用カメラ1と検出用カメラ2とが別々に設けられているが、検査用カメラと検出用カメラとが1つのカメラで兼用されていてもよい。この場合、例えば、上記カメラを検査用カメラとして機能させる場合と検出用カメラとして機能させる場合とでレンズを交換する方法も可能である。 In the first embodiment, the inspection camera 1 and the detection camera 2 are provided separately, but the inspection camera and the detection camera may be combined into one camera. In this case, for example, a method of exchanging lenses depending on whether the camera functions as an inspection camera or a detection camera is possible.
 実施形態1では、1つのカメラ用アクチュエータ7によって検査用カメラ1及び検出用カメラ2の両方を移動可能としているが、別々のカメラ用アクチュエータによって検査用カメラ1及び検出用カメラ2を個別に移動可能としてもよい。また、検出用カメラ2は移動しないで決まった位置に固定されている構造でもよい。検出用カメラ2は一般的に検査用カメラ1よりもレンズ径が小さく被写界深度が深いことが多いため、検出用カメラ2が決まった位置に固定された構造であっても、検査対象100の高さがある範囲で変化した場合でもピントが合った状態に保たれる。 In the first embodiment, both the inspection camera 1 and the detection camera 2 can be moved by one camera actuator 7, but the inspection camera 1 and the detection camera 2 can be moved individually by separate camera actuators. May be Further, the detection camera 2 may have a structure in which it is fixed at a fixed position without moving. Since the detection camera 2 generally has a smaller lens diameter and a deeper depth of field than the inspection camera 1, even if the detection camera 2 is fixed at a fixed position, the inspection target 100 Even if the height of the subject changes within a certain range, it remains in focus.
 実施形態1では、調整機構4がステージ3を移動させることによりステージ3と検査用カメラ1との相対位置を調整しているが、調整機構が検査用カメラ1を移動させることによりステージ3と検査用カメラ1との相対位置を調整してもよい。また、調整機構が検査用カメラ1の光軸の方向と直交する1つの方向にステージ3を移動させる構造と、ステージ3の移動方向及び検査用カメラ1の光軸の方向と共に直交する方向に検査用カメラ1を移動させる構造を備えることによりステージ3と検査用カメラ1との相対位置を調整してもよい。例えば、検査用カメラ1の光軸方向と直交する2つの方向をX方向及びY方向と定めた場合に、調整機構がステージ3をX方向に移動させる構造と、検査用カメラ1をY方向に移動させる構造とを備える構成としてもよい。 In the first embodiment, the adjustment mechanism 4 moves the stage 3 to adjust the relative position between the stage 3 and the inspection camera 1. However, the adjustment mechanism moves the inspection camera 1 to adjust the stage 3 and the inspection camera 1. The relative position to the camera 1 may be adjusted. Further, the structure in which the adjusting mechanism moves the stage 3 in one direction orthogonal to the direction of the optical axis of the inspection camera 1, and the inspection direction in the direction orthogonal to the moving direction of the stage 3 and the optical axis direction of the inspection camera 1 The relative position between the stage 3 and the inspection camera 1 may be adjusted by providing a structure for moving the inspection camera 1. For example, when two directions orthogonal to the optical axis direction of the inspection camera 1 are defined as the X direction and the Y direction, the adjusting mechanism moves the stage 3 in the X direction, and the inspection camera 1 is moved in the Y direction. A structure including a moving structure may be used.
 実施形態1では、検査対象100に対して同じ側にカメラ(検査用カメラ1、検出用カメラ2)と照明(検査用照明5、検出用照明6)とが配置されており、検査対象100からの反射光に基づいて検査対象100の外観を検査している。これに対して、カメラと照明との間に検査対象100が配置されており、照明からの透過光に基づいて検査対象100の外観を検査してもよい。 In the first embodiment, the camera (inspection camera 1, detection camera 2) and the illumination (inspection illumination 5, detection illumination 6) are arranged on the same side with respect to the inspection target 100. The appearance of the inspection target 100 is inspected on the basis of the reflected light. On the other hand, the inspection target 100 may be arranged between the camera and the illumination, and the appearance of the inspection target 100 may be inspected based on the transmitted light from the illumination.
 実施形態1では、検査システム10は、検出用カメラ2にて撮像された検出領域R2の画像に基づいて、検査対象100の位置を直接検出している。これに対して、例えば、検査対象100がトレイに載せられている場合には、検査システム10は、トレイに設けられた、検査対象100を収容するための凹みのピッチ等に基づいて検査対象100の位置を間接的に検出してもよい。また、例えば、検査対象100がトレイに載せられている場合には、検査システム10は、検査対象100の位置関係を示すためにトレイ上に配置されたマークの位置等に基づいて検査対象100の位置を間接的に検出してもよい。 In the first embodiment, the inspection system 10 directly detects the position of the inspection target 100 based on the image of the detection region R2 captured by the detection camera 2. On the other hand, for example, when the inspection target 100 is placed on the tray, the inspection system 10 determines the inspection target 100 based on the pitch of the recesses for accommodating the inspection target 100 provided in the tray. The position of may be detected indirectly. Further, for example, when the inspection target 100 is placed on the tray, the inspection system 10 detects the inspection target 100 based on the position of the marks arranged on the tray to indicate the positional relationship of the inspection target 100. The position may be detected indirectly.
 実施形態1では、検査対象100における検査部位(表面、側面)に応じて検査用照明5の高さを変えているが、例えば、検査対象の種類に応じて検査用照明5の高さを変えてもよい。 In the first embodiment, the height of the inspection illumination 5 is changed according to the inspection site (front surface, side surface) of the inspection object 100. For example, the height of the inspection illumination 5 is changed according to the type of the inspection object. May be.
 実施形態1では、検査用カメラ1は、検査対象100を含む検査領域R1を撮像するが、検査用カメラ1は、検査対象100の一部を含む検査領域R1を撮像する構成でもよい。さらに、検査用カメラ1によって検査対象100の一部を複数回撮像することによって検査対象100の全体を検査する構成とすることもできる。検査用カメラ1によって検査対象100の一部を複数回撮像する場合には、検査用カメラ1によって撮像する前に、調整機構4によってステージ3と検査用カメラ1との相対位置を調整することができる。 In the first embodiment, the inspection camera 1 images the inspection region R1 including the inspection target 100, but the inspection camera 1 may be configured to image the inspection region R1 including a part of the inspection target 100. Further, the inspection camera 1 may be configured to inspect the entire inspection target 100 by imaging a part of the inspection target 100 a plurality of times. When the inspection camera 1 images a part of the inspection object 100 a plurality of times, the relative position between the stage 3 and the inspection camera 1 may be adjusted by the adjustment mechanism 4 before the inspection camera 1 takes an image. it can.
 (実施形態2)
 実施形態1に係る検査システム10では、第1アクチュエータ41及び第2アクチュエータ42にて調整機構4が構成されており、第1アクチュエータ41でステージ3をX方向に移動させ、かつ第2アクチュエータ42でステージ3をY方向に移動させることで、ステージ3と検査用カメラ1との相対位置を調整している。すなわち、実施形態1に係る検査システム10では、X方向及びY方向においては、検査用カメラ1を固定し、かつステージ3を移動させることで、ステージ3と検査用カメラ1との相対位置を調整している。
(Embodiment 2)
In the inspection system 10 according to the first embodiment, the adjusting mechanism 4 is configured by the first actuator 41 and the second actuator 42, the stage 3 is moved by the first actuator 41 in the X direction, and the second actuator 42 is used. By moving the stage 3 in the Y direction, the relative position between the stage 3 and the inspection camera 1 is adjusted. That is, in the inspection system 10 according to the first embodiment, the relative position between the stage 3 and the inspection camera 1 is adjusted by fixing the inspection camera 1 and moving the stage 3 in the X direction and the Y direction. doing.
 これに対して、実施形態2に係る検査システム10Aでは、X方向においてはステージ3を移動可能とし、Y方向においては検査用カメラ1を含む移動部16(後述する)を移動可能とすることで、ステージ3と検査用カメラ1との相対位置を調整している。以下、実施形態2に係る検査システム10Aについて、図8を参照して説明する。なお、実施形態2に係る検査システム10Aに関し、実施形態1に係る検査システム10と同様の構成については同一の符号を付して説明を省略する。 On the other hand, in the inspection system 10A according to the second embodiment, the stage 3 can be moved in the X direction, and the moving unit 16 (described later) including the inspection camera 1 can be moved in the Y direction. , The relative position between the stage 3 and the inspection camera 1 is adjusted. Hereinafter, the inspection system 10A according to the second embodiment will be described with reference to FIG. Regarding the inspection system 10A according to the second embodiment, the same components as those of the inspection system 10 according to the first embodiment are denoted by the same reference numerals and the description thereof will be omitted.
