WO2020120879A1 - Vitrage feuilleté comprenant un substrat transparent a couche chauffante ayant des lignes de flux dont l'ensemble est de largeur variable - Google Patents

Vitrage feuilleté comprenant un substrat transparent a couche chauffante ayant des lignes de flux dont l'ensemble est de largeur variable Download PDF

Info

Publication number
WO2020120879A1
WO2020120879A1 PCT/FR2019/052931 FR2019052931W WO2020120879A1 WO 2020120879 A1 WO2020120879 A1 WO 2020120879A1 FR 2019052931 W FR2019052931 W FR 2019052931W WO 2020120879 A1 WO2020120879 A1 WO 2020120879A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated glazing
electrically conductive
conductive layer
layer
lines
Prior art date
Application number
PCT/FR2019/052931
Other languages
English (en)
Inventor
Vincent Legois
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Priority to EP19868208.0A priority Critical patent/EP3894220A1/fr
Priority to CA3120333A priority patent/CA3120333A1/fr
Priority to BR112021009533-0A priority patent/BR112021009533A2/pt
Priority to KR1020217020636A priority patent/KR20210102290A/ko
Priority to US17/299,585 priority patent/US20230146513A1/en
Priority to CN201980005782.9A priority patent/CN111556808A/zh
Publication of WO2020120879A1 publication Critical patent/WO2020120879A1/fr
Priority to IL283603A priority patent/IL283603A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10082Properties of the bulk of a glass sheet
    • B32B17/10119Properties of the bulk of a glass sheet having a composition deviating from the basic composition of soda-lime glass, e.g. borosilicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/10183Coatings of a metallic or dielectric material on a constituent layer of glass or polymer being not continuous, e.g. in edge regions
    • B32B17/10192Coatings of a metallic or dielectric material on a constituent layer of glass or polymer being not continuous, e.g. in edge regions patterned in the form of columns or grids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/10201Dielectric coatings
    • B32B17/10211Doped dielectric layer, electrically conductive, e.g. SnO2:F
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/1022Metallic coatings
    • B32B17/10229Metallic layers sandwiched by dielectric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/1077Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/84Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/02Noble metals
    • B32B2311/04Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/02Noble metals
    • B32B2311/08Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/16Tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/005Heaters using a particular layout for the resistive material or resistive elements using multiple resistive elements or resistive zones isolated from each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings

Definitions

  • Laminated glazing comprising a transparent substrate with a heating layer having flow lines the whole of which is of variable width
  • the glazing of transport vehicles (planes, trains, helicopters, boats, cars ...) and, in some cases, the glazing of buildings can be fitted with heating functions integrated into the glazing to prevent / eliminate, as appropriate. fogging on the inside or frost on the outside.
  • Heating is characterized by its specific power (W / m 2 ) which is
  • the heating system consists for example of son screen printed on the
  • the heating system is supplied via electrodes at a voltage available on the vehicle or the building.
  • glass is meant here in a preferred manner any mineral glass, but also a rigid transparent substrate of polymer material of which a typical example is
  • PMMA poly (methyl methacrylate)
  • electrical conductivity gradient typically obtained by a thickness gradient of the electrically conductive layer such as conductive metal oxide (typically ITO); large variations in layer thickness make it possible to limit the current density in certain parts of the heating surface; the more complex the shape, the more the thickness gradient is marked and difficult to achieve from an industrial point of view;
  • ITO conductive metal oxide
  • the means put in place to deposit the thickness gradient of electrically conductive layer can be difficult to control and the overall electrical resistance of the layer, over the entire surface of the glazing, can vary significantly.
  • the nominal total power for an overall resistance R of the electrically conductive layer is equal to U 2 / R; if this overall resistance R is too low this may result in too high power (too much power consumed by the heating system) and in the extreme case, the product will have to be discarded, the product no longer being within the required tolerances .
  • the heated glazing is of complex shape and that flow lines are made on the electrically conductive layer so as to guide the electric current and to a certain extent homogenize the local heating power density, inhomogeneities of this power density over the entire surface of the glazing may nevertheless remain; in particular in acute angles of the surface of the glazing, the density of heating power is lower, insufficiently high.
  • the power P dissipated locally is equal to Ri 2
  • the power density Ps is equal to P / S, in Watt / dm 2 for example, S being the area between two flow lines.
  • the invention therefore endeavors to design a heated glazing whose nominal power does not exceed a certain maximum value, and whose power densities are homogenized to a controlled extent over the entire surface glazing, and in particular whose minimum power densities, in certain corner areas for example, are increased.
  • laminated glazing consisting of several rigid transparent substrates bonded to one another in pairs by means of an adhesive layer
  • interlayer at least one of these transparent substrates being coated with an electrically conductive layer, an area of this transparent substrate having four opposite edges in pairs, a first and a second bus bar being arranged along two opposite edges, the electrically conductive layer having flow lines for guiding the electric current between the bus bars, characterized in that the set of flow lines is of variable width.
  • variable width flux lines makes it possible to better control the ohmic resistance of the layer and to best adjust the power consumed by the layer.
  • the widening of the flux lines correlatively decreases the width of the electroconductive bands having the consequence both of increasing their resistance R and decreasing their surface S, a double source of increase of. the power density Ri 2 / S locally.
  • the invention makes it possible to substantially reduce cold spots, even in the absence of a thickness gradient of the heating layer.
  • the electrically conductive layer is based on doped metal oxide such as indium oxide doped with tin (ITO) and / or tin oxide doped with fluorine SnÜ2: F and / or zinc oxide doped aluminum (AZO), and / or a metal such as Au gold and / or Ag silver, optionally in the form of a multilayer stack, in particular of the type comprising at least one layer of silver;
  • doped metal oxide such as indium oxide doped with tin (ITO) and / or tin oxide doped with fluorine SnÜ2: F and / or zinc oxide doped aluminum (AZO), and / or a metal such as Au gold and / or Ag silver, optionally in the form of a multilayer stack, in particular of the type comprising at least one layer of silver;
  • the electrically conductive layer has a thickness between 2 and 1600 nm;
  • the electrically conductive layer has a thickness gradient, that is to say a variation of its thickness; which is not constant;
  • the flow lines have a width of between 5 and 1000 ⁇ m;
  • the distance between two neighboring flux lines is at least equal to 8, at most 40, and in order of preferably increasing to 30, 25 and 20 mm;
  • the electrically conductive layer has phase separation lines consisting of ablation lines of width between 500 and 2000 pm; these phase separation lines delimit three zones of different phases in the implementation of three-phase current;
  • said rigid transparent substrates are made of glass such as soda-lime, aluminosilicate, borosilicate, optionally chemically reinforced, semi-toughened or thermally toughened, or of polymeric material such as poly (methyl methacrylate) (PMMA), polycarbonate ( PC), poly (ethylene terephthalate) (PET) or polyurethane (PU);
  • PMMA poly (methyl methacrylate)
  • PC polycarbonate
  • PET poly (ethylene terephthalate)
  • PU polyurethane
  • the electrically conductive layer is on the inside facing side of the
  • laminated glazing of at least one of the two rigid transparent substrates constituting the two exterior surfaces of the laminated glazing;
  • the intermediate adhesive layer is chosen from polyvinyl butyral (PVB), polyurethane (PU), poly (ethylene - vinyl acetate) (EVA), ionomer alone or as a mixture of several of them;
  • PVB polyvinyl butyral
  • PU polyurethane
  • EVA poly (ethylene - vinyl acetate)
  • a flow line (92; 93) at least has a locally increased width, to locally increase the electrical resistance, locally decrease the surface of the conductive area and locally increase the heating power density, so as to remove a cold spot; this is particularly the case in a corner area of complex shape deviating from a right angle, in which the heating power density is insufficient.
  • the invention also relates to a method of manufacturing a laminated glazing described above, comprising the formation on an electrically conductive layer of variable width flow lines controlled by ablation by means of a pulsed laser associated with a scanner to move the laser spot, and / or by localized chemical etching of the electroconductive layer and / or by deposition of a first coating such as an ink in a pattern corresponding to the flux lines, deposition as a second coating of the electroconductive layer, then elimination such as dissolution of said first coating and of the fraction of the electrically conductive layer covering it.
  • This latter process is known in English as "I ift-off”.
  • Another object of the invention consists in the application of laminated glazing described above, as heated glazing for an air vehicle, land vehicle in particular rail, water in particular marine, armored.
  • the faces of said rigid transparent substrates are numbered from that in contact with
  • the external atmosphere defined as the face 1 and the electrically conductive layer has a face n of the laminated glazing, with n greater than or equal and preferably equal to 2, for an application as deicing / anti-icing glazing.
  • the electrically conductive layer takes up one face n of the laminated glazing, with n greater than or equal to 3, preferably the face oriented towards the inside of the laminated glazing, of the rigid transparent substrate in contact with the interior volume of the vehicle, for an application as defogging / anti-fogging glazing.
  • FIG.1 shows a rigid transparent substrate coated with a layer
  • FIG.2 is a schematic partial front view of an anti-icing heating layer such as that of [Fig.1] comprising flow lines according to the invention.
  • a transparent substrate made of aluminosilicate glass is coated with an electrically conductive layer 2 of indium oxide doped with tin (ITO) of substantially homogeneous thickness, including a zone 1 present.
  • ITO indium oxide doped with tin
  • Ablation lines of the electroconductive layer 2 constitute flux lines 9 to guide the electric current between the bus bars 7, 8.
  • the corner area surrounded in [Fig.1] is an area of lower heating power density than that of the central areas of the anti-icing heating layer 2. In this corner area, the power density is insufficient.
  • the flow lines 9 are of variable width according to the invention, as shown [Fig.2]
  • the flow line 91 is of constant width 200 m
  • the flow line 92 of width constant 600 ⁇ m
  • the flow line 93 of width varying from 200 to 600 ⁇ m.
  • Tables 1, 2 and 3 below give examples of resistance gain between leads (bus bars) (total resistance) Ra of an ITO electrically conductive layer 200 nm thick, provided with 60 equidistant flux lines , between leads spaced 100 mm apart, depending on the width of the heating layer and the width of the flow lines. [Table 1]

