WO2020121869A1 - Treatment method for substrate treatment device and substrate treatment device - Google Patents

Treatment method for substrate treatment device and substrate treatment device Download PDF

Info

Publication number
WO2020121869A1
WO2020121869A1 PCT/JP2019/047011 JP2019047011W WO2020121869A1 WO 2020121869 A1 WO2020121869 A1 WO 2020121869A1 JP 2019047011 W JP2019047011 W JP 2019047011W WO 2020121869 A1 WO2020121869 A1 WO 2020121869A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
chamber
processing apparatus
camera
control unit
Prior art date
Application number
PCT/JP2019/047011
Other languages
French (fr)
Japanese (ja)
Inventor
亮介 金田
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2020121869A1 publication Critical patent/WO2020121869A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q7/00Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting
    • B23Q7/04Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting by means of grippers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/06Work supports, e.g. adjustable steadies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment

Definitions

  • the present disclosure relates to a substrate processing apparatus processing method and a substrate processing apparatus.
  • Patent Document 1 discloses a board-shaped wireless sensor having an access hole and a sensor arranged directly on the access hole. The sensor acquires an image of a target located below the sensor via the access hole.
  • a robot having a hand for holding a substrate, a position detection jig held by the robot hand and having a mirror unit, a camera provided on the robot hand, and a substrate mounted thereon.
  • An automatic teaching system which includes a target jig arranged corresponding to a target position of a substrate to be formed, and a control device for controlling the operation of the robot and teaching the position of a hand to the robot.
  • the camera acquires an image of the target jig arranged below the position detecting jig via the mirror unit.
  • the present disclosure provides a substrate processing apparatus processing method and a substrate processing apparatus capable of easily confirming an internal state of the substrate processing apparatus.
  • a method of processing a substrate processing apparatus including a plurality of chambers and a transfer device that transfers a substrate, the step of preparing a substrate-shaped member having a camera,
  • a processing method of a substrate processing apparatus comprising: a step of transferring the substrate-shaped member to an imaging position of a first chamber by the transfer device; and a step of imaging the second chamber adjacent to the first chamber by the camera.
  • the top view which shows an example of the substrate processing apparatus which concerns on one Embodiment.
  • 5 is a flowchart showing an example of processing of the substrate processing apparatus according to one embodiment. Part of a plan view showing an example of a substrate processing apparatus according to an embodiment when an image of the inside of the processing chamber is taken from the transfer chamber.
  • FIG. 3 is a part of a plan view showing an example of a substrate processing apparatus according to an embodiment when capturing an image of a transfer chamber from a load lock chamber. Part of a plan view showing an example of a substrate processing apparatus according to an embodiment when an image of the load lock chamber is taken from the transfer chamber.
  • FIG. 1 is a plan view showing an example of a substrate processing apparatus 1 according to an embodiment.
  • the substrate processing apparatus 1 shown in FIG. 1 is a cluster structure (multi-chamber type) system.
  • the substrate processing apparatus 1 includes process chambers PM (Process Module) 1 to 6, transfer chamber VTM (Vacuum Transfer Module), load lock chambers LLM (Load Lock Module) 1 and 2, loader module LM (Loader Module), load port LP. (Load Port) 1 to 3 and a control unit 10.
  • the processing chambers PM1 to PM6 are depressurized to a predetermined vacuum atmosphere, and inside the processing chambers PM1 to PM6, desired processing (for example, etching processing, film forming processing, etc.) is performed on a substrate such as a semiconductor wafer W (hereinafter also referred to as “wafer W”). Cleaning process, ashing process, etc.).
  • the processing chambers PM1 to PM6 are arranged adjacent to the transfer chamber VTM.
  • the transfer of the wafer W between the processing chambers PM1 to PM6 and the transfer chamber VTM is performed through the transfer ports by opening and closing the gate valves GV1 to GV6.
  • the processing chambers PM1 to PM6 have mounting portions S1 to S6 on which the wafer W is mounted.
  • each unit for processing in the processing chambers PM1 to PM6 is controlled by the control unit 10.
  • the substrate processing apparatus 1 has been described as having six processing chambers PM1 to PM6, the number of processing chambers PM is not limited to this, and may be one or more.
  • the transfer chamber VTM is depressurized to a predetermined vacuum atmosphere.
  • a transfer device 30 that transfers the wafer W is provided inside the transfer chamber VTM.
  • the transfer device 30 loads and unloads the wafer W between the processing chambers PM1 to PM6 and the transfer chamber VTM according to opening and closing of the gate valves GV1 to GV6.
  • the transfer device 30 loads and unloads the wafer W between the load lock chambers LLM1 and LLM2 and the transfer chamber VTM according to opening and closing of the gate valves GV7 and 8.
  • the control unit 10 controls the operation of the transfer device 30 and the opening/closing of the gate valves GV1 to GV8.
  • the transfer device 30 has a first arm 31 and a second arm 32.
  • the first arm 31 is configured as an articulated arm, and a pick 31a attached to the tip of the articulated arm can hold the wafer W or the substrate-shaped member 100 described later.
  • the second arm 32 is configured as an articulated arm, and the wafer W or the substrate member 100 can be held by the pick 32a attached to the tip of the articulated arm.
  • the transport device 30 has been described as having two picks 31a and 32a, the number of picks is not limited to this and may be one or more.
  • the load lock chambers LLM1-2 are provided between the transfer chamber VTM and the loader module LM.
  • the load lock chambers LLM1 and LLM2 can be switched between an air atmosphere and a vacuum atmosphere.
  • the load lock chamber LLM1 and the transfer chamber VTM in the vacuum atmosphere communicate with each other by opening and closing the gate valve GV7.
  • the load lock chamber LLM1 and the loader module LM in the atmosphere are connected by opening and closing the gate valve GV9.
  • the load lock chamber LLM1 has a mounting portion S7 on which the wafer W and the substrate member 100 are mounted.
  • the load lock chamber LLM2 and the transfer chamber VTM in the vacuum atmosphere are connected by opening and closing the gate valve GV8.
  • the load lock chamber LLM2 and the atmospheric loader module LM communicate with each other by opening and closing the gate valve GV10.
  • the load lock chamber LLM2 has a mounting portion S8 on which the wafer W and the substrate member 100 are mounted.
  • the switching of the vacuum atmosphere or the atmospheric atmosphere in the load lock chambers LLM1-2 is controlled by the control unit 10.
  • the substrate processing apparatus 1 has been described as including two load lock chambers LLM1 and LLM2, the number of load lock chambers LLM is not limited to this and may be one or more.
  • the loader module LM is in the atmosphere, and for example, a downflow of clean air is formed. Further, inside the loader module LM, an alignment device 50 that aligns the positions of the wafer W and the substrate member 100, and a transfer device 40 that transfers the wafer W and the substrate member 100 are provided.
  • the transfer device 40 loads and unloads the wafer W and the substrate member 100 between the load lock chambers LLM1 and LLM2 and the loader module LM according to the opening and closing of the gate valves GV9 to 10.
  • the transfer device 40 also carries the wafer W and the substrate-shaped member 100 into and out of the alignment device 50.
  • the operation of the transfer device 40, the operation of the alignment device 50, and the opening/closing of the gate valves GV9 to 10 are controlled by the controller 10.
  • the transfer device 40 has a first arm 41 and a second arm 42.
  • the first arm 41 is configured as an articulated arm, and the wafer W and the substrate member 100 can be held by the pick 41a attached to the tip of the articulated arm.
  • the second arm 42 is configured as an articulated arm, and the wafer W or the substrate-shaped member 100 can be held by the pick 42a attached to the tip of the articulated arm.
  • the transport device 40 has been described as having two picks 41a and 42a, the number of picks is not limited to this and may be one or more.
  • the alignment device 50 detects the positions of the wafer W and the substrate-shaped member 100 such as notches and alignment marks provided on the substrate-shaped member 100, and detects the displacement of the wafer W and the substrate-shaped member 100. Further, the alignment device 50 aligns the positions of the wafer W and the substrate-shaped member 100 based on the detected positional deviation.
  • the load ports LP1 to LP3 are provided on the wall surface of the loader module LM.
  • the carrier C containing the wafer W or the substrate member 100 and the empty carrier C are attached to the load ports LP1 to LP3.
  • FOUP Front Opening Unified Pod
  • the carrier C containing the wafer W is attached to the load port LP1
  • the carrier C containing the substrate member 100 is attached to the load port LP2
  • the empty carrier C is attached to the load port LP3. It is illustrated as being carried out.
  • the carrier device 40 can hold the wafer W or the substrate member 100 housed in the carriers C of the load ports LP1 to LP3 with the picks 41a and 42a and take them out of the carriers C. Further, the transfer device 40 can store the wafer W and the substrate member 100 held by the picks 41a and 42a in the carriers C of the load ports LP1 to LP3.
  • the substrate processing apparatus 1 has been described as including three load ports LP1 to LP3, the number of load ports LP is not limited to this and may be one or more.
  • the control unit 10 has a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an HDD (Hard Disk Drive).
  • the control unit 10 is not limited to the HDD and may have another storage area such as an SSD (Solid State Drive).
  • a storage area such as an HDD or a RAM stores a recipe in which a process procedure, a process condition, and a transfer condition are set.
  • the CPU controls the processing of the wafer W in each processing chamber PM according to the recipe and controls the transfer of the wafer W.
  • a program for executing the processing of the wafer W or the transfer of the wafer W in each processing chamber PM may be stored in the HDD or the RAM.
  • the program may be stored in a storage medium and provided, or may be provided from an external device through a network.
  • the substrate member 100 has a camera 120.
  • the camera 120 is an example of a sensor included in the substrate member 100.
  • the substrate member 100 may have another sensor, for example, an infrared sensor, a temperature sensor, a camera with a temperature sensor, or the like.
  • the terminal 200 has a display unit 240 that displays an image captured by the substrate member 100. The details of the substrate member 100 and the terminal 200 will be described later with reference to FIG.
  • the control unit 10 controls the transfer device 40 to take out the wafer W from the carrier C of the load port LP1 and transfer the taken-out wafer W to the alignment device 50.
  • the control unit 10 controls the alignment device 50 to align the position of the wafer W.
  • the controller 10 controls the transfer device 40 to take out the wafer W from the alignment device 50.
  • the control unit 10 opens the gate valve GV9.
  • the control unit 10 controls the transfer device 40 to place the wafer W held by the pick 41a on the mounting unit S7 of the load lock chamber LLM1. When the transfer device 40 retracts from the load lock chamber LLM1, the control unit 10 closes the gate valve GV9.
  • the control unit 10 controls the exhaust device (not shown) of the load lock chamber LLM1 to exhaust the air in the room and switch the load lock chamber LLM from the atmospheric atmosphere to the vacuum atmosphere.
  • the control unit 10 opens the gate valve GV7.
  • the controller 10 controls the transfer device 30 to hold the wafer W mounted on the mounting portion S7 of the load lock chamber LLM and transfer the wafer W to the transfer chamber VTM.
  • the control unit 10 closes the gate valve GV7.
  • the control unit 10 opens the gate valve GV1.
  • the control unit 10 controls the transfer device 30 to place the wafer W held by the pick 31a on the mounting unit S1 of the processing chamber PM1.
  • the control unit 10 closes the gate valve GV1.
  • the control unit 10 controls the processing chamber PM1 to perform a desired process on the wafer W.
  • the control unit 10 opens the gate valve GV1.
  • the controller 10 controls the transfer device 30 to hold the wafer W mounted on the mounting portion S1 of the processing chamber PM1 with the pick 31a and transfer the wafer W to the transfer chamber VTM.
  • the control unit 10 closes the gate valve GV1.
  • the control unit 10 opens the gate valve GV7.
  • the control unit 10 controls the transfer device 30 to place the wafer W held by the pick 31a on the mounting unit S7 of the load lock chamber LLM1.
  • the control unit 10 closes the gate valve GV7.
  • the control unit 10 controls an intake device (not shown) of the load lock chamber LLM1 to supply, for example, clean air into the chamber, and switches the load lock chamber LLM1 from a vacuum atmosphere to an atmosphere atmosphere.
  • the control unit 10 opens the gate valve GV9.
  • the control unit 10 controls the transfer device 40 to take out the wafer W placed on the placing unit S7 of the load lock chamber LLM1 and store the taken-out wafer W in the carrier C of the load port LP3.
  • the wafer W may be similarly carried and carried to and from the processing chambers PM2 to PM6. Further, the wafer W processed in the processing chamber PM1 may be transferred to, for example, the processing chamber PM2 and further processed in the processing chamber PM2.
  • FIG. 2 is a perspective view of an example of the substrate member 100 and the terminal 200 according to the embodiment.
  • the substrate member 100 includes a base material 110, a camera 120, a light source 130, a control unit 140, a storage unit 150, a wireless communication unit 160, and a battery 170.
  • the base material 110 has the same size and shape as the wafer W used in the substrate processing apparatus 1.
  • the base material 110 has a disc shape, and its diameter is equal to that of the wafer W.
  • the base material 110 is provided with notches, alignment marks, and the like. Therefore, the substrate member 100 can be housed in the carrier C like the wafer W, and can be transported in the substrate processing apparatus 1 by the transport devices 30 and 40. Further, the position of the substrate member 100 can be aligned by the alignment device 50, similarly to the wafer W.
  • the camera 120 is a visible light camera such as a CCD camera, and captures an image.