 (1)検査システムの構成
 実施形態2に係る検査システム10Aは、図8に示すように、検査用カメラ1と、検出用カメラ2と、ステージ3と、調整機構4と、を備えている。また、検査システム10Aは、検査用照明5と、検出用照明(図示せず)と、カメラ用アクチュエータ7と、照明用アクチュエータ8と、筐体15と、を更に備えている。調整機構4は、移動部16と、ステージ用アクチュエータ17と、を含む。
(1) Configuration of Inspection System As shown in FIG. 8, the inspection system 10A according to the second embodiment includes an inspection camera 1, a detection camera 2, a stage 3, and an adjustment mechanism 4. The inspection system 10A further includes an inspection illumination 5, a detection illumination (not shown), a camera actuator 7, an illumination actuator 8, and a housing 15. The adjustment mechanism 4 includes a moving unit 16 and a stage actuator 17.
 検査用カメラ1は、実施形態1と同様、エリアカメラである。検査用カメラ1は、検査領域R1(図5参照)を撮像する。検査領域R1は、検査対象100の少なくとも一部を含む領域である。検査用カメラ1は、カメラ用アクチュエータ7によってZ方向に移動可能である。言い換えると、カメラ用アクチュエータ7は、ステージ3に載せられている検査対象100に近づく向き、及び検査対象100から離れる向きに検査用カメラ1を移動させる。 The inspection camera 1 is an area camera as in the first embodiment. The inspection camera 1 images the inspection region R1 (see FIG. 5). The inspection region R1 is a region including at least a part of the inspection target 100. The inspection camera 1 can be moved in the Z direction by the camera actuator 7. In other words, the camera actuator 7 moves the inspection camera 1 in a direction approaching the inspection target 100 mounted on the stage 3 and a direction away from the inspection target 100.
 検出用カメラ2は、検査用カメラ1と同様、エリアカメラである。検出用カメラ2は、撮像素子21を有する。撮像素子21は、撮像面がステージ3側(下向き)となるように配置されている。検出用カメラ2は、検出領域R2(図5参照)を撮像する。検出領域R2は、ステージ3全体を含むように設定される領域である。検出用カメラ2は、移動部16のケース161(後述する)に取り付けられる。したがって、検出用カメラ2は、Z方向についてはその位置が固定されている。 Like the inspection camera 1, the detection camera 2 is an area camera. The detection camera 2 has an image sensor 21. The image pickup device 21 is arranged such that the image pickup surface is on the stage 3 side (downward). The detection camera 2 images the detection area R2 (see FIG. 5). The detection area R2 is an area set to include the entire stage 3. The detection camera 2 is attached to a case 161 (described later) of the moving unit 16. Therefore, the position of the detection camera 2 is fixed in the Z direction.
 ステージ3は、Z方向から見てX方向に長い矩形の板状である。ステージ3は、ステージ用アクチュエータ17に取り付けられており、ステージ用アクチュエータ17とともにX方向に移動可能である。すなわち、ステージ用アクチュエータ17(調整機構4)は、検査用カメラ1の光軸と交差する第1方向にステージ3を移動させる。実施形態2では、第1方向はX方向である。 The stage 3 is a rectangular plate shape that is long in the X direction when viewed from the Z direction. The stage 3 is attached to the stage actuator 17, and is movable in the X direction together with the stage actuator 17. That is, the stage actuator 17 (adjustment mechanism 4) moves the stage 3 in the first direction intersecting the optical axis of the inspection camera 1. In the second embodiment, the first direction is the X direction.
 検査用照明5は、実施形態1と同様、リング照明51である。検査用照明5は、照明用アクチュエータ8によってZ方向に移動可能である。言い換えると、照明用アクチュエータ8は、ステージ3に載せられている検査対象100に近づく向き、及び検査対象100から離れる向きに検査用照明5を移動させる。そして、実施形態2に係る検査システム10Aでは、検査用カメラ1を駆動するカメラ用アクチュエータ7と、検査用照明5を駆動する照明用アクチュエータ8とが独立して動作する。なお、検査用照明5はリング照明51に限らず、例えば、実施形態1と同様、同軸落射照明52(図7参照)であってもよい。 The inspection illumination 5 is the ring illumination 51 as in the first embodiment. The inspection illumination 5 can be moved in the Z direction by the illumination actuator 8. In other words, the illumination actuator 8 moves the inspection illumination 5 in a direction approaching the inspection target 100 mounted on the stage 3 and a direction away from the inspection target 100. In the inspection system 10A according to the second embodiment, the camera actuator 7 that drives the inspection camera 1 and the illumination actuator 8 that drives the inspection illumination 5 operate independently. The inspection illumination 5 is not limited to the ring illumination 51 and may be the coaxial incident illumination 52 (see FIG. 7), for example, as in the first embodiment.
 検出用照明は、複数のLED素子を含む。複数のLED素子は、ステージ3全体を含む検出領域R2に対して光を照射可能な位置に配置されている。具体的には、検出用照明の複数のLED素子の位置は、例えば、検出用カメラ2の下面、若しくは、検査用照明5(リング照明51)の下面である。 Detecting illumination includes multiple LED elements. The plurality of LED elements are arranged at positions where light can be emitted to the detection region R2 including the entire stage 3. Specifically, the positions of the plurality of LED elements of the detection illumination are, for example, the lower surface of the detection camera 2 or the lower surface of the inspection illumination 5 (ring illumination 51).
 調整機構4としてのステージ用アクチュエータ17は、同期モータを含み、同期モータを駆動することでX方向に移動可能である。ステージ用アクチュエータ17は、ステージ3に取り付けられている。そして、ステージ用アクチュエータ17がX方向に移動することによって、ステージ3をX方向に移動させることができる。 The stage actuator 17 as the adjusting mechanism 4 includes a synchronous motor, and is movable in the X direction by driving the synchronous motor. The stage actuator 17 is attached to the stage 3. Then, by moving the stage actuator 17 in the X direction, the stage 3 can be moved in the X direction.
 調整機構4としての移動部16は、上述の検査用カメラ1、検出用カメラ2、検査用照明5、検出用照明、カメラ用アクチュエータ7及び照明用アクチュエータ8と、これらを収容するケース161と、を有する。移動部16は、Y方向アクチュエータ(図示せず)によってY方向に移動可能である。すなわち、検査用カメラ1、検出用カメラ2、検査用照明5及び検出用照明は、Y方向アクチュエータによってY方向に移動可能である。言い換えると、移動部16(調整機構4)は、検査用カメラ1の光軸と交差し、かつ第1方向と交差する第2方向に検査用カメラ1を移動させる。実施形態2では、第2方向はY方向である。 The moving unit 16 as the adjusting mechanism 4 includes the inspection camera 1, the detection camera 2, the inspection illumination 5, the detection illumination, the camera actuator 7 and the illumination actuator 8 described above, and a case 161 for housing them. Have. The moving unit 16 can be moved in the Y direction by a Y direction actuator (not shown). That is, the inspection camera 1, the detection camera 2, the inspection illumination 5, and the detection illumination can be moved in the Y direction by the Y direction actuator. In other words, the moving unit 16 (adjustment mechanism 4) moves the inspection camera 1 in the second direction that intersects the optical axis of the inspection camera 1 and intersects the first direction. In the second embodiment, the second direction is the Y direction.
 ケース161は、図8に示すように、Z方向に長い箱状である。図8では、2つのケース片をX方向から組み合わせることで、ケース161が構成されている。ケース161の下端部は、検査用照明5としてのリング照明51及び検出用カメラ2がX方向に並んだ状態で収容可能な大きさに形成されている。実施形態2では、検出用カメラ2は、ケース161に保持されている。 The case 161 has a box shape that is long in the Z direction, as shown in FIG. In FIG. 8, the case 161 is configured by combining two case pieces from the X direction. The lower end of the case 161 is formed to have a size capable of accommodating the ring illumination 51 as the inspection illumination 5 and the detection camera 2 in the X direction. In the second embodiment, the detection camera 2 is held by the case 161.