Landscapes

  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)
  • Surface Heating Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

Vitrage feuilleté comprenant un substrat transparent à couche chauffante ayant des lignes de flux dont l'ensemble est de largeur variable. L'invention concerne un vitrage feuilleté constitué de plusieurs substrats transparents rigides collés deux à deux par une couche adhésive intercalaire, l'un au moins de ces substrats transparents étant revêtu d'une couche électroconductrice (2), une zone (1) de ce substrat transparent présentant quatre bords opposés deux à deux (3, 5), (4, 6), un premier et un second bus bars (7, 8) étant disposés le long de deux bords opposés (3,5), la couche électroconductrice (2) présentant des lignes de flux (9; 91; 92; 93) pour guider le courant électrique entre les bus bars (7, 8), l'ensemble des lignes de flux (9; 91; 92; 93) étant de largeur variable; son procédé de fabrication, son application notamment aéronautique.

Description

Description
Titre de l'invention : Vitrage feuilleté comprenant un substrat transparent à couche chauffante ayant des lignes de flux dont l’ensemble est de largeur variable
[0001 ] Les vitrages des véhicules de transport (avions, trains, hélicoptères, bateaux, voitures...) et, dans quelques cas, les vitrages de bâtiments peuvent être équipés de fonctions chauffantes intégrées aux vitrages pour prévenir/éliminer selon les cas la formation de buée en face intérieure ou de givre en face extérieure.
[0002] Le chauffage se caractérise par sa puissance spécifique (W/m2) qui est
adaptée au besoin spécifique de chaque application.
[0003] Le système chauffant est constitué par exemple de fils sérigraphiés sur le
vitrage monolithique ou incrustés dans une couche adhésive intercalaire du vitrage feuilleté, ou de couches conductrices transparentes (oxydes dopés :
oxyde d’indium dopé à l’étain -en anglais « Indium Tin Oxide » : ITO-, AZO (Aluminum Zinc Oxide), Sn02 : F, ou métaux tels qu’argent, or éventuellement en multicouches identiques ou différentes) permettant un chauffage par effet Joule. Dans ces deux cas, le système chauffant est alimenté par l’intermédiaire d’électrodes sous une tension disponible sur le véhicule ou le bâtiment.
[0004] Les verres avec couche chauffante sont obtenus soit par découpe et
éventuellement formage d’un verre présentant déjà une couche soit par dépôt de la couche a posteriori (après découpe) sur un verre en forme. Par « verre », on entend ici de manière privilégiée tout verre minéral, mais aussi un substrat transparent rigide en matériau polymère dont un exemple type est le
poly(méthacrylate de méthyle) (PMMA).
Le chauffage homogène d’une forme non rectangulaire étant impossible avec une couche de conductivité électrique homogène, deux stratégies sont mises en œuvre :
gradient de conductivité électrique obtenu typiquement par un gradient d’épaisseur de la couche électroconductrice telle que d’oxyde métallique conducteur (typiquement ITO) ; de fortes variations d’épaisseur de couche permettent de limiter la densité de courant dans certaines parties de la surface chauffante ; plus la forme est complexe, plus le gradient d’épaisseur est marqué et difficile à réaliser d’un point de vue industriel ;
lignes d’ablation dans une couche électroconductrice, appelées lignes de séparation de flux ou plus communément lignes de flux telles que décrites dans le brevet EP1897412-B1 , qui guident le flux de courant électrique ; cette solution ne donne de bons résultats en terme d’homogénéité que si les amenées de courant sont parallèles et de longueurs identiques (faibles écarts tolérés).
[0005] Ces deux stratégies peuvent être employées en combinaison.
[0006] Les moyens mis en place pour déposer le gradient d’épaisseur de couche électroconductrice peuvent être difficiles à maîtriser et la résistance électrique globale de la couche, sur toute la surface du vitrage, peut varier de manière importante. Sur l’ensemble du vitrage, à tension de courant électrique U constante entre les amenées (bus bars), la puissance totale nominale pour une résistance globale R de la couche électroconductrice est égale à U2/R ; si cette résistance globale R est trop basse cela peut se traduire par une puissance trop élevée (trop de puissance consommée par le système de chauffage) et dans le cas extrême, le produit devra être rebuté, le produit n’étant plus dans les tolérances demandées.