  • the camera 120 is provided on the upper surface of the base material 110.
  • the imaging direction of the camera 120 is in the lateral direction. In other words, when the disc-shaped base material 110 is arranged horizontally, the camera 120 images in a substantially horizontal direction.
  • the image captured by the camera 120 may be a still image, a moving image, or a continuous still image updated at a predetermined frame rate.
  • the number of cameras 120 included in the substrate member 100 is not limited to one, and a plurality of cameras 120 may be provided.
  • the imaging range can be widened by providing the plurality of cameras 120.
  • the type of the camera 120 is not limited to the visible light camera, and may be, for example, a thermography camera that captures a heat distribution image.
  • the substrate member 100 may include different types of cameras 120. For example, both a visible light camera and a thermography camera may be provided.
  • the light source 130 illuminates the imaging direction of the camera 120.
  • a white LED can be used. If the camera 120 is a thermography camera, the light source 130 may be omitted.
  • the control unit 140 controls the entire substrate member 100.
  • the control unit 140 controls the start/stop of image capturing by the camera 120.
  • the control unit 140 controls turning on/off of the light source 130.
  • the control unit 140 causes the storage unit 150 to store the image captured by the camera 120.
  • the wireless communication unit 160 connects to the external terminal 200 so as to communicate with it. Accordingly, the control unit 140 can transmit the image captured by the camera 120 to the terminal 200 via the wireless communication unit 160. Further, the control unit 140 may control the start/stop of image capturing of the camera 120 and the turning on/off of the light source 130 according to a command received via the wireless communication unit 160.
  • the battery 170 supplies power to the camera 120, the light source 130, the control unit 140, the storage unit 150, the wireless communication unit 160, and the like. In this way, the board-shaped member 100 can capture an image without a cable and can transmit the captured image to the terminal 200.
  • the board-shaped member 100 has been described as transmitting the captured image to the terminal 200 wirelessly, but the present invention is not limited to this, and may be configured to transmit to the terminal 200 by wire.
  • the substrate-shaped member 100 has an external connection terminal (not shown), and when the substrate-shaped member 100 is taken out of the substrate processing apparatus 1, the substrate-shaped member 100 is connected to the terminal 200 by wire and stored in the storage unit 150. The image may be transmitted to the terminal 200.
  • the terminal 200 is a device that displays an image captured by the substrate-shaped member 100, and can be an information communication terminal such as a notebook PC (laptop PC), a tablet terminal (slate terminal), or a smartphone.
  • the terminal 200 has a control unit 210, a storage unit 220, a wireless communication unit 230, and a display unit 240.
  • the control unit 210 controls the entire terminal 200.
  • the wireless communication unit 230 is communicatively connected to the substrate member 100.
  • the control unit 210 receives the image captured by the camera 120 from the substrate member 100 via the wireless communication unit 230, and stores the received image in the storage unit 220.
  • the control unit 210 also causes the display unit 240 to display the received image.
  • the control unit 10 and the terminal 200 are described as being provided as separate bodies in FIG. 1, the present invention is not limited to this and may be integrally configured.
  • FIG. 3 is a flowchart showing an example of processing of the substrate processing apparatus 1 according to the embodiment.
  • step S101 the operator prepares the board-shaped member 100.
  • the operator stores the substrate member 100 in the carrier C. Further, the worker attaches the carrier C accommodating the substrate member 100 to the load port LP2.
  • the control unit 10 conveys the board-shaped member 100 to the imaging position.
  • the control unit 10 controls the transfer device 40 to take out the substrate-shaped member 100 from the carrier C of the load port LP2 and transfer the taken-out substrate-shaped member 100 to the alignment device 50.
  • the control unit 10 controls the alignment device 50 to align the position of the substrate member 100.
  • the control unit 10 controls the transport device 40 to take out the substrate member 100 from the alignment device 50.
  • the control unit 10 opens the gate valve GV9.
  • the control unit 10 controls the transfer device 40 to place the substrate-shaped member 100 held by the pick 41a on the placement unit S7 of the load lock chamber LLM1. When the transfer device 40 retracts from the load lock chamber LLM1, the control unit 10 closes the gate valve GV9.
  • the control unit 10 controls the exhaust device (not shown) of the load lock chamber LLM1 to exhaust the air in the room, and switches the load lock chamber LLM from the atmospheric atmosphere to the vacuum atmosphere.
  • the control unit 10 opens the gate valve GV7.
  • the control unit 10 controls the transfer device 30 to hold the substrate-shaped member 100 mounted on the mounting portion S7 of the load lock chamber LLM and transfer the substrate-shaped member 100 to the transfer chamber VTM.
  • the control unit 10 closes the gate valve GV7.
  • the controller 10 controls the carrier device 30 to move the substrate-shaped member 100 held by the pick 31a to the imaging position.
  • the imaging position is set in the transfer chamber VTM so that the inside of the processing chamber PM1 can be imaged via the gate valve GV1.
  • the substrate-shaped member 100 is transported to the imaging position by the transport devices 30 and 40, the substrate-shaped member 100 is preliminarily configured by the alignment device 50 so that the imaging direction of the camera 120 of the substrate-shaped member 100 faces the direction in the processing chamber PM1.
  • the orientation of the member 100 is adjusted.
  • step S ⁇ b>102 of transporting the substrate member 100 to the imaging position is an example of a process of transporting the substrate member 100 to a specific position by the transport device 30.
  • the specific position is within the transfer chamber VTM and near the transfer port of the processing chamber PM1.
  • step S103 the control unit 10 opens the gate valve GV1 of the processing chamber PM1.
  • the transfer chamber VTM and the processing chamber PM1 communicate with each other.
  • step S104 the substrate member 100 images the inside of the processing chamber PM1.
  • FIG. 4 is a part of a plan view showing an example of the substrate processing apparatus 1 according to the embodiment when imaging the inside of the processing chamber PM1 from the transfer chamber VTM.
  • the imaging range V of the camera 120 is indicated by a broken line.
  • the substrate member 100 is held by the pick 31 a of the transport device 30.
  • the camera 120 captures an image of the inside of the processing chamber PM1 and thus can acquire an image of the inside of the processing chamber PM1.
  • the image captured by the camera 120 is transmitted from the substrate member 100 to the terminal 200 via the wireless communication units 160 and 230 and displayed on the display unit 240. Further, the image captured by the camera 120 may be stored in the storage unit 150 of the board-shaped member 100 or the storage unit 220 of the terminal 200.
  • step S105 the control unit 10 closes the gate valve GV1 of the processing chamber PM1.
  • step S106 the control unit 10 conveys the substrate member 100 and stores it in the carrier C.
  • the control unit 10 opens the gate valve GV7.
  • the control unit 10 controls the transfer device 30 to place the substrate-shaped member 100 held by the pick 31a on the placement unit S7 of the load lock chamber LLM1.
  • the control unit 10 closes the gate valve GV7.
  • the control unit 10 controls an intake device (not shown) of the load lock chamber LLM1 to supply, for example, clean air into the chamber, and switches the load lock chamber LLM1 from a vacuum atmosphere to an atmosphere atmosphere.
  • the control unit 10 opens the gate valve GV9.
  • the control unit 10 controls the transfer device 40 to take out the substrate-shaped member 100 placed on the placing portion S7 of the load lock chamber LLM1 and store the taken-out substrate-shaped member 100 in the carrier C of the load port LP2. ..
  • the state inside the processing chamber PM1 can be confirmed without opening the container of the processing chamber PM1. Thereby, the operator can select a preferable maintenance according to the state of the processing chamber PM1.
  • the substrate-shaped member 100 has an imaging direction that is lateral. Accordingly, the inside of the processing chamber PM1 can be imaged from the transfer chamber VTM without inserting the substrate member 100 into the processing chamber PM1. Therefore, it is possible to prevent the wafer W in the processing chamber PM1 from coming into contact with the substrate member 100.
  • the wafer W in the processing chamber PM1 may be discharged based on the captured image.
  • the control unit 210 measures the amount of positional deviation of the wafer W in the processing chamber PM1 based on the image captured by the camera 120. The measured positional deviation amount is transmitted from the control unit 210 to the control unit 10. The control unit 10 corrects the trajectory when the pick 31a is inserted into the processing chamber PM1 based on the measured positional deviation amount of the wafer W.
  • control unit 10 controls the transfer device 30 to adjust the position of the wafer W so that the measured positional deviation amount becomes small.
  • the misaligned wafer W can be unloaded from the processing chamber PM1. Therefore, the wafer W in the processing chamber PM1 can be discharged without opening the container in the processing chamber PM1.
  • the transfer device 30 is provided with a camera
  • a camera is always provided at the base end of the pick 31a
  • the camera is also inserted into the processing chamber PM1 when the wafer W is loaded or unloaded.
  • the inside of the processing chamber PM1 is at a high temperature, for example. Further, for example, an erosive process gas is supplied into the processing chamber PM1. Therefore, the camera provided at the base end of the pick 31a is required to have heat resistance and corrosion resistance, which increases the cost.
  • the substrate member 100 images the inside of the processing chamber PM1 from the transfer chamber VTM, the requirements for heat resistance and corrosion resistance are reduced, and the cost can be reduced.
  • the substrate-shaped member 100 is inserted when a trouble or the like occurs, and can be used in a plurality of substrate processing apparatuses 1. Therefore, the number of the substrate-shaped members 100 can be reduced, and the cost can be reduced. Can be reduced.
  • the substrate-shaped member 100 has been described as capturing an image of the wafer W in the processing chamber PM1, but the imaging target is not limited to this.
  • the substrate-shaped member 100 may image the inside of the processing chamber PM1 (for example, the inner wall surface).
  • the imaging position may be set at a position where the inside of the processing chamber PM1 can be imaged from the transfer chamber VTM, or may be set inside the processing chamber PM1.
  • cleaning and component replacement are performed.
  • the substrate processing apparatus 1 by imaging the inside of the processing chamber PM1, it is possible to determine the timing of cleaning or component replacement of the processing chamber PM1 based on the captured image.
  • FIG. 5 is a part of a plan view showing an example of the substrate processing apparatus 1 according to the embodiment when imaging the inside of the transfer chamber VTM from the load lock chamber LLM1.
  • the control unit 10 conveys the substrate member 100 to the imaging position.
  • the imaging position is the mounting portion S7 of the load lock chamber LLM1.
  • the substrate-shaped member 100 is preliminarily set by the alignment device 50 so that the imaging direction of the camera 120 of the substrate-shaped member 100 faces the direction in the transport chamber VTM.
  • the orientation of the member 100 is adjusted.
  • the control unit 10 opens the gate valve GV7 of the load lock chamber LLM1.
  • control unit 10 controls the transport device 30 to move the pick 31 a to the imaging range V of the camera 120. Thereby, the state of the pick 31a, for example, the state of chipping or erosion can be confirmed.
  • FIG. 6 is a part of a plan view showing an example of the substrate processing apparatus 1 according to the embodiment when imaging the inside of the load lock chamber LLM1 from the transfer chamber VTM.
  • the control unit 10 conveys the substrate member 100 to the imaging position.
  • the imaging position is set in the transfer chamber VTM so that the inside of the load lock chamber LLM1 can be imaged via the gate valve GV7.
  • the alignment device 50 preliminarily sets the substrate so that the imaging direction of the camera 120 of the substrate-shaped member 100 faces the inside of the load lock chamber LLM1. The orientation of the strip member 100 is adjusted.
  • the control unit 10 opens the gate valve GV1 of the processing chamber PM7.
  • the substrate-shaped member 100 may image the inside of the load lock chamber LLM1 from inside the loader module LM. Further, the board-shaped member 100 may image the inside of the carrier C attached to the load port LP from inside the loader module LM.
  • the mounting part S1 has a lifting pin.
  • the elevating pins ascend.
  • the wafer W held by the pick 41a is lifted and held by the lifting pins.
  • the lift pins are lowered.
  • the wafer W held by the elevating pins is mounted on the mounting portion S1.
  • marks indicating the height are provided on the inner wall surface of the processing chamber PM1 and the wall surface of the gate valve GV.
  • the substrate-shaped member 100 images the lift pins and marks in the processing chamber PM1 from the transfer chamber VTM. Accordingly, the control unit 210 can measure the height of the tip of the lifting pin based on the captured image. Further, the control unit 210 measures the deviation of each lifting pin from the measured height of the lifting pin tip and the set height of the lifting pin tip. The measured deviation amount is transmitted from the control unit 210 to the control unit 10.
  • the control unit 10 corrects the height of each lifting pin based on the measured displacement amount of each lifting pin. As a result, it is possible to teach the control unit 10 the height position of the lifting pins.
  • Substrate Processing Device 10 Control Units 30 and 40 Conveying Device 50 Alignment Device 100 Substrate Member 110 Base Material 120 Camera 130 Light Source 140 Control Unit 150 Storage Unit 160 Wireless Communication Unit 170 Battery 200 Terminal 210 Control Unit 220 Storage Unit 230 Wireless Communication Unit 240 Display unit PM1 to 6 Processing room (room, second room) VTM transfer room (room, first room) LLM1-2 load lock room (room) LM loader module (room) LP 1-3 load port (room) GV1 ⁇ 10 Gate valve (gate, transfer port) C carrier W wafer (substrate) S1-8 mounting section