 筐体15は、図8に示すように、ベース151と、ボディ152と、を有する。ベース151は、Z方向から見てY方向に長い矩形状である。ベース151のY方向における後端部には、Z方向から見て後端に近づくほど互いの間隔が狭くなるような面取りが施されている。ボディ152は、第1ボディ1521と、第2ボディ1522と、を含む。第1ボディ1521は、X方向から見てZ方向に長い箱状であり、ベース151の一面(図8の上面)からZ方向に沿って延出している。第2ボディ1522は、X方向から見てY方向に長い箱状であり、第1ボディ1521のZ方向における一端部(図8の上端部)で、かつ第1ボディ1521のY方向における一端部(図8の左端部)からY方向に沿って延出している。 The housing 15 has a base 151 and a body 152, as shown in FIG. The base 151 has a rectangular shape that is long in the Y direction when viewed from the Z direction. The rear end portion of the base 151 in the Y direction is chamfered so that the distance between the base 151 and the rear end portion becomes narrower toward the rear end when viewed from the Z direction. The body 152 includes a first body 1521 and a second body 1522. The first body 1521 has a box shape that is long in the Z direction when viewed from the X direction, and extends from one surface of the base 151 (the upper surface in FIG. 8) along the Z direction. The second body 1522 has a box shape that is long in the Y direction when viewed from the X direction, and is one end portion (the upper end portion in FIG. 8) of the first body 1521 in the Z direction and one end portion of the first body 1521 in the Y direction. It extends along the Y direction from (the left end portion in FIG. 8).
 (2)検査システムの動作
 次に、実施形態2に係る検査システム10Aの動作の一例について説明する。
(2) Operation of Inspection System Next, an example of operation of the inspection system 10A according to the second embodiment will be described.
 まず、検査システム10Aは、照明用アクチュエータ8によって検査用照明5を第1上昇位置まで上昇させる。第1上昇位置は、検出用カメラ2が検出領域R2を撮像する際に検査用照明5が検出領域R2内に写り込まない高さ位置である。 First, the inspection system 10A raises the inspection illumination 5 to the first elevated position by the illumination actuator 8. The first raised position is a height position where the inspection illumination 5 is not reflected in the detection region R2 when the detection camera 2 images the detection region R2.
 次に、検査システム10Aは、調整機構4によって、検出用カメラ2とステージ3との相対位置を調整する。このとき、検査システム10Aは、ステージ用アクチュエータ17によってステージ3をX方向に移動させ、かつ移動部16をY方向に移動させることによって検出用カメラ2をY方向に移動させる。 Next, the inspection system 10A adjusts the relative position between the detection camera 2 and the stage 3 by the adjustment mechanism 4. At this time, the inspection system 10A moves the detection camera 2 in the Y direction by moving the stage 3 in the X direction by the stage actuator 17 and moving the moving unit 16 in the Y direction.
 なお、検査用照明5を第1上昇位置まで上昇させる動作、及び検出用カメラ2とステージ3との相対位置を調整する動作の順番が逆であってもよい。 The order of the operation of raising the inspection illumination 5 to the first elevated position and the operation of adjusting the relative position of the detection camera 2 and the stage 3 may be reversed.
 次に、検査システム10Aは、検出用照明を点灯させた後、検出用カメラ2に検出領域R2を撮像させる。そして、検査システム10Aは、検出用カメラ2に検出領域R2を撮像させた後、検出用照明を消灯させる。 Next, the inspection system 10A turns on the detection illumination and then causes the detection camera 2 to image the detection region R2. Then, the inspection system 10A causes the detection camera 2 to capture an image of the detection region R2, and then turns off the detection illumination.
 その後、検査システム10Aは、カメラ用アクチュエータ7によって検査用カメラ1を第1下降位置まで下降させる。第1下降位置は、検査用カメラ1が検査領域R1を撮像できる高さ位置である。続けて、検査システム10Aは、照明用アクチュエータ8によって検査用照明5を第2下降位置まで下降させる。第2下降位置は、検査用照明5が検査領域R1に対して光を照射可能な高さ位置である。 After that, the inspection system 10A lowers the inspection camera 1 to the first lowered position by the camera actuator 7. The first lowered position is a height position where the inspection camera 1 can image the inspection region R1. Subsequently, the inspection system 10A causes the inspection actuator 5 to descend to the second descending position by the illumination actuator 8. The second lowered position is a height position where the inspection illumination 5 can irradiate the inspection region R1 with light.
 さらに、検査システム10Aは、調整機構4によって、検査用カメラ1とステージ3との相対位置を調整する。このとき、検査システム10Aは、検出用カメラ2にて撮像された検出領域R2の画像に基づいて、ステージ3をX方向に移動させ、かつ移動部16(検査用カメラ1)をY方向に移動させる。 Further, the inspection system 10A adjusts the relative position between the inspection camera 1 and the stage 3 by the adjustment mechanism 4. At this time, the inspection system 10A moves the stage 3 in the X direction and moves the moving unit 16 (the inspection camera 1) in the Y direction based on the image of the detection region R2 captured by the detection camera 2. Let
 なお、検査用カメラ1を第1下降位置まで下降させる動作、検査用照明5を第2下降位置まで下降させる動作、及び検査用カメラ1とステージ3との相対位置を調整する動作の順番が上述の順番と異なっていてもよい。例えば、検査用カメラ1とステージ3との相対位置を調整した後に、検査用カメラ1を第1下降位置まで下降させ、さらに検査用照明5を第2下降位置まで下降させてもよい。 The order of the operation of lowering the inspection camera 1 to the first lowered position, the operation of lowering the inspection illumination 5 to the second lowered position, and the operation of adjusting the relative position between the inspection camera 1 and the stage 3 are as described above. The order of may be different. For example, after adjusting the relative position between the inspection camera 1 and the stage 3, the inspection camera 1 may be lowered to the first lowered position, and the inspection illumination 5 may be further lowered to the second lowered position.
 その後、検査システム10Aは、検査用照明5を点灯させた後、検査用カメラ1に検査領域R1を撮像させる。そして、検査システム10Aは、検査用カメラ1に検査領域R1を撮像させた後、検査用照明5を消灯させる。 After that, the inspection system 10A turns on the inspection illumination 5 and then causes the inspection camera 1 to image the inspection region R1. Then, the inspection system 10A causes the inspection camera 1 to capture an image of the inspection region R1 and then turns off the inspection illumination 5.
 (3)効果
 実施形態2に係る検査システム10Aでは、ステージ3を含む検出領域R2を撮像するための検出用カメラ2がエリアカメラである。そのため、ラインセンサカメラにて検査対象の位置を検出する場合と異なり、検査対象が載せられたステージを一方向に移動させることなく検査対象の位置を検出できるので、検査効率を向上させることができる。
(3) Effects In the inspection system 10A according to the second embodiment, the detection camera 2 for imaging the detection region R2 including the stage 3 is an area camera. Therefore, unlike the case where the position of the inspection target is detected by the line sensor camera, the position of the inspection target can be detected without moving the stage on which the inspection target is placed in one direction, so that the inspection efficiency can be improved. ..
 実施形態2に係る検査システム10Aでは、検出用カメラ2が移動部16のケース161に保持されている。そのため、検出用カメラ2についてはZ方向の位置調整が不要である、という利点がある。また、実施形態2に係る検査システム10Aでは、検査用カメラ1をカメラ用アクチュエータ7によって上昇させ、かつ検査用照明5を照明用アクチュエータ8によって上昇させることで、検出用カメラ2の視野を確保することができる。 In the inspection system 10A according to the second embodiment, the detection camera 2 is held in the case 161 of the moving unit 16. Therefore, there is an advantage that the position adjustment in the Z direction is unnecessary for the detection camera 2. Further, in the inspection system 10A according to the second embodiment, the inspection camera 1 is raised by the camera actuator 7 and the inspection illumination 5 is raised by the illumination actuator 8 to secure the field of view of the detection camera 2. be able to.
 (4)変形例
 以下、実施形態2の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。
(4) Modifications Modifications of the second embodiment will be listed below. The modifications described below can be applied in appropriate combination.