[0007] De plus, lorsque le vitrage chauffant est de forme complexe et que des lignes de flux sont réalisées sur la couche électroconductrice de manière à guider le courant électrique et homogénéiser dans une certaine mesure la densité de puissance de chauffage locale, des inhomogénéités de cette densité de puissance sur l’ensemble de la surface du vitrage peuvent néanmoins subsister ; en particulier dans des angles aigus de la surface du vitrage, la densité de puissance de chauffage est plus basse, insuffisamment élevée. Localement, entre deux lignes de flux, à intensité de courant électrique constante i dans toute la bande conductrice, la puissance P dissipée localement est égale à R.i2, et la densité de puissance Ps est égale à P/S, en Watt/dm2 par exemple, S étant la surface entre deux lignes de flux.
[0008] L’invention s’attache donc à concevoir un vitrage chauffant dont la puissance nominale n’excède pas une certaine valeur maximale, et dont les densités de puissance sont homogénéisées dans une mesure contrôlée sur toute la surface du vitrage, et en particulier dont les densités de puissances minimales, dans certaines zones de coin par exemple, sont rehaussées.
[0009] Ce but a été atteint par l’invention qui, en conséquence, a pour objet un
vitrage feuilleté constitué de plusieurs substrats transparents rigides collés les uns aux autres deux à deux par l’intermédiaire d’une couche adhésive
intercalaire, l’un au moins de ces substrats transparents étant revêtu d’une couche électroconductrice, une zone de ce substrat transparent présentant quatre bords opposés deux à deux, un premier et un second bus bars étant disposés le long de deux bords opposés, la couche électroconductrice présentant des lignes de flux pour guider le courant électrique entre les bus bars, caractérisé en ce que l’ensemble des lignes de flux est de largeur variable .
[0010] La réalisation de lignes de flux à largeur variable permet de mieux maîtriser la résistance ohmique de la couche et d’ajuster au mieux la puissance consommée par la couche.
[0011] L’utilisation d’un laser avec un scanner, par exemple, permet de faire varier la largeur des lignes de flux obtenues par ablation.
[0012] En mesurant la résistance ohmique de la couche chauffante, lorsque celle-ci est inférieure à la valeur nominale, il devient possible d’ajuster au mieux la largeur des lignes de flux pour obtenir une résistance conforme et proche de la valeur nominale.
[0013] Dans les zones du vitrage où la densité de puissance est trop faible,
l’élargissement des lignes de flux diminue corrélativement la largeur des bandes électroconductrices ayant pour conséquence à la fois d’augmenter leur résistance R et diminuer leur surface S, double source d’accroissement de. la densité de puissance R.i2/S localement. L’invention permet de diminuer substantiellement les points froids, même en l’absence d’un gradient d’épaisseur de la couche chauffante.
[0014] Plusieurs couches électroconductrices peuvent coexister à différents niveaux d’épaisseur du vitrage feuilleté.
[0015] Selon des modes particuliers de réalisation : [0016] - la couche électroconductrice est à base d’oxyde métallique dopé tel qu’oxyde d’indium dopé à l’étain (ITO) et/ou oxyde d’étain dopé au fluor SnÜ2 :F et/ou oxyde de zinc dopé à l’aluminium (AZO), et/ou d’un métal tel que d’or Au et/ou d’argent Ag, éventuellement sous forme d’un empilement multicouche, notamment du type comprenant au moins une couche d’argent ;
[0017] - la couche électroconductrice a une épaisseur comprise entre 2 et 1600 nm ;
[0018] - la couche électroconductrice présente un gradient d’épaisseur, c’est-à-dire une variation de son épaisseur ; qui n’est pas constante ;
[0019] - les lignes de flux ont une largeur comprise entre 5 et 1000 pm ;
[0020] - la distance entre deux lignes de flux voisines est au moins égale à 8, au plus à 40, et par ordre de préférence croissant à 30, 25 et 20 mm ;
[0021] - la couche électroconductrice présente des lignes de séparation de phase consistant en lignes d’ablation de largeur comprise entre 500 et 2000 pm ; ces lignes de séparation de phase délimitent trois zones de phases différentes dans la mise en œuvre de courant triphasé ;
[0022] - lesdits substrats transparents rigides sont en verre tel que sodocalcique, aluminosilicate, borosilicate, le cas échéant renforcé chimiquement, semi-trempé ou trempé thermiquement, ou en matériau polymère tel que poly(méthacrylate de méthyle) (PMMA), polycarbonate (PC), poly(téréphtalate d’éthylène) (PET) ou polyuréthane (PU) ;
[0023] - la couche électroconductrice est sur la face orientée vers l’intérieur du
vitrage feuilleté, de l’un au moins des deux substrats transparents rigides constituant les deux surfaces extérieures du vitrage feuilleté ;
[0024] - la couche adhésive intercalaire est choisie parmi les polyvinylbutyral (PVB), polyuréthane (PU), poly(éthylène - acétate de vinyle) (EVA), ionomère seuls ou en mélange de plusieurs d’entre eux ;