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

The present invention provides a treatment method for a substrate treatment device with which it is easy to confirm the internal state of the substrate treatment device, and the substrate treatment device. The treatment method for a substrate treatment device that has a plurality of compartments, and a conveying device for conveying a substrate, wherein the treatment method for a substrate treatment device has: a step for preparing a substrate-shaped member that has a camera; a step for conveying the substrate-shaped member to an imaging position of a first chamber using the conveying device; and a step for imaging the interior of a second chamber adjacent to the first chamber using the camera.

Description

基板処理装置の処理方法及び基板処理装置Substrate processing apparatus processing method and substrate processing apparatus
 本開示は、基板処理装置の処理方法及び基板処理装置に関する。 The present disclosure relates to a substrate processing apparatus processing method and a substrate processing apparatus.
 特許文献1には、アクセス孔と、アクセス孔の上に直接配置されているセンサと、を有する基板状無線センサが開示されている。センサは、アクセス孔を介してセンサの下に配置されたターゲットの画像を取得する。 Patent Document 1 discloses a board-shaped wireless sensor having an access hole and a sensor arranged directly on the access hole. The sensor acquires an image of a target located below the sensor via the access hole.
 また、特許文献2には、基板を保持するハンドを有するロボットと、ロボットのハンドに保持され、鏡ユニットを有する位置検出用治具と、ロボットのハンドに設けられたカメラと、基板を載置すべき基板の目標位置に対応して配置されるターゲット治具と、ロボットの動作を制御するとともに、ロボットにハンドの位置を教示する制御装置と、を備え、自動教示システムが開示されている。カメラは、鏡ユニットを介して位置検出用治具の下方に配置されたターゲット治具の画像を取得する。 Further, in Patent Document 2, a robot having a hand for holding a substrate, a position detection jig held by the robot hand and having a mirror unit, a camera provided on the robot hand, and a substrate mounted thereon. An automatic teaching system is disclosed, which includes a target jig arranged corresponding to a target position of a substrate to be formed, and a control device for controlling the operation of the robot and teaching the position of a hand to the robot. The camera acquires an image of the target jig arranged below the position detecting jig via the mirror unit.
特表2007-528661号公報Japanese Patent Publication No. 2007-528661 特開2014-128855号公報JP, 2014-128855, A
 一の側面では、本開示は、基板処理装置の内部の状態を容易に確認することができる基板処理装置の処理方法及び基板処理装置を提供する。 In one aspect, the present disclosure provides a substrate processing apparatus processing method and a substrate processing apparatus capable of easily confirming an internal state of the substrate processing apparatus.
 上記課題を解決するために、一の態様によれば、複数の室と、基板を搬送する搬送装置を有する基板処理装置の処理方法であって、カメラを有する基板状部材を準備する工程と、前記搬送装置によって前記基板状部材を第1室の撮像位置まで搬送する工程と、前記カメラで前記第1室と隣接する第2室内を撮像する工程と、を有する、基板処理装置の処理方法が提供される。 To solve the above problems, according to one aspect, a method of processing a substrate processing apparatus including a plurality of chambers and a transfer device that transfers a substrate, the step of preparing a substrate-shaped member having a camera, A processing method of a substrate processing apparatus, comprising: a step of transferring the substrate-shaped member to an imaging position of a first chamber by the transfer device; and a step of imaging the second chamber adjacent to the first chamber by the camera. Provided.
 一の側面によれば、基板処理装置の内部の状態を容易に確認することができる基板処理装置の処理方法及び基板処理装置を提供することができる。 According to one aspect, it is possible to provide a substrate processing apparatus processing method and a substrate processing apparatus capable of easily confirming the internal state of the substrate processing apparatus.
一実施形態に係る基板処理装置の一例を示す平面図。The top view which shows an example of the substrate processing apparatus which concerns on one Embodiment. 一実施形態に係る基板状部材及び端末の一例の斜視図。The perspective view of an example of the substrate-like member and a terminal concerning one embodiment. 一実施形態に係る基板処理装置の処理の一例を示すフローチャート。5 is a flowchart showing an example of processing of the substrate processing apparatus according to one embodiment. 搬送室から処理室内を撮像する際の一実施形態に係る基板処理装置の一例を示す平面図の一部。Part of a plan view showing an example of a substrate processing apparatus according to an embodiment when an image of the inside of the processing chamber is taken from the transfer chamber. ロードロック室から搬送室内を撮像する際の一実施形態に係る基板処理装置の一例を示す平面図の一部。FIG. 3 is a part of a plan view showing an example of a substrate processing apparatus according to an embodiment when capturing an image of a transfer chamber from a load lock chamber. 搬送室からロードロック室内を撮像する際の一実施形態に係る基板処理装置の一例を示す平面図の一部。Part of a plan view showing an example of a substrate processing apparatus according to an embodiment when an image of the load lock chamber is taken from the transfer chamber.
 以下、図面を参照して本開示を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。 Hereinafter, modes for carrying out the present disclosure will be described with reference to the drawings. In each drawing, the same components may be denoted by the same reference numerals, and duplicate description may be omitted.
<基板処理装置1>
 一実施形態に係る基板処理装置1の一例について、図1を用いて説明する。図1は、一実施形態に係る基板処理装置1の一例を示す平面図である。
<Substrate processing apparatus 1>
An example of the substrate processing apparatus 1 according to the embodiment will be described with reference to FIG. FIG. 1 is a plan view showing an example of a substrate processing apparatus 1 according to an embodiment.
 図1に示す基板処理装置1は、クラスタ構造(マルチチャンバタイプ)のシステムである。基板処理装置1は、処理室PM(Process Module)1~6、搬送室VTM(Vacuum Transfer Module)、ロードロック室LLM(Load Lock Module)1~2、ローダーモジュールLM(Loader Module)、ロードポートLP(Load Port)1~3及び制御部10を備えている。 The substrate processing apparatus 1 shown in FIG. 1 is a cluster structure (multi-chamber type) system. The substrate processing apparatus 1 includes process chambers PM (Process Module) 1 to 6, transfer chamber VTM (Vacuum Transfer Module), load lock chambers LLM (Load Lock Module) 1 and 2, loader module LM (Loader Module), load port LP. (Load Port) 1 to 3 and a control unit 10.
 処理室PM1~6は、所定の真空雰囲気に減圧され、その内部にて半導体ウェハW(以下、「ウェハW」ともいう。)等の基板に所望の処理(例えば、エッチング処理、成膜処理、クリーニング処理、アッシング処理等)を施す。処理室PM1~6は、搬送室VTMに隣接して配置される。処理室PM1~6と搬送室VTMとのウェハWの搬送は、ゲートバルブGV1~GV6の開閉により各搬送口を介して行われる。処理室PM1~6は、ウェハWを載置する載置部S1~S6を有している。なお、処理室PM1~6における処理のための各部の動作は、制御部10によって制御される。なお、基板処理装置1は、6つの処理室PM1~6を備えるものとして説明したが、処理室PMの数はこれに限定されず、1つ以上であればよい。 The processing chambers PM1 to PM6 are depressurized to a predetermined vacuum atmosphere, and inside the processing chambers PM1 to PM6, desired processing (for example, etching processing, film forming processing, etc.) is performed on a substrate such as a semiconductor wafer W (hereinafter also referred to as “wafer W”). Cleaning process, ashing process, etc.). The processing chambers PM1 to PM6 are arranged adjacent to the transfer chamber VTM. The transfer of the wafer W between the processing chambers PM1 to PM6 and the transfer chamber VTM is performed through the transfer ports by opening and closing the gate valves GV1 to GV6. The processing chambers PM1 to PM6 have mounting portions S1 to S6 on which the wafer W is mounted. The operation of each unit for processing in the processing chambers PM1 to PM6 is controlled by the control unit 10. Although the substrate processing apparatus 1 has been described as having six processing chambers PM1 to PM6, the number of processing chambers PM is not limited to this, and may be one or more.
 搬送室VTMは、所定の真空雰囲気に減圧されている。また、搬送室VTMの内部には、ウェハWを搬送する搬送装置30が設けられている。搬送装置30は、ゲートバルブGV1~6の開閉に応じて、処理室PM1~6と搬送室VTMとの間でウェハWの搬入及び搬出を行う。また、搬送装置30は、ゲートバルブGV7,8の開閉に応じて、ロードロック室LLM1~2と搬送室VTMとの間でウェハWの搬入及び搬出を行う。なお、搬送装置30の動作、ゲートバルブGV1~8の開閉は、制御部10によって制御される。 The transfer chamber VTM is depressurized to a predetermined vacuum atmosphere. A transfer device 30 that transfers the wafer W is provided inside the transfer chamber VTM. The transfer device 30 loads and unloads the wafer W between the processing chambers PM1 to PM6 and the transfer chamber VTM according to opening and closing of the gate valves GV1 to GV6. In addition, the transfer device 30 loads and unloads the wafer W between the load lock chambers LLM1 and LLM2 and the transfer chamber VTM according to opening and closing of the gate valves GV7 and 8. The control unit 10 controls the operation of the transfer device 30 and the opening/closing of the gate valves GV1 to GV8.
 搬送装置30は、第1のアーム31と、第2のアーム32と、を有する。第1のアーム31は、多関節アームとして構成され、多関節アームの先端に取り付けられたピック31aでウェハWや後述する基板状部材100を保持することができる。同様に、第2のアーム32は、多関節アームとして構成され、多関節アームの先端に取り付けられたピック32aでウェハWや基板状部材100を保持することができる。なお、搬送装置30は、2つのピック31a,32aを有するものとして説明したが、ピックの数はこれに限定されず、1つ以上であればよい。 The transfer device 30 has a first arm 31 and a second arm 32. The first arm 31 is configured as an articulated arm, and a pick 31a attached to the tip of the articulated arm can hold the wafer W or the substrate-shaped member 100 described later. Similarly, the second arm 32 is configured as an articulated arm, and the wafer W or the substrate member 100 can be held by the pick 32a attached to the tip of the articulated arm. Although the transport device 30 has been described as having two picks 31a and 32a, the number of picks is not limited to this and may be one or more.
 ロードロック室LLM1~2は、搬送室VTMとローダーモジュールLMとの間に設けられている。ロードロック室LLM1~2は、大気雰囲気と真空雰囲気とを切り替えることができるようになっている。ロードロック室LLM1と真空雰囲気の搬送室VTMとは、ゲートバルブGV7の開閉により連通する。ロードロック室LLM1と大気雰囲気のローダーモジュールLMとは、ゲートバルブGV9の開閉により連通する。ロードロック室LLM1は、ウェハWや基板状部材100を載置する載置部S7を有する。同様に、ロードロック室LLM2と真空雰囲気の搬送室VTMとは、ゲートバルブGV8の開閉により連通する。ロードロック室LLM2と大気雰囲気のローダーモジュールLMとは、ゲートバルブGV10の開閉により連通する。ロードロック室LLM2は、ウェハWや基板状部材100を載置する載置部S8を有する。なお、ロードロック室LLM1~2内の真空雰囲気または大気雰囲気の切り替えは、制御部10によって制御される。なお、基板処理装置1は、2つのロードロック室LLM1~2を備えるものとして説明したが、ロードロック室LLMの数はこれに限定されず、1つ以上であればよい。 The load lock chambers LLM1-2 are provided between the transfer chamber VTM and the loader module LM. The load lock chambers LLM1 and LLM2 can be switched between an air atmosphere and a vacuum atmosphere. The load lock chamber LLM1 and the transfer chamber VTM in the vacuum atmosphere communicate with each other by opening and closing the gate valve GV7. The load lock chamber LLM1 and the loader module LM in the atmosphere are connected by opening and closing the gate valve GV9. The load lock chamber LLM1 has a mounting portion S7 on which the wafer W and the substrate member 100 are mounted. Similarly, the load lock chamber LLM2 and the transfer chamber VTM in the vacuum atmosphere are connected by opening and closing the gate valve GV8. The load lock chamber LLM2 and the atmospheric loader module LM communicate with each other by opening and closing the gate valve GV10. The load lock chamber LLM2 has a mounting portion S8 on which the wafer W and the substrate member 100 are mounted. The switching of the vacuum atmosphere or the atmospheric atmosphere in the load lock chambers LLM1-2 is controlled by the control unit 10. Although the substrate processing apparatus 1 has been described as including two load lock chambers LLM1 and LLM2, the number of load lock chambers LLM is not limited to this and may be one or more.
 ローダーモジュールLMは、大気雰囲気となっており、例えば清浄空気のダウンフローが形成されている。また、ローダーモジュールLMの内部には、ウェハWや基板状部材100の位置をアライメントするアライメント装置50と、ウェハWや基板状部材100を搬送する搬送装置40が設けられている。搬送装置40は、ゲートバルブGV9~10の開閉に応じて、ロードロック室LLM1~2とローダーモジュールLMとの間でウェハWや基板状部材100の搬入及び搬出を行う。また、搬送装置40は、アライメント装置50へのウェハWや基板状部材100の搬入及び搬出を行う。なお、搬送装置40の動作、アライメント装置50の動作、ゲートバルブGV9~10の開閉は、制御部10によって制御される。 The loader module LM is in the atmosphere, and for example, a downflow of clean air is formed. Further, inside the loader module LM, an alignment device 50 that aligns the positions of the wafer W and the substrate member 100, and a transfer device 40 that transfers the wafer W and the substrate member 100 are provided. The transfer device 40 loads and unloads the wafer W and the substrate member 100 between the load lock chambers LLM1 and LLM2 and the loader module LM according to the opening and closing of the gate valves GV9 to 10. The transfer device 40 also carries the wafer W and the substrate-shaped member 100 into and out of the alignment device 50. The operation of the transfer device 40, the operation of the alignment device 50, and the opening/closing of the gate valves GV9 to 10 are controlled by the controller 10.