 (4.1)変形例1
 実施形態2に係る検査システム10Aでは、検出用カメラ2が移動部16のケース161に取り付けられているが、図9に示すように、検出用カメラ2は検査用照明5に取り付けられていてもよい。以下、変形例1に係る検査システム10Bについて、図9を参照して説明する。なお、変形例1に係る検査システム10Bに関し、実施形態2に係る検査システム10Aと同様の構成については同一の符号を付して説明を省略する。
(4.1) Modification 1
In the inspection system 10A according to the second embodiment, the detection camera 2 is attached to the case 161 of the moving unit 16, but as shown in FIG. 9, the detection camera 2 may be attached to the inspection illumination 5 as well. Good. Hereinafter, the inspection system 10B according to the first modification will be described with reference to FIG. Regarding the inspection system 10B according to the first modification, the same components as those of the inspection system 10A according to the second embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
 変形例1に係る検査システム10Bは、図9に示すように、検査用カメラ1と、検出用カメラ2と、ステージ3と、調整機構4と、を備えている。また、検査システム10Bは、検査用照明5と、検出用照明(図示せず)と、カメラ用アクチュエータ7と、照明用アクチュエータ8と、筐体15と、を更に備えている。調整機構4は、移動部16と、ステージ用アクチュエータ17と、を含む。なお、図9では、移動部16のケース161の図示を省略している。 The inspection system 10B according to Modification 1 includes an inspection camera 1, a detection camera 2, a stage 3, and an adjustment mechanism 4, as shown in FIG. The inspection system 10B further includes an inspection illumination 5, a detection illumination (not shown), a camera actuator 7, an illumination actuator 8, and a housing 15. The adjustment mechanism 4 includes a moving unit 16 and a stage actuator 17. In addition, in FIG. 9, the illustration of the case 161 of the moving unit 16 is omitted.
 変形例1に係る検査システム10Bでは、検出用カメラ2は、取付部材18を介して検査用照明5に取り付けられている。取付部材18は、Z方向から見て半楕円状である。そして、検出用カメラ2は、取付部材18におけるX方向の側面(端面)に固定されている。したがって、取付部材18を介して検出用カメラ2を検査用照明5に取り付けた状態では、X方向において、検査用カメラ1及び検査用照明5と、検出用カメラ2と、が並んでいる。検出用カメラ2は、照明用アクチュエータ8がZ方向に移動することによって、検査用照明5とともにZ方向に移動可能である。 In the inspection system 10B according to the first modification, the detection camera 2 is attached to the inspection illumination 5 via the attachment member 18. The mounting member 18 has a semi-elliptical shape when viewed from the Z direction. The detection camera 2 is fixed to the side surface (end surface) of the mounting member 18 in the X direction. Therefore, in the state where the detection camera 2 is attached to the inspection illumination 5 via the attachment member 18, the inspection camera 1 and the inspection illumination 5 and the detection camera 2 are arranged in the X direction. The detection camera 2 is movable in the Z direction together with the inspection illumination 5 by moving the illumination actuator 8 in the Z direction.
 このように、検出用カメラ2を検査用照明5に取り付けた場合には、検査用カメラ1及び検査用照明5が検出用カメラ2の視野に入りにくくなる、という利点がある。さらに、この場合には、照明用アクチュエータ8をZ方向に移動させることで、ステージ3と検出用カメラ2との距離を確保することができるので、歪みの少ない画像(ステージ3の全体画像)を取得することが可能になる。 Thus, when the detection camera 2 is attached to the inspection illumination 5, there is an advantage that the inspection camera 1 and the inspection illumination 5 are less likely to be in the visual field of the detection camera 2. Furthermore, in this case, since the distance between the stage 3 and the detection camera 2 can be secured by moving the illumination actuator 8 in the Z direction, an image with little distortion (entire image of the stage 3) can be obtained. It becomes possible to acquire.
 (4.2)変形例2
 実施形態2に係る検査システム10Aでは、検出用カメラ2が移動部16のケース161に取り付けられているが、図10に示すように、検出用カメラ2は検査用カメラ1に取り付けられていてもよい。以下、変形例2に係る検査システム10Cについて、図10を参照して説明する。なお、変形例2に係る検査システム10Cに関し、実施形態2に係る検査システム10Aと同様の構成については同一の符号を付して説明を省略する。
(4.2) Modification 2
In the inspection system 10A according to the second embodiment, the detection camera 2 is attached to the case 161 of the moving unit 16, but as shown in FIG. 10, the detection camera 2 may be attached to the inspection camera 1 as well. Good. Hereinafter, an inspection system 10C according to Modification 2 will be described with reference to FIG. Regarding the inspection system 10C according to the second modification, the same components as those of the inspection system 10A according to the second embodiment are denoted by the same reference numerals and the description thereof will be omitted.
 変形例2に係る検査システム10Cは、図10に示すように、検査用カメラ1と、検出用カメラ2と、ステージ3と、調整機構4と、を備えている。また、検査システム10Cは、検査用照明5と、検出用照明(図示せず)と、カメラ用アクチュエータ7と、照明用アクチュエータ8と、筐体15と、を更に備えている。調整機構4は、移動部16と、ステージ用アクチュエータ17と、を含む。なお、図10では、移動部16のケース161の図示を省略している。 The inspection system 10C according to Modification 2 includes an inspection camera 1, a detection camera 2, a stage 3, and an adjusting mechanism 4, as shown in FIG. The inspection system 10C further includes an inspection illumination 5, a detection illumination (not shown), a camera actuator 7, an illumination actuator 8, and a housing 15. The adjustment mechanism 4 includes a moving unit 16 and a stage actuator 17. Note that the illustration of the case 161 of the moving unit 16 is omitted in FIG. 10.
 変形例2に係る検査システム10Cでは、検出用カメラ2は、取付部材19を介して検査用カメラ1に取り付けられている。取付部材19は、Y方向から見てL字状である。そして、検出用カメラ2は、取付部材19によって検査用カメラ1(厳密には、カメラ用アクチュエータ7)に取り付けられている。したがって、取付部材19を介して検出用カメラ2を検査用照明5に取り付けた状態では、X方向において、検査用カメラ1及び検査用照明5と、検出用カメラ2と、が並んでいる。検出用カメラ2は、カメラ用アクチュエータ7がZ方向に移動することによって、検査用カメラ1とともにZ方向に移動可能である。 In the inspection system 10C according to the second modification, the detection camera 2 is attached to the inspection camera 1 via the attachment member 19. The mounting member 19 has an L shape when viewed from the Y direction. The detection camera 2 is attached to the inspection camera 1 (strictly speaking, the camera actuator 7) by the attachment member 19. Therefore, in the state where the detection camera 2 is attached to the inspection illumination 5 via the attachment member 19, the inspection camera 1 and the inspection illumination 5 and the detection camera 2 are aligned in the X direction. The detection camera 2 can move in the Z direction together with the inspection camera 1 by moving the camera actuator 7 in the Z direction.
 このように、検出用カメラ2を検査用カメラ1に取り付けた場合には、検査用カメラ1及び検査用照明5が検出用カメラ2の視野に入りにくくなる、という利点がある。さらに、この場合には、カメラ用アクチュエータ7をZ方向に移動させることで、ステージ3と検出用カメラ2との距離を確保することができるので、歪みの少ない画像(ステージ3の全体画像)を取得することが可能になる。 As described above, when the detection camera 2 is attached to the inspection camera 1, there is an advantage that the inspection camera 1 and the inspection illumination 5 are less likely to enter the visual field of the detection camera 2. Furthermore, in this case, since the distance between the stage 3 and the detection camera 2 can be secured by moving the camera actuator 7 in the Z direction, an image with little distortion (entire image of the stage 3) can be obtained. It becomes possible to acquire.
 (4.3)変形例3
 実施形態2に係る検査システム10Aでは、検出用カメラ2が移動部16のケース161に保持されており、移動部16とともにY方向に移動可能になっているが、図11に示すように、検出用カメラ2が筐体15に取り付けられていてもよい。以下、変形例3に係る検査システム10Dについて、図11を参照して説明する。なお、変形例3に係る検査システム10Dに関し、実施形態2に係る検査システム10Aと同様の構成については同一の符号を付して説明を省略する。
(4.3) Modification 3
In the inspection system 10A according to the second embodiment, the detection camera 2 is held by the case 161 of the moving unit 16 and is movable in the Y direction together with the moving unit 16, but as shown in FIG. The camera 2 may be attached to the housing 15. Hereinafter, the inspection system 10D according to Modification 3 will be described with reference to FIG. Regarding the inspection system 10D according to the modification 3, the same components as those of the inspection system 10A according to the second embodiment are designated by the same reference numerals, and the description thereof will be omitted.