[0025] une ligne de flux (92 ; 93) au moins a une largeur augmentée localement, pour augmenter localement la résistance électrique, diminuer localement la surface de la zone conductrice et augmenter localement la densité de puissance de chauffage, de manière à supprimer un point froid ; c’est le cas notamment dans une zone de coin de forme complexe déviant d’un angle droit, dans laquelle la densité de puissance de chauffage est insuffisante.
[0026] L’invention a également pour objet un procédé de fabrication d’un vitrage feuilleté décrit précédemment, comprenant la formation sur une couche électroconductrice de lignes de flux de largeur variable contrôlée par ablation au moyen d’un laser pulsé associé à un scanner pour déplacer le spot laser, et/ou par décapage chimique localisé de la couche électroconductrice et/ou par dépôt d’un premier revêtement tel qu’une encre selon un motif correspondant aux lignes de flux, dépôt comme second revêtement de la couche électroconductrice, puis élimination telle que dissolution dudit premier revêtement et de la fraction de la couche électroconductrice le recouvrant. Ce dernier procédé est connu en anglais sous les termes « I ift-off ».
[0027] Un autre objet de l’invention consiste en l’application d’un vitrage feuilleté décrit précédemment, comme vitrage chauffant pour un véhicule aérien, terrestre notamment ferroviaire, aquatique notamment marin, blindé.
[0028] Selon une première modalité de cette application, les faces desdits substrats transparents rigides sont numérotées à partir de celle en contact avec
l’atmosphère extérieure définie comme la face 1 et la couche électroconductrice revêt une face n du vitrage feuilleté, avec n supérieur ou égal et de préférence égal à 2, pour une application comme vitrage dégivrant / antigivre.
[0029] Selon une seconde modalité de cette application, les faces des substrats transparents rigides étant numérotées comme il vient d’être défini, la couche électroconductrice revêt une face n du vitrage feuilleté, avec n supérieur ou égal à 3, de préférence la face orientée vers l’intérieur du vitrage feuilleté, du substrat transparent rigide en contact avec le volume intérieur du véhicule, pour une application comme vitrage désembuant / antibuée.
[0030] Les dessins annexés illustrent l’invention :
[0031] [Fig.1] représente un substrat transparent rigide revêtu d’une couche
chauffante antigivre, et destiné à faire partie d’un vitrage feuilleté de cockpit d’avion de forme complexe ; vu de face. [0032] [Fig.2] est une vue partielle schématique de face d’une couche chauffante antigivre telle que celle de [Fig.1] comportant des lignes de flux conformes à l’invention.
[0033] En référence à [Fig.1], un substrat transparent en verre aluminosilicate est revêtu d’une couche électroconductrice 2 en oxyde d’indium dopé à l’étain (ITO) d’épaisseur sensiblement homogène, dont une zone 1 présente quatre bords opposés deux à deux (3, 5), (4, 6), un premier et un second bus bars 7, 8 étant disposés le long de deux bords opposés 3,5.
[0034] Des lignes d’ablation de la couche électroconductrice 2 constituent des lignes de flux 9 pour guider le courant électrique entre les bus bars 7, 8.
[0035] Si ces lignes de flux 9 sont de largeur constante, la zone de coin entourée sur [Fig.1] est une zone de densité de puissance de chauffage plus faible que celle des zones centrales de la couche chauffante antigivre 2. Dans cette zone de coin, la densité de puissance est insuffisante.
[0036] Pour y remédier, les lignes de flux 9 sont de largeur variable selon l’invention, comme représenté [Fig.2] Par exemple, la ligne de flux 91 est de largeur constante 200 miti, la ligne de flux 92 de largeur constante 600 pm et la ligne de flux 93 de largeur variant de 200 à 600 pm. En élargissant ainsi les lignes de flux 92, 93, on augment localement la résistance électrique, on diminue la surface de la zone conductrice, et l’on augmente localement la densité de puissance de chauffage, de manière à supprimer le point froid, même en l’absence de gradient d’épaisseur de la couche chauffante 2.
[0037] Les Tableaux 1 , 2 et 3 suivants donnent des exemples de gain en résistance entre amenées (bus bars) (résistance totale) Ra d’une couche électroconductrice en ITO de 200 nm d’épaisseur, munie de 60 lignes de flux équidistantes, entre des amenées distantes de 100 mm, en fonction de la largeur de la couche chauffante et de la largeur des lignes de flux. [Tableau 1]
Figure imgf000009_0001
[Tableau 2]
Figure imgf000009_0002
[Tableau 3]
Figure imgf000010_0001
chauffante de 1000 mm, l’élargissement des lignes de flux de 100 à 600 miti fait augmenter la résistance entre amenées Ra de 3,73 % au lieu de 0,60 %, par rapport à une absence de lignes de flux.
[0039] Sur le Tableau 3, on voit que pour une largeur de couche électroconductrice de 800 mm, des lignes de flux de 600 pm de largeur font augmenter la résistance de 4,71 %, toujours par rapport à une absence de lignes de flux.