 搬送装置40は、第1のアーム41と、第2のアーム42と、を有する。第1のアーム41は、多関節アームとして構成され、多関節アームの先端に取り付けられたピック41aでウェハWや基板状部材100を保持することができる。同様に、第2のアーム42は、多関節アームとして構成され、多関節アームの先端に取り付けられたピック42aでウェハWや基板状部材100を保持することができる。なお、搬送装置40は、2つのピック41a,42aを有するものとして説明したが、ピックの数はこれに限定されず、1つ以上であればよい。 The transfer device 40 has a first arm 41 and a second arm 42. The first arm 41 is configured as an articulated arm, and the wafer W and the substrate member 100 can be held by the pick 41a attached to the tip of the articulated arm. Similarly, the second arm 42 is configured as an articulated arm, and the wafer W or the substrate-shaped member 100 can be held by the pick 42a attached to the tip of the articulated arm. Although the transport device 40 has been described as having two picks 41a and 42a, the number of picks is not limited to this and may be one or more.
 アライメント装置50は、ウェハWや基板状部材100に設けられたノッチ、アライメントマーク等の位置を検出して、ウェハWや基板状部材100の位置ずれを検出する。また、アライメント装置50は、検出した位置ずれに基づいて、ウェハWや基板状部材100の位置をアライメントする。 The alignment device 50 detects the positions of the wafer W and the substrate-shaped member 100 such as notches and alignment marks provided on the substrate-shaped member 100, and detects the displacement of the wafer W and the substrate-shaped member 100. Further, the alignment device 50 aligns the positions of the wafer W and the substrate-shaped member 100 based on the detected positional deviation.
 ローダーモジュールLMの壁面には、ロードポートLP1~3が設けられている。ロードポートLP1~3は、ウェハWや基板状部材100を収容したキャリアC、空のキャリアCが取り付けられる。キャリアCとしては、例えば、FOUP(Front Opening Unified Pod)等を用いることができる。なお、図1の例では、ロードポートLP1にウェハWを収容したキャリアCが取り付けられ、ロードポートLP2に基板状部材100を収容したキャリアCが取り付けられ、ロードポートLP3に空のキャリアCが取り付けられているものとして図示している。 The load ports LP1 to LP3 are provided on the wall surface of the loader module LM. The carrier C containing the wafer W or the substrate member 100 and the empty carrier C are attached to the load ports LP1 to LP3. As the carrier C, for example, FOUP (Front Opening Unified Pod) or the like can be used. In the example of FIG. 1, the carrier C containing the wafer W is attached to the load port LP1, the carrier C containing the substrate member 100 is attached to the load port LP2, and the empty carrier C is attached to the load port LP3. It is illustrated as being carried out.
 搬送装置40は、ロードポートLP1~3のキャリアCに収容されたウェハWや基板状部材100をピック41a,42aで保持して、キャリアCから取り出すことができる。また、搬送装置40は、ピック41a,42aに保持されているウェハWや基板状部材100をロードポートLP1~3のキャリアCに収容することができる。なお、基板処理装置1は、3つのロードポートLP1~3を備えるものとして説明したが、ロードポートLPの数はこれに限定されず、1つ以上であればよい。 The carrier device 40 can hold the wafer W or the substrate member 100 housed in the carriers C of the load ports LP1 to LP3 with the picks 41a and 42a and take them out of the carriers C. Further, the transfer device 40 can store the wafer W and the substrate member 100 held by the picks 41a and 42a in the carriers C of the load ports LP1 to LP3. Although the substrate processing apparatus 1 has been described as including three load ports LP1 to LP3, the number of load ports LP is not limited to this and may be one or more.
 制御部10は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)及びHDD(Hard Disk Drive)を有する。制御部10は、HDDに限らずSSD(Solid State Drive)等の他の記憶領域を有してもよい。HDD、RAM等の記憶領域には、プロセスの手順、プロセスの条件、搬送条件が設定されたレシピが格納されている。 The control unit 10 has a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an HDD (Hard Disk Drive). The control unit 10 is not limited to the HDD and may have another storage area such as an SSD (Solid State Drive). A storage area such as an HDD or a RAM stores a recipe in which a process procedure, a process condition, and a transfer condition are set.
 CPUは、レシピに従って各処理室PMにおけるウェハWの処理を制御し、ウェハWの搬送を制御する。HDDやRAMには、各処理室PMにおけるウェハWの処理やウェハWの搬送を実行するためのプログラムが記憶されてもよい。プログラムは、記憶媒体に格納して提供されてもよいし、ネットワークを通じて外部装置から提供されてもよい。 The CPU controls the processing of the wafer W in each processing chamber PM according to the recipe and controls the transfer of the wafer W. A program for executing the processing of the wafer W or the transfer of the wafer W in each processing chamber PM may be stored in the HDD or the RAM. The program may be stored in a storage medium and provided, or may be provided from an external device through a network.
 基板状部材100は、カメラ120を有している。なお、カメラ120は、基板状部材100が有するセンサの一例である。基板状部材100は、他のセンサ、例えば、赤外線センサ、温度センサ、温度センサ付カメラ等を有していてもよい。端末200は、基板状部材100で撮像した画像を表示する表示部240を有している。なお、基板状部材100及び端末200の詳細については、図2を用いて後述する。 The substrate member 100 has a camera 120. The camera 120 is an example of a sensor included in the substrate member 100. The substrate member 100 may have another sensor, for example, an infrared sensor, a temperature sensor, a camera with a temperature sensor, or the like. The terminal 200 has a display unit 240 that displays an image captured by the substrate member 100. The details of the substrate member 100 and the terminal 200 will be described later with reference to FIG.
<基板処理装置1の動作>
 次に、基板処理装置1の動作の一例について説明する。ここでは、基板処理装置1の動作の一例として、ロードポートLP1に取り付けられたキャリアCに収容されたウェハWを処理室PM1で処理を施し、ロードポートLP3に取り付けられた空のキャリアCに収容する動作に沿って説明する。なお、動作の開始時点において、ゲートバルブGV1~10は閉じており、ロードロック室LLM内は大気雰囲気となっている。
<Operation of the substrate processing apparatus 1>
Next, an example of the operation of the substrate processing apparatus 1 will be described. Here, as an example of the operation of the substrate processing apparatus 1, the wafer W accommodated in the carrier C attached to the load port LP1 is processed in the treatment chamber PM1 and accommodated in the empty carrier C attached to the load port LP3. The operation will be described. At the start of the operation, the gate valves GV1 to GV10 are closed, and the load lock chamber LLM is in the atmosphere.
 制御部10は、搬送装置40を制御して、ロードポートLP1のキャリアCからウェハWを取り出し、取り出したウェハWをアライメント装置50へと搬送する。制御部10は、アライメント装置50を制御して、ウェハWの位置をアライメントする。制御部10は、搬送装置40を制御して、アライメント装置50からウェハWを取り出す。制御部10は、ゲートバルブGV9を開ける。制御部10は、搬送装置40を制御して、ピック41aに保持されているウェハWをロードロック室LLM1の載置部S7に載置する。搬送装置40がロードロック室LLM1から退避すると、制御部10は、ゲートバルブGV9を閉じる。 The control unit 10 controls the transfer device 40 to take out the wafer W from the carrier C of the load port LP1 and transfer the taken-out wafer W to the alignment device 50. The control unit 10 controls the alignment device 50 to align the position of the wafer W. The controller 10 controls the transfer device 40 to take out the wafer W from the alignment device 50. The control unit 10 opens the gate valve GV9. The control unit 10 controls the transfer device 40 to place the wafer W held by the pick 41a on the mounting unit S7 of the load lock chamber LLM1. When the transfer device 40 retracts from the load lock chamber LLM1, the control unit 10 closes the gate valve GV9.
 制御部10は、ロードロック室LLM1の排気装置(図示せず)を制御して室内の空気を排気し、ロードロック室LLMを大気雰囲気から真空雰囲気へと切り替える。 The control unit 10 controls the exhaust device (not shown) of the load lock chamber LLM1 to exhaust the air in the room and switch the load lock chamber LLM from the atmospheric atmosphere to the vacuum atmosphere.
 制御部10は、ゲートバルブGV7を開ける。制御部10は、搬送装置30を制御して、ロードロック室LLMの載置部S7に載置されたウェハWを保持して、搬送室VTMへと搬送する。搬送装置30がロードロック室LLM1から退避すると、制御部10は、ゲートバルブGV7を閉じる。制御部10は、ゲートバルブGV1を開ける。制御部10は、搬送装置30を制御して、ピック31aに保持されているウェハWを処理室PM1の載置部S1に載置する。搬送装置30が処理室PM1から退避すると、制御部10は、ゲートバルブGV1を閉じる。 The control unit 10 opens the gate valve GV7. The controller 10 controls the transfer device 30 to hold the wafer W mounted on the mounting portion S7 of the load lock chamber LLM and transfer the wafer W to the transfer chamber VTM. When the transfer device 30 retracts from the load lock chamber LLM1, the control unit 10 closes the gate valve GV7. The control unit 10 opens the gate valve GV1. The control unit 10 controls the transfer device 30 to place the wafer W held by the pick 31a on the mounting unit S1 of the processing chamber PM1. When the transfer device 30 retracts from the processing chamber PM1, the control unit 10 closes the gate valve GV1.
 制御部10は、処理室PM1を制御して、ウェハWに所望の処理を施す。 The control unit 10 controls the processing chamber PM1 to perform a desired process on the wafer W.
 ウェハWの処理が終了すると、制御部10は、ゲートバルブGV1を開ける。制御部10は、搬送装置30を制御して、処理室PM1の載置部S1に載置されたウェハWをピック31aで保持して、搬送室VTMへと搬送する。搬送装置30が処理室PM1から退避すると、制御部10は、ゲートバルブGV1を閉じる。制御部10は、ゲートバルブGV7を開ける。制御部10は、搬送装置30を制御して、ピック31aに保持されているウェハWをロードロック室LLM1の載置部S7に載置する。搬送装置30がロードロック室LLM1から退避すると、制御部10は、ゲートバルブGV7を閉じる。 When the processing of the wafer W is completed, the control unit 10 opens the gate valve GV1. The controller 10 controls the transfer device 30 to hold the wafer W mounted on the mounting portion S1 of the processing chamber PM1 with the pick 31a and transfer the wafer W to the transfer chamber VTM. When the transfer device 30 retracts from the processing chamber PM1, the control unit 10 closes the gate valve GV1. The control unit 10 opens the gate valve GV7. The control unit 10 controls the transfer device 30 to place the wafer W held by the pick 31a on the mounting unit S7 of the load lock chamber LLM1. When the transfer device 30 retracts from the load lock chamber LLM1, the control unit 10 closes the gate valve GV7.
 制御部10は、ロードロック室LLM1の吸気装置(図示せず)を制御して室内に例えば清浄空気を供給し、ロードロック室LLM1を真空雰囲気から大気雰囲気へと切り替える。 The control unit 10 controls an intake device (not shown) of the load lock chamber LLM1 to supply, for example, clean air into the chamber, and switches the load lock chamber LLM1 from a vacuum atmosphere to an atmosphere atmosphere.
 制御部10は、ゲートバルブGV9を開ける。制御部10は、搬送装置40を制御して、ロードロック室LLM1の載置部S7に載置されたウェハWを取り出し、取り出したウェハWをロードポートLP3のキャリアCに収容する。 The control unit 10 opens the gate valve GV9. The control unit 10 controls the transfer device 40 to take out the wafer W placed on the placing unit S7 of the load lock chamber LLM1 and store the taken-out wafer W in the carrier C of the load port LP3.
 以上、ウェハWを処理室PM1に搬送・搬出する例を説明したが、同様にウェハWを処理室PM2~6に搬送・搬出してもよい。また、処理室PM1で処理が施されたウェハWを、例えば処理室PM2に搬送して、処理室PM2でウェハWに更に処理を施してもよい。 Although the example of carrying and unloading the wafer W to and from the processing chamber PM1 has been described above, the wafer W may be similarly carried and carried to and from the processing chambers PM2 to PM6. Further, the wafer W processed in the processing chamber PM1 may be transferred to, for example, the processing chamber PM2 and further processed in the processing chamber PM2.
<基板状部材>
 次に、一実施形態に係る基板状部材100及び端末200について、図2を用いて説明する。図2は、一実施形態に係る基板状部材100及び端末200の一例の斜視図である。
<Substrate-like member>
Next, the substrate member 100 and the terminal 200 according to the embodiment will be described with reference to FIG. FIG. 2 is a perspective view of an example of the substrate member 100 and the terminal 200 according to the embodiment.
 基板状部材100は、母材110と、カメラ120と、光源130と、制御部140と、記憶部150と、無線通信部160と、バッテリ170と、を備えている。 The substrate member 100 includes a base material 110, a camera 120, a light source 130, a control unit 140, a storage unit 150, a wireless communication unit 160, and a battery 170.
 母材110は、基板処理装置1に用いられるウェハWと同様の寸法及び形状を有している。例えば、母材110は円板形状を有しており、その直径はウェハWと等しくなっている。また、母材110には、ウェハWと同様に、ノッチ、アライメントマーク等が設けられている。このため、基板状部材100は、ウェハWと同様に、キャリアCに収容することができ、搬送装置30,40で基板処理装置1内を搬送することができる。また、基板状部材100は、ウェハWと同様に、アライメント装置50で位置をアライメントすることができる。 The base material 110 has the same size and shape as the wafer W used in the substrate processing apparatus 1. For example, the base material 110 has a disc shape, and its diameter is equal to that of the wafer W. Further, as with the wafer W, the base material 110 is provided with notches, alignment marks, and the like. Therefore, the substrate member 100 can be housed in the carrier C like the wafer W, and can be transported in the substrate processing apparatus 1 by the transport devices 30 and 40. Further, the position of the substrate member 100 can be aligned by the alignment device 50, similarly to the wafer W.
 カメラ120は、例えばCCDカメラ等の可視光カメラであり、画像を撮像する。カメラ120は、母材110の上面に設けられている。カメラ120の撮像方向は、横方向を向いている。換言すれば、円板形状の母材110を水平に配置した場合、カメラ120は略水平方向を撮像する。 The camera 120 is a visible light camera such as a CCD camera, and captures an image. The camera 120 is provided on the upper surface of the base material 110. The imaging direction of the camera 120 is in the lateral direction. In other words, when the disc-shaped base material 110 is arranged horizontally, the camera 120 images in a substantially horizontal direction.