 変形例3に係る検査システム10Dは、図11に示すように、検査用カメラ(図示せず)と、検出用カメラ2と、ステージ3と、調整機構4(図11では移動部16のみ図示)と、を備えている。また、検査システム10Dは、検査用照明5と、検出用照明(図示せず)と、カメラ用アクチュエータ(図示せず)と、照明用アクチュエータ(図示せず)と、筐体15と、を更に備えている。調整機構4は、移動部16と、ステージ用アクチュエータ(図示せず)と、を含む。 As shown in FIG. 11, an inspection system 10D according to Modification 3 includes an inspection camera (not shown), a detection camera 2, a stage 3, and an adjusting mechanism 4 (only the moving unit 16 is shown in FIG. 11). And are equipped with. The inspection system 10D further includes an inspection illumination 5, a detection illumination (not shown), a camera actuator (not shown), an illumination actuator (not shown), and a housing 15. I have it. The adjusting mechanism 4 includes a moving unit 16 and a stage actuator (not shown).
 検出用カメラ2は、筐体15のうち、Y方向に沿って延出する第2ボディ1522の側面に取り付けられている。具体的には、検出用カメラ2は、第2ボディ1522の側面のうち、移動部16が取り付けられている側面とは反対側の側面に取り付けられている。言い換えると、検出用カメラ2は、調整機構4を介さずに筐体15に直接的に取り付けられている。変形例3に係る検査システム10Dでは、ステージ3がX方向にのみ移動し、Y方向には移動しないように構成されているため、ステージ3を撮影する際に検出用カメラ2をY方向に移動させなくてもよく、検出用カメラ2を筐体15の側面に配置することができる。また、検出用カメラ2を移動部16に保持させた場合に比べて、Y方向アクチュエータに加わるモーメントを小さくすることができるので、Y方向アクチュエータの小型化を図ることができる。 The detection camera 2 is attached to the side surface of the second body 1522 of the housing 15 extending along the Y direction. Specifically, the detection camera 2 is attached to a side surface of the second body 1522 opposite to the side surface to which the moving unit 16 is attached. In other words, the detection camera 2 is directly attached to the housing 15 without the adjustment mechanism 4. In the inspection system 10D according to Modification 3, the stage 3 is configured to move only in the X direction and not move in the Y direction. Therefore, when the stage 3 is photographed, the detection camera 2 is moved in the Y direction. The detection camera 2 may not be provided, and the detection camera 2 may be disposed on the side surface of the housing 15. Further, since the moment applied to the Y-direction actuator can be reduced as compared with the case where the detection camera 2 is held by the moving unit 16, the Y-direction actuator can be downsized.
 このように、検出用カメラ2を筐体15に取り付けた場合には、カメラ用アクチュエータ7によって検査用カメラ1を上昇させ、かつ照明用アクチュエータ8によって検査用照明5を上昇させることで、検出用カメラ2の視野を確保することができる。 As described above, when the detection camera 2 is attached to the housing 15, by raising the inspection camera 1 by the camera actuator 7 and raising the inspection illumination 5 by the illumination actuator 8, The field of view of the camera 2 can be secured.
 (4.4)変形例4
 実施形態2及び変形例1,2では、検出用カメラ2がケース161の内部に収容されているが、検出用カメラ2は、第1方向において移動部16と並んでいてもよい。図示は省略しているが、検出用カメラ2は、例えば、移動部16のケース161のX方向における一側面に取り付けられていてもよい。この場合、X方向が第1方向であり、第1方向において移動部16と検出用カメラ2とが並んでいる。この構成によれば、検査用カメラ1の光軸方向への検出用カメラ2の位置調整が不要である、という利点がある。
(4.4) Modification 4
In Embodiment 2 and Modifications 1 and 2, the detection camera 2 is housed inside the case 161, but the detection camera 2 may be aligned with the moving unit 16 in the first direction. Although not shown, the detection camera 2 may be attached to, for example, one side surface of the case 161 of the moving unit 16 in the X direction. In this case, the X direction is the first direction, and the moving unit 16 and the detection camera 2 are lined up in the first direction. According to this configuration, there is an advantage that the position adjustment of the detection camera 2 in the optical axis direction of the inspection camera 1 is unnecessary.
 (まとめ)
 以上説明したように、第1の態様に係る検査システム(10;10A~10D)は、検査対象(100)の外観を検査する検査システム(10;10A~10D)である。検査システム(10;10A~10D)は、検査用カメラ(1)と、検出用カメラ(2)と、ステージ(3)と、調整機構(4)と、を備える。検査用カメラ(1)は、複数の受光素子が二次元に配列されている撮像素子を有するカメラからなり、検査対象(100)の少なくとも一部を含む検査領域(R1)を撮像する。検出用カメラ(2)は、複数の受光素子が二次元に配列されている撮像素子を有するカメラからなり、検査領域(R1)を含み、かつ検査領域(R1)よりも広い検出領域(R2)を撮像する。ステージ(3)は、検査対象(100)が載せられる。調整機構(4)は、検出用カメラ(2)にて撮像された検出領域(R2)の画像に基づいて、ステージ(3)と検査用カメラ(1)との相対位置を調整する。
(Summary)
As described above, the inspection system (10; 10A to 10D) according to the first aspect is the inspection system (10; 10A to 10D) that inspects the appearance of the inspection target (100). The inspection system (10; 10A to 10D) includes an inspection camera (1), a detection camera (2), a stage (3), and an adjusting mechanism (4). The inspection camera (1) is composed of a camera having an image sensor in which a plurality of light receiving elements are arranged two-dimensionally, and images the inspection region (R1) including at least a part of the inspection target (100). The detection camera (2) is composed of a camera having an image pickup device in which a plurality of light receiving elements are two-dimensionally arranged, includes an inspection region (R1), and is a detection region (R2) wider than the inspection region (R1). Image. The inspection target (100) is placed on the stage (3). The adjustment mechanism (4) adjusts the relative position between the stage (3) and the inspection camera (1) based on the image of the detection region (R2) taken by the detection camera (2).
 この態様によれば、ラインセンサカメラにて検査対象の予備的な位置決めを行う場合のように、検査対象が載せられているステージを一方向に移動させる処理が不要であり、その分、検査効率を向上させることができる。 According to this aspect, unlike the case where the line sensor camera preliminarily positions the inspection target, the process of moving the stage on which the inspection target is placed in one direction is unnecessary, and the inspection efficiency is correspondingly increased. Can be improved.
 第2の態様に係る検査システム(10;10A~10D)では、第1の態様において、検査対象(100)は複数である。調整機構(4)は、検査用カメラ(1)の光軸(Z方向の軸)と交差する方向(X方向及びY方向)にステージ(3)を移動させることで、複数の検査対象(100)の各々の位置に検査用カメラ(1)を配置する。 In the inspection system (10; 10A to 10D) according to the second aspect, the inspection target (100) is plural in the first aspect. The adjustment mechanism (4) moves the stage (3) in a direction (X direction and Y direction) that intersects the optical axis (axis in the Z direction) of the inspection camera (1), and thereby a plurality of inspection targets (100 The inspection camera (1) is arranged at each position of (1).
 この態様によれば、複数の検査対象(100)の各々の位置に検査用カメラ(1)を配置することができる。 According to this aspect, the inspection camera (1) can be arranged at each position of the plurality of inspection objects (100).
 第3の態様に係る検査システム(10;10A~10D)は、第1又は2の態様において、検査用照明(5)を更に備える。検査用照明(5)は、検査領域(R1)に対して光を照射する。検査用照明(5)は、環状の光源を有するリング照明(51)である。 The inspection system (10; 10A to 10D) according to the third aspect further includes an inspection illumination (5) in the first or second aspect. The inspection illumination (5) irradiates the inspection region (R1) with light. The inspection illumination (5) is a ring illumination (51) having an annular light source.
 この態様によれば、検査用照明(5)がない場合に比べて鮮明な画像を取得することができる。また、検査用照明(5)がリング照明(51)であるため、検査対象(100)に影ができにくく、検査対象(100)に対して均一な光を照射することができる。 According to this aspect, a clearer image can be acquired as compared with the case where the inspection illumination (5) is not provided. Further, since the inspection illumination (5) is the ring illumination (51), it is difficult for the inspection object (100) to have a shadow, and the inspection object (100) can be irradiated with uniform light.
 第4の態様に係る検査システム(10)では、第3の態様において、検出用カメラ(2)は、リング照明(51)の径方向における外側に配置されている。 In the inspection system (10) according to the fourth aspect, in the third aspect, the detection camera (2) is arranged outside the ring illumination (51) in the radial direction.