Claims

Revendications
[Revendication 1] Vitrage feuilleté constitué de plusieurs substrats
transparents rigides collés les uns aux autres deux à deux par l’intermédiaire d’une couche adhésive intercalaire, l’un au moins de ces substrats
transparents étant revêtu d’une couche électroconductrice (2), une zone (1 ) de ce substrat transparent présentant quatre bords opposés deux à deux (3, 5), (4, 6), un premier et un second bus bars (7, 8) étant disposés le long de deux bords opposés (3,5), la couche électroconductrice (2) présentant des lignes de flux (9 ; 91 ; 92 ; 93) pour guider le courant électrique entre les bus bars (7, 8), caractérisé en ce que l’ensemble des lignes de flux (9 ; 91 ; 92 ; 93) est de largeur variable.
[Revendication 2] Vitrage feuilleté selon la revendication 1 , caractérisé en ce que la couche électroconductrice (2) est à base d’oxyde métallique dopé tel qu’oxyde d’indium dopé à l’étain (ITO) et/ou oxyde d’étain dopé au fluor SnÜ2 :F et/ou oxyde de zinc dopé à l’aluminium (AZO), et/ou d’un métal tel que d’or Au et/ou d’argent Ag, éventuellement sous forme d’un empilement multicouche, notamment du type comprenant au moins une couche d’argent.
[Revendication 3] Vitrage feuilleté selon la revendication 1 ou la
revendication 2, caractérisé en ce que la couche électroconductrice (2) a une épaisseur comprise entre 2 et 1600 nm.
[Revendication 4] Vitrage feuilleté selon l’une des revendications
précédentes, caractérisé en ce que la couche électroconductrice (2) présente un gradient d’épaisseur.
[Revendication 5] Vitrage feuilleté selon l’une des revendications
précédentes, caractérisé en ce que les lignes de flux (9 ; 91 ; 92 ; 93) ont une largeur comprise entre 5 et 1000 pm.
[Revendication 6] Vitrage feuilleté selon l’une des revendications
précédentes, caractérisé en ce que la distance entre deux lignes de flux voisines est au moins égale à 8, au plus à 40, et par ordre de préférence croissant à 30, 25 et 20 mm.
[Revendication 7] Vitrage feuilleté selon l’une des revendications
précédentes, caractérisé en ce que la couche électroconductrice (2) présente des lignes de séparation de phase consistant en lignes d’ablation de largeur comprise entre 500 et 2000 pm.
[Revendication 8] Vitrage feuilleté selon l’une des revendications
précédentes, caractérisé en ce que lesdits substrats transparents rigides sont en verre tel que sodocalcique, aluminosilicate, borosilicate, le cas échéant renforcé chimiquement, semi-trempé ou trempé thermiquement, ou en matériau polymère tel que poly(méthacrylate de méthyle) (PMMA), polycarbonate (PC), poly(téréphtalate d’éthylène) (PET) ou polyuréthane (PU).
[Revendication 9] Vitrage feuilleté selon l’une des revendications
précédentes, caractérisé en ce que la couche électroconductrice (2) est sur la face orientée vers l’intérieur du vitrage feuilleté, de l’un au moins des deux substrats transparents rigides constituant les deux surfaces extérieures du vitrage feuilleté.
[Revendication 10] Vitrage feuilleté selon l’une des revendications
précédentes, caractérisé en ce que la couche adhésive intercalaire est choisie parmi les polyvinylbutyral (PVB), polyuréthane (PU), poly(éthylène - acétate de vinyle) (EVA), ionomère seuls ou en mélange de plusieurs d’entre eux.
[Revendication 11] Vitrage feuilleté selon l’une des revendications
précédentes, caractérisé en ce qu’une ligne de flux (92 ; 93) au moins a une largeur augmentée localement, pour augmenter localement la résistance électrique, diminuer localement la surface de la zone conductrice et augmenter localement la densité de puissance de chauffage, de manière à supprimer un point froid.
[Revendication 12] Procédé de fabrication d’un vitrage feuilleté selon l’une des revendications précédentes, comprenant la formation sur une couche électroconductrice (2) de lignes de flux (9 ; 91 ; 92 ; 93) de largeur variable contrôlée par ablation au moyen d’un laser pulsé associé à un scanner pour déplacer le spot laser, par décapage chimique localisé de la couche électroconductrice (2) et/ou par dépôt d’un premier revêtement tel qu’une encre selon un motif correspondant aux lignes de flux (9 ; 91 ; 92 ; 93), dépôt comme second revêtement de la couche électroconductrice (2), puis élimination telle que dissolution dudit premier revêtement et de la fraction de la couche électroconductrice (2) le recouvrant.
[Revendication 13] Application d’un vitrage feuilleté selon l’une des
revendications 1 à 11 , comme vitrage chauffant pour un véhicule aérien, terrestre notamment ferroviaire, aquatique notamment marin, blindé.
[Revendication 14] Application selon la revendication 13, dans laquelle les faces desdits substrats transparents rigides sont numérotées à partir de celle en contact avec l’atmosphère extérieure définie comme la face 1 et la couche électroconductrice (2) revêt une face n du vitrage feuilleté, avec n supérieur ou égal et de préférence égal à 2, comme vitrage dégivrant / antigivre.
[Revendication 15] Application selon la revendication 13, dans laquelle les faces desdits substrats transparents rigides sont numérotées à partir de celle en contact avec l’atmosphère extérieure définie comme la face 1 et la couche électroconductrice (2) revêt une face n du vitrage feuilleté, avec n supérieur ou égal à 3, de préférence la face orientée vers l’intérieur du vitrage feuilleté, du substrat transparent rigide en contact avec le volume intérieur du véhicule, comme vitrage désembuant / antibuée.
PCT/FR2019/052931 2018-12-11 2019-12-04 Vitrage feuilleté comprenant un substrat transparent a couche chauffante ayant des lignes de flux dont l'ensemble est de largeur variable WO2020120879A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP19868208.0A EP3894220A1 (fr) 2018-12-11 2019-12-04 Vitrage feuilleté comprenant un substrat transparent a couche chauffante ayant des lignes de flux dont l'ensemble est de largeur variable
CA3120333A CA3120333A1 (fr) 2018-12-11 2019-12-04 Vitrage feuillete comprenant un substrat transparent a couche chauffante ayant des lignes de flux dont l'ensemble est de largeur variable
BR112021009533-0A BR112021009533A2 (pt) 2018-12-11 2019-12-04 vidraça laminada que compreende um substrato transparente com uma camada de aquecimento tendo linhas de fluxo que, em conjunto, são de largura variável
KR1020217020636A KR20210102290A (ko) 2018-12-11 2019-12-04 전체적으로 가변 폭인 플로우 라인을 갖는 가열층을 구비한 투명 기판을 포함하는 적층 글레이징
US17/299,585 US20230146513A1 (en) 2018-12-11 2019-12-04 Laminated glazing comprising a transparent substrate with a heating layer having flow lines which altogether are of variable width
CN201980005782.9A CN111556808A (zh) 2018-12-11 2019-12-04 包含具有含一组宽度可变的流线的加热层的透明基材的层合玻璃板
IL283603A IL283603A (en) 2018-12-11 2021-06-01 Laminated glazing that includes a transparent substrate with a heating layer with flow lines that are of variable width