 なお、カメラ120で撮像される画像は、静止画であってもよく、動画であってもよく、所定のフレームレートで更新される連続静止画であってもよい。また、基板状部材100が備えるカメラ120の数は、1つに限られるものではなく、複数あってもよい。例えば、複数のカメラ120を備えることにより撮像範囲を広くすることができる。例えば、複数のカメラ120によってステレオカメラを構成することにより奥行き方向の情報を取得することができる。また、カメラ120の種類は、可視光カメラに限られるものではなく、例えば、熱分布画像を撮像するサーモグラフィカメラであってもよい。また、基板状部材100は、異なる種類のカメラ120を備えていてもよい。例えば、可視光カメラとサーモグラフィカメラの両方を備えていてもよい。 The image captured by the camera 120 may be a still image, a moving image, or a continuous still image updated at a predetermined frame rate. Further, the number of cameras 120 included in the substrate member 100 is not limited to one, and a plurality of cameras 120 may be provided. For example, the imaging range can be widened by providing the plurality of cameras 120. For example, it is possible to acquire information in the depth direction by configuring a stereo camera with a plurality of cameras 120. The type of the camera 120 is not limited to the visible light camera, and may be, for example, a thermography camera that captures a heat distribution image. Further, the substrate member 100 may include different types of cameras 120. For example, both a visible light camera and a thermography camera may be provided.
 光源130は、カメラ120の撮像方向を照らす。光源130は、例えば、白色LEDを用いることができる。なお、カメラ120がサーモグラフィカメラである場合、光源130はなくてもよい。 The light source 130 illuminates the imaging direction of the camera 120. As the light source 130, for example, a white LED can be used. If the camera 120 is a thermography camera, the light source 130 may be omitted.
 制御部140は、基板状部材100全体を制御する。制御部140は、カメラ120の撮像開始・停止を制御する。また、制御部140は、光源130の点灯・消灯を制御する。また、制御部140は、カメラ120で撮像された画像を記憶部150に記憶させる。無線通信部160は、外部の端末200と通信可能に接続する。これにより、制御部140は、無線通信部160を介して、カメラ120で撮像された画像を端末200に送信することができる。また、制御部140は、無線通信部160を介して受信した指令に従って、カメラ120の撮像開始・停止や光源130の点灯・消灯を制御してもよい。バッテリ170は、カメラ120、光源130、制御部140、記憶部150、無線通信部160等に電力を供給する。このように、基板状部材100は、ケーブルレスで画像を撮像するとともに、撮像した画像を端末200に送信することができる。 The control unit 140 controls the entire substrate member 100. The control unit 140 controls the start/stop of image capturing by the camera 120. In addition, the control unit 140 controls turning on/off of the light source 130. Further, the control unit 140 causes the storage unit 150 to store the image captured by the camera 120. The wireless communication unit 160 connects to the external terminal 200 so as to communicate with it. Accordingly, the control unit 140 can transmit the image captured by the camera 120 to the terminal 200 via the wireless communication unit 160. Further, the control unit 140 may control the start/stop of image capturing of the camera 120 and the turning on/off of the light source 130 according to a command received via the wireless communication unit 160. The battery 170 supplies power to the camera 120, the light source 130, the control unit 140, the storage unit 150, the wireless communication unit 160, and the like. In this way, the board-shaped member 100 can capture an image without a cable and can transmit the captured image to the terminal 200.
 なお、基板状部材100は、撮像した画像を無線により端末200に送信するものとして説明したが、これに限られるものではなく、有線により端末200に送信する構成であってもよい。例えば、基板状部材100は外部接続端子(図示せず)を有し、基板状部材100が基板処理装置1から取り出された状態において、端末200と有線接続することにより、記憶部150に記憶された画像を端末200に送信してもよい。 The board-shaped member 100 has been described as transmitting the captured image to the terminal 200 wirelessly, but the present invention is not limited to this, and may be configured to transmit to the terminal 200 by wire. For example, the substrate-shaped member 100 has an external connection terminal (not shown), and when the substrate-shaped member 100 is taken out of the substrate processing apparatus 1, the substrate-shaped member 100 is connected to the terminal 200 by wire and stored in the storage unit 150. The image may be transmitted to the terminal 200.
 端末200は、基板状部材100で撮像された画像等を表示する装置であり、例えば、ノートPC(ラップトップPC)、タブレット端末(スレート端末)、スマートフォン等の情報通信端末を用いることができる。端末200は、制御部210と、記憶部220と、無線通信部230と、表示部240と、を有している。 The terminal 200 is a device that displays an image captured by the substrate-shaped member 100, and can be an information communication terminal such as a notebook PC (laptop PC), a tablet terminal (slate terminal), or a smartphone. The terminal 200 has a control unit 210, a storage unit 220, a wireless communication unit 230, and a display unit 240.
 制御部210は、端末200全体を制御する。無線通信部230は、基板状部材100と通信可能に接続する。これにより、制御部210は、無線通信部230を介して、カメラ120で撮像された画像を基板状部材100から受信し、受信した画像を記憶部220に記憶させる。また、制御部210は、受信した画像を表示部240に表示させる。なお、図1において制御部10と端末200は、別体として設けられるものとして説明したが、これに限られるものではなく、一体に構成されていてもよい。 The control unit 210 controls the entire terminal 200. The wireless communication unit 230 is communicatively connected to the substrate member 100. As a result, the control unit 210 receives the image captured by the camera 120 from the substrate member 100 via the wireless communication unit 230, and stores the received image in the storage unit 220. The control unit 210 also causes the display unit 240 to display the received image. In addition, although the control unit 10 and the terminal 200 are described as being provided as separate bodies in FIG. 1, the present invention is not limited to this and may be integrally configured.
<基板状部材100を用いた撮像処理>
 次に、基板状部材100を用いて基板処理装置1の内部を撮影する際の基板処理装置1の処理の一例について説明する。ここでは、基板処理装置1の処理の一例として、処理室PM1の載置部S1に載置されたウェハWを搬出できなかった場合を例に説明する。
<Imaging process using the substrate member 100>
Next, an example of the processing of the substrate processing apparatus 1 when photographing the inside of the substrate processing apparatus 1 using the substrate member 100 will be described. Here, as an example of the processing of the substrate processing apparatus 1, a case where the wafer W placed on the mounting portion S1 of the processing chamber PM1 cannot be carried out will be described as an example.
 図3は、一実施形態に係る基板処理装置1の処理の一例を示すフローチャートである。 FIG. 3 is a flowchart showing an example of processing of the substrate processing apparatus 1 according to the embodiment.
 ステップS101において、作業者は、基板状部材100を準備する。例えば、作業者は、キャリアCに基板状部材100を収容する。また、作業者は、基板状部材100を収容したキャリアCをロードポートLP2に取り付ける。 In step S101, the operator prepares the board-shaped member 100. For example, the operator stores the substrate member 100 in the carrier C. Further, the worker attaches the carrier C accommodating the substrate member 100 to the load port LP2.
 ステップS102において、制御部10は、基板状部材100を撮像位置まで搬送する。例えば、制御部10は、搬送装置40を制御して、ロードポートLP2のキャリアCから基板状部材100を取り出し、取り出した基板状部材100をアライメント装置50へと搬送する。制御部10は、アライメント装置50を制御して、基板状部材100の位置をアライメントする。制御部10は、搬送装置40を制御して、アライメント装置50から基板状部材100を取り出す。制御部10は、ゲートバルブGV9を開ける。制御部10は、搬送装置40を制御して、ピック41aに保持されている基板状部材100をロードロック室LLM1の載置部S7に載置する。搬送装置40がロードロック室LLM1から退避すると、制御部10は、ゲートバルブGV9を閉じる。制御部10は、ロードロック室LLM1の排気装置(図示せず)を制御して室内の空気を排気し、ロードロック室LLMを大気雰囲気から真空雰囲気へと切り替える。制御部10は、ゲートバルブGV7を開ける。制御部10は、搬送装置30を制御して、ロードロック室LLMの載置部S7に載置された基板状部材100を保持して、搬送室VTMへと搬送する。搬送装置30がロードロック室LLM1から退避すると、制御部10は、ゲートバルブGV7を閉じる。制御部10は、搬送装置30を制御して、ピック31aに保持されている基板状部材100を撮像位置へと移動させる。 In step S102, the control unit 10 conveys the board-shaped member 100 to the imaging position. For example, the control unit 10 controls the transfer device 40 to take out the substrate-shaped member 100 from the carrier C of the load port LP2 and transfer the taken-out substrate-shaped member 100 to the alignment device 50. The control unit 10 controls the alignment device 50 to align the position of the substrate member 100. The control unit 10 controls the transport device 40 to take out the substrate member 100 from the alignment device 50. The control unit 10 opens the gate valve GV9. The control unit 10 controls the transfer device 40 to place the substrate-shaped member 100 held by the pick 41a on the placement unit S7 of the load lock chamber LLM1. When the transfer device 40 retracts from the load lock chamber LLM1, the control unit 10 closes the gate valve GV9. The control unit 10 controls the exhaust device (not shown) of the load lock chamber LLM1 to exhaust the air in the room, and switches the load lock chamber LLM from the atmospheric atmosphere to the vacuum atmosphere. The control unit 10 opens the gate valve GV7. The control unit 10 controls the transfer device 30 to hold the substrate-shaped member 100 mounted on the mounting portion S7 of the load lock chamber LLM and transfer the substrate-shaped member 100 to the transfer chamber VTM. When the transfer device 30 retracts from the load lock chamber LLM1, the control unit 10 closes the gate valve GV7. The controller 10 controls the carrier device 30 to move the substrate-shaped member 100 held by the pick 31a to the imaging position.
 ここで、撮像位置は、搬送室VTM内であって、ゲートバルブGV1を介して処理室PM1内を撮像することができる位置に設定されている。また、搬送装置30,40によって基板状部材100を撮像位置へと搬送した際、基板状部材100のカメラ120の撮像方向が処理室PM1内の方向を向くように、アライメント装置50によって予め基板状部材100の向きが調整される。なお、基板状部材100を撮像位置まで搬送するステップS102は、基板状部材100を搬送装置30によって特定の位置まで搬送する工程の一例である。特定の位置は、搬送室VTM内であって、処理室PM1の搬送口の近傍の位置である。 Here, the imaging position is set in the transfer chamber VTM so that the inside of the processing chamber PM1 can be imaged via the gate valve GV1. In addition, when the substrate-shaped member 100 is transported to the imaging position by the transport devices 30 and 40, the substrate-shaped member 100 is preliminarily configured by the alignment device 50 so that the imaging direction of the camera 120 of the substrate-shaped member 100 faces the direction in the processing chamber PM1. The orientation of the member 100 is adjusted. Note that step S<b>102 of transporting the substrate member 100 to the imaging position is an example of a process of transporting the substrate member 100 to a specific position by the transport device 30. The specific position is within the transfer chamber VTM and near the transfer port of the processing chamber PM1.
 ステップS103において、制御部10は、処理室PM1のゲートバルブGV1を開ける。これにより、搬送室VTMと処理室PM1とが連通する。 In step S103, the control unit 10 opens the gate valve GV1 of the processing chamber PM1. As a result, the transfer chamber VTM and the processing chamber PM1 communicate with each other.
 ステップS104において、基板状部材100は、処理室PM1内を撮像する。図4は、搬送室VTMから処理室PM1内を撮像する際の一実施形態に係る基板処理装置1の一例を示す平面図の一部である。なお、図4において、カメラ120の撮像範囲Vを破線で示す。基板状部材100は、搬送装置30のピック31aに保持されている。カメラ120は、処理室PM1内を撮像し、これにより、処理室PM1内の画像を取得することができる。なお、カメラ120で撮像された画像は、無線通信部160,230を介して基板状部材100から端末200に送信され、表示部240に表示される。また、カメラ120で撮像された画像は、基板状部材100の記憶部150や端末200の記憶部220に記憶されてもよい。 In step S104, the substrate member 100 images the inside of the processing chamber PM1. FIG. 4 is a part of a plan view showing an example of the substrate processing apparatus 1 according to the embodiment when imaging the inside of the processing chamber PM1 from the transfer chamber VTM. In addition, in FIG. 4, the imaging range V of the camera 120 is indicated by a broken line. The substrate member 100 is held by the pick 31 a of the transport device 30. The camera 120 captures an image of the inside of the processing chamber PM1 and thus can acquire an image of the inside of the processing chamber PM1. The image captured by the camera 120 is transmitted from the substrate member 100 to the terminal 200 via the wireless communication units 160 and 230 and displayed on the display unit 240. Further, the image captured by the camera 120 may be stored in the storage unit 150 of the board-shaped member 100 or the storage unit 220 of the terminal 200.
 ステップS105において、制御部10は、処理室PM1のゲートバルブGV1を閉じる。 In step S105, the control unit 10 closes the gate valve GV1 of the processing chamber PM1.
 ステップS106において、制御部10は、基板状部材100を搬送してキャリアCに収容する。例えば、制御部10は、ゲートバルブGV7を開ける。制御部10は、搬送装置30を制御して、ピック31aに保持されている基板状部材100をロードロック室LLM1の載置部S7に載置する。搬送装置30がロードロック室LLM1から退避すると、制御部10は、ゲートバルブGV7を閉じる。制御部10は、ロードロック室LLM1の吸気装置(図示せず)を制御して室内に例えば清浄空気を供給し、ロードロック室LLM1を真空雰囲気から大気雰囲気へと切り替える。制御部10は、ゲートバルブGV9を開ける。制御部10は、搬送装置40を制御して、ロードロック室LLM1の載置部S7に載置された基板状部材100を取り出し、取り出した基板状部材100をロードポートLP2のキャリアCに収容する。 In step S106, the control unit 10 conveys the substrate member 100 and stores it in the carrier C. For example, the control unit 10 opens the gate valve GV7. The control unit 10 controls the transfer device 30 to place the substrate-shaped member 100 held by the pick 31a on the placement unit S7 of the load lock chamber LLM1. When the transfer device 30 retracts from the load lock chamber LLM1, the control unit 10 closes the gate valve GV7. The control unit 10 controls an intake device (not shown) of the load lock chamber LLM1 to supply, for example, clean air into the chamber, and switches the load lock chamber LLM1 from a vacuum atmosphere to an atmosphere atmosphere. The control unit 10 opens the gate valve GV9. The control unit 10 controls the transfer device 40 to take out the substrate-shaped member 100 placed on the placing portion S7 of the load lock chamber LLM1 and store the taken-out substrate-shaped member 100 in the carrier C of the load port LP2. ..