 この態様によれば、検出領域(R2)内への検査用カメラ(1)の写り込みを低減することができる。さらに、リング照明(51)の内側に検出用カメラ(2)を配置する場合に比べて、リング照明(51)を小型化することができる。 According to this aspect, it is possible to reduce the reflection of the inspection camera (1) in the detection area (R2). Furthermore, the ring illumination (51) can be downsized as compared with the case where the detection camera (2) is arranged inside the ring illumination (51).
 第5の態様に係る検査システム(10)は、第3又は4の態様において、カメラ用アクチュエータ(7)と、照明用アクチュエータ(8)と、を更に備える。カメラ用アクチュエータ(7)は、ステージ(3)に載せられている検査対象(100)に近づく向き、及び検査対象(100)から離れる向きに検査用カメラ(1)を移動させる。照明用アクチュエータ(8)は、ステージ(3)に載せられている検査対象(100)に近づく向き、及び検査対象(100)から離れる向きに検査用照明(5)を移動させる。カメラ用アクチュエータ(7)と照明用アクチュエータ(8)とが独立して動作する。 The inspection system (10) according to the fifth aspect further includes the camera actuator (7) and the illumination actuator (8) in the third or fourth aspect. The camera actuator (7) moves the inspection camera (1) in a direction toward the inspection object (100) mounted on the stage (3) and in a direction away from the inspection object (100). The illumination actuator (8) moves the inspection illumination (5) toward the inspection target (100) mounted on the stage (3) and in the direction away from the inspection target (100). The camera actuator (7) and the illumination actuator (8) operate independently.
 この態様によれば、検査用カメラ(1)のフォーカス動作と検査用照明(5)の照明条件の調整とを別々に行うことができる。 According to this aspect, the focus operation of the inspection camera (1) and the adjustment of the illumination condition of the inspection illumination (5) can be performed separately.
 第6の態様に係る検査システム(10B)では、第3~5のいずれかの態様において、検出用カメラ(2)は、検査用照明(5)に取り付けられている。 In the inspection system (10B) according to the sixth aspect, in any one of the third to fifth aspects, the detection camera (2) is attached to the inspection illumination (5).
 この態様によれば、検査用カメラ(1)及び検査用照明(5)が検出用カメラ(2)の視野に入りにくい、という利点がある。 According to this aspect, there is an advantage that it is difficult for the inspection camera (1) and the inspection illumination (5) to be in the visual field of the detection camera (2).
 第7の態様に係る検査システム(10C)では、第1~5のいずれかの態様において、検出用カメラ(2)は、検査用カメラ(1)に取り付けられている。 In the inspection system (10C) according to the seventh aspect, in any one of the first to fifth aspects, the detection camera (2) is attached to the inspection camera (1).
 この態様によれば、検査用カメラ(1)及び検査用照明(5)が検出用カメラ(2)の視野に入りにくい、という利点がある。 According to this aspect, there is an advantage that it is difficult for the inspection camera (1) and the inspection illumination (5) to be in the visual field of the detection camera (2).
 第8の態様に係る検査システム(10D)は、第1~7のいずれかの態様において、筐体(15)を更に備える。検出用カメラ(1)は、調整機構(4)を介さずに筐体(15)に直接的に取り付けられている。 The inspection system (10D) according to the eighth aspect further includes a housing (15) in any one of the first to seventh aspects. The detection camera (1) is directly attached to the housing (15) without the adjustment mechanism (4).
 この構成によれば、検出用カメラ(2)の位置調整が不要である、という利点がある。 According to this configuration, there is an advantage that the position adjustment of the detection camera (2) is unnecessary.
 第9の態様に係る検査システム(10A~10D)では、第1~8のいずれかの態様において、調整機構(4)は、検査用カメラ(1)の光軸と交差する第1方向(例えばX方向)にステージ(3)を移動させる。調整機構(4)は、検査用カメラ(1)の光軸と交差し、かつ第1方向と交差する第2方向(例えばY方向)に検査用カメラ(1)を移動させる。 In the inspection system (10A to 10D) according to the ninth aspect, in any one of the first to eighth aspects, the adjustment mechanism (4) has a first direction (eg, the first direction) intersecting the optical axis of the inspection camera (1). The stage (3) is moved in the (X direction). The adjustment mechanism (4) moves the inspection camera (1) in a second direction (for example, the Y direction) that intersects the optical axis of the inspection camera (1) and intersects the first direction.
 この態様によれば、ステージ3をX方向及びY方向の両方に移動させる場合に比べて、ステージ3を移動させるためのアクチュエータを小型化することができる。 According to this aspect, the actuator for moving the stage 3 can be downsized as compared with the case where the stage 3 is moved in both the X direction and the Y direction.
 第10の態様に係る検査システム(10A~10D)では、第9の態様において、調整機構(4)は、第2方向(例えばY方向)に移動可能な移動部(16)を含む。検査用カメラ(1)は、第1方向(例えばX方向)において移動部(16)と並んでいる。 In the inspection system (10A to 10D) according to the tenth aspect, in the ninth aspect, the adjustment mechanism (4) includes a moving unit (16) that can move in the second direction (for example, the Y direction). The inspection camera (1) is aligned with the moving unit (16) in the first direction (for example, the X direction).
 この態様によれば、検査用カメラ(1)の光軸方向への検出用カメラ(2)の位置調整が不要である、という利点がある。 According to this aspect, there is an advantage that the position adjustment of the detection camera (2) in the optical axis direction of the inspection camera (1) is unnecessary.
 第11の態様に係る検査システム(10)では、第1~10のいずれかの態様において、検出用カメラ(2)の画角は、検査用カメラ(1)の画角よりも広角である。 In the inspection system (10) according to the eleventh aspect, in any one of the first to tenth aspects, the angle of view of the detection camera (2) is wider than the angle of view of the inspection camera (1).
 この態様によれば、検出用カメラ(2)が広視野角(広角)であるので、検出用カメラ(2)を用いて検査対象(100)の位置を検出し、調整機構(4)を用いて検査用カメラ(1)の光軸と検査対象100の中心点とが一致する位置にステージ(3)と検査用カメラ(1)との相対位置を調整する動作を効率的に行うことができる。また、検査用カメラ(1)が狭視野角であるので、検査用カメラ(1)を用いて検査対象(100)の微細な欠陥を観察することができるため、検査を効率的に行うことができる。 According to this aspect, since the detection camera (2) has a wide viewing angle (wide angle), the position of the inspection target (100) is detected using the detection camera (2) and the adjustment mechanism (4) is used. The operation of adjusting the relative position between the stage (3) and the inspection camera (1) at a position where the optical axis of the inspection camera (1) and the center point of the inspection target 100 coincide can be efficiently performed. .. In addition, since the inspection camera (1) has a narrow viewing angle, it is possible to observe minute defects in the inspection target (100) using the inspection camera (1), so that the inspection can be performed efficiently. it can.
 第12の態様に係る検査用の画像取得方法は、検査対象(100)の外観を検査する検査システム(10)における検査用の画像取得方法である。検査用の画像取得方法は、3つの処理を含む。第1の処理は、複数の受光素子が二次元に配列されている撮像素子を有するカメラからなる検査用カメラ(1)にて、検査対象(100)の少なくとも一部を含む検査領域(R1)を撮像する処理である。第2の処理は、複数の受光素子が二次元に配列されている撮像素子を有するカメラからなる検出用カメラ(2)にて、検査領域(R1)を含み、かつ検査領域(R1)よりも広い検出領域(R2)を撮像する処理である。第3の処理は、検出用カメラ(2)にて撮像された検出領域(R2)の画像に基づいて、検査対象(100)が載せられるステージ(3)と検査用カメラ(1)との相対位置を調整する処理である。なお、上記の3つの処理の順序は任意である。例えば、第2の処理及び第3の処理を第1の処理よりも前に行ってもよい。 The image acquisition method for inspection according to the twelfth aspect is the image acquisition method for inspection in the inspection system (10) for inspecting the appearance of the inspection target (100). The image acquisition method for inspection includes three processes. The first process is an inspection area (R1) including at least a part of an inspection object (100) in an inspection camera (1) including a camera having an image pickup device in which a plurality of light receiving elements are arranged two-dimensionally. Is a process for imaging. In the second process, a detection camera (2) including a camera having an image sensor in which a plurality of light receiving elements are two-dimensionally arranged includes an inspection region (R1) and is more than the inspection region (R1). This is a process of imaging a wide detection area (R2). The third process is the relative movement between the inspection camera (1) and the stage (3) on which the inspection target (100) is placed, based on the image of the detection region (R2) captured by the detection camera (2). This is the process of adjusting the position. The order of the above three processes is arbitrary. For example, the second process and the third process may be performed before the first process.