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1872679 2018-12-11
FR1872679A FR3089451B1 (fr) 2018-12-11 2018-12-11 Vitrage feuilleté comprenant un substrat transparent à couche chauffante ayant des lignes de flux dont l’ensemble est de largeur variable

Publications (1)

Publication Number Publication Date
WO2020120879A1 true WO2020120879A1 (fr) 2020-06-18

Family

ID=66286472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/052931 WO2020120879A1 (fr) 2018-12-11 2019-12-04 Vitrage feuilleté comprenant un substrat transparent a couche chauffante ayant des lignes de flux dont l'ensemble est de largeur variable

Country Status (9)

Country Link
US (1) US20230146513A1 (fr)
EP (1) EP3894220A1 (fr)
KR (1) KR20210102290A (fr)
CN (1) CN111556808A (fr)
BR (1) BR112021009533A2 (fr)
CA (1) CA3120333A1 (fr)
FR (1) FR3089451B1 (fr)
IL (1) IL283603A (fr)
WO (1) WO2020120879A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023161575A1 (fr) 2022-02-25 2023-08-31 Saint-Gobain Glass France Matériau comprenant un revêtement contrôle solaire
WO2023161574A1 (fr) 2022-02-25 2023-08-31 Saint-Gobain Glass France Vitrage feuillete