 以上、一実施形態に係る基板処理装置1の処理方法によれば、処理室PM1の容器を開けなくても処理室PM1内の状態を確認することができる。これにより、作業者は処理室PM1の状態に応じて好ましいメンテナンスを選択することができる。また、基板状部材100は、撮像方向が横向きとなっている。これにより、基板状部材100を処理室PM1内へと入れることなく、搬送室VTMから処理室PM1内を撮像することができる。よって、処理室PM1内のウェハWと基板状部材100とが接触することを防止することができる。 As described above, according to the processing method of the substrate processing apparatus 1 according to the embodiment, the state inside the processing chamber PM1 can be confirmed without opening the container of the processing chamber PM1. Thereby, the operator can select a preferable maintenance according to the state of the processing chamber PM1. In addition, the substrate-shaped member 100 has an imaging direction that is lateral. Accordingly, the inside of the processing chamber PM1 can be imaged from the transfer chamber VTM without inserting the substrate member 100 into the processing chamber PM1. Therefore, it is possible to prevent the wafer W in the processing chamber PM1 from coming into contact with the substrate member 100.
 また、撮像された画像に基づいて、処理室PM1のウェハWを排出してもよい。例えば、処理室PM1の載置台S1に載置されたウェハWに位置ずれが発生し、通常のピック31aの軌道ではウェハWを受け取ることができなかった場合を例に説明する。制御部210は、カメラ120で撮像された画像に基づいて、処理室PM1内のウェハWの位置ずれ量を測定する。測定された位置ずれ量は、制御部210から制御部10に送信される。制御部10は、測定されたウェハWの位置ずれ量に基づいて、ピック31aを処理室PM1に挿入する際の軌道を補正する。または、制御部10は、搬送装置30を制御して、測定された位置ずれ量が小さくなるようにウェハWの位置を調整する。これにより、位置ずれしたウェハWを処理室PM1から搬出することができる。よって、処理室PM1の容器を開けなくても処理室PM1内のウェハWを排出することができる。 Alternatively, the wafer W in the processing chamber PM1 may be discharged based on the captured image. For example, a case will be described where the wafer W placed on the mounting table S1 of the processing chamber PM1 is misaligned and the wafer W cannot be received on the track of the normal pick 31a. The control unit 210 measures the amount of positional deviation of the wafer W in the processing chamber PM1 based on the image captured by the camera 120. The measured positional deviation amount is transmitted from the control unit 210 to the control unit 10. The control unit 10 corrects the trajectory when the pick 31a is inserted into the processing chamber PM1 based on the measured positional deviation amount of the wafer W. Alternatively, the control unit 10 controls the transfer device 30 to adjust the position of the wafer W so that the measured positional deviation amount becomes small. As a result, the misaligned wafer W can be unloaded from the processing chamber PM1. Therefore, the wafer W in the processing chamber PM1 can be discharged without opening the container in the processing chamber PM1.
 ところで、搬送装置30にカメラを設ける、例えばピック31aの基端部にカメラを常設する構成では、ウェハWの搬入・搬出の際にカメラも処理室PM1内へと挿入される。処理室PM1内は、例えば高温となっている。また、処理室PM1内には、例えば侵蝕性のプロセスガスが供給される。このため、ピック31aの基端部に設けられたカメラには、耐熱性や耐蝕性が要求され、コストが増加する。これに対し、基板状部材100は搬送室VTMから処理室PM1内を撮像するので、耐熱性や耐蝕性への要求が低減され、コストを低減することができる。また、基板状部材100は、トラブル等が発生した際に投入されるものであり、複数の基板処理装置1で使用することができるので、基板状部材100の台数を低減することができ、コストを低減することができる。 By the way, in the structure in which the transfer device 30 is provided with a camera, for example, a camera is always provided at the base end of the pick 31a, the camera is also inserted into the processing chamber PM1 when the wafer W is loaded or unloaded. The inside of the processing chamber PM1 is at a high temperature, for example. Further, for example, an erosive process gas is supplied into the processing chamber PM1. Therefore, the camera provided at the base end of the pick 31a is required to have heat resistance and corrosion resistance, which increases the cost. On the other hand, since the substrate member 100 images the inside of the processing chamber PM1 from the transfer chamber VTM, the requirements for heat resistance and corrosion resistance are reduced, and the cost can be reduced. Further, the substrate-shaped member 100 is inserted when a trouble or the like occurs, and can be used in a plurality of substrate processing apparatuses 1. Therefore, the number of the substrate-shaped members 100 can be reduced, and the cost can be reduced. Can be reduced.
 なお、基板状部材100は、処理室PM1内のウェハWを撮像するものとして説明したが、撮像対象はこれに限られるものではない。 Note that the substrate-shaped member 100 has been described as capturing an image of the wafer W in the processing chamber PM1, but the imaging target is not limited to this.
 基板状部材100は、処理室PM1の内部(例えば、内壁面等)を撮像してもよい。なお、撮像位置は、搬送室VTMから処理室PM1内を撮像することができる位置に設定してもよく、処理室PM1内に設定してもよい。従来、ウェハWの累積処理枚数や累積処理時間が所定の閾値を超えた場合、クリーニングや部品交換が行われている。これに対し、一実施形態に係る基板処理装置1では、処理室PM1内を撮像することにより、撮像された画像に基づいて処理室PM1のクリーニングや部品交換の時期を判定することができる。 The substrate-shaped member 100 may image the inside of the processing chamber PM1 (for example, the inner wall surface). The imaging position may be set at a position where the inside of the processing chamber PM1 can be imaged from the transfer chamber VTM, or may be set inside the processing chamber PM1. Conventionally, when the cumulative number of processed wafers W or the cumulative processing time exceeds a predetermined threshold value, cleaning and component replacement are performed. On the other hand, in the substrate processing apparatus 1 according to the embodiment, by imaging the inside of the processing chamber PM1, it is possible to determine the timing of cleaning or component replacement of the processing chamber PM1 based on the captured image.
 図5は、ロードロック室LLM1から搬送室VTM内を撮像する際の一実施形態に係る基板処理装置1の一例を示す平面図の一部である。 FIG. 5 is a part of a plan view showing an example of the substrate processing apparatus 1 according to the embodiment when imaging the inside of the transfer chamber VTM from the load lock chamber LLM1.
 制御部10は、基板状部材100を撮像位置まで搬送する。ここで、撮像位置は、ロードロック室LLM1の載置部S7とする。また、搬送装置30,40によって基板状部材100を撮像位置へと搬送した際、基板状部材100のカメラ120の撮像方向が搬送室VTM内の方向を向くように、アライメント装置50によって予め基板状部材100の向きが調整される。制御部10は、ロードロック室LLM1のゲートバルブGV7を開ける。 The control unit 10 conveys the substrate member 100 to the imaging position. Here, the imaging position is the mounting portion S7 of the load lock chamber LLM1. In addition, when the substrate-shaped member 100 is transported to the imaging position by the transport devices 30 and 40, the substrate-shaped member 100 is preliminarily set by the alignment device 50 so that the imaging direction of the camera 120 of the substrate-shaped member 100 faces the direction in the transport chamber VTM. The orientation of the member 100 is adjusted. The control unit 10 opens the gate valve GV7 of the load lock chamber LLM1.
 これにより、搬送室VTM内の状態を確認することができる。また、制御部10は、搬送装置30を制御して、ピック31aをカメラ120の撮像範囲Vへと移動させる。これにより、ピック31aの状態、例えば、欠けや浸蝕の状態を確認することができる。 This allows you to check the status inside the transfer room VTM. Further, the control unit 10 controls the transport device 30 to move the pick 31 a to the imaging range V of the camera 120. Thereby, the state of the pick 31a, for example, the state of chipping or erosion can be confirmed.
 図6は、搬送室VTMからロードロック室LLM1内を撮像する際の一実施形態に係る基板処理装置1の一例を示す平面図の一部である。 FIG. 6 is a part of a plan view showing an example of the substrate processing apparatus 1 according to the embodiment when imaging the inside of the load lock chamber LLM1 from the transfer chamber VTM.
 制御部10は、基板状部材100を撮像位置まで搬送する。ここで、撮像位置は、搬送室VTM内であって、ゲートバルブGV7を介してロードロック室LLM1内を撮像することができる位置に設定されている。また、搬送装置30,40によって基板状部材100を撮像位置へと搬送した際、基板状部材100のカメラ120の撮像方向がロードロック室LLM1内の方向を向くように、アライメント装置50によって予め基板状部材100の向きが調整される。制御部10は、処理室PM7のゲートバルブGV1を開ける。 The control unit 10 conveys the substrate member 100 to the imaging position. Here, the imaging position is set in the transfer chamber VTM so that the inside of the load lock chamber LLM1 can be imaged via the gate valve GV7. In addition, when the substrate-shaped member 100 is transported to the imaging position by the transport devices 30 and 40, the alignment device 50 preliminarily sets the substrate so that the imaging direction of the camera 120 of the substrate-shaped member 100 faces the inside of the load lock chamber LLM1. The orientation of the strip member 100 is adjusted. The control unit 10 opens the gate valve GV1 of the processing chamber PM7.
 これにより、ロードロック室LLM1内の状態を確認することができる。 With this, it is possible to confirm the state inside the load lock chamber LLM1.
 なお、図示は省略するが、基板状部材100は、ローダーモジュールLM内からロードロック室LLM1内を撮像してもよい。また、基板状部材100は、ローダーモジュールLM内からロードポートLPに取り付けられたキャリアC内を撮像してもよい。 Although illustration is omitted, the substrate-shaped member 100 may image the inside of the load lock chamber LLM1 from inside the loader module LM. Further, the board-shaped member 100 may image the inside of the carrier C attached to the load port LP from inside the loader module LM.
 また、載置部S1は、昇降ピンを有している。ピック41aに保持されたウェハWが載置部S1の上方に配置されると、昇降ピンは上昇する。これにより、ピック41aに保持されたウェハWを持ち上げて、昇降ピンでウェハWを保持する。また、ピック41aが処理室PM1から退避した後、昇降ピンは下降する。これにより、昇降ピンに保持されたウェハWを載置部S1に載置する。 Moreover, the mounting part S1 has a lifting pin. When the wafer W held by the pick 41a is placed above the mounting portion S1, the elevating pins ascend. As a result, the wafer W held by the pick 41a is lifted and held by the lifting pins. Further, after the pick 41a is retracted from the processing chamber PM1, the lift pins are lowered. As a result, the wafer W held by the elevating pins is mounted on the mounting portion S1.
 ここで、処理室PM1の内側壁面やゲートバルブGVの壁面に高さを示すマーク等が設けられている。基板状部材100は、搬送室VTMから処理室PM1内の昇降ピン及びマーク等を撮像する。これにより、制御部210は、撮像された画像に基づいて、昇降ピンの先端の高さを測定することができる。また、制御部210は、測定された昇降ピンの先端の高さと、設定された昇降ピンの先端の高さから各昇降ピンのずれを測定する。測定されたずれ量は、制御部210から制御部10に送信される。制御部10は、測定された各昇降ピンのずれ量に基づいて、各昇降ピンの高さを補正する。これにより、制御部10に昇降ピンの高さ位置を教示することができる。 Here, marks indicating the height are provided on the inner wall surface of the processing chamber PM1 and the wall surface of the gate valve GV. The substrate-shaped member 100 images the lift pins and marks in the processing chamber PM1 from the transfer chamber VTM. Accordingly, the control unit 210 can measure the height of the tip of the lifting pin based on the captured image. Further, the control unit 210 measures the deviation of each lifting pin from the measured height of the lifting pin tip and the set height of the lifting pin tip. The measured deviation amount is transmitted from the control unit 210 to the control unit 10. The control unit 10 corrects the height of each lifting pin based on the measured displacement amount of each lifting pin. As a result, it is possible to teach the control unit 10 the height position of the lifting pins.
 ところで、ウェハWを載置する載置部S1の載置面にマーク等を施すと、処理室PMがウェハWに処理を施す際の面均一性に影響を与えるおそれがある。これに対し、一実施形態に係る基板処理装置1では、処理室PM1の内側壁面やゲートバルブGVの壁面にマーク等を設けるため、面均一性に与える影響を低減することができる。 By the way, if a mark or the like is applied to the mounting surface of the mounting portion S1 on which the wafer W is mounted, there is a possibility that the surface uniformity when the processing chamber PM processes the wafer W will be affected. On the other hand, in the substrate processing apparatus 1 according to the embodiment, marks and the like are provided on the inner wall surface of the processing chamber PM1 and the wall surface of the gate valve GV, so that the influence on the surface uniformity can be reduced.
 以上、基板処理装置1の実施形態等について説明したが、本開示は上記実施形態等に限定されるものではなく、特許請求の範囲に記載された本開示の要旨の範囲内において、種々の変形、改良が可能である。 Although the embodiments and the like of the substrate processing apparatus 1 have been described above, the present disclosure is not limited to the above-described embodiments and the like, and various modifications can be made within the scope of the gist of the present disclosure described in the claims. , Can be improved.
 尚、本願は、2018年12月12日に出願した日本国特許出願2018-232893号に基づく優先権を主張するものであり、これらの日本国特許出願の全内容を本願に参照により援用する。 Note that the present application claims priority based on Japanese Patent Application No. 2018-232893 filed on December 12, 2018, and the entire contents of these Japanese patent applications are incorporated herein by reference.
1      基板処理装置
10     制御部
30,40  搬送装置
50     アライメント装置
100    基板状部材
110    母材
120    カメラ
130    光源
140    制御部
150    記憶部
160    無線通信部
170    バッテリ
200    端末
210    制御部
220    記憶部
230    無線通信部
240    表示部
PM1~6  処理室(室、第2室)
VTM    搬送室(室、第1室)
LLM1~2 ロードロック室(室)
LM     ローダーモジュール(室)
LP1~3  ロードポート(室)
GV1~10 ゲートバルブ(ゲート、搬送口)
C      キャリア
W      ウェハ(基板)
S1~8   載置部
1 Substrate Processing Device 10 Control Units 30 and 40 Conveying Device 50 Alignment Device 100 Substrate Member 110 Base Material 120 Camera 130 Light Source 140 Control Unit 150 Storage Unit 160 Wireless Communication Unit 170 Battery 200 Terminal 210 Control Unit 220 Storage Unit 230 Wireless Communication Unit 240 Display unit PM1 to 6 Processing room (room, second room)
VTM transfer room (room, first room)
LLM1-2 load lock room (room)
LM loader module (room)
LP 1-3 load port (room)
GV1~10 Gate valve (gate, transfer port)
C carrier W wafer (substrate)
S1-8 mounting section