 この態様によれば、ラインセンサカメラにて検査対象の予備的な位置決めを行う場合のように、検査対象が載せられているステージを一方向に移動させる処理が不要であり、その分、検査効率を向上させることができる。 According to this aspect, unlike the case where the line sensor camera preliminarily positions the inspection target, the process of moving the stage on which the inspection target is placed in one direction is unnecessary, and the inspection efficiency is correspondingly increased. Can be improved.
 第13の態様に係る検査システム(10)は、第1又は2の態様において、検査領域(R1)に対して光を照射する検査用照明(5A)を更に備える。検査用照明(5A)は、同軸落射照明(52)である。同軸落射照明(52)は、検査用カメラ(1)の光軸(P1)と一致する方向から検査領域(R1)に対して光を照射する。 The inspection system (10) according to the thirteenth aspect further includes an inspection illumination (5A) that irradiates the inspection region (R1) with light in the first or second aspect. The inspection illumination (5A) is a coaxial epi-illumination (52). The coaxial incident illumination (52) irradiates the inspection region (R1) with light from a direction coinciding with the optical axis (P1) of the inspection camera (1).
 この態様によれば、検査対象(100)が光沢のある金属の物体である場合に有効であるという利点がある。 According to this aspect, there is an advantage that it is effective when the inspection target (100) is a glossy metal object.
 第14の態様に係る検査システム(10)は、第1~4,13のいずれかの態様において、検出用照明(6)を更に備える。検出用照明(6)は、検出領域(R2)に対して光を照射する。 The inspection system (10) according to the fourteenth aspect further includes the detection illumination (6) in any one of the first to fourth and thirteenth aspects. The detection illumination (6) irradiates the detection area (R2) with light.
 この態様によれば、検出用照明(6)がない場合に比べて鮮明な画像を取得することができる。 According to this aspect, it is possible to obtain a clear image as compared with the case where the detection illumination (6) is not provided.
 第15の態様に係る検査システム(10)は、第14の態様において、検査用照明(5;5A)を更に備える。検査用照明(5;5A)は、検査領域(R1)に対して光を照射する。検査用照明(5;5A)と検出用照明(6)とが別々に設けられている。 The inspection system (10) according to the fifteenth aspect further includes the inspection illumination (5; 5A) in the fourteenth aspect. The inspection illumination (5; 5A) irradiates the inspection region (R1) with light. The inspection illumination (5; 5A) and the detection illumination (6) are separately provided.
 この態様によれば、検査領域(R1)及び検出領域(R2)の各々に適した照明を実現することができる。 According to this aspect, it is possible to realize illumination suitable for each of the inspection area (R1) and the detection area (R2).
 第16の態様に係る検査システム(10)は、第1~4,13~15のいずれかの態様において、カメラ用アクチュエータ(7)を更に備える。カメラ用アクチュエータ(7)は、ステージ(3)に載せられている検査対象(100)に近づく向き、及び検査対象(100)から離れる向きに検査用カメラ(1)を移動させる。 The inspection system (10) according to the sixteenth aspect further includes a camera actuator (7) according to any one of the first to fourth and thirteenth to fifteenth aspects. The camera actuator (7) moves the inspection camera (1) in a direction toward the inspection object (100) mounted on the stage (3) and in a direction away from the inspection object (100).
 この態様によれば、検査用カメラ(1)のフォーカス動作を行うことができる。 According to this aspect, the focus operation of the inspection camera (1) can be performed.
 第17の態様に係る検査システム(10)では、第16の態様において、検出用カメラ(2)は、カメラ用アクチュエータ(7)によって検査用カメラ(1)と共に移動する。 In the inspection system (10) according to the seventeenth aspect, in the sixteenth aspect, the detection camera (2) moves together with the inspection camera (1) by the camera actuator (7).
 この態様によれば、1つのカメラ用アクチュエータ(7)によって検査用カメラ(1)及び検出用カメラ(2)の両方のフォーカス動作を行うことができる。 According to this aspect, the focus operation of both the inspection camera (1) and the detection camera (2) can be performed by one camera actuator (7).
 第18の態様に係る検査システム(10)は、第1~4,13~17のいずれかの態様において、検査用照明(5)と、照明用アクチュエータ(8)と、を更に備える。検査用照明(5)は、検査領域(R1)に対して光を照射する。照明用アクチュエータ(8)は、ステージ(3)に載せられている検査対象(100)に近づく向き、及び検査対象(100)から離れる向きに検査用照明(5)を移動させる。 The inspection system (10) according to the eighteenth aspect further comprises an inspection illumination (5) and an illumination actuator (8) according to any one of the first to fourth and thirteenth to seventeenth aspects. The inspection illumination (5) irradiates the inspection region (R1) with light. The illumination actuator (8) moves the inspection illumination (5) toward the inspection target (100) mounted on the stage (3) and in the direction away from the inspection target (100).
 この態様によれば、検査用照明(5)の照明条件を調節することができる。 According to this aspect, the illumination condition of the inspection illumination (5) can be adjusted.
 第2~11,13~18の態様に係る構成については、検査システム(10;10A~10D)に必須の構成ではなく、適宜省略可能である。 The configurations according to the second to eleventh and thirteenth to eighteenth aspects are not essential for the inspection system (10; 10A to 10D) and can be omitted as appropriate.
1 検査用カメラ
2 検出用カメラ
3 ステージ
4 調整機構
5,5A 検査用照明
6 検出用照明
7 カメラ用アクチュエータ
8 照明用アクチュエータ
10,10A~10D 検査システム
15 筐体
16 移動部
51 リング照明
52 同軸落射照明
100 検査対象
R1 検査領域
R2 検出領域
1 Inspection Camera 2 Detection Camera 3 Stage 4 Adjustment Mechanism 5, 5A Inspection Lighting 6 Detection Lighting 7 Camera Actuator 8 Lighting Actuator 10, 10A to 10D Inspection System 15 Housing 16 Moving Part 51 Ring Lighting 52 Coaxial Epi-illumination Illumination 100 Inspection target R1 Inspection area R2 Detection area

Claims (12)

  1.  検査対象の外観を検査する検査システムであって、
     複数の受光素子が二次元に配列されている撮像素子を有するカメラからなり、前記検査対象の少なくとも一部を含む検査領域を撮像する検査用カメラと、
     複数の受光素子が二次元に配列されている撮像素子を有するカメラからなり、前記検査領域を含み、かつ前記検査領域よりも広い検出領域を撮像する検出用カメラと、
     前記検査対象が載せられるステージと、
     前記検出用カメラにて撮像された前記検出領域の画像に基づいて、前記ステージと前記検査用カメラとの相対位置を調整する調整機構と、を備える、
     検査システム。
    An inspection system for inspecting the appearance of an inspection object,
    An inspection camera, which comprises a camera having an image sensor in which a plurality of light receiving elements are two-dimensionally arranged, and which images an inspection area including at least a part of the inspection object,
    A detection camera, which comprises a camera having an imaging element in which a plurality of light receiving elements are two-dimensionally arranged, and which includes the inspection area and images a detection area wider than the inspection area,
    A stage on which the inspection target is placed,
    An adjusting mechanism that adjusts a relative position between the stage and the inspection camera based on an image of the detection region imaged by the detection camera.
    Inspection system.
  2.  前記検査対象は複数であり、
     前記調整機構は、前記検査用カメラの光軸と交差する方向に前記ステージを移動させることで、前記複数の検査対象の各々の位置に前記検査用カメラを配置する、
     請求項1に記載の検査システム。
    The inspection target is plural,
    The adjustment mechanism disposes the inspection camera at each position of the plurality of inspection targets by moving the stage in a direction intersecting the optical axis of the inspection camera.
    The inspection system according to claim 1.
  3.  前記検査領域に対して光を照射する検査用照明を更に備え、
     前記検査用照明は、環状の光源を有するリング照明である、
     請求項1又は2に記載の検査システム。
    Further comprising an inspection illumination for irradiating the inspection area with light,
    The inspection illumination is a ring illumination having an annular light source,
    The inspection system according to claim 1.
  4.  前記検出用カメラは、前記リング照明の径方向における外側に配置されている、
     請求項3に記載の検査システム。
    The detection camera is arranged outside in the radial direction of the ring illumination,
    The inspection system according to claim 3.