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040065651A1 (en) * 2002-10-03 2004-04-08 Voeltzel Charles S. Heatable article having a configured heating member
US20050178756A1 (en) * 2002-06-05 2005-08-18 Etienne Degand Heatable glazing panel
WO2007039747A1 (fr) * 2005-10-06 2007-04-12 Pilkington Group Limited Vitrage feuillete
US20080035629A1 (en) * 2004-07-26 2008-02-14 Glaverbel-Centre R & D Electrically Heatable Glazing Panel
EP1897412B1 (fr) 2005-06-30 2013-12-25 Saint-Gobain Glass France Vitrage chauffant feuillete ayant un confort de vision ameliore

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1908584A1 (fr) * 2006-10-02 2008-04-09 Scheuten S.à.r.l. Vitrage feuilleté
TWM525272U (zh) * 2016-03-09 2016-07-11 Nano Bit Tech Co Ltd 可加溫的膠合玻璃結構
EP3486225A4 (fr) * 2016-05-26 2020-05-06 Nippon Sheet Glass Company, Limited Verre feuilleté

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050178756A1 (en) * 2002-06-05 2005-08-18 Etienne Degand Heatable glazing panel
US20040065651A1 (en) * 2002-10-03 2004-04-08 Voeltzel Charles S. Heatable article having a configured heating member
US20080035629A1 (en) * 2004-07-26 2008-02-14 Glaverbel-Centre R & D Electrically Heatable Glazing Panel
EP1897412B1 (fr) 2005-06-30 2013-12-25 Saint-Gobain Glass France Vitrage chauffant feuillete ayant un confort de vision ameliore
WO2007039747A1 (fr) * 2005-10-06 2007-04-12 Pilkington Group Limited Vitrage feuillete

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023161575A1 (fr) 2022-02-25 2023-08-31 Saint-Gobain Glass France Matériau comprenant un revêtement contrôle solaire
WO2023161574A1 (fr) 2022-02-25 2023-08-31 Saint-Gobain Glass France Vitrage feuillete
FR3133026A1 (fr) 2022-02-25 2023-09-01 Saint-Gobain Glass France Vitrage feuillete
FR3133057A1 (fr) 2022-02-25 2023-09-01 Saint-Gobain Glass France Matériau comprenant un revêtement contrôle solaire

Also Published As

Publication number Publication date
FR3089451B1 (fr) 2022-12-23
EP3894220A1 (fr) 2021-10-20
CA3120333A1 (fr) 2020-06-18
US20230146513A1 (en) 2023-05-11
CN111556808A (zh) 2020-08-18
IL283603A (en) 2021-08-31
KR20210102290A (ko) 2021-08-19
BR112021009533A2 (pt) 2021-08-17
FR3089451A1 (fr) 2020-06-12

Similar Documents

Publication Publication Date Title
EP1803327B1 (fr) Vitrage transparent avec un revetement chauffant resistif
EP2127475B1 (fr) Vitre transparente avec un revêtement chauffant
BE1008759A3 (fr) Vitrage chauffant et circuit de controle destine a ce vitrage.
EP1980137B1 (fr) Vitrage transparent muni d'un systeme stratifie chauffant
CA2615919C (fr) Pare-brise chauffant
EP3317097B1 (fr) Vitrage chauffant a feuille de verre exterieure amincie et couche chauffante a lignes de separation de flux
EP1175813B1 (fr) Vitrages chauffants, en particulier pour vehicules
EP2697058A1 (fr) Vitrage chauffant
EP3681715B1 (fr) Vitrage feuillete comprenant un substrat transparent a couche chauffante ayant des lignes d'ablation se refermant chacune sur elle-meme
WO2012168628A1 (fr) Element chauffant a couche
WO2020120879A1 (fr) Vitrage feuilleté comprenant un substrat transparent a couche chauffante ayant des lignes de flux dont l'ensemble est de largeur variable
FR2971387A1 (fr) Element chauffant a couche
EP2772117B1 (fr) Pare-brise chauffant
WO2015189039A1 (fr) Vitrage chauffant
EP3205180A1 (fr) Vitrage chauffant et de blindage electromagnetique
US20230164888A1 (en) Coated glazing
WO2018109364A1 (fr) Vitrage feuillete ayant une couche electroconductrice a ligne d'ablation dont les bords sont exempts de bourrelet et en pente douce
RU2776075C1 (ru) Многослойное остекление, включающее прозрачную основу с нагревательным слоем, содержащим линии тока с переменной шириной
EA043108B1 (ru) Нагреваемая панель остекления

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19868208

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3120333

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021009533

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217020636

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019868208

Country of ref document: EP

Effective date: 20210712

ENP Entry into the national phase

Ref document number: 112021009533

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210517