Claims (10)

  1.  第1室と、前記第1室に隣接する第2室と、基板を搬送する搬送装置と、を有する基板処理装置の処理方法であって、
     センサを有する基板状部材を準備する工程と、
     前記搬送装置によって前記基板状部材を前記第1室の特定の位置まで搬送する工程と、
     前記センサで前記第1室から前記第2室内の画像を取得する工程と、を有する、
    基板処理装置の処理方法。
    A processing method for a substrate processing apparatus, comprising: a first chamber; a second chamber adjacent to the first chamber; and a transfer device for transferring a substrate,
    A step of preparing a substrate-shaped member having a sensor,
    Transporting the substrate-shaped member to a specific position in the first chamber by the transport device;
    Acquiring an image of the second chamber from the first chamber with the sensor.
    A processing method of a substrate processing apparatus.
  2.  前記第1室と前記第2室とは、開閉するゲートを有する搬送口を介して接続され、
     前記センサは、カメラであり、
     前記カメラは前記搬送口を介して前記第2室内を撮像する、
    請求項1に記載の基板処理装置の処理方法。
    The first chamber and the second chamber are connected via a transfer port having a gate that opens and closes,
    The sensor is a camera,
    The camera captures an image of the second room through the transport port,
    The processing method of the substrate processing apparatus according to claim 1.
  3.  前記第1室は、前記搬送装置を有する搬送室であり、
     前記第2室は、前記基板に処理を施す処理室であり、
     前記基板状部材が前記搬送装置に保持された状態で、前記カメラは前記搬送口を介して前記第2室内を撮像する、
    請求項2に記載の基板処理装置の処理方法。
    The first chamber is a transfer chamber having the transfer device,
    The second chamber is a processing chamber for processing the substrate,
    The camera captures an image of the inside of the second chamber via the transfer port while the substrate member is held by the transfer device.
    The processing method of the substrate processing apparatus according to claim 2.
  4.  前記カメラは、前記処理室内の前記基板を撮像する、
    請求項3に記載の基板処理装置の処理方法。
    The camera images the substrate in the processing chamber,
    The processing method of the substrate processing apparatus according to claim 3.
  5.  撮像された画像に基づいて、前記基板の位置ずれを測定する工程と、
     測定された位置ずれに基づいて前記搬送装置を制御し、前記基板を前記処理室から搬出する工程と、をさらに有する、
    請求項4に記載の基板処理装置の処理方法。
    Measuring the displacement of the substrate based on the captured image;
    Further comprising the step of controlling the transfer device based on the measured positional displacement and unloading the substrate from the processing chamber.
    The processing method of the substrate processing apparatus according to claim 4.
  6.  前記カメラの撮像方向は、略水平方向を向く、
    請求項2乃至請求項5のいずれか1項に記載の基板処理装置の処理方法。
    The image pickup direction of the camera is a substantially horizontal direction,
    The processing method of the substrate processing apparatus according to claim 2.
  7.  前記基板状部材は、前記カメラの撮像範囲を照らす光源を有する、
    請求項2乃至請求項6のいずれか1項に記載の基板処理装置の処理方法。
    The substrate-like member has a light source that illuminates an image capturing range of the camera,
    The processing method of the substrate processing apparatus according to claim 2.
  8.  前記基板状部材は、前記カメラで撮像された画像を送信する無線通信部を有する、
    請求項2乃至請求項7のいずれか1項に記載の基板処理装置の処理方法。
    The substrate-shaped member has a wireless communication unit that transmits an image captured by the camera,
    The processing method for a substrate processing apparatus according to claim 2.
  9.  前記基板処理装置は、前記カメラで撮像された画像を表示する表示部を有する、
    請求項2乃至請求項8のいずれか1項に記載の基板処理装置の処理方法。
    The substrate processing apparatus has a display unit that displays an image captured by the camera,
    The processing method for a substrate processing apparatus according to claim 2.
  10.  第1室と、前記第1室に隣接する第2室と、基板を搬送する搬送装置と、制御部と、を備え、
     前記制御部は、
     センサを有する基板状部材を準備する工程と、
     前記搬送装置によって前記基板状部材を前記第1室の特定の位置まで搬送する工程と、
     前記センサで前記第1室から前記第2室内の画像を取得する工程と、を実行する、
    基板処理装置。
    A first chamber, a second chamber adjacent to the first chamber, a transfer device for transferring a substrate, and a control unit,
    The control unit is
    A step of preparing a substrate-shaped member having a sensor,
    Transporting the substrate-shaped member to a specific position in the first chamber by the transport device;
    Acquiring an image of the second chamber from the first chamber with the sensor,
    Substrate processing equipment.
PCT/JP2019/047011 2018-12-12 2019-12-02 Treatment method for substrate treatment device and substrate treatment device WO2020121869A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018232893A JP2020096079A (en) 2018-12-12 2018-12-12 Substrate processing apparatus processing method and substrate processing apparatus
JP2018-232893 2018-12-12

Publications (1)

Publication Number Publication Date
WO2020121869A1 true WO2020121869A1 (en) 2020-06-18

Family

ID=71075676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047011 WO2020121869A1 (en) 2018-12-12 2019-12-02 Treatment method for substrate treatment device and substrate treatment device

Country Status (2)

Country Link
JP (1) JP2020096079A (en)
WO (1) WO2020121869A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022116644A (en) * 2021-01-29 2022-08-10 東京エレクトロン株式会社 Substrate processing system and state monitoring method
KR20230001280A (en) * 2021-06-28 2023-01-04 주식회사 원익아이피에스 Processing method inside chamber and processing method for substrate
KR20230102776A (en) 2021-12-30 2023-07-07 세메스 주식회사 Auto teaching method and apparatus using distance measuing sensor
WO2023176442A1 (en) * 2022-03-15 2023-09-21 東京エレクトロン株式会社 Monitoring substrate and monitoring method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232145A (en) * 1999-02-09 2000-08-22 Dainippon Screen Mfg Co Ltd Operation inspection system and jig used therefor
JP2005005608A (en) * 2003-06-13 2005-01-06 Ebara Corp Teaching apparatus for substrate transfer robot and teaching method
JP2005521926A (en) * 2002-02-06 2005-07-21 サイバーオプティクス セミコンダクタ インコーポレイテッド Wireless substrate sensor
JP2007088110A (en) * 2005-09-21 2007-04-05 Daihen Corp Method of teaching reference position of substrate transfer robot
JP2008080466A (en) * 2006-09-28 2008-04-10 Daihen Corp Teaching method of carrier robot
JP2018051671A (en) * 2016-09-28 2018-04-05 川崎重工業株式会社 Robot, control device of robot, and position teaching method for robot

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232145A (en) * 1999-02-09 2000-08-22 Dainippon Screen Mfg Co Ltd Operation inspection system and jig used therefor
JP2005521926A (en) * 2002-02-06 2005-07-21 サイバーオプティクス セミコンダクタ インコーポレイテッド Wireless substrate sensor
JP2005005608A (en) * 2003-06-13 2005-01-06 Ebara Corp Teaching apparatus for substrate transfer robot and teaching method
JP2007088110A (en) * 2005-09-21 2007-04-05 Daihen Corp Method of teaching reference position of substrate transfer robot
JP2008080466A (en) * 2006-09-28 2008-04-10 Daihen Corp Teaching method of carrier robot
JP2018051671A (en) * 2016-09-28 2018-04-05 川崎重工業株式会社 Robot, control device of robot, and position teaching method for robot

Also Published As

Publication number Publication date
JP2020096079A (en) 2020-06-18

Similar Documents

Publication Publication Date Title
WO2020121869A1 (en) Treatment method for substrate treatment device and substrate treatment device
CN110690095B (en) Method for processing edge ring, substrate processing system and image sensor
US6517304B1 (en) Method for transporting substrates and a semiconductor manufacturing apparatus using the method
TWI776016B (en) Thin plate substrate-holding device and transfer robot provided with this holding device
US9412634B2 (en) Atmosphere replacement apparatus, substrate transport apparatus, substrate transport system, and EFEM
JP7158238B2 (en) Substrate processing system
US20040247417A1 (en) Intermediate product transferring apparatus and carrying system having the intermediate product transferring apparatus
JP7467152B2 (en) Storage container and method for charging substrate-like sensor
KR101508516B1 (en) In-line Test Handler
KR20200104231A (en) Loadlock module, substrate processing apparatus, and substrate transfer method
CN114496694A (en) Processing system and conveying method
CN113257729B (en) Teaching method
US20220199442A1 (en) Substrate transfer apparatus, substrate processing system and substrate processing method
US9786535B2 (en) Wafer transport system and method for operating the same
WO2023176442A1 (en) Monitoring substrate and monitoring method
US20220148857A1 (en) Detection device, processing system, and transfer method
TW202135200A (en) Wafer frame sorting and stocking system
JP5031960B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
CN108428656B (en) Substrate conveying device, system and method
WO2024070818A1 (en) Method for controlling lifter pin and conveyance arm
KR102121057B1 (en) Sealing member exchange type gate valve system, sealing plate and magazine for sealing plate
JP2022077966A (en) Detection device, processing system, and transfer method
KR20230055952A (en) Substrate transfer apparatus and substrate transfer method
JP2023049784A (en) Substrate processing system and teaching method of transport device
KR20070009077A (en) Semiconductor fabrication apparatus including robot unit having wafer mapping sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19897307

Country of ref document: EP

Kind code of ref document: A1