  5.  前記ステージに載せられている前記検査対象に近づく向き、及び前記検査対象から離れる向きに前記検査用カメラを移動させるカメラ用アクチュエータと、
     前記検査対象に近づく向き、及び前記検査対象から離れる向きに前記検査用照明を移動させる照明用アクチュエータと、を更に備え、
     前記カメラ用アクチュエータと前記照明用アクチュエータとが独立して動作する、
     請求項3又は4に記載の検査システム。
    A camera actuator that moves the inspection camera in a direction approaching the inspection target mounted on the stage and in a direction away from the inspection target;
    A direction for approaching the inspection target, and an illumination actuator for moving the inspection illumination in a direction away from the inspection target,
    The camera actuator and the illumination actuator operate independently,
    The inspection system according to claim 3 or 4.
  6.  前記検出用カメラは、前記検査用照明に取り付けられている、
     請求項3~5のいずれか1項に記載の検査システム。
    The detection camera is attached to the inspection illumination,
    The inspection system according to any one of claims 3 to 5.
  7.  前記検出用カメラは、前記検査用カメラに取り付けられている、
     請求項1~5のいずれか1項に記載の検査システム。
    The detection camera is attached to the inspection camera,
    The inspection system according to any one of claims 1 to 5.
  8.  筐体を更に備え、
     前記検出用カメラは、前記調整機構を介さずに前記筐体に直接的に取り付けられている、
     請求項1~7のいずれか1項に記載の検査システム。
    Further provided with a housing,
    The detection camera is directly attached to the housing without going through the adjustment mechanism,
    The inspection system according to any one of claims 1 to 7.
  9.  前記調整機構は、
      前記検査用カメラの光軸と交差する第1方向に前記ステージを移動させ、
      前記検査用カメラの光軸と交差し、かつ前記第1方向と交差する第2方向に前記検査用カメラを移動させる、
     請求項1~8のいずれか1項に記載の検査システム。
    The adjustment mechanism is
    Moving the stage in a first direction intersecting the optical axis of the inspection camera,
    Moving the inspection camera in a second direction that intersects the optical axis of the inspection camera and intersects the first direction;
    The inspection system according to any one of claims 1 to 8.
  10.  前記調整機構は、前記第2方向に移動可能な移動部を含み、
     前記検査用カメラは、前記第1方向において前記移動部と並んでいる、
     請求項9に記載の検査システム。
    The adjustment mechanism includes a moving unit that is movable in the second direction,
    The inspection camera is aligned with the moving unit in the first direction,
    The inspection system according to claim 9.
  11.  前記検出用カメラの画角は、前記検査用カメラの画角よりも広角である、
     請求項1~10のいずれか1項に記載の検査システム。
    The angle of view of the detection camera is wider than the angle of view of the inspection camera,
    The inspection system according to any one of claims 1 to 10.
  12.  検査対象の外観を検査する検査システムにおける検査用の画像取得方法であって、
     複数の受光素子が二次元に配列されている撮像素子を有するカメラからなる検査用カメラにて、前記検査対象の少なくとも一部を含む検査領域を撮像する処理と、
     複数の受光素子が二次元に配列されている撮像素子を有するカメラからなる検出用カメラにて、前記検査領域を含み、かつ前記検査領域よりも広い検出領域を撮像する処理と、
     前記検出用カメラにて撮像された前記検出領域の画像に基づいて、前記検査対象が載せられるステージと前記検査用カメラとの相対位置を調整する処理と、を含む、
     検査用の画像取得方法。
    An image acquisition method for inspection in an inspection system for inspecting the appearance of an inspection target,
    A process for imaging an inspection area including at least a part of the inspection target with an inspection camera including a camera having an image sensor in which a plurality of light receiving elements are two-dimensionally arranged;
    A detection camera including a camera having an image sensor in which a plurality of light receiving elements are two-dimensionally arrayed, a process of capturing an image of a detection region including the inspection region and wider than the inspection region;
    A process of adjusting a relative position between the stage on which the inspection target is placed and the inspection camera based on an image of the detection region imaged by the detection camera,
    Image acquisition method for inspection.
PCT/JP2019/047904 2018-12-13 2019-12-06 Inspection system, and method for acquring image for inspection WO2020121977A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-233913 2018-12-13
JP2018233913 2018-12-13

Publications (1)

Publication Number Publication Date
WO2020121977A1 true WO2020121977A1 (en) 2020-06-18

Family

ID=71076345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047904 WO2020121977A1 (en) 2018-12-13 2019-12-06 Inspection system, and method for acquring image for inspection

Country Status (1)

Country Link
WO (1) WO2020121977A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113884493A (en) * 2021-12-07 2022-01-04 北京艾科瑞医学生物技术有限公司 Solid surface microscopic imaging device and imaging method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328094A (en) * 2001-05-02 2002-11-15 Nidec Tosok Corp Led ring lighting and image inspecting device with it
JP2004132918A (en) * 2002-10-15 2004-04-30 Nikon Corp Inspection device
JP2007184589A (en) * 2004-09-06 2007-07-19 Omron Corp Substrate inspection method and substrate inspecting apparatus
JP2011138096A (en) * 2009-12-01 2011-07-14 Aska Company Measuring microscope
JP2016048195A (en) * 2014-08-27 2016-04-07 株式会社キーエンス Image measuring device
JP2016050864A (en) * 2014-09-01 2016-04-11 三菱電機株式会社 Appearance inspection device with solder
JP2018013737A (en) * 2016-07-22 2018-01-25 株式会社キーエンス Magnification observation device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328094A (en) * 2001-05-02 2002-11-15 Nidec Tosok Corp Led ring lighting and image inspecting device with it
JP2004132918A (en) * 2002-10-15 2004-04-30 Nikon Corp Inspection device
JP2007184589A (en) * 2004-09-06 2007-07-19 Omron Corp Substrate inspection method and substrate inspecting apparatus
JP2011138096A (en) * 2009-12-01 2011-07-14 Aska Company Measuring microscope
JP2016048195A (en) * 2014-08-27 2016-04-07 株式会社キーエンス Image measuring device
JP2016050864A (en) * 2014-09-01 2016-04-11 三菱電機株式会社 Appearance inspection device with solder
JP2018013737A (en) * 2016-07-22 2018-01-25 株式会社キーエンス Magnification observation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113884493A (en) * 2021-12-07 2022-01-04 北京艾科瑞医学生物技术有限公司 Solid surface microscopic imaging device and imaging method
CN113884493B (en) * 2021-12-07 2022-04-19 北京艾科瑞医学生物技术有限公司 Solid surface microscopic imaging device and imaging method

Similar Documents

Publication Publication Date Title
TWI610762B (en) Processing device
US20200382721A1 (en) Unscanned Optical Inspection System using a micro camera array
JP2022009508A (en) Apparatus for inspecting side faces of semiconductor devices
JP2008203093A (en) Illumination device and image measurement apparatus
JPWO2004053451A1 (en) Solid-state image sensor testing equipment
KR100956547B1 (en) Apparatus and method for measuring three dimension shape of a object
CN103247548B (en) A kind of wafer defect checkout gear and method
JP2015190826A (en) Substrate inspection device
WO2020121977A1 (en) Inspection system, and method for acquring image for inspection
JP6124237B2 (en) Inspection apparatus, inspection method, and substrate manufacturing method
JP6122310B2 (en) Inspection device
JP2004172465A (en) Electronic circuit component image acquiring device and method therefor
WO2015016016A1 (en) Height measurement device
WO2020188761A1 (en) Camera module manufacturing device and camera module manufacturing method
JP6643328B2 (en) Optical system for producing lithographic structures
KR100969349B1 (en) Automatic optical inspection apparatus
JP3933060B2 (en) Bonding wire inspection method
CN110741464A (en) Defect detecting device, defect detecting method, wafer, semiconductor chip, die bonder, semiconductor manufacturing method, and semiconductor device manufacturing method
JP6422819B2 (en) Image recognition apparatus and image recognition method
WO2011056976A1 (en) High speed optical inspection system with adaptive focusing
JP2021086121A (en) Image capture device and surface inspection device
KR102310449B1 (en) Improved Multi-sided Vision Inspection System
WO2023026646A1 (en) Housing for imaging and inspection device
KR101124566B1 (en) Apparatus for examining a wafer
KR100994493B1 (en) Apparatus for detecting a align mark and method for align using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19894483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP